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Abstract—Modeling traffic generated by Internet-based 

multiplayer computer games has attracted a great deal of 
attention in the past few years. In part this has been driven by a 
need to simulate correctly the network impact of highly 
interactive online game genres such as the first person shooter 
(FPS). Packet size distributions and autocovariance models are 
important elements in the creation of realistic traffic generators 
for network simulators. In this paper we present simple 
techniques for creating representative models for N-player FPS 
games based on empirically measured traffic of 2- and 3-player 
games. The models capture the packet size distribution as well as 
the time series behaviour of game traffic. We illustrate the likely 
generality of our approach using data from seven FPS games 
that have been popular over the past nine years: Half-Life, Half-
Life Counterstrike, Half-Life 2, Half-Life 2 Counterstrike, 
Quake III Arena, Quake 4 and Wolfenstein Enemy Territory. 

I. INTRODUCTION 
Modeling traffic generated by Internet-based multiplayer 

computer games has attracted a great deal of attention in the 
past few years [1-14]. Highly interactive genres such as the 
First Person Shooter (FPS) are of particular interest to 
network engineers. Like voice over IP (VoIP) and other 
interactive conference-style applications, FPS games are 
generally intolerant of packet loss, jitter and high latency. FPS 
games commonly use User Datagram Protocol (UDP) over IP 
for transport and do not adjust packet rates in response to 
network congestion. Finally, FPS games are typically based 
on a client-server model for network traffic, with thousands or 
tens of thousands of FPS servers active on the Internet at any 
given time [15]. This has motivated research community 
interest in predicting and simulating the traffic load imposed 
on network links by multiplayer FPS games. 

Two questions are of particular interest - how traffic 
generated by FPS games increases as the number of players 
increases, and how this traffic affects, and is affected by, other 
traffic sharing the network. Since it is usually impractical to 
build and measure a full-size network, the second question is 
typically answered through simulation using statistical models 
created from the answers to the first question. Good traffic 
models are needed to ensure the simulations are useful [16]. 
This paper improves on the time series behaviours and packet 
size distributions predicted by existing game traffic models.  

Understanding how game traffic varies as the number of 
players increases allows us to predict what happens to delay 
and delay variation when the traffic is multiplexed with other 
types of traffic and what link and server capacities are 
necessary to meet a given grade of service. Web and other 
traffic has been analyzed and modelled and the models used to 
predict the consequences for the Internet [17]. It is now 
desirable to analyze game traffic and produce models that can 
be used in the same way. 

Traffic in the client to server direction usually consists of 
small IP packets whose size distribution is independent of the 
number of players on a given server. However, traffic in the 
server to client direction usually shows distinct variation as 
the number of players increases [6]. Published work to date 
has typically involved empirical studies of FPS games in 
small test beds with up to 8 to 10 players. Traffic models have 
been created that match the statistical packet size distributions 
for each N-player game, for N = 2, 3, and so on. Yet some 
public FPS game servers may be configured to allow 50+ 
players [15]. Controlled collection of empirical data for games 
with such large numbers of players is challenging. There is a 
need for techniques that allow extrapolation of statistical 
characteristics from games with small numbers of players to 
games with much larger numbers of players. 

Since the initial work by Borella [1], FPS game traffic has 
usually been modelled by examining empirical packet traces 
and fitting an appropriate standard distribution to the 
observations. However, a major shortcoming of this approach 
is that the correlation between successive packet lengths is not 
retained as the packet payload lengths are simply drawn from 
the appropriate distribution. 

There has been some limited work that attempts to model 
the correlation between packet lengths in FPS games. Branch 
et al. [18] used a Discrete Markov Chain to model the server 
to client acket size distribution of a two player game. The 
resulting Markov model can then be used to predict the 
statistics of an N-player game. The resulting models do 
predict the distribution of packet payload size for differing 
numbers of players and capture some of the autocorrelated 
behaviour. However, the models only produce packets whose 
sizes are integer multiples of the median packet length of a 
two player game. In practice the packet length distribution is 
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not limited in this way. Also, the autocorrelated behaviour is 
captured only approximately. Further work by Cricenti et al 
showed that the ARMA(1,1) model captured the time-series 
behaviour of FPS game traffic well [19]. We use the 
ARMA(1,1) model in this work.  

In this paper we propose and illustrate a technique for 
extrapolating N-player traffic statistics from empirically 
measured traffic of 2- and 3-player FPS games. The 
extrapolated traffic sequences (based on ARMA(1,1) models) 
both capture the time series behaviour of the game traffic as 
well as the packet length distribution. This allows small-scale 
empirical measurements (for example, from public game 
traffic trace archives such as Swinburne University of 
Technology’s SONG database [14] ) to be applied to larger 
scale simulations of FPS traffic acting on an IP network. We 
illustrate the potential generality of our approach using data 
from seven FPS games released between 1998 and 2006: 
Half-Life, Half-Life Counterstrike, Quake III Arena, Quake 4, 
Wolfenstein Enemy Territory, Half-Life 2 and Half-Life 2 
Counterstrike. 

The paper is structured as follows. Section II discusses the 
nature of FPS game traffic and explains why server to client 
packet lengths are of most interest. Section III introduces Box-
Jenkins time series analysis and the ARMA(1,1) model. 
Section IV shows how prediction models can be constructed 
based on ARMA(1,1) models for large numbers of players 
when data for games with only small numbers of players is 
available. Section V presents results that show there is good 
agreement between packet lengths generated synthetically 
using this technique and packet lengths measured empirically 
from game trials. Section VI is our conclusion 

II. FIRST PERSON SHOOTER GAMES 
Multiplayer online games have an underlying requirement 

that game-state information is shared amongst all players in 
near real-time. Each game client acts as an interface between 
the local human player and the virtual game-world within 
which the player interacts with other players. Most FPS games 
use a client-server model (including the seven examples 
presented in this paper). Every client’s actions are sent in 
short messages to the server, and every client is regularly 
updated with the actions taken by other players and their 
consequences. The server implements the game-world’s state 
machine, regulating client actions in order to maintain the 
game’s internal rules and minimize opportunities for cheating. 

A. Game State Updates 
A typical FPS game involves an ISP or game enthusiast 

hosting a game server on the Internet, and players joining the 
game using client software running on a home PC or IP-
enabled game console. (Games can also be run on a private, 
local IP network – commonly referred to as ‘LAN parties’.) 
The game client updates and renders the game’s virtual world 
on the client’s screen based on messages received regularly 
from the game server. User inputs to the game client (actions 
such as walking, exploring or shooting weapons) are passed to 
the game server to be verified and the consequent changes to 

game state (health points, explosions, etc) propagated to other 
players. 

Game-state updates must occur in a timely manner, with 
minimal bias towards any particular player. In FPS games, 
timeliness is achieved by sending a unicast IP packet to each 
client at fixed intervals, typically in the range of 30 to 60ms. 
For example, the default update interval is 60ms for Half Life 
Deathmatch, 50ms for Quake III Arena and 33ms for Half-
Life 2 Deathmatch. To minimize bias, update packets to 
different clients are sent in back-to-back bursts [11], [12]. 
Each client receives an update packet every interval regardless 
of how much in-game activity is occurring. 

Clients send their own updates to the game server at less 
precisely defined intervals, often influenced by the client’s 
processor speed, graphics card settings and player activity. 
Typical intervals vary from 10ms to 40ms [11], [12]. 

B. First Person Shooter Game Traffic 
To maximize playability over a wide range of network 

conditions and consumer access technologies modern FPS 
games actively compress the data sent over the network. 
Simple compression involves the use of smallest possible bit-
fields to carry variable data. More complex compression 
involves the server only sending information to a client about 
regions of the virtual world currently visible to the client. 
Since every client has a different perspective on the virtual 
world the server effectively customizes every client update 
packet for the client to which it is sent.  

Clients generate events describing a single player’s activity. 
A typical human can trigger only a limited number of events 
in any given 10ms to 40ms window. Consequently packets 
from client to server are typically much smaller than the 
packets from server to client, and exhibit very limited 
variation in size. For example, client to server IP payload 
lengths range between 25 and 45 bytes for Quake III Arena 
during active game play, with 90% of all packets between 28 
and 38 bytes long. For Half-Life 2 Deathmatch, packet lengths 
vary between 36 and 99 with 90% of all packets being 
between 57 and 75 bytes long [1, 6]. 

On the other hand, packets in the server to client direction 
exhibit substantial variations in length as in-game activity 
surrounding a given client varies with time. For example, 
during active play of Quake III Arena for a 9-player game, 
packets from server to client range between 32 and 960 bytes 
with 90% being between 98 and 460 bytes. For Half-Life 2 
Deathmatch packet lengths during active play are between 16 
and 1400 bytes with 90% between 95 and 501 bytes [1, 6]. 

The in-game activity conveyed in a single update packet 
includes a component containing information that is 
proportional to the number of other players visible to a client 
at that point in time. The actual visibility of other players, and 
what they are doing at the time, itself depends on the number 
of players and the virtual world’s layout (the ‘map’). For 
example, maps with many walls and corridors will result in 
less visibility between players (and less information per 
update packet on average) than maps with wide-open areas. 
Likewise, a map containing many players will experience 
many more player-player interactions (per unit time) than a 
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map with few players scattered around the virtual game world 
[15]. 

It is sometimes suggested that instead of using Stochastic 
methods, why not examine the source code, in the hope that it 
will provide insight into the nature of game traffic generated 
by the server? There are two responses to this. First, source 
code is usually not available for newly released games 
(limiting our ability to model game traffic via code analysis 
while the games are still popular). Second, even when 
available, source code provides very little information as to 
the game traffic generated. Examination of the Quake III 
Arena source code shows that the traffic generated is highly 
compressed and that the server sends only information about 
objects in the receiving player’s field of view. However, in 
attempting to determine the nature of the traffic generated by 
the server, all that a close examination of the code reveals is 
that the server output is driven by its input; that is the 
behaviour of the players. Consequently, since an individual 
player’s behaviour has a great deal of unpredictability in it, 
understanding the server code tells us little about the traffic 
generated by the server and Stochastic methods are more 
appropriate for understanding server traffic. 

C. Phases of Game-play and Game Traffic 
In most FPS games there are three phases of interaction 

between client and server that impact on network traffic. 
• A client connects to the server, and receives data from the 

server to update the client’s local virtual world information 
(map definitions, avatar ‘skins’, etc). 

• The client is connected to the server and the game is in 
progress (players run around the virtual world, shooting or 
otherwise interacting with each other). 

• The client is connected to the server, and the game has 
been paused as the server changes maps or restarts a 
previous map (after a player wins the previous ‘round’). 

Tight control over network jitter and packet loss is only 
essential during active game-play. During periods of player 
inactivity (initial client connection and server changing maps) 
the network can exhibit fluctuating latency, jitter and packet 
loss without affecting the player’s game experience.  

III. ARMA(1,1) MODEL OF FPS GAME TRAFFIC 
In [19] Cricenti et al showed that FPS server to client traffic 

is well modelled by ARMA(1,1) models. We briefly review 
ARMA models before demonstrating how models obtained 
for 2- and 3-player games can be used to predict the traffic 
behaviour of games with larger numbers of players. 

The zero mean ARMA(1,1) model is: 
 

tttt ZZXX ++= −−   1111 θφ   (1) 
 
The residuals Zt in (1) are independent identically-

distributed random variables with zero mean. 
The autocovariance function (ACF), of a random process 

describes the similarity of the process with itself at different 
points in time (lag). Thus the ACF can be considered as a 

measure of the “memory” of the process. Generally speaking 
if the ACF dies off quickly then the process is stationary. 

Autocovariance functions are just one of the useful tools in 
identifying appropriate ARMA models. Other tools are partial 
autocorrelation functions and measures such as the Akaike 
Information Criterion [20]. Fig. 1 shows the normalised AIC 
and a partial ACF for Quake III Arena. The AIC suggests that 
an AR(1) model might be an acceptable time-series model for 
this traffic. An AR(1) process is a special case of the 
ARMA(1,1) process with θ = 0. However the Partial 
Autocorrelations do not go to zero sufficiently quickly to 
warrant a simple AR(1) model. Consequently it may be that 
an ARMA model is more appropriate. Given that the AIC 
shows there is little to choose between an ARMA(1,1) and 
higher order models, we chose to model the traffic with an 
ARMA(1,1) model. It is worth noting that this results holds 
for all the games we analysed. For a fuller treatment of this 
topic see [19].  

Q3 AIC for different ARMA models
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Fig.  1 AIC Criterion abd Partial ACF for Quake III Arena 

IV. PREDICTION MODELS BASED ON ARMA(1,1) 
We now show how ARMA(1,1) models for 2- and 3-player 

games can be used to predict ARMA(1,1) models for N-player 
games, where N ≥.4. 

We make a number of assumptions in our analysis:  
• The nature of game play for individual players does not 

change significantly regardless of the number of players. 
Each player spends similar amounts of time involved in 
exploring the map, collecting useful items and engaging in 
battles, regardless of the number of players.  

• Players have similar behaviour. They may not be of 
similar ability but will engage in similar activities in much 
the same way as each other.  

Essentially these assumptions propose that the random 
variable describing the time series behaviour of an N-player 
game can be constructed through adding together the random 
variables describing the time series behaviour of smaller 
player games. Because we assume that individual game play 
does not change as the number of players increases and that 
the game players have similar behaviour, we propose that, for 
example, the random variable describing the time series 
behaviour of a 5-player game can be constructed from adding 
the two random variables that describe a 2-player game and a 
3-player game. Of course these are simplifying assumptions 
that only approximate the true nature of FPS games. 

738

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on January 4, 2010 at 21:03 from IEEE Xplore.  Restrictions apply. 



Nevertheless, by making them we can develop a simple 
technique for predicting the time series behaviour of games 
with larger number of players. We now formalize this analysis.  

A 2-player game (zero mean) is described by the 
ARMA(1,1) sequence: 

 
t2,1,21,2,2 Z  ++= −− ttt ZXX θφ  (2) 

 
Consider a 2-player game sequence generated by the above 
model 

 
 ,2

)1(
1,2

)1(
1,2

)1(
,2

)1(
tttt ZZXX ++= −− θφ   (3) 

 
and another 2-player game sequence  

 
tttt ZZXX ,2

)2(
1,2

)2(
1,2

)2(
,2

)2( ++= −− θφ  (4) 
 

One of our assumptions is that player behaviour is similar. 
Consequently, we would expect two different games to be 
described by the same parameters φ and θ.  
Based on our assumptions we can predict that a typical four 
player game can be described by 
 

tttttt

ttt

ZZZZXX

XXX

,2
)2(

,2
)1(

1,2
)1(

1,2
)1(

1,2
)2(

1,2
)1(

,2
)2(

,2
)1(

,4

)()( +++++=

+=

−−−− θϕ
 (5) 

We note that this function has the form: 
 

tttt ZZXX ,41,41,4,4 ++= −− θϕ   (6) 
 

That is, it is an ARMA(1,1) model with the same values of φ 
and θ as the 2-player game. In other words, we predict that φ 
and θ should be constant for a particular game with an even 
number of players, regardless of the number of players. We 
can do a similar analysis for games with an odd numbers of 
players. In Section V we show that these parameters are 
largely unchanged as the number of players increases. 

If we denote the probability mass function of Z2 by fZ2 and 
Z4 by fZ4 then our modelling predicts that fZ4 can be obtained 
from a convolution of fZ2 and itself. That is: 

 
224 ZZZ fff ∗=  (7) 

 
In a similar way we can obtain ARMA(1,1) models based 

on 2- and 3- player games for N-player games where N is an 
odd number. For the 5-player game, we can predict that it can 
be described by: 

 
ttt XXX ,3

)1(
,2

)1(
,5 +=  (8) 

 
In the next section we evaluate the effectiveness of this 

approach in predicting the PMF and autocovariance functions 
for games with N ≥ 4. 

V. RESULTS 
The key result we present in this section is the application 

of the previous analysis to predict the PMF and ACF of server 
to client packet length for the seven FPS games we are 
analysing. For reasons of space we only show plots for a 
selection of games, but similar analysis has been carried out 
for all seven of the games with number of players ranging 
from 4 to 9. The empirical results were obtained from game 
sessions of approximately 20 minutes duration each, 
generating approximately 20,000 samples for each player. 

A. Plots of Probability Mass Functions and Autocovariance 
Functions 

Plotted on the graphs below are the predicted PMFs and 
ACFs, and their corresponding empirical values obtained 
during game play trials. In all cases the agreement between 
the predicted and empirical results is satisfactory.  

We obtained the plots with the following steps: 
• Capture statistics of traffic during active game play. 
• Determine φ and θ for the 2- and 3-player games 
• Determine the residuals for the 2- and 3-player games 
• Determine the PMF of the 2- and 3-player residuals 
• Take the necessary convolutions of the 2- and 3-player 

game residuals PMFs to construct synthetic residual PMFs 
of games with larger numbers of players 

• Generate a sequence of packet lengths using the 
ARMA(1,1) constants and the synthetic residuals using 
Equations (5) and (8) 

• Extract the PMF and ACF from the synthetic ARMA(1,1) 
sequence and extract the PMF and ACF from the empirical 
sequence and plot on the same set of axes. 
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Fig.  2.  Wolfenstein Enemy Territory Probability Mass Function and 

Autocovariance Function for 5 Player Game 
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Fig.  3.  Half-Life Counter Strike 2 Probability Mass Function and 

Autocovariance Function for 6 Player Game 
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Fig.  4.  Half-Life Death Match 2 Probability Mass Function and 
Autocovariance Function for 5 Player Game 
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Fig.  5.  Half-Life Death Match 2 Probability Mass Function and 
Autocovariance Function for 7 Player Game 
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Fig. 6.  Half-Life Counterstrike Probability Mass Function and 
Autocovariance Function for 5 Player Game 
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Fig.  7.  Half-Life Counterstrike Probability Mass Function and 
Autocovariance Function for 7 Player Game 
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Fig.  8.  Half-Life Death Match Probability Mass Function and 
Autocovariance Function for 5 Player Game 
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Fig.  9.  Half-Life Death Match Probability Mass Function and 
Autocovariance Function for 7 Player Game 
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Fig.  10.  Quake III Arena Probability Mass Function and Autocovariance 
Function for 5 Player Game 
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Fig. 11.  Quake III Arena Probability Mass Function and Autocovariance 
Function for 7 Player Game 
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Fig. 12. Quake4 Probability Mass Function and Autocovariance Function for 
5 Player Game 

B. Analysis of Residuals 
A consequence of our analysis is that the residuals of 

games with larger numbers of players should be able to be 
predicted from residuals of games with smaller numbers of 
players using Equations (7) and (8). In this section we 
illustrate that this is indeed the case. Fig. 13 shows the 
predicted and empirically obtained residuals. We see that 
there is an acceptable match. Once again, for reasons of space 
we present only a small number of examples to illustrate this 
point.  
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Fig.  13. Empirical and Predicted Residuals 

C. ARMA(1,1) parameters 
Equation (6) led us to predict that φ and θ should be 

constant for any game regardless of the number of players. 
Table 1 shows these values for a selection of games. We see 
that indeed, the values of φ and θ are very similar. 

TABLE I 
ARMA(1,1) Parameters 

 HLDM HLCS Quake3 
Players φ1 θ1 φ1 θ1 φ1 θ1 

2 0.97 -0.84 0.96 -0.77 0.97 -0.77 
3 0.97 -0.76 0.97 -0.77 0.98 -0.82 
4 0.98 -0.80 0.98 -0.82 0.97 -0.81 
5 0.97 -0.83 0.98 -0.81 0.98 -0.83 
6 0.97 -0.81 0.98 -0.83 0.98 -0.84 
7 0.96 -0.81 0.98 -0.81 0.98 -0.82 
8 0.98 -0.85 0.98 -0.78 0.98 -0.83 
9 0.97 -0.82 0.99 -0.82 0.98 -0.84 

VI. CONCLUSION 
In this paper we have presented evidence that suggests that 

FPS game traffic can be understood as being the aggregation 
of the largely independent behavior of multiple players. We 
have shown how an ARMA(1,1) model of a 2 and 3-player 
game can be extrapolated to games with larger numbers of 
players. This work should facilitate the construction of FPS 
game traffic simulators for new games. 

In obtaining these models we have made simplifying 
assumptions that seem to be supported by the agreement 
between the empirical and synthetic models. Nevertheless, 
future research will involve investigation into the limits of the 
assumptions used to generate these models and how they may 
be need to be modified for new games. 

FPS games, although popular and demanding of network 
resources, are not the only online games. Future research will 
involve application of the techniques described in this paper to 
other game styles.  

Finally the whole purpose of developing models is to use 
them to investigate network performance issues. We will use 
these models to investigate how FPS games and other 
applications interact and what techniques are likely to be 
successful in minimizing their impact on each other. 
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