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Abstract 

Manufacturing is the backbone of a country’s gross domestic product (GDP). With an 

ever-growing population, demand for goods manufacturing has increased exponentially. 

Efficient manufacturing has been the primary aim since the beginning. The performance 

of real-time manufacturing requires an efficient and reliable system. Globally, 

manufacturing accounts for 16% of GDP and 14% of employment. The manufacturing 

sector contributes up to $100 billion annually to the GDP as per the Australian Bureau 

of Statistics, 2019. In the manufacturing sector, in 2019, 23.5% of business expenditure 

was attributable to research and development. 

In all forms, the manufacturing industry is in dire conditions with traditional practices 

resulting in inefficiencies. These traditional practices resulted in inefficiencies due to i) 

rework and rejigging, ii) uncontrolled production, iii) miscommunications and 

mismanagements, iv) lack of decision-making, v) ambiguity due to manual handling and 

vi) increased inventory. In addition, personalised product demands with growing

competitiveness require agile manufacturing with just-in-time delivery to avoid large

stocks of inwards and outwards inventory. Manufacturing systems inherit

multidisciplinary approaches and, therefore, require integrated solutions to avoid

miscommunication and indecision. Further, manufacturing typically comprises

convoluted and heterogenous operations. Characterising and connecting these operations

in an integrated manufacturing system is an overarching problem; for example, there can

be a disconnect between enterprise resource planning (ERP) and manufacturing

execution systems (MES). In recent years, smart manufacturing (SM) has shown

potential for its ability to address the aforementioned challenges. However, there has

been a lack of adoption and implementation of SM due to challenges in technological

integration to harness the required benefits. To compound this complexity, the affordance

of integrated SM is an additional challenge for SMEs (in Australia, small and medium

enterprises comprise 60% to 70%). The exorbitant costs of SM technologies, skilled

human resources and associated regular upgrades are factors contributing to the poor

uptake.

In the present research, a SM framework that integrates ERP and MES for enhanced 

efficiencies, decision-making and low-volume manufacturing is developed. A plethora 



of transformative technologies are integrated in SM framework, including a cloud 

computed (CC) digital twin (DT) paradigm for controlled accessibility from various 

disciplines. Further, DT provided unique visualisation and augmentation capabilities for 

manufacturing mock-ups and upskill training, while a decision matrix dashboard was 

developed in an SM framework using machine learning (ML). SM-based tools, such as 

ML, CC and DT, enhance efficiencies while reducing errors and improving analytics for 

decision frameworks. In this research, the development of a cyber–physical system 

(CPS) integrated with AR and VR connected through cloud platforms is also proposed. 

AR and VR are encompassed in a SM framework and provide adaptive nature and 

enhancements in decision-making with real-time seamless data analysis from ERP to 

manufacturing and vice versa. The research initially characterised heterogeneous 

operations within a textile machinery (e.g., cutting machines). Operational data were 

accumulated using sensors and programming from a physical system (e.g., using 

apparent power and real power). The cyber system was subsequently developed using 

AR and VR technologies for enhanced visualisations with cloud integration. The cloud-

integrated system communicated to the CPS environment bidirectionally. Data were 

analysed for improved efficiency and reduced errors (e.g., optimal takt using ML 

algorithms, such as isolation tree or K-nearest neighbour [KNN]). The use of the CPS 

system improved the personalised product development with added value, and decision-

making was enhanced by predictions and self-corrections embedded through ML. 

Further, the present research validated the SM framework by implementing a cloud-

centric paradigm in the textile industry to improve performance and demonstrate efficacy 

in an SM environment.  

The SM framework developed in this research was validated with a case study on textile 

manufacturing and led to the following outcomes when compared with traditional 

manufacturing: i) efficiency gains of over 31%, and ii) decision framework established 

18% of cost and 31% of time (overall inefficiencies were reduced by 40% compared with 

traditional manufacturing in terms of decision-making) and iii) unique agility related to 

low-volume personalised product manufacturing, such as automated packing, automated 

product tracking and embedded intelligent agile operational capabilities. This research 

produced a SM framework and successfully implemented it in the context of the textile 

manufacturing industry. The framework could be adopted in other manufacturing 

contexts to harness enhanced efficiencies while improving decision-making and agility. 
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1 Thesis overview 



1.1 Introduction 

Manufacturing is a mixture of formulation or biological processing using labour, 

machinery and ever-more-advanced tools. Traditional manufacturing systems were 

based on quality production and were intensive on cost competitiveness and flexibility 

within manufacturing. Demand for quality products is continually increasing. There are 

increased expectations from manufacturers, such as for individualisation or personalised 

products, environmental stability, zero accidental zones and reduced energy 

consumption. To fulfill market demands and ensure sustainability with the above-

mentioned standards, manufacturing systems demand continuous improvement. Smart 

manufacturing (SM) is seen as the potential upgrade needed by existing manufacturing 

systems. SM consists of a strategical paradigm that comprises several advanced 

technologies to fulfill requirements. SM incorporates advanced technological trends, 

such as machine learning (ML), cyber physical systems (CPS) and cloud computing 

(CC). The use of these technologies in manufacturing has led to remarkable changes and 

has strengthened the manufacturing industry in a global context. Researchers have also 

considered the challenges involved in raising manufacturing standards, implementing 

ML algorithms and comparing current practices with the proposed SM framework. 

This chapter first discusses the research problems and outlines the research aim and 

objectives. A section supporting the statements is subsequently included to highlight the 

novelty of the research. Lastly, this chapter ends with the thesis organisation section, 

which provides a brief insight into the contents of the thesis. 

1.2 Research Background 

Manufacturing is the process of converting raw materials into ready-to-consume goods. 

The family manufacturing system encompasses every industry, such as the food, wood, 

textile, metal, plastic and medical industries. These industries have one thing in 

common—machinery and human intervention. The machinery used in these industries 

exhibits distant and complex behaviours. In conjunction with ever-escalating amounts of 

digital data, the need for automated approaches to data analysis continues to grow. ML 

algorithms have been used to develop methods that instinctively detect data, before using 

the models to make predictions or estimate the consequences of activities. Thus, ML is 



considered a relative field of data extraction, statistics and mining, though it varies in 

terms of prominence and terminology. ML and CC have been used in various CPS for 

several decades, including in Industry 4.0, healthcare, agriculture and farming, 

construction and development, while many further sectors use ML and CC. These 

techniques help reduce the costs of manufacturing and improve performance in terms of 

quality, quantity, time to reach market and product branding.  

Measures that improve quality and reduce manufacturing times help manufacturers to 

meet the expectations of the market. Manufacturing plays a significant role in the gross 

domestic product (GDP) of countries around the world. Research conducted in 2019 

showed that Australian manufacturing had the sixth-largest economic impact, while the 

country had the seventh-largest employment industry (ABS, 2019). In 2019, 

manufacturing in Australia accounted for 11% of annual export earnings and had 

significant contributions to research investment compared to other industries (Moustafa, 

Turnbull, & Choo, 2019). The sector comprised nearly 47,000 companies and employed 

close to one million people. According to research by the Australian Trade and 

Investment Commission, since 1992, Australia has experienced substantial annual 

economic growth globally among all the developed economies. According to the 

Australian Bureau of Statistics (ABS, 2019). Australia was responsible for ~2% of the 

world’s GDP, accounting for two trillion Australian dollars (see Figure 1). Meanwhile, 

manufacturing accounted for 9% of the country’s overall GDP, of which the textile 

industry specifically played a significant role. 



Australian manufacturing has faced several challenges, including inefficiencies, high 

labour costs and reduced export potentials (e.g.: comparatively higher currency exchange 

rates). Often, the manufacturing paradigm inherits heterogeneous nature with a multi-

disciplinary approach. In addition, product manufacturing is influenced by customer 

demands, most recently for personalised products. Traditional manufacturing practices 

inherited limitations, such as inefficiencies, waste and negative environmental effects. 

Compared with many other manufacturing industries, the textile manufacturing industry 

has the most heterogeneous operations, such as tailoring, cutting, sewing, knitting, 

lamination and packing, which are operated manually at individual stations. Often, these 

processes create inefficiencies, wastage, reworking and rejigging. Along with this, 

communication and decision-making within departments and suppliers are often seen as 

inadequate, resulting in delays and increased costs. Moreover, the textile industry 

struggles to meet customer demands for individualised products. 

In recent years, manufacturing has been influenced by innovative technologies. Recent 

exponential growth in advanced tools, such as augmented reality (AR), virtual reality 

Figure 1 Australia’s contribution in a global context 
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(VR), ML, predictive analysis and CC has led manufacturing towards smart 

industrialisation. At present, in all forms, these technologies have been implemented in 

singularities with a limited benefit to manufacturing industries. The key gap found was 

integration and seamless real-time integrations of these tools, providing individualised 

solutions within manufacturing. Deploying these technologies required increased set-up 

and maintenance costs. Approximately 70% of Australian manufacturing industries 

comprised of small- and medium-sized enterprises (SMEs) (Geoff Gilfillan Statistics and 

Mapping Section, 2018). Uptake of these technologies has been slow in manufacturing 

due to their lack of affordability for SMEs. The novel idea in this research was to harness 

underlying technologies to integrate cost-effective SM to enhance productivity and 

decision-making capabilities. 

1.3 Aim and Objectives 

This research aimed to develop a  cloud-centric DT paradigm emdedding  advanced and 

improved applied ML algorithms harnessing CPS techniques for enhanced efficiency, 

decision making and low-volume individualised manufacturing. The research objectives 

were: 

i) study and analyse current practices, takt times and characteristics to identify

challenges, methodologies and gaps within manufacturing processes

ii) develop a data acquisition method from manufacturing machineries for analytics

using sensory inputs to accumulate characteristic heterogeneous data sets (e.g., a

cutting machine to understand the behaviour and operational analysis)

iii) design and develop a cyber model that integrates machine characteristics, space

and other control strategies

iv) analyse integrated real-time synchronous data management within cyber and

physical models (proof of concept) in cloud

v) refine the acquired real-time data sets within cloud to define regression models

(e.g., ML algorithms) to analyse the required parameters (e.g., takt time between

the operations with isolation trees or KNN).



vi) develop and validate an integrated SM for textile manufacturing that is capable

of real-time data analytics to reduce takt times, enhance decision-making.

1.4 Novelty of the Research 

The main aim of this research was to integrate ML, CC and CPS technologies in a single 

platform in a manufacturing scenario. The integrated platform was called ‘SM’. The 

present research initially focused on the present challenges and limitations affecting 

manufacturing. This research also aimed to pinpoint the key factors of structured 

implementation of ML algorithms on a data set collected in the context of a complex 

operation in the manufacturing industry using the textile industry as a case study. 

Integrating the technology into real machines was challenging in a real-life scenario. 

Examples of complex operations in the textile industry include cutting, sewing, folding 

and packing, which must be underpinned with takt times. Takt times and system analysis 

contributed to the problem statements of the present research, giving a clear 

understanding of the flaws within the system and leading to a broad area of research, 

identifying the following important areas of research novelty: 

i) Takt times in the manufacturing was addressed, as a reduction in takt time results

in significantly increased productivity. Findings from these studies can be applied

within similar manufacturing industries and serves as a benchmark. The efficiency

gains

ii) Communication in manufacturing industries must be addressed because latency in

communication between the operators, as well as operations, results in high levels

of waste and reduces productivity. Such problems are often caused by poor

decision-making and process analysis. In the present research, communication

within the manufacturing industry was addressed via a cradle-to-cradle approach.

This approach defines the processes of industry in a sequential and observed pattern

to address the intense manufacturing that needed addressing. These decisions are

often decided by the operation manager and department leads. Communication

enhancements were made by implementing cloud communication to enable all

operators and decision-makers to visualise and confirm decisions. This resulted in

enhanced communication and better decision-making.



iii) Inventory management in intricate manufacturing industry often creates 

complications, making it difficult to maintain and retrieve. Observations revealed 

a high volume of inward and outward inventory due to uncertainty in production 

patterns and market expectations. These issues must be addressed to reduce 

inventory and emphasise the value of SM. Enhancements in reduced inward and 

outward inventory emphasises real-time manufacturing rather the traditional 

approach to manufacturing to aid in space optimisation, work order optimisation 

and stock management. 

iv) Technology plays a major role in overcoming the challenges associated with 

traditional manufacturing and addressing the aforementioned challenges. Research 

was conducted on how to enhance decision-making and reduce takt times. These 

tasks were examined by analysing previously collected data to predict the future 

behaviour of operations and determine the machines used in the process. These 

predictions helped achieve better takt times while reducing lead times. The next 

manufacturing challenge involved enhancing communication. This was addressed 

by considering CC and transparency between the operations and operators. The 

present research helped operators understand the job profile they were assigned to, 

which enhanced the integration of operations by addressing the verticals of 

manufacturing in a cradle-to-cradle approach. Lastly, inventory management was 

addressed by analysing the solution in a virtual environment. AR/VR tools were 

used to address critical issues by visualising the manufacturing operations. The 

behaviours of the virtual components were subsequently analysed, along with real-

time characters, which provided a sustainable result. The DT proposed includes 

these novel introductions from the research would help similar industries to address 

convoluted manufacturing practices. The DT proposed included i) DT proposals; 

ii) the implementation of DT principles, such as ML algorithms, CC and the 

integration of AR/VR technologies with a proof of concept and iii) future scope and 

conclusions of the research. 

1.5 Thesis Organisation 

Chapter 2: State of the art in the manufacturing industry 

This chapter comprehensively describes current trends, challenges and related work in 



the field of manufacturing. Two surveys were conducted as part of this research to gauge 

existing market trends and technological standards. Further, a detailed methodology of 

ML algorithms and anomaly detection (AD) techniques are discussed. 

Chapter 3: Manufacturing field study 

This chapter describes the detailed methods adopted in the field study conducted on 

Australian manufacturer SleepCorp Pty. Ltd. SleepCorp is a mattress protector 

manufacturing company that uses complex manual operations. This was an ideal case 

study for exploring the SM framework because, if the efficacy of the framework could 

be demonstrated in this case study, this would suggest that other industries could also 

benefit from the framework with minimal changes to it.  

Chapter 4: Smart manufacturing framework 

This chapter outlines the novel SM framework. The framework is considered based on 

all possible machinery, software implementations, ML implementations and possible 

integration with ERP and MES. This framework was developed for a general 

manufacturing industry. To provide a proof of concept of SM, a case study of a mattress 

protector company was considered. 

Chapter 5: Enhancing efficiency in manufacturing 

This chapter illustrates the implementation strategy of the SM framework in a 

manufacturing scenario. The chapter first discusses the data generation and collection 

strategies before outlining the results and analysis. 

Chapter 6: Cloud-centric digital smart manufacturing  

This chapter consolidates the research outcomes of two major research problems: a 

decision-making framework and low-volume manufacturing. These research problems 

were addressed by integrating advanced technologies, such as CPS and CC. A cost and 

time analysis based on the earlier system compared with the new SM system is discussed 

in detail. Figure 2 depicts the thesis organisation. 



 

Chapter 7: Conclusions and recommendations 

The thesis concludes by highlighting the main outcomes, summarising the analysis and 

outlining the future scope of the research. The future scope of the research includes a 

cost analysis of the implementation, a description of the security concerns of the CPS 

and an exploration of advancements in the implementation of ML and AD techniques on 

high-dimensional manufacturing data. 

Chapter 8: Future scope 

This chapter provides a clear overview of future directions for the research, including 

revisions of ML algorithms and improvements to the CPS system integration. Potential 

applications to manufacturing and other similar industries, such as the mining, 

transportation and medical industries, are discussed.  

Figure 2 Thesis organisation 



2 State of the Art in Manufacturing Industry 

This chapter describes the current trends, challenges and related work in the field of manufacturing. Two surveys 

were conducted to gauge existing market trends and technological standards. Further, a detailed methodology of 

ML algorithms and anomaly detection techniques are discussed. 

This chapter is based on the following sources: 

i) Sourabh Dani, Jiong Jin and Ambarish Kulkarni, ‘Current state of art industry

survey in Industry 4.0 manufacturing industries’, submitted to the Journal of

Industrial Engineering and Management, November 2021 (impact factor: 3.9).

ii) Sourabh Dani, Jiong Jin and Ambarish Kulkarni, ‘Comprehensive survey of Real-

time anomaly detection in High Dimensional Data in Manufacturing scenario’,

submitted to the IEEE International Conference on Cloud Computing, October 19–

23, 2021.



2.1 Introduction 

This chapter covers the challenges affecting traditional manufacturing practices, 

specifically the complex and convolute heterogeneous characteristics of the textile 

industry, which is used as a case study in the research. The chapter outlines the 

significance and exponential growth of industry 4.0 and relevant benefits for 

manufacturing industry. Further, a detailed literature review of SM and an outline of its 

important elements are provided. Cyber modelling, ML, CC and AR/VR are discussed 

to evaluate adaptable technologies that can address manufacturing challenges. 

Individualisation and the need to address the modern problems associated with 

manufacturing have arisen due to ever-evolving market needs and the influence of 

products on a global scale. There is an additional need to maintain competitiveness. 

Advancements in technologies, such as the invention of cyber systems, advanced 

physical machines, advanced data-driven technologies and solid integrated 

communication tools, offer means of overcoming traditional problems in the 

manufacturing sector. The integration of cyber and physical systems has gained major 

importance in recent decades across the manufacturing industry. This chapter discusses 

the following key points: 

i) In the first section of LR, current manufacturing practices and the challenges 

affecting the manufacturing industry are discussed. Further, industry 4.0 standards, 

SM trends and related technologies for adoption to overcome challenges are 

outlined. 

ii) A survey of the Australian manufacturing industry was conducted, and a related 

questionnaire is outlined. The related outcomes, questions and target audience are 

discussed in detail. 

iii) Detailed literature on technologies, such as development of a framework using 

cyber and physical systems, is reviewed. Techniques, such as digitisation, 3D 

modelling, core-enabled systems and the capturing of CPS characteristics, are 

presented. Further, digitisation, engineering techniques, deployment methods and 

communication programming relating to the implementation of CPS are discussed. 

iv) Cloud in the context of CPS is extensively discussed, covering current practices, 



deployment methods and varieties of implementations in an industrial context. 

Cloud service models for adoption are identified and described. 

v) The application of ML in manufacturing based on the CPS and cloud integration 

models is discussed as a means of addressing current challenges. Literature on the 

limitations of applications of ML in manufacturing is explored, with potential 

solutions identified. 

2.2 Traditional Manufacturing Practices and Gaps 

Manufacturing plays an important role in a country’s economy, comprising multiple 

levels of employment, cross-disciplinary industries and advanced machinery. This 

section explores existing methods of manufacturing, as well as associated challenges and 

techniques that have been used to overcome them. 

2.2.1 Traditional Manufacturing Practices Survey 

The manufacturing sector is an important part of a country’s GDP. Manufacturing has 

many complex operations that it uses to deliver on the multi-disciplinary requirements 

of the market. Manufacturing industries are globally competitive, hence optimal process 

are necessary. The flow between operation and disciplines needed optimisation to 

enhance required productivity (e.g.: raw goods to finished products). Manufacturing 

generates more than $100 billion in the Australian economy and directly and indirectly 

employs more than 1.27 million people (Moustafa, Turnbull, & Choo, May 2019). 

The survey conducted examined the challenges faced by Australian SMEs. The 

Australian manufacturing industry encompasses research and development, design, 

logistics, production, distribution, sales and services. The methodology of the survey 

focused on demographic questions. Initially, the survey was divided into regional and 

overseas manufacturing. The demographic questions related to participants’ age, 

qualifications, current role, type of industry and number of employees in their 

organisation to understand the size of the industry. Further, participants’ digital 

knowledge was assessed using the multiple grid questions to underpin the SM awareness. 

In addition, the implementation of integrated systems, such as ERP and MES, was 

surveyed. CC aspects of manufacturing were also outlined using cloud services, and 



cloud services implementation strategies were evaluated. Table 1 details information on 

the questions and expected outcomes. 



Table 1 Australian manufacturing survey 

Topic Description Question Outcome 
Details 
related to 
geography, 
age, 
qualifications, 
current role, 
industry type 
and 
experience. 

This section asked about 
participants’ location of 
work, nature of the industry 
they were working in and 
their level of experience. 

i) Where do you live currently? If they were located outside Australia, the survey 
was terminated. If they were located within 
Australia, the next question appeared. 

ii) Please select the state you are living 
in: 

To identify where precisely the participants were 
located within Australia. 

iii)  Please select your age range. To identify the target population. 
iv) Please select your highest 

qualification. 
To segregate participants according to their 
qualifications. 

v) Please select the role you are 
currently working in. 

To identify the nature of participants’ roles. 

vi) Please select the type of 
manufacturing industry you belong 
to: 

To gather demographic information on the type of 
industry to divide the participants according to their 
industry. 

vii) Approximately how many 
employees are working in your 
organisation? 

To distinguish participants based on their industry, 
such as SMEs or large-scale industry. 

viii) How many years of experience 
do you have in your field? 

To establish participants’ level of experience in 
their industry.  

Digital 
technologies 
awareness 

This section of the survey 
assessed participants’ 
awareness of digital 
technologies within the 
manufacturing industry. 
Questions on a mid-
management level and high-

ix) How much do you know about 
digital technologies?  

To identify participants’ ability to answer the 
remainder of the questions in the section and 
subsequent section while also helping to group 
participants based on their level of knowledge of 
digital technologies. 

x)  Please choose from the following 
digital technologies that you are 
aware of. 

To gauge participants’ knowledge on digital 
technologies such as ERP, RFID/Barcodes and 
cloud technology. 



management level were 
posed. 

xi) Which of Enterprise Resource 
planning (ERP) services are highly 
useful? 

If they ticked ERP in the previous section, this 
question asked about the services they might be 
using within their organisation such as for 
inventory management, market research analysis, 
accounts and finance and customer relationship 
management (CRM). 

xii) Please choose the reasons form 
below for not using (multiple answers 
are allowed) 

If they selected the ERP option, this question asked 
about the reason why they were not using ERP 
services. 

xiii) Please choose the application of 
cloud services within your 
organisation. 

To determine whether the participants were using 
cloud services, such as Google cloud services and 
office365. If they were using a cloud service, this 
implied that if there was a potential development 
with respect to a cloud manufacturing scenario. 

xiv) Within next three years, which of 
the following 3 major improvements 
you want to implement through 
digital technologies? (Multiple 
answers are allowed) 

To identify whether the organisation has 
considered any improvements, such as machine life 
predictions, line balancing, resource management 
and production planning, which directly affect the 
production rate within SMEs. 

Government 
assistance and 
professional 
help. 

This block is to understand 
whether the participants are 
aware about the government 
programs in upbringing the 
SME business and the 
professional help they might 
be interested in. 

xv) Are you aware about the local, 
regional, national or government 
initiatives to support your business in 
your industrial transformation? 

Government assistance packages are available for 
SMEs. This question verified whether participants 
were aware of these programs; if not, they could 
request more information on them. 

xvi) Thank you for taking this survey. 
Please choose from the following 
professional services that you might 
be interested in. 

Similar to the previous question, participants may 
have been aware of certain programs but lacking 
the professional needed to implement them. This 
question aimed to help the researchers map the 
businesses accurately. 



2.2.2 Operational Inefficiencies 

More than 70% of survey participants said that manufacturing was vital to the Australian 

economy. Manufacturing today faces two distinct but unique challenges: global 

competitiveness and personalised products. Australian industries, specifically the textile 

industry, face high labour rates and inefficient traditional manufacturing practices. 

Australia has the highest labour rate of all other countries, as depicted in Figure 3. A high 

labour price was influencer for automation; this resulted in meeting global competitive 

demands. In addition, approximately 70% of the Australian manufacturing sector is 

attributable to SMEs (Geoff Gilfillan Statistics and Mapping Section, 2018). Technology 

adoption was seen as occurring at slow pace due to a lack of affordability stemming from 

increased set-up and maintenance costs (Caihong, Zengyuan, & Chang, 2019; Cheng, 

Liu, Qiang, & Liu, 2016). 

 

Figure 3 Labour rates compared to global context 

Although the Australian textile manufacturing industry has boomed since the early 

1970s, it mostly used traditional practices. The textile manufacturing industry, as 

depicted in Figure 3 (Australian Trade and Investment Commission, 2019), faces 

significant challenges compared with other industries due to its heterogeneous nature. 

Textile manufacturing consists of i) marketing and sales, ii) design and planning, iii) 
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manufacturing and quality inspection and iv) inventory and delivery. Marketing and sales 

teams face significant challenges relating to customer expectations, personalisation, 

sales, product costs and value propositions (Ding, Zhang, Chan, Chan, & Wang, 2019; 

Dombrowski, Wagner, & Riechel, 2013; Fucheng & Guoliang, 2015; Gao, Li, & Chen, 

2015). Among other expectations, design and planning was not limited but faced 

conceptual timelines, budget restraints, resource management, competitor benchmarking 

threats, decision errors and related warranty issues. Manufacturing and quality faced the 

following challenges: inefficiencies, skill and operational gaps, higher wages, inventory 

and supplier-led issues, maintenance issues, miscommunications, defects and rejections, 

and rejigging. Inventory and delivery departments often face challenges relating to 

product mismatch, miscommunications, personalisation, breakdowns, and overstocking 

issues. 

Significant challenges faced by the textile industry include shorter product life cycles 

and an increased number of personalised variants. The requirement for individualised 

products based on customer demands is fulfilled using the same manufacturing 

processes. Therefore, the textile industry requires high inventories to fulfil its orders. 

Reliance on supplier raw materials and inventories of raw materials are also increased. 

As a result, the sector faces a lack of global cost competitiveness and waste-reduction 

strategies. This significantly affects costs due to the need for reworking and the rejigging 

of operations. Each manufacturing station is a single unit with complex and convoluted 

operations. High skill requirements and manual interventions are typical. Mere 

interconnection within manufacturing sub-systems increases costs and surpasses 

budgets. 

More frequently, miscommunication and decision errors due to a lack of centric data are 

a challenge. Inadequate integration strategies stemming from traditional practices within 

sales, planning, design, manufacturing, purchase and supplier base result in last-minute, 

costly decisions. As manufacturing operation and related discipline’s function parallelly, 

control strategy was required for unproductive manual interventions. Hence, decision-

making is not based on data-centric analysis. This inefficiency affects customer deadlines 

and, as a consequence, brands themselves. Current traditional practices are not set up for 

the cost-effective manufacture of personalised products, resulting in increased product 

delivery times to customers and reduced global competitiveness. 



Recent trends and the emergence of hybrid manufacturing environments with real-time 

information exchange between the numerous operations have resulted in changes in 

practices. However, to date, these changes have been limited to single operations and 

have failed to capture all the heterogeneous characteristics of manufacturing. Examples 

include seamless real-time interfaces within marketing, sales, design, planning, 

manufacturing, quality, inventory and delivery. Further, increased environment 

awareness and related legislation have led to stricter practices for product disposal. Thus, 

textile manufacturing processes are a risk to global competitiveness due to versatile, 

intricate and inherently complicated systems, in addition to multiplying product 

variations in line with the trend of personalisation. 

2.2.3 Decision Framework 

Interdepartmental decision framework is vital in manufacturing scenarios. Decision 

framework was an important influencer within manufacturing and had economic impacts 

for an industry. More than 80% of the Australian manufacturing industry lacks an 

appropriate and validated decision framework. The financial success of an organisation 

depends on the important decisions made and execution of strategies. In manufacturing, 

planning and productions are interrelated, however overridden by complexities ever 

present (e.g.: decisions were instantaneous without scientific rigor, dependent on 

personal experiences). However, the present research showed that the lack of a decision-

making framework leads to inefficient manufacturing. Making viable and economic 

decisions is important to the growth of the manufacturing industry. Money flow analyses, 

project management costs and projected costs related to engineering are directly 

proportional to the rational decisions taken beforehand. 

Decisions made during manufacturing are also important. Different departments, such as 

sales, marketing, engineering, management, accounts, production and warehousing, must 

communicate regularly to avoid hidden costs. The product lifecycle and economical life 

cycle must be validated and neatly executed via a leak-proof implementation strategy. 

When making important decisions, management must understand the core analysis of the 

manufacturing. A core analysis can be conducted by implementing multiple analysis 

algorithms into a framework. Cost–benefit analyses and takt time analyses are two major 

strategies for evaluating the performance of a framework. The present research showed 



that a viable solution is more important than capable manufacturing. Critical decisions 

within manufacturing enhance the output compared with poor decision-based 

manufacturing. The problem of a decision framework arises within the production 

lifecycle indulged due to multidiscipline. Major decisions depend on sales volume, as 

well interdisciplinary communication protocols (e.g.: engineering and planning teams). 

In addition to quality assurance, warehousing end logistics play an important role in 

customer satisfaction. Further, sales and services enhance the performance of a product. 

The five phases of decision framework are planning, arrangement, management, 

relevance and execution. These five pillars must be as strong as possible to maintain a 

high producible manufacturing industry. 

2.2.4 Low-Volume Manufacturing 

The planning, management and execution of production must be tailored to low-volume 

manufacturing. Manufacturing industries often produce large volumes of quality 

products but fail to manage the raw materials and ready-to-deliver products. Since the 

advent of the manufacturing industry, every industry has sought to improvise its 

manufacturing strategies. Customisation or individualisation is important in the era of 

Industry 4.0. All customers have specific needs when it comes to buying personal 

products. Irrespective of the nature of the industry, customisation is needed to fulfil a 

particular objective. The characteristics of a product, market behaviours, expected sales, 

amount of marketing and quality of the product all affect the performance of the product 

in the market. To achieve strong performance, products must feel as though they are 

tailored to the individual. 

Low-volume manufacturing is the major objective of every manufacturing industry. To 

approach low-volume manufacturing, all industries conduct research and development, 

and planning towards advanced manufacturing. Research has suggested that low-volume 

manufacturing can be achieved by number of ways, though a proven case study or a 

validated analysis has yet to be presented to date. Engineering low-volume 

manufacturing is highly uncertain. Considering all the parameters of the manufacturing 

industry may cause engineers to second guess their own analysis. While research has 

suggested that DT or a CPS can be applied to overcome traditional problems, analyses 

of implemented DT are lacking. Further, low-volume manufacturing must provide vital 



information of anytime anywhere. 

Research conducted in the field of manufacturing has led to an understanding of the basic 

requirements of CPS. A simulated and validated strategy of low-volume manufacturing 

is needed for the manufacturing industry. Most low-volume manufacturing strategies 

pertain to specific industries. However, at present, a single framework or a strategy that 

can be applied to all other industries of similar nature is missing. OEEs and OEMs have 

their own strategies and, due to the nature of the industry, need not be concerned with 

stock and raw materials.

2.3 Smart Manufacturing 

The first of the three major revolutions that have transformed industries from 

conventional methods to advanced methods was the first industrial revolution, which 

introduced commercial steam and machinery in the 1700s. This was followed by the. 

second industrial revolution, which applied electricity to machinery, leading to mass 

production in the late-twentieth century. The third industrial revolution initiated full 

length usage of computers at the time of the Second World War. The most recent 

industrial revolution is the fourth industrial revolution or ‘Industry 4.0’, as coined in 2011 

by Henning Kagermann, chief of the German National Academy of Science and 

Technology. The Industry 4.0 movement was initiated by strong technological 

contenders, such as BASF, Deutsche Telecom, Bosch, Daimler and others in Germany. 

Industry 4.0 gained in momentum in other parts of the world, such as in Japan, the UK, 

China and the US. Industry 4.0 is gaining importance across the globe in several 

industrial sectors. Figure 4 depicts the adaption to Industry 4.0 by industrial sectors 

worldwide. 



 

Industry 4.0 has played a critical role in the integration by industrial anchors, such as GE 

and Siemens. In recent years, Industry 4.0 has enhanced manufacturing efficiency by 

harnessing advanced technologies, such as CC, DT, cloud networked robotics (CNR), 

artificial intelligence (AI), regression analysis (RA), task analysis (TA), predictive 

models (PM) and ML algorithms. Industry 4.0 manufacturing processes autonomously 

exchange information and trigger actions by controlling machinery connected by 

advanced technologies (Iarovyi, Mohammed, Lobov, Ferrer, & Lastra, 2016; Ivezic & 

Ljubicic, 2016). This innovation has improved manufacturing and engineering processes, 

material usage and the supply chain, as well as the life cycle management of industrial 

operations. In addition, recent advancements in cutting-edge ICT technologies have led 

to the introduction of real-time applications for industrial manufacturing ( Zhou; Zhu, Li, 

& Wu, 2018). These applications entail more precise design and rigid frameworks for 

successful implementation, thus automating processes. In the context of Industry 4.0, 

there has been a need to achieve a systematic manufacturing process by maintaining 

efficiency and providing an economically competitive solution. Therefore, there is a need 

for a new paradigm (i.e., SM) to be established as the hallmark of the fourth industrial 

revolution. 

To date, Industry 4.0 has represented manufacturing systems, including material flow 
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and a simulation model, as CPS for augmented production and planning strategies 

(Vachálek et al., 2017). Establishing manufacturing as CPS required smart operational 

interconnection, interaction with control and management converging both spaces (Fei 

Tao & Zhang, 2017). Further, challenges such as interconnecting heterogeneous physical 

systems and integrating these bi-directionally to cyber system have been highlighted. 

This chapter presents the adoption of an SM inheriting CPS to enable seamless real-time 

integration from product design to delivery to advance value chain traceability and 

enhance efficiency (Ferrer et al., 2018). (Qu, Jian, Chu, Wang, & Tan, 2014) argued that 

the idea of embracing SM in a full-scale manufacturing plant is impractical and further 

suggested a lack of practical implementation due to complex and convoluted 

manufacturing characteristics. (Wang, Wan, Zhang, Li, & Zhang, 2016) presented a 

smart factory based on a cloud coordinator for machines, conveyors and products for 

distributed self-decision and intelligent mechanisms. Using an Industry 4.0 approach, 

(Subakti & Jiang, 2018) proposed mobility aspects, arguing for the use of mobile 

deployment for interacting displays. Meanwhile, (Sezer, Romero, Guedea, Macchi, & 

Emmanouilidis, 2018) argued that an enhanced comprehension of complexity 

overwhelmed manufacturing information through mobile deployments compared with 

static displays. Industry 4.0 has enabled low-cost data acquisition and conditioning 

monitoring for lathe operations and predictive maintenance (PM) activities. A novel 

integrated SM modelled is detailed in the following sections to address these challenges 

and establish efficacy for enhanced productivity and decision-making. 

2.3.1 Industry 4.0 

The industrial and information technology industry has undergone considerable change. 

As the industry entered the Industry 4.0 era, it progressed from embedded systems to the 

cyber–physical world. Manufacturing is now possible via the Internet, which has paved 

the way for intelligent direction by achieving internal and external network integration. 

The development of Industry 4.0 was studied in this thesis. Cyber–physical systems were 

introduced in Wise Information Technology 120. This subsequently led to the application 

of Industry 4.0 in intelligent manufacturing. The present research analyses the future of 

Industry 4.0 and intelligent manufacturing Cheng et al., 2016). 

CPS and cloud manufacturing were involved in achieving Industry 4.0, which was set to 



be a new manufacturing objective. While Industry 4.0 was revolutionary, it was not 

without defects, though it aimed to achieve nearly zero defects. In this research, the 

possibility of a platform that denotes the advanced manufacturing of cloud things was 

explored. This proposal not only aims to achieve the objectives of Industry 4.0 but also 

accomplish the goal of zero defects by applying automatic virtual metrology technology. 

Combining Industry 4.0 and AVM to achieve zero defects led to the beginning of the era 

of Industry 4.1 (Cheng et al., 2016). 

Cyber–physical additive manufacturing systems consist of the tight integration of cyber 

and physical domains. This union, however, induces new cross-domain vulnerabilities 

that pose unique security challenges. One such challenge involves preventing 

confidentiality breaches caused by physical-to-cyber domain attacks. In this type of 

attack, attackers use side channels (e.g., acoustics, power, electromagnetic emissions) in 

the physical domain to estimate and steal cyber-domain data (e.g., G/M-codes). As these 

emissions depend on the physical structure of the system, one way of minimising 

information leakage is to modify the physical domain. However, this process can be 

costly due to added hardware modifications. Instead, (Chhetri, Faezi, & Faruque, 2016) 

proposed a novel methodology that made cyber-domain tools aware of existing 

information leakages. The authors then proposed changing either the machine process or 

the product design parameters in the cyber-domain to minimise information leakage. 

This research methodology aids the existing cyber-domain and physical domain security 

solution using the cross-domain relationship. The present research aimed to implement 

the methodology in a fused-deposition model based on a Cartesian additive 

manufacturing system. The methodology achieved a reduction in mutual information of 

24.94% in the acoustic side channel, 32.91% in the power side channel, 32.29% in the 

magnetic side channel and 55.65% in the vibration side channel. As a case study, to help 

understand the implication of mutual information drop, and the calculation of the success 

rate and reconstruction of the 3D object based on an attack model are presented. For the 

given attack model, this leakage-aware CAM tool decreased the attacker success rate by 

8.74% and obstructed the reconstruction of finer geometry details (Chhetri et al., 2018). 

In this research, recent developments and applications of CPS in the manufacturing 

industry were studied. The literature contains some models of system design and system 

development for Industry 4.0, but few examples were found specifically for 



manufacturing systems modelling and simulation. The present work proposed a novel 

system framework of integrated cyber–physical simulation modelling environment for 

manufacturing 4.0. This framework incorporated an architecture integrating an aggregate 

cyber space controller (ACSC) with a physical space distributed controller (PSDC). The 

concepts of DT, distributed artificial intelligence, CC and distributed autonomous control 

were deployed in the framework with the aim of exploring the future potential 

applications of systems modelling and simulation for manufacturing Industry 4.0 

systems. The framework proposed has an extension of CPS and provides a scenario of 

hybrid cyber space simulation and a physical space discrete controller for manufacturing 

4.0 (Lin, Low, Chong, & Teo, 2018). 

Additive manufacturing (AM) uses CPS, which is susceptible to cyber-attacks. By these 

cyber-attacks there will be physical damage to manufacturing systems. In CPS, scientists 

have modelled various attack-detection methods for detecting attacks on the integrity of 

a system. However, attack detection is in its infancy in relation to AM. Moreover, 

analogue emissions (e.g.: electromagnetic emissions, acoustics) from the side channels 

of AM have not been fully considered as a parameter for attack detection. To address the 

security issues surrounding AM, this research presents a novel attack-detection method 

that can detect zero-day kinetic cyber-attacks on AM by identifying anomalous analogue 

emissions that arise as an outcome of an attack. This is achieved by statistically 

estimating the functions that map the relationship between analogue emissions and the 

corresponding cyber domain data (such as G-code) to model the behaviour of the system. 

This method was tested for its ability to detect potential zero-day kinetic cyber-attacks 

in fused deposition modelling-based AM. These attacks can change various parameters 

of the 3D object, such as the speed, dimension and movement axis. The accuracy, which 

is defined as the ability of the method to detect the range of variations introduced into 

the parameters by kinetic cyber-attacks, was 77.45% (Chhetri, Canedo, & Faruque, 

2016). 

A number of initiatives have aimed to promote digital manufacturing (i.e., the adoption 

of pervasive, fine-grained CPS and of data-driven optimisation techniques within the 

manufacturing domain). These initiatives aim to increase efficiency during the running 

of conventional operations and allow for new production and business models, such as 

mass customisation or networked value chains. This research is planned in two phases, 



initially enhancing current operations efficiency and there after implement system 

overhaul. First, the present work elaborates on the often-neglected line-level automation 

and the importance of making it a priority in digital manufacturing, particularly when 

transitioning existing manufacturing to modern facilities. Next, this work describes the 

approach and references the specific technologies used for production deployment on the 

factory floor  . Following this, positioning is introduced within a second stack jointly 

prototyped with partner organisations of reasoning algorithms. As entry points for added 

autonomy into manufacturing systems, they pave the way for automatic (re)configuration 

from high-level goals, as well as for error recovery. The present work provides an insight 

into the design of the next generation of software architecture for manufacturing and 

aims to contribute to the transition from early reference architectural models to design 

blueprints for actual technology stacks (Lüdtke, Delval, Hechtbauer, & Bordignon, 2019) 

(Novak, Kadera, & Wimmer, 2017). 

2.4 Smart Technologies 

This section details the smart technologies that have been used for more than a decade using 

singularly repeatedly in multiple industries, including how they are mainly used, the challenges 

associated with their use and proposed solutions. 

2.4.1 Cyber Physical Systems 

According to recent research, a key element of DT involves digitising the environmental 

modelling. Cyber modelling of physical entities uses point cloud data, which is a cluster 

of interconnected computerised data based on Cartesian origins. This system is integrated 

for network topology, service managers and data storage capabilities (Liu, Liu, & Sun, 

2011). 

Individualisation and the need to address the modern problems of manufacturing have 

arisen due to ever-changing market needs and the influence of products on a global scale. 

Further, maintaining competitiveness has become increasingly important. Advancements 

in technologies, such as cyber systems, advanced physical machines, advanced data-

driven technologies and solid integrated communication tools, present new ways of 

overcoming the traditional problems faced by the manufacturing sector. The integration 

of CPS has gained major importance in recent decades across the manufacturing industry. 



Research has suggested that CPS will be affected by evolved integrated solutions in 

manufacturing production lines. Mechanical and electronic items on the shopfloor will 

be prone to cyber models in achieving CPS, with additional advancing communication 

practices that enable the study of the behaviour of mechatronics. Such research would 

illuminate the behaviours of production systems by simulating manufacturing lines in 

CPS. Thus, integrated CPS systems could help in realising the vertical technologies and 

horizontal procedures of production lines. 

Strong competition in the global market has led to flexible and reconfigurable production 

systems that can rapidly react to both endogenous and exogenous drivers. With this fast 

progression, a new production system model must be defined. The system should 

combine the KBFs and relevant KPIs to control the system to allow the right decisions 

to be made while using the simulation ICT tools. The model must be used in a cyber–

physical system for the simulation ICT tools to be supported in making the right decisions 

and properly supporting the different functions. 

This project aimed to develop an innovative manufacturing system based on a new 

concept that implemented methodologies, strategies and methods to transform the 

existing production systems to ones based on CPS technology. The present research 

compared the relevant KPIs with their KBFs. This research methodology has used in the 

industry to gather important information on constraints and opportunities for 

improvement in other contexts and has been validated (Boschi et al., 2017). 

SM systems have been shaped significantly by CPS. Computation and physical processes 

are integrated in CPS. CPS can be used to represent the behaviours of both the cyber and 

physical parts of a system. Major vendors of manufacturing industries have conducted a 

detailed technical review of existing engineering tools and practices, presenting an 

overview of CPS technologies, components and relevant standards. Subsequent research 

has developed potential ways to enhance the tools, functionalities and capabilities that 

support the CPS development process (Jbair, Ahmad, Ahmad, & Harrison, 2018). 

Various methods have been used to develop cyber models repressing physical entities 

mainly 3D modelling, laser scanning, ladder scanning, infrared scanning and 

photogrammetric procedures (Lin et al., 2018). Significant challenges arose during the 

development of cyber models. Among various challenges, digitising complex, and 



organic shapes of physical machineries with required textures (e.g.: reflective surfaces) 

are significant. Cyber models have been created manually, algorithmically (through 

procedural modelling), by scanning and via the triangulation of photographs. Recently, 

Quadra capture-based photo triangulation has been successful in creating coloured 

texture at higher model accuracies (Liu, Zhao, Tao, Zhao, & Li, 2018). An example of a 

warehouse digitised using photogrammetry is depicted in Figure 5. Major machining data 

have been collected from digital data engendered from adapted computer-aided models 

(Nguyen, Leu, & Liu, 2017). These verticals of manufacturing must be integrated and 

visualised using cyber models to prevent them from becoming digital islands. LR 

suggests that developing cyber models of the physical shopfloor can affect the visual 

commissioning of the processes.  

 

Most machining information produced by CAM-CAD software is in the form of digital 

data. Using this approach in traditional manufacturing systems may be misleading if both 

software and hardware systems are not suitably allied. This can bring about a need for 

reworking due to the errors produced and risks involved in practising a deluded system 

in the manufacturing industry. (Kao et al. 2018) described an intelligent system under 

manufacturing termed an innovative manufacturing system (I-MS) by combining process 

and task management, system tools and production knowledge to create a cyber-system 

that demonstrated networking and system architecture. The authors showed that most of 

Figure 5 Photogrammetric warehouse model 
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the time taken for the production and workload of the machinery could be reduced. This 

approach has been successful due to the interference of networking with machinery and 

helps I-MS as a system to be used for further studies in manufacturing arena. (Liu, Zhao, 

et al., 2018) described the physical architecture of an I-MS and thorough design of a 

digital system, innovative logistics, control system and workload management. The 

network interface, connections, machine logistics, machine tools, interactive 

components, RFID, sensors, real-time gears in a system, monitoring of processes, 

processing of units and digital data connected to the Internet build collaborative systems 

interacting with one another. Further, producing more of such systems helps in 

measuring the quality, performance, efficiency and management of electrical machinery, 

water, plants, and environmental areas, which promotes automation. The following 

section describes the different norms and regulations affecting the integration of CPS. 

2.4.1.1 Exploitation of Current Tools and Norms 

The major tools that aid in the design of 3D models are retailer specific, and most are 

software environment controlled. These tools ensure a good stabilised, vigorous 

operational system that supports multi-functional and point-solution architecture with 

very low agility. Research has described many methods and techniques for using 

technical data to achieve the CPS. Nevertheless, these approaches often address a 

particular set of rules and only partially satisfy the overall architecture of Industry 4.0. A 

cradle approach in CPS, such as engineering, automation, integration and the 

implementation of several methods, is of major interest. For communication within CPS, 

often OPC-UA communication is used to extract the data from information layer which 

is associated with electronic devices and designed 3D models. 

2.4.1.2 Model and Module-based Systems 

Architectural frameworks and different modelling languages have been defined by 

various researchers. Multiple approaches have been taken to many SysML designated 

for content creation. Anecdotally in theory hardware (e.g.: mechatronic part) and 

software are integrated seamlessly to provide required output. The complexities of the 

manufacturing system required several integrations of hardware and software found 

missing at this point in time (Luder et al. 2016). This approach was first implemented by 

software called the Siemens SIMATIC Automation designer, which featured the 



instantiation of model parameters in accordance with the library of a particular 

mechatronic model. Comprised of a module and a model-derived design flow, the 

designated system was comprised of component models that were driven by architectural 

specifications. This was created through a reference architecture, which was further 

defined with the scope of the work, composition of the module and content. The 

development, structure, operation and integration were contributed by the framework of 

the referenced model. Interdependencies within various operations for manufacturing 

product has potential to be eliminated with novel industry 4.0 method. The approach is 

also termed ‘logically nestable modules’ part of industry 4.0 method. 

Prototype-based models have a demonstrated track record and have been embraced in 

the fields of engineering, business and production. A series of methodologies have been 

applied to prototype-based models development varying from detailed independent 

system approaches to system-dependent methods. A module-based approach was from 

various fields to enhance the efficiency and tractability of the development process. In 

the field of manufacturing, the design of an automation distributed system proposal has 

been formulated. In the module-based method, a key aim is to facilitate an advanced level 

of design actions, such as the adoption of module- and prototype-based model designs, 

to lay a groundwork for establishing demarcated interfaces amid deployment and design 

across all development phases. The demand for module-based approach may be high due 

to design knowledge salvage captured by the module components used. Manufacturing 

systems are comprised of numerous components of varying complexity and scale, from 

single sensors to complex system modules. A new way of integrating these components, 

which are logically designed to evolve, is an automation system that implements, tests 

and validates. Many such logical systems of automation can be assembled with larger 

physical control systems or can reside separately on embedded network systems. These 

devices form the CPS with a network interface and interact with one another, together 

forming a whole device system. 

2.4.1.3 Module Programming and Implementation 

Components of deployable CPS can be designed in a variety of forms. The manufacturing 

of disseminated embedded devices entails the functioning of every unit in the distributed 

system. A composition of interconnected components, such as functioning units or port-

based modules mapped onto devices, form a distributed system. (Fay et al. 2009) argued 



that a distributed system nodule (i.e., distributed devices) may have distinct functions. 

The nodules provide the freedom to either use predefined prototype functions—functions 

that have set parameters and once the program control comes to a predefined prototype. 

A particular outcome is expected, as the parameters are pre-set, or there may be the 

unrestricted programming of control system applications based on the IEC 61131 

standard for programmable controllers. Such automation system designs have been used 

extensively in the manufacturing industry to intertwine and sequence behavioural 

execution and adopt state-based patterns or designs, including the IEC standard for 

programming. In this system, a group of components is confined to a physical nodule, 

and a state-based component-level design technique is used. Module functionality can be 

defined using transition state illustrations for components and module behaviours and 

the definition of a transition from one state to another. This assures a simple system 

design flow and provides an option to distribute control programs throughout the 

hardware, including a network interface that connects distributed devices. 

2.4.1.4 Engineering Practices and Communication 

CPS comprises widely networked design structures, including large numbers of human 

resources, information technology systems and automation modules. Communication 

systems in the manufacturing industry, commonly termed industrial communication 

design systems (e.g., Ethernet), can establish a connection between the distributed 

modules in a distributed system. Every component in the distributed module of the 

distributed system can communicate with another module in the distributed device. This 

provides a robust perpendicular and parallel integration in the interior of the automation 

design distributed systems. To explore this form of network automation system design, 

the present research investigated the efficiently of the connection. Seamless 

communication between computers and machines is vital. With globalisation, the use of 

web and internet to interconnect the computers to machineries to manage the 

collaborative manufacturing is gaining exponential growth. However, there are potential 

critical security risks or threats due to the use of web technologies, networks, the Internet, 

and other technologies in the field of machining that was beyond this formulation. 

2.4.1.5 CPS Simulations 

Considering multi-disciplinary fields such as process control design, electrical project, 



mechanical design engineering, human-computer interaction (HCI), and other 

engineering practices was problematic. Further adding to this, there were still a number 

of loopholes in the steady use of data during all the life cycle stages. Although the idea 

of SM system goes unstated where the steadiness between virtual and physical 

illustrations would be achieved in every life cycle stage. Researchers around the world 

state that the walls restricting the realisation of current integration-solutions refers to 

mutually distinct prerequisites of the manufacturing fields involved. 

2.4.1.6 Mixed Reality 

This section outlines the significance of mixed reality (MR) in enhancing the efficiency 

of manufacturing systems. There is a need for a higher order of accuracy and response, 

as well as interface design—all of which are critical elements in the manufacturing 

paradigm Cheng et al., 2016). Textile industry operations are variegated, and a seamless 

process flow in between the processes is needed (Lin et al., 2018; Nguyen et al., 2017). 

Traditional manufacturing systems inherited miscommunication and non-transparencies 

in operations due to a lack of real-time data (Ding et al., 2019; Fan & Chang, 2018). XR 

methods represent cyber models with a realism effect using AR/VR tools integrated in a 

cloud-centric platform enabled with ML algorithms. To overcome operational barriers in 

the textile industry, XR allows for the seamless integration of processes in a simulated 

environment that represents physical machinery (Lei et al., 2018). 

While automated manufacturing processes are already widely used, AR/VR provides 

significant benefits and has experienced exponential growth in recent times. VR creates 

as an artificial simulated environment that provides a real-word experience, while AR 

overlays rendered experiences and data onto real-life environments and, therefore, 

enhances the perception of reality (Herwan, Kano, Oleg, Sawada, & Kasashima, 2018). 

AR/VR integrates part of XR simulated for real-time visualisation and improved 

operations before physical implementation. These methods ensure that activities such as 

design, planning and machining are conducted accurately and efficiently in the first 

attempt, without the need for subsequent rework and rejigging. In fact, the dynamic 

interaction of existing AR/VR applications, enabled by the sharing of information with 

the real working environment, has the potential to capture heterogeneous characters of 

convoluted manufacturing processes (Sezer et al., 2018; Stock, Schel, & Bauernhansl, 

2019). A key challenge involves designing and implementing an integrated AR/VR 



manufacturing system connected to a cloud-centric platform (Krishnamurthy & Cecil, 

2018). 

A key goal is to interconnect seamless communication with operational machineries 

(e.g., automated services in manufacturing provided by service robots) to create 

manufacturing efficiencies, such as shorter head time, reduced costs and improved 

quality standards. The eventual goal of integrated platforms with automated 

manufacturing is SM that is as good as a real-world application, if not better and more 

efficient. In addition, SM introduces the concept of a virtual factory that captures 

information about the status and behaviours in a real manufacturing system (Ferrer et al., 

2018). SM presents an integrated computer-based model regressing to physical and 

logical schema of real-world manufacturing. These technologies provide the following 

benefits: i) an immersive experience which provides the user with a sense of realism, 

presence and engagement; ii) interactivity inputs, encompassing user sensory controls, 

to guide the system’s behaviour and allow for interaction for enhanced engagement in a 

real-world environment; and iii) multisensory immersion by connecting with human 

sensory systems (however, this is still in the conceptual stage). 

2.4.2 Cloud Computing 

CC platforms offer the on-demand delivery of computer power, database management, 

storage and other resources that can be accessed via the Internet. This form of access to 

applications and storage allows for real-time synchronisation, versatility and efficiency, 

which was not previously available (Monostori, Markus, Van Brussel, & Westkämpfer, 

1996). It allows for seamless large data set storage and the ability to visualise and manage 

the data. Research has indicated that by 2025, almost 90% of the global market will use 

CC platforms (Bahrami, 2015). Hence, future proofing is required to instigate cloud 

architecture to reduce the use of local servers and minimise hardware and related 

maintenance requirements. 

CC is an important invention that has facilitated the integration of various technologies, 

such as IoT, DT and ML (Hang, 2016; Romeo, Paolanti, Bocchini, Loncarski, & 

Frontoni, 2018). However, CC is limited by latency issues when used in context of IoT. 

Manufacturing systems require large data set transfers between machinery to sensors via 

the cloud, which results in computing inefficiencies. Real-time computing for machinery 



requires low latency, high reliability computational methods. One solution to the latency 

barrier is use of fog computing. Fog computing covers a discrete area of manufacturing 

and reduces latency in communication from sensors to the cloud (Li, Ota, & Dong, 2018). 

However, introducing another technology adds complexity to system, resulting in 

unpredicted errors from the system management. Sensory data connected to the cloud by 

surpassing data transmitters or propagators is another solution. Connecting data to the 

edge of the cloud decreases latency, which results in highly reliability SM (Lin & Lu, 

2011; Linthicum, 2017). Once the sensory data has been collected, the data must be 

processed. Validating these data in real-time is complex and time consuming. The data 

processing uses fog or cloud edge solutions. Following this, resource allocation is 

conducted through the management system to process the data. Often, a lack of resource 

optimisation results in data ambiguity with unforeseen errors. To overcome issues of 

resource optimisation, the cloud-centric virtual shopfloor can be pilot tested (Maenhaut, 

Moens, Volckaert, Ongenae, & Turck, 2017). Resource management in the cloud results 

in unforeseen errors with a high data demand in a small amount of time. To overcome 

these errors in CC, novel algorithms must be fine-tuned or rewritten based on previous 

data sets (Rauscher & Acharya, 2014). 

SM has a unique behaviour of demanding service-oriented networked manufacturing. 

This approach optimises and composes several complex operations to yield dynamic 

operations of the shopfloor. Here, several frameworks have been proposed. These 

frameworks often integrate CPS, along with other major technologies, such as 

communication protocols between online (cloud) to offline services (physical machine). 

Although advanced manufacturing has been proposed in various forms, the practical 

implementation is limited. It constitutes a formulated and structure component 

manufacturing with complex operations. However, it lacks clear and succinct elaborated 

practical implementation techniques (W. Liu et al., 2011). Along with SM, major 

technological verticals, such as the 3D printing of cyber models, have gained increasing 

interest in recent years in terms of industrial advances, design, manufacture and research. 

Researchers have proposed how SM can be supported for national growth in terms of the 

economy, and future developments have been highlighted with in-house manufacturing 

(Jawad, Bezbradica, Crane, & Alijel, 2019). Innovations in manufacturing along the 

industry 4.0 standards have gained importance in recent times with the integration of 

CMfg and IoT to overcome conventional structure of the modern shopfloor. Researchers 



in Korea proposed an assessment tool for SM that equipped along with current 

manufacturing practices to understand the behaviours, characters and future aspects of 

the organisation. Comprehensive and intuitional criteria for measuring readiness along 

the smartness of the shop floor have been identified. These types of assessment tools can 

assist medium-sized enterprises and small-scale enterprises to emphasise Industry 4.0 

approaches (Sheen & Yang, 2018). 

To resolve these issues, the industrial internet of things (IIOT) hub was proposed; it 

offered customisation and programmed connection between heterogenous operations and 

services, which were encapsulated and differentiated from individual behaviours (Tao, 

Cheng, & Qi, 2018). Addressing these heterogenous properties has expanded their major 

competition across significantly characteristically differentiated manufacturing 

industries. Global competition across industries has caused organisations to shift their 

concentration to automation and implement advanced manufacturing technologies in the 

production line. The main goals of implementing these technologies have been internal 

growth, operation optimisation and manufacturing efficiency (Lee et al., 2018). 

To align with development, design, implementation, management and computation, there 

is a need to register the concepts and operations onto the cloud to structure them 

systematically (Bai, Fang, Tang, & Wu, 2019). A challenging task of CC has been to 

manage services, such as pluggable inputs and outputs and plug and play services. These 

services have helped realise smart factories enabled by the cloud. Several frameworks 

for cloud-based intelligent services, such as edge computing, CC, and REST based web 

services, have been proposed. One such framework constitutes dual RESTful based 

services to enable a pluggable application module (PAM). Production management in 

manufacturing processes is handled remotely on an intelligent platform supported from 

PAMs to target individual services. This type of framework has been tested for the fast 

and reliable deployment of SM using cloud services. Further, PAMs can also be used to 

facilitate PM (Fan & Chang, 2018; Liu, Hung, et al., 2018). 

2.4.3 Self-Learning Algorithms 

Artificial intelligence is an important paradigm in manufacturing achieved through 

algorithms. Amongst various algorithms ML provides a vast benefit including decision 

matrix within manufacturing. Major divergence between SM and traditional practices 



was a limitation that arose in previous practice caused by the adoption of technological 

advancements, such as ML, AI and IIoT. ML interfaced with deep learning enhances 

iterative decision-making to address the challenges of inefficiency in textile 

manufacturing. Previous research conducted on ML highlighted these as self-sustained 

fast efficient systems, minimising interruptions and reducing resource consumptions (Al-

Gumaei et al., 2019). 

Modern smart factories are comprised of IoT-based machines with inter communications 

and data transfer facilities for computations. IoT machinery further captures 

heterogeneous characteristic nodes within operations to develop optimal solutions using 

ML algorithms. Problems within operations are detected to allow for corrective actions 

to enhance system efficiencies. Previous studies on the applied context of using ML 

algorithms in manufacturing were limited to performance-based approaches. However, 

in a real-world environment, manufacturing can vary according to complex 

circumstances. Finetuning variances is a drawback of performance-based approaches. 

Changing to data-centric with ML algorithms to address manufacturing variances was 

proposed as an alternative approach. This approach adopted variances with the scope to 

output optimal solutions based on a data-centric knowledge base. This enabled varying 

heterogeneous characteristics in the manufacturing to be captured to enhance efficiencies 

(Huang, Lin, Chen, & Sze, 2018). 

The textile industry has been subject to demands for low volume and high variation 

within personalised products. A robust integrated real-time data-centric platform was 

required to meet these challenges. Data inaccessibility results in inefficient computations 

and, as a consequence, a lack of optimal decision-making within manufacturing (Lenz, 

Barak, Mührwald, Leicht, & Lenz, 2013). To reduce takt time and improve efficiencies, 

cyber models have been simulated in the context of physical systems. These simulated 

cyber models are real-time interfaced with data computation using various ML 

algorithm. Cyber models have the properties of real-world machinery and allow for 

bidirectional associative inputs. They have the advantage of ensuring the logical flow of 

manufacturing processes using computed using ML technologies in a cloud-centric 

platform (Amanatullah, Lim, Ipung, & Juliandri, 2013). Implementing ML algorithms 

using CC technologies integrated with virtually simulated data can overcome major 

hurdles in the manufacturing paradigm. ML algorithms result in optimal decision-making 



and enhance efficiency in manufacturing (Jaensch, Csiszar, Scheifele, & Verl, 2018). 

Further, interlinked to testing on same technologies that improves product quality. 

Data-centric ML models carry data leak risks. Hence, data integration requires strong 

concealed cyber security. Cyber security in real-time manufacturing poses barriers (e.g., 

uncertainty for deciding in investigating malicious threats) (Feng, Wu, & Liu, 2017). The 

issue of data leaks has been addressed using multi node algorithms. Real-time data 

computation for manufacturing control systems also requires high performance system 

reliability. This challenge had been overcome using software-driven artificial 

intelligence paradigms programmed in the cloud to enhance the high response in data 

computation in relation to hardware driven execution times (Chen & Bastani, 1991; Yao, 

Zhou, Zhang, & Boër, 2017). 

2.4.3.1 Machine Learning Algorithms 

Manufacturing systems are complex and can be chaotic. An efficient way of approaching 

current demands for high-quality products is to use all the available essential techniques. 

CC is a promising new technology. Developments in ML offer versatility in 

manufacturing and can address challenges that arise within data sets. Inherently, ML has 

vast applications and related limitations (e.g.: model behaviour or accuracy) (Monostori 

et al., 1996). This research enhanced available techniques and structured complex data 

sets in a usable way for successful applications in complex environments such as 

manufacturing. 

ML has made significant progress in the last decade. The field has become a major 

technological hotspot due to ever-emerging challenges and possibilities. Progress 

towards computerising or answering the human reasonings for unresolved questions in 

data are the main reason for this growth. Data representation is more symbolic than 

conceptual ( Monostori, 2003). The progress of ML towards a symbolic approach is 

based on cognitive reasoning and was hypothetical. Moreover, these can be modelled by 

acquiring, manipulating, associating and modifying data towards symbolic 

representation. Earlier systems that are known for their reliable knowledge of the 

establishment of intelligent systems attempted to overcome man-made computer 

systems. Unfortunately, representation in these kinds of approaches was in the form of 

rules and regulations. While these methods were proven effective, none was practical. 



The field of ML is solely related to data. The data collected can be raw, processed, 

structured and even categorical. ML aims to overcome issues and solve problems. The 

data collected by machines is always unstructured. To define the types of data, the core 

of data science must be explored. DS can be divided primarily into two major verticals. 

One explains or explores past data, and the other makes predictions from the same data 

set. Past data are checked and verified to study the behaviour of the data. Data can be 

considered in two ways: univariate analysis and bivariate analysis. 

2.4.3.1.1 Data Expedition and Characterisation 

Univariate data analysis explores the collected attributes individually. Data can be either 

numerical or categorical. Every type of attribute can be verified by visualisation. In 

analysing data, transformation is required. As such, categorical data can be transformed 

into numerical data by the process of discretisation. The process of data transformation 

from categorical to numerical data is called encoding. 

As mentioned earlier, univariate is further divided into two major verticals: categorical 

and numerical. Categorical data are data collected in a format other than numbers. 

Therefore, there are fewer possibilities in categorical data. The major possibilities of 

categorical data are to prepare pie charts, bar charts or to simply count the number of 

observations and find percentages. Meanwhile, numerical data are data collected in 

number format. The possibilities of analysis with numerical data are comparatively 

higher than categorical data. With numerical data, algorithms can be prepared to find the 

mean, median, mode, range, quantities, variance, standard deviation, coefficient of 

variation, histogram, box plot, kurtosis and skewness. 

Similarly, bivariate analysis is the process of analysing two variables of attributes 

simultaneously. The concept of simultaneous analysis on the behaviours of two 

attributes, and related relationship verifies the required associated strength. This also 

includes the verification of discrepancies between two attributes and the consequences 

of this discrepancy. As bivariate analysis consists of two attributes, there are three sub 

sections of bivariate analysis: categorical and categorical, numerical and numerical, and 

categorical and numerical. 

Categorical and categorical analysis is conducted on two types of categorical data. 

Categorical data are data that do not have a specified numerical quantity (e.g., name, 



cities, counties). Data are analysed by plotting a Ch^2 test, Bar chart or 2-Y axis plot. 

The second type of bivariate analysis is numerical and numerical. In this type of analysis, 

the two attributes of the analysis are finite elements or quantities (e.g., salary, 

temperature, pressure). Here, the attributes are analysed in a correlation manner or scatter 

plot manner. The last type of bivariate analysis is categorical and numerical. In this type 

of analysis, one attribute is analysed against other types of attributes (e.g., the name of 

an employee against the number of experiences he has in a similar field or temperature 

of a machine against the factory name). This type of analysis can explore or explain past 

data. Future modelling or predictions are explained in subsequent sections. 

2.4.3.1.2 Prediction Classifications 

Predicting an unexpected outcome from a data set is called predictive modelling. 

Outcomes are often referred to as data models, which are obtained using previous data 

and statistics. These models can be used with any kind of data (Jose & Mini, 2017) to 

accomplish anything from predicting the number of viewers of an upcoming show to 

studying the behaviour of a machine using data from sensors. Such models are important 

for predicting the outcome of upcoming events. Predictions and classification methods 

are outlined in Figure 6. 

Predictive models based on detection theory are used to assess probability (Barreto-Sanz, 

Bujard, & Peña-Reyes, 2012). The amount of data collected is directly proportional to 

the accuracy of the prediction. For example, based on the title tag the inbox is filtered. 

Due to spams and other related junk the model accuracy is diluted. Models have a definite 

boundary that is in sync with synonymous or overlapping data. These models are referred 

to by various definitions depending on the context (Trabelsi, Vahedi, Komurcugil, Abu-

Rub, & Al-Haddad, 2018). They are referred to as ‘ML’ in a research or academic 

context, while ‘predictive analysis’ is the standard name for industry experts. Multiple 

ways of modelling can be implemented for the type of data available. As discussed in the 

previous section, there are two data types: categorical and numerical. 

Modelling categorical data is often referred to as ‘classification’. In this type of data 

analysis, predictions are either on a target or a set of class. Models can be built based on 

one or more categorical attributes with multiple options. Four kinds of analysis are 

possible for the classification type: classification by frequency table, covariance matrix, 



similarity functions and others (Kristoffersen & Holden, 2017). 

Frequency table is a type of classification in which the frequency of observations is 

mapped according to classifier of the observations. There are four main methods of 

classification: ZeroR, OneR, Naïve Bayesian and decision tree. ZeroR counts on the 

target by ignoring all other predictors and predicts the class on a majority category. One 

Rule or OneR is highly simple and is the most accurate of the classification algorithms. 

This algorithm generates an individual rule for every predictor in a given data set, which 

in turn selects the smallest overall error called ‘one rule’. The next classification family 

is Naïve Bayesian. This set of algorithms is easy to implement on a large number of data 

sets because it lacks multiple iteratives, which makes models highly complicated. The 

last type of classification is decision trees. Decision trees are built in the model of a tree 

by the classification algorithm. This type of classification breaks a given data set into 

two major sections and then further divides the data set unless it reaches the predictor. 

These trees can handle categorical and numerical values. 

Regression is a mathematical modelling method used to predict an accurate value 

(numerical value) by constructing models based on one or more than one predictor, such 

as numerical or categorical data. Regression follows the same set of subsets in predicting 

values as classification. These algorithms are more accurate in terms of predicting a value 

if the data set is filtered for missing values and corrupted data. A cluster is a collection 

of data that is comparable in some way. Clustering (also known as unsupervised learning) 

is the act of breaking a dataset into groups with individuals that are as similar or similar 

to one another as feasible, while distinct groups are as dissimilar or far apart as possible. 

Clustering can reveal correlations in a data collection that were previously overlooked. 

Cluster analysis has a wide range of applications. Cluster analysis may be used to 

uncover and characterise consumer categories for marketing reasons in business, and it 

can be used to categorise plants and animals based on their characteristics in biology. All 

sets of items (item sets) with support greater than the minimum support are found using 

association rules, which then use the big item sets to construct the needed rules with more 

confidence than the minimal confidence. The lift of a rule is the difference between the 

actual and predicted support if X and Y were independent. Market basket analysis is a 

good illustration of how association rules may be used.



 

Figure 6 Data science methods 



2.4.3.2 Anomaly Detection Methods 

Recently, AD in high-dimensional (HD) information, particularly in real-world scenarios 

and applications, has become a key research problem. Existing AD methods fail to 

maintain adequate accuracy due to the abundance of information produced by diversified 

sources. This greatly affects the AD performance and its accuracy in practical 

applications. In practical domains, specifically in the manufacturing sector, large chunks 

of information are generated. As manufacturing systems involve multiple operational 

phases and processes, they may encounter anomaly intrusions in real time. However, in 

this sector, AD is highly complicated due to the plethora of data produced by distinct 

operational processes. Exploring the concrete difficulties introduced by AD with HD 

data is important to clearly identify the core issues and bridge this gap. Therefore, this 

research studied the generic state of AD in HD data and presents the available AD 

methods used to recognise anomalies in the industrial and manufacturing sectors, among 

others. An outlook on AD in HD data is provided, along with an explanation of the high-

dimensionality issue. Further, the research on AD is reviewed. Lastly, this research 

identifies the heterogeneous impediments induced by AD in HD data to underscore the 

need to develop better AD schemes capable of precisely and swiftly recognising 

anomalies involved with HD data. 

AD is one of the most widely researched problems within heterogeneous applications 

domains and research areas (Chandola, Banerjee, & Kumar, 2009). AD typically 

involves determining patterns in information that deviate from anticipated behaviour. 

Non-conforming patterns are known as anomalies, discordant observations, outliers, 

aberrations, exceptions, contaminants or peculiarities in distinct application fields. AD 

assists in tracking the status of the ordinary daily activities of every network, application 

or system. Anomalies are induced by malicious activities. Straightforward AD involves 

defining a region characterising normal activity and declaring any observation that does 

not match with the normal activity region as an aberration or anomaly. However, certain 

key issues make this perceptibly straightforward method quite challenging. As malicious 

activities induce anomalies, often vicious adversaries make the anomalous activities 

appear normal, thus making it more difficult to identify abnormal activity. In different 

fields, normal behaviour or activity is continually evolving. The notion of what 

constitutes an anomaly differs in different fields. For instance, in healthcare, an anomaly 



can be a slight deviation from the standard activity (body temperature fluctuations), while 

in the stock market, slight deviations (stock value fluctuations) are considered normal. 

Therefore, an AD method developed for one field may not work in another field. In light 

of this, the challenges surrounding AD are not easily addressed. 

AD in high-dimensional (HD) information is another prominent research problem 

(Thudumu, Branch, Jin, & Singh, 2020a). Dimensionality indicates the number of 

variables, attributes or features within datasets. The rise in information dimensions poses 

a critical challenge for AD in giant databases. The manufacturing and industrial sectors 

frequently work with giant data sets. As these sectors involve multiple operation 

processes, they generate large amounts of data. Therefore, the HD information produced 

may be prone to anomalies, as illustrated in Figure 7. It is largely infeasible to cautiously 

execute every process without anomaly intrusion within these sectors. Despite safety 

precautions and technological improvements in the industrial and manufacturing 

domains (Jwo, Lin, & Lee, 2021; Kotsiopoulos et al., 2021; Moreno-Rabel & Fernández-

Mu Noz, 2016; Qu, Ming, Liu, Zhang, & Hou, 2019), operations processes can encounter 

anomalies in their working phase. Detecting these aberrations directly using generated 

HD data is a sophisticated and time-consuming task. HD data may comprise redundant 

data along with meaningful or useful information for AD. Manually separating redundant 

information from meaningful information can be a tedious task. However, isolating such 

data from HD information is essential for AD. Recently, ML and deep learning (DL) 

techniques have been proposed for AD and HD data reduction (Dogan & Birant, 2021; 

Erfani, Rajasegarar, Karunasekera, & Leckie, 2016; Kasun, Yang, Huang, & Zhang, 

2016; Pang, Shen, Cao, & Hengel, 2021b). This research investigates AD in HD 

information, its challenges, the heterogenous techniques adopted for AD and the vital 

changes needed in AD using HD data for future applications. 



 

Figure 7 Overview of anomaly detection 

2.4.3.3 Benchmarking Anomaly Detection 

AD in HD information has become a prominent research area due to its miscellaneous 

applications in the real world (Ahmed, Mahmood, & Hu, 2016; Das, Adepu, & Zhou, 

2020; Lindemann, Maschler, Sahlab, & Weyrich, 2021; Rosa et al., 2021). (Chandola et 

al., 2009) provided a taxonomy and survey of diverse AD methods for miscellaneous 

applications, such as sensor networks, intrusion detection and identifying manufacturing 

defects and unusual behaviour patterns. The authors described the fundamentals, 

advantages and pitfalls of diverse AD techniques and outlined the issues associated with 

AD. (Thudumu, Branch, Jin, & Singh, 2020b)) presented a generic survey of AD 

methods for HD big data. 

The strategies for tackling huge dimensionality issues were examined. The critical 

difficulties encountered by AD in HD data were identified. This work highlighted the 

need for improved AD strategies capable of tackling vast-dimensionality data problems. 

(Lindemann et al., 2021) presented and compared two data-oriented self-learning 

schemes adopted for AD within vast quantities of process and machine data. Frameworks 



for machine behaviour monitoring were developed to capture complex correlations and 

acquire attributes signifying the anomalies, and the results were evaluated using practical 

industrial data gathered from metal manufacturing processes. (Ahmed et al., 2016) 

described four prime classes of AD schemes, including clustering, information theory, 

statistical and classification. Diverse schemes used for anomaly categorisation were also 

presented. The classes of AD schemes described were compared and contrasted 

considering complexity, output and attack priority parameters to evaluate their 

performance and suitability for AD.  

A general survey of AD methods was presented by (Patcha & Park, 2007). The authors 

explained the critical technological trends involved in AD, the heterogenous challenges 

faced by AD methods, open issues in AD and existing panaceas. (Jiang, Cui, & Faloutsos, 

2016) evaluated various schemes for suspicious behaviour identification and outlined 

supervised techniques, graph-based techniques and clustering techniques used to detect 

dubious activities. (Gupta, Gao, Aggarwal, & Han, 2014) explored various outlier 

identification methods for temporal information and data. The authors provided a 

structured and comprehensive outline of a large set of attractive outlier definitions, 

particularly for various sorts of temporal data, application scenarios and novel 

techniques. ( Habeeb et al., 2019) subsequently discussed real-time massive information 

processing for AD and reviewed the cutting-edge information processing technologies 

pertinent to AD. The authors also explored diverse ML schemes for AD, reviewed ML-

enabled massive information processing methods for AD and identified important 

research barriers in real-time colossal information processing schemes for AD. 

Several DL and ML-oriented network AD techniques were presented by (Kwon et al., 

2019). The authors showed that DL techniques have highly promising outputs with high 

accuracy in identifying anomalies when contrasted with commonly adopted ML 

methods. (Zimek, Schubert, & Kriegel, 2012) examined certain common issues 

associated with HD data and the issues encountered in outlier recognition. The authors 

further investigated the diverse unsupervised techniques for outlier identification in HD 

numerical data and the outlier identification techniques belonging to two distinct classes 

(namely, techniques considering subspaces and techniques not considering subspaces 

while defining the outliers). The authors suggested the need for key improvements in 

outlier recognition schemes, particularly for HD data. (Aggarwal, 2017) studied the 



scope of the subspace technique for HD outlier detection and showed that the outlier 

examination process could be significantly sharpened by searching for the subspaces 

containing data points that deviated significantly from ordinary or normal behaviour. 

(Angiulli & Pizzuti, 2005) proposed an algorithm for efficiently identifying the top 

outliers in HD and large data sets. The algorithm employed involved two stages: the first 

provided a close solution with spatial cost and temporal cost, while the second provided 

an exact solution. The algorithm showed great scalability with regard to data set size and 

dimensionality. 

2.4.3.4 Anomaly Detection in High-Dimensional Data 

AD is an important approach for recognising dubious activities, fraud activities, network 

attacks and other unusual events that may exert adverse effects on ordinary operations. 

The prime significance of AD is that information is translated into vital actionable data, 

and valuable insights are revealed (Chandola et al., 2009). HD datasets contain thousands 

or millions of independent features, components and variables. Analysing data in HD 

datasets is highly complicated due to increased dimension, dynamicity and variability. 

Increased data dimensionality leads to data sparsity, making the process of data analysis 

more tedious. Data analysis is paramount for AD in any mechanism. Under such 

circumstances, traditional techniques for identifying anomalies in HD space become 

unsuitable and surplus due to increased data sparsity. AD methods can be applied in 

offline or online modes to address high-dimensionality issues. Typically, anomalies 

offline are identified using historical databases, while online, fresh data points are 

introduced continuously as anomalies are identified. Determining the global maxima of 

HD datasets is difficult due to isolated and scattered data points. The problem of high-

dimensionality can be handled smoothly by reducing the features of HD datasets ( 

Avendano, Caljouw, Deschrijver, & Hoecke, 2021; Song, Yang, Siadat, & Pechenizkiy, 

2013). Thus, AD techniques should be integrated into improved dimensionality reduction 

schemes to effectively detect anomalies in HD data. 

2.4.3.5 Anomaly Detection Techniques 

AD in industrial control mechanisms was discussed by (Das et al., 2020), who presented 

a rule-directed approach to recognising anomalies. A performance examination of the 

proposed rule-oriented approach showed strong accuracy compared with diverse 



competing techniques. ( Avendano et al., 2021) outlined an approach to AD in a cold 

forming manufacturing procedure that effectively detected anomalies and showed greater 

robustness. The approach used fewer training parameters and required no expert 

knowledge regarding the components’ physics. (Scime & Beuth, 2018) presented AD in 

an industrial manufacturing procedure and discussed a method for the in-situ supervision 

and examination of anomalies in a laser powder bed (LPB) additive manufacturing 

procedure. Anomalies that occurred during the powder dissemination phase of the 

manufacturing procedure were recognised and categorised effectively using ML and a 

computer vision fusion scheme. ( Zhou, Hu, Liang, Ma, & Jin, 2020) proposed a 

variational long short-term memory (VLSTM) framework for AD in industrial HD data. 

The VLSTM framework included a compression system and an estimation system. The 

compression system used an LSTM encoder unit, LSTM decoder unit and a variational 

reparameterization unit to alleviate the complexity of the HD raw information without 

losing significant features. The estimation system was fed with an improved feature 

representation to identify anomalies in industrial HD. The experimental outcomes 

showed that the VLSTM efficiently handled the imbalance and HD data problems, 

reduced the false score in AD and significantly enhanced the accuracy. 

(Z. Li, Li, Wang, & Wang, 2019) proposed a hybrid DL model employing LSTM and 

stacked autoencoders for AD in mechanical apparatus. The proposed LSTM and stacked 

autoencoders approach had two vital stages. The first stage involved multiple features 

series representation using stacked autoencoders, while the second involved AD using 

LSTM. The LSTM and stacked autoencoders technique could recognise anomalies in a 

fully unsupervised learning background via multiple features series, even with unlabelled 

history data and an absence of empirical knowledge regarding the anomaly, detecting 

anomalies with a superior accuracy of 99%. Moreover, it offered a substitute approach 

for integrating and leveraging features for AD without practical or empirical knowledge. 

(Zhao, Liu, Wang, & Liu, 2014) outlined another approach to AD in an energy system 

in the steel industry. Considering the dynamic attributes of energy data, an adaptive fuzzy 

clustering method was employed for AD. The experiments were conducted using real-

world energy information arriving from a steel plant. The results showed that the adaptive 

fuzzy clustering scheme exhibited good performance and had greater precision than other 

AD techniques. 



(Zhang, Lin, & Karim, 2017) proposed an AD technique from HD information streams 

that aimed to detect faults from non-stationary HD data streams. The authors outlined an 

angle-directed subspace AD technique for detecting low-dimensional faults from HD 

datasets. The fault-pertinent subspaces were selected by assessing the vectorial angles, 

and the object’s local outliers were computed. By exploiting a sliding window method, 

the proposed technique was extended to an online mode to ceaselessly monitor the 

system states. A comparison of the proposed technique with the standard outlier factor-

directed approaches showed that the proposed technique had greater efficacy and 

accuracy. Moreover, it could discriminate low-dimensional subspace anomalies from 

ordinary samples in HD spaces. (Salehi, Leckie, Bezdek, Vaithianathan, & Zhang, 2017) 

presented a rapid local outlier (LO) identification technique in HD data streams. The 

proposed LO detection scheme was highly suitable for memory-constrained and HD 

information streams involving application environments and showed higher accuracy in 

LO detection and greater robustness to data changes in HD data. Meanwhile, (Wu, Song, 

& Moon, 2019) discussed AD in computer numerical control milling machines and 3D 

printing machines using AD algorithm, random forest (RF) and K-nearest neighbours 

(KNN) schemes. Vision and an acoustic signal were employed as the physical 

information sources for the 3D printing procedure and the computer numerical control 

milling procedure, respectively. Of the KNN, AD algorithm and RF schemes, the AD 

algorithm showed highest accuracy in identifying anomalies in the 3D printing 

procedure, while the RF scheme showed the highest accuracy in recognising anomalies 

in the milling procedure. (Soni, Gopalan, & Varadharajan, 2016) presented operational 

and electrical AD by examining variations in the electrical variables acquired from 

energy meters. The load information was acquired from a small manufacturing facility 

by installing energy meters at diverse load points. After pre-processing the raw 

information, the necessary attributes were extracted to identify possible anomalies. The 

anomalies were categorised as operation-, device- or source-based anomalies depending 

on their origin. 

(Vávra, Hromada, Lukáš, & Dworzecki, 2021) presented an adaptive AD system using 

ML algorithms for industrial control scenarios. The authors provided an adaptive remedy 

for cybernetic protection in industrial control mechanisms. The proposed AD system 

exploited multiple ML techniques for AD and was a strong and an adaptable system 

capable of meeting the requirements of industrial control mechanisms. (Demertzis, 



Iliadis, Tziritas, & Kikiras, 2020) outlined a blockchain, DL-oriented method for AD in 

industrial settings. Through smart contracts, a two-sided traffic control contract was 

implemented to recognise anomalies. This approach was shown to be a safe, distributed 

platform for supervising and completing related transactions in decisive infrastructure 

networks. In a neoteric DL approach for AD was proposed. A convolutional neural 

network was employed to categorise multiclass anomalies. The adopted DL approach 

displayed outstanding AD performance compared with available DL implementations. 

(Quatrini, Costantino, Di Gravio, & Patriarca, 2020) presented a methodology for AD 

using real-time information from a multistage industrial process. A two-step approach 

was adopted wherein the initial step involved identifying the ongoing process stage and 

the next was to classify the data as ‘critical’, ‘warning’ or ‘expected’ for AD. The 

methodology showed high suitability for AD in machines performing several functions 

without the testimony of production stages. The results showed that the adopted two-step 

approach exhibited greater precision in AD. (Saci, Al-Dweik, & Shami, 2021) proposed 

an autocorrelation-based low-complexity technique for identifying anomalies in steel 

manufacturing operations. The authors employed the diverse vibration measurements 

gathered from various in-built sensors for temporal correlation computation using an 

autocorrelation function. This autocorrelation-based technique outperformed other ML 

techniques in AD with reduced execution and training time benefits.  

The different AD techniques listed in Table 2 are categorised as rule based, ML, DL and 

other, as represented in Figure 8. As shown in Figure 8, among the commonly used 

schemes (namely, rule-based, ML and DL), ML has been examined the most in the 

reviewed works.  

  



Table 2 Existing anomaly detection techniques 

References AD techniques  Applications 

(Das et al., 2020) Rule-based scheme Industrial processes 

(Nieves Avendano et al., 2021) Rule mining Cold forming manufacturing  

(Scime & Beuth, 2018) ML, Computer vision LPB additive manufacturing 

(Zhou et al., 2020) VLSTM Industrial processes 

(Li et al., 2019) LSTM and stacked autoencoders Manufacturing processes, industrial 
processes 

(Zhao et al., 2014) Adaptive fuzzy clustering Industrial processes 

(Zhang et al., 2017) Angle-directed subspace, sliding 
window 

Industrial processes 

(Salehi et al., 2017) LO detection scheme Manufacturing processes, industrial 
processes 

(Wu et al., 2019) AD algorithm, KNN, RF Printing processes, computer 
numerical control milling procedures 

(Soni et al., 2016) ML Energy-related manufacturing  

(Vávra et al., 2021) ML Manufacturing processes, industrial 
processes 

(Demertzis et al., 2020) DL Industrial processes 

(Pang, Shen, Cao, & Hengel, 
2021a) 

Convolutional neural network Manufacturing processes, industrial 
processes 

(Quatrini et al., 2020) - Industrial process 

(Saci et al., 2021) Autocorrelation-based scheme Steel manufacturing operations 

 

Figure 8 AD techniques 
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2.4.3.6 Challenges and Gaps 

After a thorough study of self-learning algorithms, below were the major findings: 

i) The increasing tendency of practical or realistic applications towards data-driven 

control, coupled with the lack of availability of generic approaches for AD in HD 

data, has made the high-dimensionality problem and its repercussions for AD 

inevitable in practical scenarios. 

ii) The vast dimensionality problem has in turn led to weak AD accuracy and high 

computational complexity. This problem has not just created challenges in 

identifying anomalies or unusual behaviour but has also introduced additional 

difficulties in ensuring smooth operations and task accomplishment. In events 

involving HD data, AD methods falter due to constrained computational potential 

and related factors, thereby resulting in performance degradation.  

iii) Recognising anomalous information points across colossal databases generated 

by real-world operations, such as manufacturing or industrial processes, has 

become highly complicated and is made worse by the ceaseless arrival of 

unbounded bulk data streams. As abundant data are involved in these processes, 

some information may be redundant or unrelated to AD. However, filtering 

surplus information from bulk streams and selecting only the needed data can be 

time consuming and difficult.  

iv) Moreover, conventional AD techniques are no longer effective at achieving 

effective AD in HD information. Prior research has addressed the limitations of 

AD techniques regarding high-dimensionality issues individually or separately 

but not comprehensively or jointly. Thus, better techniques for addressing both 

AD and high-dimensionality challenges simultaneously are needed to overcome 

the aforementioned challenges. 

2.5 Positioning of Contributions 

In previous sections, manufacturing challenges as well capabilities of transformative 

technologies to potentially address were discussed.  Similarly, research on SM has 

suggested that advanced manufacturing using smart technologies can improve efficiency, 



decision-making frameworks and low-volume manufacturing. Due to the heterogenous 

nature of these technologies, integrating them in a single framework requires separate in-

depth analysis. 

The relationship between ML, CC and DT must be seamless so that tasks that have been 

originated are executed in real time without interruption. Task scheduling and executing 

needed a firm communication between physical and virtual shopfloor. As shown in 

Figure 9, the research methodology pinpointed the gaps and challenges within the 

manufacturing industry by conducting case studies and field research. This study was 

necessary in light of the practical problems associated with the industry to identify the 

correct direction of implementation. As previously outlined in the research, integrating 

technologies to address inefficiency in manufacturing, decision-making frameworks and 

low-volume manufacturing is the key contribution of the present work. 

The individual section 3 of this thesis describes the outcomes of the field study, 

challenges and the framework depending on the field study results. Finally, the 

implementation strategies are outlined, and results obtained from the implementation are 

discussed. Each chapter of the thesis builds a complete picture of SM, beginning with 

the research problem statement to the implementation and outcomes discussed in the 

final chapter. 

Implementation strategies were modified and made accessible to other similar 

manufacturing companies. The framework introduced is not limited to the company that 

featured as the case study. Low-volume production was addressed when integrating CPS 

Figure 9 Research contributions 



into the framework. Similarly, ML and AD were introduced and modified to improve 

efficiency. The improved implementation addressed the challenges of decision-making 

strategies and seamless manufacturing. Figure 10 depicts the methodology adopted in 

the research. 



 

Figure 10 Research methods 



 



2.6 Chapter Summary 

This chapter outlines the concept of SM, traditional approaches in textile manufacturing 

and the key research areas identified in the literature review. The following major 

findings from the literature were made: 

i) The initial part of the LR detailed current trends in manufacturing and SM 

practices. Manufacturing plays a vital role in the Australian economy, equating 

to $100 billion in value. Further, the Australian manufacturing industry employs 

more than 1.27 million people. The manufacturing industry has faced many 

challenges. Challenges in manufacturing practices include complex behaviours 

in manufacturing, communication issues and inefficiencies. In the present 

research, a detailed analysis of practices across the textile industry was 

conducted to explore relevant contributions and challenges. Advancements in 

manufacturing lack implementation strategies, particularly in textile 

manufacturing. The industry must produce personalised products in a low-

volume environment. This implies a hand-crafted industry, representing 

complex heterogeneous operational characters that are difficult to integrate and 

control for various operations. Furthermore, there required an appropriate 

interfacing module that needed to interconnect production planning, admin 

responsibility, marketing and sales and resource management. 

ii) Several challenges were identified during the LR. The first is that the control of 

machine characters results inefficiencies related to increased costs, aside from 

the high Australian labour prices, the second is the demand for inclusive product 

personalisation due to global market competitions and the third is effective 

communication within roles and machines, resulting in waste. These challenges 

explained why Australian manufacturing has lagged behind in terms of global 

competitiveness. 

iii) The LR suggested that SM is a potential solution to the challenges faced by the 

textile industry. SM was frequently discussed by researchers, though there was 

a lack of practical implementation strategies. The literature suggested 

implementation of SM in singularities with limited applications (e.g.: sensor 

output for an operation simulated). The LR revealed a lack of integrated 

multiple transformative technologies used for Industry 4.0 application in 



manufacturing industry. In the literature reviewed, connecting takt time, cycle 

time and operational costs for efficiency gains as an integrated approach was 

not discussed. 

iv) Transformative technologies were used to capture manufacturing operations, 

and AR/VR technologies were used to visualise the operational flow and 

conduct a takt time analysis and simulation. These inputs helped attain vital data 

that were used to analyse the behaviour of the machines by incorporating ML 

algorithms for PA. These tools, integrated in a cloud platform, show potential 

for addressing the aforementioned manufacturing challenges. Once the 

integration of technologies has been migrated to the cloud, the cloud handles 

the operations using high-end computational programs. Based on the reviewed 

literature, a conceptual framework was proposed and is implemented in the next 

chapter. 

v) SM-integrated approaches from previous research lacked decision-making 

analytics and, consequently, communication was identified as major concern. 

This lack of communication was due to absence of framework to automate 

communication using data analytics. Collaboration between different roles and 

machines using advanced tools was found to lack the required integration in 

existing practices. New trends in wireless communication have given a broad 

understanding to the real-time integration of the digital and physical world. 

Seamless data transfer and the integration of tools have made the manufacturing 

process more efficient and effective compared with traditional practices. Along 

with communication, advanced technologies for prioritised computing and 

offloading tasks are missing. While these ideas have been illustrated 

theoretically, practical implementation is lacking, particularly in the textile 

industry. 

vi) A major element of SM involves predicting the complex behaviours of 

machines. These behaviours and their controls are the major challenges of 

enhancing production process efficiencies significantly. Due to the complex 

parameters involved in controlling machinery, it is often difficult to make a 

characteristic prediction (e.g., machine failure). This produces inefficiencies, 

such as a prolonged work lag, which affects the manufacturer. The LR revealed 

that ML algorithms were able to capture machine characteristics. Hence 

implementing these ML to add intelligence was main theme of this research. 



3 Manufacturing Field Studies 

 

 

This chapter details the methods applied in the field study that was conducted on Australian manufacturing 

company SleepCorp Pty. Ltd. SleepCorp is a mattress protector manufacturing company that has complex manual 

operations. This was an ideal case study for demonstrating the SM framework. If the efficacy of the framework 

can be demonstrated in this industry, it can also be applied in other industries, with minimal changes to the 

framework.  



3.1 Introduction 

In this chapter, a manufacturing framework that underpins the manufacturing challenges 

discussed in previous chapters is conceptualised. This chapter outlines a conceptual 

framework of real-time computing and discusses CC algorithms for data analytics and 

predictions. The framework and proposed setup of data accumulation for exploring the 

behaviour analysis are discussed. This chapter:  

i) develops real-time computing for a manufacturing line that has a complex 

nature and convoluted characters. A conceptual framework was modelled 

adopting transformative technologies plotted to underpin the challenges, 

limitations and advantages. These steps helped understand the product artefacts, 

imprint ideas on a practical implementation blueprint and compare alternative 

concepts proposed by other researchers. The proposed concept was evaluated 

with the following parameters: economic benefits of implementation and 

usability and space optimisable solutions to increase production density. 

ii) chooses between the best possible layouts and concept to demonstrate the real-

time computing. The use of VR and AR was proposed with real machines and 

a real factory layout to simulate a realistic approach. 

iii) defines later stages of the proposal with the data accumulation setup and 

outlines a sophisticated and reliable way of implementing the concepts in a real 

manufacturing line.  

This section introduces the state of the art of the physical shopfloor and discusses the 

machines involved in the manufacturing line of a textile manufacturing company, 3D 

modelling software, the simulation setup and the test bed results. 

3.2 Operational Analysis 

Efficiency enhancement appears possible with CPS on cloud-enabled infrastructure. 

CNR, as first described by (Kuffner, 2013) takes advantage of cloud robotics and 

wireless technology, which have elevated the potential of integrating autonomous 

sensing and actuation in evolving dynamic and complex industrial applications. 

Following the three revolutions of mechanisation, mass production and digitisation, 

Industry 4.0 has brought incipient autonomous technologies into the industrial realm, 



transforming traditional factories into the smart factories of the future (Biesinger, Meike, 

Kraß, & Weyrich, 2018). 

Due the attributes of virtualisation, decentralisation and real-time capability, Industry 4.0 

was envisioned as a key way of combining these robotic and manufacturing technologies 

(Jawad et al., 2019). For instance, CC and wireless sensors are required for automating 

manufacturing applications (e.g.: sensing, actuating and monitoring) (Stock et al., 2019). 

Industrial cloud robotics encapsulate the design principle of robotic resources integrated 

with cheaper computing costs and network resources. This has extended operational 

capabilities and shifted robotic and manufacturing applications away from carrying out 

repetitive tasks towards solving more complex multi-objective problems in uncertain 

manufacturing environments (Papazoglou & Elgammal, 2017). While CNR opens up the 

possibility of using robotic networks to further automate industrial processes, it also adds 

significant complications in terms of decision-making and coordination. As previously 

mentioned, cloud services can be leveraged to enhance the performance and efficiency 

of a system (Yao et al., 2018). 

As CC is a well-established entity, the overall efficiency of updated SM can be increased 

by integrating CNR, XR and ML algorithms. Integrating aforementioned technologies in 

newly developed/proposed SM operations increased overall efficiency. These 

technologies are prominent in their respective fields. However, this research aimed to 

propose the framework to integrate them in a single platform. This is further aided by 

DT, which paves the way for the smooth integration of the physical and cyber world in 

the context of the manufacturing industry. While AR/VR provides virtualisation for the 

preparation of the product manufacturing, DT can emulate real-time applications and run 

them in real time, facilitating the analyses of changes that the physical equipment can 

react to for modification purposes. Thus, SM can help prepare rigid manufacturing 

processes that perform efficiently and accurately from preparation through production 

and maintenance of the operation. 

It is important to understand the basic requirements of the technologies in question. For 

example, CNR technology uses a range of robots, such as mobile robots, stationary 

robots and cloud facilitates, to interact with the system components. AR/VR systems 

consist of sensors, displays and dedicated software. This research focuses on efficiently 

transferring CNR and AR/VR onto a single platform to fine-tune and improve the 



performance of SM, with additional real-time analytical support provided by DT. Given 

the challenges of integrating these technologies, the novelty of this work lies in its laying 

of a framework for virtually created robots to interact with the virtual cloud and perform 

tasks assigned to them via the cloud. Here, the virtual machines in the cloud work 

according to their scheduled tasks and workload. These tasks were taken into 

consideration according to priorities and were performed with the First-In-First-Out 

algorithm. This integration plays a critical role in achieving an efficient SM framework. 

The study was conducted in two stages. First, a conceptual framework was proposed to 

integrate CNR and AR/VR on a platform for cloud-empowered SM with real-time 

support from DT. The ambiguities were presented, and hardware and software solutions 

related to the implementation of the cloud-centric DT paradigm were developed. Second, 

the case study on an automated mattress protector manufacturer was presented to 

highlight the components of the integrated system to complement the proposed 

framework. This was followed by a proposal for a hybrid assembly line operation for a 

modelled DT to demonstrate the approach in the context of a real-time industrial 

application.  

3.2.1 Conceptual Framework 

The textile indsurty was used as a test bed in this research, as it represented a typical 

manufacturing paradigm with various complex operations  as well vast individualiased 

product demands. Further, textile manufacturing was SME, representative of the 

Austrlain manufacturing. The heterogeneous characters of the textile industry include 

ongoing changes to processes, resources and structures. Potential triggers for changes to 

existing manufacturing processes are new products, changing requirements, new 

technology and model upgrades. Implementing changes in a real manufacturing context 

requires the strategic overhaul of interlinked disciplines. Existing practices are unable to 

capture these complex characteristics. Ambiguities arise due to manual interventions, 

resulting in increased waste and cost. These issues were addressed with an SM 

environment using a DT paradigm. The conceptual DT framework was modelled as 

interconnected to CPS, as shown in Figure 11. DT was remotely connected to the library 

and hardware systems (e.g., machinery). The data library stored pre-planned data, order 

status and postproduction data and was accessed by CPS through a cloud platform. A 

hardware system provided machinery commentary and CNR data through sensors via the 



cloud platform to the CPS system. CPS integrated the hardware–software platform 

through cloud networks. The CPS set of embedded systems communicated and interacted 

bi-directionally. The cyber element of the CPS also monitored and controlled the 

input/outputs from physical entities. DT reflected the current state of machinery and 

could incorporate required changes. Further, DT provided an interface for simulation and 

analysis to identify optimal solutions. 

3.2.2 Digital Twin 

Further development of DT was made for the shopfloor representation of manufacturing 

processes to develop a streamlined workflow, as shown in Figure 11. The model 

consisted of a physical shopfloor connected to a virtual shopfloor through a cloud-centric 

platform (Biesinger et al., 2018). 

 

The physical shopfloor integrated physical entities, accepted instructions and performed 

instructional tasks. The components mainly included machine tools, robot entities, 

resources and sensory nodes (e.g., temperature and pressure) (Wu et al., 2019). Sensory 

IoT capabilities captured heterogeneous characteristics from multiple sources for real-

time perception. The virtual shopfloor consisted of various AR/VR virtual models, 

manufacturing attribute models, behaviour-rule models and data-fusion models in a 

Figure 11 Conceptual framework of digital twin 



simulated environment (Gao, Lv, Hou, Liu, & Xu, 2019). 

The cloud platform provided large data set storage and communication capabilities, 

integrating the physical and virtual shopfloors in a DT paradigm (Yao et al., 2018). These 

technologies mainly included wireless communication links with industrial IoTs, 

industrial sensors, industrial wireless network, CNR and mobile devices. Cloud-enabled 

data management integrating manufacturing, machines, materials, quality, cost, 

resources and environmental data (Ribeiro & Björkman, 2018).  

DT integrated shopfloor data systems from the production planning phase to the running 

of the real-time simulation, thus providing analytics for enhanced system performance. 

The analytical support for decision-making included task scheduling optimisation, real-

time monitoring of manufacturing resources, quality monitoring, material allotting 

optimisation and PM. 

3.3 Field Study 

This section describes a case study of textile manufacturer (e.g.: mattress protector 

manufacturer SleepCorp Pty. Ltd). Textile manufactures mattress protectors in more than 

1,000 product portfolios and, to date, has traditional manufacturing practices. The 

manufacturer has several craft operations, such as cutting panel sheets, sewing cut panels 

with sleeves and packing finished mattress protectors in a presentable manner. These 

operations are convoluted and time consuming. Due to high market share, demand for 

products is very high; however, due to human error and a lack of efficiency, the 

manufacturer has struggled to meet market needs. Prior research was conducted to 

understand the manufacturers craft operations before implementing novel manufacturing 

methods. The time taken for multiple operations on the production line was recorded 

(e.g.: cutting, sewing, and folding operations). The following sections denote the stage-

by-stage observations across the production line. Extensive time and human resources 

were devoted to understanding and capturing the different characters of mattress 

production. The traditional factory shopfloor consists of one cutting machine, six sewing 

stations, one folding and 12 packing stations. Work is conducted manually by hand, 

where work ability of each individual worker is highly variable, and the calculated mean 

performance is, therefore, not accurate. 



3.3.1 Inventory 

The first step of the field study was to simulate the inventory management and record the time 

required to arrange inventory items, such as raw materials for production, tags, labels, threads, 

and others. Table 3 lists the inventory timings of traditional and expected timings. 

 

 

Table 3 Traditional mattress protector simulations (e.g., median of protectors) 

Traditional 

practices  

Simulated SM 

framework 

Expected 

median goal  

20 min 10 min 15 min 

3.3.1.1 Traditional Practices 

Raw materials in inventory are handled manually. Human and manual machine resources 

(e.g., a pallet jack) are used to transport raw materials from the inventory to the cutting 

stations depending on the expected output. Similarly, finished goods are taken from the 

packing machine to the inventory and placed accordingly. For example, for a single 

mattress protector, textile is used. In the inventory, raw textile goods are sorted based on 

a manually performed scan, and the time needed to identify the location of the raw 

material, palletisation and depalletization is expected to be approximately 20 minutes for 

each pallet process. 

3.3.1.2 Smart Manufacturing Practices 

The manual handling process of pallets is replaced by the use of automatic guided 

machines/human-defined paths so that resource follows the exact path and reaches the 

station on time. The in-bound process takes the raw materials from the inventory to the 

station, while the out-bound process carries finished goods to the storage systems. In the 

inventory, scanning and sorting technology along with storage location information can 

be retrieved from computer systems. Automation helps identify the exact location of the 

goods, saving time scanning additional goods. This was previously time consuming, as 



scans were performed using a trial-and-error method. Using an automatic storage and 

retrieval system can alter the time elapsed during the simulation depending on the 

specifications of the machinery installed. A reduction in time by half the initial value, 

which was approximately 10 minutes, was expected. The reasons for a reduction in time 

were auto limit detection at workstations, which facilitates the inventory process; product 

location detection; auto-palletisation and depalletization; transfer to workstations 

according to defined paths; and speed alteration depending on machine specification. 

3.3.1.3 Application 

During the initial production line run, machinery is inspected, and, during a shift change, 

some delay is expected in the machinery, as well as during annual or quarterly 

maintenance. Inventory handling is conducted manually, and technical knowledge is 

needed to program advanced installed inventory, set the pace and meet market 

requirements. Slow-paced work is recommended until technical experience is acquired, 

with an expected timeframe of approximately 15 minutes. 

3.3.2 Cutting Operation 

The next step of the field study was the cutting operation. This operation includes the complex 

steps that occur before the start of production. Table 4 details traditional and simulated timings. 

Table 4 Cutting table observations 

  

 Single  

7 

pieces/roll  

 

 

  Traditional 

time (sec)  

Simulated time (sec)  

Setup  5  2  

Process  12  6  

Teardown  6  2  

Queen  

6 

Setup   7  4  

Process   14  8  



pieces/roll  Teardown   8  4  

Super 

king  

5 

pieces/roll  

Setup   8  6  

Process   16  10  

Teardown   8  6  

Utilisation   40%  65%  

Resources used Human resource 1  

Machine resource 1  

Transporters 1  

3.3.2.1 Traditional Practices 

At the cutting station, the production run is conducted manually. Raw materials are 

brought to and loaded onto the workstation by hand. Depending on the output, 

the required cuts are made manually. The cutting machine is human operated, and the 

cut pieces are transferred to other sewing stations operated by hand. The cut pieces are 

carried in random batches to random sewing machines depending on availability. This 

process is verified and error prone, and the actual mean performance of the workers is 

unknown. Cut pieces are carried from the cutting station to the sewing station depending 

on the availability of sewing machines, which is in turn dependent on human 

performance. Material transport human resources and human resources are used at 

workstations to control, load and unload the materials. Heavy workloads can increase the 

risk factor, and miscommunication can cause major distributions and delays. Many 

random variables have been considered approximate mean values of run time for 

products-mix outputs, such as singles and queens, based on calculations and performance 

values over the last six months for the cutting workstations. 

The teardown time is almost equal to or slightly greater than that of the setup time. This 

is because a one-unit roll is cut into pieces that are arranged in a batch manner to be 

transferred to another workstation. The setup time for the cutting machine is 5, 7 and 9 



seconds for a product mix of singles, queens and super kings, respectively. The teardown 

time tends to be higher than the setup time, and the estimated values are 6, 8 and 10 

seconds. A total of 7, 6 and 5 cut pieces of single, queen and super king, respectively, 

are processed from an individual roll. Here, the processing time directly depends on he 

expected outputs. For example, the processing times for singles, queens and super kings 

are 12, 14 and 16 seconds. The machinery tends to stay idle during loading and, as the 

units are unloaded manually, the actual utilisation of machine is lower at only 40%. 

3.3.2.2 Smart Manufacturing Practices 

Automation constrains the setup, processing and teardown time of workstations. The 

constrained value depends on the machine specification. Machines are semiautomated 

when humans control the run process of the workstation. The cutting process is 

automatic; as in the previous case, the machines are handles by humans when performing 

the cutting process, though resource involvement is linked with the setup and teardown 

time. The cutting speed and number of pieces is controlled by hand depending on product 

mix, though this can also be accomplished using computers in the control room with the 

aid of advanced DT technologies. The transportation channel is eton lines, which carry 

cut pieces from the cutting workstation to the sewing workstations. Cut units are directly 

picked onto eton lines and are auto-oriented, which removes the need for piling up the 

cut pieces into batches for the sewing workstations, as in the previous scenario. In a 

simulation run, the setup time is constrained to 2, 4 and 6 seconds for single, queen and 

super king product ranges, respectively. The decrease in time is due to the integration of 

inventory into the transportation of raw goods and palletisation/depalletization. Further, 

integrating the eton conveyor line decreases the teardown time of the cutting machine. 

However, the machine run process is linked with the specifications of the machine 

installed in the production line. Advance machinery offers the flexibility to alter the 

speed of the run and the number of units obtained. Simulation is estimated to run the 

process at a speed of 6 to 8 seconds, with a mean variation of 2 seconds between each 

product mix output. Constraining the production line during simulation to obtain optimal 

solutions gives an estimated utilisation value of the cutting machine of approximately 

65%. 



3.3.2.3 Application 

During the implementation phase, the skill of the worker is assessed, and their technical 

ability with machinery is important to ensuring the seamless running of the production 

line. When new machinery installed, it is recommended that the initial pace is set at 

optimal run values. These values can subsequently be reduced with extra care taken to 

maximise production. Here, the workstation was semiautomatic. The setup and teardown 

tended to have higher values than the simulation setup time values of 3, 5 and 7 seconds 

and the teardown time values of 4, 6 and 8 seconds for the product-mix scenario. 

Considering the initial optimal pace of work environment, the processing vales were 8, 

10 and 12 seconds for single, queen and super king batches. But human and machine 

resource involvement made the production line semi-automated, and the dynamic nature 

of these resources affected the setup and teardown time of workstations such that the 

utilisation rate was 55%. 

3.3.3 Sewing Operation 

Table 5 depicts the sewing operation timings observed during the field study and the steps 

involved in the sewing operation. This is the third step in the process of manufacturing mattress 

protectors. 

 

Table 5 Sewing station timings 

  

 Single  

   

   

  Traditional 

time 

(seconds)  

Simulated time (seconds)  

Setup  8  5  

Process  60  50  

Teardown  8  5  

Queen  Setup   8  5  



  Process   60  50  

Teardown   8  5  

Super 

king  

Setup   8  5  

Process   60  50  

Teardown   8  5  

Utilisation   40%  60%  

Resources used Human resource 6  

Machine resource 6  

Transporters 4  

3.3.3.1 Traditional Practices 

At the sewing station, the production run is performed manually. The batch products are 

transferred from the cutting machine to the sewing machines using dynamic pathways. 

A human agent transports items between workstations and carries the batch products. 

Sewing is performed manually using a machine to stitch the products. Time and 

performance factors are dynamic and independent. The ability to work with increased 

demand flexibility is not afforded by this environment. The sewing operation is the core 

process of the production line, and the product-mix batches also affect the work pace. 

Differential mean values are considered for the product-mix setup. The setup and 

teardown times are considerably higher than those of the cutting workstation. This is due 

to an exchange of products between transporters and human resources at the workstations 

and the output acknowledgment of each batch before undergoing sewing. In the case 

study, six sewing workstations were installed on the factory floor. Though human 

involvement has a dynamic nature, the mean of recorded six months value is thought to 

determine the current performance level of an industry 2.0 production line. In the 

example, the approximate setup and teardown times were 8 seconds for the product-mix 



scenario. Manual sewing is a time-consuming process in which standards are followed, 

and the ability to switch between product-mix scenarios is challenging; however, despite 

the dynamic nature of sewing implementations, the average value was considered for all 

batch operations, and the sewing process was thought to be performed at a rate of 60 

seconds. The sewing process was ideal during loading and unloading the units manually. 

Therefore, the actual utilisation rate of a machine was lower at only 40%. 

3.3.3.2 Smart Manufacturing Practices 

Similar to the cutting workstation, the simulation constrains the setup, processing and 

teardown time of workstations. The constrained value depends on machine 

specifications. A machine is semiautomated when the run (process) of the workstation is 

controlled by hand. In the case study, the sewing process was automatic, as the machine 

that performed the sewing operation was operated by hand. Here, human resource 

involvement was linked with the setup and teardown times. The run (process) 

involvement included altering the sewing speed and the expected output batch, 

depending on the product mix. This could also be achieved using computers in the control 

room with the help of advance DT technologies. The transportation channel used eton 

lines to carry cut pieces from the cutting workstation to the sewing workstations. Here, 

the sewing units are directly picked and placed onto eton lines when once processed in 

the sewing workstation. In the simulation run, the setup time was constrained to 5 

seconds for all batches. This decrease in time stemmed from the integration of inventory 

into the transportation of raw goods, palletisation and depalletization. Integrating eton 

lines decreased the teardown time of the sewing machine to 5 seconds. However, the 

machine run (process) was linked with the specifications of the machine installed in the 

production line. Advanced machinery provides the flexibility to alter the speed of the run 

and the number of units obtained. The simulation estimated the run process at an average 

speed of 50 seconds for all product-mix outputs. Constraining the production line during 

the simulation to obtain optimal solutions gave an estimated utilisation rate for individual 

sewing machines of 8% to 10%; however, when considered collectively, the rate was 

60%. 

3.3.3.3 Application 

During the installation phase, a worker 's skills are evaluated. Their technological 



proficiency with the machinery plays an important role in the smooth running of the 

production line. For the newly installed machinery, the initial pace was set at optimum 

running values. Throughout the cycle, lower time values could be adjusted, taking extra 

care to optimise production. Here, the workstation was semi-automatic, and the setup 

and teardown times appeared to be higher than the time taken in the simulation values (6 

seconds) and processing time (55 seconds) for the product-mix scenario. The presence 

of human and machinery resources renders the line semi-automated, and the complex 

design of these resources affects the setup and time of teardowns. The utilisation rate 

of individual sewing machine was approximately 8% to 9%, and collectively the rate was 

50%. 



3.3.4 Folding Operation 

The next important step in the process of mattress protector manufacturing is folding. This 

operation involves complex materials and requires folding to precise sizes so that goods can fit 

into pre-made packaging. Table 6 lists the timings noted during the folding operation. 

 

Table 6 Folding machine timings 

  

 Single  

   

   

  Traditional 

time (sec)  

Simulated time (sec)  

Setup  8  5  

Process  14  7.5  

Teardown  10  6  

Queen  

  

Setup   8  5  

Process   15  7.5  

Teardown   10  6  

Super 

king  

Setup   8  5  

Process   16  7.5  

Teardown   10  6  

Utilisation   40%  60%  

Resources used Human resource 1  

Machine resource 1  



Transporters 2 

3.3.4.1 Traditional Practices 

From the sewing stations, products are then transferred to folding stations. In the case 

study, this was performed manually by humans who transported the items to the folding 

stations. Two human transporters carried the sewn products to the folding stations. From 

there, they were sent to packaging stations. Packing was also performed manually. As 

this step deals with large textiles, handling the operations is challenging. As a result, the 

time taken for setup and teardown was comparatively higher than all other workstations. 

The setup time and teardown time for the folding stations was 8 seconds and 10 seconds, 

respectively, for all product-mix scenarios. The processing time was approximately 10 

seconds for all batch processing. The utilisation rate of a folding machine was 40%. 

3.3.4.2 Smart Manufacturing Practices 

Virtual simulation helped model and render the folding workstation 

outputs; however, the large size ratio was easier to handle in the virtual world 

than the physical world. Time considerations were according to practical implication. 

Optimistic values were considered. The setup time and teardown times had a slight 

variation of 1 second, the teardown time being the higher value, with 6 seconds for 

product mix batches. The processing time for the folding process was 7.5 seconds. The 

optimal utilisation of the workstation was 60%. 

3.3.4.3 Application  

During the implementation phase, uncertainties play a vital role and deviate the goal of 

optimal solutions. Deviation was examined over a period. The folding machine had mid 

values between the industry 2.0 production line and the simulation production line. The 

setup time and teardown times for the folding stations were 7 seconds and 8 seconds, 

respectively. The processing time for this component was 10 seconds. Utilisation was 

altered over market demand, but the initial considerations had a value of 50% under the 

normal work pace. 



3.3.5 Overall Time Difference  

Table 7 depicts the total time difference observed during the manufacture of a bulk order of 

mattress protectors. Average timings were calculated for individual products and are presented 

in Table 7. 

  



Table 7 Time difference noted 

  Traditional time 

(sec)  

Simulation time (sec)  

Single 131 88.5 

Queen 138  94.5  

Super king 142  96.3 

3.3.5.1 Traditional Practices 

The overall timeframe of the production line was calculated, including the workstation 

setup and processing and teardown timings. The maximum values of the timeframe were 

obtained for the current industry 2.0 production line. The values of the product mix for 

single, queen and super king mattress protectors were 131 seconds, 138 seconds and 142 

seconds, respectively. 

3.3.5.2 Smart Manufacturing Practices 

The virtual simulation considered constrained values in many scenarios. Some of these 

variables fell in a controllable category and some did not fall in the controllable category. 

These independent uncontrollable variables influenced the project implementation 

phase. The results obtained in the virtual simulation were the optimal solution an 

individual could derive from the production line. Experimental scenarios were easy to 

perform, and solutions were obtained rapidly. During the experimental simulation, the 

values obtained were 88.5 seconds, 94.5 seconds and 98.5 seconds for single, queen and 

super king batches, respectively. 

3.3.5.3 Expected Timings 

During the implementation phase, the production line suffers from several uncertainties 

that minimise and nullify over several months when risk, optimal and feasible studies are 

regularly conducted and implemented. Thus, optimal solutions tend to be obtained from 

the simulation model. The graph produces follows a parallel path to the graph modelled 

accounting for the simulation results. For the initial slow-paced considerations, the 



timings for single, queen and super king batches were 103 seconds, 113 seconds and 119 

seconds, respectively. 

3.3.6 Operator Efficiencies 

Table 8 readings were observed when operators loaded and unloaded various machinery. These 

timings were critical to ascertain efficiency. The readings were converted into an efficiency 

percentage to gauge the operators’ performance. 

Table 8 Operator simulation 

Utilisation   Traditional 

time  

Simulated 

time   

Expected time 

70%  85%  80%  

3.3.6.1 Traditional Practices 

Worker tasks include loading and unloading the stations, transferring products between 

different sequential workstations and engaging in inventory management using machine 

resources. The pathways followed and their independent efficiency values are dynamic; 

therefore, usually, in complex scenarios, resources are not used to their maximum values. 

In the case study, the utilisation rate of human resources was 70%. 

3.3.6.2 Smart Manufacturing Timings 

The simulation involved considering 60% as moderate efficiency of operators. The 

values considered in the simulation run were fixed and could be altered but affected the 

complete production line. Therefore, research was conducted with technical staff to 

identify the optimal performance values. The remaining tasks were conducted as part of 

the automation using integrated advance machines. Defining the pathways constrain also 

gave the optimal values for human resource utilisation. In the simulation, the human 

resource utilisation rate obtained was 85%. 

3.3.6.3 Expected Timings 

Human health, a lack of familiarity of the production environment, a lack of product and 

technical knowledge, long shifts, heavy workloads, dynamic working environments, 



human behaviour, breaks and safety issues are some key considerations that can affect 

the production run. Humans tend to exhibit dynamic behaviours; therefore, working at 

the same pace as in the simulation model was impractical. However, with regular 

training, health check-ups, and performance meetings with operators, the efficiency to 

required level seemed achievable. These can help an individual to focus and can enhance 

the input ability so that the utilisation can be estimated at approximately 80%. 

3.3.7 Output Units 

Table 9 represents the total production recorded on a typical busy production day. The readings 

were matched with the monthly production average. Three timings illustrated in this table 

identified the output differences. The difference production was targeted from the production. 

Table 9 Product outputs per day 

  Traditional 

time  

Simulated 

time  

Expected time 

Single  800–1000  1200–1400  1000–1200  

Queen  200–300  350–450  300–400  

Super king  150–250  200–400  150–350  

3.3.7.1 Traditional Practices 

The existing production line output was 800–1,000 units of singles, 200–300 units of 

queens and 150–250 units of super kings. As the market demand was dynamic, there was 

no flexibility to adjust the production line to meet market demand, as the industrial 

process involved a cluster of processes that had to be altered, such as scheduling, 

analysis, run setup, maintenance setup, staffing, safety issues, technical factors, machine 

constraints and integration constraints. 

3.3.7.2 Smart Manufacturing Practices 

During the virtual simulation, advanced machinery was installed, such as computer-aided 

design modelled components. They were considered in virtual environments. The 



process constraints (e.g., time, schedule, pathways, process sequence) were used to run 

experimental scenarios. For the experimental simulation in the virtual world, the 

obtained values were 1200–1400 units for singles, 350–450 for queens and 200–400 for 

super kings. 

3.3.7.3 Expected Timings 

During the implementation phase, regular machine check-ups were performed before 

and after every production run. Mechanical loses during the run, technical knowledge, 

independent pathway travels, loss of connectivity, system failures, logistics delays and 

environmental factors, as well as other controllable and uncontrollable considerations, 

can affect the production run. Here, the estimated output values were 1,000–1,200 units 

of singles, 300–400 units of queens and 150–350 units of super kings. 

After modelling in Simio, it was set to run, and animation of the software provided an 

overall perspective of the sequential process of the production line. This line assisted in 

training the model sets with different entities. The labels marked at each workstation 

provided real-time data on the ongoing application count after each order was processed 

in the overall estimation of the application model from each station to verify the 

simulation model fluency. As shown in Tables 10 and 11, this process led to a data 

comparison between the theoretical and practical simulation results that helped gather 

process and station data. The same data are graphically depicted in Figures 13 and 14. 

The total individual time taken by each station in the bottom row of each entity process 

in Table 10 and the total individual subset process time (setup, processing time, teardown 

time) was calculated. The time taken at each station was calculated according to the 

amount of time the station was in use. The total time taken for the process was then 

calculated by dividing the total machine time with total number of the station and then 

multiplied with overall shift time. This resulted in the actual utilisation ratio of the total 

time required by a machine. The time required by each machine per day was multiplied 

by the number of units available. Thus, the operation had to align with the utilisation 

reading that were not more than 100.  



 

 

 

Figure 12 Warehouse optimisation and simulation 



Table 10 Practical process timings 

Product 

type 

Process 1 2 3 4 5 Total Output/day 

(Units/ day) 

Mix 

Single Station Cutting Moving Sewing Moving Folding  1300 65 

 Setup 1.4 0 5 0 5 11.4   

 Process 6 0 50 0 7.5 63.5   

 Teardown 0 0 5 0 3 8   

  7.4 0 60 0 15.5 82.9   

          

Queen Station Cutting Moving Sewing Moving Folding  400 25 

 Setup 1.4 0 5 0 5 11.4   

 Process 6 0 50 0 7.5 63.5   

 Teardown 0 0 5 0 3 8   

  7.4 0 60 0 15.5 82.9   

          

Super 

King 

Station Cutting Moving Sewing Moving Folding  300 15 

 Setup 3.75 0 5 0 5 13.75   



 Process 7.5 0 50 0 8.5 66   

 Teardown 0 0 5 0 3 8   

  11.25 0 60 0 16.5 87.75   

 

Table 11 Simulated readings from line balancing the production line 

Workstation Expected 

utilisation 

Software simulated readings 

Cutting 63% 62.93% 

5 Sewing machines 64% 62.51% 

Folding 63% 62.81% 

Expected output per day Obtained output using simio sequence 

2,000 units 1941 units 

  



 

Figure 13 Production analytics 

 

Figure 14 Line balancing production outcomes 

This research proposed a potential cloud robotics framework that can be used for smart 

city applications. Through task offloading for a robotic-aided operation control system, 

this research presented an optimisation problem for an analogical algorithm. Following 

this, an SM-based scheme was established to identify the optimal offloading decisions 

while meeting the system constraints. The results demonstrated the advantage of ongoing 

ML algorithms over other benchmarks (i.e., near-optimal results with fewer overheads), 

as well as its adaptability in a changing environment (e.g., a change in bandwidth and 

movement). It also helped identify the benefits and shortcomings of ML for the given 

scenario and pinpoint scope for further improvement. Based on these results, the robot 
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path planning (movement) and network connectivity/availability could be integrated to 

the optimisation problem in future work to further enhance the system performance. In 

addition, the present research also sought to run tests on a practical system to achieve 

similar results to the theoretical system. 

3.4 Cost and Takt Analysis 

Cost analysis is a systematic approach towards estimating the strengths and weaknesses 

of certain approaches to identify which course of action will yield the best results for the 

least expense. Cost analyses can be used to compare completed or potential courses of 

actions or estimate (or evaluate) the value against the cost of a decision, project or policy. 

Cost analyses are commonly used in commercial transactions, business policy decisions 

and project investments. 

There are two main applications of cost analyses. The first is to determine whether an 

investment is sound according to whether—and by how much—its benefits outweigh its 

costs. The second is to provide a basis for comparing investments (by comparing the total 

expected cost of an option with its total expected benefits). 

The process of conducting a cost analysis has the following steps: 

i) The goals and objectives of the action are defined. 

ii) Alternative actions are listed. 

iii) Measurements are selected, and cost and benefits elements are measured. 

iv) Outcomes, cost and benefits are predicted over the relevant time. 

v) Costs and benefits are converted into a common currency. 

vi) A discount rate is applied. 

vii) The next present value of actions under consideration is calculated. 

viii) A performance sensitivity analysis is conducted. 

ix) The recommended course of action is adopted. 

The takt time is the average time between the start of production of one unit and the start 

of production of the next unit when the production starts are set to match the rate of 

customer demand. For example, in the present research, an order number of 25 

3013F3XL from the Buddies range was taken. For this order, given a 40-hour work week 

and steady flow through the production line, the average time between production starts 



should be 8.2 hours (or less than this to account for circumstances such as machine 

downtime and scheduled paid employee breaks). The takt time simply reflects the rate of 

production needed to match demand. In the previous example, regardless of whether it 

takes four minutes or four years to produce a product, the takt time is based on customer 

demand. If a process or production line cannot complete production within the takt time, 

either demand levelling, additional resources, or process reengineering is needed to 

correct the issue. 

Time analysis is a sequence of defined data points measured at different time intervals 

over a period. For example, in the present research, four different kinds of product from 

the Buddies range were selected, and the laying time, cutting time, quilting time, sewing 

time and packaging time were calculated. Tables 12, 13 and 14 provide detailed 

information on how the time needed for the different stages of production was calculated. 

A time analysis was also conducted and included the lead time, which is the time between 

when an order comes into the factory and the day it is delivered to the customer.



Table 12 Time and cost analysis of mattress protectors1 

Product Signature Tencel Mattress Protector 
Fabric Tencel Elite   

Manual Semi-automated 
Material Item No Unit Cost LSG* KNG* LSG* KNG* LSG KNG LSG KNG 

Panel Fabric Top 1002051 Mtr $4.01 0.96 1.89 $3.85 $7.59 0.96 1.89 $3.85 $7.59 
Fabric Bottom 

 
Mtr 

   
$0.00 $0.00 

  
$0.00 $0.00 

Skirt Fabric Std 1002040 cm $2.06 6.12 7.98 $12.62 $16.46 6.12 7.98 $12.62 $16.46 
Fabric XD 

 
Mtr 

   
$0.00 $0.00 

  
$0.00 $0.00 

Elastic Mtr $0.07 5.6 $0.00 $0.39 5.6 $0.00 $0.39 
Label C&C Ea. $0.05 1 1 $0.05 $0.05 1 1 $0.05 $0.05 

Woven Ea. $0.09 1 1 $0.09 $0.09 1 1 $0.09 $0.09 
Other Binding Mtr 

   
$0.00 $0.00 

  
$0.00 $0.00 

Packaging Bag 1008016 Ea. $0.47 1 $0.47 $0.00 1 $0.47 $0.00  
1008017 Ea. $0.50 

 
1 $0.00 $0.50 

 
1 $0.00 $0.50 

1008005 Ea. $0.39 
 

$0.00 $0.00 
 

$0.00 $0.00 
Box 

 
Ea. 

 
$0.00 $0.00 $0.00 $0.00 

Outer Carton Ea. 0.05 0.08 $0.05 $0.08 0.05 0.08 $0.05 $0.08 
Pack Board 1008063 Ea. $0.20 1 

 
$0.20 $0.00 1 

 
$0.20 $0.00  

1008061 Ea. $0.22 
 

1 $0.00 $0.22 
 

1 $0.00 $0.22 
1008064 Ea. $0.20 

 
$0.00 $0.00 

 
$0.00 $0.00 

Insert 
 

Ea. $0.48 1 1 $0.48 $0.48 1 1 $0.48 $0.48 
Guarantee Card PAB512 Ea. $0.04 1 1 $0.04 $0.04 1 1 $0.04 $0.04 

Brochure 
 

Ea. 
 

1 1 $0.00 $0.00 1 1 $0.00 $0.00 
Gross material cost 

   
$17.85 $25.89 

  
$17.85 $25.89 

Labour 
     

Cutting Panel Sec $0.012 45 45 $0.56 $0.56 25 25 $0.31 $0.31 
Skirt Sec $0.012 45 45 $0.56 $0.56 25 25 $0.31 $0.31 

Sewing Outsourced $1.60 $1.80 
  

$1.60 $1.80 
CMT Line feeding Sec $0.01 $60.00 $60.00 $0.63 $0.63 $30.00 $30.00 $0.32 $0.32  

Packing Sec $0.01 $96.00 $114.00 $1.01 $1.20 $96.00 $114.0 $1.01 $1.20 
Gross labour cost 

    
$3.80 $4.19 

  
$3.24 $3.62 

Gross cost $21.65 $30.08 $21.09 $29.52 
Mfg. Overhead 17% $3.68 $5.11 $3.59 $5.02 

* LSG – Long single, KNG- King single, ea-each, Mtr-metre 



Total manufacturing $25.34 $35.20 $24.67 $34.54 
Invoice price $45.00 $80.00 $45.00 $80.00 

Rebate $0.00 $0.00 $0.00 $0.00 
Nett selling price $45.00 $80.00 $45.00 $80.00 

Gross margin $19.66 $44.80 $20.33 $45.46 
Gross margin % $0.44 $0.56 $0.45 $0.57 

Retail price Mark Up 100% $90.00 $160.00 $90.00 $160.00 
RRP less GST 

 
10% $81.82 $145.45 $81.82 $145.45 

Retail GP 
 

$36.82 $65.45 $36.82 $65.45 
Retail GP% $0.45 $0.45 $0.45 $0.45 

2



Table 13 Cost and time analysis (Chair pad 1021) 

Product BD1021N Chair Pad 50x60cm - Navy Name:1021N 
Code Description Old Costings New Costings in-house quilting New Costings Pre-Quilted   

Staff Usage Unit 
Cost 

Sub 
Total 

Staff Usag
e 

Units Unit 
Cost 

Sub 
Total 

Staff Usag
e 

Unit Cost Sub 
Total 

1002057 Felt 400 gsm fabric 0.3 $2.37 $0.71 0.3 Mtr $2.37 $0.71 5.45  
1002059 Navy Interlock Fabric 0.03 $2.75 $0.08 0.03 Mtr $2.75 $0.08 
1006002 Labour - Laying / 

Cutting 
2 1.5 $1.83 $2.74 1 240 Secon

ds 
$1.05 $2.52 

1002008 Duraflex White 
Waterproof Fabric 

0.17 $6.15 $1.04 0.17 Mtr $6.15 $1.04 0.17 $6.15 $1.04 

1005000 Buddies Printed Care 
Label 

1 $0.05 $0.05 1 Qty $0.05 $0.05 1 $0.05 $0.05 

1006001 Labour - Sewing 1 1.9 $0.56 $1.06 1 300 Sec $1.05 $3.15 1 300 $1.05 $3.15 
1006000 Labour - Packing 1 1.5 $0.42 $0.63 1 80 Sec $1.05 $0.84 1 80 $1.05 $0.84 
1008005 Bag 1 $0.10 $0.10 1 Qty $0.10 $0.10 1 $0.10 $0.10 

Insert 1 $0.10 $0.10 1 Qty $0.10 $0.10 1 $0.1 $0.10   
Total $6.52 

 

Gross cost $6.52 $8.60 
 

$10.74 
Mfg. Overhead 17% $1.11 $1.46 $1.83 
Total manufacturing $7.63 $10.06 $12.57 
Invoice price $15.00 $15.00 $15.0 
Rebate $0.00 $0.00 $0.00 
Nett selling price $15.00 $15.00 $15.0 
Gross margin $7.37 $4.94 $2.43 
Gross margin % 49% 33% 16% 
Retail price Mark Up 100% $26.95 $26.95 $26.9 
RRP less GST 10% 24.5 24.5 24.5 
Retail GP $9.50 $9.50 $9.50 
Retail GP% 38.78% 38.78% 38.78% 



Table 14 Cost and time analysis (1070K bed pad) 

PRODUCT 1070K Lite N Easy Bed Pad White 
NAME: 1070K 

Code Description Old Costings "New Costings in-house quilting" "New Costings Pre-Quilted" 
Staff Usage Unit 

Cost 
Sub 

Total 
Staff Usage Units Unit 

Cost 
Sub 

Total 
Sta
ff 

Usage Unit 
Cost 

Sub 
Total 

1002056 Felt 230gsm Fabric 1.835 $1.27 $2.33 1.835 Mtr $1.27 $2.33 3.76  
1002019 Tricot White Polycotton Fabric 1.835 $0.77 $1.41 1.835 Mtr $0.77 $1.41
1006002 Labour - Laying / Cutting 2 1.5 $1.83 $2.74 1 300 Seconds $1.05 $3.15
1005000 Buddies Printed Care Label 1 $0.05 $0.05 1 Mtr $0.05 $0.05 1 $0.05 $0.05
1002008 Duraflex White Waterproof Fabric 1.835 $6.15 $11.28 1.835 Qty $6.15 $11.28 1.835 $6.15 $11.28
1006001 Labour - Sewing 1 4.9 $0.56 $2.74 1 360 Seconds $1.05 $3.78 1 360 $1.05 $3.78
1006000 Labour - Packing 1 1.5 $0.42 $0.63 1 80 Seconds $1.05 $0.84 1 80 $1.05 $0.84
1008031 Bag 1 $0.10 $0.10 1 Qty $0.10 $0.10 1 $0.10 $0.10

Insert 1 $0.10 $0.10 1 Qty $0.10 $0.10 1 $0.10 $0.10  
Total $21.38

 

Gross cost $21.38 $23.05
 

$19.91
Manufacturing overhead 17% $3.63 $3.92 $3.38

Total manufacturing $25.01 $26.97 $23.29
Invoice price $41.17 $41.17 $41.17

Rebate $0.00 $0.00 $0.00
Nett selling price $41.17 $41.17 $41.17

Gross margin $16.16 $14.20 $17.88
Gross margin % 39% 34% 43% 

Retail price Mark Up 100% $71.95 $71.95 $71.95
RRP less GST 10% 65.409 65.409 65.4090

Retail GP $24.24 $24.24 $24.24
Retail GP% 37.06% 37.06% 37.06%



3.5 Chapter Summary 

In this chapter, a traditional manufacturing framework was analysed using a case study. 

The textile industry was chosen because it suffers from heterogenous disconnected 

complex operations, a lack of decision-making due to miscommunication in 

manufacturing and other disciplines and product variation demands due to 

personalisation. This chapter describes the field studies conducted in relation to a textile 

manufacturing company to analyse inefficiencies, current decision-making practices and 

manufacturing agility for low-volume personalised products. The following key points 

relating to the SM framework were derived: 

i) With the target of efficient manufacturing, the proposed approach would make

mattress production much more productive, time efficient and economically

viable. Beyond the practical execution, future attempts should focus on

integrating DT in real time. Integrating PS and VS would also make SM fully

automated and more efficient, which should be the focus of the future studies.

The initial implementation of the conceptual SM framework aimed to introduce

real-time computing and the DT framework. This framework consisted of the

actual implementation of operational layouts encapsulating heterogeneous

characters for real-time computing.

ii) The SM conceptual framework considered many technologies and key

components with a data-driven approach during development. The concept

merged the virtual and physical shopfloors with data via a cloud platform. This

provided seamless data integration and communication advantages, enhancing

decision-making capabilities. The operations included a cradle-to-cradle

approach, including pre-production, production, packaging and beyond. This

data analysis provided seamless capabilities for future predictions based on past

expedition. The characterisation of expedited data and predictive data mainly

focused on addressing the type of classifiers and regression models that must be

implemented in a real-world SM framework.

iii) The approach was practical and industry oriented, which demonstrated its

viability. A conceptual framework of real-time computing using the

advancements of the DT model was devised. ML algorithms were explored

extensively to measure the verticals and horizontal applications across the



manufacturing. Lastly, the practical implementation of the data accumulation 

setup was discussed, with a step-wise explanation for future reference. 

iv) A case study was conducted within the textile industry, as this industry is

multidisciplinary and inefficient, with disconnected operations, and requires

large ranges of variants with low-volume manufacturing. The findings showed

that an absorbent time was required for various products using traditional

manufacturing (e.g., 158 seconds for a single mattress protector, 165 seconds

for a queen mattress protector , and 180 seconds for a super king mattress

protector). The exponential increase in the manufacturing time was mainly due

to disintegrated operations and the lack of a balanced layout. In addition, the

MES and ERP disconnect resulted in miscommunication, which resulted in poor

decision-making. Further, the requirement for different variants and

personalisation led to the need for a large inventory and extended setup times,

which added to the complexity.

v) Field studies were conducted on various operations within textile

manufacturing. Initially, the takt for various operations was recorded (e.g.,

videos of operating procedures and photographs of different phases). The

cutting, sewing, folding and packing operations were studied. An increased

disconnect in the various operations was observed, and the imbalanced

manufacturing operations led to increased takt times. Inefficiencies in

manufacturing operations were also observed due to disconnected MES. These

inefficiencies included mechanical and sensory faults within the machinery; the

requirement for manual reinforcements and replenishments during batch

production, which resulted in increased setup times; and changes to design

patterns, thread tensions and fabric type variations, which also increased setup

times. Further, a lack of communication between disciplines (e.g., design space,

purchase, shopfloor) was observed. This resulted in increased idle times and

setup times due to a lack of decision-making. Operator setup times were also

increased due to demands for personalised low-volume product manufacturing.

This also led to the need for large inventories and created significant waste.

vi) A benchmarking study was simulated based on datasets obtained from

catalogues of smart machineries (e.g., OEM data). This study was conducted

for the multiple aforementioned operations. The takt times for the traditional

versus simulated scenarios for the same set of operations were compared.



Heterogenous manufacturing operations were modelled using simulation 

software Simio. The benchmarking study indicated an increase of five minutes 

in the simulated study compared with the traditional initial setup time of 10 

minutes. This increase was attributable to the planning and future proofing stock 

inventory analysis required for the shift. Compared with traditional methods, 

the simulated method led to enhanced efficiencies: 25% greater efficiency in the 

cutting and sewing operations and 20% increased efficiency in the folding 

operation. Folding and packing inefficiencies mainly resulted from customer 

demands for personalised packaging. The aforementioned increase in efficiency 

in the simulation stemmed from the removal of the setup and idle times required 

in traditional practice. Further, this analysis balanced the manufacturing line by 

optimally distributing operators on relevant operations. 

vii) Takt studies were conducted on benchmarking traditional practices on different

mattress protectors in the textile industry, and the results showed a substantial

reduction in the time taken to manufacture the mattress protectors. For example,

the manufacturing time for single mattress protectors reduced from 131 seconds

to 88.5 seconds, for queen mattress protectors from 138 seconds to 94.5 and for

super king protectors from 142 seconds to 96.3 seconds.

viii) The simulation also enhanced efficient line balancing, which allowed for

efficient operational sequencing and operator movements and avoided operator

inefficiencies, specifically through minimising idle time and enhancing

communication and decision-making. Operator efficiencies were substantially

enhanced. For example, there was a 15% efficiency increase in the simulation

compared with 70% in traditional practice. The number of products produced

per day was compared between the simulated and traditional manufacturing.

The results showed a substantial increase in the number of products produced

in a shift. The number of single mattress protectors produced increased from

900 to 1,300, queen mattress protectors from 250 to 400 and super king mattress

protectors from 200 to 300.

In the following chapter, the SM framework components are discussed. 



4 Smart Manufacturing Framework  

This chapter frames a novel SM framework. This novel framework is considered with all possible expected 

machinery, software implementations, ML implementation and possible integration with ERP and MES. This 

framework was developed for a general manufacturing company. A case study of a mattress protector company 

is presented to demonstrate a proof of concept.  

This chapter is derived from: 

Sourabh Dani, AK Rahman, Jiong Jin, and Ambarish Kulkarni, ‘Real-time Cloud Empowered VMS’, published 

for the special edition of ‘Handbook of Real-time Computing’, Springer. 



4.1 Introduction 

The advent of technological innovations in recent years coupled with the proliferation of 

CPS led to the rise of Industry 4.0. Industry 4.0 enabled the vertical integration of several 

key developments, such as hybrid machines, storage systems and production facilities, 

all of which are capable of autonomously exchanging information, triggering actions and 

controlling each other independently (Wang et al., 2016). These innovations have led to 

fundamental improvements in manufacturing, engineering, material usage and supply 

chains, as well as the life cycle management of industrial operations. In particular, recent 

developments in cutting-edge ICT technologies have led to the introduction of real-time 

applications for industrial manufacturing that entail more precise design and rigid 

frameworks for successful implementation, thus further automating processes. In the 

context of Industry 4.0, these advancements have made manufacturing processes more 

systematic, efficient and economically competitive, not only bringing about a new 

paradigm (i.e., hybrid manufacturing) but also establishing it as the hallmark of the fourth 

industrial revolution (Kusiak, 2018). 

At present, the manufacturing sector and its associated businesses are highly competitive. 

Manufacturers are faced with the continual challenge of delivering pioneering methods 

for production at a reduced time to market. The emerging movement towards globalised 

advanced SM environments demand real-time information exchange between the 

numerous stages of the product development life cycle (e.g., product development 

design, operational setup, manufacturing planning, task scheduling, operations, packing). 

Along with this, flawless task collaboration between the different stages is also expected. 

Further, with increased environmental consciousness and regulation, more limitations 

are being placed on product disposal to support product recycling, repair and refurbishing 

activities. Unfortunately, such product development processes run the risk of becoming 

progressively more complex as products become more adaptable, intricate and 

intrinsically complicated and as product variants multiply in the trend towards 

customisation. To address such limitations, hybrid manufacturing technologies to 

support efficient and precise engineering decision-making capabilities in real time have 

been created through the establishment of versatile technologies, and the merging of 

existing manufacturing tools (Kang et al., 2016). 



4.2 Existing Smart Manufacturing Framework 

The application of VR and AR technologies is a promising recent innovation. These 

technologies help simulate and enhance SM procedures before they are conducted. 

Further, they ensure that the stages of production unfold accurately and efficiently in the 

first attempt without the need for redrafts and alterations (Nee, Ong, Chryssolouris, & 

Mourtzis, 2012). While automated manufacturing processes are an established method 

of practice, research on the manufacturing applications of VR and AR is relatively 

nascent. In fact, the dynamic interaction of current AR applications, enabled by the 

sharing of information with real working environments, has the potential to provide 

efficient and complementary tools to assist the hybrid manufacturing process. However, 

there is a need for a higher order of accuracy, response and interface design. A key 

challenge involves designing and implementing integrated VR and AR manufacturing 

systems that enhance the manufacturing method, as well as product and process 

development, to ensure shorter head times, reduced costs and improved quality (Nee & 

Ong, 2013). The eventual goal is to integrate VR and AR technologies with automated 

services in manufacturing provided by service robots. This integration within SM 

mimicked a real-world application (e.g.: DT). In addition, SM introduces the concept of 

the virtual factory (Choi, Kim, & Do Noh, 2015), which can generate information on the 

structure of states and the behaviour of systems, as can be observed in real manufacturing 

operations. Overall, SM presents an integrated computer-based model, which represents 

physical and logical schema of real manufacturing processes and exhibits real-world 

behaviour in its virtual performance. SM plays a significant role in reducing the cost of 

the product life cycle and helps test and validate the accuracy of a product and process 

design. However, SM has certain limitations. While SM offers the benefits of quality, a 

shorter cycle time, flexibility, responsiveness and customer relations, there is significant 

room for improvement in performance and efficiency. 

This is where the IIoT offers so many opportunities. By taking advantage of the 

emergence of cloud infrastructure and wireless technology, IIoT offers the ability to 

integrate autonomously identifying evolving vibrant and complex industrial applications. 

Past industrial revolutions, such as mechanisation, mass production and digitisation, 

were followed by major changes during Industry 4.0. These advancements led to 

incipient autonomous technologies in the manufacturing industry that transformed 



traditional practices into smart technologies (Shrouf, Ordieres, & Miragliotta, 2014). Due 

to its unique characteristics of virtualisation, decentralisation and real-time capabilities, 

Industry 4.0 is anticipated to be a key area for the injection of IIoT, particularly in 

automating applications, such as detecting, instrumentation and observing for 

manufacturing applications through the insurgence of CC and wireless technologies. As 

stated by (J. Liu, Xu, Zhang, Zhou, & Pham, 2016), IIoT summarises the design code of 

industrial machine sensors unified with affordable computational costs and network 

resources. It has protracted its operational abilities and modifies wireless applications, 

from machines interacting with humans on repetitive tasks to solving complex multi-

objective problems in uncertain environments and manufacturing autonomously. 

Although IIoT has facilitated the use of wireless sensor networks to further automate 

industrial processes, it also adds considerable complications in terms of decision-making 

and coordination. As previously mentioned, cloud infrastructure services can be 

leveraged to enhance the performance and efficiency of a system. 

While SM (see Figure 15) is already a well-established entity, improvements in overall 

efficiency could be made by integrating CC, autonomous sensing, AR and VclusterR in 

newly developed and proposed virtual manufacturing operations in Industry 4.0. This 

could be further aided by the use of DT to pave the way for the smooth integration of the 

physical and cyber worlds in the context of manufacturing (Qi & Tao, 2018). While AR 

and VR help provide virtualisation for the preparation of product manufacturing 

(Hochhalter et al., 2014), DT can emulate real-time applications and run them in real-

time while analysing the detailed changes that occur, which the physical equipment can 

subsequently react to (Rosen, Von Wichert, Lo, & Bettenhausen, 2015). Thus, overall, 

SM has the potential to integrate the above-mentioned entities and prepare rigid 

manufacturing processes that perform efficiently and accurately during the preparation, 

production and maintenance of operations. While generic proposals for such integrations 

are available in the literature, specific use cases should be studied to validate the scope 

of operations and analyse the performance and efficiency of systems. Therefore, a key 

research aim of the present work was to develop a framework to bring these technologies 

into a single platform using the specific use case of an automated mattress protector. 



 

 

To achieve this objective, it was first necessary to understand the basic requirements of 

the technologies involved. IIoT technology must have various machines embedded with 

sensors that can communicate with each other, as well as the cloud to provide data and 

make decisions. Meanwhile, augmented and VR systems consist of sensor displays and 

use dedicated software. Altogether, this chapter concentrates on efficiently integrating 

IIoT and AR/VR onto a single platform to fine-tune the SM operation, where additional 

real-time analytical support is provided by DT. Given the challenges of combining these 

technologies, the novelty of this work lies in laying the framework for an SM process 

with multiple integrated entities and validating it with a proposed use case of an 

automated mattress protector whereby the proposed components are used in existing 

industrial operations. It is estimated that the proposed integration could yield an efficient 

virtual manufacturing system. The main contributions of this chapter are as follows: 

i) A novel framework is proposed to integrate machine sensors and AR/VR on a 

common platform of cloud-empowered SM with real-time support from DT. The 

challenges associated with implementation, as well as development of hardware and 

software solutions related to the implementation of real-time, cloud-empowered SM 

in Industry 4.0, are presented. 

Figure 15 Overview of smart manufacturing 



ii) A use case of an automated mattress protector manufacturer is developed with 

specific details of the components of the integrated system outlined to complement 

the proposed framework. This is followed by a proposal of the operation details of a 

hybrid assembly line for a modelled SM to validate the approach in the context of a 

real-time industrial application.  

The rest of the chapter is structured as follows: first a literature review that details the 

current state of the art and the challenges involved in integrating machine sensors with 

AR, VR and DT for a SM is presented. To overcome this, a framework for real-time 

cloud-empowered SM that explains the components individually and provides hardware 

and software details to integrate the entities is proposed. This is followed by the use case 

scenario of the application of automated mattress protector manufacturing. The 

components involved are listed, and an in-depth analysis of how they relate to the 

proposed framework is provided. To validate the system, the specification of the software 

and hardware components required is explained, and a hybrid assembly line operation is 

demonstrated to provide an overview of the SM operation. Lastly, concluding remarks 

are offered, and possible directions for future work are outlined. 

4.3 Framework of Smart Manufacturing 

An SM cluster (Figure 16) is a model of the implementation of a manufacturing process 

using a computer system. The use of a virtual environment allows for estimate 

predictions and an analysis of the possible problems associated with productivity and the 

ability to manufacture digitally before the actual manufacture takes place (Kimura, 1993) 

(GJ, 1995). SM is, therefore, a plan for a practical process whereby a simulation is 

conducted by applying virtualisation techniques using highly reliable computing devices 

and super-speed networks. Here, the aim is to realise the product planning, make design 

decisions, configure the manufacturing processes, and conduct performance 

investigations and quality reviews of the product manufacturing across all levels of 

manufacturing management. It also places control in the hands of decision-makers to 

enhance decision-making capabilities and regulate the capabilities of manufacturing 

industries (Choi et al., 2012; Kang et al., 2018; Kimura, 2017; Linthicum, 2016; W. Liu 

et al., 2016; Monostori et al., 1996; Quan-Deng & Yi-He, 2012; Sahl, Dupont, Messager, 

Honnorat, & La, 2018; Skarin, Eker, Kihl, & Årzén, 2019; Sqalli, Al-saeedi, Binbeshr, 



& Siddiqui, 2012; A. Sun, Gao, Ji, & Tu, 2018; Sung, Han, & Kim, 2019; Wang et al., 

2014; Yang-Turner et al., 2019; Q. Zhang, Zhu, Bian, & Peng, 2012; Y. Zhang, Zhang, 

Hao, & Yu, 2018). Although SM has gained considerable momentum in recent years, the 

concept itself is not new. The original idea of creating real-world models in virtual and 

augmented environments stems from the idea of artificial reality presented by Miron 

Krueger in the 1970s, and that was later suggested as VR by Jaron Lanier in 1989. 

Initially, virtual and augmented realities were presented as computer-generated 3D 

models with high rendering and animation to create an engrossing interactive simulated 

reality (Ellis, 1993). The term ‘smart manufacturing’ gained traction in early 1990 in the 

domain of aerospace, earth moving equipment and automobile industries. Over time, 

recognition of SM increased, as did the technology required to allow the concept to 

evolve. One such enabling technology was VR; this served as the basis for the 

manufacturing industry and aimed to address consumer demands and those of product 

manufacturers while maintaining cost efficiency and measured lead times. SM has the 

potential to rapidly develop data sets with technology infrastructure, as it facilitates the 

rapid expansion of manufacturing practices without adding significant cost to the 

operational time (Banerjee & Zetu, 2001). However, as with the success of any 

technology, many challenges remain, and there is need for further development. 

 

Specifically, pressure on manufacturing industries has increased due to increased 

customer demands towards products. At present, customised and diversified products are 

Figure 16 Cluster presentation of smart manufacturing  



becoming ever-more popular. As manufacturing procedures and product designs become 

more complicated, the process of design–making in many specialties, such as product 

designing, manufacturing industries and production analysis, requires the consideration 

of many more parameters (Hitomi, 2017). Poor decisions can be detrimental to 

companies and cause significant losses. Therefore, there is a need for robust and well-

defined methodologies for appropriate decision-making and process controls in 

industrial applications. 

Unfortunately, making the best decisions requires significant experience, research and 

expert opinion. While helpful in the short term, none can give a definite picture of the 

future. To keep up with developments in manufacturing, shortened production and 

delivery cycles, as per customer needs, as well as the ability to rapidly adapt to market 

change, is necessary. In recent times, the approach to handling challenges has been to 

review concepts in advance before proceeding with the actuals, thus ensuring that the 

approach taken is not overly costly. However, the cost involved in changes to a design 

in the theoretical design stage is calculated according to designers’ time to review and 

modify the change. Once the conceptual design is finalised, it is released to production. 

At this stage, any changes required in manufacturing were mere cheap and time 

consuming. The cost of changing a design increase as the project advances from 

conception stage to prototype and finally ending with the production, sales and 

marketing. Ideally, manufacturing, quality inspection and test feedback should be 

provided to designers as soon as possible to maintain the product family integrity and 

ensure the continuity of infrastructure, as well as improving project and manufacturing 

investments. This is where advanced simulations can offer substantial benefit. 

In pursuing these capabilities, companies today frequently use simulation as a main 

technology which has assisted the manufacturers in reducing the cost of the prototypes 

and increase the profitability. As per the current state-of-the-art, the time consumed while 

manufacturing new products can be reduced by representing the manufacturing systems 

in digital form. This can be achieved by using modelling and process simulation, without 

the hassle of examining physical prototypes. Perhaps one of the most timely and 

interesting solutions in this area is SM (Iwata, Onosato, Teramoto, & Osaki, 1995) 

(Onosato & Iwata, 1993). SM proposes the creation of a synthetic and integrated 

environment that is enhanced by software tools and systems, such as simulation and VR, 



along with real-time analytical support provided by DT (H. Sun, Li, Fang, & Gu, 2017) 

and cloud infrastructure, thus offering turn-key results for the entire product development 

process from design to manufacturing. Here, the main objective is to provide a way for 

engineers to develop, evaluate and simulate complex systems entirely on servers and 

rapidly conduct experiments to predict and evaluate the results of alternate 

manufacturing decisions before spending time and money on constructing physical 

mock-ups. Many industries, such as the aeronautics and automobile industries, use SM 

to reduce the costs and time associated with product development. 

Overall, SM is a well-established method for product manufacturing and maintenance in 

different Industry 4.0 applications (Shafiq, Sanin, Toro, & Szczerbicki, 2015). However, 

the scope of improvement still exists in terms of performance, stability and maintenance. 

Future approaches should aim to effectively integrate the beneficial features of IIoT 

(machine sensors) and AR/VR with DT to improve the system applications while 

meeting customer demands for timely delivery and greater customisation. Therefore, in 

the present work, a framework to address the challenges of traditional SM was proposed. 

The framework integrated IIoT with AR, VR and DT and validated it through a use case 

study of a real Industry 4.0 application of automated mattress protector manufacturing, 

where cloud-empowered SM was implemented in real time. 

4.4 Prepositioning of Components 

The preliminary components for the cloud-empowered SM presented in Figure 18 

comprised various sub-units, such as physical shopfloor, a virtual shopfloor and DT. The 

PS consisted of a set of different entities that included primitive machinery, network 

machine sensors, raw materials and a stack of half-produced products with interventions 

from engineers. Here, the systematised order of production had to meet the delivery 

requirements and the target cost and quality of production. In contrast, the VS was a 

cluster of models designed and developed in multiple dimensions (i.e., geometrical 

dimensions, physical appearances, machine behaviours, characteristics of the machine 

and fundamental rules). 

The connecting thread was the cloud infrastructure, which helped merge the PS and VS 

and provided a platform for receiving data from each entity in an optimised manner. The 

CI also received real-time data and analytical support from DT, leading to suggestions 



for PM and multilevel optimisation in the maintenance of the operation. The DT also 

allowed for fused data convergence from both the PS and VS, providing more 

comprehensive and consistent information. Therefore, in this proposed cloud-

empowered SM, the CI acted as the lynchpin for an integrated service platform, where 

physical manufacturing data, virtual manufacturing models and real-time analytical 

support were brought into a single platform to yield an efficient manufacturing process 

with real-time implications. 

 Figure 17 Block diagram of real-time cloud-empowered smart manufacturing 



As shown in Figure 17, the CI acted as the driving force for the complete SM. For the 

PS, the CI updated the production order, stock in hand, stock to produce and raw 

materials required to manufacture the order quantity. In the VS, the 3D-designed models 

and their working mechanisms were built and updated according to the working status 

of the machine depending on constraints, relations between the different system 

operations and the rules of the physical shopfloor. Once the data had been fed to the VS, 

the CI sought to keep the workflow updated in agreement with future requirements to 

keep track of the machine health status and the working nature of future loads. 

Meanwhile, the CI updated the DT with the data received from the PS and VS to analyse 

the machine health and its working status and optimise the operation. Based on research 

from the DT, the CI then updated the workflow for the PS to achieve a better efficient 

working model in a real-world context. 

Integrating the heterogeneous mediums of the PS, VS, DT and CI laid the foundation for 

a hybrid plant, which facilitated the hybrid manufacturing process. A structural 

presentation of the shopfloor is given in Figure 18. The hybrid manufacturing process 

improved the management of all the operations on the hybrid cloud-operated shopfloor. 

Here, the terms ‘hybrid cloud-operated shopfloor’ and ‘cloud-empowered SM’ mean the 

same and include operations on shopfloors, such as intelligent production systems and 

networked distributed facilities. The proposed integrated hybrid plant to not only 

harnessed the benefits of the hybrid cloud-operated shopfloor (cloud-empowered SM) 

components but also facilitated hybrid manufacturing. Hybrid manufacturing can 

overcome the limitations of traditional manufacturing methods and reach new heights in 

terms of efficiency and customer satisfaction. To meet the aforementioned goals of the 

proposed scenario, the system required a list of software and hardware that had to be 

integrated in the context of the cloud-empowered SM. The following section offers a 

detailed outline of the hybrid cloud-operated shopfloor and catalogues the required 

software and hardware requirements. 



 

 

4.4.1 Physical Shopfloor 

The first and one of the important blocks of the framework is the physical shopfloor. This block 

consists of the all the physical machinery that integrate with the sensory inputs. Sensory 

information from the machineries is sent to multiple blocks for different purposes. The 

following sections provide details on the different machinery and their operations. 

4.4.1.1 Automated Operations 

The Eton system, as depicted in Figure 19, for home textile industries is fifth-generation 

hardware platform geared towards real-time operations for smoother production 

management and material handling. Chosen as the lynchpin for the physical shopfloor, 

the ETON 5000 consists of overhead conveyors with individually addressable product 

carriers capable of finding the path to the precise operation, thus eliminating the need for 

manual transportation and reducing handling costs ("Manufacturing of plastics, cabling 

and medicals," 2019). Monitoring support is provided by the interconnected computer 

network, which also supplies necessary data for accurate measurements and optimal 

Figure 18 Structural representation of shop floor 



process management. The system allows for modifications to be actioned rapidly during 

production line changes and expansion to be implemented when needed. The ETON 

5000 is a flexible material handling system that radically increases speed and 

productivity, ensures an optimised workflow, allocates time to add value to the products 

and provides cost savings ("ETON To Display Extended Range ETON 5000 Production 

System At SPESA EXPO 2010," 2010), making it a suitable choice as for the PS. 

 

Figure 19 present the ETON 5000 Syncro Production System, which transports the pieces 

of one unit of product (e.g., for mattresses, panels, borders and zippers) through different 

stages of production on a product carrier as part of the entire manufacturing process from 

pieces to production, resulting in a cost-efficient product (between 30% to 100% 

efficiency in terms of time, space utilisation and productivity). ETON 5000 was chosen 

as the production system (as a PS component) for the proposed cloud-empowered SM 

framework, where the unique system tool provided by ETON offered a wide range of 

options for hardware and software integration, as well as a smooth manufacturing 

through RFID application. 

4.4.1.2 Cloud Networked Operations 

The Automatex CPT4700 (Figures 20 and 21) is a state-of-the-art automatic panel cutter 

in which one or two lanes of fabric is designed to be fed tensionless to the length and 

Figure 19 RFID Enabled automate operations (ETON 5000 syncro production system) 



into a cross-cutting unit. The key features of the CPT 4700 that ensure a high-quality 

output are an electronic edge-guiding system, a servo motor-measuring system, an 

automated fabric in-feed tensioning system and a programmable length counter with 

touch interaction capabilities. It also offers remote control access and an evacuation 

conveyor that increases its market value. 

Figure 21 presents the detailed components of the Automatex CPT 4700 Panel Cutter 

("Home Automated Units,"). For the purpose of the proposed operation, the version with 

an output capacity of 8–12 cuts/min (which may depend on size), along with fabric width 

and cut length of 50–320 cm was chosen. Its power supply specifications were 208 V, 

3 Phase, 50 Hz and 1.8 KW rating. With an air consumption of 6 bar/100 min and net 

weight of 2,600 kg, it was a superior choice compared with other manual operations as 

it showed greater accuracy and required less human interaction, making it a highly 

suitable choice. 

Figure 20 Cloud networked operating machinery (CPT4700 cutting machine panel cutter) 



Figure 21 Operational flow of the cutting machine 

4.4.1.3 Smart Practices 

The Automatex Multitex 3300-2000 (Figures 22 and 23) is an automated folding 

machine designed to fold flat and book fold cardboard in flat products and fitted sheets 

("Home Automated Units,"). The system has two sections: a loading section and a pre-

fold section that may include three cross folds and two laterals with a double roll off 

stacker. Depending on the size of the operation, there may be one or two operators, which 

enable loading of the product on a vacuum conveyer with a view to holding the product 

in the appropriate positioning. It is used with a XV laser system. 

In the pre-fold section, the cardboard is inserted with two lateral sections equipped with 

brushes to hold the material in place. The cross-fold section operates according to the 

swing-arm principle. The automatic press-unit is connected on the last cross-fold station 

to maintain the quality of stacking. This helps in the finishing stages when the folded and 

stacked products are transported to the exit conveyer once the process is completed. 



 

Figure 22 Smart folding solutions (Multitex 3300-200 folding machine) 

 

Figure 23 Operational flow of the folding machine 

Figure 23 represents the operational flow of the folding machine. Similar to the panel 

cutter, the Automatex Multitex 3300–2000 also has key features that made it a strong 

choice (remote control access, interactive touch features, higher efficiency). Its other 

unique features include a motor-activated folding blade, which controls the operation, 

and a double roll-off stacker, which suggests a higher capacity. Importantly, the design 

of the cardboard allows easy access while providing automatic adjustments for flexibility 

in operations. The technical components for the operation of an Automatex Multitex 

3300-2000 are presented in Figure 24. For the purpose of the given operation, the 

selected technical specifications were an output capacity of 12 units per min, a product 

size of 800 x 1000 mm to 3200 x 3200 mm, a folded size of 200 x 230 mm to 

400 x 400 mm and power supply of 208 V – 3 phase – 50/60 Hz – 3.1 kW. The net 



weight of the component is 9,300 kg. 

4.4.1.4 Available Industry 4.0 Packaging Solutions 

The next step of the operation included integrating Industry 4.0 packaging solutions. Due 

to variation in package dimensions and a considerably large amount of stock keeping 

units (SKUs), several different solutions could provide on-demand packing, as shown in 

Figures 24 and 25. 

 

 

On-demand printing is also crucial for successful integration. Packsize (Partnered 

w/VISY) ("X7 Packing Machine,"), ABBE PYT LTD and CMC CartonWrap ("CMC 

CartonWrap: The Unique 3D Box on Demand Machine,") are currently the leading 

providers of on-demand packaging solutions in Australia, offering similar features and 

functions. They use corrugated cardboard for packing purposes, which complements the 

global mission of bio-degradable packaging throughout the product range. 

Additional customisation for automatic carton packaging systems can create dynamic 

cardboard boxes from simple and inexpensive (yet continuous) fanfold corrugated 

Figure 24 X7 Packing machine from packsize 

Figure 25 CMC carton wrap 1000 



material in real time. This is managed automatically through real-time product 

recognition or direct extraction from a database, hence guaranteeing high flexibility 

during processing. Nevertheless, it creates potential challenge in branding the products 

after packaging with vital information and graphics, which is difficult to achieve in real 

time per product. To overcome this, some solutions for on-demand printing have been 

proposed, though they are either too expensive or difficult to integrate out of the box. 

The Trojan® T3-OP (Figure 26) and Limitronic V6 Titan (Figure 27) are two such 

systems that enable high-quality colour printing for different sizes and resolutions. In 

addition, ALTech ALline E - Front & Back Labelling (Figure 28) helps satisfy specific 

labelling requirements when applying tamper-proof seals to product caps. The labeller 

can save any parameter for specific label–product combinations and regulate the different 

units for format and product changes in a simple manner with high precision. These 

features made this combination of printers the ideal choice for the operation, in which a 

custom print and label on-demand solution was devised efficiently. 

 

4.4.2 Virtual Shopfloor 

The next important element of the SM framework is the virtual shopfloor. In this block, all the 

machinery from the PS was virtually modelled and designed for twinning purposes. The 

technologies used for twinning are detailed in the below sections, and CC deployment methods 

and types are discussed. 

4.4.2.1 Cloud Computing 

Cloud infrastructure is, as it sounds, a virtual space. Within this virtual space, the user is 

provided with a virtual machine that consists of all the elements required to make a 

workable machine, though all within the virtual space. This reduces the use of local 

Figure 26 Front and back labeller Figure 27 Smart systems Figure 28 OnDemand printer 



servers, which, in turn, helps with the hardware and maintenance required to maintain 

the physical machines. To achieve all that CC is capable of, there are three main cloud-

based applications, as follows: 

i) Amazon Web Services (AWS). The success of AWS is proportionate to its

dominance in the cloud market. Amazon has been a shareholder in the cloud market

for over 10 years. The reason for the popularity of ("AWS,") is the scope of its

operations. AWS has a complex network of worldwide data centres to maintain its

operations. Although it is one of the biggest competitors in the cloud market, its

biggest weakness is its cost. While running a high workload on the service, AWS

finds it difficult to make the costs required for maintaining such an impressive level

of service.

ii) ("Microsoft Azure,") Although late arrival to the cloud market, Microsoft Azure was

able to gain market share by repurposing software it already had on premises for the

cloud. It also attracted several leading companies, which bolstered its reputation and

confirmed its reliability.

iii) ("Google Cloud Platform,"). The Google Cloud Platform specialises in slightly

different things compared with Azure and AWS, offering big data, analytics and CC.

Today it offers the ability to load balance for larger-scale operations. All the different

Google data centres generally provide a fast response time. Although it has several

advanced features, Microsoft Azure and AWS have a variety of software and features

that make them more appealing than the Google Cloud Platform. The platform is,

therefore, generally used as a secondary provider due to the appeal of AWS and

Azure.

4.4.2.2 Cloud-Deployment Methods 

Cloud deployment has become complex with the growth of products. Today, applications 

must handle traffic outbursts and attain real-scale architecture. The emerging demand for 

new features and the regular deployment of fixes increases the complexity of the 

deployment process, particularly because moving servers is difficult. Some of the 

challenges of deploying a cloud application using outdated strategies are as follows: 

i) Difficulty in scaling out is a manual process. It is impossible to scale out unless there



is a deployment plan that helps add new servers on demand. This is a common 

challenge, as dependence on manual processes lowers the performance efficiency 

and does not allow extra servers to be added. 

ii) Manual replacement during server outages in cloud-based applications should be 

robust and should replace servers using automated deployment. Manual deployment 

when replacing or recovering failed servers is time consuming. 

iii) Application release during the maintenance window/timeframe is scheduled 

downtime for application releases. It is required if the deployment takes more time 

than expected. Immediate actions, such as bug fixing and deploying new features, 

should be avoided if the release occurs during the maintenance window. 

iv) Runtime faults through deployment prevent few requests from working differently. 

Servers must have the same version of the code base; if not, few requests may give 

out different outcomes than others, which in turn makes it difficult to troubleshoot 

errors that occur and that are hard to debug. Runtime errors are common during long 

application deployment processes or rolling deployment involving several servers. 

v) Unstable deployments succeed in some environments, while unpredictable errors 

arise in other environments, such as production environments, thus resulting in 

unstable deployment. 

vi) Deployment breakdown is not a major problem, but if errors are detected after 

deployment and cannot be rolled or changed back, then it is necessary to run the error 

version of the application until the error is fixed. During deployment breakdown, the 

application is down or unavailable until an error-free version is deployed. 

vii) Rare production deployments to the production environment should be frequent; 

otherwise, the probability of errors after application deployments increases 

significantly. 

CC has been the greatest invention of Industry 4.0, particularly for integrating various 

technologies, such as IoT, DT and ML. However, CC is limited by latency issues when 

used in the context of the IoT. The manufacturing systems require large data set transfers 

between machinery to sensors through the cloud, resulting in computing inefficiencies. 



The real-time computing powers of the SM framework for machinery require low latency 

in communication and high reliability in computational tactics. One solution proposed 

for the latency issue was the use of fog computing. Fog computing covered a discrete 

area of manufacturing to reduce the latency in communication from sensors to the cloud 

(Li et al., 2018). However, introducing another technology added complexity to system 

that resulted in unpredicted errors from system management. Another solution proposed 

involved connecting sensory data to the cloud by surpassing data transmitters or 

propagators. Connecting the data to the edge of the cloud decreased the latency, which 

enhanced the reliability of the SM (Lin & Lu, 2011; Linthicum, 2017). Once sensory 

data are collected, they must be processed. Validating data in real time is complex and 

time consuming. Fog or cloud edge solutions have been proposed for this type of data 

processing. Resource allocation is subsequently conducted through the management 

system to process the required data. A frequent concern has been the lack of resource 

optimisation, which results in data ambiguity with unforeseen errors. The procedure of 

pilot testing cloud-centric VS has been proposed as a means to overcome this issue 

(Maenhaut et al., 2017). Resource management in the cloud results in unforeseen errors 

with a high data demand in a limited amount of time. To resolve these errors in CC, 

specific novel algorithms have been fine-tuned or rewritten based on previous data sets 

(Rauscher & Acharya, 2014). 

SM has the unique characteristic of demanding service-oriented networked 

manufacturing. This approach optimised and included several complex operations and 

yields dynamic operations of the shopfloor. Several frameworks consisting of integrated 

CPS, along with major technological alliances, such as a communication protocol 

between online (cloud) to offline services (physical machine), have been proposed. The 

SM has been discussed in various forms, however, lacks implementation instruction with 

practical approach (W. Liu et al., 2011). Along with SM, major technological verticals, 

such as the 3D printing of cyber models, have gained significant interest in recent years 

in terms of industrial advances, design, manufacturing and research. Researchers have 

explored how SM can be supported to boost economic growth, concentrating on inhouse 

manufacturing (Jawad et al., 2019). Innovations in manufacturing along the industry four 

standards have gained prominent importance in recent years with the integration of cloud 

manufacturing and IoT, which can overcome the conventional structure of the modern 

shopfloor. Researchers in Korea suggested an assessment tool for use in SM that was 



equipped with current manufacturing practices to understand the behavioural 

characteristics and future prospects of organisations. Adoptability of SM was prime 

important, specifically for individualised low volumes. These types of assessment tools 

can assist medium-sized enterprises and small-scale engines in emphasising Industry 4.0 

approaches (Sheen & Yang, 2018). 

Interconnection between implementation strategies, addressing issues and identifying 

smart solutions are the main goal of SM. However, previous industrial practices did not 

address configuration and customisation. To resolve these issues, an IIOT hub was 

proposed by researchers; this hub offered customisation and a programmed connection 

between the heterogenous operations and services, which were encapsulated and 

differentiated from individual behaviours (Tao et al., 2018). Addressing these 

heterogenous properties has expanded competition between major characteristically 

differentiated manufacturing industries. Due to global competition between industries, 

competitors have shifted their attention to automating their industries and implementing 

advanced manufacturing technologies across the production line. The main goal of 

implementing these technologies has been internal growth, operation optimisation and 

manufacturing efficiency (Lee et al., 2018). 

SMEs have been in great need of advanced manufacturing practices. Cloud 

manufacturing has helped companies enhance their productivity, emphasising high-

production volumes, better communications bracket cloud-enabled communications and 

computational services. Cloud manufacturing has the greatest potential to enhance the 

competitiveness of complex manufacturing industries. In a complex industry like textile 

manufacturing, product portfolios are enormous. To align with the development, design, 

implementation, management and computation must register the concepts and operations 

onto the cloud to be structured systematically (Bai et al., 2019). A challenging task 

involves managing services like pluggable inputs and outputs and plug and play services. 

These services have helped realise smart factories enabled by the cloud. Researchers 

have proposed many frameworks in cloud-based intelligent services, such as edge 

computing, CC and REST-based web services. One such framework used dual RESTful-

based services to enable a PAM, where the production management of by manufacturing 

processes was handled remotely on an intelligent platform supported from PAMs to 

target individual services. This type of framework has been tested for the fast and reliable 



deployment of SM using cloud services. 

PAMs can also facilitate PM (Fan & Chang, 2018; Liu, Hung, et al., 2018). Deploying 

these technologies on a cloud platform often presents difficulty in choosing between 

different cloud-deployment strategies. To define the clear path and choose the 

appropriate type of cloud, this chapter discusses the various cloud models. There are 

many ways to integrate the cloud to design the models and enhance current practices. 

Deployment can be defined according to the location of the infrastructure to be built, the 

control authority of the infrastructure and the designed model category. An important 

aspect of deployment involves selecting between the four major varieties of cloud 

models. 

4.4.2.2.1 Public Cloud 

In recent years, the public cloud has become an influential model and is generally created 

on-demand for third-party users. Servers created on a public basis are only for on-

demand public application over the internet for third-party users. Resources stored in 

cloud servers are on pay per usage basis whereby the user pays the provider. Some 

resources are standards supplied for a set amount, and others are on an on-demand basis, 

where costing is set based on quotes. Major market sharers for cloud sources are AWS, 

Microsoft Azure and the Google Cloud Platform. These cloud providers have extended 

their branches extensively across the industry and have helps automate complex 

manufacturing industries. Studies across cloud deployment have suggested that security 

and latency issues are key challenges when storing data on public cloud domains (Hahn, 

Kwon, & Hur, 2018; Kaneko, Ito, Ito, & Kawazoe, 2017; Kim, Wang, & Humphrey, 

2015; Ko, Tan, & Ng, 2014; C. Li & Yang, 2018; Liao & Su, 2011; Malatpure, Qadri, & 

Haskin, 2017; Mangal, Kasliwal, Deshpande, Kurhekar, & Chafle, 2015; Min, Park, Lee, 

Cho, & Kim, 2011). 

4.4.2.2.2 Private Cloud 

This type of cloud model deployment offers a private space or network for computational 

services. The private cloud is highly versatile, and accessible service points are locally 

managed by regional data centres. Research has shown that access points that are 

assigned were designed to adapt to the private cloud for their existing system (Naik, 

Beaty, Vogl, & Sanchez, 2013; Park, Yun, Kim, & Yeom, 2017a, 2017b; Qing, Boyu, 



Jinhua, & Qinqian, 2018; Ramamoorthy & Poorvadevi, 2018; Rauscher & Acharya, 

2014; Sahl et al., 2018). Private cloud deployment is more secure compared with public 

cloud. The major drawback of these systems is the high cost of the investment, as the 

core of the system design was conducted by local administration. 

4.4.2.2.3 Community Cloud 

This type of deployment is similar to private cloud deployment but with one major 

difference: task optimisation in a single cloud with tasks of a similar nature happens in 

the background rather than on the consumer end. Several organisations share cloud 

resources and infrastructure to address a similar set of issues and benefits. If the sharing 

organisations has uniform security, performance and privacy optimisation, then the 

community cloud is addressed with the help of data-centric architecture (Bellini, Cenni, 

& Nesi, 2015; Carson, Thomason, Wolski, Krintz, & Mock, 2019; X. Chen, Wang, 

Wang, & Jin, 2018; Gordon, 2016; Khan & Freitag, 2017). This extension is often used 

in managing multiple manufacturing operations and sharing limited and optimised 

resources. 

4.4.2.2.4 Hybrid Cloud 

Hybrid deployment is a mixture of public and private cloud services. This type of cloud 

deployment handles tasks and computational services on a priority basis. As such, real-

time computational services are handled by on-premises private cloud providers, while 

the latency carried services are often managed by public cloud (Gordon, 2016; Grefen, 

Vanderfeesten, & Boultadakis, 2016; Linthicum, 2016; Loghin, Ramapantulu, & Teo, 

2019). Scalable information must be stored and used according to task priority. 

Deployment must be more redundant and proactive compared with other types of 

deployment due to the dual nature of computational promises. 

Challenges have occurred due to limitations in implementation, services, computational 

ability, efficiency in terms of data handling and virtual machine management. Several 

considerations must be made when implementing in a real-time environment. The 

following section details the available service models required to complete the 

functionality of the model. 



4.4.2.3 Cloud-Deployment Strategies 

4.4.2.3.1 Downtime Reduction 

There are proven strategies for reducing actual downtime, such as removing servers and 

re-adding removed servers (e.g.: serialised deployment) and background applications. 

This common strategy works for nearly all possible deployable programming scripts, 

frameworks and server environments. Another important aspect of deployment strategy 

is that they can be deployed in parallel with all the servers of the domain to deploy at a 

single instance, which is often called ‘parallelised deployment’. By considering the 

whole infrastructure as independent instances, the deployment strategy can be altered to 

independent deployment steps in parallel. Further, the entire stacks of infrastructure can 

be swapped, including all the necessary infrastructure components, to start a fresh stack 

to the latest version of executable instances. It is important to note that not all applicable 

approaches may work or be the best fit for the team process. Automation support is key 

to finalising the appropriate downtime. 

4.4.2.3.2 Rollback on Failure 

The automated process works without error in most instances. However, there can be 

occasional deployment failures that occur for several reasons, such as software bugs, 

issues in the deployment steps or infrastructure failure. The ability to roll back in any 

instance is key to restoring a suitable stable version of an application. Failing to account 

for this during deployment leads to prolonged downtime. The rollback process of an 

application should include a variety of steps, including: 

i) reverting to the previous stable version as soon as possible and restarting the 

process associated with the application 

ii) Updating DNS entries to the previous version on which the infrastructure was 

working and reworking on the available services 

iii) reverting the recent database with migration steps. 

If the above steps are not followed, it is difficult to recall all instances of the application 

to instate the working order. This means that the application suffers from rollback delays. 

4.4.2.3.3 Scripting 

Human error can occur at any step in the deployment process that is not scripted. As the 



deployment process is established, scripts that perform repetitive tasks are built. This 

prevents skipped steps or errors in typing that can sabotage deployment. Deployment 

scripting can be handled using server configuration automation tools or build automation 

tools, such as Jenkins, Codeship, Bamboo and GoCD. 

4.4.2.3.4 Version Control 

The code should be versioned and tagged on release to ensure a complete snapshot of the 

application is available at any time. In addition, version and tag deployment scripts 

alongside application releases. This provides insight on changes over time and allows for 

application rollback using the proper deployment scripts. Script versioning also captures 

changes in the history of the deployment process over time. 

4.4.2.3.5 Continuous Integration and Deployment 

As an application grows, it is important to know when changes to the code may break 

the application. Here, automated test coverage can help ensure that an application is 

functioning as expected and that fixed bugs do not regress. By automating the build and 

integration testing of an application (when code changes are committed to a central 

branch), teams can be immediately alerted if a change breaks a test. This technique is 

known as ‘continuous integration’ (CI). CI builds on the practice of using automated 

tests, automated deployment scripts and version control for application deployment and 

has become commonplace for many software products companies. Continuous delivery 

is the practice of automating the entire process of building and deploying a release to a 

specific environment that may require additional review or acceptance before final 

deployment. The goal is to deploy early and minimise the number of changes between 

releases, thus avoiding the ‘big bang’ deployment problems of major releases. 

Continuous deployment varies from continuous delivery in that the goal is to fully 

automate the flow, from code changes to production deployment, through a series of 

automated processes within each application environment. While the feature may be 

deployed in production, its exposure to internal teams, select customers or all customers 

can be limited through the use of feature toggling. 

4.4.2.3.6 Repeatable Deployment Across Environments 

Applications commonly have more than one environment. In development/integration, 

https://realscale.cloud66.com/cloud-server-scaling-strategies/


developers deploy most recent features for integration and developer testing QA/UAT, 

and internal testing and customer acceptance testing (where applicable) are conducted to 

verify the quality and expected behaviour. Staging/pre-production mirrors a production 

environment. Production data are used to identify issues or data migration failures. 

Production is the customer environment with production data. As the latest changes to 

the application moves forward to each environment, different teams qualify changes to 

ensure a stable release into production. If the cloud infrastructure, resources and settings 

vary greatly, bugs that are difficult to troubleshoot and that can be missed completely 

until production release may be introduced. To avoid this, versioned scripts are applied 

to the infrastructure automation scripts and deployment scripts. Table 1 outlines the 

methods and related deployment strategies detailed in the earlier section of this chapter. 

  



Table 15 Cloud strategies and relative measures of deployment 

 

4.5 Smart Manufacturing Framework 

The components of the SM framework are discussed in detail in the following section. This 

section covers the components used when designing the framework that was studied for the 

best feasible and fit models. 

4.5.1 Framework Components 

The proposed assembly line of the hybrid SM integrated AR, VR and cloud services with 

physical machinery as part of the same virtual manufacturing system. The application 

was set up in the context of an automated mattress protector manufacture based on the 

components presented in section 4.1. The process included the cooperation of various 

heterogeneous modules, and the overall integrated system is shown in Figure 29. 
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4.5.2  Details of Components 

As shown in Figure 30, the modular presentation of the SM consisted of the following sections: 

i) The PS consisted of hardware machinery for cutting (CPT4700), production and 

material handling (ETON Synchro 5000 System), as well as a packing machine 

(Packsize X7). These machines provided an automated service and were monitored 

by local engineers for further maintenance and monitoring. The machines also had 

sensors embedded that fed real-time data to the system. They were integrated with 

the RFID along with the ERP system for real-time stock management, order 

management and emergency order or order dispatch management. These components 

provided data to the cloud via the Internet. 

ii) Another key component was the AR/VR platform, which aimed to identify 

approaches to researching and developing the manufacturing line. 

iii) Analytical support regarding management/computation/decision-making related to 

Figure 29 Modular presentation of smart manufacturing  



stock management, machine operations and approach modification via DT was 

provided through cloud infrastructure that had the required capability. 

iv) Industrial connectivity software was the lynchpin of the system. This software was 

the central communication platform that accepted inputs from physical shopfloor, 

RFID integrated ERP systems and AR/VR development platform. From this point, 

all the information was transferred to the cloud through two-way communication. 

In the context of the automated mattress protector operation, the manufacturing unit 

included a number of units that worked collaboratively with other verticals in a rhythmic 

pattern, interacting with each other to yield a mattress protector in a precise and efficient 

manner. The automated mattress protector manufacturing system used a specific panel 

cutting machine (CPT4700), the real-time customisable packing machine Pack size-XP, 

the sewing machine Rimac 396H and the ETON Synchro 5000 system (as shown in 

Figure 29), which constituted the physical equipment. The efficiency of work during 

mattress protector manufacturing was calculated, along with the computational cost of 

the existing practice of manufacturing. Further, the number of resources required, such 

as human resources, power resources, safety measures and lead time to conduct the 

operations was estimated to determine the proficiency of every machine to help ascertain 

whether improvements were needed. It helps engineers on the shopfloor work precisely 

while also inspiring more industries to follow the same path. 

Complimentary to the physical shopfloor, the proposed hybrid model used a virtual 

machine to monitor the work characteristics of the machinery with the help of IIoT, DT, 

DA, AR/VR and ML technologies. Each of these technologies served a unique purpose. 

For example, the ML analysed the data collected from the machines to run learning 

algorithms, produce predictions and estimate a machine’s characteristics. The algorithms 

that were programmed to attain stable and consistent growth and promote work 

efficiency were stored in a cloud platform (as the cloud can hold large amounts of data, 

content or information). VR created a virtual scope of the physical apparatus, replicating 

it to near-reality so that the user need not be physically available or use equipment to 

determine the work characteristics of a machine. Lastly, the DT was a platform that 

allowed the work conducted by a machine to be monitored in a virtual environment that 

was internally connected to the physical environment. This virtual replica of the physical 

machine was in running mode or twin mode. These technologies were intertwined during 



the manufacture of mattress protectors, where machines performed proficiently without 

the need for much human labour, freeing workers from laborious tasks.  

On the right of Figure 29, a VR represents the virtual apparatus of the machines. In the 

context of this operation, it refers to the virtual apparatus of the CPT4700 cutting 

machine (i.e., the CPT4700 is visualised as a machine sitting in any part of the world 

using VR equipment, such as Oculus Rift, Google daydream or other VR equipment). 

By wearing VR headset, it allows the viewer to see a virtual machine in front of them 

that imitates the real machine while not being physically present in the manufacturing 

factory, thus helping to ascertain the performance of the cutting machine. The 

characteristics of the physical machine (e.g., the time period, dimensions, temperature 

variance, speed and load) can be assessed. The virtual cutting machine has the same 

characteristics of the machine, though it is virtual. All the above three modules are 

connected to a cloud platform (e.g., Azure, AWS or Google cloud server), where learning 

algorithms (e.g., ML) play a key role and are fed with inputs of the CPT4700 

characteristics to predict or estimate the work efficiency, performance rate and other 

parameters of the virtual and physical machine, which is integrated as a part of the DT 

technology. In this way, the proposed work not only improves on the current setup for 

the manufacture of mattress protectors but also widens the scope of study in this field to 

enhance the smart factories of the future. 

4.5.3 Operational Process 

The assembly line operation of a single unit automated mattress protector is shown in 

Figure 29 and was based on the aforementioned components and proposed framework. 

The CPT4700 cutting machine was the physical machinery, and its work characteristics 

were predicted. The goal was to estimate the work characteristics of this machine 

virtually. Industrial connectivity software collected data from the CPT4700, such as 

electricity and heat usage and speed, and stored it for multiple scenarios from the sensors. 

Various data, such as electricity consumption by the machine when manufacturing a 

king-size mattress protector, the amount of heat produced when the machine ran 

continuously for eight hours, the amount heat produced when the machine was 

operational for one hour and the speed of work, were monitored. Data on how efficiently 

the CPT4700 worked for various targets were also collected and pre-processed for 



computation (including the battery efficiency of the machine while the machine was 

operational and the battery output when the machine was at rest). As shown on the left 

side of Figure 29, an ERP system integrated with RFID stored information on the 

machinery in the factory, such as livestock, data management, orders placed, machines 

delivered and machinery in-repair state. Each machine was allocated a unique RFID. 

4.5.4 Operation Flow 

This section elaborates on the production flow of the use case (i.e., the operational flow 

of mattress protector manufacturing flow), as depicted in Figure 29. The operation begins 

once the production order is generated and is passed on to verify production planning 

and resource management. The flow is then divided into two verticals with a view to 

simplifying the process planning and resource allocation. This allocation helps in 

production planning, accumulate the required production planning, data acquisition, data 

simulation, task offloading and future prediction analysis. Resource management is 

further divided into the two verticals of process and inventory management to help use 

the available resources for manufacturing purposes. 

4.5.5 Manufacturing Planning 

In the production planning stage, once an order for a mattress protector comes into the 

factory, the order must be planned. Planning can only be conducted if the user knows the 

previous history of a similar order. If not, the planning team must plan according to 

resource availability. A user cannot create a new plan for every order; therefore, they 

must use advanced technology to pace up his credibility and increase efficiency. The 

proposed framework for the operation is geared towards this approach, as the pre-

production planning block of the flow is initiated. In this block, historical data are 

analysed to plan the intended production. Once an order enters the pre-production 

simulation, it matches with similar available historical data to give the user an estimated 

time of arrival for the order. 

After preproduction, the simulated data are stored for future reference. In this context, 

the data management is conducted in a sequential manner to accomplish the futuristic 

simulation. Once the data acquisition is complete, the next task for the planner is to assign 

the task (offloading). The planner must manage the set of commands to achieve the best 



possible solution for the resources available. They match the resources with the available 

resources in the virtual environment, which provides the estimated time of production. 

While simulating the estimated time for production, several precautionary measures must 

be taken (e.g., machine breakdown, machine maintenance, unexpected power down). 
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Figure 30 Operational flow of production in smart manufacturing  

To overcome unexpected errors in the physical world, a range of issues is simulated in 

the virtual world. Tasks should be handled appropriately by the important block of the 

virtual or digital world, which is called predictive analysis. Predictive analysis provides 

an in-depth analysis of unexpected errors and scheduled maintenance based on the 

history of a mattress protector manufacturing plant, which assists the planning process. 

4.5.6 Resource Management 

Next in the production line is resource management. This is divided into two major 



verticals: process flow and inventory management. Inventory management is required to 

manage, and supply required materials for the production of a particular order of a 

mattress protector. Once an order is simulated in the virtual world, and the test results of 

the virtual world are satisfactory to the planner, it is passed onto the inventory manager 

to supply the required materials needed to process the order. 

Once the stock inventory is complete, the next action involves managing and matching 

the process data with the simulated data to enable the data for the production order to be 

generated per requirements. This data differs from the data simulated in the virtual world 

for reasons such as materials defects, machine defects, machine operating environment 

restrictions and other practical issues. Hence, these data must be properly managed and 

logged to overcome future delays in the production progress. Once all tests are 

completed, the data are accumulated in the next block for use as future reference. 

The next block in the production flow is the manufacturing process. After receiving the 

required materials and mattress protector orders from the planning team, tasks are 

offloaded in the practical or physical world. Tasks are offloaded according to the job 

priorities and the process flow. Following this, production preparation decisions must be 

made. For example, a cutting machine must be assigned to a panel that is cut in a 

particular way for a given set of an order. The Eton lines or conveyor line should also 

know where to cut the panel sheet to be assigned for sewing purposes. The sewing 

machine must then be selected based on the kind of interlocking stitch being performed. 

The folding machine is subsequently notified of the type of folds required to be 

performed for that order. Similarly, the packing machine must be informed of the kind 

of packing required, the printing machine must understand the label required, and the 

inserting machine must be clear on the type of inserts to be made for the order. These are 

key aspects of decision-making in relation to resource management in the proposed SM. 

While these sets of operations are theoretically simple, synchronising the individual 

operations during actual execution is far more complex. The practical solution is to bring 

everything onto a single platform and integrate the mattress protector with RFID 

technology. The machines listed above are capable of RFID communication in real time. 

The task of transferring the product (i.e., a mattress protector) from one stage of 

production to the next must be synchronised. This synchronisation requires a better 

understanding of the operations, including the production time, downtime, material 



handling time and operator handling time. In this regard, the tasks must be managed with 

the assistance of virtual simulation in synchronisation with the practical data to ensure 

the flow of the automated manufacturing operations. 

4.6 Chapter Summary 

This chapter described the design of a conceptual SM framework for a manufacturing 

company. The SM framework addressed challenges within the manufacturing industry. 

The framework harnessed an integrated cloud-based SM framework interlinking MES 

and ERP. This provided efficiency gains, enhanced communication and facilitated 

flexible manufacturing for personalised low-volume manufacturing. 

i) This chapter proposed a framework for the operation of a real-time, cloud-empowered 

SM system. Numerous innovations in the field of SM were reviewed to identify the key 

components required with a view to integrating them in the proposed SM framework. 

In this way, the proposed concept merged the VS and PS with a DT via a cloud platform 

to maintain seamless data integration and communication. This ensured smooth 

decision-making and the process flow from pre-production, through production, all the 

way to packaging and beyond.  

ii) Contrary to similar work, the proposal was further validated via a detailed use case 

study for an automated mattress protector manufacturer. Detailed specifications of the 

components required were presented, followed by the actual operational flow. 

Therefore, the comprehensive operations of a fully functional virtual manufacturing 

system were presented based on the proposed novel framework. This proposed 

approach made the mattress production much productive, time efficient and 

economical. Aside from practical executions, future attempts in this domain should 

focus on integrating DT in real time with physical and virtual shopfloors (as opposed 

to current approaches that revolve around theoretical data). Further, integrating CNR 

would also fully automate the SM while also making it more efficient, which will be a 

focus of future studies. 

iii) The main challenges that occurred when developing the framework were the control of 

machine characters, which resulted in inefficiencies related to increased costs; high 

latency issues of the cloud; demands for product personalisation due to global market 



competition; and ineffective communication between workers and machines, which 

resulted in waste.  

iv) SM could represent a solution to the challenges of inefficiency, low-volume 

manufacturing and decision-making frameworks. The LR indicated that SM is a key 

solution that has been the subject of research, though it lacks practical implementation 

strategies. Further, research has only explored implementation in singular approaches 

that address one problem at a time. The LR revealed a lack of research on integrated 

multiple transformative technology usage, such as SM, in a holistic way. 

v) Transformative technologies (e.g., ML, CC, CNR and AR/VR) were used to capture 

the manufacturing operations characteristics. AR/VR technologies were used to 

visualise the operational flow and for the time analysis and simulations. These inputs 

helped attain vital data for analysing the behaviour of the machines by incorporating 

ML algorithms for PA in future. These tools, integrated into a cloud platform, showed 

potential for addressing key manufacturing challenges. Once the integration of the 

technologies was migrated to the cloud, the operation was handled by high-end 

computational programs. These computational programs were designed according to 

the virtual commissioning output from AR/VR layout. Based on these results, a 

conceptual framework was proposed for implementation. 

vi) SM-integrated approaches in previous works lacked decision-making analytics and, 

consequently, lacked better communication protocols. The communication process 

lacked an effective transfer of technological precedence between various roles. 

Collaboration between different roles and machines using advanced tools was found to 

lack the integration required in prior practices. New trends in wireless communication 

have given a broad understanding to the real-time integration of the digital and physical 

world. Seamless data transfer and the integration of tools have made manufacturing 

more efficient and effective compared with traditional practices. Along with 

communication, advanced technologies used for prioritised computing and offloading 

the tasks were missing in traditional practices. While these technologies have been 

explored in theoretical terms, there was a gap in terms of their practical implementation. 

  



 

5 Efficient Smart Manufacturing 

 

 

This chapter illustrates the implementation strategy of the SM framework in a manufacturing scenario. The 

chapter first discusses the data generation and collection strategies before outlining the results and analysis. 

This chapter is based on: 

Sourabh Dani, AK Rahman, Paul Shuva, Jiong Jin and Ambarish Kulkarni, ‘Cloud Empowered High 
Dimensional Anomaly Detection’, submitted to the internarial journal of IEEE.  



5.1 Introduction 

Integrated information systems play an important role in manufacturing. To address the 

traditional ongoing challenges in manufacturing, an anywhere, anytime strategy must be 

applied and verified. This chapter focuses on ways to overcome efficiency issues in 

manufacturing. The chapter covers the following aspects of SM: 

i) Section 5.2 introduces the integrated SM system. This system introduction is powered 

by cloud operations, which is dedicated method of data management.  

ii) In section 5.3, the life process of the manufacturing data is discussed in detail. This 

section explains the data collection from sources, data storage and management, data 

pre-processing and data realisation. Raspberry Pi module was used to collect data, and 

the challenges associated with this are discussed in this section. The data storage and 

management section detail the cloud management and explores how to retrieve the data 

from sources. Further, the pre-processing methods of the manufacturing data are 

discussed along with the methods used for realisation. 

iii) In section 5.4, a data-centric system empowered by cloud instances is discussed. This 

section seeks to explain the high-dimensionality of the data generated by the 

manufacturing machinery. The methods of dimensionality reduction, its advantages, 

methods, possible and best fit algorithms are discussed. 

iv) In section 5.5, high-dimensional data analysis using two main algorithms is discussed. 

These algorithms have been widely discussed for their scalability, usability and 

versatility in relation to the implementation strategies. 

v) Lastly, section 5.6 discusses the self-leaning algorithms. The results obtained from 

implementing the ML algorithms on the manufacturing data are presented. 

5.2 Cloud-Empowered Data-Centric System 

The IoT and the data accumulated from sensors in manufacturing systems is a continuous 

process. Data production is a never-ending process, and methods are required to analyse 

and define these data and to understand the behaviours of machines (Caesarendra, 

Wijaya, Pappachan, & Tjahjowidodo, 2019). If data are left unanalysed, need for 

integrating these machines with the required sensors and communication protocols is 

redundant (Lei et al., 2018). The number of machines that are sufficiently smart enough 

to generate data continues to grow. This rapid growth cannot be ignored. An estimated 3 



exabytes of data are generated every day, which is equal to all the data produced by IBM 

systems in previous years ( Lin et al., 2017). This amount of data cannot be stored on 

personal computers or locally generated data base storage systems, which would be hard 

to access. For this reason, major companies, such as Microsoft, IBM, Google and AWS, 

have provided on-demand cloud solutions (Grefen et al., 2016; Nguyen et al., 2017; 

Zhang et al., 2012). 

These data can be further be treated as an information source, and, in return, the same 

data can be used for future predictions. However, this transformation of data from 

information to knowledge cannot be handled by sensors or local analytical platforms 

(Leng et al., 2020). This is where cloud empowerment for data analytics steps in. Figure 

31 depicts the general architecture of a cloud-empowered data-centric system in which 

the manufacturing system data is transferred to the cloud system. This data transfer 

occurs through multiple fast and reliable communication protocols, such as WLAN, 

Bluetooth, WSN and Wi-Fi. 

 

This integrated system has evolved by incorporating reliable sources of sensing 

technology (Jawad et al., 2019). Sensors for every possible expectation can be 

Figure 31 Cloud empowerment in smart manufacturing 



incorporated into a machine. In the architecture presented in Figure 31, data from sensors 

are collected and stored in the cloud environment for processing. Aspects of the data, 

such as scalability, elasticity, economic benefits, reliability, security on storage and 

accessibility for predictions, are justified using cloud empowerment. The efficient and 

effective computing of data stored in the cloud is important for extracting useful and 

important features. Data generated from heterogenous machines are of very high volume, 

wide variety and intense velocity. The concept of big-data concepts can help understand 

the ‘three Vs’ of data (Ding et al., 2019; Lin et al., 2017; Yao et al., 2017). Many 

providers around the world have taken the initiative in managing databases. The foremost 

among them are Apache Hadoop, Oracle, Cassandra and Vertica. These providers 

perform the jobs of storage and computing, which allows consumers to make use of the 

data in a virtual scenario. 

5.3 Life Cycle of Smart Manufacturing Data 

Manufacturing systems use many important machines that provide information that is vital for 

analysing the life cycle of the production. It is important that every machine on the shopfloor 

meets the required efficiency. Efficiency can only be achieved by balancing the production 

line. The performance matrix of the production line can be improved by installing advanced 

technologies. These technologies are data driven and prediction accuracy increased with the 

more data. The following sections detail the collection, management, and processing of data. 

5.3.1 Data Collection from Sources 

The data sets manager from various technologies provide visualisation in manufacturing 

to enhance decision capabilities (Leang, Ean, Kim, Chi, & Yoo, 2019). MES handles 

data streams between manufacturing machines, while the ERP platform assists in 

planning the inventory of the organisation and the product life cycle management. 

Modelling software, such as computer-integrated manufacturing and computer-aided 

design, also assists in manufacturing in the virtual world. Four main types of data can be 

collected using this system: machine data, management data, inventory data and general 

data. These data are explained below: 

i) Machine data are data collected from sensors built into the equipment. These data 

include data on the machine behaviour, real-time execution, maintenance scheduling 



and history of the equipment. These data are crucial in deciding which of the 

collected data are useful so that they can be processed and analysed for the concrete 

understanding of the operation.  

ii) Management data are data generated by the manufacturing management system. 

Such data are often generated by the team that has planned the execution of 

production, such as MES and ERP. These data often provide information on 

production planning, scheduling, inventory management, sales, distribution, 

warehousing and forecasts.  

iii) Inventory data are typically collected from sensors that are integrated into the product 

itself, such as RFID, barcodes and QR code systems. Inventory-tracking data are 

useful when manufacturing teams are integrating their systems with their customers 

or providers. These data help the system to store, track and manage data related to 

the manufacturing date, batch of production and warranty.  

iv) General data are usually generated from research and development teams and include 

data related to the development of technology and integration of advanced protocols. 

In particular, this type of data allows manufacturers to guarantee the implementation 

of advanced technologies within their practices. 

In this era of big data, with the help of IT, manufacturers can easily obtain and process 

data to enhance production. Access to manufacturing data has allowed a range of 

manufacturers, including the SMEs, to implement technologies and enhance 

productivity. 

   

Figure 32 Data acquisition from physical machines a) Raspberry Pi module, b) power reading clamp and 

c) integrated module  

a) b) c) 



5.3.2 Data Storage and Management 

According to IBM, the data generated from manufacturing systems daily exceeds 

2.5 exabytes. Storing and managing these is a challenge for any system. However, 

fortunately, certain cloud systems can make life easier for manufacturers by allowing 

them access the data they need with ease (Jaensch et al., 2018). These data can be often 

classified into three categories: 

i) Structured data sets are often readily usable for any type of analysis with algorithms 

or basic modelling, such as digits, tables and symbols. One drawback of this data 

type is that it is not highly descriptive. Often, some analysis and research are required 

for this data type. 

ii) Semi-structured data are partially understood by the direct user; however, this data 

type is not self-descriptive. This category of data includes data trees, XML 

documents or graphs generated by a system. These data require a knowledgeable 

practitioner to handle and manage.  

iii) Unstructured data sets are easy to understand visually, but realisation is challenging. 

They include data sets, such as images, videos, audio files and system logs. Data 

realisation falls under the special section of data engineering, image recognition or 

pattern recognition to understand the machine behaviour.  

Initially, manufacturers tended to rely on structured data sets, as they were easy to 

manage. Now, object storage stores data in a designated object and stores the key 

invention of a storage system, which is far more convenient and easier to analyse 

compared with file systems or block storage. This is because file storage stores data on 

a single file, irrespective of the data type, while block storage stores data in singular 

blocks of data and further stores these data sets as separate pieces of data. The advantage 

of object storage over block and file storage is that data are easily accessible for analysis, 

retrieval and optimising resources while also being cost competitive. 

5.3.3 Data Pre-processing 

Data collected from manufacturing systems often require cleaning. Cleaning refers to a 

series of steps involved in processing data in need of refining, as depicted in Figure 33. 



The collected data must be processed and converted to yield useful information that can 

be used to make critical manufacturing decisions (Jia et al., 2019). Processing filters null 

values and misleading, inconsistent and redundant values within the collected data set. 

Data processing also removes duplicates and finds missing inputs, which constitute 

impurities within data sets. Data pre-processing is conducted in six stages, depending on 

type of data: 

i) Batch processing processes data collected in batches from machines. These data are 

often used in the later stages of analysis. This type of processing does not help in 

manufacturing; rather, it is useful for payroll systems. 

ii) Real-time processing collects and analyses data in real time. One drawback of this 

processing is that it can only be conducted on small amounts of data, such as in ATM 

machines. Although this is prime need in manufacturing, real time synchronous 

analysis is limited due to large volume of data. 

iii) Online processing does not process for null values or duplicates; rather, the data are 

fed directly onto the servers, where they work directly on the analytical algorithms. 

Often, this can only be done on one system at a time.  

iv) Multi-inputs processing, multi-inputs or parallel processing is a type of data 

processing that is often used when there is more than one data point, and multiple 

servers are required to process the data. This type of processing is used when 

researching the weather or in the online streaming of live events.  



 

5.3.4 Data Realisation 

Once the data are collected and pre-processed, they must be visually realised (i.e., a 

presentation method must be implemented on the data set collected). Such realisation can 

only be performed with the help of ML algorithms, data analytical formulas, graphs, 

tables and figures. Realisation helps manufacturers understand their stand when 

compared with similar data sets generated from virtual or CPS systems. The analytical 

results can subsequently be further compared, and effective implementation measures 

taken. Figure 34 shows a pivot table generated from the data collected from a typical 

machine on the shopfloor for a number of sheets manufactured in given amount of time. 

Figure 33 Power data analysis 



Figure 34 Pivot results from collected data 

Process Definitions Data Results Planning 
  

Object Type 
      

Model Object Name Data Source Category Data Item Statistics Average Total 
Model 
ModeEntity 

Model NumInWIP UserSpecified StateValue Average 7.3177 
Final Value 11.0000 
Maximum 16.0000 

ModeEntity Queen [Population] Content NumberInSystem Average 1.5127 
Maximum 7.0000 

FlowTime TimeInSystem Average (seconds) 94.9607 
Maximum (seconds 148.9808 
Minimum (seconds) 76.1057 
Observations 400.0000 

Throughput NumerCreated Total 403.0000 
NumberDestroyed Total 400.0000 

Single [Population] Content NumberInSystem Average 4.6296 
Maximum 13.0000 

FlowTime TimeInSystem Average (seconds) 89.2010 
Maximum (seconds 155.9064 
Minimum (seconds) 69.3057 
Observations 1305.0000 

Throughput NumerCreated Total 1312.0000 
NumberDestroyed Total 1,305.00 

Superking [Population] Content NumberInSystem Average 1.1754 
Maximum 6.0000 

FlowTime TimeInSystem Average (seconds) 101.2347 
Maximum (seconds 152.0274 
Minimum (seconds) 84.7057 
Observations 292.0000 

Throughput NumerCreated Total 293.0000 
NumberDestroyed Total 292.0000 



5.4 Data-Centric, Cloud-Empowered Smart Manufacturing 

Data from the manufacturing shopfloor were collected, processed and analysed using 

ML technology. Implementing ML technology within manufacturing enhances the 

intelligence of decision-making frameworks. Data-centric modules focus on the 

important modules of the application. Examples of such modules include: 

i) shopfloor modules, which are used for a variety of industrial tasks. Shopfloor 

modules are made up of a number of different IT services and industrial resources 

that may be used in man-machine-material environments. Inputs for these modules 

are the raw materials of the manufacturing industry, while completed goods are end 

products. Enormous amounts of versatile heterogenous data are acquired from 

machines, manual labour, machine operators, production systems and industrial 

networks during manufacturing. 

ii) Data principled modules. Data principled modules cover many phases of the 

industrial data lifespan and serve as the driving engine for SM. Data from 

production modules are sent to cloud-based data centres for additional analysis as 

inputs. The operations of the manufacturing module and relevant decisions are 

automated using data analytics (e.g.:  actionable suggestions derived from various 

types of raw data). The data-driver module also provides power to real-time 

monitoring and problem-solving modules. 

iii) real-time interfacing module. These modules are facilitating real-time supervising 

of the production process to assure product quality. They are driven by the data-

driver module and can analyse the real-time status of production facilities. This 

allows producers to keep up with changes in the manufacturing process and build 

the best operational management methods possible. When a machine is idle, for 

example, raw material is dispersed, and a material path is tracked. Specific product 

quality problems can be addressed by altering the production process. As a result, 

the real-time interfacing module can improve the efficiency of industrial facilities. 



 

iv) fault diagnosis processing module. These modules can detect and predict future 

problems (e.g., equipment failure or quality flaws), diagnose the root causes, 

recommend feasible remedies, estimate solution efficacy and assess potential 

consequences on other manufacturing operations. Programmers or AI practitioners 

can make educated choices based on real-time data and the assessment of past and 

current data. This is facilitated by the data-driver module and allows existing issues 

to be handles while also preventing similar problems from occurring in the future. 

This module’s initiative-taking maintenance improves the smooth operation of 

Figure 35 Cloud-empowered data-centric smart manufacturing paradigm 



industrial operations. Data compilation, incorporation, storage, assessment, 

visualisation and application are organised processes that can be applied in a variety 

of businesses. Here, data-driven SM architecture is generally useful. SMEs and 

large corporations can choose different ways of accomplishing data-driven SM at 

different scales based on resource availability. SMEs, for example, can use on-

demand CC services supplied by third parties, such as Amazon and Alibaba, while 

larger firms can afford to create exclusive cloud infrastructure for data storage and 

analysis. The core value propositions of data-driven manufacturing are the same for 

SMEs and large corporations, regardless of where and how the data are handled. 

Manufacturing data help decision-makers quickly understand changes, make 

correct judgements and develop rapid-reaction methods to solve problems. As a 

result, production schedules, manufacturing operations and resources can be 

carefully linked to maximise efficiency. 

v) The researching module. This is an important aspect of the specified framework 

because it researches all aforementioned modules. The researching module is 

programmed with multiple pieces of software and hardware and concentrates on all 

possible faults, issues and recoveries. Faults are often important and researching 

module diagnosis and provides appropriate reasoning. Decision-making strategies 

that hinge on the results generated by these systems play a vital role, as changes 

often have lasting effects. 

The difficulty of detecting patterns in data that do not conform to expected behaviour is 

known as ‘AD’ (Martí, Sanchez-Pi, Molina, & Garcia, 2015). The AD problem, by 

definition, depends on the data or application in question. To provide a comprehensive 

overview and comparison of a variety of approaches to AD presented in the scientific 

literature, including examples from industrial damage detection and medical AD. Think 

about the irregularity location issue using a multi-variate time arrangement dataset 

collected from sensors installed on fabricating gear on a production line. The issue of 

inconsistency discovery is particularly challenging, as inconsistency information records 

are constrained, anomaly designs are sporadic, and discovery must be precise in a timing 

design. To date, some approaches have been proposed, as discussed in chapter 3. 

Traditionally, rule-based arrangements are connected for discovery. The rules are 

specific to the encounters, space knowledge advertisement hoc information examination. 



Subsequently, it is defenceless to the unseen anomaly and cannot be effectively 

generalised to other fields or situations. CC procedures have risen in prominence as 

volumes of data have increased (Karim, Ranjan, & Shah, 2020; Stojanovic, Dinic, & 

Stojanovic, 2017). Some approaches are based on time arrangement analysis models, 

such as autoregressive coordinates moving. 

5.4.1 High-Dimensional Data Analysis 

This section presents a case study that illustrates how implementing technologies 

alongside physical machines can overcome traditional challenges. This case study 

centres on an Australian mattress protector manufacturer, as illustrated in Figure 36. 

Mattress protectors are a key component of human wellbeing. They offer protection from 

bed bugs and other pests that live on bedding. Further, they protect mattresses from 

stains, such as coffee spills and oil spills. As shown in Figure 36, the input is raw fabric 

passing through various operations in textile manufacturing (e.g.: slitting machine to 

cutting machine). The manufacturing involves a series of intrinsic production processes: 

slitting, cutting, sewing, folding, packing and warehousing. 



 

As the industry is craft oriented, operations are often intrinsic or heterogenous in nature. 

Further, the operations require human intervention at every stage to ensure the production 

process, quality control and compassion in manufacturing. The speed of operations can 

be improved by introducing advanced machinery capable of self-diagnosing faults, 

transferring data in a highly efficient manner for analysis and integrating with ERP and 

MES systems. As shown in Figure 37, five major operations are continuously supported 

by an RFID-enabled conveyor system. The machinery generates large amounts of 

complex data that make analysis challenging. Data generated from the machinery are 

further used in analysis, integration, validation and visualisation using the advanced 

technologies of ML and CC.  

For material allocation and diversion to the respective stations, raw fabrics are embedded 

with tracking technology, such as RFID tags. An RFID-enabled conveyor system 

facilitates the delivery of materials to the appropriate location. Material tracking is 

conducted by three unique items, namely, product ID (generated by the ERP system), 

Figure 36 Data-centric smart mattress protector manufacturing 



item codes and batch IDs. These data are validated in the MES system at every stage of 

the manufacturing. From the beginning of the manufacturing, fabric rolls to be sleeved 

onto packed mattress protectors, and an enormous amount of data are generated. The 

collected data must undergo several pre-processing steps, as discussed in earlier sections 

of the chapter. The data require definition, validation and recognition. The collected data 

will contain many instances in which the manufacturing stopped for unknown reasons. 

Out of those unknown reasons, one definite answer is that anomalies exist within the data 

sets. Detecting these anomalies in high-dimensional data is necessary to overcome 

inconsistencies on the manufacturing line. The results of the AD and the correlation 

between the individual data was outlined. 

5.5 Analysis of Machine Learning Algorithms 

Before discussing the results, it is necessary to first understand the correlation between 

the data points. Data points were collected were from multiple industrial sensors, such 

as a temperature sensor, proximity sensor, accelerometer, pressure sensor, infrared 

sensor, tension sensor, ammeter, voltmeter, humidity sensor and light-dependent sensor. 

These sensors were independent in nature or were not directly related to each other. Any 

variation in any of the sensor inputs did not influence the other sensor readings. The 

power consumption reading was recorded to develop a correlation between the data 

points. A relationship between input variables and target variables is called a 

‘correlation’. 

The power data variation was the direct result, or the target variable recorded from any 

of the operations failures. Failure data or event data can be traced back to the original 

cause of the interruption. Whenever there was an issue with the temperature of the 

machine, the machine stopped. To detect the event cause of this, the power consumption 

was colinearly matched. Correlation analysis is crucial to ensuring that there is a strong 

relationship between the data points. Once the correlation analysis is complete, the target 

variable is plotted or predicted in the given context. To define the correlation, when one 

of data variable begins to increase or decrease, the other variable also shows behavioural 

changes. There can be a positive linear change, a negative linear change or no linear 

change at all. There are many ways to calculate correlation coefficients, such as the 

Pearson correlation measure, the Spearman’s rank correlation measure and the Kendall 



correlation measure.  

Once the correlation coefficient has been identified, it is important to reduce the 

dimensionality of the data. As the data are high dimensional and high volume, predicting 

the target variable is problematic due to the high computational cost, model behaviour 

changes from training data to test data and because the distance between two data points 

becomes equal due to the high distribution of the data sets. To overcome these 

challenges, the dimensions of the data points can be reduced to focus on every data point, 

which makes it easier to focus on major events and behavioural changes. 

5.5.1 Isolation Forest 

The reason for the invention or advantage of IF-based AD is that it does not follow a 

regular method of detecting anomalies by profiling the normal data sets (Chun-Hui, 

Chen, Cong-Xiao, & Xing, 2018). Rather, it focuses directly on detecting the anomalies 

using the basic principle of decision trees. In this method, the tree partitions are made by 

the feature definition that the user defines (Elnour, Meskin, Khan, & Jain, 2020). Once 

the features are defined, the random split value in between the maximum and minimum 

value of the selected feature is selected. Focusing on the principle of the algorithm 

achieves the target values or anomalies using a smaller number of splits. Anomalies are 

generally identified with low numbers within data analysed and when graphically plotted 

these tend to fall outside the norms (Y. Huang, Xue, Su, & Han, 2020). Random splits 

or partitioning generate shorter paths to the anomalies compared with distinguishing 

them from normal data points. IF is an algorithm varied with its unique characteristics 

(e.g.: model based, density of the data points based, and data profiling based). The 

properties of IF include: 

i) Sub-sampling. As the name suggest, sub-sampling does not have to isolate all the 

data points. It can easily ignore normal data points or the majority of data points. 

This increases the computing powers of the algorithm and leads to better 

predictions.  

ii) Swamping. Swamping refers to when the normal data points lie very close to 

anomalies, and the model must separate the data points in multiple partitions in a 

process called ‘swamping’. The IF often chooses sub-sampling as the reduction 



method to reduce the swamping process. 

iii) Masking. Masking is similar to swamping but only applies when the number of 

anomalies is high. When there are high number of anomalies present in a data set, 

identifying them is difficult. When this is the case, IF chooses masking to alleviate 

the number of data points within the data set using sub-sampling. 

iv) High-dimensional data. The reason behind for IF as the key solution to HD data is 

that the data points in HD are equally distributed over the region. This makes it hard 

for traditional algorithms to identify anomalies. This does not mean that IF can 

easily detect anomalies within a data set; however, it can be improved by adding 

feature selection properties to the data set. 

IF-based AD is built with two main steps. The first involves building isolation trees, as 

explained in the above model iterations. The second requires a proper anomaly rating to 

be generated after passing the test data instances through isolation trees. The anomaly 

score can be identified using the below algorithm. 

5.5.1.1 Anomaly score 

The anomaly score is calculated by comparing the data point observations of the isolation 

trees to the binary search trees. The algorithm terminates only when the external code 

isolation tree does not correspond to successful binary search trees. To illustrate this, the 

estimated average of h(x)}h(x) for a peripheral node breaks the unsuccessful search 

generated by binary search trees, as shown in Equation 1. 

𝒄𝒄(𝒎𝒎) =  �
𝟐𝟐𝑯𝑯(𝒎𝒎− 𝟏𝟏) − 𝟐𝟐(𝒎𝒎−𝟏𝟏)

𝒏𝒏
𝒇𝒇𝒇𝒇𝒇𝒇 𝒎𝒎 > 𝟐𝟐

𝟏𝟏 𝒇𝒇𝒇𝒇𝒇𝒇 𝒎𝒎 = 𝟐𝟐
𝟎𝟎 𝒇𝒇𝒐𝒐𝒐𝒐𝒐𝒐𝒇𝒇𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐

……………… Equation 1 

where n is the testing data size, m is the size of the sample set and H is the harmonic 

number estimated by 𝐻𝐻(𝑖𝑖) = ln(𝑖𝑖) + 𝛾𝛾, where  𝛾𝛾  is 0.5772156649 is the Euler–

Mascheroni constant. 

5.5.2 KNN Algorithm 

The K-nearest neighbour (KNN) is an effective, simple, linear and non-parametric 

supervised type of ML algorithm. In relation to AD, the KNN chooses the unsupervised 



method (W. Jia, Yang, & Tong, 2010). This algorithm is used in regression models and 

classification models. The output clearly depends on the input variables. However, 

irrespective of inputs, the KNN works on a simple strategy (i.e., the closest lying data 

points are considered in the training set) (Pajouh, Javidan, Khayami, Dehghantanha, & 

Choo, 2019). Further, the result of classifying the KNN is always highly voted by 

neighbouring data points, whereas in a regression model, the result is obtained from the 

average of the nearest lying neighbours. 

The KNN assumes that the nearest lying data points are the normal data sets, and it 

extracts the features of the neighbours (M. Zhou, Zhou, & Wen, 2016). The model 

predicts the closest neighbours depending on the proximity of the data points. The KNN 

algorithm works according to the following steps: i) loading the data, ii) initialising the 

nearest neighbours as the chosen ones for the feature extraction, iii) calculating the 

proximity distance between the training data set and the test data set, iv) extracting the 

proximity distance and index of the data points, v) sorting the features or test data sets in 

ascending order, vi) selecting the initial K elements from the sorted data, vii) labelling 

the data points for selected K elements and viii) deciding whether to return the 

classification or regression results depending on the mean or mode of the data points. 

The distance or proximity between two data points represents the similarity that 

completely originates from the denoted features. Thus, the Euclidean distance used in 

KNN can be derived from Equation 3: 

𝒅𝒅𝒐𝒐𝒐𝒐𝒐𝒐(𝑿𝑿,𝒀𝒀) =  �(𝒙𝒙𝟏𝟏 − 𝒚𝒚𝟏𝟏)𝟐𝟐 + (𝒙𝒙𝟐𝟐 − 𝒚𝒚𝟐𝟐)𝟐𝟐 + ⋯+ (𝒙𝒙𝒏𝒏 − 𝒚𝒚𝒏𝒏)𝟐𝟐…………….Equation 2 

The most important limitation of these distance-measuring equations is the similarity 
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measure. The similarity measure means treating the nearest neighbours equally or 

extracting features of the data points equally. Equal extraction results in a miscalculation 

of normal data points and anomalous data points. Due to this, deciding on the extraction 

of features of data points creates ambiguity within the kinds of classification. Therefore, 

deciding on which feature is more important or impactful is uncertain. 

5.6 Self-learning Algorithmic Efficiency Gains 

Self-learning models were developed for the specific purpose of manufacturing. These 

models are not limited to any industry, as they are data oriented. Across the world, 

industries are beginning to understand the necessity of self-learning for growth. In the 

manufacturing industry, machinery is becoming smart and capable of self-learning. The 

data generated by machines has promising utility. Every day, enormous amounts of data 

that require high-end computing are produced by machines. This computing has resulted 

in promising efficiency gains in the manufacturing industry. Readily available software 

discussed in this research, such as MES and ERP, can compute these data. However, the 

resource planner and production planner were not integrated in the real-time scenario. 

Due to the lack of integration, the smart system did not produce the expected results in 

terms of efficiency. 

The framework introduced in this research covered every aspect of integration and 

development. A large volume of data was considered when validating the framework, 

including interdepartmental data, production data and management data. The large 

volume of data generated created challenges when consolidating the framework 

operations.  

5.6.1 Event Failure Detection for Seamless Manufacturing 

ML algorithms have been implemented within manufacturing for a decade. The 

challenges associated with implementing algorithms, such as complexity, high 

dimensionality, unscalable data and anarchic behaviour are ongoing. Implementing self-

learning algorithms has resulted in improving on the dimensionality reduction of the data 

frame, the detection of event failures beforehand, improving maintenance scheduling and 

increases in uninterrupted manufacturing.  



Data collected from machinery in the present case study were high dimensional, as 

shown in Figure 39. The data set presentation in the case study contained 13 different 

data points collected from a temperature sensor, proximity sensor, accelerometer, 

pressure sensor, infrared sensor, tension sensor, ammeter, voltmeter, humidity sensor and 

light-dependent sensor, along with real power, apparent power and voltage. This sensory 

information was collected from a sewing machine. The sensors were installed, and 

readings were recorded over a period of time. 



Table 16 High-dimensional data collection 

timestamp sensor_00 sensor_01 sensor_02 sensor_03 sensor_04 sensor_05 sensor_06 sensor_07 sensor_08 sensor_9 Real power 

1/02/2021 0:00 2.47 47.09 53.21 46.31 76.46 13.41 16.13 15.57 15.05 37.23 42.18 
1/02/2021 0:01 2.47 47.09 53.21 46.31 76.46 13.41 16.13 15.57 15.05 37.23 42.93 
1/02/2021 0:02 2.44 47.35 53.21 46.40 73.55 13.32 16.04 15.62 15.01 37.87 41.79 
1/02/2021 0:03 2.46 47.09 53.17 46.40 76.99 13.32 16.25 15.70 15.08 38.58 41.53 
1/02/2021 0:04 2.45 47.14 53.21 46.40 76.59 13.35 16.21 15.70 15.08 39.49 42.39 
1/02/2021 0:05 2.45 47.09 53.17 46.40 78.19 13.41 16.17 15.89 15.16 39.29 41.37 
1/02/2021 0:06 2.46 47.05 53.17 46.40 75.82 13.43 16.13 15.65 15.08 38.30 41.3 
1/02/2021 0:07 2.45 47.14 53.17 46.40 75.77 13.25 16.12 16.20 15.08 37.34 41.9 
1/02/2021 0:08 2.46 47.09 53.17 46.40 74.59 13.29 16.13 15.47 15.12 38.45 41.91 
1/02/2021 0:09 2.45 47.18 53.17 46.40 74.57 13.38 16.25 15.62 15.12 39.52 42.53 
1/02/2021 0:10 2.46 47.48 53.13 46.40 76.05 13.41 16.17 15.65 15.12 39.90 59.7 
1/02/2021 0:11 2.44 47.92 53.17 46.40 74.59 13.41 16.17 15.85 15.12 39.79 38.95 
1/02/2021 0:12 2.46 48.26 53.13 46.40 76.96 13.35 16.17 15.73 15.01 40.04 40.93 
1/02/2021 0:13 2.45 48.44 53.17 46.40 75.67 13.32 16.17 15.85 15.17 40.90 42.25 
1/02/2021 0:14 2.45 48.57 53.17 46.40 80.66 13.39 16.13 15.53 15.09 41.83 42.55 
1/02/2021 0:15 2.46 48.39 53.13 46.40 78.13 13.35 16.21 15.45 15.13 43.13 42.59 
1/02/2021 0:16 2.45 48.39 53.17 46.31 77.89 13.30 16.17 15.89 15.08 43.60 42.07 
1/02/2021 0:17 2.46 48.48 53.69 46.31 77.31 13.35 16.17 15.62 15.01 43.86 42.06 
1/02/2021 0:18 2.45 48.61 53.13 46.31 76.66 13.35 16.21 15.81 15.05 43.36 42.11 
1/02/2021 0:19 2.46 48.61 53.17 46.31 78.49 13.35 16.13 15.70 15.08 42.28 42.12 
1/02/2021 0:20 2.45 49.09 53.04 46.31 76.96 13.35 16.17 15.77 15.12 42.13 42.36 
1/02/2021 0:21 2.46 49.22 53.13 46.31 78.76 13.35 16.17 15.45 15.12 41.95 47.8 
1/02/2021 0:22 2.45 48.78 53.13 46.27 76.26 13.41 16.21 15.65 15.08 42.94 52.98 
1/02/2021 0:23 2.45 49.09 53.17 46.27 79.25 13.35 16.21 15.81 15.08 44.51 42.45 
1/02/2021 0:24 2.45 49.22 53.04 46.27 76.89 13.32 16.12 15.78 15.05 45.31 89.71 



 

        

a) b) 

c) d) 

e) f) 

g) h) 

i) j) 

a) sensor_00, b) sensor_01, c) sensor_02, d) sensor_03, e) sensor_04, f) sensor_05, g) sensor_06, h) sensor_07, 

i) sensor_08, and j) sensor_09. 

 



The data collected contained many problems, such as null values, inconsistencies and 

event failures. The basic problem affecting the data was that all 10 sensors other than the 

power parameters were independent data variables. Detecting individual sensor failure 

was simple; however, detecting event failures in all sensors at the same time was highly 

challenging. Figure 38 shows the data distribution for all the sensors fitted to the 

machine. As shown, some data points lay outside the normal data points, though they 

were rare and infrequent. Self-learning algorithms were used to detect failures and 

maintain efficiency during manufacturing. 

Initially, the aim was to reduce the dimensionality of the data frame. There are many 

proven dimensionality reduction techniques. Principal component analysis was used to 

reduce the dimensionality of the data. Further, the collected data were synthesised to add 

more complexity and dimensionalities. This ensured ML to adopt and self-learn for any 

unknowns (e.g.: future predictions) as shown in Figures 39 and 40. Once the data were 

contained a greater number of event failures, multiple AD techniques were implemented. 

Out of these, IF and KNN were the best-performing algorithms. The performance metrics 

of these techniques was evaluated, as depicted in Figure 40. IF showed a 98% accuracy 

compared with other techniques used in the manufacturing data scenario, as shown in 

Figures 41, 42 and 43. 

 



 

Figure 40 Isolation forest data distribution with anomalies 

Figure 39 Sensor_00 synthesis 



 

Figure 41 Performance metrics comparison  

 

Figure 42 Sensor 01 data synthesis 



 

Figure 43 KNN algorithm anomaly detection 

5.6.2 Takt Efficiency Enhancements 

Once the AD techniques had been applied to the data sets and recommendations fed back 

into the system, the system performed comparatively better. The comparison between 

the traditional and SM framework was validated and was shown to perform 30% better 

compared with the traditional system. Figure 44 shows that the traditional system had 

higher process times that were nearly 60 seconds per product process time. However, 

compared with the SM framework, the implemented system has an approximately ~43 

seconds process time. The difference in these processing times resulted in the production 

of a greater number of products in the same amount of time. This increase in the 

production rate directly resulted from the seamless and highly efficient manufacturing 

system. 



 

Figure 44 Traditional framework takt analysis 

The framework implemented improved the feasibility of the intrinsic natured 

manufacturing. The machines produced complex, unscalable and untraceable data. The 

AD algorithms that were built to be self-learning showed that the data generated by these 

machines could be used to increase efficiency. As shown in Figure 46, there was a 30% 

efficiency gain in terms of the time required to manufacture one unit of textile. 

0

10

20

30

40

50

60

70

Setup Process Teardown Setup Process Teardown Setup Process Teardown

Single Queen Super king

Ti
m

e 
in

 S
ec

on
ds

Fabric type and processes

Cutting station Sewing station Folding Machine Packing Station



 

Figure 45 Smart manufacturing framework takt analysis 

 

Figure 46 Framework utilisation comparison 
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5.7 Chapter Summary 

The three Vs of data—volume, variety and velocity—play an important role in 

determining the characteristics of the manufacturing sector. Enormous and ever-

increasing amounts of dynamically changing data are generated in the manufacturing 

industry. The data generated and analysed in the case study were used to increase the 

efficiency of the manufacturing line. This chapter discussed the cloud-centric SM 

paradigm, which is powered by data generated by the manufacturing system. This 

paradigm has multiple dimensions of perception. This chapter developed and analysed 

the optimal solution, covering the historical aspects and data-generation stage, including 

maintenance aspects with cloud-empowered manufacturing. In the data generation stage, 

the development of the model was vital. This included generation, transmission, 

processing and realisation. In the development stage, the cloud systems enabled data-

centric integration and administrative functions. Lastly, fault detection and correction 

factors were automated in a real-time application aided by AD in the cloud. Below is a 

summary of the chapter: 

i) When outlining the possibilities of the smart system, this chapter illustrated the 

many challenges involves at every stage of development, including current 

trends in data collection, pre-processing and realisation, particularly for high-

dimensional data with limited commercial success. The main reasons for limited 

commercial success were the lack of know-how, the lack of a skilled workforce, 

affordability issues and the alliance and availability of integrated hardware–

software interfacing. At present, a limited or singular adoption of cloud-centric 

manufacturing systems are seen with no integrated approaches. Although the 

cloud provides unique technical advantages (e.g., it can overcome low latency, 

network unavailability and server issues), a key research gap involves 

harnessing these benefits in an integrated manufacturing system.  

ii) At present, an overarching SM system integrated with ERP is missing from the 

literature. Therefore, a complete manufacturing solution is lacking. A major 

contribution of this research is the provision of a nexus of a synergised cloud-

centric SM system with intelligent data analytics. The SM comprises CPS, and 

integration is a major challenge. To date, no case studies have provided a 

complete integrated SM-based CPS validation in the manufacturing industry, 



and SM practices have seen partial implementation at singularities. Although 

SM has been developed theoretically, there have been few practical 

implementations in real-time integrated systems to address efficiency, decision-

making and low-volume manufacturing. Thus, this research addressed this key 

gap with a cloud-centric SM framework. This framework used sensory 

technologies, encapsulating IoT gateways and IIoT-integrated systems to 

capture more heterogenous operational data from the manufacturing system.  

iii) The HD data captured constituted 13 dimensions from 10 different sensors from 

various locations of the machine operation. Ten different sensors from the 

machines were captured using Raspberry Pi. These 10 sensors were independent 

sensors that provided independent HD data to be controlled and analysed. This 

control and analysis of the HD data, which predicted the machine behaviour, 

was challenging. The machine sensors outputted real-time HD data for control 

and analysis. The machine behaviour was controlled and predicted based on the 

analysis of these HD data. 

iv) The HD data collected from the machine sensors was complex. This complexity 

was reduced by applying multiple methods, out of which principal component 

analysis was selected as the best of all other dimensional-reduction algorithms, 

as it targeted the maximum possible variance in the data set and projected in a 

smaller subspace. This method of dimensional reduction illuminated the 

underlying important features of the machine. Several different types of sensory 

data were analysed for AD. Sensor_00 and Sensor_01 were used to test the 

implementation of the ML algorithms for AD. The following algorithms for AD 

were tested: random forest, decision trees, SVM, multiple linear regression, IF 

and KNN. Of these techniques, IF and KNN were successful, with KNN 

outperforming IF by 96%. 

v) Although the KNN algorithm showed superior performance compared with the 

IF algorithm, the IF algorithm was chosen for its ability to train unsupervised 

HD data. The KNN algorithm lacked the ability to train in an unsupervised 

manner. The AD technique involved analysing sensors for various HD data, 

thus tracing anomalous data sensor (e.g., real power values were detected from 

various HD data sensor). The detection technique involved inspecting all the 

data points (from all the sensor measurements) defined at the specific 

timestamp. Further, the IF algorithm detected anomalies based on the upper and 



lower thresholds of each sensor measurement. For example, the power 

consumption 1247th data sample in the dataset and relevant AD were presented 

for the sewing operation as a case study. Ten sensors were tested and gave the 

following readings: 2.440, 47.309, 52.127, 44.531, 77.184, 13.093, 16.168, 

52.910, 15.119 and 39.726. Based on machine failures, Sensor_08 threshold 

was identified between 14.98 and 15.98. Hence, the IF algorithm identified and 

predicted failure as Sensor_08 for AD. 

vi) In conclusion, implementing the ML and AD algorithms on manufacturing data

resulted in an overall ~30% increase in efficiency. Cutting, sewing, folding and

packing increased in efficacy by 30%, 29%, 26% and 26%, respectively. Data

analytical programs or AD strategies illustrated in this research were shown to

be feasible. The reasons for the failure of other algorithms or techniques should

be explored in future work. The integration of these technologies in a real-time

scenario is the most significant contribution of the present work, as this will

enhance the system efficacy in predictive measures, preventive methods and

adaptable systems.



6 Cloud-Centric Data-Driven Paradigm 

 

 

This chapter consolidates the research outcomes of two major research problems: decision-making frameworks 

and low-volume manufacturing. These research problems were addressed by integrating advanced technologies, 

such as CPS and CC. Cost and time analyses of the earlier system compared with the new SM system are discussed 

in detail.  



6.1 Introduction 

Manufacturers around the world are trying to take advantage of advancements in 

technologies that integrate the physical and virtual shopfloor. Many theoretical 

approaches to integrated frameworks of digital technologies have been proposed. These 

integrated technologies are referred to in different ways around the world, such as 

Industry 4.0 in Germany, Made in China 2025 and Industrial Internet in the US (Leng et 

al., 2021; Tantawi, Fidan, & Tantawy, 2019). These terms refer to the application of 

digital technologies within complex manufacturing systems. SM is the framework or 

practice that has evolved using data acquired from machines on the physical shopfloor. 

The data generated throughout the product lifecycle can be analysed from multiple 

perspectives (Stojanovic et al., 2017). 

Data generated by systems are unpredictable in terms of growth and are purely unrefined. 

The ability to make informed or precise decisions within manufacturing relies on 

manufacturing data. However, unfortunately, until now, decision-making frameworks 

have lacked efficiency (Wallis, Schillinger, Backmund, Reich, & Schindelhauer, 2020). 

This is because manufacturing systems have neglected the generated data. This has 

resulted in a loss of productivity, a lack of cost effectiveness and reduced flexibility in 

manufacturing. According to (Yao et al., 2017), more than 100 EB data are generated 

from manufacturing systems around the world annually. However, data-centric 

manufacturing is missing from existing systems. Implementing data-centric 

manufacturing systems has become an important aspect of SM practices, and research 

conducted on such systems has encouraged manufacturers to look closely at such 

approaches (Yao et al., 2017).  

The collaboration of cloud empowerment in manufacturing systems should not be 

underestimated. Data-centric manufacturing appears promising, but the platform of data 

analytics is equally important. Many improvements and advancements have occurred in 

relation to the manufacturing industry. One such advancement is CC or cloud-

empowered manufacturing systems (Tsai & Chang, 2018). The important contribution 

of cloud-empowered manufacturing is unmatched on-demand computing along with 

available, convenient and highly reliable services.  

 



6.2 Cyber-Integrated Low-Volume Manufacturing 

Low-volume individualised product manufacturing is a key constraint of the SM 

framework. The introduction and integration of CPS in the framework directly addresses 

low-volume individualised product manufacturing. The physical and virtual shopfloor 

was explained in the conceptual framework section of Chapter 4. The components of 

both these shopfloors were designed and simulated in CPS. Figures 47 and 48 show a 

virtual simulation of a manufacturing system with a real-time, tracking-enabled system. 

This real-time tracking helped the SM framework track the manufacturing line and gather 

data. Such data can help design flexible manufacturing systems, while pre-production 

simulations and real-time simulations provide accessibility. 

The textile-industry manufacturer on which the case study was conducted had more than 

1,800 footprints of products. The textile industry is a customer-oriented industry, and 

every individual customer has specific needs and desires in relation to the products they 

buy. Manufacturing a wide variety of products in a limited time is challenging. To meet 

market expectations, industries must maintain stocks of up to six months. Maintaining 

six months’ worth of stock necessitates undesirable and resource-hungry procedures, 

such as warehousing, management and tracking systems. In addition, when stock is kept 

for long periods, there can be issues of a decline in quality, pests, bugs and other 

problems. 

The SM system takes information from the integrated ERP and MES system with the 

manufacturing and resource data. This information is provided for CPS to design the pre-

manufacturing simulation that results in a better understanding of the manufacturing cycle. 

This anytime, anywhere information leads to the transformation of traditional practices to 

advanced manufacturing. As CPS is also powered by CC, the operations that are performed in 

real time are handled and executed in a hassle-free manner. The pilot test showed that CPS 

could be integrated into the proposed SM framework. Due to the pre-manufacturing simulation 

status of inventory, orders and supplier data was visualised before manufacturing. The major 

characteristics of low-volume manufacturing are low yearly production volumes, high 

complexity and high variety, high cost and customisability. 

The aforementioned characteristics of low-volume products lead the following problems: 

i) complete make-to-order production policies 



ii) a high level of manual work 

iii) the use of universal production equipment 

iv) the sharing of production resources among different products. 

The same characteristics also influence the product introduction process, which exhibits the 

following characteristics: 

i) few engineering prototypes 

ii) a limited and uncertain number of pre-series productions 

iii) the infeasibility of conventional production ramp-up 

iv) the modification of existing products rather than the development of new 

products 

v) the use of existing production systems with slight modifications for new 

products 

vi) the high frequency of introduction of new products. 

 

Figure 47 Cyber physical system–enabled smart manufacturing 



 

Figure 48 Isometric view of a smart manufacturing system 

6.3 Smart Manufacturing Flow 

The illustration in Figure 49, shows the flow of products and information and offers an 

overview of connectivity. Siemens offers various solutions for implementing an SM-like 

system on its MindSphere platform. The SM server consists of the local deployment of 

MindSphere along with connectivity tools, an instance of NetSuite ERP Solution and 

manufacturing simulation software. Most of the equipment is equipped with industrial 

PLC, which provides control and data-logging capabilities. All assets with PLCs are 

connected on an industrial local network, and data are fed into the SM server. Moving 

equipment and additional sensors, such as RFID sensors, uses a wireless network to 

communicate. 

Like MindSphere, the simulation software can access and use the PLC connectivity. 

Figure 49 Mattress protector production flow and communication overview 



Therefore, it can simulate the entire shift and suggest machine parameters, job ordering 

and material requirements. The combination of these packages creates this sophisticated 

workflow in the manufacturing. 

6.3.1 Production Flow 

The design flow generated after studying the manufacturing line led to several 

recommendations. Out of many possibilities, the best fit and feasible solution for the production 

flow developed in this research(figure 50) was as follows:  

i) On receiving a customer order, a work order is generated within the ERP

system, and a production plan is created.

ii) MES retrieves the work order, and the simulation software generates the

efficient machine parameters.

iii) Raw material information is sent to the forklift console with RFID sensors.

iv) Raw material is collected from the specified location, and the stock is

updated simultaneously.

v) The forklift passes through a validation checkpoint with RFID sensors to

check whether the correct material and quantity of material have been

collected.

vi) The materials are loaded onto a storage carousel with material information.

vii) The machine parameters and processes are updated from the SM based on

the simulation.

viii) During the cutting process, an Eton gripper collects the cut fabric and updates

the system information with the product data.

ix) The Eton system buffers the cut fabric and distributes it to the correct sewing

station, based on which a station is assigned with the product production.

x) On delivering the fabric to the sewing station, the RFID sensors verify

whether the correct fabric has been delivered.

xi) An RFID is sewn in the product at the sewing station, and the RFID system

updates the product information on the SM.

xii) The product continues on the Eton system to the folding machine, and RFID

sensors detect the product and adjust the machine parameters.

xiii) On completion of folding, the product is moved onto the packing assembly

line.



xiv) The product is placed on a conveyor to be taken to the correct packing station. 

On loading the folded fabric onto the conveyor, a metal detector checks the 

product, and an RFID sensor checks the product type to route it to the correct 

station. 

xv) The final products are boxed and placed on pallets with embedded RFID 

labels. The forklift collects the pallet, and RFID sensors update the system 

with the pallet information, products on it and the location at which they are 

stored.  

  

Figure 50 Operational flow of SM 



6.4 Cloud Empowerment in Smart Manufacturing System 

Cloud deployment and implementation has been conducted in many ways. There has been 

continuous development in the field of CC. However, ensuring the best solution and fit model 

that can be deployed within all scenarios is crucial. The below section details the requirements 

for CC. 

6.5 Requirements for Cloud Computing 

As discussed in relation to data methods in the previous sections of this chapter, cloud 

empowerment within the system also plays a vital role. In CC, the process is treated as a 

service (e.g., anything as a service [XaaS], platform as a Service [PaaS], software as a 

service [SaaS] and infrastructure as a service [IaaS]). In CC, these services form a layered 

system. Processing, storage, networks and other essential computing resources are 

specified as standardised services via the network at the infrastructure layer. The clients 

of cloud providers can use their underlying infrastructure to deploy and operate OS 

systems and software. In the integrated-development environment, PaaS provides 

concepts and services for building, testing, implementing, hosting and managing 

applications. The application layer supports a full range of SaaS applications. All the 

underlying XaaS layers can be accessed through the UI layer at the top. This results in 

the evolution and merging of multiple computing developments (e.g., package delivery, 

pay-as-you-go/use, flexibility, virtualisation, interrupted computing, space and grid 

computing). The multidisciplinary research field of CC requires appropriate and versatile 

business and IT infrastructure that can address issues such as computational power, 

storage capacity and servers to run multiple instances. CC plays a dynamic role in the 

corporate field of manufacturing in which everything is outsourced to multinational 

companies around the globe when handling internal data and operations. 

6.6 Cloud-Centred Systems for Improved Decision-Making 

Capabilities 

Along with the implementation of self-learning algorithms and CPS in the manufacturing 

industry, decision-making capabilities have also improved. This improvement in 

decision-making frameworks has helped create a more economical and productive 



manufacturing industry. Sensitive information about the manufacturing industry that is 

often neglected is the introduction of variations within product portfolios. This is due to 

the fear of missing out on market opportunities or doubts about existing competition, 

particularly among SMEs. 

In the present work, a cloud-centred decision-making framework was introduced to 

overcome these issues and create new opportunities for manufacturers, as well as to 

improve and support the product-introduction process in low-volume manufacturing, 

achieve shorter times to market/payback, with fewer production disturbances and higher 

product quality, while also identifying factors that affect the product introduction 

process. Therefore, this research identified the characteristics of low-volume products 

and production systems and studied their influences on the product-introduction process. 



   

Figure 51 Cost savings from smart manufacturing 

$4,911.06 

$6,353.60 

$29.00 

$760.00 

$30.10 

$500.00 

$750.00 

$577.60 

$1,677.00 

$5,198.40 

$29.00 

$570.00 

$30.10 

$190.00 

$500.00 

$288.80 

 $-  $1,000.00  $2,000.00  $3,000.00  $4,000.00  $5,000.00  $6,000.00  $7,000.00

Production cost

Employees cost

Material cost

Control engineering cost

Energy cost

Tools and instrumentation cost

Maintenance cost

Quality analysis cost

Cost per day

D
ec

is
io

n 
m

ak
in

g 
cr

ite
ria

Production cost Employees cost Material cost
Control

engineering
cost

Energy cost
Tools and

instrumentation
cost

Maintenance
cost

Quality
analysis cost

SM framework $1,677.00 $5,198.40 $29.00 $570.00 $30.10 $190.00 $500.00 $288.80
Existing framework $4,911.06 $6,353.60 $29.00 $760.00 $30.10 $500.00 $750.00 $577.60

SM framework Existing framework



The decision-making capabilities of SM were enhanced by implementing advanced 

technologies, such as CC and CPS. CC made the manufacturing data seamless and 

flawless. Similarly, CPS contributed to the preplanning production. Preplanning often 

contributes to the allocation of interdisciplinary departmental resources. The resources 

obtained from these departments were sorted, organised and managed at a single instance 

in the present work. Figure 50 shows the clear importance of and difference between 

traditional and SM frameworks. An average of an 18% difference in cost variation was 

identified. As shown in Figure 52, the multidepartment analysis conducted over four 

years revealed that implementing SM brought about dramatic changes for the 

manufacturer. 

In Figure 51, the time difference between the traditional and SM framework is outlined. 

These timings were studied before and after implementing the SM framework. A change 

of 69% in timings for maintenance, HR, warehousing, accounts, production, sales and IT 

is shown. These values were obtained from the field study conducted on a mattress 

protector manufacturer. 

In Figure 52, a cost–benefit analysis from 2018 to 2021 is discussed. As the bar graph 

shows, there were gradual improvements in interdepartmental performance after 

adopting the SM framework. This gradual improvement in interdepartmental 

performance led the overall performance of the manufacturing industry to reach an 

overall 95% improvement with just 5% in losses due to unavoidable scenarios. Further, 

interdepartmental performance was evaluated for communication improvements. A 

network traffic evaluation showed that the resources from various departments used an 

integrated ERP and MEs framework to communicate and allocate jobs. This integration 

resulted in reduced errors and improved decision-making capabilities. 



Figure 52 Cost–benefit analysis from smart manufacturing 
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Figure 53 Cost–benefit analysis multidisciplinary manufacturing industry
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Figure 54 Multidisciplinary decision performance analysis 

Figure 55 Inefficiencies comparison in a decision-making framework with a cloud-integrated system 
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6.7 Chapter Summary 

This chapter presented a cloud-empowered SM and discussed the unique benefits for low-

volume personalised products and enhancing decision-making frameworks. The following 

key points were discussed in this chapter: 

i) Line balancing the whole manufacturing process was modelled in the AR/VR 

environment. The process involved the photogrammetric scanning of a shopfloor 

embedding geospatial data points for an environment. Further, the new balanced line 

involved augmenting machinery layout, human movement analysis and auxiliary robotic 

vehicles for improved flexibility. This manufacturing flexibility and the interpolation of 

various operations with a quick layout ability provided inclusivity for low-volume 

personalised product manufacturing. 

ii) The CPS was developed by connecting VS, PS and DT in an integrated CC environment. 

Modelling various heterogenous operations, multidiscipline and relevant processes were 

challenges during the development of the cyber system. Characterising machine 

operations and interlinking CPS required RFID-based sensory outputs, which were 

developed using interconnected RFID datasets between various operations. 

iii) The SM flow was designed to incorporate multiple operations of the textile industry. 

This integration started from receiving a work order in ERP system. Once the order was 

received, ERP communicated to the MES system. MES subdivided the work order into 

simple procedures with respect to individual operations. Once the order had been 

processed in MES, the operations were tacked using RFID tags. For example, the first 

operation (e.g., cutting the mattress protectors in required panels and integrating the 

sheets with RFID tags) and the next operations (e.g., sewing operations) were tracked 

throughout with RFID tags flowing through the automated manufacturing system (e.g., 

the Eton system). SM sensory data analytics provided continuous monitoring and helped 

suggest improvements to enhance efficiencies and improve decision-making. Once the 

operations were completed, the SM had personalised packaging, automated warehousing 

and dispatch capabilities. 



iv) As manufacturing is multidisciplinary, CC enhanced the data analytical capabilities with 

dashboard decision tools. Integrating MES and ERP provided a synchronous flow with 

a cradle-to-cradle approach. The different departments, including suppliers and 

customers, were interconnected seamlessly with a real-time access capability. The SM 

system was compared with traditional manufacturing operations within various 

disciplines. The different disciplines and their related costs and times were compared 

(e.g., production, quality, material, control engineering, energy, tools and 

instrumentation, maintenance and employees). The results showed 18% cost benefits and 

31% time reductions in SM compared with traditional manufacturing. The cost benefits 

and time reductions per day in multidisciplinary manufacturing were as follows: 

production—A$ 3,234.00 (32.34%) and 39.47 seconds (3%), quality—A$ 1,155.00 

(11.55%) and 50 seconds (7.5%), material—no change and not applicable, control 

engineering—A$ 190.00 (1.90%) and 33.33 seconds (3.8%), energy—no change, tools 

and instrumentation—A$ 310.00 (3.10%) and not applicable, maintenance—A$ 256.00 

(2.5%) and no change and employees—A$ 288.80 (2.89%) and 18.18 seconds (30.4%). 

v) A cost–benefit analysis from the years 2018 to 2021 for the manufacturing 

multidiscipline was conducted for the decision-making framework. The results indicated 

that decision-making was enhanced after implementing the developed SM, which 

resulted in enhanced cost benefits. The decision-making framework was evaluated based 

on the communication protocols derived from the network traffic monitoring within 

various disciplines. Network traffic monitoring was embedded and harnessed via 

integrated ERP and MES communications within the SM framework (e.g., job allocation 

and resource planning). This minimised miscommunication and reduced ambiguity due 

to manual error. These were harnessed from the cloud-centric collaborative absolute 

decision-making framework. Implementing the developed SM enhanced the decision-

making framework by 58% (2018) and 66% (2021) for marketing, 59% (2018) and 59% 

(2021) for information technology, 63% (2018) and 71% (2021) for sales, 69% (2018) 

and 81% (2021) for manufacturing, 89% (2018) and 90% (2021) for accounts, 55% 

(2018) and 63% (2021) for planning, 85% (2018) and 91% (2021) for warehousing, 65% 

(2018) and 72% (2021) for design and 80% (2018) and 88% (2021) for human resources. 



vi) The entire SM framework was examined for decision-making inefficiencies within 

various operations and disciplines. Benchmarking studies were conducted to compare 

the traditional, simulated and developed SM. Inefficiencies within traditional and 

simulated manufacturing were 45% and 18%, respectively. The SM showed a 95% 

efficiency with less than 5% losses in decision-making processes. Thus, this research 

clearly established the efficacy of the developed SM framework for improving decision-

making. 

  



7 Conclusions and Recommendations 

 

 

This chapter outlines the main research outcomes and offers recommendations to the manufacturing industry to 

enhance efficiency, focusing on decision-making frameworks and low-volume manufacturing.  



7.1 Introduction 

In this chapter, section 7.2 summarises the approach and outlines key conclusions of the research 

in terms of resolving key manufacturing challenges. Section 7.3 summarises the significant 

outcomes of the research and offers industrial recommendations. Positive feedback from the 

industry and industry recommendations are discussed in section 7.4. 

7.2 Key Conclusions 

The use of an SM framework allowed for the integrated cloud-centric transformative 

technologies of ML, CC and DT to be harnessed to enhance efficiency, decision-making 

frameworks and low-volume manufacturing. The framework led to efficiency gains using 

sensory technologies and ML-based intelligence to reduce machine idle and setup times and 

minimise failures by predicting unforeseen events. The ML algorithms with AD techniques 

could diagnose various sensory data, find faults and minimise downtime events, which 

would not be possible in traditional manufacturing. Intrinsic multidisciplinary bidirectional 

communication was established within the manufacturing by integrating ERP with MES. 

This enhanced communication protocols, material flows, inventory management, supplier 

and customer management and decision-making. The manufacturing system was controlled 

by automated overhanging conveyor systems linked to machines and related operations via 

RFID for balanced performance. This allowed for flexibility in low-volume personalised 

production, as well as rapid setups and changeovers and enhanced packaging. The major 

contributions of the research are as follows: 

i) Chapter 1 detailed the research background, aims and objectives and novelty of the

research, with an additional overview of the thesis organisation. The manufacturing

industry is a major contributor to the GDP of a nation and, in 2019, accounted for

16% of worldwide GDP and over 14% of total employment across the globe. Per

(ABS, 2019) data, manufacturing contributed 9% of the GDP of Australia, equating

to A$ 100 billion, in 2019. This research aimed to develop an SM framework. The

research problem discussed the current manufacturing paradigm the key challenges

of inefficiency, the lack of decision frameworks and the need for agility in



manufacturing to pivot to low-volume manufacturing. In total, 60% to 70% of the 

Australian manufacturing sector is made up of SMEs. Adoptions, affordability and 

the lack of a skilled workforce were major barriers to implementing SM 

frameworks. The novelty of this research lies in the integrated SM framework, 

which connects multiple disciplines, characterises heterogenous operations and 

minimises reworks and rejigging. This research outlined an integrated SM 

framework that enhanced communication and decision capabilities. Manufacturing 

agility allowed for the adoption of personalised low-volume manufacturing. 

ii) A detailed literature review and manufacturing industry analysis were conducted to 

explore current gaps and challenges within the Australian manufacturing industry. 

SMEs often cannot afford to implement and upskill their workforce in terms of 

Industry 4.0 technologies (ABS, 2019). The disconnect between the multiple 

disciplines within manufacturing result in inefficiencies. These disciplines include 

production planning, administration, marketing and sales and resource 

management. Challenges must be addressed to transform manufacturing. An 

integrated manufacturing framework was required to enhance interdisciplinary 

connections and promote seamless operational connectivity. Major research gaps 

identified in the LR were the control of machine characters, which results in 

inefficiencies along with increased labour costs in Australia; the demand for 

inclusive personalisation due to global competitiveness; and ineffective 

communications between operators and operations, which results in waste. SM was 

implemented as singularity, providing the benefits of reducing costs and 

minimising manufacturing time (e.g., takt times, lead times, cycle times, 

operational costs, and administrative costs). AR/VR technologies were partially 

implemented in manufacturing targeting visualisation. However, an integrated 

framework of real-time visualisation along with physical machinery was found to 

be missing from the manufacturing paradigm. Research on heterogenous 

operational data acquisition and related data analytics for enhanced efficiency was 

also lacking missing (e.g., using ML algorithms found in singularities). 

iii) A case study on the manufacturing industry was conducted on a manufacturer in 

the textile industry that had complex and heterogenous operations that were 



multidisciplinary, inefficient, disconnected and required large variants with low-

volume manufacturing. The results of the field study showed that absorbent time 

was required for various products using traditional manufacturing (e.g., a single 

mattress protector took 158 seconds to produce, a queen mattress protector took 

165 seconds, and a super king mattress protector took 180 seconds). The 

manufacturer used many intricate operations, such as cutting, laying, sewing, 

folding and packing. These operations were integrated on a single platform using 

the developed SM framework, and the same technology shows potential to be 

implemented in other similar manufacturing companies. 

iv) The operations of the textile manufacturer were heterogenous with several 

disconnects. Further, the operational takt times varied, meaning lines were 

imbalanced. In addition, the large variations in product ranges required the 

manufacturing systems to be agile. A field study was conducted to benchmark 

current practices and pinpoint key challenges. Several efficiencies gains were 

documented from the traditional to simulated environment in the field study: the 

cutting operation improved from 55% to 89%, transferring was enhanced from 58% 

to 85%, sewing from 56% to 88% and packing from 59% to 90%. Thus, the 

simulated system resulted in overall efficiency gains of ~31% compared with 

traditional practices. 
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v) The SM framework was introduced to address manufacturing challenges and the 

previously identified limitations. The main challenges identified through the LR, 

and field studies were inefficiencies due to unplanned machine breakdowns, idle/ 

setup times due to lack of integrated framework, a lack of communication and 

decision-making capabilities, rework and rejigging, technology adoption and 

upskilling issues, affordance and implementation, disintegrated disciplines and the 

lack of manufacturing agility for low-volume manufacturing. The SM framework 

integrated VS and PS within the integrated cloud-centric DT platform. This data 

integration and analytics provided seamless communications within various 

disciplines. This ensured enhanced decision-making and seamless manufacturing 

in packaging and beyond. The SM framework combined various transformative 

technologies (e.g., ML, CC, CNR and AR/VR) in an integrated solution to capture 

heterogenous operational characteristics. Further, AR/VR technologies were used 

to visualise operational sequencing and for takt time analysis and optimisation for 

enhanced efficiencies through simulations. In addition, ML algorithms were used 

to analyse machine characteristics and behaviours, as well as for automated 

prediction strategies. Storage, access control and behavioural predictions from the 

centralised cloud-centric platform enhanced data analytics capabilities. Raspberry 

Pi was used to establish the data acquisition and analysis for enhanced efficiency. 

vi) The SM framework used ML-based intelligence to enhance efficiencies and the 

decision-making framework. AD techniques were used by incorporating ML over 

sensory data. Sensory data were obtained from various operations using different 

sensors embedded in the machines. These data sets were complex and inherited 

multiple dimensions. Hence, monitoring and controlling these HD datasets was 

inherently complex. The ML algorithms were distinct and posed potential 

capabilities to address the aforementioned HD datasets generated from the 

manufacturing operational sensors. Among the proposed ML algorithms, IF, 

random forest, KNN, SVM, MLR, and decision trees were trialled for performance 

testing to detect and normalise anomalies in the HD datasets. 

vii) Of the various algorithms for AD techniques, IF and KNN were the best fit 

algorithms for the HD data, with an AD score of nearly 96%, which was the highest 



of all the algorithms. A case study was conducted on a textile manufacturer on a 

sewing operation. Ten sensors were tested and gave the following readings: 2.440, 

47.309, 52.127, 44.531, 77.184, 13.093, 16.168, 52.910, 15.119 and 39.726. Based 

on machine failures, Sensor_08 threshold was identified as between 14.98 and 

15.98. Hence, the IF algorithm identified and predicted the failure as Sensor_08 for 

AD. In conclusion, implementing the ML and AD algorithms on the manufacturing 

data resulted in an overall ~30% increase in efficiency. The cutting, sewing, folding 

and packing measures resulted in a 30%, 29%, 26% and 26% increase in efficiency, 

respectively. 

Figure 57 Algorithm performance matrix 
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256.00 (2.5%) and no change and employees—A$ 288.80 (2.89%) and 18.18 

seconds (30.4%). An interdepartmental performance analysis was conducted 

annually. From 2018 to 2021, there were substantial improvements within the 

different manufacturing departments: marketing (8%), IT (10%), sales (8%), 

manufacturing (12%), accounts (1%), planning (8%), warehousing (6%), design 

(7%) and HR (8%). Inefficiency within traditional and simulated manufacturing 

was 45% and 18%, respectively. The SM proposed in this research showed a 95% 

efficiency with less than 5% losses. Thus, the efficacy of the developed SM 

framework was clearly established. 

7.3 Important Outcomes and Recommendations 

This section covers the important outcomes and recommendations made for the 

manufacturing industry, as follows: 

i) The problems faced by SMEs were identified, and countermeasures were

recommended. An integrated SM system was developed to address inefficiencies,

decision-making and low-volume manufacturing. This system must be normalised

in Australian SMEs.

ii) Three important manufacturing problems were discussed. The first concerned

efficiency. The results of the research showed that implementing ML algorithms in

the manufacturing industry can provide a solution to important challenges. The

methodology used in this research is recommended for all Australian

manufacturing SMEs. Implementing ML algorithms will promote change within

traditional manufacturing methods in Australia, which will boost GDP.

iii) Two appropriate algorithms were recommended. The accuracy of KNN and IF was

demonstrated on the complex data generated. The major advantages of these

algorithms were sub-sampling, swamping and masking. Hence, these algorithms

are recommended for analysing manufacturing data.

iv) Of the various cloud-deployment techniques and implementation strategies, the use

of hybrid cloud storage was recommended. Hybrid cloud storage has an edge over

the other cloud-deployment methods of private, public and community deployment.



Hybrid cloud storage mainly uses private and public deployment strategies. This 

combination of technologies resolved the intrinsic job of the anywhere, anytime 

strategy. 

v) The research showed that the manufacturing industry is in need of comprehensive 

and informative decision-making frameworks. Implementing such a framework in 

the manufacturing industry led to an analysis of interdepartmental performance. 

This analysis pinpointed the major challenges and solutions affecting 

manufacturing and identified critical decisions that must be taken. 

vi) AWS as a cloud server was used to validate the framework for the advanced 

implementation of cloud-based real-time event failure detection. This operated 

uninterrupted in the manufacturing scenario. 

vii) Online instants of Anaconda version (Jupyter lab or Jupyter notebook) are strongly 

recommended for workspaces in which ML is implemented. Further, modelling 

software, such as 3Ds Max, Solidworks and Bender, is recommended for modelling 

applications in CPS. 3D simulators, such as virtual components, can be used for 

real-time simulation. 

7.4 Endorsements 

The research has been accepted and endorsed by industry partners and journals and has 

received positive feedback from industry experts, who have made recommended for similar 

industries. Industry experts, such as the Innovative Manufacturing Cooperative Research 

Centre (IMCRC), reviewed the research, which was validated on a mattress protector 

manufacturing company. The researcher also received recognition through public 

appearances and guest lectures, as well as in renowned publications. 

This research outcomes were discussed in guest lectures at Swinburne University of 

Technology and the Indian Institute of Technology, Hyderabad, India. The case study and 

the implementation strategies were discussed to explain the industry standards of SM 

implementation to students. 



7.4.1 Industry Partner Acceptance 

The research was conducted over a period of three years in relation to an Australian mattress 

protector manufacturer in association with IMCRC. Progress was reviewed regularly by 

industry partners Sleepcorp Pty. Ltd. and IMCRC. Board meeting were held monthly, and 

quarterly reports were submitted. Below are the dates and details of quarterly reports and 

milestones achieved. 

7.4.1.1 Quarterly reports 

i) Sleepcorp, IMCRC innovative project – April 2019

ii) Sleepcorp, IMCRC innovative project – July 2019

iii) Sleepcorp, IMCRC innovative project – October 2019

iv) Sleepcorp, IMCRC innovative project – January 2020

v) Sleepcorp, IMCRC innovative project – April 2020

vi) Sleepcorp, IMCRC innovative project – July 2020

vii) Sleepcorp, IMCRC innovative project – October 2020

viii) Sleepcorp, IMCRC innovative project – January 2021

ix) Sleepcorp, IMCRC innovative project – April 2021

x) Sleepcorp, IMCRC innovative project – July 2021

xi) Sleepcorp, IMCRC innovative project – October 202



7.5 Milestones Reached 

 

Figure 58 Project milestones  

There were major milestones for the eleven quarters of the research project conducted on a textile 

industry manufacturer. In the first quarter, a feasibility study of the textile industry was conducted. 

In the next quarter, current standards of manufacturing technologies were benchmarked, and a 

business case study was designed. Following the novel approach of an SM framework, the 

advanced technologies ML, CC, CPS and DT were considered. A seamless and lean-

manufacturing framework was discussed by weighing the capabilities of SM. Prototype testing 

was conducted for two quarters in the 2020–2021 financial year. Depending on the observations 

from the prototype, an alternative or modified methodology was introduced. This novel SM 

framework was configured for textile manufacturing. Lastly, MES and ERP were integrated, and 

a proof of concept was demonstrated based on a real-world case study. 

7.6 Publications  

i) Sourabh Dani, Jiong Jin and Ambarish Kulkarni, ‘Current state of art industry survey 

in Industry 4.0 manufacturing industries’, Journal of Industrial Engineering and 

Management (under review). 

ii) Sourabh Dani, AK Rahman, Jiong Jin, and Ambarish Kulkarni, ‘Real-time Cloud 

Empowered VMS’, published for the special edition of ‘Handbook of Real-time 

Computing’ for Springer edition. 



iii) Sourabh Dani, Jiong Jin and Ambarish Kulkarni, ‘Comprehensive survey of Real-time 

anomaly detection in High Dimensional Data in Manufacturing scenario’, submitted to 

the IEEE International Conference on Cloud Computing (under review). 

iv) Sourabh Dani, Jiong Jin and Ambarish Kulkarni, ‘Real-Time Anomaly Detection in 

Smart Manufacturing System’ conference on Industrial Connectivity for a 

manufacturing process using Cyber-Physical Systems (under review). 

v) Sourabh Dani, AK Rahman, Paul Shuva, Jiong Jin, and Ambarish Kulkarni, ‘Cloud 

Empowered High Dimensional Anomaly Detection’, submitted to the internarial journal 

of IEEE (impact factor: 3.367). 

  



8 Future Scope 

 

 

This chapter discusses the future scope this research and outlines the direction of future developments and 

improvements to ML, CC and CPS in SM frameworks.  



8.1 Introduction 

This research has many future applications that are not limited to manufacturing. Similar 

frameworks could be implemented in the construction, mining and transport industries. 

However, before exploring the multitude of possibilities of this research in different 

industries, manufacturing scenarios should be explored in further detail. 

8.2 Effective Modelling of Self-learning Algorithms 

Common manufacturing problems were addressed by implementing self-learning algorithms. 

These algorithms must be developed and modified for high-scalable environments and should be 

robust and reliable. This research paves the way for reduced event failures; however, the 

development of algorithms was not explored in detail. When implementing algorithms on 

manufacturing data, many inbuilt problems were encountered, such as ML model latency, 

inaccuracy and non-environment friendly. Further, the algorithms researched were modified for 

the case study. This modification of cross-platform performance should be studied in more detail. 

Rapid developments in the field of manufacturing demand high accuracy and reliable models. 

Although all possible supervised and unsupervised algorithms were explored in this research, 

future research should focus on big data developments. 

ML has become powerful in the last decade, and the intelligence that algorithms create is 

intelligent. Intelligence is a must-have feature for SM systems. The interdisciplinary actions of 

ML reveal its capabilities in the fields of mining, transportation, industrial automation and others. 

8.3 Cyber Security for Seamless Manufacturing 

For all of the advantages that SM may provide, it also necessitates a more complete security 

strategy. The catalysts for SM are seamless connection and smart gadgets, but they may also 

be a conduit for security concerns. The increasing usage of publicly accessible technology 

in industrial control systems, as well as the creation of increasingly connected, information-

enabled organisations, raises security threats, as well as the obligations of both control 

system suppliers and users. Industrial control systems have traditionally relied on proprietary 

technology and have been kept separate from information systems in most businesses. The 



systems were mostly incompatible, and the commercial technologies employed in office 

environments simply did not match the control system's needs. Commercial technologies 

have been adopted for use in control systems as they have improved in recent decades, 

resulting in lower prices, more compatibility, and greater simplicity of use. Connectivity 

between systems has grown easier and more anticipated as a result of these advancements.  
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