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ABSTRACT
We present measurements of the weak gravitational lensing shear power spectrum based on
450 deg2 of imaging data from the Kilo Degree Survey. We employ a quadratic estimator in
two and three redshift bins and extract band powers of redshift autocorrelation and cross-
correlation spectra in the multipole range 76 ≤ � ≤ 1310. The cosmological interpretation of
the measured shear power spectra is performed in a Bayesian framework assuming a �CDM
model with spatially flat geometry, while accounting for small residual uncertainties in the shear
calibration and redshift distributions as well as marginalizing over intrinsic alignments, baryon
feedback and an excess-noise power model. Moreover, massive neutrinos are included in the
modelling. The cosmological main result is expressed in terms of the parameter combination
S8 ≡ σ8

√
�m/0.3 yielding S8 = 0.651 ± 0.058 (three z-bins), confirming the recently reported

tension in this parameter with constraints from Planck at 3.2σ (three z-bins). We cross-check
the results of the three z-bin analysis with the weaker constraints from the two z-bin analysis
and find them to be consistent. The high-level data products of this analysis, such as the band
power measurements, covariance matrices, redshift distributions and likelihood evaluation
chains are available at http://kids.strw.leidenuniv.nl.

Key words: gravitational lensing: weak – cosmological parameters – cosmology: observa-
tions – large-scale structure of Universe.

1 IN T RO D U C T I O N

The current cosmological concordance model successfully de-
scribes observations spanning a wide range in cosmic volume from
the cosmic microwave background (CMB) power spectrum (e.g.
Planck Collaboration XIII 2016), the Hubble diagram based on
supernovae of type IA (e.g. Riess et al. 2016), big bang nucleosyn-
thesis (e.g. Fields & Olive 2006), to the distance scales inferred from
baryon acoustic oscillations imprinted in the large-scale clustering

�E-mail: fkoehlin@strw.leidenuniv.nl

of galaxies (e.g. BOSS Collaboration 2015). Based on Einstein’s
theory of general relativity and the application of the Copernican
principle to the whole Universe, the �-dominated cold dark mat-
ter (�CDM) model requires in its simplest form only a handful of
parameters to fit all current observational data.

The weak gravitational lensing due to all intervening cosmic
large-scale structure along an observer’s line of sight, termed cos-
mic shear, presents a powerful tool to study the spatial and temporal
distribution of the dark species. However, the tiny coherent im-
age distortions, the shear, of background sources caused by the
differential deflection of light by foreground masses can only be
studied in statistically large samples of sources. Hence, wide-field
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surveys covering increasingly more volume of the Universe pro-
vide the strategy for improving the precision of the measurements.
Data from large weak lensing surveys such as the Kilo Degree
Survey (KiDS; de Jong et al. 2013, 2015; Kuijken et al. 2015; de
Jong et al. 2017), the Subaru Hyper SuprimeCam lensing survey
(Miyazaki et al. 2015; Aihara et al. 2017) and the Dark Energy
Survey (DES; Jarvis et al. 2016) are currently building up. These
surveys are expected to reach a sky coverage on the order of (sev-
eral) 1000 deg2 within the next few years, which presents an order
of magnitude increase of data useful for cosmic shear studies com-
pared to currently available survey data (Erben et al. 2013; Moraes
et al. 2014; Hildebrandt et al. 2016). Eventually, close to all-sky sur-
veys will be carried out over the next decade by the ground-based
Large Synoptic Survey Telescope (Ivezic et al. 2008) or the space-
borne Euclid satellite (Laureijs et al. 2011). In contrast to that the
spaceborne Wide Field Infrared Survey Telescope1 will only observe
of the order of 1000 deg2 but to unprecedented depth. The cosmic
shear signal as a function of redshift is sensitive to the growth of
structure and the geometry of the Universe and studying its redshift
dependence allows us to infer the expansion rate as well as the
clustering behaviour of cosmic species such as dark matter, massive
neutrinos and dark energy.

Several statistics have been used to measure cosmic shear; the
most common one to date is based on the two-point statistics of real-
space correlation functions (e.g. Kilbinger 2015 for a review). The
redshift dependence is either considered by performing the cosmic
shear measurement in tomographic redshift slices (e.g. Benjamin
et al. 2013; Heymans et al. 2013; Becker et al. 2016) or by employing
redshift-dependent spherical Bessel functions (Kitching et al. 2014).
An alternative approach is to switch to Fourier-space and measure
the power spectrum of cosmic shear instead. One particular advan-
tage of direct shear power-spectrum estimators over correlation-
function measurements is that the power-spectrum measurements
are significantly less correlated on all scales. This is very impor-
tant for the clean study of scale-dependent signatures, for example
massive neutrinos, as well as to investigate residual systematics.
For correlation functions, accurate modelling is required for highly
non-linear scales in order to avoid any bias in the cosmological pa-
rameters. Moreover, correlation-function measurements require a
careful assessment and correction of any global additive shear bias.

Direct power spectrum estimators have been applied to data a
handful of times. The quadratic estimator (Hu & White 2001) was
applied to the COMBO-17 data set (Brown et al. 2003) and the
GEMS data set (Heymans et al. 2005). In a more recent study, Lin
et al. (2012) applied the quadratic estimator and a direct pseudo-
C(�) estimator (Hikage et al. 2011) to data from the SDSS Stripe
82. However, the direct power spectrum estimators in these studies
did not employ a tomographic approach. This was introduced for
the first time in Köhlinger et al. (2016), where we extended the
quadratic estimator formalism to include redshift bins and applied
it to shear catalogues from the lensing analysis of the Canada–
France–Hawaii Telescope Legacy Survey (CFHTLenS; Heymans
et al. 2012; Hildebrandt et al. 2012; Erben et al. 2013).

For this paper, we apply the quadratic estimator in two and three
redshift bins to 450 deg2 of imaging data from the Kilo Degree
Survey (KiDS-450 in short hereafter). By comparing the results
obtained here to results from the fiducial correlation-function anal-
ysis by Hildebrandt et al. (2017), we point out particular advan-
tages and disadvantages of the quadratic estimator in comparison to

1 wfirst.gsfc.nasa.gov

correlation functions. Moreover, this analysis presents an important
cross-check of the robustness of the cosmological constraints de-
rived by Hildebrandt et al. (2017), which were found to be in mild
tension in the parameter combination S8 ≡ σ8

√
�m/0.3 at 2.3σ

when compared to the most recent CMB constraints by Planck
Collaboration XIII (2016). The estimator and data extraction and
cosmological inference pipelines used in this analysis are indepen-
dent from the estimator and pipelines used in Hildebrandt et al.
(2017). Only the data input in the form of shear catalogues and
redshift catalogues are shared between the two analyses.

The paper is organized as follows: in Section 2 we summarize
the theory for cosmic shear power spectra and in Section 3 we
present the quadratic estimator algorithm. Section 4 introduces the
KiDS-450 data set, the applied shear calibrations and the details
of the employed covariance matrix of the shear power spectra. In
Section 5, we present the measured cosmic shear power spectra.
The results of their cosmological interpretation are discussed in
Section 6. We summarize all results and conclude in Section 7.

2 TH E O RY

Gravitational lensing describes the deflection of light due to mass,
following from Einstein’s principle of equivalence. In this paper, we
will specifically work in the framework of weak gravitational lens-
ing. It is called weak lensing because the coherent distortions of the
image shapes of galaxies are typically much smaller than their in-
trinsic ellipticities. Measurements of the coherent image distortions
are only possible in a statistical sense and require averaging over
large samples of galaxies due to the broad distribution of intrinsic
ellipticities of galaxies. The weak lensing effect of all intervening
mass between an observer and all sources along the line of sight
is called cosmic shear. The resulting correlations of galaxy shapes
can be used to study the evolution of the large-scale structure and
therefore cosmic shear has become an increasingly valuable tool
for cosmology especially in the current era of large surveys (see
Kilbinger 2015 for a review). For details on the theoretical foun-
dations of (weak) gravitational lensing, we refer the reader to the
standard literature (e.g. Bartelmann & Schneider 2001).

The main observables in a weak lensing survey are the angu-
lar positions, shapes and (photometric) redshifts of galaxies. The
measured galaxy shapes in terms of ellipticity components ε1, ε2

at angular positions ni are binned into pixels i = 1, ..., Npix and
(photometric) redshift bins zμ. Averaging the ellipticities in each
pixel yields estimates of the components of the spin-2 shear field,
γ (n, zμ) = γ1(n, zμ) + iγ2(n, zμ). Its Fourier decomposition can
be written in the flat-sky limit2 (see Kilbinger et al. 2017) as

γ1(n, zμ) ± iγ2(n, zμ) =
∫

d2�

(2π)2
Wpix(�)

× [κE(�, zμ) ± iκB(�, zμ)]

× e±2iϕ� ei�·n, (1)

with ϕ� denoting the angle between the two-dimensional vector �

and the x-axis.
In the equation above, we introduced the decomposition of the

shear field into curl-free and divergence-free components, i.e. E
and B modes, respectively. For lensing by density perturbations, the
convergence field κE contains all the cosmological information and

2 This is well justified for the range of multipoles accessible with the current
KiDS-450 data.
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4414 F. Köhlinger et al.

the field κB usually vanishes in the absence of systematics. In the
subsequent analysis, we will still extract it and treat it as a check
for residual systematics in the data.

The Fourier transform of the pixel window function, Wpix(�), can
be written as

Wpix(�) = j0

(
�σpix

2
cos ϕ�

)
j0

(
�σpix

2
sin ϕ�

)
, (2)

where j0(x) = sin (x)/x is the zeroth-order spherical Bessel function
and σ pix is the side length of a square pixel in radians.

The shear correlations between pixels ni and nj and tomographic
bins μ and ν can be expressed in terms of their power spectra and
they define the shear-signal correlation matrix (Hu & White 2001):

Csig = 〈γa(ni , zμ)γb(nj , zν)〉, (3)

with components

〈γ1iμγ1jν〉 =
∫

d2�

(2π)2

[
CEE

μν (�) cos2 2ϕ� + CBB
μν (�) sin2 2ϕ�

− CEB
μν (�) sin 4ϕ�

]
W 2

pix(�)ei�·(ni−nj ),

〈γ2iμγ2jν〉 =
∫

d2�

(2π)2

[
CEE

μν (�) sin2 2ϕ� + CBB
μν (�) cos2 2ϕ�

+ CEB
μν (�) sin 4ϕ�

]
W 2

pix(�)ei�·(ni−nj ),

〈γ1iμγ2jν〉 =
∫

d2�

(2π)2

[
1

2

(
CEE

μν (�) − CBB
μν (�)

)
sin 4ϕ�

+ CEB
μν (�) cos 4ϕ�

]
W 2

pix(�)ei�·(ni−nj ). (4)

In the absence of systematic errors and shape noise,3 the cos-
mological signal is contained in the E modes and their power
spectrum is equivalent to the convergence power spectrum, i.e.
CEE(�) = Cκκ (�) and CBB(�) = 0. Shot noise will generate equal
power in E and B modes. The cross-power between E and B modes,
CEB(�), is expected to be zero because of the parity invariance of
the shear field.

The theoretical prediction of the convergence power spectrum
per redshift-bin correlation μ, ν in the (extended) Limber approxi-
mation (Limber 1953; Kaiser 1992; LoVerde & Afshordi 2008) can
be written as

CEE
μν (�) =

∫ χH

0
dχ

qμ(χ )qν(χ )

f 2
K(χ )

Pδ

(
k = � + 0.5

fK(χ )
; χ

)
, (5)

which depends on the comoving radial distance χ , the comoving
distance to the horizon χH, the comoving angular diameter distance
fK(χ ) and the three-dimensional matter power spectrum Pδ(k; χ ).

The weight functions qμ(χ ) depend on the lensing kernels and
hence they are a measure of the lensing efficiency in each tomo-
graphic bin μ:

qμ(χ ) = 3�mH 2
0

2c2

fK(χ )

a(χ )

∫ χH

χ

dχ ′ nμ(χ ′)
fK(χ ′ − χ )

fK(χ ′)
, (6)

where a(χ ) is the scalefactor and the source redshift distribution
is denoted as nμ(χ ) dχ = n′

μ(z) dz. It is normalized such that∫
dχ nμ(χ ) = 1.

3 In lensing this term refers to a shot noise-like term that depends on the
number of available source galaxies and their intrinsic ellipticity dispersion.

3 QUA D R AT I C E S T I M ATO R

For the direct extraction of the shear power spectrum from the
data, one can for example use a maximum-likelihood technique
employing a quadratic estimator (Bond, Jaffe & Knox 1998;
Seljak 1998; Hu & White 2001) or measure a pseudo-power spec-
trum from the Fourier-transformed shear field (also pseudo-C(�);
Hikage et al. 2011; Asgari et al. 2016). The likelihood-based
quadratic estimator automatically accounts for any irregularity in
the survey geometry or data sampling while it still maintains an op-
timal weighting of the data. This is important when dealing with real
data because it allows for the use of sparse sampling techniques and
it can deal efficiently with (heavily) masked data (Asgari et al. 2016;
Köhlinger et al. 2016). A particular disadvantage of the quadratic
estimator is that it requires an accurate and precise estimate of the
noise in the data for the clean extraction of E and B modes. This
is a very important point especially for current surveys in which
the noise power dominates over the cosmological signal even on
the largest scales. The pseudo-C(�) method is faster thanks to ef-
ficient fast Fourier transforms, but in order to obtain an unbiased
measurement of the shear power spectrum it requires a non-trivial
deconvolution of the extracted pseudo-spectrum with a window ma-
trix. This deconvolution may lead to less accurate measurements on
large scales (Asgari et al. 2016).

Alternative pseudo-C(�) methods are based on correlation-
function measurements as input (e.g. Schneider et al. 2002; Becker
et al. 2016). These present a hybrid approach, translating the real-
space measurements and all their properties into Fourier-space,
while formally requiring knowledge of the correlation-function
measurements over all angles from zero to infinity. Moreover,
correlation-function based power spectrum estimators/translators
rely on a non-trivial correction of the additive shear bias which
is not required for the quadratic estimator as will be shown in
Appendix E.

3.1 Method

Here we only briefly summarize the quadratic-estimator algorithm
applied to cosmic shear including its extension to tomographic bins.
For an in-depth description, we refer the reader to the original
literature (Hu & White 2001; Lin et al. 2012; Köhlinger et al. 2016).

3.1.1 Likelihood

The likelihood of the measured shear field is assumed to be Gaussian
over all scales of interest for our analysis, i.e.

L = 1

(2π)N |C(B)|1/2
exp

[
−1

2
dT [C(B)]−1d

]
. (7)

The data vector d with components

daiμ = γa(ni , zμ) (8)

contains both components of the measured shear γ a per pixel ni for
each redshift bin zμ. The covariance matrix C is written as the sum
of the noise Cnoise and the cosmological signal Csig (equation 3).
The latter depends on the shear power spectra C(�), which are
approximated in the algorithm as piece-wise constant band powers
B.

As long as the pixel noise of the detector is uncorrelated, the noise
matrix can be assumed to be diagonal, i.e. shape noise is neither
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correlated between different pixels ni , nj and shear components γ a,
γ b, nor between different redshift bins zμ, zν :

Cnoise = σ 2
γ̃ (zμ)

Ni(zμ)
δij δabδμν, (9)

where σγ̃ is the standard deviation of an unbiased shear estimator.
Usually it is assumed that σγ̃ = σε , the root-mean-square ellipticity
per ellipticity component for all galaxies in the survey. Ni(zμ) de-
notes the effective number of galaxies per pixel i in redshift bin zμ.4

The specification of the noise matrix here is one of the fundamen-
tal differences with respect to correlation-function measurements:
whereas this algorithm requires a characterization of the noise in
the data before performing the measurement, correlation-function
measurements can be performed regardless of any knowledge of
the noise. The decomposition of signal and noise enters then only
in the covariance matrix of the real-space measurements.

As for current surveys the signal is still much weaker than the
noise even at the lowest multipoles, an accurate and precise estimate
of the noise level is paramount for an unbiased interpretation of the
cosmological signal.

This is difficult to achieve because the measured ellipticity dis-
persion, calculated as a weighted variance of galaxy ellipticities is
a biased estimate of the shear dispersion. We can understand this
as arising from noise bias: for example galaxies with low signal-to-
noise ratio (SNR) have broad likelihood surfaces which are biased
to low ellipticity values and hence also to low ellipticity dispersion.
The multiplicative bias correction (see Section 4.2 for a definition
and Fenech Conti et al. 2017) is derived for shear from an ensem-
ble of galaxies rather than ellipticity measurements for individual
galaxies. This allows us to derive an unbiased ensemble shear based
on ellipticity measurements (see Section 4.2), but it is not expected
to correctly predict the bias on the ellipticity dispersion. Deriving
a calibration for the shear dispersion is beyond the scope of this
paper, but the impact of that will be scrutinized in Section 5.1.

In principle, the uncertainty in the noise level can be overcome by
marginalizing over one or more free noise amplitudes for each to-
mographic bin while extracting the data. However, Lin et al. (2012)
observed that the simultaneous extraction of B modes and a free
noise amplitude is very challenging for noisy data. We therefore fol-
low Lin et al. (2012) by fixing the noise properties to the measured
values (Table 2) while extracting E and B modes simultaneously.

3.1.2 Maximum likelihood solution

The best-fitting band powers B and the cosmic signal matrix Csig

that describe the measured shear data the best are found by employ-
ing a Newton–Raphson optimization. This algorithm finds the root
of dL/dB = 0 (Bond et al. 1998; Seljak 1998), i.e. its maximum-
likelihood solution, by iteratively stepping through the expres-
sion Bi+1 = Bi + δB until it converges to the maximum-likelihood
solution.

With appropriate choices for an initial guess of the band
powers and the step size parameter of the Newton–Raphson
optimization, the method usually converges quickly towards the
maximum-likelihood solution. Hu & White (2001) gave several
empirical recommendations for a numerically stable and quick con-
vergence. The most important one is to reset negative band powers
to a small positive number at the start of an iteration. As a result a

4 The effective number of galaxies per pixel can be calculated using equation
(13) multiplied by the area of the pixel �.

small bias is introduced in the recovered power spectrum, which de-
pends on the amplitude of the signal (the closer the signal is to zero
the larger is the overall effect) and on the noise level (the larger the
noise the more often the resetting will occur). This ‘resetting bias’
can be easily calibrated using mock data as shown in Section 3.2.

3.1.3 Band window matrix

Each measured band power B samples the corresponding power
spectrum with its own window function. For a general estimator,
we can relate the expectation value of the measured band power
〈B〉 to the shear power spectrum C at integer multipoles through the
band-power window function W(�) (Knox 1999; Lin et al. 2012),
i.e.

〈Bζϑβ〉 =
∑

�

�(� + 1)

2π
W(ζϑβ)(ζϑ)(�)Cζϑ (�), (10)

where W(ζϑβ)(ζϑ)(�) denotes the elements of the block diagonal
of the band window matrix W(�). The index ζ labels the unique
nz(nz + 1)/2 redshift-bin correlations, the index ϑ the band power
type (i.e. EE, BB or EB) and the index β runs over the band power
bin, i.e. over a given range of multipoles. Equation (10) is required
for inferring cosmological parameters from the measured band pow-
ers (see Section 5.1), because it translates a smooth cosmological
signal prediction into band powers. Moreover, the full band win-
dow matrix W(�) is required for propagating the properties of the
quadratic estimator into the analytical covariance (see Section 4.3).
Note that due to the latter the notation in equation (10) has changed
with respect to the one presented in Köhlinger et al. (2016). We
present the updated notation in Appendix A.

The sum is calculated for integer multipoles � in the range 10 ≤ �

≤ 3000 since the cosmological analysis uses multipoles in the range
76 ≤ � ≤ 1310 (see Section 4). Therefore, the lowest multipole for
the summation should extend slightly below �field = 76 and the
highest multipole should include multipoles beyond � = 1310 in
order to capture the full behaviour of the band window function
below and above the lowest and highest bands, respectively.

Our technical implementation of the quadratic estimator
algorithm employs the NUMPY package for PYTHON. This allows for
performing calculations with 64-bit floating point precision. The
inversion of the full covariance matrix, i.e. the sum of equations (3)
and (9) is performed once per Newton–Raphson iteration (although
occurring multiple times in there, see e.g. equation 11 in Köhlinger
et al. 2016). For the inversion, we use the standard inversion routine
from the linear algebra sub-package of NUMPY.5 This routine in
turn uses a linear equation solver employing an LU decomposition
algorithm to solve for the inverse of the matrix. The inverse
matrices of the largest matrices used in the subsequent analysis (i.e.
dim(C) ≤ 93522 for two z-bins and dim(C) ≤ 13 9982 for three z-
bins) pass the accuracy test of Newman (1974). Moreover, we verify
that |Id − CC−1|ij ≤ 10−14 for all elements i, j of the matrices.

3.2 Testing and calibration

For convergence and performance reasons, negative band powers
are reset to a small positive number at the start of each iteration
towards the maximum-likelihood solution. This procedure does not
prevent the algorithm to yield negative band powers at the end of a

5 Version number 1.9.0., compiled with the Intel C© Math Kernel Library
(MKL), version number 11.0.4.
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Figure 1. Extracted B-mode band powers as a function of multipole and redshift correlation (from left to right) from 50 GRF realizations for three different
noise levels each. Crosses (red) correspond to σε = 0.10, triangles (blue) to σ ε = 0.19 and circles (black) to σ ε = 0.28 for fixed number densities of
neff(z1) = 2.80 arcmin−2 and neff(z2) = 2.00 arcmin−2. Crosses and circles are plotted with constant multiplicative offset in multipoles for illustrative purposes.
The vertical dashed lines (grey) indicate the borders of the band power intervals (Table 1). The errors are derived from the run-to-run scatter and divided by√

50 to represent the error on the mean.

Figure 2. The same as in Fig. 2 but for E modes. The grey solid line in each panel shows the input power spectrum used for the creation of the GRFs. A
quantitative comparison between input power and extracted power for the highest noise sample is presented in Fig. D1. Note that the first and last band powers
are not expected to recover the input power (Section 4.1).

Newton–Raphson iteration (as might be necessary due to noise), but
it introduces a bias in the extracted band powers. The amplitude of
the bias depends on the width of the band-power distribution which
is set by the noise level in the data. Hence, a distribution of band
powers expected to be centred around zero such as B modes will
be more biased than a distribution centred around a non-zero mean
such as E modes. The dependence of the bias on the noise level in
the data can be characterized by using mock data in which the E
and B modes are perfectly known. We use here a suite of B-mode
free Gaussian random fields (GRFs) described in more detail in
Köhlinger et al. (2016).

We extract E and B modes simultaneously for three sets of
50 GRF realizations with varying noise levels [i.e. σ ε = 0.10,
σ ε = 0.19 and σ ε = 0.28 for fixed neff(z1) = 2.80 arcmin−2 and
neff(z2) = 2.00 arcmin−2]. Each GRF field uses the survey mask of
the CFHTLenS W2 field (≈22.6 deg2), which is an adequate rep-
resentation of the KiDS subpatches (Section 4) in terms of size
and shape. For the extraction of the band powers, we use the same
multipole binning and shear pixel size employed in the subsequent
KiDS-450 data extraction (see Section 4). Although the GRFs are
B-mode free by construction, Fig. 1 shows significant extracted B
modes as expected. Moreover, the fact that the sets of extracted
B-mode scale with the noise level built into the GRFs indicates
that they are indeed caused by the noise-dependent ‘resetting bias’.

In Figs B1, B2 and B3 from Appendix B, we show explicitly that
any contribution to these B modes due to power leakage/mixing
introduced by e.g. the survey mask are negligible.

The ‘resetting bias’ will affect band powers whose distribution is
expected to be centred around zero more strongly than band powers
with a positive non-zero mean; therefore, the impact of the bias on
the extracted E modes is expected to be negligible. This is indeed
the case as the extracted E modes in Fig. 2 do not show a significant
dependence on the noise level built into the GRFs except for the last
band. For the second-to-last band in the highest noise realization,
however, there appears to be a bias, too. As we show in Fig. D1
from Appendix D, the input-power of the second-to-last band is still
recovered within its 2σ error on the mean (whereas bands 1–5 are
recovered within their 1σ errors on the mean).

The explanation for this bias can be found in Fig. 2: if we fo-
cus on the second-to-last band, we notice that in the low-noise
cases the extracted values are unbiased, while a deviation from the
expected value is visible for the high-noise case (which is set to
match the noise level of the data). For the other bands, the ex-
tracted power is independent from the noise level. This noise de-
pendence of the bias points to a degradation in the convergence
of the Newton–Raphson method (for a fixed number of iterations)
when the SNR of the data is very low, as noticed already by Hu &
White (2001).
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We further note that the errors on the mean derived from the 50
GRF runs on fields each of the size of W2 correspond effectively to
those of a survey of about three times the size of the effective area
used in KiDS-450. Therefore, the bias in the second-to-last band is
expected to be negligible for the real data extraction. Nevertheless,
we make the conservative choice of excluding the second-to-last
band in the subsequent cosmological analysis (see Section 4.1).

With the three sets of simultaneously extracted E and B modes
for varying noise properties of the GRFs, we derive a model for the
fiducial B modes caused by the ‘resetting bias’. All sets of band
powers are modelled as a function of the noise with a power law of
the form

prb(x) = Arbx
βrb with

x = �(� + 1)

2π

σε(zμ)σε(zν)√
n(zμ)n(zν)

. (11)

Here, the variable x encodes the implicit multipole and redshift
dependencies. Note though that the multipole dependence is just
an artefact of extracting the band powers with the normalization
�(� + 1)/2π. We determine Arb = (9.08 ± 4.23) × 10−4 and
β rb = 0.64 ± 0.04 by simultaneously fitting the power-law model
to the sets of B-mode band powers. The power-law model is also
included in the cosmological likelihood code for a simultaneous
evaluation of the E- and B-mode band powers to allow for a consis-
tent error propagation through marginalizing over the parameters
Arb and β rb. The details of this are given in Section 5.1.3.

4 DATA : K iD S - 4 5 0

In the following analysis, we use the KiDS-450 data set. KiDS is an
ongoing ESO optical survey that will eventually cover 1350 deg2 in
four bands (u, g, r and i). It is carried out using the OmegaCAM
CCD mosaic camera mounted at the Cassegrain focus of the VLT
Survey Telescope (VST). The combination of camera and telescope
was specifically designed for weak lensing studies and hence results
in small camera shear and an almost round and well-behaved point
spread function (PSF). The data processing pipeline from individual
exposures in multiple colours to photometry employ the ASTRO-
WISE system (Valentijn et al. 2007; Begeman et al. 2013). For
the lensing-specific data reduction of the r-band images, we use
THELI (Erben et al. 2005, 2009, 2013; Schirmer 2013). The galaxy
shapes are measured from the THELI-processed data with the shape
measurement software lensfit (Miller et al. 2013; Fenech Conti
et al. 2017). The full description of the pipeline for previous data
releases of KiDS (DR1/2) is documented in de Jong et al. (2015) and
Kuijken et al. (2015). All subsequent improvements applied to the
data processing for KiDS-450 are summarized in Hildebrandt et al.
(2017). The lensfit-specific updates including a description of the
extensive image simulations for shear calibrations at the sub-percent
level are documented in Fenech Conti et al. (2017).

The interpretation of the cosmic shear signal also requires ac-
curate and precise redshift distributions, n(z) (equation 6). For the
estimation of individual photometric redshifts for source galaxies,
the code BPZ (Benı́tez 2000) is used following the description in
Hildebrandt et al. (2012). In earlier KiDS and CFHTLenS analyses
the overall n(z) was used based on the stacked redshift probability
distributions of individual galaxies, p(z), as estimated by BPZ. How-
ever, as shown in Hildebrandt et al. (2017) and Choi et al. (2016),
the n(z) estimate in this way is biased at a level that is intolerable
for current and especially future cosmic shear studies (see Newman
et al. 2015; Choi et al. 2016 for a discussion).

Hildebrandt et al. (2017) employed a weighted direct calibration
(‘DIR’) of photometric redshifts with spectroscopic redshifts. This
calibration method uses several spectroscopic redshift catalogues
from surveys overlapping with KiDS. In practice, spectroscopic
redshift catalogues are neither complete nor a representative sub-
sample of the photometric redshift catalogues currently used in cos-
mic shear studies. In order to alleviate these practical shortcomings,
the photometric redshift distributions and the spectroscopic red-
shift distributions are re-weighted in a multidimensional magnitude-
space, so that the volume density of objects in this magnitude space
matches between photometric and spectroscopic catalogues (Lima
et al. 2008). The direct calibration is further cross-checked with two
additional methods and found to yield robust and accurate estimates
of the photometric redshift distribution of the galaxy source sample
(see Hildebrandt et al. 2017 for details).

The fiducial KiDS-450 data set consists of 454 individual ∼1 deg2

tiles (see fig. 1 from Hildebrandt et al. 2017). The r band is used
for the shape measurements with a median and maximum seeing
of 0.66 and 0.96 arcsec, respectively. The tiles are grouped into
five patches (and corresponding catalogues) covering an area of
≈450 deg2 in total. After masking stellar haloes and other artefacts
in the images, the total area of KiDS-450 is reduced to an effective
area usable for lensing of about 360 deg2. Since the catalogue for an
individual KiDS patch contains long stripes (e.g. 1 deg by several
degrees) or individual tiles due to the pointing strategy, we exclude
these disconnected tiles from our analysis, which amounts to a re-
duction in effective area by ≈36 deg2 compared to Hildebrandt et al.
(2017). Moreover, the individual patches are quite large resulting
in long runtimes for the signal extraction. Therefore, we split each
individual KiDS patch further into two or three subpatches yielding
13 subpatches in total with an effective area of 323.9 deg2. Each
subpatch contains a comparable number of individual tiles. The
splitting into subpatches was performed along borders that do not
split individual tiles, as a single tile represents the smallest data unit
for systematic checks and further quality control tests.

The coordinates in the catalogues are given in a spherical coordi-
nate system measured in right ascension α and declination δ. Before
we pixelize each subpatch into shear pixels, we first deproject the
spherical coordinates into flat coordinates using a tangential plane
projection (also known as gnomonic projection). The central point
for the projection of each subpatch, i.e. its tangent point, is calcu-
lated as the intersection point of the two great circles spanned by
the coordinates of the edges of the subpatch.

The shear components ga per pixel at position n = (xc, yc) are
estimated from the ellipticity components ea inside that pixel:

ga(xc, yc) =
∑

i wiea,i∑
i wi

, (12)

where the index a labels the two shear and ellipticity components,
respectively, and the index i runs over all objects inside the pixel.
The ellipticity components ea and the corresponding weights w
are computed during the shape measurement with lensfit and they
account both for the intrinsic shape noise and measurement errors.

For the position of the average shear, we take the centre of
the pixel (hence the subscript ‘c’ in the coordinates). Consider-
ing the general width of our multipole band powers it is justi-
fied to assume that the galaxies are uniformly distributed in each
shear pixel. Finally, we define distances rij = |ni − nj | and angles
ϕ = arctan (�y/�x) between shear pixels i, j which enter in the
quadratic estimator algorithm (see Section 3).
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4.1 Band power selection

The lowest scale of the multipole band powers that we extract is in
general set by the largest separation θmax possible between two shear
pixels in each subpatch. In a square-field that would correspond to
the diagonal separation of the pixels in the corners of the patch.
However, this would yield only two independent realizations of the
corresponding multipole �min. Instead, we define the lowest phys-
ical multipole �field as corresponding to the distance between two
pixels on opposite sides of the patch ensuring that there exist many
independent realizations of that multipole so that a measurement is
statistically meaningful.

In general, the subpatches used in this analysis are not square
but rectangular and hence we follow the conservative approach
of defining �field corresponding to the shorter side length of the
rectangle. The shortest side length is θ ≈ 4.◦74 corresponding to
�field = 76.

The lowest multipole over all subpatches is �min = 34 correspond-
ing to a distance θ ≈ 10.◦5, but we set the lower border of the first
band power even lower to � = 10. That is because the quadratic esti-
mator approach allows us to account for any leftover DC offset,6 i.e.
a non-zero mean amplitude, in the signal by including even lower
multipoles than �min in the first band power (see Appendix E).

The highest multipole �max available for the data analysis is set
by the side length of the shear pixels. The total number of shear
pixels in the analysis is also a critical parameter for the runtime
of the algorithm because it sets the dimensionality of the funda-
mental covariance matrix (equation 3), together with the number
of redshift bins and the duality of the shear components. More-
over, Gaussianity is one of the assumptions behind the quadratic
estimator which naturally limits the highest multipole to the mildly
non-linear regime (Hu & White 2001). Hence, we set σ pix = 0.◦12
corresponding to a maximum multipole �pix = 3000. At the median
redshift of the survey, zmed = 0.62, this corresponds to a wavenum-
ber k = 1.89 h Mpc−1.

The borders of the last band should however extend to at least
2�pix ≈ 6000 due to the increasingly oscillatory behaviour of the
pixel window function (equation 2) close to and beyond �pix. The
width of all intermediate bands should be at least 2�field in order to
minimize the correlations between them (Hu & White 2001). Given
all these constraints we extract in total seven E-mode band powers
over the range 10 ≤ � ≤ 6000.

For the cosmological analysis we will drop the first, second-
to-last and last band powers. The first band power is designed to
account for any remaining DC offset in the data (see Appendix E)
and should therefore be dropped. The last band power sums up the
oscillating part of the pixel window and should also be dropped. As
noted already in Section 3.2, tests on GRF mock data showed that
the input power for the second-to-last band is only recovered within
its 2σ error bar (see Fig. D1). Therefore, we make the conservative
choice of excluding the second-to-last band in addition to the first
and last band in the subsequent cosmological analysis (also taking
into account its low SNR). We confirmed though that including the
second-to-last E-mode band power (and its corresponding B mode)
does not change the conclusions of the cosmological inference
(Section 5.1).

In addition to the E modes, we simultaneously extract six B-mode
band powers. Their multipole ranges coincide with the ranges of the
E-mode bands 2–7. The lowest multipole band is omitted because on

6 Signal processing terminology in which DC refers to direct current.

Table 1. Band-power intervals.

Band No. �-range θ -range (arcmin) Comments

1 10–75 2160.0–288.0 (a), (b)
2 76–220 284.2–98.2 –
3 221–420 98.0–51.4 –
4 421–670 51.3–32.2 –
5 671–1310 32.2–16.5 –
6 1311–2300 16.5–9.4 (a)
7 2301–6000 9.4–3.6 (a)

Notes. (a) Not used in the cosmological analysis. (b) No B mode extracted.
The θ -ranges are just an indication and cannot be compared directly to
θ -ranges used in real-space correlation function analyses due to the non-
trivial functional dependence of these analyses on Bessel functions (see
Appendix C).

Table 2. Properties of the galaxy source samples.

Redshift bin zmed N neff σ ε mfid(zμ)

2 z-bins:

z1: 0.10 < zB ≤ 0.45 0.41 5 923 897 3.63 0.2895 −0.013 ± 0.010
z2: 0.45 < zB ≤ 0.90 0.70 6 603 721 3.89 0.2848 −0.012 ± 0.010

3 z-bins:

z1: 0.10 < zB ≤ 0.30 0.39 3 879 823 2.35 0.2930 −0.014 ± 0.010
z2: 0.30 < zB ≤ 0.60 0.46 4 190 501 2.61 0.2856 −0.010 ± 0.010
z3: 0.60 < zB ≤ 0.90 0.76 4 457 294 2.56 0.2831 −0.017 ± 0.010

Notes. The median redshift zmed, the total number of objects N, the effective
number density of galaxies neff per arcmin2 (equation 13), the dispersion
of the intrinsic ellipticity distribution σε and fiducial multiplicative shear
calibration mfid per redshift bin for the KiDS-450 data set used in our
analysis.

scales comparable to the field size, the shear modes can no longer be
split unambiguously into E and B modes. All ranges are summarized
in Table 1 where we also indicate the corresponding angular scales.
Note, however, that the naı̈ve conversion from multipole to angular
scales is insufficient for a proper comparison to correlation function
results. An outline of how to compare both approaches properly is
given in Appendix C.

We calculate the effective number density of galaxies used in the
lensing analysis following Heymans et al. (2012) as

neff = 1

�

(
∑

i wi)2∑
i w2

i

, (13)

where w is the lensfit weight and the unmasked area is denoted
as �. In Table 2, we list the effective number densities per KiDS
patch and redshift bin. Note that alternative definitions for neff exist,
but this one has the practical advantage that it can be used directly
to set the source number density in the creation of mock data.
Moreover, equation (13) is the correct definition to use for analytic
noise estimates.

As discussed in Hildebrandt et al. (2017) the ‘DIR’ calibration
as well as the multiplicative shear bias corrections (Section 4.2) are
only valid in the range 0.10 < zB ≤ 0.90, where zB is the Bayesian
point estimate of the photometric redshifts from BPZ (Benı́tez 2000).
For the subsequent analysis, we divide this range further into two
and three tomographic bins with similar effective number densities
(Table 2 and Fig. 3). Note that zB is only used as a convenient
quantity to define tomographic bins, but does not enter anywhere
else in the analysis. The limitation to at most three redshift bins is
due to runtime, since the dimension of the fundamental covariance
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Figure 3. The normalized redshift distributions for the full sample, two and three tomographic bins employed in this study and estimated from the weighted
direct calibration scheme (‘DIR’) presented in Hildebrandt et al. (2017). The dashed vertical lines mark the median redshift per bin (Table 2) and the (grey)
shaded regions indicate the target redshift selection by cutting on the Bayesian point estimate for photometric redshifts zB. The (coloured) regions around each
fiducial n(z) per bin shows the 1σ -interval estimated from 1000 bootstrap realizations of the redshift catalogue. Lower panel: the summed and re-normalized
redshift distribution over all tomographic bins.

matrix (equation 3) depends quadratically on the number of redshift
bins, as noted earlier in this section. Applying the method also to
only two redshift bins here serves as a cross-check of the three z-bin
analysis.

In Fig. 3 we show the normalized redshift distributions for two
and three redshift bins. The coloured regions around each n(z) show
the 1σ -error estimated from 1000 bootstrap realizations of the red-
shift catalogues per tomographic bin. This does not account for
cosmic variance, but the effect on the derived n(z) is expected to be
small (see Hildebrandt et al. 2017 for a discussion).

4.2 Multiplicative bias correction

The observed shear γ obs, measured as a weighted average of galaxy
ellipticities, is generally a biased estimator of the true shear γ . The
bias is commonly parametrized as (Heymans et al. 2006)

γobs = (1 + m)γ + c, (14)

where m and c refer to the multiplicative bias and additive bias,
respectively.

The multiplicative bias is mainly caused by the effect of pixel
noise in the measurements of galaxy ellipticities (Melchior &
Viola 2012; Refregier et al. 2012; Miller et al. 2013), but it can
also arise if the model used to describe the galaxy profile is incor-
rect, or if stars are misclassified as galaxies. The latter two effects
are generally subdominant compared to the noise bias. We quantify
the amplitude of the multiplicative bias in the KiDS data by means
of a dedicated suite of image simulations (Fenech Conti et al. 2017).
We closely follow the procedure described earlier and derive a mul-
tiplicative correction for each tomographic bin as listed in Table 2.
The error bars account for statistical uncertainties and systematic
errors due to small differences between data and simulations. In our
likelihood analysis, we apply the multiplicative correction to the
measured shear power spectrum and its covariance matrix. In order
to also marginalize over the uncertainties of this m-correction, we
propagate them into the likelihood analysis. As the errors on the
mfid(zμ) are fully correlated (Fenech Conti et al. 2017; Hildebrandt
et al. 2017), we only need to include one free nuisance parameter
per analysis. We apply the m-correction and propagate its uncer-
tainty σ m = 0.01 by varying a dummy variable m within a flat
2σ m prior centred on the fiducial value mfid(z1) for the first red-
shift bin in each step i of the likelihood estimation. The value for

each applied m-correction m(zμ) is then fixed through the relation
mi(zμ) = mfid(zμ) + �mi with �mi = m − mfid(zμ). Hence, in the
modelling of the power spectra for inferring cosmological parame-
ters (Section 5.1), we include a nuisance parameter m (Table 2).

4.3 Covariance

An important ingredient for an accurate and precise inference of
cosmological parameters from the measured band powers is the co-
variance matrix. There are several approaches to estimate the covari-
ance matrix: the brute-force approach of extracting it directly from a
statistically significant number (to reduce numerical noise) of mock
catalogues, an analytical calculation or the inverse of the Fisher ma-
trix calculated during the band-power extraction. Of course, each
method has its specific advantages and disadvantages. The brute-
force approach requires significant amounts of additional runtime,
both for the creation of the mocks and the signal extraction. This
can become a severe issue especially if the signal extraction is also
computationally demanding, as is the case for the (tomographic)
quadratic estimator. Moreover, if the mocks are based on N-body
simulations the particle resolution and box size of these set fun-
damental limits for the scales that are available for a covariance
estimation and to the level of accuracy and precision that is possible
to achieve.

In contrast, the Fisher matrix is computationally the cheapest
estimate of the covariance matrix since it comes at no additional
computational costs. However, it is only an accurate representation
of the true covariance in the Gaussian limit and hence the errors for
the non-linear scales will be underestimated. Moreover, the largest
scale for a Fisher matrix based covariance is limited to the size
of the patch. Therefore, the errors for scales corresponding to the
patch size will also be underestimated. A possible solution to the
shortcomings of the previous two approaches is the calculation of
an analytical covariance matrix. This approach is computationally
much less demanding than the brute-force approach and does not
suffer from the scale-dependent limitations of the previous two ap-
proaches. Moreover, the non-Gaussian contributions at small scales
can also be properly calculated.

Hence, we follow the fiducial approach of Hildebrandt et al.
(2017) and adopt their method for computing the analytical covari-
ance (except for the final integration to correlation functions). The
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model for the analytical covariance consists of the following three
components:

(i) a disconnected part that includes the Gaussian contribution to
shape-noise, sample variance and a mixed noise-sample variance
term,

(ii) a non-Gaussian contribution from in-survey modes originat-
ing from the connected matter-trispectrum and

(iii) a contribution from the coupling of in-survey and supersur-
vey modes, i.e. supersample covariance (SSC).

We calculate the first Gaussian term from the formula presented in
Joachimi, Schneider & Eifler (2008) employing the effective survey
area Aeff (to take into account the loss of area through masking),
the effective number density neff per redshift bin (to account for the
lensfit weights) and the weighted intrinsic ellipticity dispersion σ ε

per redshift bin (Table 2). The required calculation of the matter
power spectrum makes use of a ‘WMAP9’ cosmology,7 the transfer
functions by Eisenstein & Hu (1998) and the recalibrated non-
linear corrections from Takahashi et al. (2012). Convergence power
spectra are then calculated using equation (5).

The non-Gaussian ‘in-survey’ contribution of the second term
is derived following Takada & Hu (2013). The connected trispec-
trum required in this step is calculated in the halo model approach
employing both the halo mass function and halo bias from Tinker
et al. (2008, 2010). For that we further assume an NFW halo profile
(Navarro, Frenk & White 1997) with the concentration–mass rela-
tion by Duffy et al. (2008) and use the analytical form of its Fourier
transform as given in Scoccimarro et al. (2001).

Takada & Hu (2013) model the final SSC term as a response of
the matter power spectrum to a background density consisting of
modes exceeding the survey footprint. Again we employ the halo
model to calculate this response. We note that in this context the
corresponding contributions are also sometimes referred to as halo
sample variance, beat coupling and a dilation term identified by Li,
Hu & Takada (2014). The cause for the coupling of supersurvey
modes into the survey is the finite survey footprint. For the proper
modelling of this effect, we create a HEALPIX (Górski et al. 2005)
map of our modified KiDS-450 footprint (with N = 1024 pixels).
Then the parts of the formalism by Takada & Hu (2013) related to
survey geometry are converted into spherical harmonics.

Based on the above description, we calculate the analytical co-
variance matrix C(ζϑ)(ζ ′ϑ ′)(�, �′) at integer multipoles �, �′ over the
range 10 ≤ �, �′ ≤ 30008 where the index pairs ζ , ζ ′ and ϑ , ϑ ′ la-
bel the unique redshift correlations and band types (EE and BB),
respectively. Note that the EE to BB and vice versa the BB to EE
part of this matrix is zero, i.e. there is no power leakage for an ideal
estimator. Finally, we create the analytical covariance matrix of the
measured band powers by convolving C(ζϑ)(ζ ′ϑ ′)(�, �′) with the full
band window matrix:

CAB = W̃Aζϑ (�) C(ζϑ)(ζ ′ϑ ′)(�, �
′) (W̃

T
)Bζ ′ϑ ′ (�′), (15)

where the superindices A, B run over the band powers, their types
(i.e. EE and BB) and the unique redshift correlations. W̃ is the band
window matrix defined in equation (A1) multiplied with the nor-
malization for band powers, i.e. �(� + 1)/(2π). Note that through

7 �m = 0.2905, �� = 0.7095, �b = 0.0473, h = 0.6898, σ 8 = 0.826 and
ns = 0.969 (Hinshaw et al. 2013).
8 This range matches the range over which we later perform the summation
when we convolve the theoretical signal predictions with the band window
functions.

this matrix multiplication with the band window matrix all proper-
ties of the quadratic estimator are propagated into the band power
covariance.

Hildebrandt et al. (2017) presented a cross-check of the analyti-
cal covariance comparing it to numerical and jackknife covariance
estimates. They found the analytical covariance to be a reliable,
noise-free and fast approach for estimating a covariance that in-
cludes SSC. Therefore, we use the analytical covariance here as our
default, too.

5 SH E A R P OW E R SP E C T R A F RO M K iD S - 4 5 0

For each of our 13 subpatches of the KiDS-450 data, we extract the
weak lensing power spectra in band powers spanning the multipole
range 10 ≤ � ≤ 6000 (see Section 4 and Table 1). The measurements
are performed in two and three redshift bins in the ranges listed in
Table 2. This yields in total nz(nz + 1)/2 unique cross-correlation
spectra, including nz autocorrelation spectra per subpatch depend-
ing on the total number of z-bins, nz. In the subsequent analysis,
we combine all spectra by weighting each spectrum with the ef-
fective area of the subpatch. This weighting is optimal in the sense
that the effective area is proportional to the number of galaxies
per patch and this number sets the shape noise variance of the
measurements.

We present the seven E-mode band powers for two and three
redshift bins in Figs 4 and 5. The errors on the signal are esti-
mated from the analytical covariance (Section 4.3), which includes
contributions from shape noise, cosmic variance and supersample
variance. The width of the band is indicated by the extent along the
multipole axis. The signal is plotted at the naı̈ve centre of the band,
whereas for the subsequent likelihood analysis we take the window
functions of the bands into account (equation 10).

In each redshift autocorrelation panel, we show the average noise-
power contribution calculated from the numbers in Table 2. This
noise component is removed from the data by the quadratic esti-
mator algorithm yielding the band powers shown in Figs 4 (three
z-bins) and 5 (two z-bins). Only the bands outside the (grey) shaded
areas enter in the cosmological analysis, i.e. we exclude the first,
second-to-last and last band as discussed in Section 4.1.

We simultaneously extract E and B modes with the quadratic
estimator and show the effective-area-weighted six B-mode band
powers for two and three redshift bins in Figs 6 and 7. The B-mode
errors are estimated from the shape noise contribution only, under
the assumption that there are no B modes in the data. This is a
very conservative estimate in the sense that it yields the smallest
error bars and B modes not consistent with zero might appear more
significant than they are. Following the discussion of Section 3.2,
we corrected the B modes shown here for the ‘resetting bias’ of the
quadratic estimator algorithm discussed in Section 3. The corrected
B modes shown in Figs 6 and 7 can be used as a test for residual
systematics in the data, since the cosmological signal is contained
entirely in the E modes in the absence of systematics (Section 2) and
the quadratic estimator does not introduce power leakage/mixing
either (Appendix B). As we show quantitatively in Section 6 the
corrected B modes shown here for both redshift bin analyses are
indeed consistent with zero.

5.1 Cosmological inference

The cosmological interpretation of the measured (tomographic)
band powers Bα derived in Section 5 is carried out in a Bayesian
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Figure 4. Measured E-mode band powers in three tomographic bins averaged with the effective area per patch over all 13 KiDS-450 subpatches. On the
diagonal we show from the top-left to the bottom-right panel the autocorrelation signal of the low-redshift bin (blue), the intermediate-redshift bin (orange)
and the high-redshift bin (red). The unique cross-correlations between these redshift bins are shown in the off-diagonal panels (grey). Note that negative band
powers are shown at their absolute value with an open symbol. The redshift bins targeted objects in the range 0.10 < z1 ≤ 0.30 for the lowest bin, 0.30 < z2

≤ 0.60 for the intermediate bin and 0.60 < z3 ≤ 0.90 for the highest bin. The 1σ -errors in the signal are derived from the analytical covariance convolved
with the averaged band window matrix (Section 4.3), whereas the extent in �-direction is the width of the band. Band powers in the shaded regions (grey) to
the left and right of each panel are excluded from the cosmological analysis (Section 4.1). The solid line (black) shows the power spectrum for the best-fitting
cosmological model (Section 5.1). Moreover, we show the intrinsic alignment contributions, i.e. CGG as dotted black line, |CGI| as dash-dotted blue line, and
CII as dashed purple line. In addition to that, we also show CGG without baryon feedback as a dashed black line. Note that for an accurate comparison of
theory to data such as presented in Section 5.1), the theoretical power spectrum must be transformed to band powers (equation 10). The dashed grey lines in
the redshift autocorrelation models indicate the noise-power spectrum in the data (Table 2), which does not contribute to the redshift cross-correlations. Note,
however, that the band powers are centred at the naı̈ve �-bin centre and thus the convolution with the band window function is not taken into account in this
figure, in contrast to the cosmological analysis.

framework. For the estimation of cosmological E-mode and (nui-
sance) B-mode model parameters p we sample the likelihood

− 2 lnL( p) =
∑
α, β

dα( p)(C−1)αβ dβ ( p), (16)

where the indices α, β run over the tomographic bins. The analytical
covariance matrix C is calculated as outlined in Section 4.3 for
both E and B modes. We note that the assumption of Gaussian
band power distributions behind this likelihood is of course only
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Figure 5. Same as Fig. 4 but for only two tomographic bins targeting objects with redshifts in the range 0.10 < z1 ≤ 0.45 and 0.45 < z2 ≤ 0.90. Please refer
to the legend and caption of Fig. 4 for a full description of the theory components.

an approximation. However, we show in Fig. D1 that we recover
the means of the bands of interest accurately (see also Section 3.2),
so that any deviation from Gaussianity only creates an error on the
error. Given the current level of uncertainty on the measurements
this can be neglected.

The components of the data vector are calculated as

dα( p) = Bα − 〈Bα( p)〉model, (17)

where the dependence on cosmological parameters enters only in
the calculation of the predicted E-mode band powers, 〈Bi(�)〉model

(equations 5 and 10).
For an efficient evaluation of the likelihood, we employ the

nested sampling algorithm MULTINEST9 (Feroz & Hobson 2008; Feroz
et al. 2009, 2013). Conveniently, its PYTHON-wrapper PYMULTINEST

(Buchner et al. 2014) is included in the framework of the cos-
mological likelihood sampling package MONTE PYTHON10 (Audren
et al. 2013) with which we derive all cosmology-related results in
this analysis.

We note that the likelihood pipeline used here is completely in-
dependent from the cosmology pipeline used in Hildebrandt et al.
(2017). However, we verified that it can reproduce the fiducial re-
sults from the correlation-function analysis of that study, too. More-
over, we make the likelihood-module written for the MONTE PYTHON

package publicly available.11

5.1.1 Theoretical power spectra

The calculation of the theoretical shear power spectrum Cμν(�)
is described in Section 2 and summarized by noting that it is the
projection of the three-dimensional matter power spectrum Pδ along
the line of sight weighted by lensing weight functions qμ that take
the lensing efficiency of each tomographic bin into account.

For the calculation of the matter power spectrum Pδ(k; χ ) in
equation (5) we employ the Boltzmann-code CLASS12 (Audren &
Lesgourgues 2011; Blas, Lesgourgues & Tram 2011). The non-
linear corrections are implemented through the HALOFIT algorithm
including the recalibration by Takahashi et al. (2012). Additionally,
the effects of (massive) neutrinos are also implemented in CLASS

9 Version 3.8 from http://ccpforge.cse.rl.ac.uk/gf/project/multinest/.
10 Version 2.2.1 from https://github.com/baudren/montepython_public.
11 The likelihood module can be downloaded from: https://bitbucket.org
/fkoehlin/kids450_qe_likelihood_public.
12 Version 2.5.0 from https://github.com/lesgourg/class_public.

(Lesgourgues & Tram 2011; Bird, Viel & Haehnelt 2012; see also
Mead et al. 2016 for an alternative non-linear model for massive
neutrino cosmologies). Massive neutrinos introduce a redshift- and
scale-dependent reduction of power in the matter power spectrum
Pδ mostly on non-linear scales. This reduction of power also prop-
agates into the lensing power spectra Cμν(�) smoothed, however,
by the lensing weight functions qμ. In the multipole range con-
sidered in this analysis, we expect massive neutrinos to decrease
the lensing power spectrum by an almost constant factor. Hence,
the effect of massive neutrinos causes a degeneracy with cosmo-
logical parameters affecting the normalization of the lensing power
spectrum.

In the following likelihood analysis, we always assume a cos-
mological model with spatially flat geometry and use the same set
of key cosmological parameters and priors as in the analysis of
Hildebrandt et al. (2017): �cdmh2, ln (1010As), �bh2, ns, h, i.e. the
amplitude of the primordial power spectrum As, the value h of the
Hubble parameter today divided by 100 km s−1 Mpc−1, the CDM
density �cdmh2, the baryonic matter density �bh2 and the exponent
of the primordial power spectrum ns. In addition to these we also
include the total sum of three degenerate massive neutrinos, �mν .

Moreover, we account for various astrophysical nuisances
(Section 5.1.2) and always marginalize over the uncertainties of
other systematics such as the multiplicative shear calibration bias
and redshift distribution n(z) (Section 5.1.3).

The employed prior range on h corresponds to the ±5σ un-
certainty centred on the distance-ladder constraint from Riess et al.
(2016) of h = 0.730 ± 0.018. Note that the corresponding prior range
of 0.64 < h < 0.82 still includes the preferred value from Planck
Collaboration XIII (2016). The prior on �bh2 is based on big-bang
nucleosynthesis constraints listed in the 2015 update from the Parti-
cle Data Group (Olive & Particle Data Group 2014) again adopting
a conservative width of ±5σ such that 0.019 < �bh2 < 0.026.

The cosmic shear power spectrum is mostly sensitive to the two
parameters �m, the energy density of matter in the Universe today,
and As, the amplitude of the primordial power spectrum. These two
quantities determine the tilt and the total amplitude of the shear
power spectrum, respectively, and are degenerate with each other.
In addition to As, the amplitude of the matter power spectrum is
also often quantified in terms of σ 8, the root-mean-square variance
in spheres of 8 h−1 Mpc on the sky.

In addition to the parameter combination σ 8(�m/0.3)α also the
quantity S8 ≡ σ8

√
�m/0.3 is used in the literature based on the

observation that the exponent α is usually close to 0.5.
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Figure 6. Same as Fig. 4 but for B-mode band powers corrected for the ‘resetting bias’ introduced by the algorithm (Section 3.2). Note, however, the different
scale (linear) and normalization used here with respect to Fig. 4; for reference we also plot the best-fitting E-mode power spectrum as solid line (black). We
show the measured B modes as (black) dots with 1σ -errors derived from the averaged shape-noise contribution to the analytical covariance convolved with
the B-mode part of the averaged band window matrix. Note that the last band at high multipoles in each panel is designed to sum up the oscillating part of the
pixel-window function and hence intrinsically biased.

5.1.2 Astrophysical systematics

In order to derive accurate cosmological parameters from the cosmic
shear power spectrum measurement, it is important to account for
a number of astrophysical systematics.

Feedback from active galactic nuclei, for example, modifies the
matter distribution at small scales (e.g. Semboloni et al. 2011; Sem-
boloni, Hoekstra & Schaye 2013), resulting in a modification of
the dark matter power spectrum at high multipoles. Although the
full physical description of baryon feedback is not established yet,
hydrodynamical simulations offer one route to estimate its effect

on the matter power spectrum. In general, the effect is quantified
through a bias function with respect to the dark-matter only Pδ (e.g.
Semboloni et al. 2013; Harnois-Déraps et al. 2015):

b2(k, z) ≡ P mod
δ (k, z)

P ref
δ (k, z)

, (18)

where P mod
δ and P ref

δ denote the power spectra with and without
baryon feedback, respectively.

In this work, we make use of the results obtained from
the OverWhelmingly Large Simulations (Schaye et al. 2010;
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Figure 7. Same as Fig. 6 but for the same two tomographic bins used in Fig. 5.

van Daalen et al. 2011) by implementing the fitting formula for
baryon feedback from Harnois-Déraps et al. (2015):

b2(k, z) = 1 − Abary[Aze
(Bzx−Cz)3 − DzxeEzx], (19)

where x = log10(k/1 Mpc−1) and the terms Az, Bz, Cz, Dz and Ez

are functions of the scalefactor a = 1/(1 + z). These terms also
depend on the baryonic feedback model and we refer the reader to
Harnois-Déraps et al. (2015) for the specific functional forms and
constants. Additionally, we introduce a general free amplitude Abary

which we will use as a free parameter to marginalize over while
fitting for the cosmological parameters.

Hildebrandt et al. (2017) used an alternative description for the
baryon feedback model by Mead et al. (2015), which also includes
massive neutrinos on non-linear scales. However, this model is not
yet available for CLASS. Therefore, we use here the HALOFIT algorithm
within CLASS (including the Takahashi et al. 2012 recalibration and
massive neutrino modelling on non-linear scales by Bird et al. 2012)
and add the baryon feedback model through equation (19) instead.

Baryon feedback causes a significant reduction of power in the
high multipole regime, whereas massive neutrinos lower the am-
plitude of the shear power spectrum over the scales considered in
this analysis by an almost constant value (e.g. fig. 6 in Köhlinger
et al. 2016, where a similar range of multipoles was used).

Intrinsic alignments (IA) are another important astrophysical sys-
tematic, since in general, the observed shear power spectrum Ctot

is a biased tracer of the cosmological convergence power spectrum
CGG:

C tot
μν(�) = CGG

μν (�) + CII
μν(�) + CGI

μν(�), (20)

where CII is the power spectrum of intrinsic ellipticity correlations
between neighbouring galaxies (termed ‘II’) and CGI is the power
spectrum of correlations between the intrinsic ellipticities of fore-
ground galaxies and the gravitational shear of background galax-
ies (termed ‘GI’). We model these effects as in Hildebrandt et al.
(2017) and employ the non-linear modification of the tidal align-
ment model of IAs (Hirata & Seljak 2004; Bridle & King 2007;
Joachimi et al. 2011), so that we can write

CII
μν(�) =

∫ χH

0
dχ

nμ(χ )nν(χ )F 2(χ )

f 2
K(χ )

Pδ

(
k = � + 0.5

fK(χ )
; χ

)
,

(21)

CGI
μν(�) =

∫ χH

0
dχ

qν(χ )nμ(χ ) + qμ(χ )nν(χ )

f 2
K(χ )

F (χ )Pδ

(
k = � + 0.5

fK(χ )
; χ

)
, (22)

with the lensing weight function qμ(χ ) defined as in equation (6)
and

F (χ ) = −AIAC1ρcrit
�m

D+(χ )
. (23)

Here we also introduce a dimensionless amplitude AIA

which allows us to rescale and vary the fixed normalization
C1 = 5 × 10−14 h−2 M�−1 Mpc3 in the subsequent likelihood anal-
ysis. The critical density of the Universe today is denoted as ρcrit and
D+(χ ) is the linear growth factor normalized to unity today. We do
not include a redshift or luminosity dependence in the IA modelling
as those were found to be negligible by Joudaki et al. (2017). This
model is capable of describing both the well-detected IA signals
for elliptical galaxy samples and the null detections reported for
samples dominated by disc galaxies.

5.1.3 Other systematics

We always marginalize over the uncertainty of the multiplicative
shear calibration bias by including the dummy nuisance parameter
m as described in Section 4.2. Moreover, we account for the un-
certainty in the redshift distribution n(z) (Section 4), by drawing
in each likelihood evaluation a random realization of the redshift
distribution derived from one of the 1000 bootstrap realizations of
the spectroscopic training catalogue.

The quadratic estimator algorithm also requires a precise and
accurate measurement of the noise level in the data (Section 3).
This can be achieved with a dedicated suite of image simulations
aiming at a calibration of the observed ellipticity dispersion. As
those simulations were not available at the time this paper has been
written, we include a model for excess-noise power in the extracted
signals:

pnoise(�, zi) = Anoise(zi)
�(� + 1)

2π

σ 2
γ̃ (zi )

neff (zi)
. (24)

Here Anoise(zi) is a free amplitude that determines the strength of
the excess-noise in each redshift autocorrelation power spectrum.
Since noise contributes equally to E and B modes this model is also
used in the fitting of the B-mode power spectrum. We confirm that
including this model is indeed required by the data in the sense
of that we find consistent noise amplitudes between E-mode and
B-mode only likelihood evaluations (see Appendix B for details).

Finally, in the modelling of the B modes we account for the
‘resetting bias’ discussed in Section 3.2. This is modelled as a power
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Figure 8. The 1σ -constraints on the parameter combination S8 ≡ σ8
√

�m/0.3 for our fiducial model using two and three redshift bins (Tables F1 and F2).
We compare them to constraints from other cosmic shear and CMB analyses. For cosmic shear analyses, we indicate the type of estimator used with ‘CF’ for
correlation functions and ‘QE’ for the quadratic estimator.

law with two free parameters Arb and β rb (equation 11). In order to
marginalize over the uncertainties of these parameters, we draw in
each step of the likelihood evaluation random realizations of these
parameters from a 2D Gaussian centred on their best-fitting values
determined from the GRF fits and we also take their covariance
fully into account (Section 3.2).

6 R ESULTS AND DISCUSSION

The physical and nuisance parameters discussed in the pre-
vious section constitute our fiducial model for deriving cos-
mological parameters to which we refer subsequently as
‘�CDM+AIA+Abary+�mν+noise’. Constraints on all cosmologi-
cal and nuisance parameters can be found in Table F1 in Appendix F
including their prior ranges. In order to highlight parameter degen-
eracies we show all possible 2D parameter projections for this model
in Fig. D2 in Appendix D.

The primary cosmological constraints on σ 8(�m/0.3)α and S8 are
summarized for the two z-bin and three z-bin analyses in Table F2
in Appendix F. The exponent α is derived by fitting the function
ln σ 8(�m) = −α ln �m + const. to the likelihood surface in the
�m–σ 8 plane. Since indeed α ≈ 0.5, we compare the S8 values for
the two z-bin and three z-bin analyses in Fig. 8 to constraints from
other cosmic shear analyses and CMB constraints.

The S8 values we derive for the fiducial models of the two z-bin
and three z-bin analyses are consistent with each other. A compar-
ison of these results with the fiducial results from the correlation
function analysis by Hildebrandt et al. (2017) is complicated by

the fact that their analysis includes much more information from
small scales. At face value our constraints from the quadratic esti-
mator analysis are not consistent with the fiducial result presented
in Hildebrandt et al. (2017), favouring a lower value of S8. As in
this work we use larger angular scales compared to the fiducial
analysis presented in Hildebrandt et al. (2017), we also compare
our results with the S8 constraints they derived excluding small an-
gular scales from the correlation-function measurements (‘ξ+ large
scales’).13 The lower S8 value reported by Hildebrandt et al. (2017)
is in broad agreement with the result presented in this work. The
same trend of a lower S8 value for more conservative small-scale
cuts is also found by Joudaki et al. (2016), who considered a more
conservative large-scale case14 in their extended cosmological anal-
ysis of the KiDS-450 correlation function results. We remind the
reader though to be cautious when quantifying tension between data
sets based on parameter projections of multidimensional likelihoods
(see appendix A in MacCrann et al. 2015).

In Fig. 9(a) we show constraints in the S8 versus �m plane and
note that the tension observed in the one-dimensional projection of
S8 between results from this analysis and the fiducial correlation-
function analysis from Hildebrandt et al. (2017) is weaker resulting
in a large overlap of the 68 and 95 per cent credibility intervals. As

13 We note that this run did not marginalize over uncertainties in the redshift
distribution nor over baryons, only marginalization over IA was included.
14 They considered only two bins for ξ+ at 25 and 51 arcmin, and one bin
in ξ− at 210 arcmin.
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Figure 9. (a) Projection of cosmological constraints in the S8 versus �m plane from the KiDS-450 analysis presented here (‘KiDS-450, QE, two z-bins’)
and the fiducial correlation-function analysis by Hildebrandt et al. (2017, ‘KiDS-450, CF, fiducial’). For comparison we also show contours from Planck
Collaboration XIII (2016, ‘TT+lowP’). The inner contours correspond to the 68 per cent credibility interval and the outer ones to the 95 per cent credibility
interval. Note that the contours are smoothed with a Gaussian for illustrative purposes only. We chose to present the weaker constraints from the two z-bin
analysis because that analysis yields the largest tension with respect to the other results. The corresponding figures for the three z-bin analysis are presented in
Appendix D. (b) The same as in (a) but comparing to the ‘ξ+ large scales’ correlation-function analysis from Hildebrandt et al. (2017).

expected from the consistency of the S8 values when comparing to
their large angular scale analysis (‘KiDS-450, CF, ξ+ large scales’),
the 68 and 95 per cent credibility contours show both a substantial
overlap in the two-dimensional parameter projection as shown in
Fig. 9(b). The tension between the results derived here and con-
straints from Planck Collaboration XIII (2016, ‘TT+lowP’), how-
ever, is significant since the 68 and 95 per cent credibility intervals
do not overlap in this projection.

An accurate estimate of the statistical significance of the differ-
ences between the quadratic estimator and the correlation function
analyses applied to the same data set is complicated as it requires
an über-covariance of the estimators. This comparison, although
interesting, is beyond the scope of this paper.

Our model in both redshift bin analyses is also consistent with
previous results from CFHTLenS, where we compare in partic-
ular to a correlation-function re-analysis employing seven tomo-
graphic bins and marginalization over key astrophysical systemat-
ics from Joudaki et al. (2017). In addition to that, we show results
from our previous quadratic estimator analysis of CFHTLenS
(Köhlinger et al. 2016), which employed two tomographic bins
at higher redshift compared to the redshift bins used here. The la-
bel ‘�CDM+all’ used in that study refers to an extension of a flat
�CDM base model with a free total neutrino mass and marginaliza-
tion over baryon feedback, but does not take IAs into account. The
errors are comparable to the errors in this study, since CFHTLenS
and KiDS-450 have comparable statistical power. Our results in this
parameter projection disagree mildly with the result from the DES
science verification (SV) correlation-function analysis (Dark En-
ergy Survey Collaboration 2016, ‘Fiducial DES SV cosmic shear’)
by 1.9σ (three z-bins)/2.1σ (two z-bins).

Also interesting is the comparison of our results to CMB con-
straints including pre-Planck (Calabrese et al. 2013; Hinshaw
et al. 2013) and Planck (Planck Collaboration XIII 2016; Spergel
et al. 2015) data. We find them to be most distinctively in tension
with the results from Planck Collaboration XIII (2016) at 3.2σ (three
z-bins)/3.3σ (two z-bins) which cannot be explained by projecting
a multidimensional likelihood into this 1D parameter space alone.

6.1 Neutrino masses

We also derive an upper bound on the total mass for three de-
generate massive neutrinos and find �mν < 3.3 eV (three z-bins)/
�mν < 4.5 eV (two z-bins) at 95 per cent credibility from lens-
ing alone. Joudaki et al. (2016) also derive a neutrino constraint
based on the four z-bin correlation-function analysis of the KiDS-
450 data (Hildebrandt et al. 2017) and find �mν < 4.0 eV and
�mν < 3.0 eV at 95 per cent credibility, the latter depending on the
choice of the H0 prior. We note that Joudaki et al. (2016) use a dif-
ferent implementation of massive neutrinos through HMCODE (Mead
et al. 2016), whereas the massive neutrino implementation used in
the pipeline here is the one from CLASS (Lesgourgues & Tram 2011;
Bird et al. 2012). We note further that both massive neutrino cal-
ibrations are most accurate only for total neutrino masses �mν �
1 eV. So far, these lensing-only constraints on the upper bound of
the total mass of neutrinos are still weaker than non-lensing con-
straints as found by Planck Collaboration XIII (2016, ‘TT+lowP’),
who report �mν < 0.72 eV at 95 per cent confidence. Combining
the Planck CMB results with measurements of the Ly α power spec-
trum and BAO measurements yields the very stringent upper limit
of �mν < 0.14 eV at 95 per cent confidence (Palanque-Delabrouille
et al. 2015).

6.2 Error budget

Comparing the error bars between our quadratic-estimator two z-
bin and three z-bin analyses and the four z-bin correlation-function
analysis by Hildebrandt et al. (2017), we note that the error bars of
the correlation function results are smaller by more than a factor of
two in comparison to our power spectrum analysis (while marginal-
izing over a comparable set of nuisance parameters except for the
excess-noise). Comparing the error bars of the two z-bin analysis
versus the three z-bin analysis, we find that using more redshift bins
in a tomographic analysis improves the constraints despite lowering
the SNR per individual redshift bin. However, this effect cannot ex-
plain the larger error bars in this power spectrum analysis and one
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Figure 10. (a) Error budget for the parameter combination S8 in the two z-bin analysis for the fiducial model shown in Fig. 8 and described in Section 5.1. The
statistical error already includes marginalization over the source redshift distribution, shear calibration, and resetting bias. The uncertainty due to marginalising
over baryon feedback and IAs is denoted as Abary and AIA, respectively. The uncertainty due to marginalising over residual excess-noise is labelled by Anoise.
The radius of the pie chart is set to the ratio of the total error of the two z-bin analysis over the total error of the three z-bin analysis. (b) The same as (a) but
for the three z-bin analysis. The radius of the pie chart is set to one.

should also consider the information from smaller scales that has
entered the correlation-function analysis (see appendix C or fig. 4
in Kilbinger et al. 2017).

In order to give the reader a feeling for the relative contribution
of the different sources of uncertainty to our final error budget on
the parameter S8, we show in Figs 10(a) and (b) a detailed error
budget for the two z-bin and three z-bin analyses. The dominant
part of the uncertainty is already set by the statistical error which
also accounts for the marginalization over the shear calibration
and redshift distribution uncertainty. Other sources of uncertainty
and their relative impact differ between the two z-bin and three
z-bin analyses due to their different redshift sensitivity. Adding
more tomographic bins to the analysis decreases the uncertainty
due to marginalizing over the IA modelling, as expected. However,
for the quadratic estimator adding more and more redshift bins
becomes impractical due to the strong dependence of the matrix
dimensionality on the number of redshift bins and hence runtime
(Section 3).

Improving upon the prior for the baryon feedback model is also
worth pursuing since the uncertainty due to Abary contributes about
10 per cent to the total uncertainty.

A further limitation for high-precision constraints with the
quadratic estimator is the requirement to marginalize over the
excess-noise power model. Although this uncertainty contributes
only 8.8 per cent to the total uncertainty in the two z-bin analy-
sis, it is strongly dependent on redshift and its contribution rises to
13.8 per cent in the three z-bin analysis. The three z-bin analysis
is more affected because the SNR per bin is lower in this case.
However, the three z-bin analysis still yields a smaller total uncer-
tainty on S8, so it is worthwhile to investigate further mitigation
strategies for the excess-noise power contribution. Equivalently a
stringent quantification of the uncertainty of the root-mean-square
ellipticity dispersion would allow us to use more informative pri-
ors for the parameters of the excess-noise model. Moreover, we
note that correlation-function measurements are also affected by

excess-noise through their covariance matrix in which a biased esti-
mate of the shear dispersion enters (although this can both increase
or decrease the errors depending on the bias).

Finally, we note that the calibration model for the fiducial B
modes (Section 3.2) yields B modes consistent with zero in the
four bands considered for deriving cosmological constraints. This
is shown in Figs 6 and 7 in which the ‘resetting bias’ model was
subtracted off the extracted B modes. We assess the consistency
of the corrected B modes with zero more quantitatively via a χ2-
goodness-of-fit measure and find: χ2

red = 1.10 for 23 degrees of
freedom in the three z-bin analysis and χ2

red = 0.58 for 11 degrees
of freedom in the two z-bin analysis. Hence, there is no significant
B-mode contamination in the data for the scales used in this analy-
sis. This implies that the small residual B-mode contamination on
small angular scales observed by Hildebrandt et al. (2017) is indeed
most likely caused by some unknown systematic affecting the high
multipoles that we do not include in our analysis presented here.

7 C O N C L U S I O N S

In this study we applied the quadratic estimator to shear data from
KiDS-450 in two and three redshift bins over the range 0.10 < zB

≤ 0.90 and extracted the band powers of the autocorrelation and
cross-correlation shear power spectra for multipoles in the range 76
≤ � ≤ 1310. The covariance matrix is based on an analytical calcu-
lation that is then convolved with the full band window matrix. We
interpret our measurements in a Bayesian framework and we derive
cosmological parameters after marginalizing the posterior distribu-
tion over a free total neutrino mass, physical nuisances such as IAs
and baryon feedback, and nuisance parameters for excess-noise.
The model also includes a marginalization over the small uncer-
tainties of the shear calibration and accounts for the uncertainty of
the redshift distributions.

We find S8 = 0.651 ± 0.058 (three z-bins)/S8 = 0.624 ± 0.065
(two z-bins), which is in tension with the value from Planck at
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3.2σ (three z-bins)/3.3σ (two z-bins). This supports the result from
the fiducial KiDS-450 correlation-function analysis in four tomo-
graphic bins by Hildebrandt et al. (2017) with higher significance
despite increased error bars by almost a factor of two in compari-
son to the correlation-function analysis. Moreover, the fact that this
study uses fewer of the very non-linear scales in comparison to
Hildebrandt et al. (2017) also refute the idea that insufficient mod-
elling of these non-linear scales is a possible explanation for the
discrepancy with Planck. We emphasize that the estimator, signal
extraction and cosmological inference pipelines are independent
from the pipelines used in Hildebrandt et al. (2017); both stud-
ies only have the shear catalogues in common. Hence, this study
presents an independent cross-check of the previously reported re-
sults with respect to the data pipelines.

Finally, we summarize the properties of the quadratic estimator
with respect to the steadily increasing amount of data from current
and future surveys: although the quadratic estimator is an intrinsi-
cally slow matrix algorithm, dealing with shear data of the order of
(several) 1000 deg2 is in principle still feasible. However, increas-
ing the number of tomographic bins and multipole bins will require
major revisions of the code. Porting it, for example, to graphical pro-
cessing units specifically designed for matrix operations might be
the most straightforward solution to this problem. For that purpose,
we make our code implementation available to the community.15

Following a hybrid-approach, also taken for the measurement of
CMB power spectra, might alleviate the runtime problem: there the
quadratic estimator analysis is limited to include only the largest
scales/lowest multipoles and higher multipole bands are measured
with intrinsically faster pseudo-C(�) methods which are usually less
accurate on the largest scales (Asgari et al. 2016).

It is also important to realize that a shear calibration produced
with a correlation-function analysis in mind might not be optimal for
other estimators. In particular, the quadratic estimator can easily ac-
count for the effect of a global additive shear bias whose calibration
for correlation functions requires significant resources and efforts.
However, the noise level in the data must be known very precisely
and accurately in order to extract unbiased shear power spectra with
the quadratic estimator, whereas in correlation-function measure-
ments the noise level enters only through the covariance. Although
the bias can be modelled and mitigated for the quadratic-estimator
analysis, its mitigation is a major source of uncertainty, especially
for an increasing number of tomographic bins.
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A P P E N D I X A : U P DAT E D D E R I VAT I O N O F T H E
W I N D OW FU N C T I O N MAT R I X

In Section 3, we noted that the notation of the window function
matrix W in equation (10) has changed with respect to the one
given in Köhlinger et al. (2016). This is necessary, because in order
to propagate the properties of the quadratic estimator into the ana-
lytical covariance (Section 4.3), the full band window matrix with
all possible cross-terms is required. Hence, we give the updated
notation below.

The elements of the window function matrix can be derived as
(cf. Lin et al. 2012)

WA(ζϑ)(�) =
∑

B

1

2
(F−1)ABTB(ζϑ)(�), (A1)

where F−1 denotes the inverse of the Fisher matrix (equation 12 in
Köhlinger et al. 2016). The full index notation for all matrices and
tensors used in the quadratic-estimator algorithm can be found in
appendix A of Köhlinger et al. (2016). The trace matrix T is defined
as

TA(ζϑ)(�) = Tr[C−1DAC−1Dζϑ (�)]. (A2)

The derivative Dζϑ (�) denotes the derivative of the full covariance
C with respect to the power at a single multipole � per band type ϑ

and unique redshift correlation ζ and is derived as:

∂C(μν)(ab)(ij )

∂Bζϑ (�)
= Mζ (μν)

2(� + 1)

[
w0(�)Iϑ

(ab)(ij ) (A3)

+1

2
w4(�)Qϑ

(ab)(ij )

]
≡ D(μν)(ab)(ij )(ζ )(ϑ)(�) ≡ Dζϑ (�), (A4)

where we have used that

C
sig
(μν)(ab)(ij )

=
∑
ζ,ϑ,�

Bζϑ (�)
Mζ (μν)

2(� + 1)

[
w0(�)Iϑ

(ab)(ij ) + 1

2
w4(�)Qϑ

(ab)(ij )

]
.

(A5)
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A P P E N D I X B: A D D I T I O NA L T E S T S

We present here additional tests performed in order to first show
that the contribution of power leakage/mixing (e.g. due to the survey
mask) is negligible for the band powers extracted with the quadratic
estimator. In addition we show that power leakage/mixing is not the
source of the fiducial B modes discussed in Section 3.2.

Secondly, we verify that the excess-noise model (Section 5.1.3)
is indeed required in the interpretation of the band power measure-
ments.

Power leakage/mixing

Lin et al. (2012) showed that power leakage/mixing from E to B
modes is negligible for the quadratic estimator. However, power
leakage/mixing could also be a potential source of the fiducial B
modes discussed in Section 3.2. In order to verify that this is also
negligible here, we use once more a suite of 50 GRF realizations of
the CFHTLenS W2 field in two broad redshift bins (i.e. z1: 0.50 < zB

≤ 0.85 and z2: 0.85 < zB ≤ 1.30; see Köhlinger et al. 2016 for
details) and show the extracted B-mode band powers (grey crosses
with error bars) for the low-redshift autocorrelation (z1 × z1) in
Fig. B1, the high-redshift autocorrelation (z2 × z2) in Fig. B3, and
their cross-correlation (z2 × z1) in Fig. B2. In each figure from

left- to right-hand panels, these extracted B modes are compared to
the convolution (red points) of the input E-mode signal (‘WMAP9’-
like cosmology; solid line) with the corresponding band window
functions of all possible cross-terms (e.g. EE, z1 × z1 to BB, z2 × z2).
If power leakage/mixing were indeed the cause for these fiducial B
modes, we would expect the convolved E-mode power to match the
extracted B modes, especially in the redshift autocorrelation panels
(‘EE z1 × z1 to BB z1 × z1’) of Figs B1 and B3 and cross-correlation
panel of Fig. B2.

Consistency of the excess-noise model

For cross-checking whether the excess-noise power model defined
in Section 5.1.1 is required by the data, we evaluate the E-mode sig-
nal only using a minimal cosmological model (including IAs) with
the excess-noise model. The recovered amplitudes of the excess-
noise model are then compared to evaluations of the B-mode signal
only. We find that the noise amplitudes per redshift autocorrelation
agree within their error bars across the E-only and B-only inferences
(Table B1). This indicates that excess-noise power is contributing
equally to both E and B modes as expected from theory (Section 2).
We note that the negative sign for Anoise(z3) in Table B1 implies that
the noise is overestimated in that redshift bin, hence the excess-noise
model compensates for that by subtracting off the noise component.

Figure B1. We show that power leakage from E to B modes is negligible using 50 GRF realizations of the CFHTLenS W2 field in two tomographic bins. The
extracted B-mode band powers (grey crosses with error bars) for the low redshift autocorrelation (z1 × z1) are compared to the convolution (red points) of the
input E-mode signal (‘WMAP9’-like cosmology; solid line) with the corresponding band window functions of all possible cross-terms (from left to right; e.g.
EE, z1 × z1 to BB, z2 × z2). If power leakage/mixing were indeed the cause for these fiducial B modes (Section 3.2), we would expect the convolved E-mode
power to match the extracted B modes, especially in the redshift autocorrelation panel (‘EE z1 × z1 to BB z1 × z1’).

Figure B2. The same as Fig. B1 but for the extracted B modes of the redshift cross-correlation (z2 × z1). If power leakage/mixing were indeed the cause for
these fiducial B modes (Section 3.2), we would expect the convolved E-mode power to match the extracted B modes, especially in the redshift cross-correlation
panel (‘EE z2 × z1 to BB z2 × z1’).
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Figure B3. The same as Fig. B1 but for the extracted B modes of the high-redshift autocorrelation (z2 × z2). If power leakage/mixing were indeed the cause for
these fiducial B modes (Section 3.2), we would expect the convolved E-mode power to match the extracted B modes, especially in the redshift cross-correlation
panel (‘EE z2 × z2 to BB z2 × z2’).

Table B1. Noise amplitudes for separately evaluated E- and B-mode
signals.

E modes only B modes only

2 z-bins:

Anoise(z1) −0.014+0.016
−0.017 −0.015+0.013

−0.015

Anoise(z2) −0.013+0.018
−0.019 0.023+0.013

−0.013

3 z-bins:

Anoise(z1) −0.016+0.015
−0.018 −0.009+0.015

−0.010

Anoise(z2) 0.035+0.015
−0.016 0.024+0.012

−0.013

Anoise(z3) 0.009+0.015
−0.015 0.016+0.012

−0.013

A P P E N D I X C : C O M PA R I S O N TO
C O R R E L AT I O N F U N C T I O N S

Most cosmic shear studies to date employ real-space correlation
functions (e.g. Heymans et al. 2013; Becker et al. 2016; Hildebrandt
et al. 2017) because they are conceptually easy and fast to compute.

In contrast to direct power spectrum estimates, correlation func-
tions measured at a given angular separation sum up contributions
over a wide range of multipoles. Due to this mode mixing it is non-
trivial to compare angular scales to multipole ranges, as well as to
cleanly separate linear and non-linear scales.

A direct power spectrum estimation, however, requires an accu-
rate and precise estimation of the noise level in the data, whereas a
measurement of that is not required in the signal extraction step for
correlation functions. In this case the accurate noise level estimation
enters only in the cosmological likelihood evaluation through the
covariance matrix.

As an example, here we qualitatively compare correlation-
function measurements based on the angular scales presented in
Hildebrandt et al. (2017) to the direct power-spectrum measure-
ments employing the quadratic estimator. For that purpose we cal-
culate a fiducial shear power spectrum (equation 5) employing a
Planck cosmology (Planck Collaboration XIII 2016) and the red-
shift distributions derived for the two z-bin analysis (Table 2).

A correlation-function based estimator such as the two-point
shear correlation function ξ± is related to the shear power spec-
trum Cμν(�) at multipoles � through

ξ
μ,ν
± (θ ) = 1

2π

∫
d� �Cμν(�)J0,4(�θ ) ≡

∫
d� Iξ± (�θ ), (C1)

Figure C1. Upper panel: measurement of a fiducial shear power spectrum
using the quadratic estimator (equation C2) in four band powers between
76 ≤ � ≤ 1310 and for the lowest redshift bin of the two z-bin analysis
(Table 2). The borders of the bands are indicated by the vertical dashed (grey)
lines and each coloured line corresponds to a different band power (Table 1).
Mid panel: measurement of the same fiducial shear power spectrum using the
ξ+ statistics for correlation functions (equation C1) at angular bin centres θ

of 50, 24, 12, 6, 3, 1.5 and 0.7 arcmin corresponding to different colours from
left to right. Lower panel: measurements of the same fiducial shear power
spectrum using the ξ− statistics for correlation functions (equation C1) at
angular bin centres θ of 200, 100, 50, 24, 12 and 6 arcmin corresponding to
different colours from left to right.
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where θ is the angular distance between pairs of galaxies and J0,4 is
the zeroth (for ξ+) or fourth (for ξ−) order Bessel function of the first
kind. In contrast, the quadratic estimator (QE) convolves the shear
power spectrum with its band window matrix WA(�) (equation A1):

BA =
∑

�

�(� + 1)

2π
WA(�)CA(�) ≡

∑
�

IQE(�), (C2)

where the superindex A runs over all multipole bands and unique
redshift correlations. The convolved power spectra as a function
of multipoles defined at the right-hand sides of both equations are
shown in Fig. C1 for the lowest redshift bin of the two z-bin analy-
sis. In the upper panel, we indicate the borders of the bands used in
our cosmological analysis (grey dashed lines; see Table 1). In the
two lower panels, we show the upper and lower limits of our power
spectrum analysis. For the calculation of Iξ± (�θ ) we use the central
values of the θ±-intervals from the cosmic shear analysis of Hilde-
brandt et al. (2017). Fig. C1 shows that the ξ+ measurements are
highly correlated and anchored at very low multipoles, whereas the
ξ− measurements show a high degree of mode-mixing. In contrast,
the quadratic-estimator measurements of the power spectrum are
more cleanly separated and the degree of mode mixing is lower. We
also note that correlation-function measurements get contributions
from lower multipoles than � < 76 as well as multipoles larger than
� > 1310, which do not contribute to the signal in our power spec-
trum analysis. At face value most of the cosmological information is
contained in high multipoles and although the correlation-function
measurements extend further into the high multipole regime, the

contributions from these scales are non-negligible only for angular
scales θ < 3 arcmin. However, the interpretation of the correlation-
function signal at these scales requires accurate knowledge of the
non-linear part of the matter power spectrum at high wavenumbers
k.

Finally, we remark that the disadvantages of the two-point shear
correlation functions ξ± described here can also be avoided by using
‘Complete Orthogonal Sets of E/B-mode Integrals’ also known as
‘COSEBIs’ (Schneider, Eifler & Krause 2010; Asgari, Schneider &
Simon 2012; see Asgari et al. 2017 for an application to data).

A P P E N D I X D : A D D I T I O NA L F I G U R E S

In Fig. D1 we show the residuals and the error on the mean between
the input and extracted E-mode power from 50 GRF extractions for
the highest noise level (Section 3.2). The figure shows that the bands
considered to enter in the cosmological analysis are unbiased (the
first and last band are excluded a priori as discussed in Section 4).
However, the second-to-last band shows a significant bias (the last
band is omitted in the figure because it is off-scale) and therefore it
is ignored in the cosmological analysis.

In order to highlight possible parameter degeneracies we show
in Fig. D2 all 2D projections of the parameters used in the most
extended model �CDM+AIA + Abary + �mν + noise (Section 5.1
and Table F1).

In Fig. D3 we show constraints in the S8 versus �m plane for the
three z-bin analysis.

Figure D1. Residuals of input E-mode power and extracted E modes averaged over 50 CFHTLenS-like GRF realizations of W2. The errors shown here are
the errors on the mean band power and hence they are divided by

√
50.
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Figure D2. The parameter constraints derived from sampling the likelihood of the model �CDM+AIA+Abary+�mν+noise for the three z-bin analysis
(Section 5.1 and Table F1). Note that we also marginalize over the redshift distribution uncertainty and the resetting bias parameters. The parameter m is
a dummy variable for the marginalization over the uncertainties of the multiplicative shear calibration bias (see Section 4.2) and the parameters Anoise(zμ)
describe the amplitudes used in the excess-noise model (see Section 5.1.3). The dashed lines in the marginalized 1D posteriors denote the weighted median
and the 68 per cent credible interval (Table F1). The contours in each 2D likelihood contour subfigure are 68 and 95 per cent credible intervals smoothed with
a Gaussian for illustrative purposes only.

Figure D3. (a) Projection of cosmological constraints in the S8 versus �m plane from the KiDS-450 analysis presented here (‘KiDS-450, QE, three z-bins’)
and the fiducial correlation-function analysis by Hildebrandt et al. (2017, ‘KiDS-450, CF, fiducial’). For comparison we also show contours from Planck
Collaboration XIII (2016, ‘TT+lowP’). The inner contours correspond to the 68 per cent credibility interval and the outer ones to the 95 per cent credibility
interval. Note that the contours are smoothed with a Gaussian for illustrative purposes only. (b) The same as in (a) but comparing to the ‘ξ+ large scales
correlation-function analysis from Hildebrandt et al. (2017).
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Figure E1. The difference between a shear power spectrum extracted from reference GRFs and the power spectrum extracted from GRFs in which a global
c-term of c = 2 × 10−3 was applied to both ellipticity components. From left to right the unique correlations of the two redshift bins are shown. The GRFs
were created to match the four fields of CFHTLenS in area, shape, noise properties, and redshift range (z1: 0.50 < zB ≤ 0.85 and z2: 0.85 < zB ≤ 1.30). The
signal extraction, however, employs the multipole binning that is also used in the subsequent KiDS data analysis and extends to multipoles significantly below
the one set by the field size. The globally applied c-term only affects the band power estimate of the first multipole bin but has no effect on the remaining
bands. Hence, removing the first band power from a subsequent cosmological analysis is sufficient to account for a leftover global c-term in the data. The 1σ

error bars are based on the Fisher matrices and the horizontal dashed (grey) line indicates the square of c = 2 × 10−3.

APPENDIX E: SENSITIVITY TO
L A R G E - S C A L E A D D I T I V E B I A S

Additive biases (equation 14) are mainly caused by a residual PSF
ellipticity in the shape of galaxies (e.g. Hoekstra 2004; van Uitert &
Schneider 2016). More generally, any effect causing a preferential
alignment of shapes in the galaxy source sample will create an addi-
tive bias. For example, in an early stage of the KiDS-450 data pro-
cessing a small fraction of asteroids ended up in the galaxy source
sample. This resulted in strongly aligned shape measurements with
very high SNR causing a substantial c-term (see appendix D4 in
Hildebrandt et al. 2017). This example also demonstrates that a po-
tential c-term correction can only be derived empirically from the
data.

Here we demonstrate how the quadratic estimator can naturally
deal with a residual additive shear in the data. This is a clear advan-
tage over correlation-function statistics that do not separate E from
B modes such as the ξ± statistics. For these the residual additive
shear needs to be properly quantified and subtracted from the data,
usually hampering the ability of measuring the cosmic shear signal
at large angular separations. This indeed motivated the choice of
maximum angular separations used in the cosmological analysis of
Hildebrandt et al. (2017).

If sufficiently low multipoles are included in the extraction of
the first multipole band of the shear power spectrum band powers,
this band accounts for any residual DC offset in the data such
as the effect of a constant c-term. For a clean demonstration of
this feature, we employ GRFs with realistic CFHTLenS survey
properties (e.g. masking, noise level; see Köhlinger et al. 2016 for
details). The GRFs were readily available and for this demonstration

the differences in survey properties are not of importance. We extract
E and B modes simultaneously from four GRFs that match the
W1, W2, W3 and W4 fields from CFHTLenS in size and shape.
The measurements are performed in two broad redshift bins, i.e.
z1: 0.50 < zB ≤ 0.85 and z2: 0.85 < zB ≤ 1.30, but we use the same
multipole binning as used in the analysis of the KiDS-450 data
(Table 1). For performance reasons we decrease the shear pixel size
to σ pix = 0.◦14. In a first step we extract a reference signal from the
GRFs to which no additional global c-term was added. In a second
step we apply a large but realistic additive term of c = 2 × 10−3

(e.g. Jarvis et al. 2016; fig. D6 in Hildebrandt et al. 2017) to both
ellipticity components and re-extract the shear power spectra. In
Fig. E1 we show the difference between these two signals for all
tomographic and multipole bins. As expected, the first multipole bin
shows a substantial contamination on the order of the squared global
c-term, but all remaining bands are essentially unaffected. Hence,
removing the first multipole bin from a subsequent cosmological
analysis replaces a sophisticated constant c-correction at reasonable
computational costs. Note, however, that this approach does not
account for a spatially varying c-correction. However, Hildebrandt
et al. (2017) find for the additive bias no significant dependence
on the observed position within the field of view for the KiDS-450
tiles.

A P P E N D I X F: A D D I T I O NA L TA B L E S

In Tables F1 and F2 we present cosmological parameter constraints
for the fiducial model used in the 2 z-bin and 3 z-bin analyses
(Section 5.1).
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Table F1. Cosmological parameter constraints and flat prior ranges.

Parameters Flat prior ranges �CDM+AIA+Abary+�mν+noise �CDM+AIA+Abary+�mν+noise
(two z-bins) (three z-bins)

�cdmh2 [0.01, 0.99] 0.15+0.04
−0.05 0.15+0.05

−0.06

ln (1010As) [1.7, 5] 2.52+0.48
−0.82 2.47+0.53

−0.77

�m Derived 0.34+0.09
−0.11 0.33+0.09

−0.11

σ 8 Derived 0.58+0.09
−0.11 0.62+0.09

−0.11

�bh2 [0.019, 0.026] 0.022+0.004
−0.003 0.022+0.003

−0.003

ns [0.7, 1.3] 1.08+0.21
−0.13 1.13+0.17

−0.08

h [0.64, 0.82] 0.75+0.07
−0.06 0.75+0.07

−0.04

�mν (eV) [0.06, 10] 1.48+0.63
−1.42 1.16+0.49

−1.09

m [−0.033, 0.007] −0.013+0.017
−0.017 −0.011+0.016

−0.014

AIA [−6, 6] −1.81+1.61
−1.21 −1.72+1.49

−1.25

Abary [0, 10] 3.15+1.36
−3.15 2.87+1.36

−2.60

Anoise(z1) [−0.1, 0.1] 0.012+0.011
−0.011 0.030+0.011

−0.010

Anoise(z2) [−0.1, 0.1] −0.003+0.012
−0.011 0.014+0.010

−0.011

Anoise(z3) [−0.1, 0.1] – −0.006+0.011
−0.011

χ2 – 17.97 48.59
dof – 12 35

Notes. We quote weighted median values for each varied parameter (Section 5.1) and derive 1σ -errors
using the 68 per cent credible interval of the marginalized posterior distribution.

Table F2. Constraints on S8 and σ 8(�m/0.3)α .

Model S8 ≡ Mean error σ 8 α

σ8
√

�m/0.3 on S8 (�m/0.3)α

2 z-bins:

�CDM+AIA+Abary+�mν+noise 0.624+0.069
−0.061 0.065 0.623+0.068

−0.062 0.483

3 z-bins:

�CDM+AIA+Abary+�mν+noise 0.651+0.060
−0.056 0.058 0.650+0.059

−0.056 0.462

Notes. We quote weighted mean values for the constraints on S8 ≡ σ8
√

�m/0.3 and σ 8(�m/0.3)α . The errors denote the
68 per cent credible interval derived from the marginalized posterior distribution.
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