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Localizing Runtime Anomalies in Service-
Oriented Systems 

Qiang He, Xiaoyuan Xie, Yanchun Wang, Dayong Ye, Feifei Chen, 
Hai Jin, Senior Member, IEEE, Yun Yang*, Senior Member, IEEE 

Abstract—In a distributed, dynamic and volatile operating environment, runtime anomalies occurring in service-oriented 
systems (SOSs) must be located and fixed in a timely manner in order to guarantee successful delivery of outcomes in 
response to user requests. Monitoring all component services constantly and inspecting the entire SOS upon a runtime anomaly 
are impractical due to excessive resource and time consumption required, especially in large-scale scenarios. We present a 
spectrum-based approach that goes through a five-phase process to quickly localize runtime anomalies occurring in SOSs 
based on end-to-end system delays. Upon runtime anomalies, our approach calculates the similarity coefficient for each basic 
component (BC) of the SOS to evaluate their suspiciousness of being faulty. Our approach also calculates the delay coefficients 
to evaluate each BC’s contribution to the severity of the end-to-end system delays. Finally, the BCs are ranked by their similarity 
coefficient scores and delay coefficient scores to determine the order of them being inspected. Extensive experiments are 
conducted to evaluate the effectiveness and efficiency of the proposed approach. The results indicate that our approach 
significantly outperforms random inspection and the popular Ochiai-based inspection in localizing single and multiple runtime 
anomalies effectively. Thus, our approach can help save time and effort for localizing runtime anomalies occuring in SOSs. 

Index Terms—Program analysis, quality of service, Web service 

——————————      —————————— 

1 INTRODUCTION
HE service-oriented computing paradigm offers an 
effective way to build software systems [10] that are 

composed of services locally or remotely accessed by an 
execution engine (e.g., a BPEL engine [34]). In such a ser-
vice-oriented system (SOS), the component services joint-
ly offer the functionality of the SOS and collectively fulfil 
its users’ quality requirements. 

Built from loosely coupled component services offered 
by independent (and often distributed) providers, SOSs 
operate in environments where key characteristics of the 
component services, such as the Quality of Service (QoS) 
properties, tend to be volatile. At runtime, various anom-
alies may occur in an SOS, e.g., unexpected workload 
changes, errors in the component services and failures of 
data transmissions, and impact on the quality of the SOS, 
causing end-to-end system delays. In this context, how to 
manage the quality of an SOS by detecting and adapting 
to runtime anomalies has become an important research 

direction [7, 10]. 
Response time, among various QoS dimensions, is of 

particular significance in quality management for SOSs. 
Amazon found that every extra 100ms of latency cost 
them 1% in sales [43] and Google found an extra 500ms in 
search page generation time dropped traffic by 20% [28]. 
The increase in the number of time-constrained applica-
tions in the cloud, e.g., interactive and multimedia SOSs, 
is also driving the needs for response time management 
for SOSs [26]. Furthermore, the management of response 
time is the basis for the management of other QoS dimen-
sions. On one hand, effective response time management 
promises better management of other QoS dimensions 
because many applications exhibit trade-offs between 
their response times and other QoS dimensions [30]. A 
video encoding application, for example, can often pro-
duce higher quality video if it is given more time to en-
code the video frames. On the other hand, the manage-
ment of other QoS dimensions is tightly coupled with 
response time management. During execution, an SOS 
may need to be adapted to fix runtime anomalies. The 
adaptation itself takes time, and as a result, contributes to 
delaying the execution of the SOS. Thus, timely detection 
of runtime anomalies is significant to effective quality 
management for SOSs. 

An intuitive solution for timely detection of runtime 
anomalies is to constantly monitor all the basic components 
(BCs) of an SOS, including its component services and the 
data transmission links (or transmissions in short) be-
tween the component services. In response to a detected 
anomaly, adaptation actions can be taken before perfor-
mance degradation becomes noticeable by the users. 
However, monitoring itself may incur excessive costs [7], 
making it impractical to constantly monitor the entire 
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SOS, especially in large-scale scenarios where the number 
of BCs of the SOS and the number of SOSs are big. To 
address this issue, we proposed CriMon in [16] for formu-
lating cost-effective monitoring strategies that focus on 
the BCs on the critical path. However, what if an anomaly 
occurs in an unmonitored BC? When that happens, the 
unmonitored BCs must be inspected to pinpoint the 
anomaly. Unfortunately, a comprehensive inspection of 
all unmonitored BCs can be expensive and sometimes 
impractical due to two potential costs, i.e., resource cost 
and system cost. First, invocations of services may be 
charged if those services are owned and hosted by differ-
ent organisations [50]. Even if the invocations are free, the 
negative impact on the SOS caused by the inspection of its 
BCs might further degrade its quality [7]. For example, 
monitoring sometimes involves sniffing network traffic 
and retrieving the logs of services’ and SOSs’ behaviours. 
As demonstrated in [46], those operations can result in up 
to 70% performance overhead, slowing down the entire 
SOS as a result. We identified that a quality inspection 
can cause as much as 40% performance overhead on a 
Web service under certain circumstances [21]. These is-
sues should not exclude inspection of BCs as a promising 
way of detecting anomalies. Unmonitored BCs still need 
to be inspected to localize runtime anomalies. To achieve 
timely anomaly detection at minimal resource cost and 
system cost, the BCs that are more likely to be faulty must 
be prioritised in the inspection. This way, the anomalies 
occurring in an SOS can be quickly pinpointed so that 
they can be fixed in time to minimise the sytem delays 
perceived by users. 

To tackle this challenge, we propose a novel approach 
that employs spectrum-based fault localization (SFL) 
technique [2] to localize runtime anomalies in SOSs. There 
are other fault localization techniques, e.g., program slic-
ing [49], delta debugging [31] and model-based diagnosis 
[29]. The reason for our choice of SFL is that it is the most 
light-weight fault localization technique [40]. SFL instru-
ments and executes a program, before it is released, with 
a test suite to gather program spectrum. Each program 
spectrum is an abstraction of an execution trace. For each 
test case in the test suite, the program spectrum records 
which program components (e.g., statements and branch-
es) were executed and whether the test case passed or 
failed. Then, SFL builds a matrix that consists of two parts: 
the program spectrum and the binary error vector. By 
evaluating the similarity between the program spectrum 
and the binary error vector, a heuristic measure for each 
program component, which expresses the suspiciousness 
of the program component being buggy and responsible 
for the test-case failures. The program components can 
then be ordered in decreasing order of suspiciousness to 
provide a ranking of program components from most to 
least suspicious, which are provided to program develop-
ers as guidance in debugging. 

Localizing runtime anomalies in an SOS is very differ-
ent from localizing faults in a program written in tradi-
tional languages, such as C, Java or PHP. Anomalies in an 
SOS occur at runtime and must be fixed as soon as possi-
ble. Running a comprehensive test suite to localize the 
anomalies often results in massive calls to the component 
services of the SOS. It is time consuming, resource con-

suming, and thus impractical. Although the component 
services of an SOS are usually distributed, the calls to 
those component services are carried out and managed 
by a centralised execution engine, e.g., a BPEL engine. 
Thus, end-to-end system delays caused by runtime 
anomalies can be detected by the execution engine with 
marginal system overhead. In response to different user 
requests, different parts of the SOS are activated. Thus, an 
SOS can be represented by multiple execution scenarios 
[16]. 

Following the methodology of SFL, upon detected end-
to-end system delays, our approach generates system spec-
tra that record which BCs are covered by which execution 
scenarios, and a binary delay vector that indicates which 
execution scenarios are experiencing delays. Then, it di-
agnoses the differences in the system spectra for normal 
and delayed execution scenarios, where normal execution 
scenarios are the execution scenarios with no delays and 
delayed execution scenarios are the execution scenarios 
where delays are occurring. By evaluating the similarity 
between the system spectrum and the binary delay vector, 
a similarity coefficient score is calculated for each BC of the 
SOS as a heuristic measure that expresses the suspicious-
ness of the BC being responsible for the system delay. SFL 
has been acknowledged as an effective approach for local-
izing single program faults, but it performs less favoura-
bly when localizing multiple program faults [24]. This 
inherent limitation of SFL automatically transmits to its 
application in the context of SOSs. To handle concurrent 
runtime anomalies, we further analyse the differentiated 
end-to-end delays in different execution scenarios to cal-
culate a delay coefficient score for each BC to expresses the 
BC’s contribution to the severity of end-to-end system 
delays. Next, the BCs are sorted first in decreasing order 
of their similarity coefficient scores and then their delay 
coefficient scores. Finally, the results are used to pinpoint 
the anomaly or, if an exact pinpoint cannot be found, pre-
sented as guidance that can reduce the SOS administra-
tor’s effort in searching for the anomaly. 

The contributions of this paper are as follows: 
• We propose a spectrum-based approach for localizing 

runtime anomalies upon end-to-end system delays. 
This approach does not require constant monitoring or 
comprehensive inspection of all BCs of the SOS. 

• We propose the calculation of similarity coefficient and 
delay coefficient, based on which BCs can be ranked to 
indicate their suspiciousness of being faulty. The rank-
ing provides system administrators with guidelines for 
localizing runtime anomalies. 

• Extensive and comprehensive experiments are con-
ducted to evaluate our approach using a published re-
al-world Web service dataset, which contains over 
2500 real-world Web services. The evaluation shows 
that our approach significantly outperforms random 
inspection and traditional SFL. Using our approach, 
the time and efforts for localizing runtime anomalies 
occurring in SOSs can be significantly saved. 
The rest of this paper is organised as follows: Section 2 

analyses the requirements with a motivating example. 
Section 3 describes our anomaly localization approach. 
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Section 4 presents the experimental results to demon-
strate effectiveness and efficiency of our approach. Sec-
tion 5 reviews related work. Section 6 concludes the paper 
and points out future work. 

2 MOTIVATING EXAMPLE 
This section presents an example SOS, namely Online-
Live, to motivate this research. As depicted in  Fig. 1, this 
SOS offers an on-demand service to convert, subtitle and 
transmit live video streams. OnlineLive consists of 26 BCs. 
N1, N2, …, N8 represent the component services and EA, 
EB, …, ER represent the data transmissions between the 
component services. In response to a user request, the 
execution process of OnlineLive is as follows:  

Step 1: N1 splits the live media stream selected by the 
user into separate video and audio streams. 

Step 2: The video and audio streams are processed in 
parallel. Specifically, 
• For normal users, N2 encodes 360p video stream and 

N3 embeds advertisements into the video stream. For 
ad-free premium users, N4 encodes 1080p video 
stream. 

• N5 generates the subtitle by performing speech recogni-
tion on the audio stream. Then, based on the user’s 
preference or country/region, the subtitle is sent to ei-
ther N6 or N7 to be translated into one of the two op-
tional languages. 
Step 3: N8 produces a media stream by merging and 

synchronising the video stream, audio stream and trans-
lated subtitle. 

Step 4: The media stream is transmitted to the user. 
OnlineLive must process the media stream timely and 

continuously. Otherwise, the user will receive a jittering 
media stream. When anomalies occur and cause delays to 
OnlineLive, the BCs must be inspected to identify the 
faulty ones. Random inspection is a simple approach. 
However, we must prioritise the BCs that are more likely 
to be faulty in order to localize the anomalies rapidly. By 
doing so, adaptation actions can be taken to fix the anom-
aly in time to avoid or reduce the system delay caused by 
the anomalies. 

The most intuitive solution for timely detection of 
runtime anomalies is to constantly monitor all the BCs of 
OnlineLive. Another solution is to comprehensively in-
spect the status and quality of all BCs every time a system 
delay occurs. As discussed in Section 1, both solutions are 
expensive in terms of time and resource consumption, 

and thus are often impractical. Another approach is to 
employ end-to-end quality information of OnlineLive for 
localizing the occurring anomalies. Four execution scenar-
ios can be identified from OnlineLive: es1={EP1, EP3}, 
es2={EP1, EP4}, es3={EP2, EP3} and es4={EP2, EP4}, as pre-
sented in Fig. 2. Which one will be executed in response 
to a user request is dependent on the runtime decisions 
made at the two branch structures. Assume that the con-
straint for the response time of OnlineLive is 3.0s but now 
it is taking OnlineLive 3.5s to process user requests, re-
sulting in a system delay. System logs indicate that the 
current end-to-end response times of es1, es2 es3 and es4 are 
3.3s, 2.4s, 3.5s and 2.5s respectively. Obviously, es1 and es3 
have violated the constraint of response time, thus there 
must be at least one faulty BC in both of these two execu-
tion scenarios. By comparing these four execution scenar-
ios, we can find that: EL, N6 and EN are exclusively in-
voked by these two delayed execution scenarios; EM, N7 
and EO are only involved in the normal execution scenari-
os; while the rest BCs are included in both cases. There-
fore, we can reasonably infer that EL, N6 and EN are the 
most suspicious BCs that result in the system delay. Fur-
thermore, multiple concurrent anomalies occurring in 
OnlineLive will cause a more severe end-to-end system 
delay, which is determined by the execution scenario 
with the maximum execution time among es1, es2 es3 and 
es4. If one execution scenario is experiencing an especially 
severe delay, the BCs that belong to that execution scenar-
io, especially those that exclusively belong to that execu-
tion scenario, are more likely to be faulty. Those BCs must 
be prioritised in the inspection. 

By analysing end-to-end quality information, our ap-
proach can help the system administrator localize the 
faulty BCs quickly by ranking the BCs of Onlive in de-
cending order of their suspiciousness of being faulty. 

3 ANOMALY LOCALIZATION 
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N8

N1: Split video and audio
N2: Encode video 360P
N3: Embed advertisement
N4: Encode video 1080P

N5: Recognise speech
N6: Translate Subtitle into Chinese
N7: Translate subtitle into Japanese
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 Fig. 1. Process of OnlineLive. 
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Our anomaly localization approach is designed as a five-
phase process as shown in Fig. 3. In Phase 1, the loops in 
the SOS are peeled. In Phase 2, a set of execution scenari-
os are identified from the SOS. Then, in Phase 3, the sys-
tem spectra are constructed. In Phase 4, similarity coeffi-
cients and delay coefficients are calculated for the BCs of 
the SOS. Finally, in Phase 5, the BCs are ranked based on 
their similarity coefficients and delay coefficients to sug-
gest an order in which the BCs should be inspected. De-
tails of these phases are presented in Section 3.1 to Section 
3.5 respectively. 

3.1 Phase 1: Loop Peeling 
In this research, we use four types of basic compositional 
structures, i.e., sequence, branch, loop and parallel for repre-
senting and analysing SOS. These compositional struc-
tures are included in BPMN [35], and addressed by BPEL 
[34] - the de facto standard for specifying service-oriented 
business processes. They are also adopted in many other 
studies on SOS [5, 16, 50]. 
• Sequence. In a sequence structure, the BCs are execut-

ed one by one. 
• Branch. In a branch structure, only one branch is se-

lected for execution. For a set of branches {b1, …, bn}, 
the execution probability distribution {p(b1), …, p(bn)}, 

(0≤p(bi)≤1,∑ =1 ( ) = 1.0)
n

ii p b is specified, where p(bi), 
i=1, …, n, is the probability that the ith branch is select-
ed for execution. 

• Loop. In a loop structure, the loop is executed for n (0
≤n≤MNI) times. For a loop, the probability distribu-

tion {p0, …, pMNI}, (0≤pi≤1, 
0

1.0)
MNI

i= ip =∑  is specified, 

where pi, i=0, …, MNI, is the probability that the loop 
iterates for i times and MNI is the expected maximum 
number of iterations for the loop. 

• Parallel. In a parallel structure, all the branches are 
executed at the same time. 
The probabilities, p(bi), pi and the maximum number of 

iterations can be evaluated based on the past executions 
of the SOS or can be specified by the developer [5]. We 
assume that for a loop, the MNI can be determined or 
estimated. Otherwise, without an upper bound for the 
number of iterations, the execution times of the execution 
paths that contain the loop cannot be calculated since the 
loop may iterate infinitely. 

We represent service compositions using UML activity 
diagrams, where the nodes represent component services 
and the edges represent data transmissions. Without los-

ing generality, we assume that a service composition is 
characterised by only one entry point and one exit point, 
and only includes structured loops with only one entry 
point and one exit point. If a service composition includes 
loops, we peel the loops by representing loop iterations as 
a set of branches with corresponding execution probabili-
ties [5]. Fig. 4 gives an example of peeling a loop structure 
(MNI=2) by transforming it into a branch structure that 
contains three branches b1, b2 and b3, where p0, p1 and p2 are 
the probabilities that b1, b2 and b3 are selected for execu-
tion respectively. (Note that the first branch b1 is selected 
if the loop iterates for 0 times, i.e., corresponding to p0). 

3.2 Phase 2: Execution Scenario Identification  
In a service composition where branches or loops are in-
volved, different execution paths may be selected for exe-
cution. Thus, multiple execution scenarios can be identified 
from the service composition. These execution scenarios 
do not contain branch or loop structures. As depicted in 
Fig. 2, four execution scenarios can be identified from 
OnlineLive: es1={EP1, EP3}, es2={EP1, EP4} es3={EP2, EP3} 
and es4={EP2, EP4}. The identified execution scenarios will 
be used for constructing the system spectra as described 
next in Section 3.3. 

3.3 Phase 3: System Spectra Construction 
Anomaly localization requires analysis of the differences 
in system spectra [42] for individual execution scenarios 
of the SOS. A system spectrum is a collection of execution 
traces that shows which BCs were included during an 
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Fig. 4. Loop peeling process. 
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execution of the SOS. In this research, a system spectrum 
contains a flag for each BC of the SOS to indicate whether 
or not that BC is included in a particular execution scenar-
io of the SOS. Take OnlineLive as an example. There are 
four system spectra, one for each execution scenario, as 
presented by the four dark grey columns in Table 1. 

The system spectra of n execution scenarios constitute 
an n × m binary matrix, where m is the number of BCs in 
an SOS, as presented in Fig. 5. Given [1, ..., ]i n∈  and 

[1, ..., ]j m∈ , cij=1 indicates that the jth BC is included in 
the ith execution scenario. The four dark grey columns in 
Table 1 constitute the system spectra of OnlineLive. Each 
row in the matrix is a system spectrum that indicates 
whether a BC is part of an execution scenario. For exam-
ple, the first row, (1, 1, 1, 1), indicates that N1 is part of all 
four execution scenarios, es1, es2, es3 and es4. The second 
row, (1, 1, 0, 0) indicates that N2 is part of es1 and es2, but 
not es3 and es4. The system spectra will be used in the sim-
ilarity coefficient calculation for anomaly localization dis-
cussed next in Section 3.4. 

3.4 Phase 4: Coefficient Calculation 

This section presents the calculation of two coefficients, 
similarity coefficient and delay coefficient. They indicate 
the suspiciouseness of BCs being faulty and are used in 
Phase 5 for ranking the BCs for inspection. 

3.4.1 Similarity Coefficient 
A similarity coefficient score is calculated based on a BC’s 
involvement in all the normal and delayed execution sce-
narios. It indicates the suspiciousness of a BC being faulty. 
It also approximates the reliability of a BC [41], where a 
high similarity coefficient score implies low reliability. 

In Fig. 5, the binary delay vector that contains n flags is 
used to represent which execution scenarios are experi-
encing a delay in processing user requests. Given 
∈i n[1, ..., ] , vi=1 indicates that esi is experiencing a delay, 

and 0 otherwise. To complete the delay vector, the time 
consumed by each execution scenario in processing user 
requests needs to be logged. It can be obtained from the 
execution engine of the SOS by calculating the time dif-
ference between the arrival of user requests and the de-
livery of corresponding outcomes. This is feasible because 
the execution engine that invokes the distributed services 
is centrally managed by the SOS provider [38]. Each re-
quest will traverse one execution scenario, depending on 
the runtime decisions made in the branch structures of 
the SOS. Which execution scenario each user request 
traverses also needs to be recorded to complete the delay 
vector depicted in Fig. 5. This can be achieved by record-
ing the runtime decisions made at the branches by the 
execution engine of the SOS. Now assume that an anoma-

n

   
   
   
   
   
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11 12 1 1

21 22 2 2

1 2

BCs Delay Vector

execution scenario

m

m
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m
c c c v
c c c v
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



   



 

Fig. 5. System spectra and delay vector. 

TABLE 1 
SYSTEM SPECTRA, SIMILARITY COEFFICIENT AND BC RANKS FOR ONLINELIVE 

(ANOMALY OCCURING IN N6) 
 

Basic Component Execution Scenario n11 n10 n01 n00 
Similarity Coefficient Ranking (by cO) es1 es2 es3 es4 cJ cT cO 

N1 1 1 1 1 2 2 0 0 0.50 0.50 0.71 11 
N2 1 1 0 0 1 1 1 1 0.33 0.50 0.50 19 
N3 1 1 0 0 1 1 1 1 0.33 0.50 0.50 19 
N4 0 0 1 1 1 1 1 1 0.33 0.50 0.50 19 
N5 1 1 1 1 2 2 0 0 0.50 0.50 0.71 11 
N6 1 0 1 0 2 0 0 2 1.00 1.00 1.00 3 
N7 0 1 0 1 0 2 2 0 0.00 0.00 0.00 22 
N8 1 1 1 1 2 2 0 0 0.50 0.50 0.71 11 
EA 1 1 1 1 2 2 0 0 0.50 0.50 0.71 11 
EB 1 1 1 1 2 2 0 0 0.50 0.50 0.71 11 
ED 1 1 0 0 1 1 1 1 0.33 0.50 0.50 19 
EE 0 0 1 1 1 1 1 1 0.33 0.50 0.50 19 
EF 1 1 0 0 1 1 1 1 0.33 0.50 0.50 19 
EG 1 1 0 0 1 1 1 1 0.33 0.50 0.50 19 
EH 0 0 1 1 1 1 1 1 0.33 0.50 0.50 19 
EJ 1 1 1 1 2 2 0 0 0.50 0.50 0.71 11 
EL 1 0 1 0 2 0 0 2 1.00 1.00 1.00 3 
EM 0 1 0 1 0 2 2 0 0.00 0.00 0.00 22 
EN 1 0 1 0 2 0 0 2 1.00 1.00 1.00 3 
EO 0 1 0 1 0 2 2 0 0.00 0.00 0.00 22 
EQ 1 1 1 1 2 2 0 0 0.50 0.50 0.71 11 
ER 1 1 1 1 2 2 0 0 0.50 0.50 0.71 11 

Delay 1 0 1 0         
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ly is occurring in N6, slowing it down and violating the 
constraint for the response time of OnlineLive. Because N6 
is included in EP3, the system delay is only observed in es1 
and es3. The sytem delay vector will be: (1, 0, 1, 0). Table 1 
presents the system spectra constructed for OnlineLive. 

The similarity between the binary delay vector and a 
system spectrum indicates the suspiciousness of the cor-
responding BC being responsible for the occurring system 
delay. In Table 1, only the system spectra corresponding 
to N6, EL and EN are consistent with the delay vector – 
they are all (1, 0, 1, 0). Thus, N6, EL and EN can be identi-
fied as the most suspicious BCs and should be inspected 
with the highest priority. 

For large-scale applications, the system spectra and the 
delay vectors can be remarkably large and complex. The 
suspicious BCs are those whose corresponding system 
spectra are most statistically similar to the delay vector. In 
order to statistically analyse the similarity between the 
system spectra and the delay vector, we now extract the 
features of the raw data in the system spectra and con-
struct a feature matrix by comparing the system spectra 
with the delay vector. The feature matrix has four col-
umns for representing four features: 
 npq(Sj) = |{i | xij = p ˄ vi = q}|, {0 1}p,q ,∈  (1) 
where xij=1 indicates that BC Sj is included in esi, and 0 
otherwise, vi=1 indicates that a delay is occurring in esi 
(i.e., a delayed execution scenario) and 0 (a normal execu-
tion scenario) otherwise. n10(Sj) and n11(Sj) are the num-
bers of normal and delayed execution scenarios respec-
tively where Sj is involved. n00(Sj) and n01(Sj) are the num-
bers of normal and delayed execution scenarios respec-
tively where Sj is NOT involved. 

Now the statistical similarity between each of the sys-
tem spectrum and the delay vector can be quantified by 
calculating the similarity coefficients of the BCs. Calculat-
ed in different ways, many similarity coefficients exist, 
e.g., Jaccard coefficient cJ, used by the Pinpoint tool [12], 
the coefficient cT used in the Tarantula fault localization 
tool [25] and the Ochiai coefficient cO often used in the 
molecular biology domain [14]: 

 11

11 01 10

j
J j

j j j

n (S )
c (S ) =

n (S ) + n (S ) + n (S )
  (2) 

 cT(Sj)=









10 00

11

11 01

11 10

11 01 10 00

1.00 if 0

otherwise

j j

j

j j

j j

j j j j

n (S ) + n (S ) =

n (S )

n (S ) + n (S )

n (S ) n (S )
+

n (S ) + n (S ) n (S ) + n (S )

  

  (3) 

 
11

11 01 11 10

j
O j

j j j j

n (S )
c (S ) =

(n (S ) + n (S )) (n (S ) + n (S ))×
   (4) 

where Sj is a BC. A higher similarity coefficient indicates 
higher suspiciousness of a BC being faulty. 

3.4.2 Delay Coefficient 
In a volatile operating environment, multiple anomalies 

may occur at the same time to different BCs of an SOS, 
especially for large-scale SOSs that consist of many BCs. 
Multiple concurrent anomalies usually cause more severe 
delays than a single anomaly. As discussed in Section 2, 
the BCs in an execution scenario where a more severe 
delay is occurring are more suspicious of being faulty. 
However, it is not reflected by the Jaccard coefficient, Ta-
rantula coefficient and Ochiai coefficient because they 
take into account only whether there is a delay in an exe-
cution scenario. The binary delay vector does not indicate 
the severity of the delay occurring in each of the execu-
tion scenarios. When multiple anomalies occur at the 
same time, the probability is high that most, sometimes 
even all, of the execution scenarios will be delayed, lead-
ing to a delay vector with many 1s, even full 1s, i.e., (1, 
1, …, 1). Such a delay vector will lower the variety of the 
feature vectors (the light grey rows) in the feature matrix, 
making it harder to use the similiarity coefficients to dis-
tinguish the BCs from each other. 

Take Fig. 2 for example: suppose two anomalies are 
occurring, one to service N5 and the other to service N6. 
Table 2 presents the corresponding system spectra, simi-
larity coefficients and BC ranks. As presented by the cor-
responding system spectra, N5 belongs to all four execu-
tion scenarios and N6 belongs to es1 and es3. N5 causes a 
delay to all four execution scenarios, resulting in a delay 
vector (1, 1, 1, 1). Constructed based on the comparison 
between the system spectra and the all-1 delay vector, the 
feature matrix contains only (4, 0, 0, 0) and (2, 2, 0, 0). The 
consequence is low variety in the similarity coefficients 
and rankings for the BCs. As presented by the Ranking (by 
co) column, besides N5, seven other BCs are ranked 8 as 
the most suspicious BCs. N6 is ranked 21 together with all 
the other BCs. In the best case scenario, N5 is pinpointed 
as a fault BC at the first inspection of all the BCs ranked 8 
and N6 is pinpointed as an abnormal BC at the second 
inspection. The total number of BCs that must be inspect-
ed to pinpoint N5 and N6 is 2. In the worse case scenario, 
the number is 21. On average, it is 11.5, getting close to 
random inspection, which needs to inspect an average of 
16.18 BCs to pinpoint both N5 and N6. Apparently, the 
traditional SFL techniques based on Jaccard coefficient, 
Tarantual conefficient and Ochiai coefficient cannot han-
dle concurrent anomalies effectively. 

In order to address this issue, we need to take into ac-
count the severity of the delays caused to each execution 
scenario. In Fig. 2, concurrent anomalies occurring in N5 
and N6 will cause more severe delays to es1 and es3 com-
pared to es2 and es4 because es1 and es3 contain both N5 
and N6 while es2 and es4 contain only N5. We calculate the 
delay coefficient, denoted by cd, to further indicate the sus-
piciousness of a BC based on the severity of the delays 
caused by anomalies to the execution scenarios. Given a 
set of resj(esi), j=1, …, h, logged as the response time of 
execution scenario esi for processing n user requests after 
the systeme delay is detected, we calculate the standard 
deviation of resj(esi) (j=1, …, h) from its normal value 

( ) ires es : 
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 ∑ 2

1

1
( ( )) ( ( ) ( ))

h

i j i i
j=

SD res es = res es - res es
h

 (5) 

We measure the severity of a delay by measuring the 
standard deviation of the response times of execution 
scenarios. To compare the severity of delays caused by 
the anomalies to different execution scenarios esi (i=1, …, 
m) on the same scale independently of their original re-
sponse times, we calculate the coefficient of variation for 
each esi: 

 cv(esi)=
( ( ))

( ) 
i

i

SD res es

res es
= 

∑ 2

1

1
( ( ) ( ))

( ) 

h

j i i
j=

i

res es - res es
h

res es
 (6) 

Next, the min-max normalisation technique, which has 
been widely used in a number of approaches for QoS 
evaluation [5, 20, 48], is employed to normalise the coeffi-
cients of variation as follows: 

 ˆ


≠




( ) ( ) if ( ) ( )
( ) ( )( )

1 if ( ) = ( )

min
max minv i v i
v i v imax min

v i v iv i
max min
v i v i

c es - c es c es c es
c es - c esc es =

c es c es
 (7) 

where ( )v
max

ic es and ( )min
v ic es  are the maximum and mini-

mum values in cv(esi), i=1, …, m. Suppose two anomalies 
are occurring, one to N5 and the other to N6 in Fig. 2. Ta-
ble 3 presents the calculation of the normalised coeffi-
cients of variation for es1, es2, es3 and es4. 

The BCs that belong to an execution scenario with a 

severe delay (indicated by a high cv) should be prioritised 
in the inspection. However, a BC can belong to multiple 
execution scenarios. Thus, we average the coefficients of 
variation for all the execution scenarios that a BC Sj be-
longs to to calculate the delay coefficient of the BC: 

 cD(Sj)= 
ij

ij

ˆx

x

⋅∑

∑
1

1

( )
n

v i
i=

n

i=

c es
 (8) 

TABLE 3 
DELAY COEFFICIENT CALCULATION 

(ANOMALIES OCCURING IN N5 AND N6) 
 es1 es2 es3 es4 

 ( ) res es  2.30 2.40 2.50 2.50 

res1(es) 4.82 3.46 4.77 3.46 

res2(es) 4.85 3.39 4.82 3.41 

res3(es) 4.75 3.41 4.83 3.39 

res4(es) 4.73 3.50 4.76 3.32 

SD(res(es)) 2.49 1.04 2.30 0.90 

cv(es) 1.08 0.43 0.92 0.36 

ˆ ( )vc es  1.00 0.10 0.77 0.00 

 
 

TABLE 2 
SYSTEM SPECTRA, SIMILARITY COEFFICIENT AND BC RANKS FOR ONLINELIVE 

(ANOMALIES OCCURING IN N5 AND N6) 
 

Basic 
Component 

Execution 
Scenario n11 n10 n01 n00 

Similarity 
Coefficient Ranking 

(by cO) 

Delay 
Coefficient 

cD 

Ranking 
(by cD) es1 es2 es3 es4 cJ cT cO 

N1 1 1 1 1 4 0 0 0 1 1 1 8 0.47 8 
N2 1 1 0 0 2 0 2 0 0.5 0.5 0.71 22 0.55 16 
N3 1 1 0 0 2 0 2 0 0.5 0.5 0.71 22 0.55 16 
N4 0 0 1 1 2 0 2 0 0.5 0.5 0.71 22 0.39 19 
N5 1 1 1 1 4 0 0 0 1 1 1 8 0.47 8 
N6 1 0 1 0 2 0 2 0 0.5 0.5 0.71 22 0.89 11 
N7 0 1 0 1 2 0 2 0 0.5 0.5 0.71 22 0.05 22 
N8 1 1 1 1 4 0 0 0 1 1 1 8 0.47 8 
EA 1 1 1 1 4 0 0 0 1 1 1 8 0.47 8 
EB 1 1 1 1 4 0 0 0 1 1 1 8 0.47 8 
ED 1 1 0 0 2 0 2 0 0.5 0.5 0.71 22 0.55 16 
EE 0 0 1 1 2 0 2 0 0.5 0.5 0.71 22 0.39 19 
EF 1 1 0 0 2 0 2 0 0.5 0.5 0.71 22 0.55 16 
EG 1 1 0 0 2 0 2 0 0.5 0.5 0.71 22 0.55 16 
EH 0 0 1 1 2 0 2 0 0.5 0.5 0.71 22 0.39 18 
EJ 1 1 1 1 4 0 0 0 1 1 1 8 0.47 8 
EL 1 0 1 0 2 0 2 0 0.5 0.5 0.71 22 0.89 11 
EM 0 1 0 1 2 0 2 0 0.5 0.5 0.71 22 0.05 22 
EN 1 0 1 0 2 0 2 0 0.5 0.5 0.71 22 0.89 11 
EO 0 1 0 1 2 0 2 0 0.5 0.5 0.71 22 0.05 22 
EQ 1 1 1 1 4 0 0 0 1 1 1 8 0.47 8 
ER 1 1 1 1 4 0 0 0 1 1 1 8 0.47 8 

Delay 1 1 1 1           
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where xij is 1 if Sj belongs to esi and 0 otherwise. 
The Delay Coefficient cD column in Table 2 presents the 

delay coefficients of the BCs of OnlineLive calculated 
based on Table 3. 

3.5 Phase 5: BC Ranking 
Based on the similarity coefficient scores, the BCs can be 
ranked from high to low, where the highest indicates the 
most suspicious. When multiple BCs share a same coeffi-
cient score, we use the approach reported in [44]: all tied 
BCs get the greatest ranking number. The Ranking (by cO) 
columns in Table 1 and Table 2 present the rankings of all 
BCs in OnlineLive in the cases of one anomaly (occurring 
in N6) and two anomalies (occurring in N5 and N6) respec-
tively. BCs can also be ranked by their delay coefficient 
scores. Based on their similarity coefficients and delay 
coefficients, we can rank BCs in different ways. One op-
tion is to first rank them by their similarity coefficient 
scores and then rank the ones sharing the same similarity 
coefficient scores by their delay coefficient scores. Table 2 
presents the BCs of OnlineLive ranked in this way. 14 BCs, 
are ranked 22 by their similarity coefficient scores, as in-
dicated by column Ranking (by cO). They are further 
ranked 11, 16, 19 and 22 by their delay coefficient scores, 
as indicated by column Ranking (by cD). The ranking pro-
vides system administrator with an order in which the 
BCs are inspected. For OnlineLive, starting from the BC 
with the highest ranking, 2 BCs in the best case scenario 
and 11 BCs in the worst case scenario need to be inspect-
ed to pinpoint both faulty BCs, i.e., N5 and N6. On average, 
6.5 BCs need to be inspected to pinpoint both N5 and N6, 

requiring much less BCs to be inspected to localize all 
faulty BCs compared to random inspection which needs 
to inspect an average of 16.18 BCs. 

The BCs can also be ranked in other ways. For example, 
they can be ranked first by their delay coefficient scores 
then by their similarity coefficient scores. The similarity 
coefficient and delay coefficient can also be combined into 
one coefficient for ranking the BCs. For example, BCs can 
be ranked by the average of their similarity coefficient 
scores and delay coefficient scores, i.e., (cO+cD)/2. In Sec-
tion 4, we will experimentally evaluate the three ranking 
methods discussed above. 

4 EXPERIMENTS 
We conducted a range of experiments in a simulated vol-
atile environment to evaluate our anomaly localization 
approach. Section 4.1 describes the setup of the experi-
ments and Section 4.2 presents the experimental results. 

4.1 Experimental Setup 
For the evaluation, we have implemented the following 
inspection approaches:  
• Random inspection. In response to any anomalies, this 

approach inspects the BCs randomly to localize the 
faulty BCs. It stops when all anomalies are localized. 
Inspected BCs are not reinspected. This inspection ap-
proach is the baseline for the evaluation. 

• cO Ranking. This inspection approach was proposed 
and evaluated by us in [18]. In response to runtime 

anomalies, this approach evaluates the suspiciousness 
of a BC by calculating the Ochiai-based similarity coef-
ficients of the BCs. The BC with highest similarity effi-
cient is inspected first. This approach also stops when 
all anomalies are localized. As discussed in Section 3.4, 
there are other coefficients that can be used to calculate 
the similarity of BCs, e.g., Jaccard and Tarantula. We 
adopt the Ochiai coefficient because it outperforms the 
Jaccard and Tarantula coefficients in localizing runtime 
anomalies in SOSs as demonstrated in [18], as well as 
[2, 44] for traditional software programs. This ap-
proach has also been adopted and studied by many re-
searchers on fault localization for traditional software 
programs [6, 32, 37, 44]. 

• cO-cD Ranking. This approach ranks the BCs first by 
their Ochiai-based similarity coefficient scores then by 
their delay coefficient scores. The BCs are then inspect-
ed by decending order of their rankings. 

• cD-cO Ranking. This approach is similar to the cO-cD ap-
proach, but it ranks BCs first by their delay coefficient 
scores then by their Ochiai-based similarity coefficient 
scores. 

• (cD+cO)/2 Ranking. This approach ranks BCs by the 
average of their similarity coefficient scores and delay 
coefficient scores. 
To measure the effectiveness of the anomaly localiza-

tion approaches, we use the localization cost, i.e., the per-
centage of BCs of an SOS that must be inspected before 
localizing all faulty BCs. This measure has been widely 
used by other researchers [13, 44] for fault localization 
studies. A low localization cost indicates high effectiveness and 
vice versa. An approach with less localization cost can 
pinpoint the faulty BCs quicker and incurs less inspection 
expense, i.e., the costs for inspecting BCs during the local-
ization process. For example, in Table 1, the ranking of N6 
(the faulty BC) is 3, the same as EL and EN. The system 
administrator can choose to inspect all the suspicious BCs 
at the same time or to inspect them in a random order. In 
a worst case scenario, the cost of pinpointing the anomaly 
is 3/22, or 13.64%. In the case of multiple anomalies, e.g., 
Table 2, our approach will inspect N1, N5, N8, EA, EB, EJ, EQ 
and ER first, which are ranked 8 by their delay coefficients 
CD. After that, N6, EL and EN, which are ranked 11, are 
inspected. Thus, in the worst case scenario, the cost of 
pinpointing the faulty N5 and N6 with our approach is 
(8+3)/22=11/22, or 50.00%. 

In order to evaluate our approach on different scales, 
we conduct 9 sets of experiments, where the component 
services of the SOS increases from 20 to 100 in steps of 10. 
Given a specific number of component services, the SOS 
is randomly structured with the sequence, branch and 
parallel structures discussed in Section 3.1. The loop 
structure is omitted because it will be transformed into 
branch structure anyway, as discussed in Section 3.1.  

The response times of the BCs are generated according 
to different normal distributions based on a publicly 
available Web service dataset QWS [3, 4]. QWS comprises 
measurements of 9 QoS attributes (including response 
time) of over 2500 real-world Web services. The infor-
mation about the services was collected from public UD-
DI registries, search engines and service portals. Their 
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QoS values were measured using benchmark tools. At 
runtime, we generated and introduced a number of con-
current anomalies to randomly picked BCs to simulate a 
volatile operating environment. We increased the number 
of concurrent anomalies from 1 to 10 in steps of 1 in each 
set of experiments to simulate increasing levels of volatili-
ty in the operating environment. When anomalies oc-
curred in BCs, delays that were randomly generated ac-
cording to a normal distribution were applied to the cor-
responding BCs. In the real world, the delays caused by 
different anomalies to different BCs are usually different. 
There are short, medium and long ones, which delay the 
system to varying degrees. The long ones can significant-
ly delay the system execution while the short ones can be 
neglected. There are many uncertain factors that may im-
pact on the actual delay caused to a BC by an anomaly, 
e.g., the severity of the anomaly and the robustness of the 
BC. To simplify the application of delays and provide a 
generalised reference in the experiments, we generated 
delays caused by anomalies to different BCs according to 
a same normal distribution. This way, we consider or fo-
cus on only the “cost saving” effects from early anomaly 
localization enabled by our approach. 

Upon runtime anomalies, we adopted random inspec-
tion, cO ranking approach and our approaches to pinpoint 
the faulty BCs. All experiments were conducted on a ma-
chine with Intel i5-4570 CPU 3.20GHz and 8 GB RAM, 
running Windows 7 x64 Enterprise. For each set of exper-
iment, we averaged the results obtained from 100 runs. 

4.2 Experimental Results 

4.2.1 Effectiveness 
Table 4 presents the average localization costs of the 5 
approaches across all 9 sets of experiments. On average, 
our three approaches, i.e., cO-cD, cD-cO and (cD+cO)/2, sig-
nificantly outperform random inspection, by 13.1%, 18.2% 
and 18.1% respectively, compared to cO ranking approach 
by 6.4%. In general, the advantages of our approaches 
over random inspection gradually decrease as the envi-
ronmental volatility (indicated by the increasing number 
of concurrent anomalies) increases. However, their ad-
vantages over cO ranking approach increase as the exper-
imental volatility increases. 

Fig. 6 compares the localization cost of our approaches 
(represented by CO-CD, CD-CO and (CO+CD)/2), with 
random inspection (represented by RANDOM) and the cO 
ranking approach (represented by CO). In the case of a 
single anomaly, as expected, random inspection has to 
inspect approximately 50% of the BCs to pinpoint the 
faulty BC. In such scenarios, a single runtime anomaly 
does not lead to mutually-distinguisable end-to-end de-
lays to different execution scenarios, making it impossible 
for our approaches to evaluate and utilise the severity of 
the end-to-end delays. As expected, cO ranking approach 
and our approach demonstrate similar localization cost, 
between 12% and 27%, outperforming random inspection 
by significant margins. 

As the number of concurrent anomalies increases, 
more BCs must be inspected to pinpoint all runtime 
anomalies. Accordingly, the localization costs of all ap-
proaches increase as the number of anomalies increases, 

rapidly at the beginning and gradually afterwards. As the 
number of concurrent anomalies increases, the probabil-
ity that all the execution scenarios experience delays in-
creases. Delays occurring in all execution scenarios will 
lead to all-1 delay vectors, making it hard for cO ranking 
approach to pinpoint all the faulty BCs. Using not only 
the similarity coefficient but also the delay coefficient, our 
approaches can handle concurrent anomalies more effi-
ciently, but still requires over 70% of the BCs to be in-
spected when there are 7 or more concurrent anomalies. 

An interesting obersevation is that, as the number of 
concurrent anomalies increases, the localization cost of cO 
ranking approach gradually approximates that of the 
random inspection. The localization cost of cO ranking 
approach catches up with that of the random inspection 
at certain points in all 9 sets of experiments, e.g., 6 in the 
first set of experiments, 7 in the fifth set and 8 in the ninth 
set. More concurrent anomalies indicate a more volatile 
operating environment and consequently a less reliable 
SOS. Thus, this oberservation shows that cO ranking ap-
proach loses its advantage over random inspection in 
very volatile operating environments. Howerver, our ap-
proaches still demonstrate significantly better effective-
ness than random inspection. Compared with cO ranking, 
our approaches achieve similar localization costs in rela-
tively stable operating environments where only one or 
two concurrent anomalies are occurring in the SOS. How-
ever, their advantages over cO ranking start to manifest as 
the number of concurrent anomalies increases. This is 
clearly demonstrated by the large gap below the red line 
in the cases of 2+ anomalies. Compared with cO ranking, 
our approaches require much less BCs to be inspected to 
pinpoint all faulty BCs in volatile environments. In large-
scale scenarios, this advantage can lead to significant sav-
ing of system administrative cost. For example, for an 
SOS that consists of 100 services, our cD-cO approach re-
quires an average of 3 to 13 less services to be inspected 

TABLE 4 
AVERAGE LOCALIZATION COSTS 

(ACROSS ALL SETS OF EXPERIMENTS) 

# of 
Anomalies Random cO cO-cD cD-cO DOc c+

2
 

1 0.499 0.167 0.163 0.161 0.165 

2 0.672 0.525 0.491 0.492 0.490 

3 0.748 0.687 0.632 0.571 0.571 

4 0.806 0.771 0.699 0.626 0.627 

5 0.838 0.815 0.738 0.663 0.664 

6 0.864 0.847 0.759 0.688 0.691 

7 0.879 0.869 0.786 0.720 0.721 

8 0.893 0.886 0.801 0.740 0.742 

9 0.903 0.897 0.814 0.759 0.760 

10 0.913 0.908 0.826 0.775 0.776 

Average 0.802 0.737 0.671 0.619 0.621 
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than cO ranking to localize all the anomalies. Our ap-
proaches can significantly speed up the anomaly detec-
tion process. Then, adaptation actions can be taken im-
mediately to fix the system, relieving or eliminating the 
end-to-end system delay. 

Although not explicitly demonstrated in Figure 5, it 
can be inferred that the localization costs of all approach-
es will reach 1.0 in an extreme environment where all BCs 
are faulty. In such a scenario, it does not make a differ-
ence which BCs to inspect first because all BCs are faulty. 

Now we compare our own three approaches that rank 
BCs by their similarity coefficient scores and delay coeffi-
cient scores in different ways. The cD-cO and (cO+cD)/2 
approaches demonstrate very similar performance, both 
outperforming the cO-cD approach. The advantages of the 
cD-cO and (cO+cD)/2 approaches over the cO-cD approach 
increase as the number of concurrent anomalies increase 
and as the size of the system increases. According to Ta-
ble 4, the final winner is the cD-cO approach, with only 

marginal advantange over the (cO+cD)/2 approach. 
To conclude, in a very stable operating environment, it 

does not make a big difference which anomaly localiza-
tion approach is adopted. In a large-scale and volatile 
environment, our cD-cO approach has the best perfor-
mance and is the most preferable choice over other ap-
proaches. 

4.2.2 Efficiency 
As discussed in Section 1, the response time plays an im-
portant role in the success of an SOS. A runtime localias-
tion approach must not take too much time to localize 
runtime anormalies occurring in an SOS because quick 
anomaly localization and rapid system adaptation are 
required to minimise the system delays perceived by the 
users of the system. An approach that can accurately rank 
the BCs according to their suspiciousness of being faulty 
is impractical if it needs to take a very long time. Here, we 
evaluate the efficiency of our approach, measured by the 

  
 (a) 20 services (b) 30 services (c) 40 services 

 
   (d) 50 services (e) 60 services (f) 70 services  

  
    (g) 80 services (h) 90 services (i) 100 services 

Fig. 6. Anomaly localization cost. 
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computation time taken to calculate the coefficients and 
rank the BCs, i.e., phases 4 and 5 in the anomaly localiza-
tion procedure as presented in Fig. 3. The reason is that 
phases 1, 2 and 3 are performed offline at build-time 
while phases 4, 5 and 6 are performed at runtime and 
directly contribute to the total time consumption for 
anomaly localization upon runtime anomalies. 

Our experimental results show that even in the largest-
scale scenarios with SOSs sized 100 services, the coeffi-
cient calculation and BC ranking take only a few millisec-
onds to complete. This is expected because the spectrum-
based anomaly localization, which is a statistical tech-
nique, has long been acknowledged as an extremely 
lightweight approach [44]. Detailed experimental results 
are not presented in this subsection as it does not provide 
any new and insightful findings about spectrum-based 
anormaly localization. Compared to cO ranking, our ap-
proach takes only less than 1 millisecond extra computa-
tion time. Such a short extra computation time is negligi-
ble in most, if not all, real-world scenarios.  

Based on the above discussion, we conclude that our 
approach is highly efficient and can be used to localize 
runtime anomalies in all types of SOSs, including time-
constrained SOSs, e.g., interactive and multimedia SOSs. 
We also analyse the threat to validity of our evaluation, as 
presented in Appendix A. 

5 RELATED WORK 
When operating in volatile environments, SOSs must be 
monitored in order to achieve timely and accurate detec-
tion and prediction of runtime anomalies. A great deal of 
monitoring techniques and approaches has been pro-
posed for SOSs. Several languages are defined specifically 
for monitoring SOSs, such as WSCoL [7] and SECMOL [8]. 
These languages can be used to specify monitoring rules, 
constraints and assertions. 

Many frameworks have also been proposed for moni-
toring SOSs. To name a few, Baresi et al. [9] propose a 
general and comprehensive solution for monitoring ser-
vice compositions. In this monitoring solution, monitor-
ing constraints can be defined on single and multiple in-
stances, on punctual properties and on complete behav-
iours. Guinea et al. [15] propose a framework that inte-
grates monitoring across the software and infrastructure 
layers. A variation of the MAPE control loop is intro-
duced into the framework that acknowledges the multi-
faceted nature of SOSs. Kertész et al. [27] integrate 
SALMon [36] in IMA4SSP - their monitoring approach to 
seamless service provisioning - so that it can collect dy-
namic reliability information of SOSs expressed in pre-
defined quality metrics. 

Monitoring only the critical parts of an SOS is a cost-
effective solution [17] to SOS monitoring. As a result, 
non-critical BCs will not be monitored. When an anomaly 
occurs in such a BC, it must be localized quickly so that 
adaptation actions can be taken to fix the anomaly imme-
diately in order to avoid or reduce the delay caused to the 
system execution [7, 10, 19]. 

Many fault localization techniques have been proposed 
for different types of software systems. To name a few, 
Artzi et al. [6] present how fault localization algorithms 

can be enhanced to pinpoint faults effectively in Web ap-
plications. Park et al. [37] present a dynamic fault locali-
zation technique that can pinpoint faults in concurrent 
programs. Novotný et al. [39] present a method for local-
izing faults occurring in service-oriented systems on mo-
bile ad hoc networks. Sharma et al. [45] present a time-
invariant relationships based approach for fault localiza-
tion in distributed systems. Nguyen et al. [33] present 
FChain, a black-box online fault localization approach for 
diagnosing performance anomalies in cloud systems. It 
assumes that all the components of a cloud system are 
deployed within one cloud and thus all system metrics 
can be discovered immediately upon a detected perfor-
mance anomaly. Thus, FChain is not suitable for SOSs 
whose component services are very often distributed 
across multiple clouds. 

Compared to other fault localization techniques, in-
cluding program slicing [49], delta debugging [31] and 
model-based diagnosis [29], spectrum-based fault locali-
zation is specifically designed to statistically calculate the 
likeliness of each software component being faulty based 
on information from passed and failed system runs [1]. It 
has been intensively studied in the context of traditional 
programming languages, such as C and Java, under the 
assumption that a component with a high similarity to the 
error vector has a higher probability of being the cause of 
the observed failure than a component with low similari-
ty. There are many similarity coefficients that can be cal-
culated to evaluate the suspiciousness of a software com-
ponent being faulty [2]. The popular ones include the Jac-
card coefficient, used by the Pinpoint tool [12], the coeffi-
cient used in the Tarantula fault localization tool [25] and 
the Ochiai coefficient cO often used in the molecular biol-
ogy domain [14]. Empirical performance comparison has 
been conducted among different similarity coefficients 
and the results showed that the Ochiai coefficient outper-
formed the Jaccard coefficient and the Tarantula coeffi-
cient [2, 44]. This has also been theorectically analysed 
and experimentally demonstrated by our previous work 
presented in [18] and [47]. Due to its high performance, 
Ochiai has been used in several faulty localization tools, 
e.g., Zoltar [22], GZoltar [11] and F3 [23]. 

An SOS is different from a traditional standalone soft-
ware system as it often operates in a distributed and vola-
tile environment. Running test cases at build-time to lo-
calize the bugs in software systems, which is the method 
adopted by existing fault locsaliation techniques in the 
context of traditional programming languages, is imprac-
tical in localizaing runtime anomalies occurring in SOSs. 
An SOS usually consists of multiple distributed compo-
nent services, whose states are difficult to inspect upon 
the occurrence of runtime anomalies. However, the exe-
cution engine of the SOS, e.g., the BPEL engine, is central-
ised. The end-to-end response time of the SOS can be in-
spected easily and end-to-end system delays can be de-
tected efficiently. Taking this advantage, this paper pre-
sents a fault localization approach to attack the challeng-
ing research problem of runtime anomaly localization for 
SOSs. Our approach evaluates BCs’ suspiciousness of 
being faulty by calculating their similarity coefficient 
scores and delay coefficient scores. The BCs that are more 
likely to be faulty are prioritised in the inspection. 
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6 CONCLUSIONS 
In this paper, we propose a spectrum-based approach for 
anomaly localization in service-oriented systems. The 
main idea is to exploit end-to-end system quality data for 
localizing runtime anomalies. The system spectra are ana-
lysed to calculate the basic components’ suspiciousness of 
resulting in the runtime anomaly. BCs’ similarity coeffi-
cient scores and delay coefficient scores are calculated, 
which are used to rank the BCs. The comprehensive ex-
perimental analysis shows the effectiveness and efficiency 
of our approach, and proves that it can significantly save 
the time and efforts for runtime anomaly localization. 

As part of future work, we plan to experiment with 
additional similarity metrics that can be used to rank BCs, 
and evaluate how their effectiveness compares to the ap-
proach presented in this paper. In addition, we will also 
investigate the statistical relation between localization 
cost and the number of execution scenarios. 
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