
Swinburne Research Bank
http://researchbank.swinburne.edu.au

Author: Ngamakeur, Kan; Yongchareon, Sira; Liu, Chengfei
Title: A framework for realizing artifact-centric business

processes in service-oriented architecture
Year: 2012
Journal: Lecture notes in computer science: proceedings of

the 17th International Conference on Database
Systems for Advanced Applications (DASFAA
2012), Busan, South Korea, 15-18 April 2012

Volume: 7238
Pages: 63-78
URL: http://dx.doi.org/10.1007/978-3-642-29038-1

Copyright: Copyright © 2012 Springer-Verlag Berlin
Heidelberg.The final publication is available at
link.springer.com

This is the author’s version of the work, posted here with the permission of the publisher for your
personal use. No further distribution is permitted. You may also be able to access the published
version from your library.

The definitive version is available at: http://dx.doi.org/10.1007/978-3-642-29038-1

Powered by TCPDF (www.tcpdf.org)

Swinburne University of Technology | CRICOS Provider 00111D | swinburne.edu.au

http://www.tcpdf.org

A Framework for Realizing Artifact-Centric Business

Processes in Service-Oriented Architecture

Kan Ngamakeur, Sira Yongchareon, and Chengfei Liu

Faculty of Information and Communication Technologies
Swinburne University of Technology, Victoria, Australia

{kngarnakeur, syongchareon, cliu }@swin.edu.au

Abstract. Over the past few years, the artifact-centric approach to workflow
modeling has been beneficially evidenced for both academic and industrial
researches. This approach not only provides a rich insight to key business data
and their evolution through business processes, but also allows business and IT
stakeholders to have a single unified view of the processes. There are several
studies on the modeling and its theoretical aspects; however, the possible
realization of this approach in a particular technology is still in its fancy stage.
Recently, there exist proposals to achieve such realization by converting from
artifact-centric model to activity-centric model that can be implemented on
existing workflow management systems. We argue that this approach has
several drawbacks as the transformation, which is unidirectional, poses loss of
information. In this paper, we propose a framework for the realization of
artifact-centric business processes in service-oriented architecture achieving a
fully automated mechanism that can realize the artifact-centric model without
performing model transformation. A comprehensive discussion and comparison
of our framework and other existing works are also presented.

1. Introduction

To meet the challenges of globalization, business processes demand for technologies
that can support more efficient and economical way of automation and collaboration.
Promisingly, Service-Oriented Architecture (SOA) shows itself as technology enabler
that can support such needs. During the recent years, an artifact-centric approach to
business process modeling has been introduced as a propitious paradigm that lends
itself well to SOA design principle and model-driven architecture (MDA) design
concept [I, 3, 5, 7, 12]. This approach has been evidenced in both academic and
industrial researches where it not only provides higher level of flexibility of workflow
enactment and evolution, but also facilitates the process of business transformation
and helps communicating the business intent for consolidating business operations
across organizations [1, 2, 3, 4, 5, 8, 9). In essence, the approach has a central focus
on defming key business entities, so called "business artifacts", which are evolved
and manipulated within a process. The controlling mechanism that governs the whole
process can be implemented by business rules. So far, there have been several studies
on the modeling and theoretical aspects of the artifact-centric approach; however, its

realization and system implementation, especially under SOA and MDA environment,
is still in its fancy stage.

One possible and practical approach for realizing the artifact-centric business
processes is by transforming an artifact-centric model to a conceptual flow model,
which is an activity-centric (control-flow) model. The conceptual flow model is, then,
mapped into an executable workflow, e.g., BPEL [5]. The advantage of using this
approach is an ease of implementation as workflow technologies and standards based
on the traditional model have been developed, e.g., in [11, 12]. In spite of such good
point, we argue that this approach has several drawbacks as the transformation, which
is unidirectional, poses loss of information. By converting the model, business rules
are degraded into control flows; therefore, it is difficult to track and manage the rules
based on the converted model. The flexibility of the process is also reduced as
business rules are not available to be modified at run-time. Another possible approach
is to realize the artifact-centric process model directly without converting the model.
This can be considered as more efficient and automatic approach for realizing the
model. We claim that the latter approach overcomes the issues of the former
approach. In this paper, we propose a framework for the realization of artifact-centric
business processes. The framework consists of artifact-centric workflow model and a
mechanism that can automatically realize and execute the model under the service
oriented environment. We also provide detailed discussions on technical issues and
challenges of our realization framework as well as the comparison with existing
activity-centric workflow systems.

The remainder of this paper is organized as follows. Section 2 presents an artifact
centric approach to process modeling. Section 3 discusses the realization framework
for artifact-centric business processes. Section 4 shows implementation and
evaluation of our framework. Section 5 discusses and reviews the related works.
Finally, the conclusion and future work are given in Section 6.

2. Artifact-Centric Approach to Business Process Modeling

In this section, we introduce an example of business processes to illustrate that we can
identify business artifacts and use them to construct an artifact-centric business
process in order to use it for analysing and capturing the requirement of our prototype
system. In the artifact-centric approach, a business process can be constructed using
business artifacts. An artifact stores its business relevant information and its lifecycle.
The state transition of artifacts is achieved by a service and is controlled by a set of
business rules. Our example of business process is adapted from a simple online
ordering process. The process starts when a customer places an order including billing
information through a web site. Then the order is sent to a manufacturing factory
where the ordered product is assembled, tested and packaged. Finally, the product is
shipped to the customer. After we examine this process, several business artifacts are
identified. Fig. 1 shows data model and lifecyc/e model of key business artifacts
involved with this business process. For each artifact, the data model represents its
data attributes, while the lifecycle model represents its state transition of the artifact.

.. -{)a�,;.�el--------;��:;�:--··-.1
::

OrdoriO lnvok:eiO
CuttomerName OrderiO

Orderltem(J lnvoiveOate
Gl'andTotel BilllngAddren
Customer To1al
Addrns AmonlPakl

Shipment

ShlpiO
Ordtr10

CustorntrNamt
Shippk\gAddtess

StipStartOato
ShlpEndOate

� .. _ : '---------------------------'

Fig. 1. Artifacts and their lifecycles in product ordering processes

We can see that this process consists of three classes of artifacts: invoice, shipment
and order. Apart from the artifacts, in the lifecycle model we can see two components
that are essential for constructing a complete business process - those are services
(a.k.a. tasks) and business rules. A service is used to make change on artifacts. An

association between services and business artifact(s) is specified by using business
rules as to describe on what condition such service is performed on the artifact(s).
More details are described in Section 3.2. Based on initial concept of artifact-centric
business processes, we analyzed the problem domain to understand basic
requirements that needed to be addressed in our framework. Here, we summarized our
requirements into three points listed in following paragraphs.

A formal process definition of artifact-centric business process (ACP)
ln artifact-centric approach, the conceptual model of an artifact-centric business
process is defined in a declarative manner. The conceptual model provides a high
level specification of a business process execution. Normally, it is used to
communicate business intents between stakeholders but it can't be executed by a
computer system. In order to realize the conceptual model of an artifact-centric
business process, we need to develop a process definition that contains all concrete
details required by a process execution.

A process deployment and execution
The process deployment has to be developed in such way that it can parse the model
definition, map parsed data to predefined classes, and deploy a process in a web
service environment. When a client invokes the deployed process, the process and
other related (e.g., artifacts, services, rules) instances need to be created. The concept
of executing and managing these instances for artifact-centric business processes are
new and relatively challenging. This is because the core constructs of the artifact
centric process model differ from those of the traditional activity-centric model.

Business rule definition and evaluation
ln the traditional approach, business logics are defined explicitly using control flows
and activities. In contrast, in artifact-centric approach, we use business rules to define
an association between artifacts and services. Each rule describes which service is
invoked and which artifact(s) is changed under what conditions. This requires an
investigation of how rules can be defined in the most expressive and effective
manner. In the implementation, the integration of a suitable rule engine to our system
to handle the artifact-centric process execution is also challenging.

3. ACP Realization Framework

In this section, we illustrate our framework for automated realization of artifact
centric business processes. The detailed technical discussion on proposed system
architecture is also presented. It is quite easy to comprehend the artifact-centric
business process model at the conceptual level from our motivating example since it
was designed to incorporate information and behaviour aspects of a business process.
As a result, we can convey and communicate business intent among a variety of
stakeholders. As already introduced, two approaches are observed. The first approach
is to convert the artifact-centric model into a conceptual model in a procedural
manner. The good side is that the artifact model can be easily to be implemented
using traditional workflow technologies. Its drawback is that the flexibility of the
artifact model and data may lose in the model conversion. On the contrary, our
approach directly realizes the artifact-centric process model. Here, we propose an
ACP realization framework based on the direct approach, and it is illustrated in Fig. 2.

(I-A:e �""�'"r;:-� -�- -�
: A D E :
I C, ,.,..... I
I \ / , / ..,.. >'(. I

l_C� __ (?:J�-J�J_j
ECA control now

Data read/write
<r----- -t>

Fig. 2. ACP realization framework

In our framework, we aim at fully automated realization from ACP definition to
its execution. This framework does not require additional model transformation (from
ACP model to workflow executable model) nor require backward mapping
mechanism to validate the running instances with the original ACP model. The
framework contains only ACP executable model and the automated realization
mechanism that can directly execute such process defmitions. In the task-based
model, data is defined separately at later time (in most cases after the task has already
been defined). While in run-time, workflow systems do not realize the relationship
between the current stage of task execution and the state of the data or artifacts that
being manipulated. This poses a technical problem when attempting to discover the
correspondence and to track run-time instances of those running artifacts directly in
the ACP model. In our approach, instances of process, services, and artifacts being
manipulated can be directly reported regarding their ACP model. Monitoring a
progress of a particular business process can be efficiently achieved at both artifact
and process levels. We can see that such direct monitoring and reporting are more
efficient as an additional reverse mapping from instances of activity-centric model to
artifact-centric model is not needed.

3.1 Artifact-centric Business Process Model

Here, we introduce an artifact-centric business process model (ACP mode[) that has
been proposed in our previous work [9, 10]. Our ACP model consists of sets of
artifact classes, services, and business rules. An artifact, which is a key business
entity involved in business processes, contains its relevant attributes and many finite
processing states. Let Z = {C1, C2 ... , Cx} be a finite set of artifact classes that are used
in a particular process. Each artifact class C; EZ is defined as a tuple (A, slntt

, S, sf)
where set A = {a1, a2, ... , ay}, and each a1eA is a name-value pair attribute; setS=
{s1, s2, . . . , Sz} contains the possible states of the instances of class C1; stnit is the
initial state, and sf � S is a set of its final states. A service is a task that is used to
perform read/write operations on some artifact(s), and it is denoted as v(C1, C2, .. , Cy)
where Cl> C2, .. , Cy are artifacts that are read/updated by service v. A business rule is
used to associate service(s) with artifact(s). It is defined in a Condition-Action style to
describe on what pre-condition a particular service is executed, and on what post
condition after performing such service must satisfy. A business rule, denoted as r, is
a tuple (A., f3, v) where A. and f3 are a pre-condition and post-condition, respectively; v

is a service that performs read/update operations on the attributes and the processing
states of some artifacts in schema Z. We restrict both pre- and post-conditions to be
expressed by a conjunctive normal form. This form can contain two types of
proposition over schema Z: (I) state proposition (by instate predicate) and (2)
attribute proposition (by defined predicate and scalar comparison operators). We
write defined(C. a) if attribute aeC.A of artifact of class C has a value; and instate(C.

s) if state se C.S of artifact of class C is active. Initially, instate(C. stntt) implies
'VxeC.A, -,defined(C, x). A complete set of business rules defined for a particular
process model specifies the control logic (named ECA flow) of the whole process
from the beginning to the termination of the process. Table I shows an example
subset of business rules that are used in our product ordering process.

Table l. Example of business rules

rl Cmtomer requests to make an orde1 0
Pre-condition instate(O,init) A defined{O,Order/D) 1\ defined{O. CustomerName) "

de/ined(O.CustomerAddress)
Service createOrder(O)
Post-condition instate(O,Add_Orderltem) "defined(O.Order!D) "defined(O.CustomerName) "

defined(O.CuslomerAddress)
r2 Create Shrpment Slot an orde1 0
Pre-condition instate(O,Add_Order _Item) " instate(S,Jnit) " defined(O. GrandTotal) "

0. GrandTota/>0 " defined(S.Ship!D) " defined(S. Order I D) "

defined(S.ShtppingAddress)
Service createShipping(S,O)
Post-condition instate(O, Create_ Shipping) " inslate(S, waitingJor _Ship _Item) "

defined(S.CustomerName) " defined(S.ShippingAddress) " defined(S.Ship!D) "
defined(S.Order!D)

r3. Cteate Invoice I or an order 0
Pre-condition instate(I,Init) " instate(O,Creat/ng_Shipping) " defined(J.InvoicelD) "

defined(l.Order/D) " defined(J.BillingAddress) " defined(l.lnvoiceDate) "

defined(!. Total)" I. Total= O.GrandTotal
Service createfnvoice(I. 0)
Post-condition instate{V, Unpaid) "instate(O.Bil/ed)

3.2 ACP Executable Model

Now, we propose to use a serializable and executable version of the ACP model based
on the ACP Model definitions described in Section 3.1. Our artifact-centric
executable process model is defined by using XML, and it consists of three
defmitions: artifact definition, business rule definition, and service definition, as
shown in Fig. 3. It contains implementation details required by a system to execute a
particular business process and they are used for creating running instances.

;e name = .. order! D .. structure = "pair" type= •string" I>

<business rules> <ru
1����e8ni ��=�,'ir\�'&tiPe'ssage"/> <pr��d> <atom$J.e ="state" artlfact="Order"ld="O(der1" value ;;l "init" f> •atom t e="attlibutf artWac;)="Ord�(' ld= O'!J•t.); attribute=,tem qtJantity" op="==" value="'"I>

< /��d�m e="input'" at ribute= 'a" op= >"value= '1 -
�a'ci�con>

<in�i:t���gg>= "Internal" operation = "createOrder" service= �createOrderServtce" >

<!Invoke>
</do> </rule> </buslnessrules>

> 5� artifact= "order" id = "order1" fromState = "inil" teState = "open_for_item" I >

Fig. 3 . Artifact, Service, and Business rule definitions

Artifact definition composes of a set of attributes and states. An attribute
defmition provides details of business data (<name>, <type>, and <structure>)
that can be stored in each attribute of a particular artifact, such as attribute Name,
data type and data Structure. A state definition provides details of each state
(<name>, <type>) in a particular artifact life cycle, such as name of state, initial
state and fmal state.
Business rule definition is used to defme an ECA-like rule description. This rule
consists of event, precondition and action (<onEvent>, <precon>, and <do>).
Element <onEvent> provides details of which event can trigger a particular rule.
Element <preCon> is a condition that needs to be satisfied in order to take a
further action. Element <do> is a task or service that needs to be invoked.
Element <invoke> provides service name and operation name of a designated
web service. Moreover, Mapping rules and transition rules (<map>, <transition>)
are defmed in this part as well. Mapping rule provides details of data mapping
between artifact and message. The transition rule is used to control state
transition for each artifact involving in a step of process execution.
Service definition defmes concrete details of a web service. This defmition
provides information that is necessary for a service invocation, such as service
name, operation, WSDL location, and port. In this paper, we consider only inputs
and outputs of a web service not including its behaviours.

Due to the fact that the current web service technologies do not support an artifact
as an input of a web service. To address this issue, an internal data mapping
mechanism is required in order to correlate the passing messages (input/output) and

their corresponding data attributes of artifacts. We use a mapping rule to map data
between artifact and SOAP message; therefore we introduce mapping rules, as shown
in Fig. 4 and Fig. 5 into our framework. We consider that there are two types of data
mapping in our framework, which are mapping from message to artifacts and from
artifacts to message. We include mapping type to indicate a direction of mapping. The
rule is also included details of a source (<from>) and a destination (<to>) for mapping
between artifact and message. These two elements contain information that helps the
system to locate corresponding artifact's attribute or message's part to be map when a
web service is invoked.

[......,§-a<t .,.-es-�
I I
1 Order 1
I I
I I

, ________ .,

Fig. 4. Data mapping between SOAP Message and Artifacts

<�g_Iyp; =--Message I 01\f!IIBC >
�rYom f!lessagt> = 'caiTQtaiMessaae"_part = 'COJslomertD'/>
<to artifact = orde(' attnbu1e="orcertD'/> </copy>

<�rrtm messa�e = "caiTotaiMessage' part= "numberOrllem"/>
<to artifact= order' attribute="quanUty'/>

</copy> </map>

<m.1'£i,YP," = ·1\roraCI r OMessage >

<hom artifact= 'or®r' attribute="ordertDj'>
<to message= ·carr otaiMessage" part= customeriD"/>

</copy>
<CO._P�� artifact= 'order" attribute='guantift/>

<to message= 'caiTotaiMessage" part= "numberOnte m"/>
</copy>

</map>

Fig. 5. Example of mapping rules

3.3 Run-time ACP instances

During a process execution, we need to keep track the status of a running process.
This allows the system administrator to inspect the status during a runtime and after a
completion of a process execution. We classify instances of ACP into four following
types where each of which corresponds to individual component of ACP model.

Process instance - When the process is enacted then the system initially creates
process instance. Once a process instance is created, it will be given its name
corresponding to executed business process and will be given an identifier key.
Process instance acts as a container to store other running instances, which are
artifact instance, rule instance and service instance.
Artifact instance - In a process, an instance of particular artifact class can be
created at the time the process is initialized or after service invocation (that
performs a creation of artifact). Newly created artifact instance will be populated
with artifact defmition data and will be given an artifact identifier key. This
instance serves a purpose of storing information including business data and
lifecycle during each step of business process execution. Thus, it is a key to
indicate progress of a running process.
Service instance - Service is instantiated when it is invoked (as defined by the
action in a business rule). It not only stores service invocation information
defined in a service definition but it also captures input/output message data as
well as timestamp.
Rule instance -An instance of business rule is created when the rule is triggered
by event and its pre-condition holds. A rule instance provides information

regarding decision making. By inspecting this instance, we will know which rule
is fired, what time rule is fired, and what data triggered rule firing.

Based on the above types of instances of ACP, we can gather the complete
execution traces by recording every instance type on the log records. These records of
a particular process permit the real-time (direct) monitoring of the process and its
components without the reverse mapping, which is required for the existing model
transformation realization approach, i.e., covert ACP model to task-based model and
nm it on existing workflow system. It is worthwhile mentioning that with our
framework, business rules can be modified/removed/added at run-time while still able
to reflect its process model. At run-time, we allow our ACP system to keep different
versions of business rule for a particular process model by storing the mapping of
every version and its original version. This feature enhances the system ability to be
able to track/monitor different versions of (process and rule) instances of the same
process. We also claim this feature to be one of the advantages of our realization
framework compared with the existing approach.

4. Implementation and Evaluation

4.1 ACP System architecture and its components

In this section we show our proposed architecture of the artifact-centric process
system (ACP System), as illustrated in Fig. 6. This system architecture ensures that we
can address those requirements from the previous section. We adopted the concept of
the event driven architecture and service-oriented architecture.

Fig. 6. ACP System

Here, we describe each ACP system's component in more details.

Process Deployer is used to deploy ACP Model defmition file. The definition file
will be parsed to generate nmning instances of a particular business process.

Business Rule Engine provides a rule evaluating functionality. For any change in
a running process, a rule engine will evaluate an instance in order to determine
the next possible action that will be undertaken.

Process Controller is used to manage instances of a process based on rule
engine's command. Once the process controller receives a command from rule
engine to start a new process execution, it will use a process factory to create
nmning process instance. The factory will identify the corresponding instance
and create it. The created process instance will be given an id for identification

purpose. The process controller can issue a command to an artifact controller to
update artifact instances or to web-service controller to invoke web services. For
any changes in a running process, the process controller will consult the rule
engine to perform the next possible action.
Web Service Controller is used to invoke web services to process artifact data. To
invoke a web service, the controller creates a soap message corresponding to
message definition in WSDL. The artifact data is mapped to message data using a
mapping rule. Finally, the request message is sent to a designated web service.
Once a response message is returned, the service controller processes the
message, and returned message data is mapped to corresponding artifact attribute.
Artifact Controller is used to manage and update artifact (which is stored in
external repository). After the service controller receives a response message
from a web service, a data mapper will extract the message. Then the artifact
controller uses such data to update corresponding artifacts.
Front-end VI Interface, proposed in our previous work [I 0], is used to manage
web-based interactions between ACP system and users, which includes automatic
generation of web pages and receiving/responding via web form interfaces.

4.2 Run-time execution

Here, we discuss operations of our ACP system in more details including instantiation
of a running instance, operation of rule engine and how each component works
together to coordinate a process execution.

Creation of a running instance
The ACP system has the component so called process factory to create running
instances from an ACP defmition. Once a process execution bas started, the process
controller will call a process factory method to create a process instance and also
other running instances. The factory will identify a correct deployed process and
instantiate corresponding instances. During instantiation of running instances,
implantation data stored in the defmition file will be parsed and mapped to
corresponding instances. Upon receiving a process instance, the process controller
will register the process instance in order to be able to keep track processes that are
currently running.

Integration of rule engine

In Artifact-centric business process, business rules are main mechanism to control
interaction between artifacts and services. The rule engine is integrated into our
system to provide functionality for evaluating business rules. The rule engine will be
activated once it receives an internal event generated by the process controller. During
the activation, a process instance will be feed as an input of a rule engine. A process's
data is validated against a set of conditions. If conditions are satisfied, an action will
be undertaken to make changes to artifacts. A rule instance that keeps track of rule
execution is also created in the process as well. In our current prototype, we have
integrated Drools rule engine [21] since the engine provides very efficient ways of
evaluating business rules. The rule format is also easy to comprehend and can be
written in xml format and drool format. Drools engine conforms to JSR94 standard
and provide a set of APls that allows us to integrate it to our system.

Coordination of running instances
In order to coordinate running instances, we address this issue using process
controller, artifact controller and service controller. Here, we will use our motivation
example to describe how these controllers work together to coordinate all instances
that are created during a process execution. Once the ACP system receives a request
from a user to start an ordering process, the rule engine will evaluate the request. If
preconditions of rule r 1 are satisfied, the rule engine will issue a command to the
process controller to start a process execution of an ordering process. The rule
instance of rule r 1 is also created at this point as well. The process controller invokes
the process factory. The factory identifies the deployed process and instantiate a
process instance for an ordering process. After receiving a corresponding process
instance, the process controller will initialize a unique process id and register the
process instance to a list of running process instance. Once a process instance is
registered, an instance of rule r1 is added to a list of rule instances. The artifact
instance of an order artifact is also created by the factory and added to a list of artifact
instances. The artifact instance is given a unique id that is used for identification
purpose and its state is set to start. Next, the process controller orders a web-service
controller to invoke the createOrder service. The service instance of createOrder
service is instantiated and added to a list of service instances. The service controller
will communicate with the artifact controller to retrieve data from corresponding
artifacts. The createOrder service is then invoked. Once a response is returned, a
service controller will send message data to an artifact controller to update the
artifacts. The unique artifact ensures that correct artifact instance is being updated. A
new artifact instance will be generated if necessary during this step as well. Mapping
rule defined in rule r 1 controls the data mapping between service input-output and
artifact instance. Once fmishing data updating, the artifact controller will update a
state of an order artifact from start to open Jar _item. After completion of artifact
updating, the artifact controller sends a signal to the process controller. The process
controller will generate Artifact_change event to trigger rule engine to continue a
process until ordering process is completed

As we can see that each step of a process execution, the ACP system creates
artifact instances, service instances and rule instances (cf. Section 3.3). These
instances can be used to monitor a process since they contain overall information. To
prove our concepts, we developed a prototype of ACP system and generated a test
case based on the motivating example. After the prototype executed a test case, it is
able to process data from running instances and generate a log file. In a log file, we
can see detailed information for each step of a particular business process execution.
To generate this Jog file, the system need to capture data from rule instances, artifact
instances and service instance at run-time. A rule instance contains identifier keys that
belong to involving service instance and artifact instance. These keys help define a
relationship between rule instance and the other instance in each step of a process
execution. This enables our system to be able to generate a record for each step during
run-time. As shown in Fig. 7, Pre and Post-artifact are also recorded in a log file to
show progress of each artifact from initial state to fmal state. The system records
these data before and after service invocation. We can also use these pre and post
artifact data to help facilitate process provenance if it is necessary. Therefore, this is a

solid proof to illustrate an advantage of artifact-centric business process regarding to
monitoring and reporting.

item submk date>
ut en_com'J51 ete_date>

<record noo&7'> <timos tamo>Dec 4. 2011 2:4 7: 49 PMd<nestam p> <1Ufeld>r02.calcul,tc!GrandTo tai:RJ<Irule l�>
���:ic:ilPrG,_rand ota1Service:S1 serviced>

< r:c00 1 " stale="open fo r item">
1<Jor erld> - -

ern em>
Nl:h </customer Address>
stomerName>

Fig. 7. Log record of a test case based on the motivating example

4.3 Technical evaluation

In this section, based on the result of our implementation prototype, we discuss on the
technical evaluation of our ACP system as well as a detailed comparison between two
realizations approaches. Note that we do not discuss on the advantages and
disadvantages between traditional activity-centric approach and the artifact-centric
approach in this paper. After a prototype of ACP system is completed, we have
simulated test cases based on our online ordering process. The result shows that our
framework can address our requirements. The developed system is able to manage
running instances created during process execution. Each running instance, e.g.
service instance, stores process execution data and can be used for purpose of
monitoring and reporting as shown in Fig. 7. Log record of a test case based on the
motivating example. A business rule engine is proved to be able to work solely to
provide decision making that affects on running processes. In our current prototype,
we centralize all decision making process into a single rule engine. Thus, it simplifies
rule management. However, this may raise performance issue of process execution if
there are thousands of business rule to be evaluated by a rule engine. Non
deterministic is also an issue since a rule engine fires rules simultaneously. However,
their ordering is non-deterministic. Thus, sequence of process execution may be
different even with the same business process. A task for evaluating reachability of
running processes is needed to address this issue. In our implementation, we assume
that there is no issue regarding to non-deterministic. Since business process models
are defined implicitly in artifact-centric approach, this is going be another issue for a
process modeler. An artifact model doesn't have any explicit control flows as in the
traditional process model so this is not an easy task for the process modeler. Thus, an
intuitive process designing tool needs to be further developed. As we know that there
is another way to implement artifact-centric processes, we compare our system to this
existing artifact system implemented using the model transformation approach
described in papers [II, 5].

- Realization approach
In our implementation, we used our direct approach to realize an ACP model whereas
the opposite approach proposed in [11] attempts the conversion from artifact-centric
process model to a procedural model, e.g. BPEL. We consider that logical
information of artifact-centric process model can be lost during the model conversion
process since some logical information which defined in a declarative manner, e.g.
business rules, is spilt and mapped into several control flows in a procedural model.
Moreover, this conversion task is quite cumbersome, error-prone and time consuming.
Our approach ensures that there is no loss of data during transformation of the
conceptual model since logical information of the conceptual model can be mapped
faithfully to the proposed executable model. Without any model conversion, this
approach uses Jess time and reduces chance of making mistake. Thus, direct approach
is considered to be more appropriate way to realize the artifact model compared to
model conversion approach.

- Flexibility and changes management
Flexibility is strength of a process model in declarative style. A conceptual model of
artifact-centric business process gains this advantage as well since it is specified in the
same style. Direct approach that we used to realize the conceptual model guarantees
that the executable model inherits flexibility from its conceptual model, whereas the
other approach does not since tasks are locked up by control flows. As a result,
flexibility is well supported for design-time and run-time for our approach, whereas
the other approach partially supports flexibility at run-time as it depends on the
functionality offered by a particular workflow system. Thus, Changes can be made
directly on the implementation level in our direct realization approach. In contrast,
changes have to made at design-time and then convert to the implementation if an
artifact model realized in a procedural workflow.

- Monitoring and Reporting
As opposed to traditional approach for process modeling, an artifact-centric process
model focuses on business artifacts as its first class citizen to model a particular
business process. Each business artifact contains business-relevant data and its life
cycle. Artifact data and life cycle of each artifact reflect progress of a particular
process toward a business goal. Thus, business process monitoring and tracking can
be done by inspecting artifacts. Our approach provides a feature of direct and
consistent monitoring and reporting at both model and instance level since both data
and life cycle are combined at model level and instance level. Our implementation
illustrates that a particular process can be monitored by directly inspecting running
instances at run-time without any technique involving data gathering and processing.
Whereas, the other approach needs a sophisticated mechanism which may include
retransformation from the implementation specification back to its model
specification and backward mapping for some data to its model to gather and process
all process information to provide monitoring and reporting functionality.

- Verification and conformance checking
Verification and conformance checking is very essential task for both traditional
approach and artifact-centric approach for modeling business process to ensure
validity of developed model so that it can be realized on an automated system to
support decision making for a particular business process. Since we used direct
approach to realize artifact-centric business process model, single model verification

for both design-time and run-time can be achieved because an implementation level
reflects its conceptual level. Thus, conformance checking can be achieved directly,
whereas the other realization approach needs to have separate verification on both
Artifact model and procedural model. Run-time verification does not reflect the base
artifact model because of the conversion. Therefore, conformance checking needs
some additional procedures.

- Standards and technologies support
Although our approach has several advantages, there are some drawbacks regarding
to standards and technologies supports. Artifact-centric model realized on traditional
workflow benefits from current industry-wide standards and technologies, e.g.
OASIS, OMG, W3C and etc. Thus, an implementation of this realization approach is
much easier and faster than our approach. Moreover, interoperability and execution in
distributed environment are well supported when the artifact model is realized on
traditional task-based workflow system. Currently, the developed prototype system
only supports execution of an artifact-centric business process model in local
environment and need further extension to handle distributed executions.

5. Related Work and Discussion

The notion of a business artifact was originated in [1] where business operational
model can be constructed using a collection of lifecycles of all artifacts and their
interaction. The operational model based on business artifacts provides the benefits
that are flexibility of the representation, ability for analyzing changes, and ability for
managing application. Moreover, Rang et al [2] improved the idea of the business
operational model by introducing nine operational patterns for constructing the model
and the method for verification the model. The concept of business artifact was
further adopted in [5] as a business process model can be constructed using four core
constructs that are artifacts, artifact lifecycles, services, and association. To realize an
artifact-centered model, this paper presented a three-layer framework. The artifact
centric business process model considered as a logical specification sits on the top
level. Then, it is converted to a conceptual flow that captures an essence of the top
level model in a procedural manner. Finally, it is mapped into an operational
workflow for automation. Gerede and Su [3] focused on the middle layer of the
framework, a conceptual flow, as it provides a separation between the logical
specification and the physical execution; hence changes can be made freely to the
implementation level as long as the logical specification remains unchanged.
Therefore, the conceptual flow needs to be verified and optimized to ensure its
correctness and performance respectively. This paper presented verification and
optimization techniques for a conceptual flow.

There were other works that extend the artifact-centric approach. Y ongchareon
and Liu [9] introduced a process view framework for artifact-centric business
processes followed by the extended version for modeling inter-organizational
processes [22]. An (public/private) artifact-centric process view can be used to
support participated organizations to have their own freedom to model and implement
their own parts of the process while preserving global correctness of the collaboration.

Narendra et al. [12] tried to address flexibility and monitoring issues of the service
composition using business artifacts, and their lifecycles. The concept of context
based artifact was introduced in this paper. The contexts are not only used to keep
track of changes that make on all artifacts but also used in the coordination between
artifacts and web services. To support inter-organization, the artifact-centric hubs
were proposed by Hull et al. [6]. The hubs provide a centralized, computerized
rendezvous point, where stakeholders can access data of the common interest and
check the current status of an aggregate process. The framework also incorporates
access control mechanisms to cope security issues. Instead of the centralized hubs,
Lohmrum and Wolf [7] proposed the use of artifacts in a choreography setting. In
particular, the artifact-centric business process models were enhanced with the
concept of agents and locations. By defming precisely and clearly who is accessing an
artifact and where the artifact is located, an interaction model that acts as a contract
between the agents can be generated automatically. Liu el al [23] proposed an
approach to performance monitoring based on Artifact-centric business. The first step
is to create monitoring context skeletons from business-artifact definition and from
user inputs. The second step is to derive the executable monitoring models from the
monitoring context skeletons. This work may be able to apply to improve our
prototype in the future.

As was indicated in [4] by Hull, the implementation of artifact-centric business
process is considered as one area of research challenges needed. An artifact process
model can be converted to a conceptual flow. Then, it is mapped into an executable
workflow. This first approach was adopted in [11]. This paper introduced the
conceptual flow, namely ArtiFlow, and showed how ArtiFlow can be mapped to
BPEL. Cohn and Hull [8] illustrated that IBM has used BELA tool to map an artifact
centric process model into a workflow that runs on IBM's WebSphere Process Server.
In this research, we use a different approach compared with Artiflow. Our realization
approach is to generate the executable model from the logical specification of an
artifact-centric model based on [9, 1 0] without any transformation of the model. We
also develop our prototype to execute our proposed executable model where the
system uses business rules to control each state of process execution. In Siena [15],
users can model business artifacts and process as an XML documents in order to
create a composite web application. Then, the application is deployed and executed on
an execution engine. However, there is no use of business rules. Moreover, processes
are still executed in a procedural mrumer.

6. Conclusion and Future Work

In this paper, we propose a new framework for realizing artifact-centric business
processes. Especially, we showed how an rutifact-centric process model can be
realized in our system. Apart from the proposed system for the realization of ACP
model, we also provided a detailed discussion on the advantages and disadvantages of
our approach. Our future work will extend our system to support interoperability.

References

I. Nigam, A., Caswell, N.S.: Business artifacts: An approach to operational specification.
IBM Syst. J. 42(3), 428-445 (2003)

2. Liu, R., Bhattacharya, K., Wu, F.: Modeling Business Contexture and Behavior Using
Business Artifacts. In: CAiSE 2007. LNCS 4495, pp. 324-339.

3. Gerede, C.E., Su, J.: Specification and Verification of Artifact Behaviours in Business
Process Models. In: ICSOC 2007. LNCS 4749, pp. 181-192.

4. Hull, R.: Artifact-Centric Business Process Models: Brief Survey of Research Results and
Challenges. In: OTM 2008, Part I. LNCS 5331, pp. 1152-1163.

5. Bhattacharya, K., Hull, R., Su, J.: A data-centric design methodology for business
processes, Handbook of Research on Business Process Modeling (2009)

6. Hull, R., Narendra, N.C., Nigam, A.: Facilitating Workflow Inter-operation Using
Artifact-Centric Hubs. In: ICSOC/ServiceWave 2009. LNCS 5900, pp. l -18.

7. Lohmann,N., Wolf, K.: Artifact-Centric Choreographies. In: ICSOC 2010. LNCS 6470,
pp. 32-46.

8. Cohn, D., Hull, R.: Business artifacts: A data-centric approach to modeling business
operations and processes. IEEE Data Engineering Bulletin 32(3), 3-9 (2009)

9. Yongchareon, S., Liu, C.: A Process View Framework for Artifact-Centric Business
Processes. In: OTM 2010. Part I, LNCS 6426, pp. 26-43.

10. Yongchareon, S., Liu, C., Zhao, X., Xu, J.: An Artifact-Centric Approach to Generating
Web-Based Business Process Driven User Interfaces. In: WISE 2010, LNCS 6488, pp.
419-427.

II. Liu, G., Liu, X, Qin, H, Su, J., Yan, Z., Zhang, L.: Automated Realization of Business
Workflow Specification. In: JCSOC!ServiceWave 2009. LNCS 6275, pp. 96-108.

12. Narendra, N. C., Badr, Y., Thiran, P., Maamar, Z.: Towards a Unified Approach for
Business Process Modeling Using Context-based Artifacts and Web Services, iEEE SCC
2009, pp. 332-339.

13. Hull, R., Kumar, B., Lieuwen, D.F., Patel-Schneider, P.F., Sahuguet, A., Varadarajan, S.,
Vyas, A.: Everything personal, not just business: Improving user experience through rule
based service customization. In: ICSOC 2003. LNCS 2910, pp. 149-164.

14. Hull, R., Kumar, B., Lieuwen, D.F., Patel-Schneider, P.F., Sahuguet, A., Varadarajan, S.,
Vyas, A.: Enabling context-aware and privacy-conscious user data sharing. In: IEEE Inti.
Conf on Mobile Data Management (MOM) 2004.

15. Cohn, D., Dhoolia, P., Heath III, F., Pinel, F., Vergo, J.: Sienna: From Powerpoint to Web
App in 5 minutes. In: /CSOC 2008. LNCS 5364, pp. 722-723.

16. Boley!, H., Paschke, A., Shafiq, 0.: RuleML 1.0: The Overarching Specification of Web
Rules. In: RuleML 20 I 0. LNCS 6403, pp. 162-178.

17. Hollinsworth, D.: Workflow reference model. Technical report, Workflow Management
Coalition, TC00-1 003(1994)

18. WebSphere Process Server. http://www-O l.ibm.com/software/integration/wps/ (accessed
January 2011).

19. BizAgi Business Process Management System. http://www.bizagi.com/ (accessed January
2011).

20. ActiveVOS Business Process Management System. http://www.activevos.com/products
activevos.php (accessed January 2011).

21. Drools Expert. http://www.jboss.org/drools/drools-expert.html (accessed May 20 I I)
22. Yongchareon, S., Liu, C., Zhao, X.: An Artifact-centric View-based Approach to

Modeling Inter-organizational Business Processes, In: WISE 2011, LNCS 6997, pp. 273-
281.

23. Liu, R., Vaculin, R., Shan, z., Nigam, A., Wu, F.: Business Artifact-Centric Modeling for
Real-Time Performance Monitoring, In: BPM2011, LNCS 6896, pp. 265-280.

