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Abstract. Ferrofluids are strongly magneto-polarisable nanofluids. Their flows can be
non-intrusively controlled by applying an external magnetic field. One of their prospective
applications is as a heat carrier in thermal management systems operating in conditions where
natural convection is suppressed due to extreme confinement (microelectronics) or reduced
gravity (orbital stations). The linear and weakly nonlinear flow stability analyses that are
presented here illustrate an intricate interplay between thermogravitational and thermomagnetic
mechanisms of convection in one of the practically important geometrical setups, an inclined
fluid layer heated from below. The low-dimensional amplitude evolution equations of Landau
type are derived to model the physical phenomena of interest. The solutions of the so-obtained
dynamical system show that the application of magnetic field can indeed trigger convection
in regimes where natural convection cannot exist, thus enhancing heat transfer. At the same
time in regimes where both magnetic and gravitational buoyancy mechanisms are active the
competition between the two may suppress the overall heat exchange, which has to be kept in
mind in designing practical heat management systems.

1. Introduction
Ferrofluids are colloidal liquids containing nanoscale ferromagnetic particles suspended in a
carrier fluid (frequently, an organic solvent). Given their small size (average particle diameter
∼ 10 nm [6]), particles in ferrofluids are permanently suspended by Brownian motion and a
thermal agitation disperses them approximately uniformly within a carrier fluid under normal
conditions so that they contribute to the overall magnetic response of the fluid.

Because of their unique properties, over the past few decades ferrofluids found a vast variety of
applications. A specific motivation for the current study is the use of ferrofluids as magnetically
controllable heat carrier agents. The basic physical principle behind it is the appearance of
the so-called Kelvin force M∇H driving a magnetised fluid in the direction of magnetic field
gradient ∇H. A warmer fluid has a smaller magnetisation M [3, 1] and thus it tends to be
displaced by a cooler and thus stronger magnetised fluid, which leads to a flow referred to
as thermomagnetic convection. In contrast to natural convection arising due to the thermal
expansion, thermomagnetic convection can be induced in the absence of the gravity thus defining
a potential use of ferrofluids in the reduced gravity conditions such as those existing on orbital
stations. The investigation of interaction between gravitational and thermomagnetic types of
convection is the subject of the current study.

http://creativecommons.org/licenses/by/3.0
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2. Problem formulation
We consider a layer of a ferromagnetic fluid that fills the gap between two infinitely long and
wide parallel non-magnetic plates. The layer is inclined at an angle ε with respect to the
horizontal. The distance between two plates is 2d and the plates are maintained at constant
different temperatures T∗ ±Θ. An external uniform magnetic field, He such that |He| = He is
applied normally to the layer. This field induces an internal magnetic field H such that |H| = H
within the layer. The fluid magnetisation M such that |M| = M is assumed to be co-directed
with the internal magnetic field: M = χ∗H, where χ∗ is the integral magnetic susceptibility
of the fluid. We choose the right-hand system of coordinates (x, y, z) with the origin in the
mid-plane of the layer in such a way that the plates are located at x = ±d and the y and z axes
are parallel to the plates. Assuming that the temperature difference 2Θ between the walls is
sufficiently small, we adopt the Boussinesq approximation of the continuity, Navier-Stokes and
thermal energy equations that upon appropriate scaling are written in a nondimensional form
as [3, 7, 5]

∇ · v = 0 , (1)

∂v

∂t
+ v · ∇v = −∇P +∇2v −Grθeg −Grmθ∇H , (2)

∂θ

∂t
+ v · ∇θ =

1

Pr
∇2θ , (3)

∇×H = 0 , (4)

(1 + χ)(∇ ·H−∇θ · eH) +
(χ∗ − χ)N − (1 + χ)θ

H
(∇ ·H−∇H · eH) = 0 , (5)

M = [χH + (χ∗ − χ)N − (1 + χ)θ] · eH , (6)

with boundary conditions

[(1 + χ)(H ± 1) + (χ∗ − χ)N) · eH −He] · n = 0 , (7)

v = 0, θ = ∓1 at x = ±1 . (8)

The four major dimensionless parameters involed in governing equations are

Gr =
ρ2∗β∗Θgd

3

η2∗
, Grm =

ρ∗µ0K
2Θ2d2

η2∗(1 + χ)
, P r =

η∗
ρ∗κ∗

, N =
H∗(1 + χ)

KΘ
. (9)

Thermo-gravitational and magnetic Grashof numbers Gr and Grm characterise buoyancy and
magnetic forces. Prandtl number Pr is the ratio of viscous and thermal diffusion and parameter
N represents the strength of magnetic field at the reference location. In the above, ρ∗ = ρ(T∗) is
the fluid density at the average temperature T∗ and µ0 = 4π×10−7 H/m is the magnetic constant.
The thermal diffusivity κ∗, the dynamic viscosity η∗, the coefficient of thermal expansion β∗,
the differential magnetic susceptibility χ = ∂M/∂H|(H∗,T∗) and the pyromagnetic coefficient
K = −∂M/∂T |(H∗,T∗) of a working fluid are assumed to be constant. The gravity vector is
g = geg = g(− cos ε,− sin ε, 0).

Equations (1)–(8) admit steady solution of the form

θ0 = −x , (u0, v0, w0) =
(
0, Gr6 (x3 − x) sin ε, 0

)
, (10)

P0 = −Gr
2 x

2 cos ε+Grm
∫ x
0 se10(s)DHx0ds+ const. (11)

with the cross-layer component of the magnetic field satisfying

((1 + χ)(H0 − θ0) + (χ∗ − χ)N)Hx0 = He
xH0 . (12)

Subsequently, we investigate linear and weakly nonlinear stability properties of this basic flow
solution as detailed in Section 3.
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3. Basic flow stability analysis
Next we investigate the stability of the basic state discussed in Section 2 with respect to small
amplitude disturbances that are assumed to be periodic in the y and z directions. We apply a
standard normal mode hypothesis for separation of variables and write the perturbed quantities
at the leading order in amplitude as

W = W0(x) + [A1e
σ1t+i(α1y+β1z)W1(x) +A2e

σ2t+i(α2y+β2z)W2(x) + c.c.] +H.O.T. , (13)

where σ1,2 is the complex amplification rate, α1,2 and β1,2 are wavenumbers in the y and z
directions, respectively, and c.c. denotes the complex conjugate of the expression in brackets.
The above representation enables us to investigate flow patterns arising when basic flow becomes
unstable with respect to up to two disturbance modes. If amplitudes A1,2 are assumed to be
infinitesimal, the problem reduces to standard linear stability analysis. On the other hand, due
to the nonlinearity of the governing equations (2)–(6), the assumption that the amplitudes are
small but finite leads to a hierarchy of equations involving higher order terms (H.O.T.) arising
at progressively higher orders of amplitudes. They are too lengthy to be given here explicitly
but their full derivation can be found in [4]. The systematic analysis of hierarchical equations
reveals that the amplitudes must satisfy a system of coupled Landau equations

dA1

dt
= σ1A1 +K11A1|A1|2 +K12A1|A2|2 ,

dA2

dt
= σ2A2 +K21A2|A1|2 +K22A2|A2|2 . (14)

Coefficients K11 and K22 are referred to as the first Landau constants. They describe saturation
due to nonlinear self-interaction of instability modes. It results in the equilibrium amplitudes

|Aei| =
√
− σi
Kii

provided σi and Kii have opposite signs (of interest here are supercritical regimes

with σi > 0 requiring Kii < 0 to ensure the existence of a saturated state). Coefficients Kij ,
i 6= j describe mode interaction and classify mode i as an acceptor (donor) if Kij > 0 (Kij < 0).

4. Results and discussion
The results have been computed for a typical ferrofluid (Pr = 55, χ = χ∗ = 3, N = 100) layer
inclined at angle ε = 10◦ with respect to horizontal in the absence of magnetic field at Grm = 0
and when the layer is placed in a uniform normal magnetic field at Grm = 5. As seen from
Figure 1(a), in the former case gravitational convection in the form of stationary rolls aligned
with the slope (α = 0) sets only when Grashof number exceeds the critical value of Grc ≈ 2.07
(at this point the perturbation growth rate σ crosses zero, see the dashed line). In contrast,
when magnetic field is applied, stationary magnetoconvection exists at any Gr including zero
(the solid line). This means that magnetoconvection can exist even in the absence of gravity.
The corresponding convection patterns are characterised by noticeably different wavenumbers,
see Figure 1(b): at the onset thermogravitational convection rolls are much more sparsely spaced
than their thermomagnetic counterparts (compare the solid and dashed lines). As Gr increases
the second instability mode with a shorter wavelength arises shown by the thin lines. However,
it has a considerably smaller growth rate and, as will be discussed below, does not contribute
to the overall cross-layer heat transfer.

Weakly nonlinear consideration of convection patterns enables us to make a number of further
conclusions. As evidenced by Figure 1(c) the values of the first Landau constants K11 and K22

remain negative for all convection modes. This means that convection always sets as a result of
a supercritical bifurcation and its onset is accurately predicted by linear analysis. At the same
time, mode coupling coefficients shown in panel (d) have opposite signs: K12 > 0, K21 < 0,
meaning that the second mode serves as the energy donor for the first one appearing at smaller
Grashof numbers. While hypothetically the modes shown by thin lines in Figure 1(e) can
exist and achieve finite equilibrium amplitudes |A2e|, such states are found to be unstable with
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Figure 1. Comparison of thermomagnetic and thermogravitational convection pattern
characteristics in a slightly inclined layer of ferrofluid: (a) linear growth rate, (b) wavenumber
of longitudinal rolls, (c, d) Landau constants, (e) equilibrium convection roll amplitudes,
(f) Nusselt number. Solid and dashed lines correspond to thermomagnetic and mixed
thermomagneto-gravitational convection, respectively. Thick and thin lines denote stable and
unstable convection modes in panels (a− c), (e) and (f) and donor and acceptor modes in panel
(d), respectively.

modes shown by thick lines suppressing them completely. This is illustrated in Figure 2, where
the temporal evolution of mode amplitudes is illustrated indicating that as long as the initial
value A1(0) 6= 0 the amplitude A2(t) of the second convection mode decays to zero. Therefore,
it is expected that in convection experiments in a slightly inclined layer convection patterns
will always be represented by a single instability mode corresponding to longitudinal rolls with
wavenumbers shown by thick lines in Figure 1(b). The structure of such rolls is illustrated in
Figure 3. The distortion of thermal field θ leads to the variation of the magnetisation field M :
warmer fluid becomes less magnetised [3, 1, 7, 2]. Because of Maxwell’s condition prescribing that
the component of magnetic induction B = µ0(H+M) normal to the layer must be preserved, the
magnetic field H remains stronger wherever M is smaller. This leads to an inherently unstable
situation when stronger magnetised cool fluid near the right wall is drawn towards the regions
with a stronger magnetic field near the hot wall. Such a (Kelvin) force field accelerates the
fluid across the layer as seen in the leftmost panel in Figure 3 and convection rolls are formed.
It is also noteworthy that the application of a magnetic field creates magnetic pressure inside
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Figure 2. Amplitude flow diagram demonstrating the interaction of two instability modes
with amplitudes A1 (dominant energy acceptor) and A2 (enslaved energy donor). The empty
and filled circles denote unstable and stable fixed points (equilibria), the squares mark initial
conditions for trajectories of system (14) shown by the solid lines.

Figure 3. Cross-section view of vertical thermomagnetic rolls at (Grm, Gr) = (5, 0). Red and
blue regions correspond to large and small values of the depicted fields, respectively.

the layer that may be sufficiently strong to bulge the walls of an working chamber containing
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ferrofluid when it is placed in an external magnetic field. This fact has to be taken into account
when designing practical heat management systems using ferrofluids.

The knowledge of convection amplitudes shown in Figure 1(e) enables us to estimate Nusselt
number Nu = − dθ

dx characterising the cross-layer heat flux and this leads to a somewhat
unexpected observation. While magnetoconvection can set and significantly enhance heat flux
in the absence of gravity, when both gravitational and magnetic forcing are present, that is
when magnetic field is applied to the fluid layer in normal gravity conditions, the heat flux
enhancement due to the arising mixed thermomagneto-gravitational convection is weaker than
that observed in the same thermal and gravitational conditions in the absence of the field,
compare the solid and dashed lines in Figure 1(f). Such an effect needs to be kept in mind
when designing heat management system using magnetically controllable heat carrier media in
normal gravity conditions.
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