
 
 

 

 

 

Abstract— The dependable operation of brain-computer 
interfaces (BCI) based on electro electroencephalogram (EEG) 
signals requires precise classification of multi-channel EEG 
signals. The design of EEG interpretation and classifiers for 
BCI are open research questions whose difficulty stems from the 
need to extract complex spatial and temporal patterns from 
noisy multidimensional time series obtained from EEG 
measurements. In this paper we attempt to classify EEG data 
used in the BCI competition by the combination of pattern 
classification methods. We use Common Spatial Pattern (CSP) 
to extract features. A Genetic Algorithm (GA) was applied first 
to evolve an artificial neural network (ANN) to find the 
optimum structure of ANN. A Particle Swarm Optimization 
(PSO) was also attempted to determine the optimal number of 
hidden neurons complementary to the GA approach. Then the 
GA was used to evolve the connection weights of the ANN.  
 

I. INTRODUCTION 

 
rain–Computer Interface is a direct communication 
channel between brain and computer or external devices. 

They create a link between the brain and an output device by 
bypassing conventional motor output pathways of nerves and 
muscles. The translation of user intent into device control 
commands is a major challenge. Success requires the 
effective interaction of two adaptive controllers: the user's 
brain, which produces brain activity that encodes intent, and 
the BCI system, which translates that activity into device 
control commands. In the literature, many machine learning 
and pattern classification algorithms have been reported to 
give excellent results when applied to BCI data in offline 
analyses. 

 
A typical noninvasive electroencephalogram (EEG) based 

brain-computer communication devices are composed of 
three subsystems. Namely: EEG acquisition, EEG signal 
processing and the output subsystems. The acquired EEG 
signal can be regarded a complex time series signal that has 
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multiple factors intricately intertwined. Therefore, signal 
processing and classification methods are essential tools in 
the development of improved BCI technology. 

 
In this article, we examine the application of evolutionary 

Neural Networks to the problem of EEG signal classification. 
The goal of the project was to classify unknown EEG data as 
associated with either a left finger movement or a right finger 
movement. The sample data set used had been provided by 
Fraunhofer FIRST, Intelligent Data Analysis Group and 
Charité University Medicine Berlin, Campus Benjamin 
Franklin, Department of Neurology, Neurophysics Group via 
the BCI competition webpage [1].  

 

II. MATERIALS AND METHODS 

A. A Description of the Data Set 
 
This data set had been recorded from a healthy subject 

during a session with no feedback. In these sessions the 
subject had sat in a normal chair, with arms relaxed and 
resting on the table. The fingers had been in the standard 
typing position at the computer keyboard. The task had been 
to press one of four assigned keys in a self-chosen order and 
timing (“self-paced tapping”) with either the index or the 
little finger of either the left or the right hand. The experiment 
had consisted of three runs of 6 min each. All runs had been 
conducted in one session with break of a few minutes in 
between. Typing had been performed at an average speed of 1 
key tap per second. 

 
416 epochs of 500 ms EEG had been provided, each 

ending 130 ms before an actual key press. (This choice of an 
early endpoint ensured that almost all trials were free of 
Electromyography activity resulting from muscle 
movement.) The epochs had been randomly shuffled and split 
into a training set (316 epochs) which has been labeled “0” 
for upcoming left hand and “1” for upcoming right-hand 
movements. Another test set (100 epochs) is also provided for 
evaluation. EEG had been recorded from 28 scalp positions, 
mainly covering the primary motor cortices bilaterally.  
 

B. Feature Selection by Common Spatial Patterns (CSP) 
 

The ultimate success of a learning machine relies typically 
on a proper preprocessing of the data. Furthermore and very 
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important in practice, we can discard non-informative 
dimensions of the data and thus select the features of interest 
for classification [3].   

 
There are two matrices associated with the first 316 trials. 

One is a 50×28×316 matrix with all the raw voltage readings 
from the EEG of the 28 channel sensors over 50ms. The 
second is a 1×316 matrix of labels for each trial. If the nth 
entry of this vector is 1, then the subject used a finger of the 
right hand during the nth trial; otherwise, the subject used a 
finger of the left hand. To make this massive matrix easier to 
work with, it is converted to a 316×1400 matrix, where each 
row contains all the data from that trial. This process creates a 
316×1400 matrix containing all the original EEG data, but 
such a matrix was found to be too large to work with in a 
computationally efficient manner.  

 
Raw EEG scalp potentials are known to have a poor spatial 

resolution owing to volume conduction. In a simulation study 
in [23] only half the contribution to each scalp electrode came 
from sources within a 3 cm radius. Band-pass filtering is 
carried out with a low-pass filter applied (cutting off at 40 Hz) 
to remove the noise in the raw data. After removing the 
disturbances the spatial filtering can be applied to produce a 
new time series whose variances are optimal for the 
classification. Optimal spatial filtering can be achieved using 
Common Spatial Patterns Analysis (CSP), it is based on 
simultaneous diagonalization of two covariance matrices. 
 
 Common Spatial Patterns (CSP) Analysis is a technique to 
analyze multichannel data based on recordings from two 
classes (conditions). CSP yields a data-driven supervised 
decomposition of the signal parameterized by a matrix, W  
RC C  (C is the number of channels) that projects the signal,  
x(t)  RC in the original sensor space, to xCSP(t)  RC which is 
the surrogate sensor space, namely xCSP(t) = WTx(t). 
 

The CSP algorithm was first presented by Koles [24] as a 
method to extract the abnormal components from EEG, using 
a set of patterns that are common to both the normal and the 
abnormal recordings and have a maximally different 
proportion of the combined variances. Later CSP was used to 
create features for classification in EEG caused by imagined 
movements [25]. The first and last few CSP components (the 
spatial filters that maximize the difference in variance) are 
used to classify the trials with a high accuracy. 

 
 
 
 
 
 
 
 
 
 
Fig. 1: Flow chart of classification procedure using CSP. 
 

Figure 1 depicts the procedures associated with CSP for 
optimal spatial filtering and using an Artificial Neural 
Network for classification. 

 

C. Evolving Neural Networks using Genetic Algorithm 
 
The first approach attempted was to classify the data set 

using an Evolving Artificial Neural Network (EANN) where 
the architecture of the ANN itself is evolved. The architecture 
of an ANN is crucial in the successful application of ANN 
because the architecture has significant impact on a network’s 
information processing capabilities. Given a learning task, an 
ANN with only a few connections and linear nodes may not 
be able to perform the task at all due to its limited capability, 
while an ANN with a large number of connections and 
nonlinear nodes may overfit noise in the training data and fail 
to have good generalization ability. Finding the optimal 
architecture for an ANN can be formulated as a search 
problem in the architecture space where each point represents 
a different ANN structure.  

 
The candidate ANN structures were Multilayer 

Perceptrons (MLP) with varying numbers of hidden neurons 
in two hidden layers. In the first attempt A genetic algorithm 
(GA) was used to find the optimal number of hidden neurons 
for the MLP. Two hidden layers were sufficient to classify the 
EEG patterns according to the universal approximation 
theorem [1].  
 

A binary chromosome with 20 bits was used to represent 
the number of neurons in the two hidden layers. The first 10 
bits represent the number of hidden neurons in the first 
hidden layer and the second 10 bits represent the number of 
neurons in the second hidden layer. Uniform crossover was 
employed so that the chromosomes recombine during 
crossover at one point. A crossover rate of 0.9 was used so 
that the offspring replace the parents in the next generation 
with a probability of 0.9. The mutation rate was kept to 0.01. 
A maximum of 100 neurons for each layer was attempted 
first. It was found that there exists excessive overfitting in the 
resulting architecture of the ANN. Later the numbers of 
neurons in hidden layers were tuned lower according to GA. 
Fitness measure was the inverse of total misclassifications. 
Therefore the algorithm tries to minimize classification errors 
in training data and test data both. By analyzing the output the 
most appropriate numbers of hidden neurons were 
determined. 
 

D. Particle Swarm Optimization for Evolving Neural 
Networks   
 
The PSO algorithm was originally developed to imitate the 

motion of a flock of birds, or insects [4]. PSO offers rapid 
optimization of complex multidimensional search spaces, and 
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is a popular contemporary algorithm for a wide range of 
search and optimization problems. As a robust stochastic 
optimization technique based on the movement and 
intelligence of swarms, PSO applies the concept of social 
interaction to problem solving. It uses a number of agents 
(particles) that constitute a swarm moving around in the 
search space looking for the best solution. Each particle is 
treated as a point in an N-dimensional space which adjusts its 
“flying” according to its own flying experience as well as the 
flying experience of other particles. 

 
The basic concept of PSO lies in accelerating each particle 

toward its previous best and the group’s previous best 
locations, with a random weighted acceleration at each time 
step. The algorithm for calculating the next particle position 
(x) is, 

 
 )1()()( 22111 igiiit xpBCxpBCvv  

)2(11 ttt vxx  
 
where constants C1 and C2 determine the balance between 

the influence of the individual knowledge (C1) and that of the 
group (C2) (both set initially to 2), B1 and B2 are uniformly 
distributed random numbers defined by some upper limit, 
Bmax, that is a parameter of the algorithm, pi and pg are the 
individual’s previous best position and the group’s previous 
best position, and xi is the current position in the dimension 
considered. For an n-dimensional space the particle velocity 
is calculated for each dimension, i = 1,2... n, then resolved 
into a final vector for updating the particle’s position [26].  

 
The operations in (1) result in a balanced motion of the 

particles towards the previously known best points in the 
space. This balanced motion between the local or global best, 
i.e. between exploration and exploitation, could be 
considered as broadly equivalent to selection pressure in a 
GA, although control is more complex in a GA, with other 
critical parameters such as population size and mutation rate.  

 
The optimal number of hidden neurons was identified 

using a PSO with thirty particles. The upper limit of the 
number of hidden neurons was set to 40. The maximum 
iterations was set to 100. The algorithm converges to the 
optimal combination of neurons that minimizes the 
classification errors.  
 

E.  Pattern Classification 

 
The goal of pattern classification is to find a rule that 

assigns an object to one of several possible classes. 
Minimizing the training error alone does not produce the 
minimum errors for the test cases most of the time. A more 
promising approach is to employ an A special class of ANN 

in which evolution is a fundamental form of adaptation in 
addition to learning is known as evolutionary artificial neural 
networks [5]–[9].  

  
Two ANN architectures were adopted in this work. The 

first type of ANN is an Evolutionary Neural Network, in 
which the numbers of hidden layer neurons were tuned by 
GA and PSO. In this first type of EANN the weights of the 
units were trained using the Backpropagation (BP) algorithm. 
Weight training in ANN is usually formulated as 
minimization of an error function, such as the mean square 
error between target and actual outputs averaged over all 
examples, by iteratively adjusting connection weights. Most 
training algorithms, such as BP and conjugate gradient 
algorithms [10], [11]–[13], are based on gradient descent. 
There have been some successful applications of BP in 
various areas [14], but BP has drawbacks due to its use of 
gradient descent. It often gets trapped in a local minimum of 
the error function and is incapable of finding a global 
minimum if the error function is multimodal and/or 
non-differentiable.  

 
One way to overcome gradient-descent-based training 

algorithms’ shortcomings is to adopt the second type of 
EANN in which the training process is conducted as the 
evolution of connection weights in the environment 
determined by the architecture and the learning task. GA can 
be used effectively in the evolution to find a near-optimal set 
of connection weights globally without computing gradient 
information.  

 
Another limitation of the first type of EANN is that it could 

lead to overfitting and non-robust behavior. One way to avoid 
the overfitting problem is to use a relatively simple function 
that explains most of the data, as a preferable way over a 
complex one that explains all data. This concept is known as 
Occam’s razor. Therefore in classifying the data set a reduced 
EANN where the maximum number of neurons in each 
hidden layer was 10 was developed.  The optimal structures 
were identified using the PSO algorithm and the weights of 
the selected ANN structures were trained using GA. 

 
The fitness of an ANN can be defined according to 

different needs. Two important factors which often appear in 
the fitness (or error) function are the error between target and 
actual outputs and the complexity of the ANN. Unlike the 
case in gradient-descent-based training algorithms, the fitness 
(or error) function does not have to be differentiable or even 
continuous since the second type of EANN does not depend 
on gradient information. Because GA can treat large, 
complex, non-differentiable and multimodal spaces, which 
are the typical case in the real world, considerable research 
and application have been conducted on the evolution of 
connection weights [15]. 
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A typical cycle of the evolution of connection weights is 
shown in Figure 1 that gives main steps involved in this 
procedure. The evolution stops when the fitness is greater 
than a predefined value (i.e., the training error is smaller than 
a certain value) or the population has converged.  

 
As illustrated in Figure 2, the weights of the ANN were 

trained using genetic algorithm. The topology of the neural 
network consisted of 28 neurons in the input layer, and two 
hidden layers and 2 neurons in the output layer. The 
maximum number of neurons in the hidden layers was 
restricted to 10 and the best structures were determined using 
the PSO algorithm. Then each of the selected architectures 
were trained using the GA. The weights of the hidden 
neurons and the biases were represented in a real valued 
chromosome. As connection weights are represented by real 
numbers, each individual in the evolving population is a real 
vector.  A population size of 100 was used in training the 
EANN and a maximum generation size was specified to be 
10000.  

 
It is generally very difficult to apply crossover operators in 

evolving connection weights since they tend to destroy 
feature detectors found during the evolutionary process. 
Traditional binary crossover and mutation can no longer be 
used directly. Special search operators have to be designed. In 
[16] a large number of tailored genetic operators were defined 
to incorporate many heuristics about training ANN. The idea 
was to retain useful feature detectors formed around hidden 
nodes during evolution. Evolutionary training approach has 
been proved to be much faster than BP for the problems 
considered [16].  

  

 
           Fig.2: Typical cycle of the evolution of connection weights 

  
 
The typical cycle of evolving the connection weights using 

GA begins with decoding each individual (genotype) in the 

current generation into a set of connection weights. Each 
ANN is evaluated by computing its total mean square error 
between actual and target outputs. The fitness of an 
individual is determined by the error. The higher the error, 
lower the fitness. Parents are selected for reproduction based 
on their fitness and crossover and mutation are applied on the 
parent chromosomes. The generated offspring form the next 
generation.   

III. RESULTS 
 
The results from the first type of EANN with a maximum 

number of 100 hidden units in each of the two layers are 
shown in Figures 3-5. Figure 3 depicts how the minimum 
errors had fluctuated in successive generations. Figure 4 
depicts how the average errors had changed during the 
generations. Figure 5 shows the best solutions found during 
successive generations of the algorithm. Table 1 shows some 
of the results obtained from the last population of PSO-based 
approach for evolving the number of hidden units. The 
computational cost incurred on a 2.53GHz Processor for the 
first EANN was 147682.89 Seconds. The PSO-based 
approach incurred a cost of 105682. 41 Seconds. This is a 
28% reduction in the execution time.  
 

The results obtained by using a reduced number of hidden 
neurons trained by GA are given in Table 2. The 
computational cost incurred in training the weights of the 
ANN was in the range of 72 hours in average.  

 
The accuracy of results obtained by applying the band filter 

for 0-40Hz, CSP for Optimal Spatial filtering and EANN for 
classification was 78% for the test set.  

 
Comparing the above results, we can identify that the 

performance of the method using CSP with EANN is on par 
with the best result achieved in the BCI Competition which 
had used a combination of common subspace decomposition 
and Fisher discriminant for feature selection and a Perceptron 
neural network for classification. The ANN with a smaller 
number of hidden neurons has performed marginally better 
than the ANN with a large number of hidden neurons in the 
hidden layers.  

Translation of genotype 
into neural network with 
corresponding weights. 

Evaluation of fitness function 

Selection of parents 
for reproduction 

Application of evolutionary 
algorithm search operators 
on parent chromosomes 

Creation of  
new offsprings 
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Fig. 3: Minimum errors in each generation.  
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Fig. 4: Average errors in each generation.  
 

 
Table 1: Numbers of neurons and their corresponding errors for the 
first type of EANN. 

No of Neurons 
in layer 1 

No of Neurons 
 in layer 2 Error % 

29 88 27 

74 89 31 

44 36 26 

77 81 25 

42 37 24 

 
Table 2: Numbers of neurons and their corresponding errors for the 
second type of EANN. 

No of Neurons 
in layer 1 

No of Neurons 
 in layer 2 Error % 

7 6 23 

4 7 24 

8 7 22 

6 7 24 

5 7 23 

 
 

IV. DISCUSSIONS 
 
Using EEG to detect motions is a highly challenging issue. 

In this particular application, the success rate is not that high 
due to the difficulty in EEG classification [17]. The 
performance of 22% misclassifications is in the vicinity of the 
best performances achieved in the BCI Competition [2]. The 
winning entry from Tsinghua University, Beijing had 
achieved an error rate of 16% and the entry from University 
of Toronto with an error rate of 19% had been placed second. 
Our results show that there is room for further improvement 
as we are doing. Future work leading to enhanced 
classification methods and more accurate preprocessing 
techniques are expected to improve the results.  

 
One of the problems faced by evolutionary training of 

ANN is the permutation problem [18], [19], also known as 
the competing convention problem. It is caused by the 
many-to-one mapping from the representation (genotype) to 
the actual ANN (phenotype) since two ANNs that order their 
hidden nodes differently in their chromosomes could still be 
equivalent functionally. In general, any permutation of the 
hidden nodes will produce functionally equivalent ANNs 
with different chromosome representations. The permutation 
problem makes crossover operator very inefficient and 
ineffective in producing good offspring. However, empirical 
results have shown that the adverse effects from the 
permutation problem can be alleviated with a high enough 
selection pressure in selecting the parents [18].   

 
Evolutionary training can be slow for some problems in 

comparison with fast variants of BP [20] and conjugate 
gradient algorithms [13], [21]. However, GA is generally 
much less sensitive to initial conditions of training. They 
always search for a globally optimal solution, while a 
gradient descent algorithm can only find a local optimum in a 
neighborhood of the initial solution. 
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