
Swinburne Research Bank
http://researchbank.swinburne.edu.au

Author: He, Qiang; Xie, Xiaoyuan; Wang, Yanchun; Ye,
Dayong; Chen, Feifei; Jin, Hai; Yang, Yun

Title: Localising runtime anomalies in service-oriented
systems

Year: 2016
Journal: IEEE Transactions on Services Computing
URL: http://hdl.handle.net/1959.3/425844

Copyright: Copyright © 2016 IEEE. The author's post-print
version is reproduced here in accordance with the
copyright policy of the publisher. Personal use of
this material is permitted. Permission from IEEE
must be obtained for all other uses, in any current
or future media, including reprinting/republishing
this material for advertising or promotional
purposes, creating new collective works, for resale
or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other
works.

This is the author’s version of the work, posted here with the permission of the publisher for your
personal use. No further distribution is permitted. You may also be able to access the published
version from your library.

The definitive version is available at: http://dx.doi.org/10.1109/TSC.2016.2593462

Powered by TCPDF (www.tcpdf.org)

Swinburne University of Technology | CRICOS Provider 00111D | swinburne.edu.au

http://www.tcpdf.org

IEEE TRANSACTIONS ON SERVICES COMPUTING 1

Localizing Runtime Anomalies in Service-
Oriented Systems

Qiang He, Xiaoyuan Xie, Yanchun Wang, Dayong Ye, Feifei Chen,
Hai Jin, Senior Member, IEEE, Yun Yang*, Senior Member, IEEE

Abstract—In a distributed, dynamic and volatile operating environment, runtime anomalies occurring in service-oriented
systems (SOSs) must be located and fixed in a timely manner in order to guarantee successful delivery of outcomes in
response to user requests. Monitoring all component services constantly and inspecting the entire SOS upon a runtime anomaly
are impractical due to excessive resource and time consumption required, especially in large-scale scenarios. We present a
spectrum-based approach that goes through a five-phase process to quickly localize runtime anomalies occurring in SOSs
based on end-to-end system delays. Upon runtime anomalies, our approach calculates the similarity coefficient for each basic
component (BC) of the SOS to evaluate their suspiciousness of being faulty. Our approach also calculates the delay coefficients
to evaluate each BC’s contribution to the severity of the end-to-end system delays. Finally, the BCs are ranked by their similarity
coefficient scores and delay coefficient scores to determine the order of them being inspected. Extensive experiments are
conducted to evaluate the effectiveness and efficiency of the proposed approach. The results indicate that our approach
significantly outperforms random inspection and the popular Ochiai-based inspection in localizing single and multiple runtime
anomalies effectively. Thus, our approach can help save time and effort for localizing runtime anomalies occuring in SOSs.

Index Terms—Program analysis, quality of service, Web service

——————————  ——————————

1 INTRODUCTION
HE service-oriented computing paradigm offers an
effective way to build software systems [10] that are

composed of services locally or remotely accessed by an
execution engine (e.g., a BPEL engine [34]). In such a ser-
vice-oriented system (SOS), the component services joint-
ly offer the functionality of the SOS and collectively fulfil
its users’ quality requirements.

Built from loosely coupled component services offered
by independent (and often distributed) providers, SOSs
operate in environments where key characteristics of the
component services, such as the Quality of Service (QoS)
properties, tend to be volatile. At runtime, various anom-
alies may occur in an SOS, e.g., unexpected workload
changes, errors in the component services and failures of
data transmissions, and impact on the quality of the SOS,
causing end-to-end system delays. In this context, how to
manage the quality of an SOS by detecting and adapting
to runtime anomalies has become an important research

direction [7, 10].
Response time, among various QoS dimensions, is of

particular significance in quality management for SOSs.
Amazon found that every extra 100ms of latency cost
them 1% in sales [43] and Google found an extra 500ms in
search page generation time dropped traffic by 20% [28].
The increase in the number of time-constrained applica-
tions in the cloud, e.g., interactive and multimedia SOSs,
is also driving the needs for response time management
for SOSs [26]. Furthermore, the management of response
time is the basis for the management of other QoS dimen-
sions. On one hand, effective response time management
promises better management of other QoS dimensions
because many applications exhibit trade-offs between
their response times and other QoS dimensions [30]. A
video encoding application, for example, can often pro-
duce higher quality video if it is given more time to en-
code the video frames. On the other hand, the manage-
ment of other QoS dimensions is tightly coupled with
response time management. During execution, an SOS
may need to be adapted to fix runtime anomalies. The
adaptation itself takes time, and as a result, contributes to
delaying the execution of the SOS. Thus, timely detection
of runtime anomalies is significant to effective quality
management for SOSs.

An intuitive solution for timely detection of runtime
anomalies is to constantly monitor all the basic components
(BCs) of an SOS, including its component services and the
data transmission links (or transmissions in short) be-
tween the component services. In response to a detected
anomaly, adaptation actions can be taken before perfor-
mance degradation becomes noticeable by the users.
However, monitoring itself may incur excessive costs [7],
making it impractical to constantly monitor the entire

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society

————————————————
• Qiang He, Yanchun Wang, Dayong Ye and Feifei Chen are with the School

of Software and Electrical Engineering, Swinburne University of Technol-
ogy, Melbourne, Australia 3122. E-mail: {qhe, yanchunwang, dye,
feifeichen}@swin.edu.au.

• Xiaoyuan Xie is with the State Key Lab of Software Engineering, Wuhan
University, Wuhan 430072, China. E-mail: xxie@whu.edu.cn.

• Hai Jin is with the Services Computing Technology and System Lab, Clus-
ter and Grid Computing Lab, School of Computer Science and Technology,
Huazhong University of Science and Technology, Wuhan 430074, China.
E-mail: hjin@hust.edu.cn.

• Yun yang is with the School of Computer Science and Technology, Anhui
University, China and the School of Software and Electrical Engineering,
Swinburne University of Technology, Melbourne, Australia 3122. E-mail:
yyang@swin.edu.au.

Manuscript received 30 Nov. 2015; revised 12 Apr. 2016; accepted 18 July 2016.
Date of publication 0 . 0000; date of current version 0 . 0000.
For information on obtaining reprints of this article, please send –email to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TSC.2016.2593462

T

http://glinden.blogspot.com/2006/11/marissa-mayer-at-web-20.html

2 IEEE TRANSACTIONS ON SERVICES COMPUTING

SOS, especially in large-scale scenarios where the number
of BCs of the SOS and the number of SOSs are big. To
address this issue, we proposed CriMon in [16] for formu-
lating cost-effective monitoring strategies that focus on
the BCs on the critical path. However, what if an anomaly
occurs in an unmonitored BC? When that happens, the
unmonitored BCs must be inspected to pinpoint the
anomaly. Unfortunately, a comprehensive inspection of
all unmonitored BCs can be expensive and sometimes
impractical due to two potential costs, i.e., resource cost
and system cost. First, invocations of services may be
charged if those services are owned and hosted by differ-
ent organisations [50]. Even if the invocations are free, the
negative impact on the SOS caused by the inspection of its
BCs might further degrade its quality [7]. For example,
monitoring sometimes involves sniffing network traffic
and retrieving the logs of services’ and SOSs’ behaviours.
As demonstrated in [46], those operations can result in up
to 70% performance overhead, slowing down the entire
SOS as a result. We identified that a quality inspection
can cause as much as 40% performance overhead on a
Web service under certain circumstances [21]. These is-
sues should not exclude inspection of BCs as a promising
way of detecting anomalies. Unmonitored BCs still need
to be inspected to localize runtime anomalies. To achieve
timely anomaly detection at minimal resource cost and
system cost, the BCs that are more likely to be faulty must
be prioritised in the inspection. This way, the anomalies
occurring in an SOS can be quickly pinpointed so that
they can be fixed in time to minimise the sytem delays
perceived by users.

To tackle this challenge, we propose a novel approach
that employs spectrum-based fault localization (SFL)
technique [2] to localize runtime anomalies in SOSs. There
are other fault localization techniques, e.g., program slic-
ing [49], delta debugging [31] and model-based diagnosis
[29]. The reason for our choice of SFL is that it is the most
light-weight fault localization technique [40]. SFL instru-
ments and executes a program, before it is released, with
a test suite to gather program spectrum. Each program
spectrum is an abstraction of an execution trace. For each
test case in the test suite, the program spectrum records
which program components (e.g., statements and branch-
es) were executed and whether the test case passed or
failed. Then, SFL builds a matrix that consists of two parts:
the program spectrum and the binary error vector. By
evaluating the similarity between the program spectrum
and the binary error vector, a heuristic measure for each
program component, which expresses the suspiciousness
of the program component being buggy and responsible
for the test-case failures. The program components can
then be ordered in decreasing order of suspiciousness to
provide a ranking of program components from most to
least suspicious, which are provided to program develop-
ers as guidance in debugging.

Localizing runtime anomalies in an SOS is very differ-
ent from localizing faults in a program written in tradi-
tional languages, such as C, Java or PHP. Anomalies in an
SOS occur at runtime and must be fixed as soon as possi-
ble. Running a comprehensive test suite to localize the
anomalies often results in massive calls to the component
services of the SOS. It is time consuming, resource con-

suming, and thus impractical. Although the component
services of an SOS are usually distributed, the calls to
those component services are carried out and managed
by a centralised execution engine, e.g., a BPEL engine.
Thus, end-to-end system delays caused by runtime
anomalies can be detected by the execution engine with
marginal system overhead. In response to different user
requests, different parts of the SOS are activated. Thus, an
SOS can be represented by multiple execution scenarios
[16].

Following the methodology of SFL, upon detected end-
to-end system delays, our approach generates system spec-
tra that record which BCs are covered by which execution
scenarios, and a binary delay vector that indicates which
execution scenarios are experiencing delays. Then, it di-
agnoses the differences in the system spectra for normal
and delayed execution scenarios, where normal execution
scenarios are the execution scenarios with no delays and
delayed execution scenarios are the execution scenarios
where delays are occurring. By evaluating the similarity
between the system spectrum and the binary delay vector,
a similarity coefficient score is calculated for each BC of the
SOS as a heuristic measure that expresses the suspicious-
ness of the BC being responsible for the system delay. SFL
has been acknowledged as an effective approach for local-
izing single program faults, but it performs less favoura-
bly when localizing multiple program faults [24]. This
inherent limitation of SFL automatically transmits to its
application in the context of SOSs. To handle concurrent
runtime anomalies, we further analyse the differentiated
end-to-end delays in different execution scenarios to cal-
culate a delay coefficient score for each BC to expresses the
BC’s contribution to the severity of end-to-end system
delays. Next, the BCs are sorted first in decreasing order
of their similarity coefficient scores and then their delay
coefficient scores. Finally, the results are used to pinpoint
the anomaly or, if an exact pinpoint cannot be found, pre-
sented as guidance that can reduce the SOS administra-
tor’s effort in searching for the anomaly.

The contributions of this paper are as follows:
• We propose a spectrum-based approach for localizing

runtime anomalies upon end-to-end system delays.
This approach does not require constant monitoring or
comprehensive inspection of all BCs of the SOS.

• We propose the calculation of similarity coefficient and
delay coefficient, based on which BCs can be ranked to
indicate their suspiciousness of being faulty. The rank-
ing provides system administrators with guidelines for
localizing runtime anomalies.

• Extensive and comprehensive experiments are con-
ducted to evaluate our approach using a published re-
al-world Web service dataset, which contains over
2500 real-world Web services. The evaluation shows
that our approach significantly outperforms random
inspection and traditional SFL. Using our approach,
the time and efforts for localizing runtime anomalies
occurring in SOSs can be significantly saved.
The rest of this paper is organised as follows: Section 2

analyses the requirements with a motivating example.
Section 3 describes our anomaly localization approach.

HE ET AL.: LOCALIZING RUNTIME ANOMALIES IN SERVICE-ORIENTED SYSTEMS 3

Section 4 presents the experimental results to demon-
strate effectiveness and efficiency of our approach. Sec-
tion 5 reviews related work. Section 6 concludes the paper
and points out future work.

2 MOTIVATING EXAMPLE
This section presents an example SOS, namely Online-
Live, to motivate this research. As depicted in Fig. 1, this
SOS offers an on-demand service to convert, subtitle and
transmit live video streams. OnlineLive consists of 26 BCs.
N1, N2, …, N8 represent the component services and EA,
EB, …, ER represent the data transmissions between the
component services. In response to a user request, the
execution process of OnlineLive is as follows:

Step 1: N1 splits the live media stream selected by the
user into separate video and audio streams.

Step 2: The video and audio streams are processed in
parallel. Specifically,
• For normal users, N2 encodes 360p video stream and

N3 embeds advertisements into the video stream. For
ad-free premium users, N4 encodes 1080p video
stream.

• N5 generates the subtitle by performing speech recogni-
tion on the audio stream. Then, based on the user’s
preference or country/region, the subtitle is sent to ei-
ther N6 or N7 to be translated into one of the two op-
tional languages.
Step 3: N8 produces a media stream by merging and

synchronising the video stream, audio stream and trans-
lated subtitle.

Step 4: The media stream is transmitted to the user.
OnlineLive must process the media stream timely and

continuously. Otherwise, the user will receive a jittering
media stream. When anomalies occur and cause delays to
OnlineLive, the BCs must be inspected to identify the
faulty ones. Random inspection is a simple approach.
However, we must prioritise the BCs that are more likely
to be faulty in order to localize the anomalies rapidly. By
doing so, adaptation actions can be taken to fix the anom-
aly in time to avoid or reduce the system delay caused by
the anomalies.

The most intuitive solution for timely detection of
runtime anomalies is to constantly monitor all the BCs of
OnlineLive. Another solution is to comprehensively in-
spect the status and quality of all BCs every time a system
delay occurs. As discussed in Section 1, both solutions are
expensive in terms of time and resource consumption,

and thus are often impractical. Another approach is to
employ end-to-end quality information of OnlineLive for
localizing the occurring anomalies. Four execution scenar-
ios can be identified from OnlineLive: es1={EP1, EP3},
es2={EP1, EP4}, es3={EP2, EP3} and es4={EP2, EP4}, as pre-
sented in Fig. 2. Which one will be executed in response
to a user request is dependent on the runtime decisions
made at the two branch structures. Assume that the con-
straint for the response time of OnlineLive is 3.0s but now
it is taking OnlineLive 3.5s to process user requests, re-
sulting in a system delay. System logs indicate that the
current end-to-end response times of es1, es2 es3 and es4 are
3.3s, 2.4s, 3.5s and 2.5s respectively. Obviously, es1 and es3
have violated the constraint of response time, thus there
must be at least one faulty BC in both of these two execu-
tion scenarios. By comparing these four execution scenar-
ios, we can find that: EL, N6 and EN are exclusively in-
voked by these two delayed execution scenarios; EM, N7
and EO are only involved in the normal execution scenari-
os; while the rest BCs are included in both cases. There-
fore, we can reasonably infer that EL, N6 and EN are the
most suspicious BCs that result in the system delay. Fur-
thermore, multiple concurrent anomalies occurring in
OnlineLive will cause a more severe end-to-end system
delay, which is determined by the execution scenario
with the maximum execution time among es1, es2 es3 and
es4. If one execution scenario is experiencing an especially
severe delay, the BCs that belong to that execution scenar-
io, especially those that exclusively belong to that execu-
tion scenario, are more likely to be faulty. Those BCs must
be prioritised in the inspection.

By analysing end-to-end quality information, our ap-
proach can help the system administrator localize the
faulty BCs quickly by ranking the BCs of Onlive in de-
cending order of their suspiciousness of being faulty.

3 ANOMALY LOCALIZATION

N1

N2

N7

N8

N1: Split video and audio
N2: Encode video 360P
N3: Embed advertisement
N4: Encode video 1080P

N5: Recognise speech
N6: Translate Subtitle into Chinese
N7: Translate subtitle into Japanese

EA

EJ

EC

EG

EH

EL

EM

EN

EO

ER

EP1

EP2

EP3

EP4EK EP

EQ
EB

N5 N6

ED

EE

EI

N3EF

N8: Merge video, audio and subtitle

N4

 Fig. 1. Process of OnlineLive.

N5

N2

N6

N8

EJ

ED EG

EL EN

ER

N1

N5

N2

N7

N8
EA

EJ EM EO

ER

(a) Execution Scenario 1 (es1)

(b) Execution Scenario 2 (es2)

EQ

EQEB

Et1

Et3

Et1

Et4

N1
EA EB

N5

N4

N6

N8

EJ

EE EH

EL EN

ER

(c) Execution Scenario 3 (es3)

EQ

Et2

Et3

N1
EA EB

N5

N4

N7

N8

EJ

EE EH

EM EO

ER

(d) Execution Scenario 4 (es4)

EQ

Et2

Et4

N1
EA EB

N3
EF

N3
ED EGEF

 Fig. 2. Execution scenarios of OnlineLive.

4 IEEE TRANSACTIONS ON SERVICES COMPUTING

Our anomaly localization approach is designed as a five-
phase process as shown in Fig. 3. In Phase 1, the loops in
the SOS are peeled. In Phase 2, a set of execution scenari-
os are identified from the SOS. Then, in Phase 3, the sys-
tem spectra are constructed. In Phase 4, similarity coeffi-
cients and delay coefficients are calculated for the BCs of
the SOS. Finally, in Phase 5, the BCs are ranked based on
their similarity coefficients and delay coefficients to sug-
gest an order in which the BCs should be inspected. De-
tails of these phases are presented in Section 3.1 to Section
3.5 respectively.

3.1 Phase 1: Loop Peeling
In this research, we use four types of basic compositional
structures, i.e., sequence, branch, loop and parallel for repre-
senting and analysing SOS. These compositional struc-
tures are included in BPMN [35], and addressed by BPEL
[34] - the de facto standard for specifying service-oriented
business processes. They are also adopted in many other
studies on SOS [5, 16, 50].
• Sequence. In a sequence structure, the BCs are execut-

ed one by one.
• Branch. In a branch structure, only one branch is se-

lected for execution. For a set of branches {b1, …, bn},
the execution probability distribution {p(b1), …, p(bn)},

(0≤p(bi)≤1,∑ =1 () = 1.0)
n

ii p b is specified, where p(bi),
i=1, …, n, is the probability that the ith branch is select-
ed for execution.

• Loop. In a loop structure, the loop is executed for n (0
≤n≤MNI) times. For a loop, the probability distribu-

tion {p0, …, pMNI}, (0≤pi≤1,
0

1.0)
MNI

i= ip =∑ is specified,

where pi, i=0, …, MNI, is the probability that the loop
iterates for i times and MNI is the expected maximum
number of iterations for the loop.

• Parallel. In a parallel structure, all the branches are
executed at the same time.
The probabilities, p(bi), pi and the maximum number of

iterations can be evaluated based on the past executions
of the SOS or can be specified by the developer [5]. We
assume that for a loop, the MNI can be determined or
estimated. Otherwise, without an upper bound for the
number of iterations, the execution times of the execution
paths that contain the loop cannot be calculated since the
loop may iterate infinitely.

We represent service compositions using UML activity
diagrams, where the nodes represent component services
and the edges represent data transmissions. Without los-

ing generality, we assume that a service composition is
characterised by only one entry point and one exit point,
and only includes structured loops with only one entry
point and one exit point. If a service composition includes
loops, we peel the loops by representing loop iterations as
a set of branches with corresponding execution probabili-
ties [5]. Fig. 4 gives an example of peeling a loop structure
(MNI=2) by transforming it into a branch structure that
contains three branches b1, b2 and b3, where p0, p1 and p2 are
the probabilities that b1, b2 and b3 are selected for execu-
tion respectively. (Note that the first branch b1 is selected
if the loop iterates for 0 times, i.e., corresponding to p0).

3.2 Phase 2: Execution Scenario Identification
In a service composition where branches or loops are in-
volved, different execution paths may be selected for exe-
cution. Thus, multiple execution scenarios can be identified
from the service composition. These execution scenarios
do not contain branch or loop structures. As depicted in
Fig. 2, four execution scenarios can be identified from
OnlineLive: es1={EP1, EP3}, es2={EP1, EP4} es3={EP2, EP3}
and es4={EP2, EP4}. The identified execution scenarios will
be used for constructing the system spectra as described
next in Section 3.3.

3.3 Phase 3: System Spectra Construction
Anomaly localization requires analysis of the differences
in system spectra [42] for individual execution scenarios
of the SOS. A system spectrum is a collection of execution
traces that shows which BCs were included during an

true
false

true
false

false
true

false
true

(a)

(b)

(c)

b1

p0

b2

p1

b3

p2b1

b2

b1'

b1''

b2

b2 b1'

b2

b1'

b1''

b2

Fig. 4. Loop peeling process.

Functional
Specification of SBS

Phase 1
Loop Peeling

Phase 2
Execution Scenario

Identification

Phase 3
System Spectra

Construction

Build-Time Runtime

Phase 4
Coefficient
Calculation

Possible
Anomaly
Location

Execution Scenario
Information

Phase 5
BC Ranking

QoS Violation
Information

End-to-End Quality
Information

Fig. 3. Anomaly localization approach.

HE ET AL.: LOCALIZING RUNTIME ANOMALIES IN SERVICE-ORIENTED SYSTEMS 5

execution of the SOS. In this research, a system spectrum
contains a flag for each BC of the SOS to indicate whether
or not that BC is included in a particular execution scenar-
io of the SOS. Take OnlineLive as an example. There are
four system spectra, one for each execution scenario, as
presented by the four dark grey columns in Table 1.

The system spectra of n execution scenarios constitute
an n × m binary matrix, where m is the number of BCs in
an SOS, as presented in Fig. 5. Given [1, ...,]i n∈ and

[1, ...,]j m∈ , cij=1 indicates that the jth BC is included in
the ith execution scenario. The four dark grey columns in
Table 1 constitute the system spectra of OnlineLive. Each
row in the matrix is a system spectrum that indicates
whether a BC is part of an execution scenario. For exam-
ple, the first row, (1, 1, 1, 1), indicates that N1 is part of all
four execution scenarios, es1, es2, es3 and es4. The second
row, (1, 1, 0, 0) indicates that N2 is part of es1 and es2, but
not es3 and es4. The system spectra will be used in the sim-
ilarity coefficient calculation for anomaly localization dis-
cussed next in Section 3.4.

3.4 Phase 4: Coefficient Calculation

This section presents the calculation of two coefficients,
similarity coefficient and delay coefficient. They indicate
the suspiciouseness of BCs being faulty and are used in
Phase 5 for ranking the BCs for inspection.

3.4.1 Similarity Coefficient
A similarity coefficient score is calculated based on a BC’s
involvement in all the normal and delayed execution sce-
narios. It indicates the suspiciousness of a BC being faulty.
It also approximates the reliability of a BC [41], where a
high similarity coefficient score implies low reliability.

In Fig. 5, the binary delay vector that contains n flags is
used to represent which execution scenarios are experi-
encing a delay in processing user requests. Given
∈i n[1, ...,] , vi=1 indicates that esi is experiencing a delay,

and 0 otherwise. To complete the delay vector, the time
consumed by each execution scenario in processing user
requests needs to be logged. It can be obtained from the
execution engine of the SOS by calculating the time dif-
ference between the arrival of user requests and the de-
livery of corresponding outcomes. This is feasible because
the execution engine that invokes the distributed services
is centrally managed by the SOS provider [38]. Each re-
quest will traverse one execution scenario, depending on
the runtime decisions made in the branch structures of
the SOS. Which execution scenario each user request
traverses also needs to be recorded to complete the delay
vector depicted in Fig. 5. This can be achieved by record-
ing the runtime decisions made at the branches by the
execution engine of the SOS. Now assume that an anoma-

n

   
   
   
   
   
   

11 12 1 1

21 22 2 2

1 2

BCs Delay Vector

execution scenario

m

m

n n nm n

m
c c c v
c c c v

c c c v





   



Fig. 5. System spectra and delay vector.

TABLE 1
SYSTEM SPECTRA, SIMILARITY COEFFICIENT AND BC RANKS FOR ONLINELIVE

(ANOMALY OCCURING IN N6)

Basic Component Execution Scenario n11 n10 n01 n00
Similarity Coefficient Ranking (by cO) es1 es2 es3 es4 cJ cT cO

N1 1 1 1 1 2 2 0 0 0.50 0.50 0.71 11
N2 1 1 0 0 1 1 1 1 0.33 0.50 0.50 19
N3 1 1 0 0 1 1 1 1 0.33 0.50 0.50 19
N4 0 0 1 1 1 1 1 1 0.33 0.50 0.50 19
N5 1 1 1 1 2 2 0 0 0.50 0.50 0.71 11
N6 1 0 1 0 2 0 0 2 1.00 1.00 1.00 3
N7 0 1 0 1 0 2 2 0 0.00 0.00 0.00 22
N8 1 1 1 1 2 2 0 0 0.50 0.50 0.71 11
EA 1 1 1 1 2 2 0 0 0.50 0.50 0.71 11
EB 1 1 1 1 2 2 0 0 0.50 0.50 0.71 11
ED 1 1 0 0 1 1 1 1 0.33 0.50 0.50 19
EE 0 0 1 1 1 1 1 1 0.33 0.50 0.50 19
EF 1 1 0 0 1 1 1 1 0.33 0.50 0.50 19
EG 1 1 0 0 1 1 1 1 0.33 0.50 0.50 19
EH 0 0 1 1 1 1 1 1 0.33 0.50 0.50 19
EJ 1 1 1 1 2 2 0 0 0.50 0.50 0.71 11
EL 1 0 1 0 2 0 0 2 1.00 1.00 1.00 3
EM 0 1 0 1 0 2 2 0 0.00 0.00 0.00 22
EN 1 0 1 0 2 0 0 2 1.00 1.00 1.00 3
EO 0 1 0 1 0 2 2 0 0.00 0.00 0.00 22
EQ 1 1 1 1 2 2 0 0 0.50 0.50 0.71 11
ER 1 1 1 1 2 2 0 0 0.50 0.50 0.71 11

Delay 1 0 1 0

6 IEEE TRANSACTIONS ON SERVICES COMPUTING

ly is occurring in N6, slowing it down and violating the
constraint for the response time of OnlineLive. Because N6
is included in EP3, the system delay is only observed in es1
and es3. The sytem delay vector will be: (1, 0, 1, 0). Table 1
presents the system spectra constructed for OnlineLive.

The similarity between the binary delay vector and a
system spectrum indicates the suspiciousness of the cor-
responding BC being responsible for the occurring system
delay. In Table 1, only the system spectra corresponding
to N6, EL and EN are consistent with the delay vector –
they are all (1, 0, 1, 0). Thus, N6, EL and EN can be identi-
fied as the most suspicious BCs and should be inspected
with the highest priority.

For large-scale applications, the system spectra and the
delay vectors can be remarkably large and complex. The
suspicious BCs are those whose corresponding system
spectra are most statistically similar to the delay vector. In
order to statistically analyse the similarity between the
system spectra and the delay vector, we now extract the
features of the raw data in the system spectra and con-
struct a feature matrix by comparing the system spectra
with the delay vector. The feature matrix has four col-
umns for representing four features:
 npq(Sj) = |{i | xij = p ˄ vi = q}|, {0 1}p,q ,∈ (1)
where xij=1 indicates that BC Sj is included in esi, and 0
otherwise, vi=1 indicates that a delay is occurring in esi
(i.e., a delayed execution scenario) and 0 (a normal execu-
tion scenario) otherwise. n10(Sj) and n11(Sj) are the num-
bers of normal and delayed execution scenarios respec-
tively where Sj is involved. n00(Sj) and n01(Sj) are the num-
bers of normal and delayed execution scenarios respec-
tively where Sj is NOT involved.

Now the statistical similarity between each of the sys-
tem spectrum and the delay vector can be quantified by
calculating the similarity coefficients of the BCs. Calculat-
ed in different ways, many similarity coefficients exist,
e.g., Jaccard coefficient cJ, used by the Pinpoint tool [12],
the coefficient cT used in the Tarantula fault localization
tool [25] and the Ochiai coefficient cO often used in the
molecular biology domain [14]:

 11

11 01 10

j
J j

j j j

n (S)
c (S) =

n (S) + n (S) + n (S)
 (2)

 cT(Sj)=









10 00

11

11 01

11 10

11 01 10 00

1.00 if 0

otherwise

j j

j

j j

j j

j j j j

n (S) + n (S) =

n (S)

n (S) + n (S)

n (S) n (S)
+

n (S) + n (S) n (S) + n (S)

 (3)

11

11 01 11 10

j
O j

j j j j

n (S)
c (S) =

(n (S) + n (S)) (n (S) + n (S))×
 (4)

where Sj is a BC. A higher similarity coefficient indicates
higher suspiciousness of a BC being faulty.

3.4.2 Delay Coefficient
In a volatile operating environment, multiple anomalies

may occur at the same time to different BCs of an SOS,
especially for large-scale SOSs that consist of many BCs.
Multiple concurrent anomalies usually cause more severe
delays than a single anomaly. As discussed in Section 2,
the BCs in an execution scenario where a more severe
delay is occurring are more suspicious of being faulty.
However, it is not reflected by the Jaccard coefficient, Ta-
rantula coefficient and Ochiai coefficient because they
take into account only whether there is a delay in an exe-
cution scenario. The binary delay vector does not indicate
the severity of the delay occurring in each of the execu-
tion scenarios. When multiple anomalies occur at the
same time, the probability is high that most, sometimes
even all, of the execution scenarios will be delayed, lead-
ing to a delay vector with many 1s, even full 1s, i.e., (1,
1, …, 1). Such a delay vector will lower the variety of the
feature vectors (the light grey rows) in the feature matrix,
making it harder to use the similiarity coefficients to dis-
tinguish the BCs from each other.

Take Fig. 2 for example: suppose two anomalies are
occurring, one to service N5 and the other to service N6.
Table 2 presents the corresponding system spectra, simi-
larity coefficients and BC ranks. As presented by the cor-
responding system spectra, N5 belongs to all four execu-
tion scenarios and N6 belongs to es1 and es3. N5 causes a
delay to all four execution scenarios, resulting in a delay
vector (1, 1, 1, 1). Constructed based on the comparison
between the system spectra and the all-1 delay vector, the
feature matrix contains only (4, 0, 0, 0) and (2, 2, 0, 0). The
consequence is low variety in the similarity coefficients
and rankings for the BCs. As presented by the Ranking (by
co) column, besides N5, seven other BCs are ranked 8 as
the most suspicious BCs. N6 is ranked 21 together with all
the other BCs. In the best case scenario, N5 is pinpointed
as a fault BC at the first inspection of all the BCs ranked 8
and N6 is pinpointed as an abnormal BC at the second
inspection. The total number of BCs that must be inspect-
ed to pinpoint N5 and N6 is 2. In the worse case scenario,
the number is 21. On average, it is 11.5, getting close to
random inspection, which needs to inspect an average of
16.18 BCs to pinpoint both N5 and N6. Apparently, the
traditional SFL techniques based on Jaccard coefficient,
Tarantual conefficient and Ochiai coefficient cannot han-
dle concurrent anomalies effectively.

In order to address this issue, we need to take into ac-
count the severity of the delays caused to each execution
scenario. In Fig. 2, concurrent anomalies occurring in N5
and N6 will cause more severe delays to es1 and es3 com-
pared to es2 and es4 because es1 and es3 contain both N5
and N6 while es2 and es4 contain only N5. We calculate the
delay coefficient, denoted by cd, to further indicate the sus-
piciousness of a BC based on the severity of the delays
caused by anomalies to the execution scenarios. Given a
set of resj(esi), j=1, …, h, logged as the response time of
execution scenario esi for processing n user requests after
the systeme delay is detected, we calculate the standard
deviation of resj(esi) (j=1, …, h) from its normal value

() ires es :

HE ET AL.: LOCALIZING RUNTIME ANOMALIES IN SERVICE-ORIENTED SYSTEMS 7

 ∑ 2

1

1
(()) (() ())

h

i j i i
j=

SD res es = res es - res es
h

 (5)

We measure the severity of a delay by measuring the
standard deviation of the response times of execution
scenarios. To compare the severity of delays caused by
the anomalies to different execution scenarios esi (i=1, …,
m) on the same scale independently of their original re-
sponse times, we calculate the coefficient of variation for
each esi:

 cv(esi)=
(())

()
i

i

SD res es

res es
=

∑ 2

1

1
(() ())

()

h

j i i
j=

i

res es - res es
h

res es
 (6)

Next, the min-max normalisation technique, which has
been widely used in a number of approaches for QoS
evaluation [5, 20, 48], is employed to normalise the coeffi-
cients of variation as follows:

 ˆ


≠




() () if () ()
() ()()

1 if () = ()

min
max minv i v i
v i v imax min

v i v iv i
max min
v i v i

c es - c es c es c es
c es - c esc es =

c es c es
 (7)

where ()v
max

ic es and ()min
v ic es are the maximum and mini-

mum values in cv(esi), i=1, …, m. Suppose two anomalies
are occurring, one to N5 and the other to N6 in Fig. 2. Ta-
ble 3 presents the calculation of the normalised coeffi-
cients of variation for es1, es2, es3 and es4.

The BCs that belong to an execution scenario with a

severe delay (indicated by a high cv) should be prioritised
in the inspection. However, a BC can belong to multiple
execution scenarios. Thus, we average the coefficients of
variation for all the execution scenarios that a BC Sj be-
longs to to calculate the delay coefficient of the BC:

 cD(Sj)=
ij

ij

ˆx

x

⋅∑

∑
1

1

()
n

v i
i=

n

i=

c es
 (8)

TABLE 3
DELAY COEFFICIENT CALCULATION

(ANOMALIES OCCURING IN N5 AND N6)
 es1 es2 es3 es4

 () res es 2.30 2.40 2.50 2.50

res1(es) 4.82 3.46 4.77 3.46

res2(es) 4.85 3.39 4.82 3.41

res3(es) 4.75 3.41 4.83 3.39

res4(es) 4.73 3.50 4.76 3.32

SD(res(es)) 2.49 1.04 2.30 0.90

cv(es) 1.08 0.43 0.92 0.36

ˆ ()vc es 1.00 0.10 0.77 0.00

TABLE 2
SYSTEM SPECTRA, SIMILARITY COEFFICIENT AND BC RANKS FOR ONLINELIVE

(ANOMALIES OCCURING IN N5 AND N6)

Basic
Component

Execution
Scenario n11 n10 n01 n00

Similarity
Coefficient Ranking

(by cO)

Delay
Coefficient

cD

Ranking
(by cD) es1 es2 es3 es4 cJ cT cO

N1 1 1 1 1 4 0 0 0 1 1 1 8 0.47 8
N2 1 1 0 0 2 0 2 0 0.5 0.5 0.71 22 0.55 16
N3 1 1 0 0 2 0 2 0 0.5 0.5 0.71 22 0.55 16
N4 0 0 1 1 2 0 2 0 0.5 0.5 0.71 22 0.39 19
N5 1 1 1 1 4 0 0 0 1 1 1 8 0.47 8
N6 1 0 1 0 2 0 2 0 0.5 0.5 0.71 22 0.89 11
N7 0 1 0 1 2 0 2 0 0.5 0.5 0.71 22 0.05 22
N8 1 1 1 1 4 0 0 0 1 1 1 8 0.47 8
EA 1 1 1 1 4 0 0 0 1 1 1 8 0.47 8
EB 1 1 1 1 4 0 0 0 1 1 1 8 0.47 8
ED 1 1 0 0 2 0 2 0 0.5 0.5 0.71 22 0.55 16
EE 0 0 1 1 2 0 2 0 0.5 0.5 0.71 22 0.39 19
EF 1 1 0 0 2 0 2 0 0.5 0.5 0.71 22 0.55 16
EG 1 1 0 0 2 0 2 0 0.5 0.5 0.71 22 0.55 16
EH 0 0 1 1 2 0 2 0 0.5 0.5 0.71 22 0.39 18
EJ 1 1 1 1 4 0 0 0 1 1 1 8 0.47 8
EL 1 0 1 0 2 0 2 0 0.5 0.5 0.71 22 0.89 11
EM 0 1 0 1 2 0 2 0 0.5 0.5 0.71 22 0.05 22
EN 1 0 1 0 2 0 2 0 0.5 0.5 0.71 22 0.89 11
EO 0 1 0 1 2 0 2 0 0.5 0.5 0.71 22 0.05 22
EQ 1 1 1 1 4 0 0 0 1 1 1 8 0.47 8
ER 1 1 1 1 4 0 0 0 1 1 1 8 0.47 8

Delay 1 1 1 1

8 IEEE TRANSACTIONS ON SERVICES COMPUTING

where xij is 1 if Sj belongs to esi and 0 otherwise.
The Delay Coefficient cD column in Table 2 presents the

delay coefficients of the BCs of OnlineLive calculated
based on Table 3.

3.5 Phase 5: BC Ranking
Based on the similarity coefficient scores, the BCs can be
ranked from high to low, where the highest indicates the
most suspicious. When multiple BCs share a same coeffi-
cient score, we use the approach reported in [44]: all tied
BCs get the greatest ranking number. The Ranking (by cO)
columns in Table 1 and Table 2 present the rankings of all
BCs in OnlineLive in the cases of one anomaly (occurring
in N6) and two anomalies (occurring in N5 and N6) respec-
tively. BCs can also be ranked by their delay coefficient
scores. Based on their similarity coefficients and delay
coefficients, we can rank BCs in different ways. One op-
tion is to first rank them by their similarity coefficient
scores and then rank the ones sharing the same similarity
coefficient scores by their delay coefficient scores. Table 2
presents the BCs of OnlineLive ranked in this way. 14 BCs,
are ranked 22 by their similarity coefficient scores, as in-
dicated by column Ranking (by cO). They are further
ranked 11, 16, 19 and 22 by their delay coefficient scores,
as indicated by column Ranking (by cD). The ranking pro-
vides system administrator with an order in which the
BCs are inspected. For OnlineLive, starting from the BC
with the highest ranking, 2 BCs in the best case scenario
and 11 BCs in the worst case scenario need to be inspect-
ed to pinpoint both faulty BCs, i.e., N5 and N6. On average,
6.5 BCs need to be inspected to pinpoint both N5 and N6,

requiring much less BCs to be inspected to localize all
faulty BCs compared to random inspection which needs
to inspect an average of 16.18 BCs.

The BCs can also be ranked in other ways. For example,
they can be ranked first by their delay coefficient scores
then by their similarity coefficient scores. The similarity
coefficient and delay coefficient can also be combined into
one coefficient for ranking the BCs. For example, BCs can
be ranked by the average of their similarity coefficient
scores and delay coefficient scores, i.e., (cO+cD)/2. In Sec-
tion 4, we will experimentally evaluate the three ranking
methods discussed above.

4 EXPERIMENTS
We conducted a range of experiments in a simulated vol-
atile environment to evaluate our anomaly localization
approach. Section 4.1 describes the setup of the experi-
ments and Section 4.2 presents the experimental results.

4.1 Experimental Setup
For the evaluation, we have implemented the following
inspection approaches:
• Random inspection. In response to any anomalies, this

approach inspects the BCs randomly to localize the
faulty BCs. It stops when all anomalies are localized.
Inspected BCs are not reinspected. This inspection ap-
proach is the baseline for the evaluation.

• cO Ranking. This inspection approach was proposed
and evaluated by us in [18]. In response to runtime

anomalies, this approach evaluates the suspiciousness
of a BC by calculating the Ochiai-based similarity coef-
ficients of the BCs. The BC with highest similarity effi-
cient is inspected first. This approach also stops when
all anomalies are localized. As discussed in Section 3.4,
there are other coefficients that can be used to calculate
the similarity of BCs, e.g., Jaccard and Tarantula. We
adopt the Ochiai coefficient because it outperforms the
Jaccard and Tarantula coefficients in localizing runtime
anomalies in SOSs as demonstrated in [18], as well as
[2, 44] for traditional software programs. This ap-
proach has also been adopted and studied by many re-
searchers on fault localization for traditional software
programs [6, 32, 37, 44].

• cO-cD Ranking. This approach ranks the BCs first by
their Ochiai-based similarity coefficient scores then by
their delay coefficient scores. The BCs are then inspect-
ed by decending order of their rankings.

• cD-cO Ranking. This approach is similar to the cO-cD ap-
proach, but it ranks BCs first by their delay coefficient
scores then by their Ochiai-based similarity coefficient
scores.

• (cD+cO)/2 Ranking. This approach ranks BCs by the
average of their similarity coefficient scores and delay
coefficient scores.
To measure the effectiveness of the anomaly localiza-

tion approaches, we use the localization cost, i.e., the per-
centage of BCs of an SOS that must be inspected before
localizing all faulty BCs. This measure has been widely
used by other researchers [13, 44] for fault localization
studies. A low localization cost indicates high effectiveness and
vice versa. An approach with less localization cost can
pinpoint the faulty BCs quicker and incurs less inspection
expense, i.e., the costs for inspecting BCs during the local-
ization process. For example, in Table 1, the ranking of N6
(the faulty BC) is 3, the same as EL and EN. The system
administrator can choose to inspect all the suspicious BCs
at the same time or to inspect them in a random order. In
a worst case scenario, the cost of pinpointing the anomaly
is 3/22, or 13.64%. In the case of multiple anomalies, e.g.,
Table 2, our approach will inspect N1, N5, N8, EA, EB, EJ, EQ
and ER first, which are ranked 8 by their delay coefficients
CD. After that, N6, EL and EN, which are ranked 11, are
inspected. Thus, in the worst case scenario, the cost of
pinpointing the faulty N5 and N6 with our approach is
(8+3)/22=11/22, or 50.00%.

In order to evaluate our approach on different scales,
we conduct 9 sets of experiments, where the component
services of the SOS increases from 20 to 100 in steps of 10.
Given a specific number of component services, the SOS
is randomly structured with the sequence, branch and
parallel structures discussed in Section 3.1. The loop
structure is omitted because it will be transformed into
branch structure anyway, as discussed in Section 3.1.

The response times of the BCs are generated according
to different normal distributions based on a publicly
available Web service dataset QWS [3, 4]. QWS comprises
measurements of 9 QoS attributes (including response
time) of over 2500 real-world Web services. The infor-
mation about the services was collected from public UD-
DI registries, search engines and service portals. Their

HE ET AL.: LOCALIZING RUNTIME ANOMALIES IN SERVICE-ORIENTED SYSTEMS 9

QoS values were measured using benchmark tools. At
runtime, we generated and introduced a number of con-
current anomalies to randomly picked BCs to simulate a
volatile operating environment. We increased the number
of concurrent anomalies from 1 to 10 in steps of 1 in each
set of experiments to simulate increasing levels of volatili-
ty in the operating environment. When anomalies oc-
curred in BCs, delays that were randomly generated ac-
cording to a normal distribution were applied to the cor-
responding BCs. In the real world, the delays caused by
different anomalies to different BCs are usually different.
There are short, medium and long ones, which delay the
system to varying degrees. The long ones can significant-
ly delay the system execution while the short ones can be
neglected. There are many uncertain factors that may im-
pact on the actual delay caused to a BC by an anomaly,
e.g., the severity of the anomaly and the robustness of the
BC. To simplify the application of delays and provide a
generalised reference in the experiments, we generated
delays caused by anomalies to different BCs according to
a same normal distribution. This way, we consider or fo-
cus on only the “cost saving” effects from early anomaly
localization enabled by our approach.

Upon runtime anomalies, we adopted random inspec-
tion, cO ranking approach and our approaches to pinpoint
the faulty BCs. All experiments were conducted on a ma-
chine with Intel i5-4570 CPU 3.20GHz and 8 GB RAM,
running Windows 7 x64 Enterprise. For each set of exper-
iment, we averaged the results obtained from 100 runs.

4.2 Experimental Results

4.2.1 Effectiveness
Table 4 presents the average localization costs of the 5
approaches across all 9 sets of experiments. On average,
our three approaches, i.e., cO-cD, cD-cO and (cD+cO)/2, sig-
nificantly outperform random inspection, by 13.1%, 18.2%
and 18.1% respectively, compared to cO ranking approach
by 6.4%. In general, the advantages of our approaches
over random inspection gradually decrease as the envi-
ronmental volatility (indicated by the increasing number
of concurrent anomalies) increases. However, their ad-
vantages over cO ranking approach increase as the exper-
imental volatility increases.

Fig. 6 compares the localization cost of our approaches
(represented by CO-CD, CD-CO and (CO+CD)/2), with
random inspection (represented by RANDOM) and the cO
ranking approach (represented by CO). In the case of a
single anomaly, as expected, random inspection has to
inspect approximately 50% of the BCs to pinpoint the
faulty BC. In such scenarios, a single runtime anomaly
does not lead to mutually-distinguisable end-to-end de-
lays to different execution scenarios, making it impossible
for our approaches to evaluate and utilise the severity of
the end-to-end delays. As expected, cO ranking approach
and our approach demonstrate similar localization cost,
between 12% and 27%, outperforming random inspection
by significant margins.

As the number of concurrent anomalies increases,
more BCs must be inspected to pinpoint all runtime
anomalies. Accordingly, the localization costs of all ap-
proaches increase as the number of anomalies increases,

rapidly at the beginning and gradually afterwards. As the
number of concurrent anomalies increases, the probabil-
ity that all the execution scenarios experience delays in-
creases. Delays occurring in all execution scenarios will
lead to all-1 delay vectors, making it hard for cO ranking
approach to pinpoint all the faulty BCs. Using not only
the similarity coefficient but also the delay coefficient, our
approaches can handle concurrent anomalies more effi-
ciently, but still requires over 70% of the BCs to be in-
spected when there are 7 or more concurrent anomalies.

An interesting obersevation is that, as the number of
concurrent anomalies increases, the localization cost of cO
ranking approach gradually approximates that of the
random inspection. The localization cost of cO ranking
approach catches up with that of the random inspection
at certain points in all 9 sets of experiments, e.g., 6 in the
first set of experiments, 7 in the fifth set and 8 in the ninth
set. More concurrent anomalies indicate a more volatile
operating environment and consequently a less reliable
SOS. Thus, this oberservation shows that cO ranking ap-
proach loses its advantage over random inspection in
very volatile operating environments. Howerver, our ap-
proaches still demonstrate significantly better effective-
ness than random inspection. Compared with cO ranking,
our approaches achieve similar localization costs in rela-
tively stable operating environments where only one or
two concurrent anomalies are occurring in the SOS. How-
ever, their advantages over cO ranking start to manifest as
the number of concurrent anomalies increases. This is
clearly demonstrated by the large gap below the red line
in the cases of 2+ anomalies. Compared with cO ranking,
our approaches require much less BCs to be inspected to
pinpoint all faulty BCs in volatile environments. In large-
scale scenarios, this advantage can lead to significant sav-
ing of system administrative cost. For example, for an
SOS that consists of 100 services, our cD-cO approach re-
quires an average of 3 to 13 less services to be inspected

TABLE 4
AVERAGE LOCALIZATION COSTS

(ACROSS ALL SETS OF EXPERIMENTS)

of
Anomalies Random cO cO-cD cD-cO DOc c+

2

1 0.499 0.167 0.163 0.161 0.165

2 0.672 0.525 0.491 0.492 0.490

3 0.748 0.687 0.632 0.571 0.571

4 0.806 0.771 0.699 0.626 0.627

5 0.838 0.815 0.738 0.663 0.664

6 0.864 0.847 0.759 0.688 0.691

7 0.879 0.869 0.786 0.720 0.721

8 0.893 0.886 0.801 0.740 0.742

9 0.903 0.897 0.814 0.759 0.760

10 0.913 0.908 0.826 0.775 0.776

Average 0.802 0.737 0.671 0.619 0.621

10 IEEE TRANSACTIONS ON SERVICES COMPUTING

than cO ranking to localize all the anomalies. Our ap-
proaches can significantly speed up the anomaly detec-
tion process. Then, adaptation actions can be taken im-
mediately to fix the system, relieving or eliminating the
end-to-end system delay.

Although not explicitly demonstrated in Figure 5, it
can be inferred that the localization costs of all approach-
es will reach 1.0 in an extreme environment where all BCs
are faulty. In such a scenario, it does not make a differ-
ence which BCs to inspect first because all BCs are faulty.

Now we compare our own three approaches that rank
BCs by their similarity coefficient scores and delay coeffi-
cient scores in different ways. The cD-cO and (cO+cD)/2
approaches demonstrate very similar performance, both
outperforming the cO-cD approach. The advantages of the
cD-cO and (cO+cD)/2 approaches over the cO-cD approach
increase as the number of concurrent anomalies increase
and as the size of the system increases. According to Ta-
ble 4, the final winner is the cD-cO approach, with only

marginal advantange over the (cO+cD)/2 approach.
To conclude, in a very stable operating environment, it

does not make a big difference which anomaly localiza-
tion approach is adopted. In a large-scale and volatile
environment, our cD-cO approach has the best perfor-
mance and is the most preferable choice over other ap-
proaches.

4.2.2 Efficiency
As discussed in Section 1, the response time plays an im-
portant role in the success of an SOS. A runtime localias-
tion approach must not take too much time to localize
runtime anormalies occurring in an SOS because quick
anomaly localization and rapid system adaptation are
required to minimise the system delays perceived by the
users of the system. An approach that can accurately rank
the BCs according to their suspiciousness of being faulty
is impractical if it needs to take a very long time. Here, we
evaluate the efficiency of our approach, measured by the

 (a) 20 services (b) 30 services (c) 40 services

 (d) 50 services (e) 60 services (f) 70 services

 (g) 80 services (h) 90 services (i) 100 services

Fig. 6. Anomaly localization cost.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

Lo
ca

lis
at

io
n

Co
st

Number of Anomalies

RANDOM

CO

CO-CD

CD-CO

(CO+CD)/2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

Lo
ca

lis
at

io
n

Co
st

Number of Anomalies

RANDOM

CO

CO-CD

CD-CO

(CO+CD)/2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

Lo
ca

lis
at

io
n

Co
st

Number of Anomalies

RANDOM

CO

CO-CD

CD-CO

(CO+CD)/2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

Lo
ca

lis
at

io
n

Co
st

Number of Anomalies

RANDOM

CO

CO-CD

CD-CO

(CO+CD)/2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

Lo
ca

lis
at

io
n

Co
st

Number of Anomalies

RANDOM

CO

CO-CD

CD-CO

(CO+CD)/2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

Lo
ca

lis
at

io
n

Co
st

Number of Anomalies

RANDOM

CO

CO-CD

CD-CO

(CO+CD)/2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

Lo
ca

lis
at

io
n

Co
st

Number of Anomalies

RANDOM

CO

CO-CD

CD-CO

(CO+CD)/2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

Lo
ca

lis
at

io
n

Co
st

Number of Anomalies

RANDOM

CO

CO-CD

CD-CO

(CO+CD)/2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

Lo
ca

lis
at

io
n

Co
st

Number of Anomalies

RANDOM

CO

CO-CD

CD-CO

(CO+CD)/2

HE ET AL.: LOCALIZING RUNTIME ANOMALIES IN SERVICE-ORIENTED SYSTEMS 11

computation time taken to calculate the coefficients and
rank the BCs, i.e., phases 4 and 5 in the anomaly localiza-
tion procedure as presented in Fig. 3. The reason is that
phases 1, 2 and 3 are performed offline at build-time
while phases 4, 5 and 6 are performed at runtime and
directly contribute to the total time consumption for
anomaly localization upon runtime anomalies.

Our experimental results show that even in the largest-
scale scenarios with SOSs sized 100 services, the coeffi-
cient calculation and BC ranking take only a few millisec-
onds to complete. This is expected because the spectrum-
based anomaly localization, which is a statistical tech-
nique, has long been acknowledged as an extremely
lightweight approach [44]. Detailed experimental results
are not presented in this subsection as it does not provide
any new and insightful findings about spectrum-based
anormaly localization. Compared to cO ranking, our ap-
proach takes only less than 1 millisecond extra computa-
tion time. Such a short extra computation time is negligi-
ble in most, if not all, real-world scenarios.

Based on the above discussion, we conclude that our
approach is highly efficient and can be used to localize
runtime anomalies in all types of SOSs, including time-
constrained SOSs, e.g., interactive and multimedia SOSs.
We also analyse the threat to validity of our evaluation, as
presented in Appendix A.

5 RELATED WORK
When operating in volatile environments, SOSs must be
monitored in order to achieve timely and accurate detec-
tion and prediction of runtime anomalies. A great deal of
monitoring techniques and approaches has been pro-
posed for SOSs. Several languages are defined specifically
for monitoring SOSs, such as WSCoL [7] and SECMOL [8].
These languages can be used to specify monitoring rules,
constraints and assertions.

Many frameworks have also been proposed for moni-
toring SOSs. To name a few, Baresi et al. [9] propose a
general and comprehensive solution for monitoring ser-
vice compositions. In this monitoring solution, monitor-
ing constraints can be defined on single and multiple in-
stances, on punctual properties and on complete behav-
iours. Guinea et al. [15] propose a framework that inte-
grates monitoring across the software and infrastructure
layers. A variation of the MAPE control loop is intro-
duced into the framework that acknowledges the multi-
faceted nature of SOSs. Kertész et al. [27] integrate
SALMon [36] in IMA4SSP - their monitoring approach to
seamless service provisioning - so that it can collect dy-
namic reliability information of SOSs expressed in pre-
defined quality metrics.

Monitoring only the critical parts of an SOS is a cost-
effective solution [17] to SOS monitoring. As a result,
non-critical BCs will not be monitored. When an anomaly
occurs in such a BC, it must be localized quickly so that
adaptation actions can be taken to fix the anomaly imme-
diately in order to avoid or reduce the delay caused to the
system execution [7, 10, 19].

Many fault localization techniques have been proposed
for different types of software systems. To name a few,
Artzi et al. [6] present how fault localization algorithms

can be enhanced to pinpoint faults effectively in Web ap-
plications. Park et al. [37] present a dynamic fault locali-
zation technique that can pinpoint faults in concurrent
programs. Novotný et al. [39] present a method for local-
izing faults occurring in service-oriented systems on mo-
bile ad hoc networks. Sharma et al. [45] present a time-
invariant relationships based approach for fault localiza-
tion in distributed systems. Nguyen et al. [33] present
FChain, a black-box online fault localization approach for
diagnosing performance anomalies in cloud systems. It
assumes that all the components of a cloud system are
deployed within one cloud and thus all system metrics
can be discovered immediately upon a detected perfor-
mance anomaly. Thus, FChain is not suitable for SOSs
whose component services are very often distributed
across multiple clouds.

Compared to other fault localization techniques, in-
cluding program slicing [49], delta debugging [31] and
model-based diagnosis [29], spectrum-based fault locali-
zation is specifically designed to statistically calculate the
likeliness of each software component being faulty based
on information from passed and failed system runs [1]. It
has been intensively studied in the context of traditional
programming languages, such as C and Java, under the
assumption that a component with a high similarity to the
error vector has a higher probability of being the cause of
the observed failure than a component with low similari-
ty. There are many similarity coefficients that can be cal-
culated to evaluate the suspiciousness of a software com-
ponent being faulty [2]. The popular ones include the Jac-
card coefficient, used by the Pinpoint tool [12], the coeffi-
cient used in the Tarantula fault localization tool [25] and
the Ochiai coefficient cO often used in the molecular biol-
ogy domain [14]. Empirical performance comparison has
been conducted among different similarity coefficients
and the results showed that the Ochiai coefficient outper-
formed the Jaccard coefficient and the Tarantula coeffi-
cient [2, 44]. This has also been theorectically analysed
and experimentally demonstrated by our previous work
presented in [18] and [47]. Due to its high performance,
Ochiai has been used in several faulty localization tools,
e.g., Zoltar [22], GZoltar [11] and F3 [23].

An SOS is different from a traditional standalone soft-
ware system as it often operates in a distributed and vola-
tile environment. Running test cases at build-time to lo-
calize the bugs in software systems, which is the method
adopted by existing fault locsaliation techniques in the
context of traditional programming languages, is imprac-
tical in localizaing runtime anomalies occurring in SOSs.
An SOS usually consists of multiple distributed compo-
nent services, whose states are difficult to inspect upon
the occurrence of runtime anomalies. However, the exe-
cution engine of the SOS, e.g., the BPEL engine, is central-
ised. The end-to-end response time of the SOS can be in-
spected easily and end-to-end system delays can be de-
tected efficiently. Taking this advantage, this paper pre-
sents a fault localization approach to attack the challeng-
ing research problem of runtime anomaly localization for
SOSs. Our approach evaluates BCs’ suspiciousness of
being faulty by calculating their similarity coefficient
scores and delay coefficient scores. The BCs that are more
likely to be faulty are prioritised in the inspection.

12 IEEE TRANSACTIONS ON SERVICES COMPUTING

6 CONCLUSIONS
In this paper, we propose a spectrum-based approach for
anomaly localization in service-oriented systems. The
main idea is to exploit end-to-end system quality data for
localizing runtime anomalies. The system spectra are ana-
lysed to calculate the basic components’ suspiciousness of
resulting in the runtime anomaly. BCs’ similarity coeffi-
cient scores and delay coefficient scores are calculated,
which are used to rank the BCs. The comprehensive ex-
perimental analysis shows the effectiveness and efficiency
of our approach, and proves that it can significantly save
the time and efforts for runtime anomaly localization.

As part of future work, we plan to experiment with
additional similarity metrics that can be used to rank BCs,
and evaluate how their effectiveness compares to the ap-
proach presented in this paper. In addition, we will also
investigate the statistical relation between localization
cost and the number of execution scenarios.

ACKNOWLEDGMENT
This work is partly supported by Australian Research
Council Discovery Project DP150101775 and the National
Natural Science Foundation of China (Grant No.
61572375). Yun Yang is the corresponding author.

REFERENCES
[1] R. Abreu, P. Druschel, and A. J. C. van Gemund, "On the

Accuracy of Spectrum-based Fault Localization," Proc of
Testing: Academic and Industrial Conference - Practice And
Research Techniques (TAICPART-Mutation 2007), Windsor,
UK, pp. 89–98, 2007.

[2] R. Abreu, P. Zoeteweij, R. Golsteijn, and v. G. A. J.C., "A
Practical Evaluation of Spectrum-Based Fault Localization," The
Journal of Systems and Software, vol. 82, no. 11, pp. 1780–
1792, 2009.

[3] E. Al-Masri and Q. H. Mahmoud, "Investigating Web Services
on the World Wide Web," Proc of 17th International Conference
on World Wide Web (WWW 2008), Beijing, China, pp. 795-804,
2008.

[4] E. Al-Masri and Q. H. Mahmoud, "Qos-based Discovery and
Ranking of Web Services," Proc of 16th International
Conference on Computer Communications and Networks
(ICCCN07), pp. 529-534, 2007.

[5] D. Ardagna and B. Pernici, "Adaptive Service Composition in
Flexible Processes," IEEE Transactions on Software
Engineering (TSE), vol. 33, no. 6, pp. 369-384, 2007.

[6] S. Artzi, J. Dolby, F. Tip, and M. Pistoia, "Fault Localization for
Dynamic Web Applications," IEEE Transactions on Software
Engineering, vol. 38, no. 2, pp. 314-335, 2012.

[7] L. Baresi and S. Guinea, "Self-Supervising BPEL Processes,"
IEEE Transactions on Software Engineering, vol. 37, no. 2, pp.
247-263, 2011.

[8] L. Baresi, S. Guinea, O. Nano, and G. Spanoudakis,
"Comprehensive Monitoring of BPEL Processes," IEEE Internet
Computing, vol. 14, no. 3, pp. 50-57, 2010.

[9] L. Baresi, S. Guinea, M. Pistore, and M. Trainotti, "Dynamo +
Astro: An Integrated Approach for BPEL Monitoring," Proc of
IEEE International Conference on Web Services (ICWS2009),

Los Angeles, CA, USA, pp. 230-237, 2009.
[10] R. Calinescu, L. Grunske, M. Kwiatkowska, R. Mirandola, and

G. Tamburrelli, "Dynamic QoS Management and Optimisation in
Service-Based Systems," IEEE Transactions on Software
Engineering (TSE), vol. 37, no. 3, pp. 387-409, 2010.

[11] J. Campos, A. Riboira, A. Perez, and R. Abreu, "Gzoltar: An
Eclipse Plug-in for Testing and Debugging," Proc of 27th
IEEE/ACM International Conference on Automated Software
Engineering, pp. 378-381, 2012.

[12] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. A. Brewer,
"Pinpoint: Problem Determination in Large, Dynamic Internet
Services," Proc of 2002 International Conference on
Dependable Systems and Networks (DSN2002), Bethesda, MD,
USA, pp. 595-604, 2002.

[13] H. Cleve and A. Zeller, "Locating Causes of Program Failures,"
Proc of 27th International Conference on Software Engineering
(ICSE 2005), St. Louis, Missouri, USA, pp. 342-351, 2005.

[14] A. da Silva Meyer, A. A. F. Garcia, A. P. de Souza, and C. L. de
Souza, "Comparison of Similarity Coefficients Used for Cluster
Analysis with Dominant Markers in Maize (Zea Mays L),"
Genetics and Molecular Biology, vol. 27, no. 1, pp. 83-91, 2004.

[15] S. Guinea, G. Kecskemeti, A. Marconi, and B. Wetzstein, "Multi-
layered Monitoring and Adaptation," Proc of 9th International
Conference on Service-Oriented Computing (ICSOC2011),
Paphos, Cyprus, pp. 359-373, 2011.

[16] Q. He, J. Han, Y. Yang, H. Jin, J.-G. Schneider, and S.
Versteeg, "Formulating Cost-Effective Monitoring Strategies for
Services-based Systems," IEEE Transactions on Software
Engineering, vol. 40, no. 5, pp. 461-482, 2014.

[17] Q. He, J. Han, Y. Yang, J.-G. Schneider, H. Jin, and S.
Versteeg, "Probabilistic Critical Path Identification for Cost-
Effective Monitoring of Cloud-Based Software Applications,"
Proc of 9th International Conference on Service Computing
(SCC2012), Honolulu, Hawaii, USA, pp. 178-185, 2012.

[18] Q. He, X. Xie, F. Chen, Y. Wang, R. Vasa, Y. Yang, and H. Jin,
"Spectrum-Based Runtime Anomaly Localization in Service-
Based Systems," Proc of 12th IEEE International Conference
on Services Computing (SCC 2015), New York City, NY, USA,
pp. 90-97, 2015.

[19] Q. He, J. Yan, H. Jin, and Y. Yang, "Adaptation of Web Service
Composition Based on Workflow Patterns," Proc of 6th
International Conference on Service-Oriented Computing
(ICSOC2008), Sydney, Australia, pp. 22-37, 2008.

[20] Q. He, J. Yan, H. Jin, and Y. Yang, "Quality-Aware Service
Selection for Service-based Systems Based on Iterative Multi-
Attribute Combinatorial Auction," IEEE Transactions on
Software Engineering (TSE), vol. 40, no. 2, pp. 192-215, 2014.

[21] G. Heward, J. Han, I. Müller, J.-G. Schneider, and S. Versteeg,
"Optimizing the Configuration of Web Service Monitors," Proc of
8th International Conference on Service-Oriented Computing
(ICSOC2010), San Francisco, CA, USA, pp. 587-595, 2010.

[22] T. Janssen, R. Abreu, and A. J. van Gemund, "Zoltar: A Toolset
for Automatic Fault Localization," Proc of 2009 IEEE/ACM
International Conference on Automated Software Engineering,
pp. 662-664, 2009.

[23] W. Jin and A. Orso, "Automated Support for Reproducing and
Debugging Field Failures," ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 24, no. 4, p. 26,

HE ET AL.: LOCALIZING RUNTIME ANOMALIES IN SERVICE-ORIENTED SYSTEMS 13

2015.
[24] J. A. Jones, J. F. Bowring, and M. J. Harrold, "Debugging in

Parallel," Proc of International Symposium on Software Testing
and Analysis (ISSTA 2007), London, United Kingdom, pp. 16-
26, 2007.

[25] J. A. Jones and M. J. Harrold, "Empirical Evaluation of the
Tarantula Automatic Fault-Localization Technique," Proc of 20th
IEEE/ACM International Conference on Automated Software
Engineering (ASE 2005), Long Beach, CA, USA, pp. 273-282,
2005.

[26] G. Katsaros, G. Kousiouris, S. V. Gogouvitis, D. Kyriazis, A.
Menychtas, and T. Varvarigou, "A Self-adaptive Hierarchical
Monitoring Mechanism for Clouds," The Journal of Systems and
Software, vol. 85, no. 5, pp. 1029-1041, 2012.

[27] A. Kertész, G. Kecskeméti, A. Marosi, M. Oriol, X. Franch, and
J. Marco, "Integrated Monitoring Approach for Seamless
Service Provisioning in Federated Clouds," Proc of 20th
Euromicro International Conference on Parallel, Distributed, and
Network-Based Processing (PDP2012), Garching, Germany,
pp. 567-574, 2012.

[28] R. Kohavi and R. Longbotham, "Online Experiments: Lessons
Learned," IEEE Computer, vol. 40, no. 9, pp. 103-105, 2007.

[29] W. Mayer and M. Stumptner, "Model-Based Debugging–State of
the Art and Future Challenges," Electronic Notes in Theoretical
Computer Science, vol. 174, no. 4, pp. 61-82, 2007.

[30] S. Misailovic, S. Sidiroglou, H. Hoffmann, and M. C. Rinard,
"Quality of Service Profiling," Proc of 32nd ACM/IEEE
International Conference on Software Engineering (ICSE2010),
Cape Town, South Africa, pp. 25-34, 2010.

[31] G. Misherghi and Z. Su, "HDD: Hierarchical Delta Debugging,"
Proc of 28th International Conference on Software Engineering,
pp. 142-151, 2006.

[32] L. Naish, H. J. Lee, and K. Ramamohanarao, "A Model for
Spectra-Based Software Diagnosis," ACM Transactions on
Software Engineering and Methodology vol. 20, no. 3, pp. 11:1 -
11:32, 2011.

[33] H. Nguyen, Z. Shen, Y. Tan, and X. Gu, "FChain: Toward Black-
Box Online Fault Localization for Cloud Systems," Proc of 33rd
International Conference on Distributed Computing Systems
(ICSCS 2013), Philadelphia, Pennsylvania, USA, pp. 21-30,
2013.

[34] OASIS, "Web Services Business Process Execution Language
Version 2.0," http://docs.oasis-open.org/wsbpel/2.0/wsbpel-
v2.0.pdf. 2007.

[35] Object Management Group, "Business Process Model And
Notation (BPMN) Version 2.0,"
http://www.omg.org/spec/BPMN/2.0/PDF/. 2011.

[36] M. Oriol, J. Marco, X. Franch, and D. Ameller, "Monitoring
Adaptable SOA-Systems using SALMon," Proc of Workshop on
Service Monitoring, Adaptation and Beyond (Mona+),
ServiceWave 2008, Madrid, Spain, pp. 19-28, 2008.

[37] S. Park, R. W. Vuduc, and M. J. Harrold, "Falcon: Fault
Localization in Concurrent Programs," Proc of 32nd ACM/IEEE
International Conference on Software Engineering, Cape Town,
South Africa, pp. 245-254, 2010.

[38] M. Pathirage, S. Perera, I. Kumara, D. Weerasiri, and S.
Weerawarana, "A Scalable Multi-Tenant Architecture for
Business Process Executions," International Journal of Web

Services Research, vol. 9, no. 2, pp. 21-41, 2012.
[39] A. L. W. Petr Novotný, Bong-Jun Ko:, "Fault Localization in

MANET-Hosted Service-Based Systems," Proc of IEEE 31st
Symposium on Reliable Distributed Systems (SRDS 2012),
Irvine, CA, USA, pp. 243-248, 2012.

[40] E. Piel, A. Gonzalez-Sanchez, H.-G. Gross, A. J. C. van
Gemund, and R. Abreu, "Online Spectrum-based Fault
Localization for Health Monitoring and Fault Recovery of Self-
Adaptive Systems," Proc of 8th International Conference on
Autonomic and Autonomous Systems (ICAS2012), Brisbane,
Australia, pp. 64-73, 2012.

[41] É. Piel, A. Gonzalez-Sanchez, H.-G. Gross, A. J. C. van
Gemund, and R. Abreu, "Online Spectrum-based Fault
Localization for Health Monitoring and Fault Recovery of Self-
Adaptive Systems," Proc of 8th International Conference on
Autonomic and Autonomous Systems (ICAS 2012), St.
Maarten, The Netherlands Antilles, pp. 25-30, 2012.

[42] T. W. Reps, T. Ball, M. Das, and J. R. Larus, "The Use of
Program Profiling for Software Maintenance with Applications to
the Year 2000 Problem," Proc of 6th European Software
Engineering Conference Held Jointly with the 5th ACM
SIGSOFT Symposium on Foundations of Software Engineering
(ESEC/SIGSOFT FSE), Zurich, Switzerland, pp. 432-449, 1997.

[43] R. M. H. Ron Kohavi, Dan Sommerfield, "Practical Guide to
Controlled Experiments on the Web: Listen to Your Customers
Not to the Hippo," Proc of 13th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, San
Jose, California, USA, pp. 959-967, 2007.

[44] R. A. Santelices, J. A. Jones, Y. Yu, and M. J. Harrold,
"Lightweight Fault-Localization Using Multiple Coverage Types,"
Proc of 31st International Conference on Software Engineering
(ICSE 2009), Vancouver, Canada, pp. 56-66, 2009.

[45] A. B. Sharma, H. Chen, M. Ding, K. Yoshihira, and G. Jiang,
"Fault detection and localization in distributed systems using
invariant relationships," Proc of 43rd Annual IEEE/IFIP
International Conference on Dependable Systems and
Networks (DSN 2013), Budapest, Hungary, pp. 1-8, 2013.

[46] C. Verbowski, E. Kiciman, A. Kumar, B. Daniels, S. Lu, J. Lee,
Y.-M. Wang, and R. Roussev, "Flight Data Recorder: Monitoring
Persistent-State Interactions to Improve Systems
Management," Proc of 7th Symposium on Operating Systems
Design and Implementation (OSDI2006), Seattle, WA, USA, pp.
117-130, 2006.

[47] X. Xie, T. Y. Chen, F.-C. Kuo, and B. Xu, "A Theoretical Analysis
of the Risk Evaluation Formulas for Spectrum-Based Fault
Localization," ACM Transactions on Software Engineering and
Methodology, vol. 22, no. 4, pp. 31:1-31:40, 2013.

[48] L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas, J.
Kalagnanam, and H. Chang, "QoS-Aware Middleware for Web
Services Composition," IEEE Transactions on Software
Engineering (TSE), vol. 30, no. 5, pp. 311-327, 2004.

[49] X. Zhang, S. Tallam, N. Gupta, and R. Gupta, "Towards
Locating Execution Omission Errors," ACM Sigplan Notices, vol.
42, no. 6, pp. 415-424, 2007.

[50] Z. Zheng and M. R. Lyu, "Collaborative Reliability Prediction of
Service-Oriented Systems," Proc of 32nd ACM/IEEE
International Conference on Software Engineering (ICSE 2010),
Cape Town, South Africa, pp. 35-44, 2010.

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf
http://www.omg.org/spec/BPMN/2.0/PDF/

14 IEEE TRANSACTIONS ON SERVICES COMPUTING

Qiang He received the his first
Ph. D. degree from Swinburne
University of Technology (SUT),
Australia, in 2009 and his second
Ph. D. degree in computer sci-
ence and engineering from
Huazhong University of Science
and Technology (HUST), China,
in 2010. He is a lecturer at Swin-
burne University of Technology.
His research interests include
software engineering, cloud

computing and services computing.

Xiaoyuan Xie received her PhD
degree from Swinburne Univer-
sity of Technology, Australia in
2012. She is a professor in Com-
puter School, Wuhan University,
China. Her research interests
include software analysis, test-
ing, debugging, search-based
software engineering and cloud
computing.

Yanchun Wang received his
M.Eng. degree in computer sci-
ence from Beihang University,
Beijing, China, in 2006. He is
currently a Ph.D. student at
Swinburne University of Tech-
nology, Australia. His research
interests include services com-
puting and cloud computing.

Dayong Ye received his MSc and
PhD degrees both from Universi-
ty of Wollongong, Australia, in
2009 and 2013, respectively. He
is a research fellow at Swinburne
University of Technology, Aus-
tralia. His research interests fo-
cus on service-oriented compu-
ting, self-organisation and multi-
agent systems.

Feifei Chen received her PhD
degree from Swinburne Univer-
sity of Technology, Australia in
2015. Her research interests in-
clude software engineering,
cloud computting and green
computing.

Hai Jin is a Cheung Kung Schol-
ars Chair Professor of computer
science and engineering at
Huazhong University of Science
and Technology (HUST) in Chi-
na. Jin received his PhD in com-
puter engineering from HUST in
1994. In 1996, he was awarded a
German Academic Exchange
Service fellowship to visit the
Technical University of Chem-

nitz in Germany. Jin worked at The University of Hong
Kong between 1998 and 2000, and as a visiting scholar at
the University of Southern California between 1999 and
2000. He was awarded Excellent Youth Award from the
National Science Foundation of China in 2001. Jin is a
Fellow of CCF, senior member of the IEEE and a member
of the ACM. He has co-authored 22 books and published
over 700 research papers. His research interests include
computer architecture, virtualization technology, cluster
computing and cloud computing, peer-to-peer computing,
network storage, and network security.

Yun Yang received the PhD de-
gree from the University of
Queensland, Australia in 1992.
He is a full professor at Swin-
burne University of Technology.
His research interests include
software engineering, cloud
computing, workflow systems
and service-oriented computing.

	cover_page-3
	TSC - Fault Localisation - No Publisher Information
	1 Introduction
	2 Motivating Example
	3 Anomaly Localization
	3.1 Phase 1: Loop Peeling
	3.2 Phase 2: Execution Scenario Identification
	3.3 Phase 3: System Spectra Construction
	3.4 Phase 4: Coefficient Calculation
	3.4.1 Similarity Coefficient
	3.4.2 Delay Coefficient

	3.5 Phase 5: BC Ranking

	4 Experiments
	4.1 Experimental Setup
	4.2 Experimental Results
	4.2.1 Effectiveness
	4.2.2 Efficiency

	5 Related Work
	6 Conclusions
	Acknowledgment
	References

