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Abstract

Steady streaming in a fluid is the generation of a mean flow by an acoustic

wave. Any wave passing through a fluid causes to and fro oscillations of the

fluid and any suspended particles. According to linear theory, there is no net

displacement of the fluid or particles after the passage of each wave. How-

ever, it is known theoretically and experimentally that a non-linear effect

creates a mean flow. The flow is created by the viscous forces, and non-zero

time-averaged values of the quadratic acoustic terms arising in the equations

of conservation of momentum.

The main objective of this study is to find out the role of steady

streaming once two spheres come close to each other, in making them attract

or repel. This work involves solution of the Navier-Stokes equation for an

incompressible fluid using two numerical methods: a Direct Numerical Simu-

lation (DNS), based on a spectral element method, and a Weakly Non-linear

Formulation (WNF), based on a finite element method.

First, a single sphere problem was modelled and compared qualita-

tively and quantitatively against the literature using DNS. Then, the results
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using WNF and DNS were also compared, qualitatively and quantitatively.

The comparison was made in terms of size of the inner vortices, and peaks

of drag coefficients, for increasing Reynolds number. These results compare

well with the works of Blackburn (2002), and Klotsa (2009), for different

ranges of parameters involved: i.e. the Reynolds number, Re = AωD
ν

, and

the relative amplitude of the oscillation of the sphere, ε. Here, A and ω are

the amplitude and frequency of the oscillating flow, respectively, D is the

diameter of the sphere, and ν is the kinematic viscosity.

Results for a wider range of parameters than in previous studies

i.e. 1 ≤ Re ≤ 500 and 0.01 ≤ ε ≤ 5, have been obtained using the DNS.

These results were classified into various regimes that were laid out by Riley

(1967). Few results have been published on steady streaming generated for

amplitudes ε > 1. DNS data showed presence of a different flow regime for

high amplitudes 1 ≤ ε ≤ 5.

However, DNS is limited to steady flows around a single sphere un-

less it is extended to three dimensions. This extension is likely to be very

time consuming. In comparison, the task of computing steady streaming

flows around single and two spheres can be achieved much more quickly us-

ing WNF. It has the added flexibility of imposing oscillation at any given

angle to the axis on which the spheres are placed.

For steady streaming around two spheres, a new problem was de-

fined along with its set of parameters. WNF was used to obtain the results

in three different configurations, depending on the alignment of the spheres

with respect to the axis of oscillation. The new parameters are: L, the dis-
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tance between centers of the two spheres, θ, the angle between the axis of

oscillation and the axis joining the centers of the spheres, and Stokes number,

Ω = ωD2

4ν
. It was possible to visualize the flows, as well as calculate the forces

exerted on the spheres by steady streaming. The most important out of the

three configurations discussed turned out to be the lateral configuration, in

which the spheres are positioned perpendicular to the axis of imposed oscilla-

tion. When the spheres are placed in the lateral configuration, it was found

that the spheres attract each other for high frequencies and repel for low

frequencies. For intermediate frequencies, the spheres stay at an equilibrium

distance apart.

Based on the forces thus calculated, trajectories of the spheres were

computed, mainly to find out initial conditions that would lead the spheres

to touch, and the time it took, for the practical application noted below.

Trajectory paths for 0.1 ≤ Ω ≤ 100 were calculated, when the angle θ0 and

spacing L between the spheres were allowed to vary between 0◦ ≤ θ0 ≤ 360◦

and 1 ≤ L
D
≤ 20. If Ω is considered to be a measure of the size of the par-

ticles, it was found that spheres of large size attract and touch each other.

The spheres of small size repel and stay suspended in the fluid.

This research is part of an ARC linkage project with Geoffrey Gar-

diner Dairy Foundation, where the dairy industry is interested in milk fat

separation using ultrasound. For the dairy industry, skimming milk fat from

milk is very important. Milk fat content in milk may vary depending on the

source it is coming from and on the season as well. To make sure that the
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percentage of milk fat is the same in all packages of a certain product, the

industry has to skim milk first and then re-add it in the desired quantity, for

each and every product. The current technology involves use of centrifuges

whereas the use of ultrasound can perform the same job involving simpler

devices that have no moving parts. The ultrasound is applied by piezoelec-

tric transducers. An application of the present thesis is to investigate how

the steady streaming affects tiny fat particles, Milk Fat Globules (MFGs), to

make them attract or repel each other. If attraction of the particles causes

them to touch, then they will rise out of milk faster, which is the desired

outcome. It was found experimentally that particles of small size do not get

removed from milk Leong et al. (2016). In this work, an explanation for why

the smaller sized particles stay suspended in the milk has been achieved.

Furthermore, theoretical and computational methods have been developed

that permit ultrasonic separation processes to be designed with less reliance

on trial-and-error experimentation.
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Chapter 1

Introduction

1.1 Background

Fluctuations in a fluid can be generated either by a wave or an applied

oscillating body force. When a fluid is subjected to enforced oscillations, a

net mean flow is generated (Riley, 2001). It is a non-linear effect. According

to linear theory, there is no net displacement of the fluid or particles after the

passage of each wave. However, it is known theoretically and experimentally,

that in the presence of a source a non-linear effect creates a mean mass flow

(Nyborg, 1953; Riley, 2001). Regardless of how this mean flow is generated,

a non-zero time-averaged flow in the fluid is termed steady streaming, a term

that will be clarified in the text that follows. A brief history of the streaming

phenomenon and its various types are given in the next section.
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1.2 Types of Streaming in Fluid

The first thorough theoretical description of streaming in a Kundt’s tube was

given by Lord Rayleigh in 1883, where he explained streaming for a standing

wave between two parallel walls. His analysis showed that the motion of

air was caused by a non-linear second-order effect (Rayleigh, 1883). In a

lecture on the topic of acoustic streaming, Lighthill (1978) emphasised that

this streaming, which he termed ‘Rayleigh’s law of streaming’, was applicable

to two kinds of streaming:

(a) ‘acoustic streaming’ induced by standing waves, that was associated

with the attenuation of the sound waves through the fluid owing to

viscosity,

(b) ‘steady streaming’ as a result of a solid body oscillating in a fluid at

rest, due to friction at its boundary (Riley, 1967).

Lighthill (1978) also mentioned that it was Stuart (1966) who did the pio-

neering work for calculating streaming based on Rayleigh’s law of streaming.

The same non-linear phenomenon is responsible for the formation of

rip currents in the ocean (Mei, 1985). In another context, acoustic stream-

ing in liquids may play a crucial role in the hearing process due to time

independent motion induced in the cochlear fluid within the ear (Lighthill,

1991).

Zarembo (1971) identified three types of acoustic streaming accord-

ing to the length of the scale of streaming:

• Eckart Streaming
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• Rayleigh Streaming

• Schlichting Streaming

These are phenomena in which particles move relative to the fluid. However,

there are also phenomena occurring between particles owing to an oscilla-

tory body force. Each one of these effects are discussed in the following

subsections.

1.2.1 Acoustic streaming effects

The history of studies of acoustic streaming dates back more than a hundred

years. Though there is a substantial amount of theoretical work available

now, experiments were carried out to study such phenomena long before

that.

From among the very first experimenters, Faraday (1831) conducted

an experiment with a vibrating plate, arranged as in Chladni’s experiments

Chladni (1787), in 1831. He explained the formation of a boundary layer by

the interaction of vibrations of the plate with the air at the surface. Dvořák

(1876) also observed air currents corresponding to the formation of dust

figures.

Although the air motion due to vibration phenomena had been ob-

served by these individuals, there had been no mathematical explanation

offered. The first theoretical description was given by Rayleigh in his book

‘Theory of sound’ (Rayleigh, 1894). This type of streaming owes its origin

to shear viscosity in the thin Stokes boundary layer in the vicinity of a solid

boundary and is referred to as ‘Rayleigh streaming’.
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‘Rayleigh streaming’ or outer streaming is the streaming in the main

bulk of the fluid, outside the boundary layer. There is another type of stream-

ing cell inside the boundary layer, called inner streaming. In his analysis,

Rayleigh (1883) did not include the details of inner acoustic streaming that

drives the outer streaming. Schlichting (1955) gave the first mathematical

model for inner streaming which he explained as a steady boundary layer vor-

ticity, known as ‘Schlichting streaming’. This powerful inner boundary layer

streaming flow then generates counter rotating streaming vortices within the

main body of the fluid, accordingly named outer streaming, as already de-

fined. This concept of combined inner and outer streaming in an incompress-

ible flow was given by Stuart (1966) (termed ‘Stuart streaming’ by Lighthill

(1978)).

Streaming observed in the main body of the fluid, when it is pen-

etrated by an ultrasonic sound beam with a high amplitude, is termed the

‘quartz wind’. This time-averaged flow is caused by the dissipation of acous-

tic energy in the fluid owing to its viscosity. Although earlier observations of

the quartz wind were made by Meissner (1926) in liquid and Walker & Allen

(1950) in air, Eckart was the first one who gave a mathematical analysis for

the quartz wind. Eckart (1948) showed that the quartz wind is caused by the

viscous attenuation. ‘Eckart streaming’ can be generated both in standing

and travelling waves.

In addition to his contributions on rectifying misconceptions about

acoustic streaming, included at the beginning of this section, Lighthill (1978)

also studied the difference between the Lagrangian and Eulerian mean motion

in the acoustic streaming.
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All the discussion above concerns an incompressible fluid. However,

in reality, it is the compressibility of the fluid that allows sound to pass

through it. Since particle size is assumed to be very small in comparison

to wavelength of the stationary acoustic wave, fluid immediately around the

particles can be assumed to be incompressible.

1.2.2 Steady streaming effects

Following Rayleigh and Lighthill, Riley (1967) gave a theoretical description

of time-averaged streaming flows in incompressible fluids. In order to incor-

porate flows in incompressible fluids, the assumption was made that particle

size has to be very small in comparison to the wavelength of the sound ap-

plied. The term ‘steady streaming’ was first coined by Riley (1967, 1997,

2001), who noticed that the origin of streaming in both cases (a) and (b)

described in section 1.2 was attenuation. Riley (2001) clarified the need for

a term in place of ‘acoustic streaming’, as it is used for cases with a certain

degree of compressibility of the fluid. He kept the term ‘steady streaming’

for the time-averaged, incompressible flow above and beyond the Stokes drift

velocity.

In this thesis, all time-averaged non-linear flows are henceforth de-

fined to be what Riley (2001) termed steady streaming.

In a theoretical study, Davidson & Riley (1971) investigated steady

streaming in the vicinity of a drop, or bubble (alternatively known as ‘cavita-

tion microstreaming’). Longuet-Higgins (1998) extended the work of David-

son & Riley (1971). His study showed that if a single bubble is going through
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translational and radial oscillations simultaneously, it would enhance the

steady streaming. The translational oscillations are motion along a single

axis while the radial oscillations are volume pulsations of a bubble. Also,

he found that in the later case the streaming pattern was dipole-like. It is

more quadrupole-like if the bubble moved only translationally (as shown in

Figure 2.1 in the next section). As compared to Davidson & Riley (1971),

who covered several situations in respect to the relative orders of magnitude

of the two dimensionless parameters ε, the ratio of the vibration amplitude

to the diameter of the sphere, and M2, the ratio of diameter of the sphere to

the viscous length (to be explained in section 3.2.2), Longuet-Higgins (1998)

considered only the case when these parameters are both � 1.

1.2.3 Radiation force effects

Another net motion phenomenon in a fluid subject to a sound wave, is when

rigid or compressible particles (such as bubbles) are made to move relative

to the fluid under the effect of acoustic radiation forces. After a discov-

ery of mutual interactive forces on gas bubbles by Bjerknes (1906), many

authors investigated types of acoustic radiation forces, both experimentally

and theoretically.

As mentioned earlier, Acoustic Radiation Forces (ARFs) were no-

ticed experimentally in air long before King (1934) first described them the-

oretically for incompressible particles. Radiation “pressure”, as defined by

King, is a second-order, non-linear force that acts on a particle immersed in

an acoustic field due to the transfer of momentum from the acoustic wave to
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the particle. Here, as in all acoustic particle separation problems, the small

parameter is ε or is proportional to ε. It was also found that the ARF will

be orders of magnitude stronger in a standing wave field compared with that

in a travelling wave field. King studied rigid spheres in an ideal fluid, and

measured magnitudes of forces acting on them. In a standing wave field, the

spheres were found to drift towards the nodes or antinodes, depending upon

the difference between the density of the sphere and the fluid it is submerged

into.

Yosioka & Kawasima (1955) went further to extend this theory for

the effects of particles of finite compressibility in an inviscid fluid. Gor’kov

(1962) added the effects of viscosity and thermal conductivity, also taking

care of particle compressibility, into King’s work.

A non-zero pressure gradient can couple with bubble oscillations

to produce a translational force on the bubble, called the primary Bjerknes

force. It is named after Bjerknes, who first reported the principle of such

forces for bubbles (Bjerknes, 1906). The primary Bjerknes force drifts bub-

bles in the same way as the King’s acoustic radiation force for rigid spheres.

It was Leighton (1990) who gave a formulation as well as a graphical illus-

tration of the response of a spherical bubble to a periodic pressure field in an

incompressible liquid in terms of the Rayleigh-Plesset equation (or RPNNP,

named after Rayleigh, Plesset, Noltingk, Neppiras and Poritsky). He also ex-

plained how, in a standing-wave field, bubbles of less than resonant size travel

up a pressure gradient towards the pressure antinodes, and those larger than

resonance size travel down the gradient to the nodes. Here, the resonance

size refers to the size of the bubble for which the amplitude of oscillation is
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maximum for a given forcing frequency.

The time-averaged interaction force between two particles is called

the secondary Bjerknes force for bubbles and König force for solid spheres

(König, 1891). For this interactive force, the size of the particles was consid-

ered much smaller than the distance between them, that in turn was smaller

than the wavelength of the imposed acoustic field.

To summarize, in an acoustic field, the primary forces drive the

particles to accumulate at the pressure nodes or antinodes of a standing

wave, and the secondary forces are responsible for their mutual attraction or

repulsion, and a possible formation of a particle structure.

Doinikov (2003) presented a major review of theoretical work on

the topic of radiation forces. He included the cases of acoustic radiation and

interactive forces on single particles, between two bubbles, bubble and a solid

particle, bubble and a liquid drop, two rigid spheres, and N compressible

spheres in a compressible fluid.

1.2.4 Multiple scattering effects

Previous results for single particles assumed the separation distance between

the bubbles to be large in comparison with the bubble sizes (Bjerknes, 1906).

When two compressible particles are placed so close to each other that the

distance between them is comparable to their sizes, the reflection of the

applied sound field is not negligible. This process of reflection of the sound

field off the particles is known as multiple scattering. The first attempt

to take multiple scattering into account was made by Zavtrak (1987). It
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was found that at such small distances between two equal sized bubbles the

magnitude of the mutual interaction force is substantially different from that

given by Bjerknes’ theory.

Doinikov & Zavtrak (1995) calculated an expression for mutual in-

teractive forces for two pulsating gas bubbles incorporating multiple scatter-

ing effects. The surrounding liquid around the bubbles was assumed to be

incompressible and inviscid. Also, very small-amplitude acoustic waves were

considered so the non-linear effects were neglected. They also discussed inter-

actions among bubbles of different and similar sizes along with comparisons

of physical aspects of each phenomenon. The mechanism behind the forma-

tion of the phenomenon of stable “bubble grapes” (observed in Kobelev et al.

(1979)) was explained, when both bubbles were larger than their resonance

sizes.

1.2.5 Summary

Various types of large and small scale streaming were introduced in this

section so far, with special emphasis on streaming and other interactive effects

around the particles submerged in a fluid. An attempt was made to remove

confusion in the terminology used in the literature for the steady streaming

phenomenon. The objective of this work involves investigation of the role of

steady streaming forces in particular, in bringing the particles to touch. The

motivation behind this study is an application of this work and is given in

the next section.
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1.3 Motivation: Milk Separation Project

This research is part of an Australian Research Council (ARC) Linkage

project with Geoffrey Gardiner Dairy Foundation, where the dairy indus-

try is interested in milk separation using ultrasound. The current technology

involves use of centrifuges whereas the use of ultrasound can perform the

same job involving simpler devices that have no moving parts. The task is

achieved through piezoelectric transducers.

This work involved a quantitative and qualitative measure and com-

parison of forces induced by steady streaming acting on fluid particles, to

determine if these forces bring the particles to attract or repel each other. In

particular, since the fluid under consideration is milk, the role of streaming

forces acting on micron-sized fat particles, Milk Fat Globules (MFGs), in

making them attract or repel each other, will be studied. The main focus

will be on bringing MFGs to stick together.

Along with the theoretical and computational work, experiments

were carried out as a part of this project. Macro- and micro- scale exper-

iments were conducted by Dr. Thomas Leong and Dr. Linda Johansson,

respectively (Leong et al., 2016). Work was undertaken to design and em-

ploy micro-scale systems and microscopy to study specific aspects of the large

scale operation, in addition to other methods of chemical analysis of extracted

fat and particle size analysis (Johansson et al., 2016). A cross validation was

part of this process to ensure the micro-scale systems truly represent the

engineering scale systems. Following are the values of parameters that were

used in the experiments done by Leong et al. (2016), in order to separate
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cream from milk by using ultrasound:

• Pressure amplitude of sound wave, P = 100 kPa

• Frequency, ω = 1− 2 MHz

• Radius, R = D/2, is measured between 2− 5 micrometers

With the knowledge of pressure amplitude of the sound wave, frequency, and

radius of the particles, the following entities can be derived (Skudrzyk, 1971):

• ε = 1/100 ≈ O(10−2)

• Velocity scale, U , in steady streaming is 2π10−8 × 106 ≈ O(10−2) −

O(10−1) m/s

It has been known since the 1920s that sound waves can separate

particles from fluids (e.g. (King, 1934; Yosioka & Kawasima, 1955; Ya-

suda et al., 1995)). This technology also has applications in food processing

(Juliano et al., 2013), petrochemical (Dionne et al., 2013), pharmaceutical

(Maitz et al., 2000), and bio-medical industries (Petersson et al., 2004).

The MFGs are less dense than rest of the composition of milk fluid

and hence float at its surface when left for some time. If attraction of the

MFGs under the influence of steady streaming causes them to touch, then

they will rise out of milk faster, which is the desired outcome as mentioned

before. One of the outcomes of the micro- scale experiments was that MFGs

need to be in contact (but need not coalesce) in order to cream (Manasseh

et al., 2016). Also, it was found experimentally that particles of small size

do not get removed from milk (Leong et al., 2016). The experimental re-

sults implied that there was some size threshold below which particles would
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never reach an antinode. In this work, an attempt will be made to give an

explanation for why the smaller sized particles stay suspended in the milk.

1.4 Thesis Outline

Chapter 2 reviews literature for steady streaming flows around single and

multiple spherical particles. In chapter 3, two computational methods,

namely DNS (Direct Numerical Simulation) and WNF (Weakly Non-linear

Formulation), are briefly introduced. They will be employed to investigate

the role of steady streaming in bringing spherical particles to touch. The

focus of this thesis is not the development of these computational methods,

but to apply them to study the behaviour of particles under the effects of

steady streaming. The flow considered is restricted to only two equal sized

particles for simplification. The equations along with the non-dimensional

parameters involved in the numerical model are also discussed. In chapter

4, steady streaming around a single sphere is modelled using DNS. The DNS

is compared with literature and thoroughly verified for a single sphere first.

Those DNS results are used in order to verify the other numerical method,

WNF, in chapter 5. WNF is much faster than the DNS, especially for steady

streaming flows around two spheres, and quite accurate as well. In chapter

6, the perturbation based method WNF is used to calculate steady streaming

flows and forces exerted on two spheres, solving the weakly non-linear form of

Navier Stokes equations. The problem for two-spheres is defined along with

its parameters. Regimes where two equal sized spheres attract or repel each

other in three different configurations for different frequencies are discussed.
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The work in chapters 5 and 6 is based on the analysis of Fabre et al. (2017).

The objective of work in chapter 7 is to find initial conditions and the time

involved for the spheres to touch. This chapter is entirely the work of the

author. Chapter 8 comprises conclusions and discussion leading to those

conclusions.

In July 2015, David Fabre, Assistant Professor at Institute of Fluid

Mechanics, Toulouse, visited Swinburne University of Technology. This visit

led him to derive the equations mentioned in chapter 3. Chapter 6 is rewritten

and is largely his work that is published in Fabre et al. (2017).
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Chapter 2

Literature Review

2.1 Introduction

Consider the conservation of momentum expressed in terms of Euler’s equa-

tion,

∂

∂t
(ρu) + u.∇(ρu) = −∇p+ ρg, (2.1)

where u, ρ and p denote the velocity, density, and pressure in the fluid,

respectively, and g is the acceleration due to gravity. Assuming density

ρ constant and forces due to gravity are at balance, a simpler version of

equation (2.1) is

∂u

∂t
+ u.∇(u) = −1

ρ
∇p, (2.2)

There is a quadratic non-linearity present on the left hand side in equation

(2.2) as a product of velocity and velocity gradient u.∇u. This non-linearity

can be produced in two ways: either the velocity u has to be large or the

gradient of velocity ∇u is large. The time-average of this product is non-
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zero. It is this non-linear term that is responsible for steady streaming in

the fluid. The focus of study in this chapter is the streaming flow generated

when a solid boundary oscillates in an incompressible fluid, generating steady

streaming. The particles are assumed to be very small in comparison to the

wavelength of the stationary acoustic wave. This allows the assumption of

fluid immediately around the particles as incompressible.

In the following sections, a review of literature is presented for single

and multiple spherical particles, with an emphasis on behaviour of these

particles due to steady streaming.

2.2 Steady Streaming around Single Oscillat-

ing Spheres

The steady streaming flow around a sphere in a sound field was analysed by

Lane (1955) who followed the approach of Rayleigh (1883). Lane identified

inner vortices in the oscillatory boundary layer (or Stokes layer) around a

spherical particle in a sound field. These inner vortices would in turn drive

outer vortices (see Figure 2.2). The speed of flow in the inner vortices would

be expected to be much higher than in the outer vortices. It was observed

that the thickness of the Stokes layer was much less than what was given

theoretically. A comparison of streaming around a sphere with previously

studied streaming around a cylinder was also given.

Longuet-Higgins (1998) also used perturbation methods for his anal-

ysis of streaming around a bubble. It was reported that the streaming flow
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Figure 2.1: A quadrupole-like streaming around a linearly translating particle
when the particle is moving vertically. The image is reproduced from Longuet-
Higgins (1998), by permission of the Royal Society.

followed a quadrupole pattern when the bubble was translating (see Fig-

ure 2.1) and a dipole pattern when it was undergoing volumetric pulsations,

which was also reported by Wu & Du (1997). It was determined that the

streaming velocities were enhanced by at least an order in magnitude in the

case where it is oscillating volumetrically. Although steady streaming was

computed, the forces induced as a result were not taken into account. Fur-

thermore, these results were only valid when the oscillations of the particle

were small compared to its radius.

The case for single translating bubbles is relevant to non-pulsating or

rigid spheres. In this context, a significant difference between the translating

bubble and the rigid sphere, which will be considered later in this thesis, is

the application of a no-slip boundary condition in the rigid sphere case. In

this thesis, the sphere is a MFG, which is solid at the prevailing temperatures.

Thus, a no-slip boundary condition can be used.
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Figure 2.2: Sketch of the inner streaming vortices around a horizontally vibrating
cylinder and a spherical particle. Reprinted with permission from Lane (1955).
Copyright 1955, Acoustic Society of America.

Many authors, including Longuet-Higgins (1998) and Davidson &

Riley (1971), assumed incompressibility of liquid around particles. For the

existence and passage of sound, compressibility is required at leading order,

when expanded in ε, but not at the next order. Since it is assumed that

the fluid is incompressible at the order above the leading order, the passing

acoustic wave can be modelled as an oscillatory boundary condition.

The vibration of an isolated single rigid sphere has been studied in

two- and three- dimensional steady and oscillatory flows, analytically, nu-

merically and experimentally. Some of the notable analytical and numerical

works are based on perturbation theory (Lane, 1955; Riley, 1967; Tabakova &

Zapryanov, 1982), spectral methods (Chang & Maxey, 1994), series trunca-

tion methods (Alassar & Badr, 1997) and spectral element methods (Black-

burn, 2002).
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Riley (1967) distributed and described flows induced by a solid body

oscillating in a viscous fluid, with small amplitudes compared to its size, into

the following four cases depending on the range of parameters Re and ε,

defined as

ε =
U

ωD
, and Re =

UD

ν
, (2.3)

where U is a velocity scale equal to the vibration velocity amplitude, ω is

the frequency of oscillation, D is the sphere diameter, and ν is the kinematic

viscosity. Thus, ε is the ratio of the vibration amplitude to the diameter of

the sphere. In the literature, the ratio 1/ε is also known as the Strouhal

number, denoted by St. The parameter ε is the ratio of length scales, which

gives a comparison of the displacement of the particle (or the motion of

the far field relative to the sphere) to the diameter of the sphere. Re is

proportional to the ratio of inertial forces to viscous forces, commonly known

as Reynolds number. The ratio of Re and ε is commonly used in the literature

as M2, whereas their product is defined as Res. To minimize the number of

parameters, M2 = 4Ω has been used in this thesis, as defined later in chapter

3, section 3.2.2):

Case I: 4Ω = Re
ε

= O(1).

This case corresponds to εRe � 1, when the steady streaming

persists outside the oscillatory boundary layer (a feature of the flow for large

Ω), that has the same structure as Stokes boundary layer but spread over a

much wider region as compared to the diameter, D, of the sphere.

Case II: Re = ε4Ω = O(1).

⇒ Ω = O(1/ε), with amplitude of oscillation ε� 1 ⇒ Ω� 1.
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For Ω � 1, the steady streaming that persists outside of the oscil-

latory boundary layer again assumes a Stokes-like character.

Case III: Res = ε24Ω = εRe = O(1).

⇒ Re = O(1/ε)⇒ ε� 1� Re

⇒ Ω� 1⇒ δ � D, as 2
√

Ω = D
δ

.

Thus, with 4Ω � 1 for a steady viscous flow, the Stokes layer is

small compared to the size of the sphere. Also, Res � 1 is a necessary and

sufficient condition for the outer steady flow to be Stokes-like, as in cases I

and II. If Res � 1, the outer flow will assume a boundary-layer character,

with the inner boundary layer being confined within this outer boundary

layer.

Case IV: M � 1.

This case is basically equivalent to Re � ε � 1/4. Also 2
√

Ω =

D/δ � 1 implies that D � δ. Hence, the oscillatory boundary layer δ will

extend over a much wider region compared to the size of the sphere, D.

Axisymmetric flows studied by Riley (1966) for two cases, Re �

4Ω � 1 and 4Ω � 1, are illustrated in Figure 2.3. The boundary layer in

Figure 2.3(b) is very thin as compared to Figure 2.3(a).

Chang & Maxey (1994) considered the same cases as Riley (1967)

for ε ≥ 0.05 and Re ≤ 20. It was found that Res = 2εRe � 1 is the necessary

and sufficient condition for a low amplitude oscillatory flow to have a double-

boundary layer structure, but this condition did not hold for high amplitudes

and so it could not be generalized for flows of all amplitudes. A similar

analysis for the case of bubbles was performed by Davidson & Riley (1971)

in which they discovered differences in direction and velocity magnitudes for
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(a) (b)

Figure 2.3: Streamlines of flow around a single sphere oscillating in a vertical
direction for (a) Re � 4Ω � 1, and (b) 4Ω � 1 and Res � 1. Reproduced from
Riley (1966) by permission of Oxford University Press.

case Ω� 1.

Blackburn (2002) presented a numerical study for scalar and mo-

mentum transport for steady and oscillatory incompressible flows. The Navier-

Stokes and scalar transport equations were integrated with respect to time.

A spectral element approach was applied to solve the problem, together with

the Gauss-Lobatto-Legendre (GLL) quadrature for integration. The dimen-

sionless parameters defined were similar to those defined in this thesis, i.e.

Reynolds number, Re, and oscillation amplitudes, ε. The range of these pa-

rameters used was 1 ≤ Re ≤ 100 and 0.05 ≤ ε ≤ 5. The mesh employed

was designed in a way so that it could capture effects near the boundary of

the sphere when the maximum extent of the domain was 50D.

A comparison for peak coefficients of a drag force for a stationary
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sphere in an oscillatory flow, as well as for an oscillating sphere in a quies-

cent fluid, was presented as a function of Re and ε. These results matched

well with Basset’s analytical solution (Basset, 1888) for amplitudes ε ≤ 1.

Blackburn (2002) commented on the ‘two-celled structure’ of the oscillatory

flow, namely inner and outer vortices. To explore the presence and structure

of these vortices in the streaming flow, the size of the inner vortices was

measured. It was observed that the inner recirculation region decreases as

the Reynolds number, Re, increases. It was the largest for low Re, so much

so that it reached the extent of the domain, and the results were deemed

unreliable at those points. These results are used for verification of DNS in

the present study, and are presented in chapter 5.

There have been recent experimental studies for three-dimensional

flows around a single oscillating sphere at finite Reynolds numbers, Re, and

oscillatory amplitudes, ε, producing visualizations (Kotas et al., 2006; Otto

et al., 2008). In other recent experiments involving finite numbers of spheres,

steady streaming is considered responsible for attraction between spheres in

oscillating flows (Voth et al., 2002).

Recently, there have been studies other than those involving acous-

tics, that resulted in similar patterns of steady streaming for vibrating circu-

lar cylinders Van Dyke (1982) and spheres Otto et al. (2008) at macro scales.

Earlier, these works were preceded by studies of streaming in the vicinity of

cylinders (Raney et al., 1954).

The experiments of Kotas et al. (2006) involved extracting three-

dimensional streaming flows around a vertically oscillating single sphere (and

spheroid) for oscillation amplitudes, 0.04 ≤ ε ≤ 1.2, also measuring the size
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of the inner vortices. It was concluded that the extent of the inner vortices is

not dependent on the amplitude of oscillation, ε, but on the ratio ν/ω, which

is the square of the thickness of oscillatory boundary layer (or Stokes layer),

δ =
√
ν/ω.

Figure 2.4: Steady streaming around a sphere oscillating vertically. L = 1.4 cm is
the radius of the sphere. Reprinted with permission from Springer Nature, Kotas
et al. (2006), Copyright 2006.

A useful private communication (with R. S. Alassar) was also men-

tioned by Kotas. This indicated that the extent of the inner region increases

about 10% after 10 oscillations than when measured after 100 oscillations.

In addition, it was suggested that ε, ratio of the oscillation amplitude to

the body length scale, appeared to have little if any effect on the streaming

velocity. This meant that results at relatively large ε could be extended to

the very small ε values. These results, that the size of the inner region for

steady streaming around cylinders was independent of ε for ε < 0.5, were val-

idated with the results of Raney et al. (1954), and the asymptotic analyses
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of oscillating spheres for ε� 1 were validated with Riley (1966).

In the experiments of Kotas et al. (2006), the sphere was attached to

a metal rod oscillating vertically, hence obstructing measurement of distance

to the stagnation point in the direction of oscillation (see Figure 2.4). The

way that Kotas et al. (2006) measured the distance from the center of the

sphere to the stagnation points was modified and improved by Alassar (2008)

in a numerical study. A new definition for this distance was given to measure

the length up to the stagnation points, which is equivalent to the size of the

inner vortices in the direction of stagnation point under consideration. As

a consequence, it was proved that the size of the inner vortices parallel and

perpendicular to the direction of axis of oscillation was not the same. It

was noted that the size of the inner vortices changed with varying θ, the

angle between the stagnation points lying to the right and to the top of

the sphere, when oscillating vertically. Thus the shape of the inner vortices

was found to be non-symmetric along and perpendicular to direction of the

axis of oscillation. It was also observed that as the Reynolds number, Re,

gets higher, the inner vortices get thinner. Also, increasing the frequency

oscillations weakened the outer vortices.

Otto et al. (2008) observed the flows around a sphere, far from

boundaries but close to the bottom wall, oscillating vertically in a container

filled with fluid. In estimating location of the stagnation point and measuring

size of the inner vortices, it was pointed out that at large oscillation ampli-

tudes, ε, the streaming flows can be very different than the widely studied

small amplitudes of oscillation. This work was aimed at self-organization of

spheres following Voth et al. (2002). For flows around a single sphere at low
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Re, repulsive behaviour was predicted, contrary to the attraction observed

by Voth et al. (2002). Another interesting observation was that the data for

the distance to stagnation points provided by Kotas et al. (2006) collapsed

on a single curve, suggesting that distances to stagnation points were inde-

pendent of oscillatory amplitudes ε; however this could only be verified for

amplitudes, ε < 0.15 in Otto’s work. For larger amplitudes, the distances up

to stagnation points were found to be dependent on ε. It was concluded that

the interaction between multiple spheres in Voth et al. (2002) were due to

non-linear interactions.

In 2009, Klotsa (2009) presented an experimental and numerical

study of the interactions between rigid spheres vibrated horizontally in a

small cell filled with liquid. More importantly, the interaction of two equal-

and unequal-sized spheres was also studied. The range of parameters for

two-sphere experiments was 3 ≤ Re ≤ 113, and 0.08 ≤ ε ≤ 3, and for the

simulations, 5 ≤ Re ≤ 120. A numerical model was developed to simulate a

finite box in which the spheres were sitting on the bottom, which was shaken

horizontally, including effects of the boundary walls on the flow.

For a single oscillating particle of 1 mm diameter, qualitative agree-

ment of the numerical simulation devised by Klotsa (2009) was found with the

experiments of Kotas et al. (2006) and Otto et al. (2008) and the numerical

studies of Chang & Maxey (1994) and Alassar & Badr (1997). A difference

of 17% was found between the drag forces measured by the devised model

and that of Alassar & Badr (1997). The emphasis of development of this

model was on capturing physical mechanisms of the system rather than its

numerical accuracy. It was able to capture the behaviour of the system and
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allowed addition of a large number of rigid spheres that could interact with

one another.

2.3 Steady Streaming Flow around Two Spheres

To study streaming flows around single and multiple bubbles, Tho (2005)

performed experiments observing the quadrupole and dipole streaming struc-

tures described by Longuet-Higgins (1998) for single particles. Tabakova &

Zapryanov (1982) analytically analysed interaction of two spheres oscillating

translationally in a viscous fluid and concluded it to be attractive.

An experimental study was conducted by Voth et al. (2002) to de-

termine behaviours of two and of more than two particles, or rather clusters,

under the influence of horizontal vibrations of 20 and 50 Hz frequency. The

particles were spheres made of stainless steel and were of radius = 0.397 mm.

The particle Reynolds number, Re = AωD
ν

, ranged between 2 and 10. For

two such spheres, it was proved that the attraction between particles is due

to the streaming mechanism. An expression for the inflow velocity, and the

decreasing distance between the two spheres, were also given. Systems of

more than two particles were also discussed.

Otto et al. (2008) used three-dimensional particle tracking velocime-

try to calculate steady streaming flows around two spheres oscillating in

translation. This work was based on the experimental work of Voth et al.

(2002) and provided improvements in previous calculations. Predictions were

made about attraction and repulsion regimes for two spheres of rather large

size of 1.91 cm in diameter. It was indicated that explanations given by Voth
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et al. (2002) were over simplified in this case and needed further work for a

better understanding of non-linear interaction of such flows.

For two identical spheres of 1 mm diameter, Klotsa et al. (2007)

concluded that one will take a path that follows the outer streaming flow of

the other until they align perpendicular to the direction of oscillation. It was

shown experimentally that two rigid dense spheres subjected to oscillatory

fluid flow will attract each other and line up perpendicular to the flow with

a well-defined equilibrium gap between them. In particular, the interaction

force between the two spheres was measured and a long-ranged attraction

and a short-ranged repulsion was found between the spheres for different

viscosities and vibratory conditions. Furthermore, once two spheres were

‘linked’ due to an equilibrium gap between the spheres, the pair behaved as

a single unit and paired with another such unit to form a chain. Klotsa (2009)

also studied the formation and interaction between such chains of spheres.

A useful technique was employed by Pacheco-Martinez et al. (2013)

to study streaming flows through magnetically levitating particles in a fluid.

The flow was not influenced by boundary effects this way. The conclusions

of this study reinforced the foregoing findings that particle attraction was

caused by streaming flows.

27



CHAPTER 2. LITERATURE REVIEW

2.4 Transport and Organization of Multiple

Particles

In the literature, extensive material is found for bubbles and forces acting on

them, as compared to solid particles. However, more focus has been on radi-

ation forces on bubbles rather than streaming forces in that work(Doinikov,

2003; Xi, 2012; Manasseh, 2015).

A vast amount of work on steady streaming flows around particles is

reported in the field of microfluidics, particularly regarding particle trapping

(Wang et al., 2012), particle aggregation (Collins et al., 2016), flow control

(Townsend et al., 2004), and droplet transport and coalescence (Pangu &

Feke, 2007). A review on applications of acoustic streaming in microfluidic

devices is given by Wiklund et al. (2012).

Townsend et al. (2004) modelled fluid flow in an ultrasonic standing

wave in microfluidic devices that could also be extended to macro fluid flows.

A particle model was developed using Computational Fluid Dynamics (CFD)

software to determine the velocity profile of the particle mix passing through

the acoustic device. This velocity profile was then integrated over time in

order to determine particle paths, with which the particle concentration was

measured. The model was applied to control particle concentration passing

through a flow separator. The forces under consideration took into account

the drag force and the acoustic radiation force, however, second order acoustic

effects and other particle forces, such as van der Waals forces, interparticle

forces, and lift, were not considered in the model.

A comprehensive review of work done in acoustofluidics is given
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by Friend & Yeo (2011), covering generation of various types of acoustic

waves, their propagation in different fluids, and manipulation of particles

for applications for micro- and nano-fluids. In another review on separa-

tion of suspensions and emulsions using ultrasonic standing waves, Trujillo

et al. (2014) predicted that if acoustic streaming is strong, it will disrupt any

aggregated particles. The successful use of ultrasonic separation in the food

processing industry was discussed, specifically the enhanced creaming of milk

fat globules and oil recovery from palm oil. Further large-scale applications

of ultrasonic separation, such as separation of microalgae for production of

biodiesel (Bosma et al., 2003), blood sample preparation (Petersson et al.,

2004), and cell perfusion and harvesting (Pui et al., 1995) were presented

in a review by Leong et al. (2013). It was concluded in Leong et al. (2014)

that higher energy density was key to increase the rate of separation of fat

particles in milk.

In a recent numerical study, movement of micron-sized particles

under the effect of radiation forces was investigated by Sepehrirahnama et al.

(2015). The primary and secondary radiation forces (caused by scattering of

the wave) were measured and compared for rigid spheres in a standing wave.

Using the proposed numerical scheme based on multi-pole series expansion

and the weighted residual method, the effects of position, incident angle and

size of the rigid particles were studied.

In another related but separate numerical study, Sepehrirahnama

et al. (2016) incorporated the effects of viscosity in the fluid, to calculate

radiation forces and acoustic streaming effects for rigid spheres in a standing

wave. The objective was to study the role of viscosity on the interaction
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between rigid spheres in a sound field. However, streaming effects were ne-

glected at first in the total force as they are negligible in a standing wave.

Results were discussed only for equal sized spheres, but of three different

radii. It was concluded that the viscosity and streaming had a larger effect

on the smaller spheres, while the total radiation force became larger when

the spheres were larger. Also, it was found that in the presence of viscos-

ity, the acoustic streaming enhanced the interaction force by three orders of

magnitude in comparison to the inviscid fluid. However, the analysis was not

valid when the spheres were close to each other, although it was predicted

that the acoustic streaming effects over power when distance between parti-

cles was small. This study was limited to only a single configuration when

the spheres were sitting along the direction of the wave.

Experimental and numerical studies were conducted by Saadatmand

& Kawaji (2010, 2013) to investigate the effects of fluid viscosity on motion

of a solid particle under the influence of vibration in a cell filled with vis-

cous fluid, with particular emphasis only on repulsive forces exerted on the

particles by the nearest wall.

In another recent study, Lyubimov et al. (2013) discussed pattern

formation of identical particles under the effects of high frequency vibration.

Two identical rigid particles were subjected to a uniform pulsational flow,

with a high frequency such that the thickness of Stokes layer around the

particles was small in comparison to particle size and distance between par-

ticles. Thus, the fluid was assumed incompressible and the flow as inviscid

except for flow near the particles. If the particles were aligned in such a way

that there was a non-zero angle between the axis of vibrations and the line
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connecting the particles, the particle pair turned. Chains of particles were

formed perpendicular to the direction of such enforced vibration. The effects

of boundaries and of gravity were ignored in this work.

In a comprehensive study for streaming around single and multiple

spherical particles, Klotsa (2009) simulated flows in a cell used in experi-

ments, compromising on the accuracy of the numerical model used in order

to focus more on the physical phenomenon between the particles. For a sin-

gle sphere, the flow included effects of walls and bottom boundaries. There

was no mention of trajectories of individual particles and tracing their paths.

The orientation of particles was analyzed when they were only short distances

apart i.e.
√

2R.

2.5 Review Summary

Steady streaming flow around a single oscillating sphere can be visualized in

Figure 2.4. The parameter space used in work reviewed in this chapter for

steady streaming around a single sphere is summarized in Figure 2.5. Most

of the theoretical work carried out for steady streaming around single spheres

has been focused on small oscillatory amplitudes, ε� 1, and M2 � 1.

Out of these studies for a single oscillating sphere, important con-

clusions relevant for the current study are the following:

• The length of the inner vortices is independent of ε and dependent on

Stokes length δ, for small oscillatory amplitudes ε � 1 (Riley, 1967;

Chang & Maxey, 1994).
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Figure 2.5: Parameter spaces for various studies conducted for steady streaming
flows around a single sphere, where the entire domain shown is the parameter
space used in this study. Res is the product, and M2 is the ratio of dimensionless
parameters Re and ε, respectively. The shaded regions for Riley (1966, 1967) is
depicting region where ε� 1.

• The shape of the inner vortices is non-symmetric over and perpendic-

ular to the axis of oscillation (Alassar, 2008).

• Whether there is a ‘two-celled’ structure present in the flow, comprising

of the inner and outer streaming, can be assessed by the size of the inner

vortices (Blackburn, 2002).

For studying steady streaming around two spheres, mostly experi-

mental and numerical approaches were used. The use of these approaches
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also gave an advantage of incorporating flows at higher oscillatory ampli-

tudes, ε. However, most of these studies were limited in either the parameter

space, the configuration of particles under consideration, or the accuracy of

the numerical model used (Otto et al., 2008; Sepehrirahnama et al., 2016;

Klotsa, 2009).

Various studies have been carried out for particle transport in differ-

ent fields of life such as biotechnology (microfluidics), chemical engineering

(food processing and petrochemical industry etc), and mining (for processes

such as sedimentation) to name a few. None of the studies reported was

targeted particularly to investigate the role of steady streaming for trans-

port and accumulation of solid spherical particles to bring them close to each

other.

In the work carried out in this thesis, particular attention will be

paid to try to fill the gaps, and questions thus posed, in the literature. In

the next chapter, two numerical methods are introduced that will be used in

subsequent chapters of this thesis to investigate the role of steady streaming

in bringing spherical particles close to each other. For simplicity, this multiple

particle system is limited to a study of only two particles at first.
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Methodology

3.1 Introduction

In this chapter, the computational methods used for simulation of steady

streaming flows will be briefly introduced. The focus of this thesis is not the

development of these computational methods, but to apply them to study the

behaviour of particles under the effects of steady streaming. The equations

that are involved in the numerical model are also discussed along with the

non-dimensional parameters.

As noted in chapter 1, the main objective of this study is to find out

the role of steady streaming once two spheres come close to each other, in

making them attract or repel. In the next section, a formulation is developed

for this problem, involving Partial Differential Equations (PDEs), that will

later be solved using numerical methods.

In this chapter, a mathematical model is presented that is relevant

to some aspects of steady streaming around Milk Fat Globules (MFGs) that
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were mentioned in chapter 1. These particles, that are spherical in shape, are

rigid enough to be assumed incompressible. Actual values of the parameters

used for experiments are given in section 1.3. Since the size of these particles

is very small in comparison to the wavelength of the imposed stationary

acoustic wave (Keenan & Mather, 2006), and that they are immersed in

a fluid that has similar properties to that of water, the fluid is assumed

incompressible, following discussion in section 2.1. For a simpler flow, this

multiple particle system is kept to a study of only two particles.

3.2 The Governing Equations

Assume a Newtonian fluid that behaves as a continuum. As noted in sec-

tion 1.2.2, if the size of the sphere immersed in this fluid is very small in

comparison to the wavelength of the stationary acoustic wave, then the fluid

around the sphere can be assumed incompressible. An incompressible sphere

is assumed to be immersed in an incompressible fluid, either liquid or gas,

that is subject to a stationary acoustic wave. Since the wavelength of the

applied acoustic wave is large compared to the particle size, as just noted,

this can also be seen as an oscillation being applied in the far field of the

fluid. On the surface of particles, a no-slip boundary condition was applied.

Such a flow can be modelled mathematically by the equation of continuity

and the Navier-Stokes equation for conservation of mass and momentum,
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respectively, in Cartesian coordinates given as:

∇ · u = 0,

ρ
{∂u

∂t
+ (u.∇u)

}
= −∇p+ µ∆u.

(3.1)

The variables used are explained in Table 3.1.

The notation for the equation for conservation of momentum varies

among authors. Some authors, like Davidson & Riley (1971) and Longuet-

Higgins (1998), who discuss acoustic streaming prefer to use the stream

function formulation of the Navier-Stokes equations in spherical polar co-

ordinates.

Other authors, like Eckart (1948) and Riley (2001), used the prim-

itive variable formulation, which retains the velocity and pressure in vector

notation in the Navier-Stokes equations. The advantage of having the vector

notation of these equations is that it allows the assumption of fluid incom-

pressibility at second order to be easily incorporated, as the velocity (which

will be the small parameter) appears explicitly.

3.2.1 Non-dimensionalization of the Navier-Stokes equa-

tions

The component-wise form of equation of motion for an incompressible fluid,

with no body force is the form of the Navier-Stokes equations given below

in cylindrical polar co-ordinates. The description of variables used in these

equations is given in Table 3.1, where ‘*’ denotes dimensional variables.
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Table 3.1: List of variables used in section 3.2.1

Variable Meaning

u velocity vector
u axial component of velocity
v radial component of velocity
w angular component of velocity
p pressure
ρ density
µ dynamic viscosity
ν kinematic viscosity
r radial distance
ϑ azimuthal angle
x axial distance
t time

Equation for Conservation of Mass (The Continuity Equation)

1

r∗
∂ (r∗u∗)

∂r∗
+

1

r∗
∂ (v∗)

∂ϑ
+
∂w∗

∂x∗
= 0 (3.2)

Equation for Conservation of Radial Momentum

∂u∗

∂t∗
+ u∗

∂u∗

∂r∗
+
v∗

r∗
∂u∗

∂ϑ
− v∗2

r∗
+ w∗

∂u∗

∂x∗
= −1

ρ

∂p∗

∂r∗
+ ν
{ 1

r∗
∂

∂r∗
(r∗

∂u∗

∂r∗
)+

1

r∗2
∂2u∗

∂ϑ2
− u∗

r∗2
− 2

r∗2
∂v∗

∂ϑ
+
∂2u∗

∂x∗2

}
,

(3.3)

where ν = µ
ρ

is the kinematic viscosity.
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Equation for Conservation of Azimuthal Momentum

∂v∗

∂t∗
+ u∗

∂v∗

∂r∗
+
v∗

r∗
∂v∗

∂ϑ
+
u∗v∗

r∗
+ w∗

∂v∗

∂x∗
= − 1

ρr∗
∂p∗

∂ϑ
+ ν
{ 1

r∗
∂

∂r∗
(r∗

∂v∗

∂r∗
)+

1

r∗2
∂2v∗

∂ϑ2
+

2

r∗2
∂u∗

∂ϑ
− v∗

r∗2
+
∂2v∗

∂x∗2

}
(3.4)

Equation for Conservation of Axial Momentum

∂w∗

∂t∗
+ u∗

∂w∗

∂r∗
+
v∗

r∗
∂w∗

∂ϑ
+ w∗

∂w∗

∂x∗
= −1

ρ

∂p∗

∂x∗
+ ν
{ 1

r∗
∂

∂r∗
(r∗

∂w∗

∂r∗
)+

1

r∗2
∂2w∗

∂ϑ2
+
∂2w∗

∂x∗2

}
.

(3.5)

3.2.2 Dimensionless parameters

Let

t∗ =
t

ω
, r∗ = Dr, u∗ = Uu, v∗ = Uv,w∗ = Uw, x∗ = Dx, and p∗ = Pp,

(3.6)

where ω is the frequency, U is the velocity amplitude, P is the pressure

amplitude of the applied oscillation, and D is the diameter of the sphere.

Also, let

ε =
U

ωD
, and Re =

UD

ν
(3.7)

as defined in section 2.2. In this study, Re ≈ O(10− 102).

The ratio of Re and ε is commonly used in the literature as M2 =

Re/ε, as used in section 2.2. Using the definitions of Re and ε in equation

(3.7), M can also be expressed in terms of thickness of the oscillatory bound-

ary layer near the surface of the sphere or ‘Stokes layer’, δ =
√
ν/ω, such
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that M = D/δ. Thus, M is a ratio of diameter of the sphere to the viscous

length. In this thesis, M2 is referred to as Ω, also known as ‘Stokes number’

(where M2 = 4Ω).

After non-dimensionalizing equations (3.2), (3.3), and (3.4) with the

dimensional variables defined in equation (3.7), the following set of equations

are obtained.

Equation for Conservation of Mass

From equation (3.2),

⇒ 1

r

∂(r2ρu)

∂r
+

1

r

∂(ρv)

∂ϑ
+
∂w

∂x
= 0 (3.8)

Equation for Conservation of Radial Momentum

Equation (3.3) yields,

⇒ ∂u

∂t
+ εu

∂u

∂r
+ ε

v

r

∂u

∂ϑ
− εv

2

r
+ εw

∂u

∂x
= − P

U2

ε

ρ

∂p

∂r
+

ε

Re

{1

r

∂

∂r
(r
∂u

∂r
)+

1

r

∂2u

∂ϑ2
− u

r2
− 2

r2
∂v

∂ϑ
+
∂2u

∂x2

}
(3.9)

Equation for Conservation of Azimuthal Momentum

Also, from (3.4),

⇒ ∂v

∂t
+ εu

∂v

∂r
+ ε

v

r

∂v

∂ϑ
+ ε

uv

r
+ εw

∂v

∂x
= − P

U2

ε

ρr

∂p

∂ϑ
+

ε

Re

{1

r

∂

∂r
(r
∂v

∂r
)+

1

r2
∂2v

∂ϑ2
+

2

r2
∂u

∂ϑ
− v

r2
+
∂2v

∂x2

}
(3.10)
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Equation for Conservation of Axial Momentum

Following from equation (3.5)

⇒ ∂w

∂t
+ u

∂w

∂r
+
v

r

∂w

∂ϑ
+ w

∂w

∂x
= −P

U

ε

ρ

∂p

∂x
+ ν
{1

r

∂

∂r
(r
∂v

∂r
)+

1

r2
∂2v

∂ϑ2
+

2

r2
∂u

∂ϑ
− v

r2
+
∂2w

∂x2

} (3.11)

Note that the numerical methods used, explained in the following

section 3.3, are based on the assumption of axi-symmetry about the x-axis.

3.3 Numerical Methods Employed

This section contains a brief introduction to two numerical methods em-

ployed in this thesis, to simulate steady streaming around spheres: a Direct

Numerical Simulation (DNS), based on a spectral element method, and a

Weakly Non-linear Formulation (WNF), based on a finite element method.

As noted in chapter 1, the aim of this study is to find the role of

steady streaming once two particles are close to each other, in making them

attract or repel. The DNS is limited to axisymmetric flows around a single

sphere unless it is upgraded to three-dimensions. This upgrading is likely

to be very time consuming. In comparison, the task of computing steady

streaming flows around single and two spheres can be achieved economically

using WNF. It has the added flexibility of imposing oscillations at any given

angle to the axis on which the spheres are placed. Both DNS and WNF offer

advantages over the other depending on the situation being simulated, that

will be discussed in the chapters following.
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First, a single sphere problem is modelled and verified qualitatively

and quantitatively against the literature using DNS. Then, the results using

WNF and DNS are compared, qualitatively and quantitatively. For steady

streaming around two spheres, a new problem is defined along with its set of

parameters. WNF is used to obtain the results in three different configura-

tions, depending on the alignment of the spheres with respect to the axis of

oscillation. Flow visualizations as well as the forces exerted on the spheres

by steady streaming measured using the DNS and WNF are presented in

chapters 5 and 6. Based on the forces thus calculated using WNF of the two

sphere problem, trajectories followed by the spheres are computed, mainly

to find out initial conditions that would lead the spheres to touch, and the

time it takes.

For both the DNS and WNF, the flow can be expressed by the

incompressible Navier-Stokes equations. A single sphere of unit diameter,

D, is modelled at the center of an unbounded, incompressible fluid. The

fluid is oscillating with an amplitude A, and frequency ω. For two identical

spheres set apart at a distance L between their centers and positioned at an

angle θ, between the axis joining their centers and the axis of oscillation, a

new setup is defined using WNF.

As noted in section 3.2.2, the dimensionless parameters defined are

the inverse Strouhal number ε = A/D and Reynolds number Re = UD/ν,

where U = Aω, and A is the amplitude and ω is the frequency of the oscillat-

ing flow, respectively, D is the diameter of the sphere, and ν is the kinematic

viscosity. A ratio of Re and ε is introduced as Ω = ωD2/4ν, when using

WNF, which as noted earlier, is often used as M2 in the literature.
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Figure 3.1: Schematic of the one sphere problem for the DNS.

3.3.1 DNS: Direct Numerical Simulation

The DNS is a specialized code developed at Monash University (Thompson

et al., 1996). The code is well established, and has previously been employed

in axisymmetric, pulsatile flows with time-dependent boundary conditions

(Griffith et al., 2009) and for complex axisymmetric flows around spheres

(Griffith et al., 2011). It was adjusted to work for parameters that are valid

for separation of milk cream using ultrasound. For the axi-symmetric flow,

a polar cylindrical co-ordinate system (r, ϑ, x) is used in which the velocity

components are u = (u, v, w).

Integration of the governing equations

Axisymmetric simulations were performed using a spectral-element method,

solving, as noted, the incompressible Navier-Stokes equations defined in equa-

tions (3.8) - (3.10). The domain was discretized into quadrilateral elements

(with curved sides on the body boundary), and seventh-order Lagrange poly-

nomials, associated with the Gauss-Lobatto-Legendre quadrature points were

used as shape functions within these elements. These elements can be refined

in the desired areas of the domain, known as h-refinement. Together with
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Lagrange polynomials of order, p, it becomes an h-p method (Karniadakis &

Sherwin, 2005).

The said governing equations were moved to the left hand side leav-

ing them in the form G(r, ϑ, x) = 0. A test solution was substituted in this

form of the equations resulting in a residual R. The method of weighted

residuals (MWR) was applied to weight the residual by taking integrals of

the product of weighting functions and the residual R and setting it equal to

zero. This integral is easier to satisfy than the original equation, which is why

it is called the“weak form”. Since both the test solution and the weighting

functions used were tensor-product Lagrange polynomials, the method can

be termed a Galerkin method. More detail on MWRs and Galerkin methods

can be found in Fletcher (1984). These integrals were evaluated over every

single element and then added together.

Time-stepping was performed using a three-way time-splitting scheme;

a third-order Adams-Bashforth method was used to integrate the advection

term, a Poisson equation for the pressure was formed by enforcing continuity

at the end of this pressure sub-step, and a Crank-Nicolson scheme was used

to integrate the diffusion term.

Boundary conditions

An example of the mesh employed is shown in Figure 3.2 where different

boundaries are shown color-coded to distinguish between the various bound-

ary conditions. Each color describes a unique boundary condition. The flow

was assumed to be axi-symmetric about the direction of the oscillating flow

r = 0 (colored yellow) where ∂u/∂r = 0. An oscillatory velocity was imposed
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Figure 3.2: Spectral element mesh developed similar to that used by Blackburn
(2002). Size of the elements is measured in terms of diameter of the sphere D.
The colored edges of the mesh depict the boundary conditions explained in section
3.3.1. The sphere is positioned at the center of the bottom boundary, but is
difficult to see due to the large size of the domain. (Inset) Detail of mesh around
the sphere with fewer elements than that were actually used in the mesh, to depict
the structure of the cells adjacent to the sphere.

at the domain boundaries on left and right sides for incoming and outgoing

flow (colored blue). At the transverse boundary, the flow was parallel (v = 0),

with zero-stress (∂u/∂r = ∂w/∂r = 0) and the pressure gradient ∂p/∂r = 0

(colored magenta). In addition to a no-slip condition for the velocity, the

normal gradient of the pressure ∂p/∂n = 0 was enforced at the surface of the

sphere and all boundaries and is not over-constraining.

Mesh, domain size and resolution

The rectangular mesh comprised of a semi-circle embedded at the center of

a rectangle, where the mesh is refined as shown in Figure 3.2. The mesh

in Figure 3.2 is only a representative of its design in order to represent the

different regions and cells clearly. The actual mesh used (M4 in Table 3.2)
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Table 3.2: Meshes used for mesh analysis, M1 – M5, along with the total number
of elements comprising them. The parameters varying in these meshes are length
of the square, number of layers of elements from circle to the square, length of the
domain upstream and downstream of square rear edge, number of elements from
square front/rear edge to inlet/outlet, and number of total elements in the mesh,
respectively.

Mesh Total number of elements
M1 618
M2 2038
M3 3038
M4 3038
M5 3508

was much denser.

With the assumption of axi-symmetry about the direction of the

axis of oscillation, this inner refined region becomes a complete square. The

length of that inner square was 50 and number of elements on the surface

of the sphere, azimuthally, was 20 in 100 layers, for the square around the

sphere. The thickness of the first boundary layer of elements is 0.02D. The

length of the entire domain is 100D parallel to the axis of oscillation. The

mesh was refined and large enough in the inner square to capture the micro-

Table 3.3: The distance from the surface of the sphere to the stagnation points,
rcross, measured using DNS with different meshes for a single sphere, M1 – M5
given in Table 3.2, for Re = 1, Re = 40, and Re = 100 when ε = 0.05 and ε = 5.0.
Some meshes were under resolved and thus could not come up with a value of
rcross.

ε = 0.05 ε = 5.0
Mesh Re = 1 Re = 40 Re = 100 Re = 1 Re = 40 Re = 100
M1 0.542258 0.701405 0.602502 - 4.314638 5.124527
M2 16.236372 0.704850 0.604381 - 7.553476 6.156302
M3 39.663735 0.709916 0.500001 - 7.798016 6.161393
M4 40.283592 0.709925 0.500001 4.275103 7.447914 6.159781
M5 47.736170 0.709921 0.5 5.701502 7.686545 6.160824
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Table 3.4: Maximum drag force, Fd, measured using DNS with different meshes
for a single sphere, M1 – M5 given in Table 3.2, for Re = 1, Re = 40, and Re = 100
when ε = 0.05 and ε = 5.0.

ε = 0.05 ε = 5.0
Mesh Re = 1 Re = 40 Re = 100 Re = 1 Re = 40 Re = 100
M1 0.001598 0.302360 1.216117 0.001498 0.082962 0.269254
M2 0.001602 0.302210 1.215799 0.000868 0.075919 0.260984
M3 0.001602 0.302272 1.216166 0.000875 0.075585 0.260963
M4 0.001602 0.302212 1.215809 0.000901 0.075887 0.260974
M5 0.001602 0.302212 1.215811 0.000892 0.075646 0.260967

streaming effects near the boundary of the sphere, containing a total of 3038

elements. The effects were quantified in Tables 3.3 and 3.4 using meshes

with different lengths of the domain and the inner square, of respective mesh

densities with total number of elements given in Table 3.2.

Time step was fixed and determined by using the value of ε at the

Table 3.5: rcross measured using DNS with mesh M4 given in Table 3.2, for ε = 0.05
and ε = 1.00, when nT and nAv are varied. Here, nT is the number of periods
before averaging, and nAv is the number of periods over which the averaging is
done.

a) ε = 0.05

Re = 1 Re = 40 Re = 100
HH

HHHHnT

nAv 10 20 10 20 10 20

100 40.283592 40.305172 0.709925 0.5 0.5 0.5
200 40.631368 40.643695 0.707909 0.707864 0.5 0.5

b) ε = 1.00

Re = 1 Re = 40 Re = 100
HH

HHHHnT

nAv 10 20 10 20 10 20

100 9.805729 - 2.393395 2.404935 1.691852 1.691863
200 8.27344 - 2.390973 2.390923 1.692016 1.692020

46



CHAPTER 3. METHODOLOGY

start of the calculation. It varied between O(10−6) and O(10−2) as ε in-

creased. For mean flows in an oscillatory flow, the flow oscillated for 100

periods before an average was taken over a further 10 periods taking up to

65 hours. When the length of the mesh M4 was increased and refined in all

the aspects by 10 units only (which is then named M5), it took up to 8 more

hours for each simulation to converge. However, when the number of periods

involved were doubled in the actual mesh used (i.e. the flow oscillated for

200 periods before an average was taken over a further 20 periods), each sim-

ulation took 165 hours. Therefore, M4 is the best compromise between mesh

length, its refinement, and the time taken for the simulation to converge.

The effects of varying the number of periods of oscillation involved are noted

in Tables 3.5, and 3.6.

Table 3.6: Fd measured using DNS with mesh M4 given in Table 3.2, for ε = 0.05
and ε = 1.00, when nT and nAv are varied. Here, nT is the number of periods
before averaging, and nAv is the number of periods over which the averaging is
done.

a) ε = 0.05

Re = 1 Re = 40 Re = 100
HHH

HHHnT

nAv 10 20 10 20 10 20

100 0.001602 0.001602 0.302212 0.304286 1.215809 1.228218
200 0.001604 0.001604 0.321720 0.323516 1.325744 1.334958

b) ε = 1.00

Re = 1 Re = 40 Re = 100
H
HHH

HHnT

nAv 10 20 10 20 10 20

100 0.000922 0.000923 0.095229 0.095255 0.340142 0.340473
200 0.000923 0.000923 0.095481 0.095506 0.343418 0.343742
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Figure 3.3: Schematic of the two sphere problem adapted from Fabre et al. (2017).

3.3.2 WNF: Weakly Non-linear Formulation

Two spheres of equal diameter, D, set apart at a distance L between their

centers and positioned at an angle θ, are shown in Figure 3.3. The spheres are

assumed to be non-rotating. θ is the angle between the direction of oscillation

and the axis joining the two spheres. A no-slip boundary condition is assumed

at the surface of spheres. When θ = 0◦, the spheres are placed parallel to the

axis of imposed oscillation, in an axial configuration. Similarly at θ = 90◦,

the spheres are positioned perpendicular to the axis of imposed oscillation,

in a lateral configuration. The dimensionless parameters of the problem are:

Ω = ωD2/4ν, Re = AωD/ν, L/D, and θ.

Governing equations

As mentioned in section 1.4, the work presented in this subsection is already

published. The weakly nonlinear formulation was derived and presented in

Fabre et al. (2017). Only a brief overview of the weakly non-linear devel-

opment is given here to help the reader with a better understanding of the
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method and technique involved.

The incompressible Navier-Stokes equations defined in equation (3.1)

are used. A schematic of the problem for two spheres of diameter, D, is given

in Figure 3.3. As noted earlier in section 3.3, U is the oscillating velocity

field imposed at the outer boundaries of the domain with amplitude A and

frequency ω. A Cartesian frame (ex, ey, ez) relative to the axis joining the

sphere centers together with a cylindrical frame (er, eϕ, ez) were used.

Far from the spheres, the velocity field must match the applied

uniform oscillating flow defined as

u ≈ U [cos θ ez − sin θ ex] cosωt (3.12)

p ≈ ρUω [z cos θ − x sin θ] sinωt. (3.13)

In addition to the assumption that the centers of the spheres are fixed, a

no-slip condition u = 0 is also imposed on their surface, consistently with

the no-slip condition used in the DNS.

The forces exerted on each of the spheres (1) and (2) in Figure 3.3,

are given by

F(1,2) =

∫
S1,2

[
−pn + ν(∇u +∇uT ) · n

]
dS (3.14)

where S1,2 is the surface of the corresponding sphere, and n is the vector

normal to it pointing outwards.

In the following, the problem is solved in non-dimensional form by

setting D = 1, ρ = 1, and ν = 1. This assumption is required because of a
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notational inconsistency between Fabre et al. (2017) and the present thesis.

The flow can be represented by a state vector q = [u; p]. The assumption

that the amplitude of the oscillating field, U , is small then implies Re� 1, so

it is convenient to conduct an asymptotic analysis in terms of this parameter.

Thus, q can be expanded in series of Re as a combination of the first- and

second-order solution as follows:

q = Re q1 + Re2 q2 +O(Re3) (3.15)

The force exerted on each sphere can be similarly expanded, such that

F(1,2) = Re F
(1,2)
1 + Re2 F

(1,2)
2 , (3.16)

which means, in dimensional terms,

F(1,2) ≡ ρνDU F
(1,2)
1 + ρD2U2 F

(1,2)
2 . (3.17)

The second-order contribution to the force F(1,2) in equation 3.17 consists of

two terms: the first one is the steady part, and the second one, the unsteady

part. The second unsteady part will not be considered here as only the time

average of the force is of interest.

In equation (3.15), the solution to the equation at second-order is

driven by the nonlinear term composed of the first-order terms. Further de-

tails on the weakly non-linear development itself, can be found in Fabre et al.

(2017) and Sipp & Lebedev (2007). Gathering all the first- and second-order

solutions led to the steady part of time-averaged force felt by the spheres,
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F(1,2), as given in equation (3.17). Here, · = 1/T
∫ T
0
· dt refers to time aver-

age. The following expression is obtained from equation (3.17), taking into

account the symmetry considerations, and reverting to a dimensional form:

F(1) = −F(2) = ρD2U2{(cos2 θ FAA + sin2 θ FTT ) ez + cos θ sin θ FAT ex}.

(3.18)

Here, FAA is the axial force due to axial oscillation, FAT is the transverse force

due to coupling between axial and transverse oscillation, and FTT is the axial

force due to transverse oscillation, on spheres (1) and (2) as labelled in Figure

3.3.

Mesh and domain size

A mesh was generated by triangulation over a circular domain, of extent

100D, embedding the sphere(s) at the center. The mesh consisted of a refined

inner circular region close to the sphere(s), with typical grid size 0.03D, and

a coarser outer one further away (see Figure 3.4).

For a single sphere, the size of the circular domain was 100D, with

radius of the inner refined circular mesh = 60D, and the outer coarser one

having a radius of an extra 40D. The density of mesh in the inner circle is 1.5

times that of the outer one. For two equal sized spheres, the mesh developed

was similar in properties to that with a single sphere embedded at the center.

Mesh dependence was checked over various combinations of domain sizes and

mesh densities, given in Table 3.7. The drag forces, Fd, vary by < 1% across

all the meshes, as can be seen in Table 3.8, when calculated for 0.1 ≤ Ω ≤ 100

in chapter 6 (defined in section 3.3.2, and plotted in Figure 6.9).
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Figure 3.4: Half of the axisymmetric mesh generated for a single sphere using
FreeFem++. The green inner region is more refined than the outer region. The
center of the mesh is zoomed in the inset.

Table 3.7: Meshes used for mesh analysis, M1 – M5, along with the parameters
used, where rin, rout, nin and nout represent the radii and number of elements used
for the inner and outer meshes, respectively.

Mesh rin rout nin nout
M1 10 40 15 10
M2 10 80 15 10
M3 10 40 10 5
M4 5 40 10 5
M5 10 80 30 20

In chapter 5, results are also reported for a moving sphere in a quies-

cent flow using WNF. It has been discussed in Fabre et al. (2017) that shifting

to a non-inertial reference frame that travels with the body only induces a

change in the second-order pressure field to account for the acceleration of

the frame. There is no change kinematically, i.e. there is no change to the
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Figure 3.5: Two-dimensional mesh for two spheres placed in a lateral configuration
at the center of the domain, generated using FreeFem++. The green inner region
is more refined close to the spheres than the outer region.

velocity field.

3.4 Summary

In this chapter, an introduction to the equations and non-dimensional pa-

rameters involved to study steady streaming around spheres is given. Two

Table 3.8: Forces measured using WNF with different meshes, M1 – M5 given in
Table 3.7, for Ω = 0.1 and Ω = 100. FAA, FTT , and FAT are as defined in section
3.3.2.

Ω = 0.1 Ω = 100
Mesh FAA FTT FAT FAA FTT FAT
M1 1.44034 -0.103677 2.35121 -0.004678 0.345217 0.782554
M2 1.44391 -0.108278 2.35523 -0.00195161 0.343888 0.784022
M3 1.43629 -0.101821 2.34705 -0.00443296 0.342322 0.779936
M4 1.43676 -0.102702 2.348 -0.00252949 0.342554 0.778095
M5 1.44784 -0.109151 2.35664 -0.00153949 0.345294 0.786244
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numerical methods, namely DNS and WNF, employed to achieve the aims

of this thesis that are described at the beginning of this chapter, are briefly

introduced. In the next chapter, steady streaming around a single sphere is

modelled and verified against existing literature, using the DNS. A compar-

ison of DNS and WNF will then be given in chapter 5.
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Verification of DNS for a Single

Sphere

4.1 Introduction

The main objective of this study is to know what happens once two spher-

ical particles under the influence of ultrasound, come close to each other

i.e. whether they would attract or repel each other and what circumstances

compel them to do so. In particular, the role of steady streaming affecting

particle attraction (or repulsion) is explored. A numerical model is developed

for a single rigid oscillating sphere and verified against literature. In order

to make a comparison, a Direct Numerical Simulation (DNS) has been used

as a yard stick since different parameters were used across literature.

In this chapter, steady streaming around a single sphere is modelled

using DNS. The DNS is compared with literature first before moving on to

the steady streaming around two spheres, addressed later in chapter 6.
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4.1.1 Model for steady streaming around a single sphere

As introduced in chapter 3, section 3.3, a solid sphere of diameter D is consid-

ered, suspended in an unbounded, oscillating, incompressible stream, which

oscillates sinusoidally, shown in Figure 3.1. The fluid motion is governed by

the conservation principles of momentum and mass which can be expressed

by the Navier-Stokes equations, as noted in section 3.2.1.

Two dimensionless parameters are defined (introduced in section

3.2.1): the inverse Strouhal number ε = A/D and the Reynolds number

Re= AωD/ν. Here, D is the diameter of the sphere, ω is the frequency

of oscillations, A is the amplitude of the oscillation, and ν is the kinematic

viscosity. For an average sized MFG of 4 µm, ε ≈ O(10−3) and Re ≈

O(10−2).

Details on the development of the DNS itself, the mesh, and bound-

ary conditions applied are given in chapter 3, section 3.3.1. Flow visualiza-

tions for Re = 20 and Re = 100 generated using the DNS are given in Figure

4.1 demonstrating small and large sizes of the inner vortices relative to the

sphere. The mean streamlines in Figure 4.1 start from user selected points.

For these and all subsequent flow visualizations generated in Tecplot, the

color contour represents the azimuthal component of the vorticity relative to

the plane where blue is inwards, and red outwards of the plane.

4.2 Comparison of DNS with Literature

As discussed in section 2.2, Lane (1955) provided theory and experiments

for steady streaming around a sphere produced by an acoustic source, with
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Figure 4.1: Streaming flows generated using DNS showing size of the inner vortices
for a) Re = 20, when ε = 2.00, and b) Re = 100, when ε = 0.25. The flow
is oscillating in the axial direction depicted by the bold black arrow. Rings of
vortices are formed in a direction perpendicular to the axis of oscillation, along
the axis of symmetry, which when sliced through a plane shows up as a pair
of vortices. The colour represents azimuthal component of vorticity relative to
the plane of the page, ranging from −0.01 (blue, directed inwards) to 0.01 (red,
directed outwards).

a similar setup and boundary conditions applied as in the present study.

A qualitative validation of DNS with the theoretical predictions of Lane is

achieved, as shown in Figure 4.2. For a quantitative comparison, size of the

inner vortices and peaks of drag coefficients were measured. Although the

size of the inner vortices could be measured both parallel and perpendicular

to axis of the imposed oscillatory flow in the numerical study carried out

by Alassar (2008), the range of Re for which the results were presented was

quite limited. This led to comparison of DNS results with the numerical

simulation in Blackburn (2002), where 1 ≤ Re ≤ 100, and the same results

could further be used to make a comparison of peaks of drag coefficients.
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Figure 4.2: (Top) Mean velocity field showing steady streaming beyond the bound-
ary layer region of a sphere, for dimensionless parameters Re = 200, ε = 0.25. The
colour contour represents azimuthal component of vorticity relative to the plane of
the page, ranging from −1 to 1. The black arrow represents axis of oscillation of
the fluid in the axial (x-) direction. The streamlines start at user-selected points.
(Bottom) Qualitative comparison of simulation (above) with theoretical predic-
tions of Lane (1955) using relevant half of Figure 2.2. Reprinted with permission
from Lane (1955). Copyright 1955, Acoustic Society of America.
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4.2.1 Comparison of DNS with Blackburn (2002)

A mesh with a similar structure to the one used in Blackburn (2002) was

constructed. The drag coefficients, Cd, were computed as

Cd =
8Fd

ρU2
maxπD

2
, (4.1)

where Umax = Aω is the maximum speed of the reciprocating free stream, A is

the amplitude of the oscillation, and ω is the angular frequency of oscillation.

Fd is the peak drag force defined as the maximum of the integral of viscous

traction and pressure over the surface of the sphere. In the DNS, ρ = D = 1.

The flow was axi-symmetric about the axis of the oscillating flow,

r = 0. The rectangular mesh, with a full extent of domain = 100D in the

axial and radial directions, was refined enough to capture the high gradients
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Figure 4.3: Comparison of peak coefficients of drag force, Cd, for a sphere which
is placed stationary in an oscillating flow. Blackburn (2002); - -�, DNS; —•. For
ε ≤ 1, both numerical methods match Basset (1888).
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Figure 4.4: Location of the first zero-crossing of radial velocity on the line x = 0,
rcross, as a function of Reynolds number Re, for ε=0.05, and ε=5.0. Blackburn
(2002); —• ε = 0.05, —• ε = 5.0. DNS; • ε = 0.05, • ε = 5.0.

near the boundary of the sphere, as discussed in section 3.3.1. The outer

mesh further away from the sphere was coarse to save computational time.

The peak coefficients of drag force, Cd, for a stationary sphere in oscillatory

flow were computed as a function of Re using the DNS, shown in Figure 4.3.

It matched well with Blackburn (2002) for 1 ≤ Re ≤ 100 when 0.05 ≤ ε ≤ 5.

Differences occur only for Re ≤ 10 and ε > 3 which is irrelevant for the

range of parameters considered for the present work. It is worth noting that

Blackburn (2002) in turn matched with Basset’s analytical solution (Basset,

1888) for amplitudes ε ≤ 1.

For a further verification of DNS, sizes of inner vortices were com-

pared with Blackburn (2002) by measuring the distance to stagnation points

on the axis of oscillation as shown in Figure 4.4. This length was measured

by recording points where velocity in the x and r direction first crossed its

60



CHAPTER 4. VERIFICATION OF DNS FOR A SINGLE SPHERE

respective axis, denoted by rcross. The maximum extent of radial domain

was 100D for DNS, and 50D in Blackburn (2002).

Data for rcross is available only for ε = 0.05 and ε = 5.0 in Blackburn

(2002). Figure 4.4 shows that the size of the inner vortices, rcross, reduces

as Reynolds number, Re, increases. This is also evident since the viscous

effects are large close to the sphere, thus shrinking the boundary layer in

size. However, rcross can grow as large as the extent of the domain for small

Re. Hence, data is not considered reliable at those points.

It should be noted that though the measure of drag forces is inde-

pendent of the mesh density, rcross certainly increased when the mesh was

further refined close to the sphere, keeping the number of periods of oscilla-

tion of the flow constant. It should be recalled that rcross is the point at which

the mean velocity reverses its sign. For low Re and Ω (defined in section 3.3),

this mean velocity field can be extremely weak, and hence small changes in

this mean velocity field due to changes in the mesh can induce very large

changes in the position of this change of sign, with only a negligible variation

in the forces. The effects of mesh density on Fd and rcross are quantified in

Tables 3.3 and 3.4 in section 3.3.1. It was noted that rcross increased to 144%

between meshes M2 and M3 for Re=1 when ε = 0.05.

Also, when the number of periods over which the average was taken

was doubled to that in M4, yet again there was a significant increase noted

in rcross (41% for Re=40, ε = 0.05), specifically for small ε and high Re,

as shown in Tables 3.5, and 3.6. However, it took two weeks to get all the

data points required for results in section 5.2 using this setup, in comparison

to only three days taken in the case of M4. Thus, the computational effort
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(a) Re = 25

ε = 2.5

1.25

0.83

(b) Re = 200

ε = 2.5

1.25

0.83

Figure 4.5: db denotes the size of inner vortices varying with θ, and measured from
the center of the sphere. Here, ε = 0.5/S, where S is the inverse Strouhal number.
This Figure will be used to make a comparison with the results in Figure 4.6.
Reprinted from Alassar (2008), Copyright (2008), with permission from Elsevier.

required to converge these values of rcross is considerable without any real

change in the forces and the flow near the sphere. Hence, it can be concluded

that the mesh setup used is a compromise between accuracy and time taken

to achieve the results, in spite of the sensitivity of the value of rcross to the

mesh density, and the number of periods of oscillation of the flow.

4.2.2 Comparison of DNS with Alassar (2008)

In Blackburn (2002), rcross was measured only in one direction, i.e. when

flow was parallel to the axis of oscillation. The DNS allows it to be measured

perpendicular to the axis of oscillation as well. Alassar (2008) measured size

of the inner vortices, naming it db, for 0◦ ≤ θ ≤ 90◦.
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Alassar (2008) defined two dimensionless parameters: the inverse

Strouhal number, S = 2A/D = 0.5/ε, and the Reynolds number, Re =

AωD/ν, where ε and Re are defined earlier in section 4.1.1. In order to verify

DNS for Re = 25 and Re = 200, results were produced matching Alassar’s

parameters, for lengths of stagnation points on either side of the sphere i.e.

for θ = 0◦ (x-axis) and θ = 90◦ (r-axis). A good agreement between the

two was achieved, as shown in Figure 4.6. The results were averaged over

the last 10 periods after running for 100 periods of oscillation. It is observed

that in Figures 4.5 and 4.6, as ε decreases, the distance from the surface of

the sphere to the stagnation point becomes smaller. Also, it is evident that

the shape of the inner vortical regions is not constant over θ. The plots in

these figures are drawn considering S = 0.5/ε for the purpose of comparison

with Alassar (2008).

So far the DNS was verified against literature for the model ex-

plained in 4.1.1, i.e. streaming flows for a stationary sphere placed in an

imposed oscillatory flow. However, steady streaming can also be generated

when a sphere is oscillating in a quiescent fluid (e.g. Riley (1967)). A com-

parison of results produced using DNS for these two flows is discussed in the

next section.
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Figure 4.6: Size of the inner vortex, rcross, measured (above) over the x-axis
corresponding to θ = 0◦, and (below) over the r-axis corresponding to θ = 90◦.
Alassar (2008); —• Re = 25, —• Re = 200. DNS; —� Re = 25, —� Re = 200.

4.3 Steady Streaming Flows in Relative and

Absolute Frames

When ultrasound is switched on in a stationary tank filled with milk, the

spherical Milk Fat Globules (MFGs) start oscillating with an amplitude much

smaller than their radius in an initially quiescent fluid at that instant. Seeing
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it from a different perspective, the problem can also be modelled as stationary

spheres placed in an imposed oscillatory flow since there is an outer flow

applied in the form of ultrasound. In the simulations produced using DNS,

the sphere is assumed stationary and oscillatory boundary conditions are

imposed, referred to as an absolute frame. Since the separation of milk using

ultrasound is a combination of these, results for the two problems stated

above were verified.

Simulating oscillating spheres in a quiescent fluid needs a new mesh

constructed each time the sphere moves to a new position and that makes

it computationally expensive to use DNS. This problem was overcome by

shifting the frame of reference involved, referred to as relative frame here. In

this case, the equations of momentum in the governing equations defined in

section 3.2 will have an additional term for the acceleration of the reference

frame. This extra term will be subtracted from the right side of the equation

for conservation of axial momentum, equation (3.5), i.e.

∂w∗

∂t∗
+ u∗

∂w∗

∂r∗
+
v∗

r∗
∂w∗

∂ϑ
+ w∗

∂w∗

∂x∗
= −x∗ω2 sin(ωt∗)− 1

ρ

∂p∗

∂x∗
+

ν
{ 1

r∗
∂

∂r∗
(r∗

∂w∗

∂r∗
) +

1

r∗2
∂2w∗

∂ϑ2
+
∂2w∗

∂x∗2

}
.

(4.2)

After non-dimensionalizing this equation using the dimensionless parameters

introduced in equation (3.6), it yields,

⇒ ∂w

∂t
+ u

∂w

∂r
+
v

r

∂w

∂ϑ
+ w

∂w

∂x
= −x

ε
sin(t)− P

U

ε

ρ

∂p

∂x
+

ν
{1

r

∂

∂r
(r
∂v

∂r
) +

1

r2
∂2v

∂ϑ2
+

2

r2
∂u

∂ϑ
− v

r2
+
∂2w

∂x2

} (4.3)
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Figure 4.7: Streaming around a sphere in an oscillating flow, for Re = 50, ε = 0.20.
The contours represent azimuthal component of vorticity.

4.3.1 Streaming flow around a stationary sphere in an

oscillatory flow

The mean of the streaming flow around a stationary sphere placed in a oscil-

latory flow was computed using DNS, without taking into account coupling

between the sphere and the fluid i.e. velocity of the fluid is zero at the surface

of the sphere. After 100 periods of oscillations, 50 snapshots were taken over

one period, equispaced in time, which were then averaged. The outcome is

shown in Figure 4.7 with mean streamlines. The respective comparison for

peak coefficients of drag were given in Figure 4.3, already discussed in section

4.2.1.
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Figure 4.8: Mean streaming for a sphere oscillating in a quiescent flow initially, for
Re = 50, ε = 0.20. The contours represent azimuthal component of mean vorticity.

4.3.2 Streaming flow around an oscillatory sphere in a

quiescent flow

The streaming flow around an oscillating sphere placed in quiescent fluid

was computed using DNS, by taking the mean of the flows after 100 periods

of oscillations is shown in Figure 4.8. Again snapshots at 50 different and

equispaced time steps were taken. A mean of these 50 flow snapshots was

computed using Tecplot. Due to changing positions of the sphere, it creates

an offset from its initial position. The inside of the sphere is irrelevant to the

flow around the sphere, thus that part of the flow is coloured grey.

After a qualitative comparison of streaming flows generated by an

oscillatory sphere, drag forces of the flow were compared with available liter-

ature. It matches quite well for streaming flow around an oscillating sphere
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Figure 4.9: Comparison of peak coefficients of drag force, Cd, for a sphere oscil-
lating in a quiescent flow. Blackburn (2002); - -�, DNS; —•. For ε < 1, both
numerical methods match Basset (1888).

in a quiescent fluid for 1 ≤ Re ≤ 100, and 0.05 ≤ ε ≤ 5 when compared

with Blackburn (2002), as shown in Figure 4.9. A similar comparison of peak

coefficients of drag forces, Cd, for another type of flow i.e. an oscillatory flow

around a stationary sphere, is already presented in Figure 4.3 and is known

to be different.

4.4 Summary

The DNS has been successfully verified quantitatively and qualitatively, against

the literature. The comparison was made by measuring drag forces and sizes

of the inner vortices.

A comparison of drag forces, computed using DNS, was carried out
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for streaming flows between the oscillatory spheres in quiescent fluid and

stationary spheres placed in oscillatory fluid. The separation of Milk Fat

Globules (MFGs) under the influence of ultrasound can be considered as a

combination of these two flows, as discussed at the beginning of section 4.3.

The flows are intrinsically different but share some common features. These

two flows are compared and discussed again at the end of the next chapter.

In the next chapter, results from DNS will be presented alongside the

ones from the Weakly Non-linear Formulation (WNF), to compare behaviour

of the steady streaming flow involved.
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Chapter 5

Steady Streaming around a

Single Sphere using DNS and

WNF

5.1 Introduction

In chapter 4, a full DNS was applied verified for a single sphere. Those

DNS results are used in order to verify another numerical method, namely

WNF in this chapter. The shift from DNS to WNF was required because

the development of DNS for two spheres in three-dimensions would be very

time consuming. This new method is much faster than the DNS, especially

for steady streaming flows around two spheres, and quite accurate as well.

In the next section, a perturbation method is introduced to calcu-

late forces exerted on a single sphere solving the weakly non-linear equa-

tions, referred to as Weakly Non-Linear Formulation (WNF) henceforth and
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Figure 5.1: Steady streaming around a single sphere oscillating in the direction of
the bold black arrow, for Ω = 1 (left), and Ω = 100 (right), using WNF. Recall
that the basis of WNF is that ε → 0. Rings of vortices form perpendicular to
the axis of oscillation and show up as a pair of vortices when sliced through in
two-dimensions. The contours represent the azimuthal component of vorticity, as
explained in section 4.1.1.

as detailed in chapter 3. More details on the theory involved are given in

Fabre et al. (2017). The flow was computed and visualized using FreeFem++

(Hecht, 2012). In addition to computing streaming flows parallel and perpen-

dicular to the imposed oscillatory flow, WNF allows for any angle between

the axis of oscillation of the sphere and the imposed oscillatory flow, unlike

the axisymmetric DNS. This feature has benefit in computing trajectories of

particles, discussed in chapter 7.

5.1.1 Model for steady streaming around a single sphere

using WNF

For a single sphere of unit diameter D, an unbounded, incompressible fluid

was assumed to be oscillating axially with an amplitude A, and frequency ω.
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More details for the model were given in section 3.3.2.

The non-dimensional parameters are defined, as before, as ε = A/D,

described in the literature as inverse Strouhal number, and Reynolds number

Re = AωD/ν, where D is the diameter, ω is the frequency of the oscillating

flow, and ν is the kinematic viscosity. When WNF is applied, a ratio of

Re and ε is introduced as Ω = ωD2/4ν, also known as Stokes number, as

described earlier in section 3.2.2. In the case of WNF it is assumed that

ε → 0 as is necessary for the perturbation expansion leading to WNF to be

valid. The range of parameters used is given in Table 5.1.

Table 5.1: Parameter space used for both the DNS and WNF. As defined in section
2.2, 4Ω = Re/ε, Res = εRe, and δ =

√
ν/ω.

Parameter Minimum Maximum

ε 0.01 5.0

Re 1 500

δ 0.05 0.5

Ω 0.05 12500

Res 0.01 2500

In Figure 5.1, steady streaming flows for Ω = 1 and Ω = 100 around

a single sphere oscillating in the axial direction are presented. The inner

recirculation regions are much larger for low Ω as compared to high Ω. This

large inner recirculation region can be a result of high viscosity which con-

trols the flow when frequency is low. For very low values of Ω, the inner

recirculation can be very large and gets dependent on the size of the domain.

This flow behaviour can be related to what Riley (1966, 1967) described for

4Ω � 1 and 4Ω � 1 discussed in section 2.2, and illustrated in Figure 2.3.
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Rings of vortices form perpendicular to the axis of oscillation in Figure 5.1,

and show up as a pair of vortices when sliced though in two-dimensions,

represented by opposite colours. The vortex axis is defined as the normal to

the plane in which the circle at the center of the vortex-ring is contained.

The colours in Figure 5.1, and in subsequent visualizations, represent the

azimuthal component of vorticity, as explained in section 4.1.1. Flows for

both low and high Ω, shown in Figure 5.1, can be compared qualitatively

with predictions of Lane (1955). The orientation of the streamlines around

the sphere in Figure 2.2 is the same to that in Figure 5.1 according to the

direction of the axis of oscillation.

The DNS allows integration of the full Navier-Stokes equations,

without any assumptions for simplifications. This helped capturing many

effects in the flow that were not possible with WNF. On the other hand, it

made DNS more time consuming than WNF. In the next section, a compar-

ison of DNS and WNF is presented, highlighting the accuracy of the WNF

approach and outlining where it is, and is not, valid.

5.2 Comparison of Results from WNF with

DNS

Steady streaming flows around the spheres in Figure 5.2, computed using

DNS and WNF, are compared qualitatively. They also agree qualitatively

with the theoretical predictions of Lane (1955) (Figure 4.2) such that the

size and the orientation of the vortices is the same inside and outside of the
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Figure 5.2: Flows generated using: (left) DNS for Re = 100, when ε = 0.25, and
(right) WNF for Ω = 100, when D = 1 in both cases. Contours represent azimuthal
component of vorticity as described in section 4.1.1. Streamlines are generated
from user-selected points, hence can not be exactly replicated in another attempt.
The bold black arrow depicts the imposed oscillating flow in the axial direction.
Recall that WNF is based on infinitesimal amplitude, however, vorticity in the
flow can be scaled. The aspect ratio of the images was made slightly different so
that the spheres would appear of the same size, owing to the use of axisymmetric
and Cartesian domains for the DNS and WNF respectively.

boundary layer.

For a quantitative comparison, the size of the inner vortices, rcross,

computed using DNS and WNF were compared first. A comparison of peaks

of drag coefficients will follow.

5.2.1 Comparison of size of the inner vortices

The size of the inner vortices, rcross, was measured as the distance from the

center of the sphere to the stagnation points on either side of the sphere, as

was done in chapter 4, section 4.2.1. For DNS and WNF, rcross was quantita-

tively compared in the directions parallel and perpendicular to the imposed
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Figure 5.3: Symbols denoting DNS data for length of inner vortices, rcross, plotted
against Ω, and its comparison with WNF data. (above) Parallel to the direction
of the imposed oscillation (x-axis); (below) perpendicular to the direction of the
imposed oscillation (over the r-axis). (Insets) Same plots for 40 ≤ Ω ≤ 600.
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oscillation, as shown in Figure 5.3. It was observed that rcross decreases when

Ω increases, for 1 ≤ Ω ≤ 500, in both these cases. Also, rcross was not the

same size over the axial and radial axes, when the imposed oscillation is axial.

This suggests that the size of the inner recirculation region is not symmetric

over 0◦ ≤ θ ≤ 90◦, something that is also reported in Alassar (2008).

In Figure 5.3, the DNS data gradually collapses onto the WNF curve

for Ω > 40 when ε ≤ 1. It shows that rcross is independent of ε in this range.

The low ε DNS results fall on a single curve similar to the curve from WNF.

This indicates the WNF results are valid for finite ε, with an upper limit at

ε = 1.00. Therefore, the results from WNF, where it is assumed that ε→ 0,

are also valid for values of ε ≤ 1.

For a Milk Fat Globule (MFG) of an average diameter of 4 µm

exposed to mega hertz frequencies, Ω ≈ 25. For the largest MFGs of diameter

up to 10 µm, Ω ≈ 160. Recall that during the application of ultrasound, the

amplitudes of oscillation are very small, with ε = 10−3. Therefore, it seems

that the WNF approach is able to capture the same dynamics as the fully

non-linear DNS for parameters in the range of interest, 25 < Ω < 160, for

the milk separation application.

The data tends to gradually leave the curve of collapse for 1 ≤ Ω ≤

25 when ε ≥ 0.75. This range of ε is not of interest for the milk separation

as just discussed above. Since Ω ≤ 25 also refers to small size of the spheres,

it suggests that MFGs < 4 µm will not get removed from the milk in this

cream separation process. There is evidence of MFGs smaller than this size

remaining suspended in the milk even after ultrasonication, in experiments

conducted by Leong et al. (2016).
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Figure 5.4: Comparison of peaks of drag coefficients Cd for DNS and WNF, when a
stationary sphere is placed in an oscillatory flow. As ε is reduced, the DNS results
tend to the WNF result where ε→ 0.

5.2.2 Comparison of peak coefficients of drag

The drag forces, Fd, calculated by WNF were non-dimensional. The DNS

coefficients of drag force given in equation (4.1), Cd, were re-defined in order

to make a comparison with amplitudes ε→ 0, as

Cd =
2Fd

ρUaνD
, (5.1)

where as before, Ua = Aω is the speed of free stream, A is the amplitude of

the oscillation, ω is the angular frequency of oscillation, and Fd is the drag

force. This redefinition was necessary to quantify Ua, since amplitude A is
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Figure 5.5: Comparison of peaks of drag coefficients, Cd, for DNS and WNF, for
an oscillating sphere placed in a quiescent flow. Parts of DNS curves for ε = 0.01
and ε = 0.05 are overlapping each other.

infinitesimal in WNF as ε→ 0.

In Figure 5.4, a comparison of peaks of Cd computed using DNS

and WNF data, on a single sphere placed in an imposed oscillatory flow is

made. The DNS data for this flow was computed via the process explained

previously in section 4.3.1. It involved amplitudes 0.05 ≤ ε ≤ 5.00, and

1 ≤ Re ≤ 100. These parameters were converted to Ω, in order to make a

comparison with data from WNF, where ε→ 0.

A comparison of peaks of Cd from DNS with WNF data when an

oscillating sphere is placed in a quiescent flow is shown in Figure 5.5. The

details of how data was obtained is explained in section 4.3.2.
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Both plots of comparison of peaks of Cd show that as ε is reduced,

the DNS results converge to the WNF result where ε→ 0. It can be observed

in Figure 5.4 that the WNF curve for ε→ 0 is sitting below DNS curves for

0.05 ≤ ε ≤ 5.00. The results do not converge perfectly to the WNF results in

Figure 5.5 for the oscillating sphere case and are left for resolution in future
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Figure 5.6: The comparison of DNS data on a log-log plot and a semi-log plot
of rcross as a function of Ω replicating variables defined by Klotsa (2009). (Inset)
The same plot on a log-log scale for the range of data presented in Klotsa (2009).
Klotsa (2009), 75/Ω; - -, Kotas et al. (2006), 46/Ω; - -.
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work. Both DNS and WNF will need to be investigated for flows at low ε to

check convergence for a more refined mesh. In addition, for such a refined

mesh, the effects of increasing the number of periods of oscillation before

taking average of the flow should be checked.

5.3 Classification of Flow Regimes

Klotsa (2009) compared results from simulations for a single sphere with that

of Kotas et al. (2006) in order to compare length of the inner vortical regions.

The relation was given as rcross/R = C/2Ω, where rcross is the length from

the surface of the sphere to the stagnation point as defined before in 4.2.1,

R is the radius of the sphere, and C = 150± 1. The range of parameters for

simulations done by Klotsa (2009) is restricted i.e. 2 ≤ Re ≤ 200, providing

only 9 points in the data set, which over-estimate stagnation point distances

given in Kotas et al. (2006). In comparison, results from DNS and WNF, are

computed on a much wider range i.e. 1 ≤ Re ≤ 500, and 0.01 ≤ ε ≤ 5.00.

In Figure 5.6, data is scaled and plotted as in Klotsa (2009). A good

match can be seen in the inset of Figure 5.6, where data was plotted on a

log-log plot. However, when plotted on a semi-log plot and for a wider range

of parameters, it shows more detail that was lost on a log-log plot. There are

different trends followed by the DNS data especially, that can be classified

into regimes according to the nature of the flow.

According to data from DNS, shown in Figure 5.7, steady streaming

flow around a single oscillating sphere can be grouped into four possible

regimes:
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• Zone I: Moderate Ω and Low ε, (1 ≤ Ω ≤ 10, 0.01 ≤ ε < 1.00 ): As Ω

increases, rcross decreases, staying above the WNF curve without any

particular dependence on ε. In Figure 5.8 (a), it can be seen that for

low values of Ω and ε, rcross is much wider as compared to the diameter,

D, of the sphere.

• Zone II: Moderate Ω and High ε, (1 ≤ Ω ≤ 10, 1.00 ≤ ε ≤ 5.00 ): As ε

increases, data tends to gradually move away from the curve it seems

to collapse to in Zone III. With the increase in ε, rcross decreased due

to the outer vortices surrounding the inner vortices, as demonstrated

in Figure 5.8 (b) for Ω = 5 and ε = 5.00.

• Zone III: High Ω, (Ω > 10): Data collapses down on WNF curve and is

independent of ε. In Figure 5.8 (c), the inner vortices becomes confined

by the outer vortices such that rcross is small compared to the diameter,

D, of the sphere.

• Zone IV: Low Ω and High ε, (0.1 ≤ Ω ≤ 1, 1.00 ≤ ε ≤ 5.00 ): As

Ω increases, rcross increases, depending on ε in addition. The inner

vortices are seen extending over a much wider region in Figure 5.8 (d).

It should be noted that Ω can also be expressed in terms of thickness

of the boundary layer δ =
√

ν
ω

, as Ω = D2/4δ2. This dependence of rcross

on δ is clearly observed in Zones IV and III. However, for Zones I and II, ε

turned out to be a significant parameter.

Also, the WNF curve shows a different behaviour than the DNS

data for Ω < 10. For such values and for lower values of Ω, rcross is very
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large, sometimes as large as the extent of the domain. These points require

higher mesh resolution for precise calculation of small changes in the flow.

However, the data match is good for the range of interest for milk separation

i.e. 25 ≤ Ω ≤ 160.

Table 5.2: Distribution of oscillatory flow regimes around a single sphere into
zones.

Ω/ε Low (0.01 ≤ ε < 1) High (1 ≤ ε ≤ 5)

Low (0.1 ≤ Ω ≤ 1) Zone IV

Moderate (1 ≤ Ω < 10) Zone I Zone II

High (Ω ≥ 10) Zone III Zone III

As described in chapter 2, section 2.2, Riley (1967) has classified

steady streaming flows induced by a sphere oscillating in a viscous fluid, into

different cases for amplitudes ε� 1. A comparison of flow regimes explained

in Table 5.2 proved that flow in Zones I, III, and IV was the same as in

Case I, III, and IV explained by Riley (1967) (given in section 2.2), and thus

named in a similar fashion. However, Zone II was not discussed as all the

study was limited to cases only when ε� 1.

5.4 Summary

Steady streaming flows around a single sphere were generated using DNS and

the perturbation-based method WNF, which have been verified qualitatively

and quantitatively. These results were produced for a range of parameters

much wider than studied in literature previously. For high amplitudes 1 ≤
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Figure 5.7: Distributing flow regimes into zones, explained in Table 5.2, according
to different trends followed by the steady streaming flow simulated around a sphere
in an oscillating flow using DNS, and its comparison with WNF. Recall from section
5.2.1 that WNF is only comparable for 25 < Ω < 60.

ε ≤ 5, DNS data showed the presence of a different flow regime, namely Zone

II as shown in Figure 5.7, that has not been discussed in the literature. DNS

was also capable of capturing the non-symmetric nature of the sizes of the

inner vortices, seen in Figure 5.8.

However, DNS is limited to steady flows around a single sphere un-

less fully three-dimensional simulations are conducted, which is very expen-
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(a) Zone I: Ω = 5, ε = 0.50 (b) Zone II: Ω = 5, ε = 5.00

(c) Zone III: Ω = 40, ε = 1.00 (d) Zone IV: Ω = 1, ε = 1.25

Figure 5.8: Steady streaming around a single sphere in four different zones when
the imposed flow is oscillating in the direction of the bold black arrow. Colour
represents azimuthal component of vorticity, between −0.01 (blue) to 0.01 (red),
as described in section 4.1.1.

sive computationally. In comparison, the task of computing steady streaming

flows around single sphere and around two spheres can be achieved quickly

using WNF. It has the added flexibility of imposing oscillation at any given

angle to the axis on which the spheres are placed.

It can be deduced from these steady streaming flows shown in Fig-

ure 5.1 that if another sphere is placed in the axial direction where the flow

is away from the sphere, it will experience a repulsive force. Also, if another

sphere is placed at a point in the lateral direction where the flow is coming

towards the sphere, it will experience an attractive force. This raises the

question whether steady streaming flows around two spheres could be pre-
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dicted without actually performing a simulation of the two sphere problem.

This point will be discussed again in section 6.3.2, to check if these predictions

turned out to be true for steady streaming flows around two spheres. In this

chapter, results were also reported for a moving sphere in a quiescent flow

using WNF. As discussed in section 3.3.2, there is no change kinematically,

i.e. there is no change to the velocity field.

After verification of WNF with DNS for a single sphere, steady

streaming flows around two spheres using WNF, along with a new set of

parameters defined, are given in the next chapter.
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Chapter 6

Steady Streaming around Two

Spheres

6.1 Introduction

A perturbation based method, WNF, was introduced in the previous chapter

for steady streaming flows around a single sphere. In this chapter, WNF is

used to calculate steady streaming flows and forces exerted on two spheres,

solving the weakly non-linear form of the Navier-Stokes equations. A new

problem is defined along with its parameters, described in the next section.

As mentioned in section 1.4, the work presented in this chapter is

published in Fabre et al. (2017), based on the analysis done by David Fabre

already given in section 3.3.2. In this chapter, the size of the spheres is half of

those in Fabre et al. (2017), thus having an impact on the magnitude of the

forces and visualizations involved. It does not change the overall conclusions

however.
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Figure 6.1: Schematic of the two sphere problem as shown in Figure 3.3.

6.2 Numerical Setup

As defined in section 3.3.2, two stationary, identical, non-rotating spheres

of diameter D are set apart, at a distance L and positioned at an angle

θ between the axis of oscillation and the axis which passes through their

centers. As before, the flow can be expressed by the incompressible Navier-

Stokes equations. Also as before, a no-slip boundary condition is assumed

at the surface of spheres. When θ = 0◦, the spheres are placed parallel

to the axis of imposed oscillation, in an axial configuration (Figure 6.2(b)).

Similarly at θ = 90◦, the spheres are positioned perpendicular to the axis of

imposed oscillation, in a lateral configuration (Figure 6.2(a)). The oblique

configuration refers to when θ is some angle between these two limits; an

example case at θ = 45◦ is presented in Figure 6.2(c). In the frame that the

figures are presented in, the oscillations are imposed in a vertical direction.

The dimensionless parameters involved are previously defined in sec-

tion 3.2.2 as ε = A/D, and Reynolds number, Re = AωD/ν. In addition, a
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ratio of Re and ε is introduced in section 3.2.2 as Ω = ωD2/4ν, also known

as Stokes number.

The mesh comprises of triangles in a circular domain of size 100D. A

fine inner mesh with typical grid size of 0.015D was used, that gets coarser

away from the embedded circles up to the full extent of the domain (see

Figure 3.5). More details about the method itself and the mesh analysis are

given in section 3.3.2.

6.3 Verification of Results for Two Equisized

Spheres

For comparison of WNF results against those of a similar system in Klotsa

et al. (2007), the interaction force, FL, was measured as a function of the

distance between the centers of two spheres, L/D, after non-dimensionalizing

the parameters. Klotsa et al. (2007) performed experiments, and three-

(a) (b) (c)

Figure 6.2: Pressure isolevels, between −0.01 (blue) to 0.01 (red), for Ω = 1 in the
(a) lateral, (b) axial, and (c) oblique configurations, when L/D = 2.
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(a) (b) (c)

Figure 6.3: Pressure isolevels, between −0.01 (blue) to 0.01 (red), for Ω = 100 in
the (a) lateral, (b) axial, and (c) oblique configurations, when L/D = 2.

dimensional simulations, of spheres immersed in a shallow fluid cell, where

the depth of the fluid was not much more than the diameter of the spheres.

These spheres were 1 mm in diameter and free to roll or slide along the bot-

tom of the cell. The cell was then vibrated in the plane that the cells were

free to move in and their motion analysed. Simulations performed by Klotsa

et al. (2007) computed the force curve FL for a pair of spheres, vibrated at

50 Hz with relative amplitude of the spheres’ motion with respect to the

cell, Ar = 0.28 mm, in a fluid of viscosity 4.5 × 10−6m2s−1. These values

were used to achieve force curve in Figure 6.4, when the corresponding Re

≈ 20, which is the equivalent of Ω = 17.85. Figure 6.4 also shows the forces,

FL, measured for these parameters from the current WNF simulations, after

normalizing L with radius R and FL with CF with an offset of 1.5D. Here

CF = ρU2AR, AR = πR2, and (as previously defined) U = Aω.

An interesting outcome of these force measurements is that there is

a distance L/D at which the forces between the spheres is zero. This implies

that there is an equilibrium position at which the spheres will not move.
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This equilibrium distance, s, for FL for the data used by Klotsa et al. (2007),

is 0.6, as shown in Figure 6.4. However, s is a function of the frequency

of oscillation. Klotsa estimated this functional dependence by fitting both

experimental and numerical data to a function of the form s = Cν/(ωD).

The value of a numerical constant C was also measured. It was estimated

that C ' 6.5 for experimental data and ' 9 for simulation data in Klotsa

et al. (2007). After rescaling the parameters, and curve fitting using the

relation L/D ≈ C/Ω, shown in Figure 6.5, a value of C = 8.25 was obtained.

The close match between the measured forces FL and the value of

C is remarkable given that the setup used by Klotsa et al. (2007) was only a

0 5 10 15 20 25 30 35 40

L/D

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

F
L

Figure 6.4: Time-averaged force, FL, as a function of space between the spheres,
L/D, after normalizing the parameters defined by Klotsa et al. (2007). Klotsa;
—•, (WNF) Ω = 17.85; —•. Positive and negative FL represent attraction and
repulsion between the spheres, respectively. The WNF curve is rescaled for a
comparison.
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Figure 6.5: Equilibrium distance between the center of the spheres, L/D, as a
function of frequency, Ω, in a lateral configuration, when spheres are positioned
perpendicular to the axis of imposed oscillation. The total number of data points
is 43.

small cell of domain extent = 3D, including boundary effects on the spheres,

whereas in the WNF simulations the spheres were assumed to be immersed

in the fluid with extent of the domain = 100D.

6.3.1 Streaming flows around two spheres

In this section, the effect of mean forces due to steady streaming is presented

for different distances between the two spheres and for low to high Stokes

number (or equivalently low to high sphere radii/frequency) Ω. Mesh de-

pendence has been checked over various combinations of domain sizes and

mesh densities, comprising, as noted earlier in section 3.3.2, a refined inner

circular region close to the sphere(s), and a coarser outer one further away.

The results vary only by < 1% across all the meshes (see Tables 3.7 and 3.8),
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when measuring forces FTT , FAA, and FAT for all values of Ω, as shown in

Figure 6.9.

Steady streaming flows around two spheres in three different config-

urations are discussed and shown in the sections below, for 0.1 ≤ Ω ≤ 100.

The colour in flow visualizations (Figures 6.6, 6.7, 6.8) represents the az-

imuthal component of vorticity (described previously in section 4) between

−0.01 to 0.01. Rings of vortices are formed with a plane of orientation per-

pendicular to the axis of oscillation. When sliced through in the plane of the

simulation, these rings appear as a pair of equisized vortices, with opposite

colors distinguishing between vorticity oriented in and out of the plane. The

streamlines start from user selected points and consequently, might not be

symmetrically placed.

It is worth recalling that high Ω corresponds either to high fre-

quency, or to large particle size or both. For simplicity, in the descriptions

that follow, the term ‘frequency’ will be used, but it should be understood

that it refers interchangeably to particle size.

Lateral configuration

When the spheres are in a lateral configuration, the mean force in the axial

direction, FTT , is attractive for high frequencies and repulsive for low fre-

quencies (see Figures 6.5, and 6.9 (a)). For intermediate values of Ω, there

is a distance at which the mean force exerted on the spheres reduces to zero

so the spheres stay at an equilibrium position. At distances less than this

equilibrium position, the force is repulsive. At distances greater than the

equilibrium position, the force is attractive. This setup also shows that the
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(a) Ω = 1 (b) Ω = 8

(c) Ω = 30 (d) Ω = 100

Figure 6.6: Steady streaming around two spheres in a lateral configuration, when
L/D=2. The imposed flow is oscillating in the direction of the bold black arrow.
Colour represents azimuthal component of vorticity −0.01 (blue) to 0.01 (red).

equilibrium is stable - excursions from the equilibrium position induce forces

that push the spheres back towards the equilibrium.

The direction of the induced forces in clearly a function of the mean

flow structures. In Figure 6.6, examples of these flow structures are shown

for L/D = 2, for a series of increasing Ω. Note that there are only four
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large inner vortices at Ω = 1. These vortices reduce in size as the frequency

increases. At around Ω = 8, another pair of vortex rings appears for each

sphere in between the spheres. The streamlines suggest that at such low

frequencies the fluid is being pushed inwards in the direction of oscillation,

(which is transverse to the axis joining the spheres), and therefore fluid is

ejected outwards along the axis joining the spheres; thus the spheres repel

each other. As the frequency further increases, the previous larger inner

vortices adjust their size, together with the newly-formed small vortices, until

they are of the same size. Meanwhile, the outer vortices are overpowering the

inner vortices at Ω = 100 meaning the direction of the flow in between the

spheres is reversed with respect to the low Ω cases. The fluid is seen to be

pushed inwards from the sides and rushing out in the direction of oscillation,

and therefore fluid is pulled in along the axis joining the spheres, making the

spheres come close together for higher Ω.

Axial configuration

In the axial configuration, the mean force in the axial direction shows an

opposite trend to that of the transverse configuration (see Figure 6.9 (b)).

It is attractive for low frequencies and repulsive for high frequencies. For

intermediate values of Ω, the mean force between the spheres, FAA, is attrac-

tive when the spheres are at a small distance apart, but is repulsive for large

distances. This points out again the existence of an equilibrium distance.

However, this equilibrium (in contrast to that for the transverse configura-

tion) is unstable, as excursions from the equilibrium position induce forces

that push the spheres further from this position. The direction of these forces
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(a) Ω = 1 (b) Ω = 8

(c) Ω = 30 (d) Ω = 100

Figure 6.7: Steady streaming around two spheres in an axial configuration, when
L/D=2. The imposed flow is oscillating in the direction of the bold black arrow.
Colour represents azimuthal component of vorticity between −0.01 (blue) to 0.01
(red).

can be inferred from the pressure contours presented in Figures 6.2(b) and

6.3(b).

Figure 6.7 presents examples of the axial configuration for L/D = 2

for a series of increasing values of Ω. At Ω = 1, the eight inner vortices (or

four vortex rings) are very strong, comprising of four small ones that are in
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between the spheres and four large ones around them. As the frequency in-

creases, the size of these inner vortices starts to decrease. The outer vortices

start to increase in size correspondingly. This continues until the inner vor-

tices are confined close to the boundary of each sphere. The fluid is pushed

inwards in the direction of oscillation suggesting an attraction between the

spheres. The outer vortices keep growing, until at around Ω = 30, there

is a change in topology. Another set of vortices is quite noticeable around

the two spheres. There are now twelve vortices (or six vortex rings) close to

spheres in addition to four outer ones (two vortex rings) at Ω = 100. The

streamlines flowing in from the sides, inducing a flow outwards along the axis

joining the spheres, suggest that the spheres will repel.

Oblique configuration

The oblique configuration refers to spheres positioned at an angle between

0◦ < θ < 90◦. As an example, θ = 45◦ is considered and shown in Figure 6.8.

There is a similar trend for the case of spheres in an oblique configuration to

that of the lateral configuration. Four large inner vortices are accompanied

by another one in between the spheres at lower frequencies.

As the frequency is increased, another pair of vortices starts to ap-

pear perpendicular to the axis of oscillation at around Ω = 8. The shared

central vortex splits into two at Ω = 30. These two new vortices get no-

ticeable as Ω increases and become the inner vortices present in between the

spheres. All these vortices keep shrinking until they are all confined close

to the boundary of the spheres by the larger outer vortices at Ω = 100, in

addition to another shared vortex between the spheres. The mean forces,
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(a) Ω = 1 (b) Ω = 8

(c) Ω = 30 (d) Ω = 100

Figure 6.8: Steady streaming around two spheres in an oblique configuration, when
L/D=2. The imposed flow is oscillating in the direction of the bold black arrow.
Colour represents azimuthal component of vorticity between −0.01 (blue) to 0.01
(red).

FAT , are non-symmetric, also this is evident from the streamlines. This lack

of symmetry induces a transverse force, which in turn induces a moment on

the spheres about their central point, that will push the spheres to re-align

themselves in a lateral configuration. This point is discussed in the next
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section.

Stable equilibrium between the spheres

In the lateral configuration, the forces exerted on the spheres are zero at

a point of stable equilibrium for intermediate frequencies. The force be-

tween the spheres is repulsive at small distances and attractive at large dis-

tances, hence the stability. In an axial configuration, the force is repulsive at

large distances but attractive at small distances for intermediate frequencies.

Therefore, there is also an equilibrium position, though an unstable one. In

the oblique configuration, a transverse force is generated via the coupling

between the axial and lateral motion. Since the force is transverse, equal,

and opposite on each of the spheres, the spheres rotate about their shared

center and tend to realign themselves into the lateral configuration. Out of

the three configurations discussed, the lateral configuration is the only one

where the spheres find a stable equilibrium position. For the lateral config-

uration, the equilibrium distance is presented in Figure 6.5 for all Ω. For

Ω ≥ 20, the forces are attractive for all distances, and if the spheres were

free to move, they would eventually touch each other at L/D = 1.

The Stokes number Ω is described as frequency here. However, as

noted earlier, if frequency ω and viscosity of the fluid ν are kept constant,

Ω can also be seen as a parameter representing the size of the spheres. This

means lower Ω represents small spheres, and larger Ω, large sized spheres.

The only stable configuration is the lateral one, so this discussion is kept

only to particles in a lateral configuration. The larger spheres (Ω ≥ 10) are

attractive towards each other and smaller ones (Ω < 5) will be repulsive. This
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Figure 6.9: Forces, FTT , FAA, and FAT , exerted on spheres by steady streaming in
the (a) lateral configuration, (b) axial configuration, and (c) oblique configuration,
respectively, as a function of distance L/D in between them for different values of
Ω. The equilibrium distance occurs whenever a force curve crosses 0.0.
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Figure 6.10: Distance where net force experienced by the sphere(s) is zero i.e.
the equilibrium distance as a function of Ω, in a lateral configuration. The black
horizontal line shows where the two spheres touch, at L/D = 1. The solid line, —,
shows the location of the stable equilibrium for the intermediate values of Ω. If
the two-sphere flow could be found by simply superimposing the flows around two
individual spheres, this curve would coincide with the dashed line, - -, the distance
to the stagnation point in the single sphere case.

implies that in any situation with a non-uniform distribution of particles,

larger particles will be attracted to each other and eventually touch, whereas

small particles will repel. Such a non-uniform size distribution is the case for

milk fat globules, hence they will still be present in the fluid (milk). This

brings us to the same possibility discussed in section 5.2.1, for trends of

DNS data when Ω ≤ 25 and ε ≤ 0.75 in Figure 5.3, that Milk Fat Globules

(MFGs) of sizes around 4− 5 µm and less, will not get removed in the cream

separation process from milk.
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6.3.2 Discussion

Although streaming flow around two spheres could be predicted from flow

visualizations of a single sphere, as also pointed out in section 5.4, the flow

around two spheres is not a simple superposition of two single spheres placed

at a distance where net force experienced is zero. This statement is verified

by a comparison of rcross/D computed for flow around a single sphere, and

equilibrium distance L/D, for flows around two spheres, shown in Figure

6.10.

For steady streaming flow around a single sphere, the flow is zero at

a stagnation point. The distance from the center of the sphere to this point

is measured as rcross. If the flow for two spheres were a simple superposition,

placing a second sphere centered at this distance should result in there be-

ing zero force between the spheres. To show that just a simple addition of

another sphere’s flow is not enough to predict flows around two spheres, the

equilibrium distance for two spheres (where the net force on the spheres is

zero), L/D, was plotted. For a single sphere, rcross was picked from WNF

data for y-axis from Figure 5.3. It was scaled for a comparison with the

curve for equilibrium distance L/D in Figure 6.5 for two spheres in a lateral

configuration, shown together in Figure 6.10. At Ω = 10, there is an order

of magnitude difference between distance to the stagnation points (or the

equilibrium distance) for a single sphere and two spheres.

Also, the predictions from flows around a single sphere suggest that

another sphere placed at the stagnation point will continue to experience

either an attractive or a repulsive force irrespective of how they move in
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(a) L/D = 1.701 (b) L/D = 2.101

Figure 6.11: Attraction between two spheres changing to a repulsion for Ω = 5 in
a lateral configuration. Colour represents pressure −0.05 to 0.05. The imposed
flow is oscillating in the direction of the bold black arrow.

response to the force. Looking at forces FTT for Ω = 5, a point of equi-

librium occurred at about L/D = 1.9 in Figure 6.9(a), where the repulsive

force switched to being an attractive force. The flow changed its behaviour

from being pushed inwards to outwards. This is also evident from flow visu-

alizations at around that point, in Figure 6.11. Hence, it was necessary to

carry out simulations around two spheres to take all these variations of fluid

behaviour into account.

6.4 Summary

A new computational method based on a perturbation method, WNF, has

been applied, after being verified, for the study of interactive forces and

streaming flows around two spheres. It is much quicker and less expensive

than the DNS, especially for the case when flows around two spheres are
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considered. The need to perform simulations for two spheres in the first place

has also been considered and confined. In addition, forces can be calculated

and flows visualized for 0.1 ≤ Ω ≤ 100 and 0◦ ≤ θ ≤ 90◦ which is a much

larger range of parameters than studied previously in the literature. Regimes

where two equal sized spheres attract or repel each other in three different

configurations for different frequencies have been discussed.

It was concluded that for high frequencies the spheres tend to re-

align themselves in to the lateral configuration before attracting each other.

This also means that particles of larger sizes (Ω ≥ 20) will attract each other

and, in the milk-separation application, MFGs rise to form cream, whereas

the smaller ones (Ω < 5) will still remain suspended in milk. These results

verify the conclusions of experiments conducted by Leong et al. (2016).
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Chapter 7

Trajectories of Oscillating

Spheres

7.1 Introduction

In the previous chapter, it was concluded that there are streaming forces

present between two identical spheres that make them attract or repel. In

particular, it is the spheres in an oscillatory flow with high frequencies (Ω ≥

10) in the lateral configuration that are attractive. For the separation of

cream from milk, the Milk Fat Globules (MFGs) need to be close enough so

that interactive streaming forces can come into play (Manasseh et al., 2016).

It would be useful to understand the process of how these streaming forces

cause the spheres to move. Moreover, similar issues are expected to occur in

other ultrasonic separation applications e.g. Leong et al. (2015).

The objectives of work in this chapter are to find:

• initial conditions that lead a pair of spheres to eventually touch.
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• the time it takes for spheres to touch each other.

• a parameter space of the motion characteristics for the cases where a

stable equilibrium is achieved.

7.2 Method Employed for Calculating Tra-

jectories of Oscillating Spherical Particles

In this section, a numerical model is set up to trace paths traversed by two

identical spheres, using forces exerted on spheres by the steady streaming

flows measured with WNF in section 6.3.1. It is assumed that the timescale of

any motion induced by the streaming forces is much longer than the timescale

of the oscillatory flow. (This assumption is reviewed in section 7.3.) The

forces on two particles at any particular time are governed purely by the

the instantaneous spacing; the forces on particles in a particular position are

the same as forces for a simulation when particles are assumed fixed in that

position.

Also, the streaming speeds, i.e. the speeds in the mean flow field

u, were assumed to be faster than the speed of the particles, UParticle. This

assumption was necessary so that the spheres could be treated as quasi-

steady. This means the forces are dictated only by the relative position of

the two spheres, and not their relative velocity.
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7.2.1 Algorithm for integration of forces

The equation of motion of a sphere considering a long-time scale, is given by

Newton’s second law of motion

F = ma⇒ a = F/m, (7.1)

where F is given by equation (3.18). The drag and bouyancy forces are

negligible and thus not considered. Equation (7.1) was numerically integrated

twice to get position using the Adams-Bashforth explicit method of second

order i.e.

vn+1 = vn + ∆t
{3

2
a

∣∣∣∣
n

− 1

2
a

∣∣∣∣
n−1

}
, (7.2)

where v is the velocity of the sphere. Since v = ∂y
∂t

,

⇒ yn+1 = yn + ∆t
{3

2
v

∣∣∣∣
n

− 1

2
v

∣∣∣∣
n−1

}
, (7.3)

where y is the position of the sphere. The integral for y needs force, F, so

at each time step:

1. Distance between centers of the spheres, L, and the angle between the

oscillatory flow and the center of their axis, θ, is measured.

2. This distance, L, and angle, θ, is used to look up the force, F, from

a table of numerical data computed using WNF, and this force was

divided by the particle mass, m, to obtain an acceleration. This mass,

m, is explained in the following section 7.2.2.

3. Integration of these accelerations was carried out for new velocity, v,
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and position, y, of the sphere.

4. Repeat 1 to 3 until one of the stopping criteria was hit.

The algorithm stops, if:

• Distance L/D = 1 i.e. the spheres touch.

• The calculated distance between the spheres exceeds the maximum

value for which data are available for i.e. L/D = 20.

• The above two criteria were not met and the number of time steps

exceeds a predetermined set limit of 15000 timesteps.

The algorithm stated above was used as a subroutine to calculate trajectories

of the spherical particles, explained in the following section.

7.2.2 Tracing trajectories of spherical particles using

streaming forces

Using WNF, the streaming forces experienced by each sphere that will either

bring two such spheres together, or force them apart, are computed. Since

the spheres are identical, the forces computed on either sphere are equal

but opposite in direction. The interactive forces are computed on sphere (2)

and translated to sphere (1), as labelled in Figure 3.3. Note that under a

non-dimensional scheme given in Appendix, equation (4), a dimensionless

mass m = 0.5 was considered in equation (7.1), for the numerical model,

corresponding to a density ratio relative to the surrounding fluid, ρ∗ ≈ 0.9

which is appropriate for MFGs. Note that m = m∗

ρ∗
.
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Considering oscillation in the x-direction, the positions of spheres

are calculated in the xz-plane. The angle between the spheres and the axis

of oscillation, measured clockwise, is θ. The initial position is computed as

L0/2 sin θ0 in the x-direction and L0/2 cos θ0 in the z-direction, where θ0 and

L0 (center to center distance between two spheres) are the inputs, and θ is

measured and interpolated around 360◦. For a given value of Ω, the result is

sensitive to the initial conditions when L0 is close to the equilibrium distance

for that Ω.

For integration of velocity, v, and position, y, using forces, F, the

two-step Adams-Bashforth scheme was employed with the Euler method used

for starter values, as explained in section 7.2.1. As noted in section 3.3.2),

the formula to compute forces using WNF, at any given angle, is given by

F(1) = −F(2) = ρD2U2{(cos2 θ FAA + sin2 θ FTT ) ez + cos θ sin θ FAT ex}.

(7.4)

The forces integrated to obtain trajectories of particles, following the algo-

rithm is section 7.2.1, were computed using equation (3.18). The resulting

trajectories of spheres are discussed in the section 7.4.

7.3 Validity of the Numerical Model Employed

for Calculating Trajectories

When calculating the trajectories of the particles, as noted in section 7.2,

the assumption that the flow is quasi-steady is valid as long as the speed of

the particles, UParticle, is significantly slower than typical values of streaming
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(a) (b) (c)

Figure 7.1: Trajectories when a small velocity in the axial direction is added, for
Ω = 4. (a) Undisturbed case, where UStream ' O(10−3), (b) velocity of 10−6

added, and (c) velocity of 10−5 added.

velocity, u. For convenience, the maximum of the streaming velocity is de-

fined as UStream. In order to estimate how slow UParticle should be compared

to UStream, a small constant was added to UStream for a test case of Ω = 4,

for which L/D = 2.5. As demonstrated in Figure 7.1, the recirculating flow

pattern is obliterated when a constant of O(10−5) is added to UStream i.e.

O(UParticle) is two orders of magnitude smaller than O(UStream).

The magnitude of UStream and UParticle is compared in Figure 7.2

where the assumption that the flow is quasi-steady is valid for time t = 0.015

i.e. O(UParticle) < O(UStream). Here, dimensionless time t = number of time

steps ×dt with dt = 10−4. Recall from equation (3.6) that the time scale for

time t is 1/ω. The results obtained using the numerical model presented in

section 7.2, thus, are valid only when run for very short times t and/or for

L0 that matches equilibrium distances L/D for particular Ω. These results

are given in the next section, i.e. section 7.4, for a much longer range of t

with number of time steps 104 times that used for Figure 7.2.
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For the results obtained in section 7.4 to be valid, it is assumed that

the flow fields calculated for motionless particles and the resulting forces are

unaffected by UParticle. The calculation of trajectories that is valid over

a wider range of parameters, Ω and t, would require a completely differ-

ent ‘fully coupled’ problem to be solved, in which the particles move with

a speed, UParticle, that is significant with respect to the streaming veloc-

ity magnitudes, UStream. This would significantly distort the streaming flow

fields, and presumably, change the forces causing attraction or repulsion of

the particles significantly, in turn altering UParticle. This fully coupled calcu-

0 20 40 60 80 100

Ω

0.00

0.01

0.02

0.03

0.04

0.05

0.06

UStream

UParticle

Figure 7.2: Comparison of the streaming and particle velocities, UStream and
UParticle, respectively, when L0 = 2.3D, and θ0 = π/2 rad. UParticle is measured
for a time t = 0.015.
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lation where the particles are coupled with the fluid and are allowed to move

as the fluid oscillates under the influence of the body force is beyond the

scope of this thesis, but an illustration of the richness of the behaviour that

might be expected can be found in results presented in section 7.4. In these

results, although the constraint of validity, that UParticle is significantly less

than UStream, is relaxed, it still demonstrates the behaviour of particles. The

timescale involved here is longer than that of the imposed oscillatory flow

which is happening at a much faster rate. The work in section 7.4 provides

a guide for future work where fully-coupled calculations are undertaken.

7.4 Trajectories of Two Equisized Oscillating

Spheres

As found in section 6.3.1, the lateral configuration is the only configuration

where the spheres find a stable equilibrium position, out of the three configu-

rations discussed. Trajectories of spheres positioned in a lateral configuration

are traced and shown in Figure 7.3(a) using the model explained in section

7.2, and the assumption that was discussed in section 7.3. The initial spacing

used was L0 = 1.836. It can be observed that for small frequencies, Ω < 5,

the spheres repelled, and touched each other for high frequencies Ω ≥ 20. For

intermediate frequencies, 5 ≤ Ω ≤ 10, the spheres tend to oscillate around

an equilibrium distance close to each other. This behaviour of spheres posi-

tioned in a lateral configuration has also been predicted in section 6.3.1. For

most parameters, small variations in the initial conditions did not cause large
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Figure 7.3: (a) Trajectories of spheres over dimensionless time, t, for frequencies
0.10 ≤ Ω ≤ 100, when L0 = 1.836 and θ0 = π/2 rad i.e. lateral configuration. The
black horizontal dashed line shows L/D = 1. (b) Time, tMIN , taken to reach the
absolute minimum LMIN for L0 = 1.836 and θ0 = π/2 rad.
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variations, except for cases when L0 is close to the equilibrium distance for

particular Ω. In Figure 7.3(a), L0 = 1.836 corresponded to the equilibrium

distance for Ω ≈ 5, predicted according to Figure 6.5, hence the oscillatory

behaviour for 5 ≤ Ω ≤ 9.

Since the trajectories of these spheres could be traced, the time it

took for spheres to travel along those trajectories could also be quantified.

In Figure 7.3(b), the time it took for spheres to get to its absolute mini-

mum, or touch at L/D = 1, is given as tMIN . Overall tMIN decreases as Ω

increases. The spheres simply repelled for Ω < 5 and never touched. For

intermediate frequencies 5 ≤ Ω ≤ 9, the spheres took a longer time to get

to their respective minimum value of LMIN close to 1. The spheres touched

each other for Ω ≥ 10 in around 4 − 7tMIN , where tMIN is the time taken

to reach the absolute minimum LMIN for the given initial conditions. The

validity of these results was already discussed in section 7.3.

7.4.1 Estimating particle behaviour around conditions

leading to equilibrium

The role of initial conditions, L0 and θ0, is investigated for the intermediate

frequencies 5 ≤ Ω ≤ 9, where a small change can shift particle behaviour

significantly. Also, this is the range of Ω relevant to the size of MFGs (1−12

microns), being exposed to ultrasound of 1 − 2 MHz frequencies.

The case Ω = 5 is chosen, owing to information drawn from the plot

for forces for lateral configuration in Figure 6.9. A contour plot is drawn for

a range of initial conditions for Ω = 5 in Figure 7.4, for 1.2 ≤ θ0 ≤ π/2 rad
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Figure 7.4: Contour plot for LMIN showing convergence and divergence trends for
Ω = 5, for a range of L0 and θ0 close to the point of equilibrium L0 = 1.836 and
θ0 = π/2 rad, represented by black circle.

and 1 ≤ L0 ≤ 4 showing the minimum distance between the spheres achieved

at any point in time, LMIN . For this range of initial conditions close to the

point of equilibrium L0 = 1.836 and θ0 = π/2 rad, Figure 7.4 shows that the

spheres tend to oscillate around an equilibrium. The spheres never actually

touch, according to the contour plot, with the minimum distance LMIN never

passing below 1. The amplitude of oscillation increases around L0 when the

spheres start off far from each other. However, this oscillation is about a

point L0 much further than L/D = 1, so the large amplitude of oscillations

do not cause the spheres to touch.

To investigate this behaviour further, data was picked along the
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Figure 7.5: Force, FTT , for Ω = 5. The first equilibrium is at L/D = 1.926 and,
the second, at L/D = 3.2 for the smoothed force (reducing noise). (Inset) Data
extracted out of Figure 7.4, along θ0 = π/2 rad.

vertical line θ0 = π/2 rad, and plotted for LMIN in the inset of Figure 7.5.

The curve LMIN was expected to converge to L/D = 1, but instead it heads

up higher, apparently, to another equilibrium, as L0 is away from the point

of equilibrium. There appear to be multiple points of equilibria, as seen in

Figure 7.5, that could also be noticed in the contour plot Figure 7.4 as well.

The spheres seem to overshoot when starting farther off from equilibrium

distance L0, towards the second equilibrium, which is further away.

In Figure 7.6, a contour plot is shown for Ω = 10 starting off at

equilibrium distance L0 = 0.630. For Ω = 10, the equilibrium distance is
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Figure 7.6: Contour plot for LMIN trends for Ω = 10, for a range of L0 and θ0
showing mostly convergent trend close to the corresponding point of equilibrium
L0 = 0.630 and θ0 = π/2 rad.

quite small so spheres are very close to touching each other. For a variation in

the initial conditions L0 and θ0 close to the equilibrium distance, the spheres

still touch each other in most part of the domain checked i.e. 1 ≤ L0 ≤ 2.8

and 0.9 ≤ θ0 ≤ π/2 rad.

It should be recalled that most of these results are in the regime

where UParticle is not very small compared to UStream, and thus the present

results cannot be considered valid. Nonetheless, when a fully coupled calcu-

lation is able to be made, complex behaviour such as multiple equilibria may

well be found.
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7.4.2 Trajectories of particles in milk separation

In whole milk, there is 4% milk fat present approximately. If α, the concen-

tration of milk fat in the milk, is the ratio of volume of the spherical MFG

of radius R to the volume of the cube containing it with length l, then

4

3
π
(R
l

)3
= α = 0.04⇒ R

l
≈ 0.21. (7.5)

Thus, the initial distance between centers of the milk fat particles is l/R =

1/0.21 = 4.7, or 2.3D, where D is the particle diameter. Therefore, the

MFGs are certainly close enough to be susceptible to mutual forces from

mean streaming. Upon application of ultrasound, the streaming effects will

be strong enough for particle interaction.

The preceding analysis predicts that the streaming forces on the

MFGs that are large enough to have an Ω ≥ 10 will eventually cause them

to touch, as they are rotated into a lateral configuration and then mutually

attract. However, for smaller particles with lower Ω, it is predicted that

the particles will repel, or possibly oscillate around an equilibrium position.

These interim findings would need to be revised once a fully coupled calcu-

lation is undertaken.

It should be noted however, that there may be other processes which

cause the particles to touch when then are brought close together by the

streaming. As the particles are drifting closer to each other, they are also

vibrating to and fro and very small particles will be susceptible to Brownian

motion. Thus, real particles could over shoot from the point of equilibrium

predicted by the model, and could actually touch.
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Figure 7.7: Trajectories of spheres over dimensionless time, t, for frequencies 0.10 ≤
Ω ≤ 100, when L0 = 2.3 and θ0 = π/2 rad i.e. lateral configuration. The black
horizontal dashed line shows L/D = 1. L0 = 2.3 is equilibrium distance for Ω ≈ 4.

7.5 Summary

In this chapter, trajectories followed by two equal sized spheres were traced

over a long time scale, when they were up to 20D apart, allowing them

to move and sit at any angle relative to the applied oscillation. For the

stable lateral configuration, attractive, repulsive and oscillatory behaviour

of particles was found depending on the parameter Ω. Assuming that the

flow fields calculated for motionless particles and the resulting forces are

unaffected by the speed of the particle, UParticle, spheres of size Ω ≥ 10
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touch each other in as little as 5tMIN , where tMIN is the time taken to reach

the absolute minimum LMIN for the given initial conditions. The effects of

initial conditions for intermediate frequencies 5 ≤ Ω ≤ 10, that exhibit an

oscillatory behaviour, have been investigated.

In the case of milk, MFGs are already as close as 2.3D apart, as

calculated in section 7.4.2, it is deduced that the larger sized MFGs will

align themselves in a lateral configuration and attract each other while the

smaller sized spheres stay suspended in milk.

Since the condition of validity is relaxed, as discussed in section

7.3, the time it took for spheres to actually touch each other can not be

considered directly applicable. According to this analysis, the particles take

only 0.1µs to touch when a frequency of 1 MHz is applied. This time is

order of a second shorter than the experiments performed by Leong et al.

(2016). The calculation of trajectories that is valid over a wider range of

parameters would require a completely different ‘fully coupled’ problem to

be solved, where the particles are coupled with the fluid and are allowed to

move when the fluid oscillates under the influence of the body force. This

fully coupled problem is beyond the scope of this thesis, however, the results

presented in section 7.4 demonstrate the interesting behaviour of particles

owing to steady streaming.
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Conclusion

The research presented in this thesis is aimed at finding the role of steady

streaming around spherical particles. It is found that steady streaming plays

a positive part in making them come close to each other and eventually touch.

This objective was achieved by applying numerical methods. Two numerical

methods were employed to simulate steady streaming around spheres: a Di-

rect Numerical Simulation (DNS), based on a spectral element method, and

a Weakly Non-linear Formulation (WNF), based on a finite element method.

Both DNS and WNF offer advantages over the other depending on the situ-

ation being simulated.

First, a single sphere problem is modelled and verified qualitatively

and quantitatively against the literature using DNS, in chapter 4. Then,

in chapter 5, the results using WNF and DNS are compared, qualitatively

and quantitatively. For steady streaming around two spheres, a new problem

is defined in chapter 6 along with its set of parameters. WNF, based on a

perturbation method, is used to obtain the results in three different configu-
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rations, depending on the alignment of the spheres with respect to the axis

of oscillation. Flow visualizations as well as the forces exerted on the spheres

by steady streaming measured using the DNS and WNF are presented in

chapters 5 and 6. Based on the forces thus calculated using WNF of the

two sphere problem, trajectories followed by the spheres are computed in

chapter 7, mainly to find out initial conditions that would lead the spheres

to touch, and the time it takes.

For steady streaming around a single sphere in an oscillatory flow,

results are produced for a range of parameters much wider than those studied

previously. For high amplitudes 1 ≤ ε ≤ 5, DNS data shows presence of a

different flow regime, as shown in Figure 5.7, that has not been discussed in

the literature, to the best of our knowledge. DNS is also capable of capturing

the non-symmetric nature of the sizes of the inner vortices, seen in Figure

5.8. However, DNS is limited to steady flows around a single sphere unless

fully three-dimensional simulations are conducted, which is very expensive

computationally.

The computational method WNF was verified with DNS for a single

sphere to study forces and streaming flows around one and two spheres in

an oscillating flow. In contrast to the DNS, the task of computing steady

streaming flows around single and two spheres can be achieved quickly and

economically using WNF. It has the added flexibility of imposing oscillations

at any given angle to the axis on which the spheres are placed.

Using WNF, steady streaming has been studied around two spheres

of equal size, placed at a distance L apart, for 0◦ ≤ θ ≤ 90◦. Regimes,

where two spheres can attract or repel each other, were discussed for three
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particular configurations for 0.1 ≤ Ω ≤ 100, where the parameter Ω is defined

as the Stokes number. This work is already published in the Journal of

Fluid Mechanics (Fabre et al., 2017). The Stokes number Ω is described as

frequency here. However, Ω can also be seen as a parameter representing

the size of the spheres. This means lower Ω represents small spheres, and

larger Ω, large sized spheres. It was concluded that for high frequencies

the spheres tend to re-align themselves in to the only stable configuration,

i.e. lateral configuration, before attracting each other. This implies that

in any situation with a non-uniform distribution of particles, that particles

of larger sizes (Ω ≥ 20) will attract each other and, in the milk-separation

application discussed in section 1.3, MFGs rise to form cream, whereas the

smaller ones (Ω < 5) will still remain suspended in milk. These results verify

the conclusions of experiments conducted by Leong et al. (2016). Further

applications of this work are mentioned in sections 1.3 and 2.4.

Following the steady streaming flows for a single sphere using WNF,

it could be deduced where another sphere should be placed to experience

repulsive or attractive force. This raised a question whether if performing a

simulation for flows around two spheres is necessary. It was found that the

flow around two spheres is not a simple superposition of two single spheres

placed at a distance where net force experienced is zero i.e. a stagnation

point.

The relative motion of two particles owing to the mutual induction of

steady streaming has been calculated in a parameter range that has not been

studied before. For the results presented, it was assumed that the flow fields

are calculated for motionless particles and the resulting forces are unaffected
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by the speed of the particle. Under this assumption, it was found that spheres

of size (or frequency) Ω ≥ 10 touch each other, in a lateral configuration.

All these results are ultimately applicable to the ultrasonic separation of

Milk Fat Globules (MFGs), and other ultrasonic separation applications, and

will be able to predict under what conditions these applications will work.

Moreover, this work can be easily extended for spheres of different radii, and

for ellipsoids and cylinders. With the assumption of validity for the numerical

model developed to calculate the trajectories of particles being relaxed, the

time it took for spheres to actually touch each other can not be strictly

quantified. However, these results capture and demonstrate interesting inter-

particle behaviour owing to steady streaming.

The numerical model involved for all the results presented so far in-

volved many assumptions needed to make calculations tractable. It is found

that a more detailed system needs to be simulated in the future, incorpo-

rating the fluid-particle coupling in order to take into account the complex

phenomena happening between particles. In addition, there are phenomena

that are known to further contribute to the role of steady streaming be-

tween particles. One such simplification is neglecting the multiple-scattering

effects that are known to be significant when particles are placed at a dis-

tance comparable to their size (Crum, 1971). The rotation or spinning of

spheres is also known to generate and contribute to steady streaming that

has not been taken into account (Bestman, 1983). These inclusions would

further strengthen the application of this work, which has demonstrated the

influence of steady streaming in bringing particles to attract each other.
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Appendix

Estimate of motion of the sphere in an oscillatory field

on the oscillation time scale

In section 7.2.2, displacement of the particle, X, is given as a function of ε,

−X =
3CDε

2

2m
,

where X is the amplitude of the response of the sphere, m is the dimensionless

mass, CD is the drag force, and ε = A/D. It is assumed that there is no

coupling between the fluid and the sphere.

It is concluded that the amplitude response of the sphere is propor-

tional to ε2. For WNF, ε → 0, thus, X → 0, so this analysis is valid for

WNF. For MFGs, mass ratio 0.75 ≤ m ≤ 1.00 gives an amplitude response

of 0.3D parallel to the imposed oscillation.

Proof: The force imposed is assumed to be fD = FDsin(ωt) on the sphere

induces an oscillatory motion

x = Xsin(ωt+ φ). (1)
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Figure 1: Vibration of particles, X, with mass ratio, m, when ε = 0.05.

By Newton’s second law of motion,

a =
fD
mb

(2)

where mb is the mass of the body. Using (1) for (2) and using fD, we have

−Xω2sin(ωt+ φ) =
1

mb

FDsin(ωt)

Comparing the coefficients,

⇒ φ = 0, and −Xω2 =
1

mb

FD (3)
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Non-dimensionalization: We define

Ω =
ωR2

ν
, X∗ =

X

R
, m =

mb

mf

, and CD =
FD

0.5ρU2
maxAR

(4)

where mb and mf are the mass of the body, and the fluid moved by it,

respectively, AR is the area of the sphere involved, and Umax = Aω. From

equations (4), we have

ω =
Ων

R2
, FD = 0.5CDρU

2
maxAR, and mb = mmf (5)

where mf = 4/3ρπR3. Substituting equation (5) in equation (3), we get

(X∗R)(
Ω2ν2

R4
) =

CD0.5ρA2ω2πR2

4/3mρπR3

⇒ −X =
0.5CDA

2

4/3mR2

Since ε = A
D

, so

⇒ −X =
3CDε

2

2m.
(6)
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