
An ARMA(1,1) Prediction Model of First Person
Shooter Game Traffic

Philip A. Branch, Antonio L. Cricenti, Grenville J. Armitage
Centre for Advanced Internet Architectures

Swinburne University of Technology
Melbourne, Australia

pbranch@swin.edu.au

tcricenti@swin.edu.au

garmitage@swin.edu.au

Abstract—Modeling traffic generated by Internet-based

multiplayer computer games has attracted a great deal of
attention in the past few years. In part this has been driven by a
need to simulate correctly the network impact of highly
interactive online game genres such as the first person shooter
(FPS). Packet size distributions and autocovariance models are
important elements in the creation of realistic traffic generators
for network simulators. In this paper we present simple
techniques for creating representative models for N-player FPS
games based on empirically measured traffic of 2- and 3-player
games. The models capture the packet size distribution as well as
the time series behaviour of game traffic. We illustrate the likely
generality of our approach using data from seven FPS games
that have been popular over the past nine years: Half-Life, Half-
Life Counterstrike, Half-Life 2, Half-Life 2 Counterstrike,
Quake III Arena, Quake 4 and Wolfenstein Enemy Territory.

I. INTRODUCTION
Modeling traffic generated by Internet-based multiplayer

computer games has attracted a great deal of attention in the
past few years [1-14]. Highly interactive genres such as the
First Person Shooter (FPS) are of particular interest to
network engineers. Like voice over IP (VoIP) and other
interactive conference-style applications, FPS games are
generally intolerant of packet loss, jitter and high latency. FPS
games commonly use User Datagram Protocol (UDP) over IP
for transport and do not adjust packet rates in response to
network congestion. Finally, FPS games are typically based
on a client-server model for network traffic, with thousands or
tens of thousands of FPS servers active on the Internet at any
given time [15]. This has motivated research community
interest in predicting and simulating the traffic load imposed
on network links by multiplayer FPS games.

Two questions are of particular interest - how traffic
generated by FPS games increases as the number of players
increases, and how this traffic affects, and is affected by, other
traffic sharing the network. Since it is usually impractical to
build and measure a full-size network, the second question is
typically answered through simulation using statistical models
created from the answers to the first question. Good traffic
models are needed to ensure the simulations are useful [16].
This paper improves on the time series behaviours and packet
size distributions predicted by existing game traffic models.

Understanding how game traffic varies as the number of
players increases allows us to predict what happens to delay
and delay variation when the traffic is multiplexed with other
types of traffic and what link and server capacities are
necessary to meet a given grade of service. Web and other
traffic has been analyzed and modelled and the models used to
predict the consequences for the Internet [17]. It is now
desirable to analyze game traffic and produce models that can
be used in the same way.

Traffic in the client to server direction usually consists of
small IP packets whose size distribution is independent of the
number of players on a given server. However, traffic in the
server to client direction usually shows distinct variation as
the number of players increases [6]. Published work to date
has typically involved empirical studies of FPS games in
small test beds with up to 8 to 10 players. Traffic models have
been created that match the statistical packet size distributions
for each N-player game, for N = 2, 3, and so on. Yet some
public FPS game servers may be configured to allow 50+
players [15]. Controlled collection of empirical data for games
with such large numbers of players is challenging. There is a
need for techniques that allow extrapolation of statistical
characteristics from games with small numbers of players to
games with much larger numbers of players.

Since the initial work by Borella [1], FPS game traffic has
usually been modelled by examining empirical packet traces
and fitting an appropriate standard distribution to the
observations. However, a major shortcoming of this approach
is that the correlation between successive packet lengths is not
retained as the packet payload lengths are simply drawn from
the appropriate distribution.

There has been some limited work that attempts to model
the correlation between packet lengths in FPS games. Branch
et al. [18] used a Discrete Markov Chain to model the server
to client acket size distribution of a two player game. The
resulting Markov model can then be used to predict the
statistics of an N-player game. The resulting models do
predict the distribution of packet payload size for differing
numbers of players and capture some of the autocorrelated
behaviour. However, the models only produce packets whose
sizes are integer multiples of the median packet length of a
two player game. In practice the packet length distribution is

978-1-4244-2295-1/08/$25.00 © 2008 IEEE MMSP 2008736

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on January 4, 2010 at 21:03 from IEEE Xplore. Restrictions apply.

not limited in this way. Also, the autocorrelated behaviour is
captured only approximately. Further work by Cricenti et al
showed that the ARMA(1,1) model captured the time-series
behaviour of FPS game traffic well [19]. We use the
ARMA(1,1) model in this work.

In this paper we propose and illustrate a technique for
extrapolating N-player traffic statistics from empirically
measured traffic of 2- and 3-player FPS games. The
extrapolated traffic sequences (based on ARMA(1,1) models)
both capture the time series behaviour of the game traffic as
well as the packet length distribution. This allows small-scale
empirical measurements (for example, from public game
traffic trace archives such as Swinburne University of
Technology’s SONG database [14]) to be applied to larger
scale simulations of FPS traffic acting on an IP network. We
illustrate the potential generality of our approach using data
from seven FPS games released between 1998 and 2006:
Half-Life, Half-Life Counterstrike, Quake III Arena, Quake 4,
Wolfenstein Enemy Territory, Half-Life 2 and Half-Life 2
Counterstrike.

The paper is structured as follows. Section II discusses the
nature of FPS game traffic and explains why server to client
packet lengths are of most interest. Section III introduces Box-
Jenkins time series analysis and the ARMA(1,1) model.
Section IV shows how prediction models can be constructed
based on ARMA(1,1) models for large numbers of players
when data for games with only small numbers of players is
available. Section V presents results that show there is good
agreement between packet lengths generated synthetically
using this technique and packet lengths measured empirically
from game trials. Section VI is our conclusion

II. FIRST PERSON SHOOTER GAMES
Multiplayer online games have an underlying requirement

that game-state information is shared amongst all players in
near real-time. Each game client acts as an interface between
the local human player and the virtual game-world within
which the player interacts with other players. Most FPS games
use a client-server model (including the seven examples
presented in this paper). Every client’s actions are sent in
short messages to the server, and every client is regularly
updated with the actions taken by other players and their
consequences. The server implements the game-world’s state
machine, regulating client actions in order to maintain the
game’s internal rules and minimize opportunities for cheating.

A. Game State Updates
A typical FPS game involves an ISP or game enthusiast

hosting a game server on the Internet, and players joining the
game using client software running on a home PC or IP-
enabled game console. (Games can also be run on a private,
local IP network – commonly referred to as ‘LAN parties’.)
The game client updates and renders the game’s virtual world
on the client’s screen based on messages received regularly
from the game server. User inputs to the game client (actions
such as walking, exploring or shooting weapons) are passed to
the game server to be verified and the consequent changes to

game state (health points, explosions, etc) propagated to other
players.

Game-state updates must occur in a timely manner, with
minimal bias towards any particular player. In FPS games,
timeliness is achieved by sending a unicast IP packet to each
client at fixed intervals, typically in the range of 30 to 60ms.
For example, the default update interval is 60ms for Half Life
Deathmatch, 50ms for Quake III Arena and 33ms for Half-
Life 2 Deathmatch. To minimize bias, update packets to
different clients are sent in back-to-back bursts [11], [12].
Each client receives an update packet every interval regardless
of how much in-game activity is occurring.

Clients send their own updates to the game server at less
precisely defined intervals, often influenced by the client’s
processor speed, graphics card settings and player activity.
Typical intervals vary from 10ms to 40ms [11], [12].

B. First Person Shooter Game Traffic
To maximize playability over a wide range of network

conditions and consumer access technologies modern FPS
games actively compress the data sent over the network.
Simple compression involves the use of smallest possible bit-
fields to carry variable data. More complex compression
involves the server only sending information to a client about
regions of the virtual world currently visible to the client.
Since every client has a different perspective on the virtual
world the server effectively customizes every client update
packet for the client to which it is sent.

Clients generate events describing a single player’s activity.
A typical human can trigger only a limited number of events
in any given 10ms to 40ms window. Consequently packets
from client to server are typically much smaller than the
packets from server to client, and exhibit very limited
variation in size. For example, client to server IP payload
lengths range between 25 and 45 bytes for Quake III Arena
during active game play, with 90% of all packets between 28
and 38 bytes long. For Half-Life 2 Deathmatch, packet lengths
vary between 36 and 99 with 90% of all packets being
between 57 and 75 bytes long [1, 6].

On the other hand, packets in the server to client direction
exhibit substantial variations in length as in-game activity
surrounding a given client varies with time. For example,
during active play of Quake III Arena for a 9-player game,
packets from server to client range between 32 and 960 bytes
with 90% being between 98 and 460 bytes. For Half-Life 2
Deathmatch packet lengths during active play are between 16
and 1400 bytes with 90% between 95 and 501 bytes [1, 6].

The in-game activity conveyed in a single update packet
includes a component containing information that is
proportional to the number of other players visible to a client
at that point in time. The actual visibility of other players, and
what they are doing at the time, itself depends on the number
of players and the virtual world’s layout (the ‘map’). For
example, maps with many walls and corridors will result in
less visibility between players (and less information per
update packet on average) than maps with wide-open areas.
Likewise, a map containing many players will experience
many more player-player interactions (per unit time) than a

737

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on January 4, 2010 at 21:03 from IEEE Xplore. Restrictions apply.

map with few players scattered around the virtual game world
[15].

It is sometimes suggested that instead of using Stochastic
methods, why not examine the source code, in the hope that it
will provide insight into the nature of game traffic generated
by the server? There are two responses to this. First, source
code is usually not available for newly released games
(limiting our ability to model game traffic via code analysis
while the games are still popular). Second, even when
available, source code provides very little information as to
the game traffic generated. Examination of the Quake III
Arena source code shows that the traffic generated is highly
compressed and that the server sends only information about
objects in the receiving player’s field of view. However, in
attempting to determine the nature of the traffic generated by
the server, all that a close examination of the code reveals is
that the server output is driven by its input; that is the
behaviour of the players. Consequently, since an individual
player’s behaviour has a great deal of unpredictability in it,
understanding the server code tells us little about the traffic
generated by the server and Stochastic methods are more
appropriate for understanding server traffic.

C. Phases of Game-play and Game Traffic
In most FPS games there are three phases of interaction

between client and server that impact on network traffic.
• A client connects to the server, and receives data from the

server to update the client’s local virtual world information
(map definitions, avatar ‘skins’, etc).

• The client is connected to the server and the game is in
progress (players run around the virtual world, shooting or
otherwise interacting with each other).

• The client is connected to the server, and the game has
been paused as the server changes maps or restarts a
previous map (after a player wins the previous ‘round’).

Tight control over network jitter and packet loss is only
essential during active game-play. During periods of player
inactivity (initial client connection and server changing maps)
the network can exhibit fluctuating latency, jitter and packet
loss without affecting the player’s game experience.

III. ARMA(1,1) MODEL OF FPS GAME TRAFFIC
In [19] Cricenti et al showed that FPS server to client traffic

is well modelled by ARMA(1,1) models. We briefly review
ARMA models before demonstrating how models obtained
for 2- and 3-player games can be used to predict the traffic
behaviour of games with larger numbers of players.

The zero mean ARMA(1,1) model is:

tttt ZZXX ++= −− 1111 θφ (1)

The residuals Zt in (1) are independent identically-

distributed random variables with zero mean.
The autocovariance function (ACF), of a random process

describes the similarity of the process with itself at different
points in time (lag). Thus the ACF can be considered as a

measure of the “memory” of the process. Generally speaking
if the ACF dies off quickly then the process is stationary.

Autocovariance functions are just one of the useful tools in
identifying appropriate ARMA models. Other tools are partial
autocorrelation functions and measures such as the Akaike
Information Criterion [20]. Fig. 1 shows the normalised AIC
and a partial ACF for Quake III Arena. The AIC suggests that
an AR(1) model might be an acceptable time-series model for
this traffic. An AR(1) process is a special case of the
ARMA(1,1) process with θ = 0. However the Partial
Autocorrelations do not go to zero sufficiently quickly to
warrant a simple AR(1) model. Consequently it may be that
an ARMA model is more appropriate. Given that the AIC
shows there is little to choose between an ARMA(1,1) and
higher order models, we chose to model the traffic with an
ARMA(1,1) model. It is worth noting that this results holds
for all the games we analysed. For a fuller treatment of this
topic see [19].

Q3 AIC for different ARMA models

0.940

0.950

0.960

0.970

0.980

0.990

1.000

A
R

(1
)

A
R

M
A

(1
,1

)
A

R
M

A
(1

,2
)

A
R

M
A

(1
,3

)
A

R
M

A
(2

,0
)

A
R

M
A

(2
,1

)
A

R
M

A
(2

,2
)

A
R

M
A

(2
,3

)
A

R
M

A
(3

,0
)

A
R

M
A

(3
,1

)
A

R
M

A
(3

,2
)

A
R

M
A

(3
,3

)

N
or

m
al

is
ed

 A
IC

2 3 4
5 6 7
8 9

Lag Number
49454137332925211713951

P
A

C
F

0.6

0.5

0.4

0.3

0.2

0.1

0.0

-0.1

Quake 3 Partial Autocorrelations - 9 players

Fig. 1 AIC Criterion abd Partial ACF for Quake III Arena

IV. PREDICTION MODELS BASED ON ARMA(1,1)
We now show how ARMA(1,1) models for 2- and 3-player

games can be used to predict ARMA(1,1) models for N-player
games, where N ≥.4.

We make a number of assumptions in our analysis:
• The nature of game play for individual players does not

change significantly regardless of the number of players.
Each player spends similar amounts of time involved in
exploring the map, collecting useful items and engaging in
battles, regardless of the number of players.

• Players have similar behaviour. They may not be of
similar ability but will engage in similar activities in much
the same way as each other.

Essentially these assumptions propose that the random
variable describing the time series behaviour of an N-player
game can be constructed through adding together the random
variables describing the time series behaviour of smaller
player games. Because we assume that individual game play
does not change as the number of players increases and that
the game players have similar behaviour, we propose that, for
example, the random variable describing the time series
behaviour of a 5-player game can be constructed from adding
the two random variables that describe a 2-player game and a
3-player game. Of course these are simplifying assumptions
that only approximate the true nature of FPS games.

738

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on January 4, 2010 at 21:03 from IEEE Xplore. Restrictions apply.

Nevertheless, by making them we can develop a simple
technique for predicting the time series behaviour of games
with larger number of players. We now formalize this analysis.

A 2-player game (zero mean) is described by the
ARMA(1,1) sequence:

t2,1,21,2,2 Z ++= −− ttt ZXX θφ (2)

Consider a 2-player game sequence generated by the above
model

 ,2

)1(
1,2

)1(
1,2

)1(
,2

)1(
tttt ZZXX ++= −− θφ (3)

and another 2-player game sequence

tttt ZZXX ,2

)2(
1,2

)2(
1,2

)2(
,2

)2(++= −− θφ (4)

One of our assumptions is that player behaviour is similar.
Consequently, we would expect two different games to be
described by the same parameters φ and θ.
Based on our assumptions we can predict that a typical four
player game can be described by

tttttt

ttt

ZZZZXX

XXX

,2
)2(

,2
)1(

1,2
)1(

1,2
)1(

1,2
)2(

1,2
)1(

,2
)2(

,2
)1(

,4

)()(+++++=

+=

−−−− θϕ
 (5)

We note that this function has the form:

tttt ZZXX ,41,41,4,4 ++= −− θϕ (6)

That is, it is an ARMA(1,1) model with the same values of φ
and θ as the 2-player game. In other words, we predict that φ
and θ should be constant for a particular game with an even
number of players, regardless of the number of players. We
can do a similar analysis for games with an odd numbers of
players. In Section V we show that these parameters are
largely unchanged as the number of players increases.

If we denote the probability mass function of Z2 by fZ2 and
Z4 by fZ4 then our modelling predicts that fZ4 can be obtained
from a convolution of fZ2 and itself. That is:

224 ZZZ fff ∗= (7)

In a similar way we can obtain ARMA(1,1) models based

on 2- and 3- player games for N-player games where N is an
odd number. For the 5-player game, we can predict that it can
be described by:

ttt XXX ,3

)1(
,2

)1(
,5 += (8)

In the next section we evaluate the effectiveness of this

approach in predicting the PMF and autocovariance functions
for games with N ≥ 4.

V. RESULTS
The key result we present in this section is the application

of the previous analysis to predict the PMF and ACF of server
to client packet length for the seven FPS games we are
analysing. For reasons of space we only show plots for a
selection of games, but similar analysis has been carried out
for all seven of the games with number of players ranging
from 4 to 9. The empirical results were obtained from game
sessions of approximately 20 minutes duration each,
generating approximately 20,000 samples for each player.

A. Plots of Probability Mass Functions and Autocovariance
Functions

Plotted on the graphs below are the predicted PMFs and
ACFs, and their corresponding empirical values obtained
during game play trials. In all cases the agreement between
the predicted and empirical results is satisfactory.

We obtained the plots with the following steps:
• Capture statistics of traffic during active game play.
• Determine φ and θ for the 2- and 3-player games
• Determine the residuals for the 2- and 3-player games
• Determine the PMF of the 2- and 3-player residuals
• Take the necessary convolutions of the 2- and 3-player

game residuals PMFs to construct synthetic residual PMFs
of games with larger numbers of players

• Generate a sequence of packet lengths using the
ARMA(1,1) constants and the synthetic residuals using
Equations (5) and (8)

• Extract the PMF and ACF from the synthetic ARMA(1,1)
sequence and extract the PMF and ACF from the empirical
sequence and plot on the same set of axes.

0 200 400 600
0

0.005

0.01

0.015

Packet size

pmf etpro 5 players

Empirical
Predicted

0 200 400 600
-1000

0

1000

2000

3000

4000

Lag

acf etpro 5 players

Empirical
Predicted

Fig. 2. Wolfenstein Enemy Territory Probability Mass Function and

Autocovariance Function for 5 Player Game

0 200 400 600
0

0.005

0.01

0.015

0.02

0.025

Packet size

pmf hl2cs 6 players

Empirical
Predicted

0 200 400 600
-2000

0

2000

4000

6000

Lag

acf hl2cs 6 players

Empirical
Predicted

Fig. 3. Half-Life Counter Strike 2 Probability Mass Function and

Autocovariance Function for 6 Player Game

739

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on January 4, 2010 at 21:03 from IEEE Xplore. Restrictions apply.

0 200 400 600
0

2

4

6

8
x 10-3

Packet size

pdf hl2dm 5 players

Empirical
Predicted

0 200 400 600
-2000

0

2000

4000

6000

8000

Lag

acf hl2dm 5 players

Empirical
Predicted

Fig. 4. Half-Life Death Match 2 Probability Mass Function and
Autocovariance Function for 5 Player Game

0 200 400 600
0

2

4

6

8
x 10-3

Packet size

pdf hl2dm 7 players

Empirical
Predicted

0 200 400 600
-5000

0

5000

10000

Lag

acf hl2dm 7 players

Empirical
Predicted

Fig. 5. Half-Life Death Match 2 Probability Mass Function and
Autocovariance Function for 7 Player Game

0 200 400 600
0

0.005

0.01

0.015

0.02

0.025

Packet size

pdf hlcs 5 players

Empirical
Predicted

0 200 400 600
-500

0

500

1000

Lag

acf hlcs 5 players

Empirical
Predicted

Fig. 6. Half-Life Counterstrike Probability Mass Function and
Autocovariance Function for 5 Player Game

0 200 400 600
0

0.01

0.02

0.03

Packet size

pdf hlcs 7 players

Empirical
Predicted

0 200 400 600
-500

0

500

1000

1500

Lag

acf hlcs 7 players

Empirical
Predicted

Fig. 7. Half-Life Counterstrike Probability Mass Function and
Autocovariance Function for 7 Player Game

0 200 400 600
0

0.005

0.01

0.015

0.02

Packet size

pdf hldm 5 players

Empirical
Predicted

0 200 400 600
-500

0

500

1000

1500

2000

Lag

acf hldm 5 players

Empirical
Predicted

Fig. 8. Half-Life Death Match Probability Mass Function and
Autocovariance Function for 5 Player Game

0 200 400 600
0

0.005

0.01

0.015

Packet size

pdf hldm 7 players

Empirical
Predicted

0 200 400 600
-1000

0

1000

2000

3000

Lag

acf hldm 7 players

Empirical
Predicted

Fig. 9. Half-Life Death Match Probability Mass Function and
Autocovariance Function for 7 Player Game

0 200 400 600
0

0.005

0.01

0.015

0.02

Packet size

pdf Quake3 5 players

Empirical
Predicted

0 200 400 600
-500

0

500

1000

1500

2000

Lag

acf Quake3 5 players

Empirical
Predicted

Fig. 10. Quake III Arena Probability Mass Function and Autocovariance
Function for 5 Player Game

0 200 400 600
0

0.005

0.01

0.015

Packet size

pdf Quake3 7 players

Empirical
Predicted

0 200 400 600
-1000

0

1000

2000

3000

Lag

acf Quake3 7 players

Empirical
Predicted

Fig. 11. Quake III Arena Probability Mass Function and Autocovariance
Function for 7 Player Game

0 200 400 600
0

0.002

0.004

0.006

0.008

0.01

Packet size

pdf Quake4 5 players

Empirical
Predicted

0 200 400 600
-2000

0

2000

4000

6000

Lag

acf Quake4 5 players

Empirical
Predicted

Fig. 12. Quake4 Probability Mass Function and Autocovariance Function for
5 Player Game

B. Analysis of Residuals
A consequence of our analysis is that the residuals of

games with larger numbers of players should be able to be
predicted from residuals of games with smaller numbers of
players using Equations (7) and (8). In this section we
illustrate that this is indeed the case. Fig. 13 shows the
predicted and empirically obtained residuals. We see that
there is an acceptable match. Once again, for reasons of space
we present only a small number of examples to illustrate this
point.

740

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on January 4, 2010 at 21:03 from IEEE Xplore. Restrictions apply.

0 200 400 600
0

0.01

0.02

0.03

0.04

Packet size

pdf Quake3 Residuals 4 players

Empirical
Predicted

0 200 400 600
0

0.005

0.01

0.015

0.02

Packet size

pdf hldm Residuals 4 players

Empirical
Predicted

0 200 400 600
0

0.01

0.02

0.03

Packet size

pdf hlcs Residuals 4 players

Empirical
Predicted

0 200 400 600
0

0.005

0.01

0.015

Packet size

pdf hl2dm Residuals 4 players

Empirical
Predicted

Fig. 13. Empirical and Predicted Residuals

C. ARMA(1,1) parameters
Equation (6) led us to predict that φ and θ should be

constant for any game regardless of the number of players.
Table 1 shows these values for a selection of games. We see
that indeed, the values of φ and θ are very similar.

TABLE I
ARMA(1,1) Parameters

 HLDM HLCS Quake3
Players φ1 θ1 φ1 θ1 φ1 θ1

2 0.97 -0.84 0.96 -0.77 0.97 -0.77
3 0.97 -0.76 0.97 -0.77 0.98 -0.82
4 0.98 -0.80 0.98 -0.82 0.97 -0.81
5 0.97 -0.83 0.98 -0.81 0.98 -0.83
6 0.97 -0.81 0.98 -0.83 0.98 -0.84
7 0.96 -0.81 0.98 -0.81 0.98 -0.82
8 0.98 -0.85 0.98 -0.78 0.98 -0.83
9 0.97 -0.82 0.99 -0.82 0.98 -0.84

VI. CONCLUSION
In this paper we have presented evidence that suggests that

FPS game traffic can be understood as being the aggregation
of the largely independent behavior of multiple players. We
have shown how an ARMA(1,1) model of a 2 and 3-player
game can be extrapolated to games with larger numbers of
players. This work should facilitate the construction of FPS
game traffic simulators for new games.

In obtaining these models we have made simplifying
assumptions that seem to be supported by the agreement
between the empirical and synthetic models. Nevertheless,
future research will involve investigation into the limits of the
assumptions used to generate these models and how they may
be need to be modified for new games.

FPS games, although popular and demanding of network
resources, are not the only online games. Future research will
involve application of the techniques described in this paper to
other game styles.

Finally the whole purpose of developing models is to use
them to investigate network performance issues. We will use
these models to investigate how FPS games and other
applications interact and what techniques are likely to be
successful in minimizing their impact on each other.

REFERENCES
[1] M. Borella, "Source models of network game traffic," Computer

Communications, vol. 23, pp. 403-410, Feb 2000.
[2] P. Branch and G. Armitage, "Extrapolating server to client IP traffic

from empirical measurements of first person shooter games," in 5th
Workshop on Network System Support for Games 2006 (Netgames2006)
Singapore, 2006.

[3] P. Branch and G. Armitage, "Measuring the auto-correlation of server to
client traffic in first person shooter games," in Australian
Telecommunications, Network and Applications Conference (ATNAC)
Melbourne, Australia, 2006.

[4] C. Chambers, W.-C. Feng, S. Sahu, and D. Saha, "Measurement-based
characterization of a collection of on-line games," in Internet
Measurement Conference 2005 (IMC2005) Berkeley California, 2005.

[5] J. Farber, "Traffic modelling for fast action network games,"
Multimedia Tools and Applications, vol. 23, pp. 31-46, Dec 22 2004.

[6] W.-C. Feng, F. Chang, W.-C. Feng, and J. Walpole, "A traffic
charaterization of popular on-line games," IEEE/ACM Transactions on
Networking (TON), vol. 13, pp. 488-500, June 2005.

[7] W.-C. Feng, F. Chang, W.-C. Feng, and J. Walpole, "Provisioning on-
line games: A traffic analysis of a busy Counter-Strike server," in
SIGCOMM Internet Measurement Workshop, Marseille, France, 2002.

[8] T. Henderson and S. Bhatti, "Modelling user behaviour in networked
games," in 9th ACM International Conference on Multimedia (ACM
Multimedia) Ottawa, Canada, 2001.

[9] T. Henderson and S. Bhatti, "Networked games - a QoS-sensitive
application for QoS insensitive users?," in ACM SIGCOMM workshop
on Revisiting IP QoS Karlsruhe, Germany, 2003.

[10] T. Lang and G. Armitage, "A ns2 model for the Xbox system link game
HALO," in Australian Telecommunications, Networks and Applications
Conference (ATNAC) Melbourne, Australia, 2003.

[11] T. Lang, G. Armitage, P. Branch, and H.-Y. Choo, "A synthetic traffic
model for Half-Life," in Australian Telecommunications, Networks and
Applications Conference (ATNAC) Melbourne, 2003.

[12] T. Lang, P. Branch, and G. Armitage, "A synthetic model for Quake III
traffic," in Advances in Computer Entertainment (ACE2004) Singapore,
2004.

[13] S. Zander and G. Armitage, "A traffic model for the XBOX game Halo
2," in 15th ACM International Workshop on Network and Operating
System Support for Digital Audio and Video (NOSSDAV2005)
Washington, 2005.

[14] Centre for Advanced Internet Architectures, "Simulating online network
games (SONG)," Accessed 14 March 2007,
http://caia.swin.edu.au/sitcrc

[15] G. Armitage, M. Claypool, and P. Branch, "Networking and online
games: Understanding and engineering multiplayer Internet games,"
Chichester, England: John Wiley and Sons Ltd, 2006.

[16] S. Floyd and E. Kohler, "Internet research needs better models,"
Computer Communications Review (CCR), vol. 33, pp. 29-34, January
2003.

[17] C. Cunha, A. Bestavros, and M. Crovella, "Characteristics of WWW
client-based traces," Boston University Computer Science Technical
Report, vol. TR-96-08, 1995.

[18] P. Branch, A. Cricenti, and G. Armitage, "Modeling Server to Client IP
traffic in First Person Shooter Games," in IEEE International
Conference on Communications (ICC08) Beijing, 2008.

[19] A. Cricenti, P. Branch, and G. Armitage, "Time-series modelling of
server to client IP packet length in first person shooter games," in
International Conference on Networks 2007 (ICON07) Adelaide, 2007.

[20] H. Akaike, "A new look at statistical model identification," IEEE
Transactions on Automatic Control, vol. 19, pp. 716-713, 1974.

741

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on January 4, 2010 at 21:03 from IEEE Xplore. Restrictions apply.

