
Swinburne Research Bank
http://researchbank.swinburne.edu.au

Author: Lopez Lorca, Antonio; Burrows, Rachel; Sterling,
Leon

Title: Teaching motivational models in agile
requirements engineering

Editor: Mohammad Moshirpour, Mahmood Moussavi,
Alicia M. Grubb, Sarah Gregory and Behrouz Far

Conference name: 8th International Workshop on Requirements
Engineering Education and Training (REET 2018)

Conference location: Banff, Canada
Conference dates: 21 August 2018
Place published: United States
Publisher: IEEE
Year: 2018
Pages: paper no. 8501282
URL: http://hdl.handle.net/1959.3/447764

Copyright: © 2018 IEEE. Personal use of this material is
permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media,
including reprinting/republishing this material for
advertising or promotional purposes, creating new
collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted
component of this work in other works.

This is the author’s version of the work, posted here with the permission of the publisher for your
personal use. No further distribution is permitted. You may also be able to access the published
version from your library.

The definitive version is available at: https://doi.org/10.1109/REET.2018.00010

Powered by TCPDF (www.tcpdf.org)

Swinburne University of Technology | CRICOS Provider 00111D | swinburne.edu.au

http://www.tcpdf.org

Teaching Motivational Models in Agile
Requirements Engineering

Antonio Lopez-Lorca
School of Computing and

Information Systems
The University of Melbourne
antonio.lopez@unimelb.edu.au

Rachel Burrows
School of Computing and

Information Systems
The University of Melbourne

rachel.burrows@unimelb.edu.au

Leon Sterling
School of Computing and

Information Systems
The University of Melbourne

Emeritus Professor for Design Innovation
Swinburne University of Technology

leonss@unimelb.edu.au

Abstract—Software engineering courses continually strive to
maintain an excellent teaching curriculum that provides students
with the agile skills as per industry needs. A particular challenge
of teaching requirements engineering is capturing and com-
municating software requirements without killing team agility
with excessive documentation. In many projects, requirements
can be ambiguous and inconsistent. It is important to find
a middle ground between completely by-passing requirements
documentation and writing a complete Software Requirements
Specification. In this paper, we report our experiences, presenting
a guideline for students and educators who wish to adopt
motivational modelling, a lightweight approach to requirements
elicitation and modelling, for agile requirements engineering. Mo-
tivational modelling is an efficient technique that also represents a
good boundary object to support discussions between developers
and non-technical clients. Finally, we outline discussion points
regarding where motivational models could fit into other agile
practices.

I. INTRODUCTION

Agile methods are now extensively adopted in industry. Stu-
dents leaving university need to be fluent in agile methods to
be industry ready. Consequently, agile curriculum developers
strive to effectively distill and incorporate a wealth of agile
methods and practices into the offerings of their software
project courses.

There has been successful progress in transitioning educa-
tional courses that address these needs [6], [9], [15], [22];
however, these same initiatives also highlight a number of
challenges. The focus of this paper is on one particular
challenge: teaching students to effectively capture and com-
municate their software requirements in a lightweight manner.
This is often a difficult task in any situation be it academic or
industrial, as requirements can often be ambiguous, subjective
and difficult to interpret. With the industrial adoption of
agile, any new requirements elicitation technique will only be
adopted if it is compatible with the principles outlined in the
Agile Manifesto. That is, there is a clear need for lightweight
models that support communication between stakeholders and
all those who are involved in the development project. Because
of our teaching context, in this paper we focus on agile
development processes, but most development styles would
benefit from improved communication between developers and
non-technical clients.

The learning curve to adopt effective requirements elicita-
tion techniques in the classroom is steep. Most students do
not have prior industrial experience and require guidance in
communicating with their client and maintaining a project
level awareness with their team throughout the project.

In light of these challenges, we incorporated motivational
models into our existing software engineering subjects. Moti-
vational models were originally an agent-oriented methodol-
ogy variation of goal models [16]. They present a hierarchical
structure of the goals of the software system at a high-level
of abstraction. The models capture roles of all stakeholders
involved in the system, the functional goals of the system,
the quality goals of the system, and emotional goals, which
represent how people want to feel when interacting with the
system. Over the past ten years, the elicitation methods for the
models have been streamlined from those described in Sterling
and Taveter’s book [16], for example [10], [11].

Our motivational models differ from other goal-oriented
requirements engineering techniques such as i* and KAOS
[21], [19] in that they are intended to be boundary objects
to support discussion with non-technical clients. Addition-
ally, our motivational models include the emotional needs
of stakeholders as emotional goals. Due to the intended use
of motivational models we do not concern ourselves with
technical notations such as the AND/OR decomposition of
goals. This would be important in automated approaches,
where requirements can be automatically generated from the
models [19]. Models expressed using the i* notation support
the inclusion of soft-goals, i.e. goals that are not well defined
and it is unclear how to achieve them [21]. The semantics of
emotional and soft-goals are very different, and soft-goals are
better interpreted as ‘fuzzy’ quality goals. Recent research [11]
shows that stakeholders tend to understand better a problem
described using a motivational model than the equivalent one
expressed in i* notation.

Our students use motivational models in their capstone
projects, where they interact with external clients to tackle
real-world projects. We have capitalised on the high level of
abstraction of goal models to use them as a shared artifact
for communication between students, their supervisors, and
their non-technical clients. It is timely to document and

reflect on the value that motivational models bring to soft-
ware engineering teaching especially since our approach has
now been refined and taught to approximately 300 software
engineering master’s students – across three masters subjects
and over two and a half years. The contribution of this paper is
therefore twofold: (i) we reflect on the value that motivational
models bring to our agile software development subjects and
(ii) we provide a guideline for educators and students who
wish to incorporate motivational modelling into their software
engineering projects.

The rest of the paper is organised as follows. We examine
published work in section II. In subsection III-A we present
our do/be/feel method to elicit the elements of the motivational
model. In subsection III-B we detail the process to build mo-
tivational models. In section IV we discuss how we integrate
motivational models with agile processes in our teaching. In
section V we conclude the paper and we sketch our future
work.

II. TEACHING TRENDS IN REQUIREMENTS ENGINEERING
FOR AGILE

Traditionally there has been a misalignment between how
requirements engineering evolves in industry practices and
how it is taught [7]. There is a lack of recent research on
the topic, as much reported work is over 10 years old, and
based on a traditional waterfall approach to requirements
engineering.

With the widespread adoption of agile practice by industry,
the need to feed these practices into education is impera-
tive. In fact, many teaching approaches now emphasise agile
learning outcomes requiring students to gather and analyse
‘Just Enough’ requirements ‘Just in Time’. With regard to
requirements elicitation, there are many methods that are well
aligned with agile principles. For instance, Use Cases, Goal-
based approaches and Scenario-based approaches have been
adopted in industry due to their capabilities for representing
requirements in a lightweight and communicable form [22],
[14]. The Agile Manifesto1 emphasises working software over
comprehensive documentation. Students often take this as
an excuse to completely ignore documentation. Motivational
models represent a good compromise as they provide a valu-
able shared understanding between client and developers at
very low cost.

Increasingly, effective teaching strategies for agile tech-
niques are being created and adopted. Some agile teaching ex-
periences elaborate on the benefits of problem-based learning
to develop team communication skills [6]. It is also common
practice to place students into teams to work together to
gather requirements for a particular problem and implement
a software solutions. To teach initial requirements elicitation,
many have detailed role playing approaches [18], [13], [23]
to learn and practice oral communication skills; namely, in-
terviewing, facilitation and negotiation skills. Although most
courses are taught using co-located teams, experiences have

1https://www.agilealliance.org/agile101/the-agile-manifesto/

been reported of applications of requirements engineering in
a global software development project [4].

Students tend to be uncomfortable dealing with ambiguity
as they struggle to formulate a problem based on a real-world
‘mess’. In [1], the authors teach students to deal with unknown
(incompleteness) and unknowable (unpredictably changing)
requirements. Other experiential papers also introduce realistic
and ‘messy’ elements of requirements engineering practice,
such as ambiguity, uncertainty, confusion, fear, collaboration
and corporate politics [12], [2]. While these two efforts are
not in the context of an agile software development project,
they work towards bridging the gap between well-defined and
correctly specified university assignments and ambiguous and
inconsistent real-world projects.

One challenge that remains in both industry and educational
arenas is to bridge the gap between the separate communities
of practice that exist. The creation and use of requirements
artefacts needs to support knowledge sharing between all
members of the project team—including a variety of ex-
ternal stakeholders. A widely used technique to represent
requirements in agile are user stories [14]. Authors of [5]
have observed that students involved in agile developments
often overestimate their understanding of the goals of the
system captured as user stories. Many times the problem
is caused because students ignore the needs of the whole
range of stakeholders, just focusing on the opinion of one
person. These authors also comment that standard software
engineering models such as UML or goal-oriented modelling
diagrams are too complex to communicate with non-technical
stakeholders [5]. In [20], the authors also comment on the
issue of not having a model that enables the development
team discuss requirements with the non-technical stakeholders.
Their suggestion is using mind maps as boundary objects to
support the discussion and defining a model driven approach
to convert the mind maps into KAOS goal models. Mind maps
are effective communication tools – we also teach them to our
students – but the approach lacks the expressiveness to model
important aspects such as quality and emotional requirements,
that are included in our motivational models.

In [15], the authors reiterate the challenges and issues that
agile requirement engineering practitioners face in industry
in 2017. One of the six identified key challenges is, again,
maintaining a project-wide level of awareness during the
implementation of complex requirements. The authors suggest
defining a product vision and using visualisation techniques
to communicate with the client while maintaining focus. We
have indeed observed that the learning curve to adopt effective
requirements elicitation techniques in the classroom is steep.
Most students do have not have prior industrial experience
and they require guidance in initial client communications and
throughout the project to ensure they maintain a project level
awareness with all members of their team. Our work aligns
well with this concern, motivational models typically fit on one
page, and portray the complete project to facilitate discussion
with non-technical clients.

https://www.agilealliance.org/agile101/the-agile-manifesto/

III. MOTIVATIONAL MODELS IN REQUIREMENTS
ENGINEERING

In this section we describe a method for developing mo-
tivational models. We teach this method in our lectures for
requirements elicitation and modelling. The method has two
parts, an elicitation stage described in the first subsection, and
a model construction stage described in the second subsection.
The method has been used extensively and has proven to be
effective in a range of contexts from educational software
through eCommerce platforms and personal branding, and
with groups ranging from three or four participants to twenty
and even fifty during class presentations. While we often
use the elicitation and modelling activities together, they are
flexible enough to be treated as two separate activities.

We highlight two features of the method. One feature is
efficiency, the process taking several hours at most. This
is in contrast with other co-design methods which rely on
transcription and text analysis and take much longer. The other
feature is that it creates a positive vibe. Trying to describe
the emotions desired to be engendered inevitably creates a
positive feeling in the room in our experience, in contrast, for
example with a SWOT analysis, which can focus on threats
and weaknesses. Concerns can be acknowledged, but creating
a purpose should be accompanied with positive feelings, which
is part of what we are trying to accomplish. The second feature
is a high level of abstraction, which avoids prematurely getting
bogged down in low-level details. Getting into the details is
a design activity, better left to a different stage when people
feel more aligned to the purpose.

We will outline the steps involved in the technique and
illustrate each step in action with an example from an internal
project. The main objective of the project was to re-imagine
the physical space in a school of design at a Melbourne univer-
sity. The school wanted to promote a positive culture through
the redesign of the common areas of the school, and initiated
an inclusive process whereby all stakeholders could contribute
their ideas. The third author of this paper was enlisted to apply
our do/be/feel method to facilitate the gathering of ideas and
synthesis as a motivational model. The process that we ran
represented a lightweight method to understand the problem
domain and capture the core roles and goals. While the design
of physical space is not a typical software engineering problem
domain, we feel that it illustrates well our techniques. We
believe that motivational models are adaptable to any problem
domain and as such are not only limited to representing goals
of a software application. Furthermore the chosen problem
domain is easily understandable by most, and it comprises a
variety of roles and goals to demonstrate each step effectively.

A. Elicitation of goals

The purpose of the requirements elicitation activity is to
uncover the roles and goals of all software project stake-
holders. To do this, we teach students to run the do/be/feel
method in workshops. The activity is a lightweight, interactive
and adaptable way of capturing diverse ideas from a group
of people. Typically, the workshops can be conducted in 30

minutes, but their duration varies. In our experience, they
can be as quick as 15 minutes, or occasionally they can be
stretched over multiple sessions to ensure the inclusion of all
stakeholders.

The essence of the do/be/feel method is the construction
of four lists: titled do, be, feel, and who. The items on the
lists are essentially the intended goals and roles of the system.
Do goals correspond to the functional requirements. Be goals
correspond to the system attributes or qualities such as being
secure, accessible. In traditional software engineering these
goals are often labeled the non-functional requirements. Feel
goals list the emotions that the system developers would be
liked to engender in the stakeholders and especially the users
who regularly interact with the system. Labelling a list ‘Do
goals’ rather than ‘Functional requirements’ creates a more
informal and engaged atmosphere which is better for non-
technical people. It helps make the process positive with the
people involved in the workshop. It is possible to do the
process with individuals, but sharing of purpose in a group
is positive as it encourages discussions and clarifications.
The Who list listing the stakeholders is useful, and typically
expands during the elicitation session.

We have not found problematic to engage people in a
workshop, but in our experience, participants had a positive
inclination from before. Some people neutral about the activity
have become advocates after experiencing the activity. It helps
to have support from upper management to get staff at all
levels engaged in the activity.

1) Preparation and Setup: In preparation for the workshop,
it has to be decided who will be the workshop facilitator, who
also typically acts as scribe. For workshops with a large num-
ber of attendees, it might be necessary having a second person
recording the ideas to ensure elements are captured quickly
as they are being called out. Prior research and experience
in the problem domain, including any relevant terminology,
are important to ensure that the facilitator is well prepared
to understand the workshop discussions. Arrangements need
to be made to recruit participants who are able to advocate
for a variety of roles and viewpoints of the problem. It
helps to have support from upper management to get staff
at all levels engaged in the activity. The activity requires
access to a whiteboard and preferably four differently coloured
whiteboard markers.

In our example project, the main objective was to improve
the space. The workshop was scheduled to last 30 minutes
and participants were members of the school spanning all
organisational levels and roles. We had the support of the Dean
of the school who introduced the activity and helped to attract
participants to the workshop.

2) Introducing the Activity: At the start of the workshop,
the facilitator welcomes participants and explains the purpose
of the activity. The facilitator then describes and motivates
the three categories (do, be, feel), and the fourth stakeholder
category (who) that have been written as headings on the
whiteboard. The activity differs from a usual software engi-
neering requirements elicitation process where emotional con-

Fig. 1. A do/be/feel method in a workshop

siderations are not typically considered. We have previously
presented a case for the inclusion of emotional considerations
in software engineering [11].

3) Populating the Lists: The facilitator guides the partici-
pants to contribute ideas for each category. The scribe captures
the ideas and writes them under the associated category in the
assigned colour. The activity follows a standard brainstorming
approach in that ideas should not be filtered out. The activity
ends when participants cannot think of new ideas. In practice,
there is no strict order and the conversation can flow organi-
cally between categories.

In our example project, the facilitator asked participants (i)
what they wanted to do in the space, (ii) how they wanted the
space to be, (iii) how they wanted to feel in the space, and
(iv) who would use the space.

4) Adding Priorities to List Elements: An optional final
activity is to prioritise the ideas using any lean technique,
for instance dot voting2. Each participant is assigned a finite
number of dots that they can assign to any of the goals based
on their importance. Markers are given to participants to mark
their assigned dots next to the idea on the whiteboard. This
is a quick method to capture a rough idea of goals that are
important while all participants are familiar with all group-
generated ideas. The number of dots assigned is a judgment
call but typically we allow for 5-7 dots per participant.

5) Closing the Activity and Capturing the Results: The
facilitator thanks everyone for their time and contributions and
captures the results on the whiteboard. They explain that once
the results have been processed, the participants will be invited
back to review the result and will be given the opportunity to
give feedback and provide any further clarifications.

2http://dotmocracy.org/dot-voting/

For our example project, Figure 1 shows the workshop
in progress with four whiteboard areas being populated with
goals and roles. The whiteboard was recorded at the end of
the workshop.

B. Motivational Model Construction

This section details how results from the do/be/feel method
are used as input to construct a motivational model. Building
motivational models is a low-cost activity that typically can be
completed in under a day. We elaborate on our approach for
dealing with ambiguous requirements. We find that additional
questions that emerge from building the model provoke dis-
cussion and solidify understanding. The steps detail clustering
and hierarchy definition activities. The output of this activity
is a model that provides a high-level overview of the system
goals that can be used as a lightweight communication tool
with stakeholder organisations and between members of the
development team. We continue to use the design of the space
for the school of design as our running example.

1) Reviewing elements in the lists: The outcome of the
do/be/feel method was a set of four lists categorised into do
goals, be goals, feel goals and roles. These are sets of elements
without clear relationships within or between categories. The
first step is to discuss each element together as a team to
ensure that there is common understanding. It is important
that the facilitator of the workshop is present for this activity
as s/he may be able to elaborate on confusing aspects based
on discussions held during the workshop. Any questions,
ambiguities, differing interpretations or assumptions should be
noted for later clarification with the client. Any duplicated
elements, elements that should be broken into sub-elements,
or redundant elements should also be noted for discussion

http://dotmocracy.org/dot-voting/

Fig. 2. Clustering of elements for the faculty meeting space project

with the client. At this stage, rewording elements may happen
to maintain consistency. Following conventions when naming
goals improves clarity. We suggest wording functional goals
as active constructions starting with a verb; quality goals as
attributes of the system, adjectives or adjectivised sentences;
and emotional goals worded to complete the sentence I want
to feel. . .

2) Clustering lists contents: Next the team performs a
clustering activity to group related elements together. A good
technique to follow to create the clusters is affinity diagrams3.
Following the affinity diagrams approach, the team would
write the elements from each list on sticky notes of four
different colours, each representing one of the list categories.
The team would then group these sticky notes into clusters of
related elements. The activity makes it easy to visualise the
clusters that are heavier in emotional, quality or functionality
aspects. Or, what clusters involve multiple stakeholders. Team
members are working separately, but on the same physical
space. Their actions will reaffirm (or contradict) individual
conceptualisations, and will contribute to a shared understand-
ing of the problem across all team members. It may occur that
multiple instances of the same goal or role appear in differ-
ent clusters. Repeated roles, qualities or emotions, indicates
participation of the role in more than one functionality of the
system, or that the particular consideration is more important
for a certain functionality, respectively. Repeated functional
goals are harder to justify and will trigger further questions for
the client. Once the clustering is completed, the team chooses
a label for each cluster. Ideally, a representative functional goal
that already exists within each cluster could be nominated as
the label. Otherwise, a new functional goal should be created
that encompasses all elements in the cluster.

In our example project, the list elements were reviewed by
the requirements analysis team and four clusters were formed
(see Figure 2). Each cluster represented elements associated

3https://www.interaction-design.org/literature/article/
affinity-diagrams-learn-how-to-cluster-and-bundle-ideas-and-facts

with: promote positive culture, displaying, meet people and
support academic activities. Some goals were divided into
two; the goal for have lunch / coffee and socialise was
divided into have lunch / coffee and socialise. Elements within
the support academic activities cluster provoked questions
amongst the team as it was unclear whether these activities
were intended to be individual or group-based. As the answer
to this distinction affected the clustering it was noted for later
clarification with the client.

3) Establishing the hierarchy: To establish the structure
of the motivational model the team constructs a hierarchical
view of the functional goals. Subsequently, the goals in the
functional hierarchy are associated with their corresponding
roles, quality and emotional goals.

For each cluster, every functional goal within it is examined
to determine the cluster’s hierarchical structure of function-
alities. Clusters with only one functional goal will form a
single-element hierarchy. For multiple element hierarchies, the
top-level functional goal (or root) will be the functional goal
that we selected (or created) in the previous stage to represent
the cluster. An effective way of establishing the functional
goal hierarchy (both at cluster level and overall system level)
is the application of How/Why Laddering4. In essence, given
a hierarchy of functional goals, the sub-goals detail how the
parent goal is achieved, the parent goal explains why its sub-
goals are necessary. For instance, looking at a fragment of
our running example shown in Figure 3, one mid-level goal
is to Promote Positive Culture. If we ask the question how do
we promote positive culture?, the answer could be by meeting
people. Similarly, if we ask the question why do we want
to meet people?, one reason is because we want to promote
positive culture.

At this stage, there should be a set of disconnected sub-trees.
The next step is to join them together into one hierarchical
structure. A suitable functional goal should be chosen (or

4https://dschool-old.stanford.edu/groups/k12/wiki/afdc3/HowWhy
Laddering.html

https://www.interaction-design.org/literature/article/affinity-diagrams-learn-how-to-cluster-and-bundle-ideas-and-facts
https://www.interaction-design.org/literature/article/affinity-diagrams-learn-how-to-cluster-and-bundle-ideas-and-facts
https://dschool-old.stanford.edu/groups/k12/wiki/afdc3/HowWhy_Laddering.html
https://dschool-old.stanford.edu/groups/k12/wiki/afdc3/HowWhy_Laddering.html

Improve Faculty
Space

Support Academic
Activites

Meet People Displaying

Promote
Positive Culture

Read Papers & Reports

Write Papers & Reports

Meet Each Other

Host External Guests

Meet Students

Have Lunch / Coffee

Socialise

Network

Display Work in Spaces

Visualise Work on Whiteboard

Store / Display Books and Reports

Fig. 3. Hierarchical structure of faculty meeting space goal model

created) to be the root functional goal. It will become the par-
ent of the entire model. If each hierarchy cluster corresponds
to a unique aspect of the system (i.e. there is no hierarchy
relation between them) then all clusters may be situated
under the root functional goal. At this stage, further structural
amendments may be required. For instance, goals that crosscut
many other goals may be more suited as their parent goal, and
consequently could be raised up in the hierarchy to reflect
this. In other instances, some functional goals may need to be
duplicated across multiple sub-trees, and possibly renamed to
reflect this distinction (clarification with the client will ensue).
This is an iterative process that is complete once a clear and
meaningful structure is obtained.

For our example project, we first considered the Meet People
cluster and the functional goals within it. The functional goals
that belonged to this cluster (e.g. meet students, meet each
other) were all considered to be directly sub-functional relative
to the Meet People goal and consequently are depicted as such
in the figure. A similar process and result was performed to
identify the hierarchy for the remaining three clusters.

We then decided that high-level goals corresponding to
the three clusters were distinct enough to be positioned as
three separate functional goals underneath the root goal. These
three goals were Meet People, Support Academic Activities,
and Displaying. The fourth goal, Promote Positive Culture
was different as it crosscuts the other three goals. In fact,

promoting a positive culture was a reason why the three other
high-level goals were being supported in the meeting space.
Consequently, this was positioned as the new root goal and
above the previous root Improve Faculty Space. The resulting
hierarchy is shown in Figure 3.

4) Adding in the roles, quality and emotional goals:
In this step we add the remaining elements (roles, quality
and emotional goals) to the newly created functional goal
hierarchy. We find that the best approach is to firstly focus
on the roles. This is important as the emotional goals depend
not only on the functional goals but are also associated with
specific roles.

For each role and functional goal in the cluster hierarchy,
it has to be examined whether the role is responsible for
or involved in the achievement of the functionality. If so,
the role should be associated with the functional goal. The
roles are added to the diagram, following the notation style.
Associations can be shown with visual proximity, as additional
connectors such as lines or arrows add unnecessary clutter and
make the model cognitively taxing for readers. If a role is
associated to a functional goal, then it is also associated to its
corresponding sub-functional goals. A key consideration here
is the level of granularity of the role. Keeping the pairing at a
high-level can indicate a broad relationship to many aspects of
the system. Differently, pinpointing a role to a low-level goal
can bring a contextual focus to part of the solution. In any

Improve Faculty
Space

Support Academic
ActivitesMeet People Displaying

Promote
Positive Culture

Visible

Read Papers & Reports

Honest; Comfortable;
In Control; Welcoming;
Connected; ProductiveActive; Fertile;

Happening; Lived in;
Semi-Structured;
Serendipitous

Write Papers & Reports

Meet Each Other

Host External Guests

Meet Students

Silent;
Peaceful InformalInformal;

Engaging;
Flexible

Have Lunch / Coffee

Socialise

Network

Display Work in Spaces

Visualise Work on Whiteboard

Store / Display Books and Reports

Academics;
Professional
Staff;
Students;
Guests;
Collaborators

Academics;
Students

Fig. 4. Final goal model for the faculty space re-imagination project

case, placing a role should be a decision and should reflect a
meaningful piece of information about the system.

Once this is done, we can focus on the remaining elements,
either the quality goals or the emotional goals. Which one goes
first is arbitrary and a similar process is repeated. Assuming
we consider quality goals next, we examine, for each quality
goal and functional goal in the hierarchy whether the quality
goal is important while achieving the functional goal. If the
answer is yes, the quality goal should be associated with the
functional goal. It is likely that a quality goal will apply to
more than one functional goal. If so, it is correct to duplicate
it. If a quality goal has an impact on all the functional goals
at the same level (in practice, roots of separate sub-trees), that
quality goal should possibly be placed in the parent functional
goal of those instead. For instance, following with our running
example depicted in Figure 4, all the sub-goals of supporting
academic activities, i.e. reading and writing papers, should be
done in silence. Therefore, the quality goals silent and peaceful
should qualify the parent functional goal, Support Academic
Activities.

To add the emotional goals, we proceed similarly as for
the quality goals, but with one distinction. For the emotional
goals, it is relevant to distinguish the role who wants to
feel like that (emotional goal) in relation to the functional
goal. In this sense, emotional goals are related to both a
functional goal and a role. This is obvious when we consider

that there may be more than one role involved in a functional
goal, and their emotional needs may be very different. For
each emotional goal, role and functional goal in a cluster
hierarchy, we consider whether the role wants to feel this
emotion for this functional goal. A positive answer means that
the emotional goal is placed between the functional goal and
the role involved. Similarly as for quality goals, it should be
considered whether emotional goals should be applied to sub-
goals or if it is warranted that they are moved to a parent
level. Also, similarly to the quality goals, it is likely that
emotional goals will need to be duplicated in various branches.
For instance, in the example shown in Figure 4, we can see
that everyone using the new space wants to feel productive
and comfortable, among others.

For the sake of simplicity of notation, we suggest grouping
as many quality and emotional goals inside a shape as practi-
cal. It is key to avoid overloading the diagram with notation,
so non-technical stakeholders can understand it.

In our project example, we had a number of roles that would
be associated with every functional goal. These roles, such as
the role of an academic, were therefore placed next to the
root goal. Similar decisions were made for the quality and
emotional goals. Figure 4 shows the complete motivational
model for our running example.

5) Review and clarify with the client: Once the team has
arrived at a first motivational model draft, and no more internal

feedback or changes are due to occur, it is time to present it
to the client for review. A representative of the team should
present the team’s understanding of the system by verbally
walking through the model, and explaining the notation where
appropriate. This is a chance to gain feedback on any aspect of
the model, including the clarifications that have been collected
by the team during the model building stage. One strategy
is to add these clarifications explicitly as annotations in the
motivational model so they will not be forgotten during the
discussion. The discussion should be structured in a top-down
manner and cover each element in the model. Feedback from
the client could indicate a missing element (incompleteness),
or an inconsistency. This is all part of the process and should
be noted and amended in the model afterwards. Any alterations
improve the team’s representation and understanding of the
problem. At the end of the session, there should be a feeling
that both clients and team are on the same page. The team
gains feedback from the client that will be incorporated in
the next version of the motivational model. The process will
iterate until no more changes are required by the client.

In our running example, we reviewed the motivational
model with the client and asked for clarifications. Some alter-
ations were necessary, including a rewording of one functional
goal and also a response to personal layout preferences for
improved readability.

IV. MOTIVATIONAL MODELS WITHIN AGILE
DEVELOPMENT TEACHING

In this section we elaborate on our teaching context and
we look at uses of motivational models throughout an agile
software development lifecycle.

The combination of techniques that we detail in this paper,
the do/be/feel method and motivational model, have been
developed over the last 7 years for research purposes and
we have taught them since 2016 to students of a Master
of Software Engineering degree course at the University of
Melbourne. Motivational modelling has now been taught in 3
subjects with enrolment numbers for 2016, 2017 and 2018 at
approximately 300.

The Requirements Engineering subject has a large project
component (60%) where students work in teams of 4-5 to
produce a requirements specification for a real-world client.
In the following semester, students enrol in the semester-long
project, where they implement the requirements to finalise the
projects initiated in the first semester. In the following year,
students participate in teams of approximately 10 in the year-
long project, where they go through the complete lifecycle
of a more complex project for a real world client, from
requirements elicitation to deployment. The three subjects run
in an agile fashion.

We teach the do/be/feel method and the motivational models
to the software engineering students in their first year of
their master’s degree, during the requirements engineering
subject. One hour is spent in the lectures explaining the
methods, in essence the contents of Section III. In the fol-
lowing week, the students apply the complete process in a

workshop environment using role play. The students form
teams of 3 students, 2 play the role of clients (with conflicting
requirements) and 1 plays the role of business analyst. The
students first do elicitation and then modelling. This workshop
gives students some first-hand experience and preparation to
apply the methods in their project with their real-world clients.
A few weeks after they run the elicitation session with their
client and the motivational model is produced, the students
validate it with the client to ensure that there is a shared
understanding of the project. In the following semester, the
development teams use these models to understand the context
of the project. In the second year of the masters degree course,
during the year-long capstone project, the students follow the
process that they have learned the previous year to produce
the motivational model for their project.

The decision to coordinate each project with an industrial
client comes with additional overhead and risk on part of the
teaching team [2]. We believe the benefits far outweigh the
overheads as this setting exposes students to added complexity,
as they learn to manage expectations and interactions with real
clients, thus creating an invaluable learning experience with
real impact.

The initial adoption of motivational models in these subjects
was instigated while transitioning from a waterfall to an
agile approach. This transition moved away from traditional
artefacts such as a Software Requirements Specification (SRS),
which can easily have tens of pages and can be overwhelming
for the client. Certainly, motivational models fit better within
the agile spirit. They are easier to keep updated than SRS’s
and clients can give quicker feedback about them. Indeed,
the validation sessions between students and clients are very
straightforward, as the students can explain their understanding
of the project by reading the model from root to leaves. The
client reacts ‘on the fly’ when they detect a misunderstanding,
allowing for a quick and simple amendment of the model.
From a teaching perspective, they represent an effective use
of time for everyone involved.

Uses of motivational models throughout the agile software
development that are promising, and require further explo-
ration, include:

1) Motivational Models to Justify the Project: There is
often an education gap, between the starting point of projects
for students and the starting point of projects in industry.
Typically, a student starting a project will be given precise
instructions containing all they need to know to complete
the task. This is not the case in an industry setting, where
a team may need to present a case to management arguing
why the proposed project should go ahead. To mirror this in
an educational setting, our students produce a motivational
model as part of the business brief to motivate and scope the
project [10].

2) Motivational Models as Shared Conceptualisation: The
students validate the initial motivational model with the client,
who clarifies any aspects and gives relevant feedback. After
the feedback has been incorporated and the client is satisfied
with the motivational model, the model gets signed off by the

client. It shows an agreement of what the problem is between
the client and the development team.

3) Motivational Models as Conversation Starters: Motiva-
tional models provide a means of representing ambiguous,
subjective and difficult-to-articulate requirements. Presenting
this hierarchical model to the team and stakeholders acts as
a conversation starter to navigate important goals, how they
are decomposed into sub-goals, and address any ambiguity.
Maintaining a conversation to cover the high-level goals
also avoids over-emphasis on implementation-level details too
early, which we find is a common pitfall for students in initial
client meetings.

4) Motivational Models to Support Prioritisation: The mo-
tivational model also provides a visual representation of the
individual capabilities of the sought system. It supports the
discussion of priorities of goals in the system (for instance by
allowing stakeholders to assign resources to the goals). This
is key for the student development team to plan their sprints.
Once goals have been prioritised, they can be color coded to
indicate the priority or be decorated with priority values.

5) Motivational Models Leading to User Stories: Part of
the inception period in agile is the generation of user stories.
Having the motivational model gives us a direct mechanism
for deriving user stories (in the spirit of the work presented in
[17]). A possible template of user stories adapted from [3] is:

• As a [role], I want to [do something], so that [I get some
benefit]

This fits naturally with the motivational model. Roles fit in
the [role] slot, functional goals and quality goals fit in the [do
something] and emotional goals or maybe a super-goal fits in
the [I get some benefit]. An example from our running case
study could be:

• As an academic, I want to meet other academics in
an informal and engaging environment, so that I help
promoting a positive culture in the department

These user stories will be very high level, as the moti-
vational model is intended to capture the motivation of the
project. As the student development team move into working
in a particular user story, they will have to decompose it into
finer grain ones that will become part of the sprint backlog.

6) Motivational Models as Project Management Tool:
Another way of using motivational models is to track or report
progress by colour coding the goals. It can be maintained
internally by the development team to have a visual reference
of the progress of the project. One example of this usage is
illustrated in [8]. Motivational models were displayed in the
lab, where 70 students worked on the implementation of a
game to contribute to raise awareness of Asperger syndrome.
The motivational model was maintained over two semesters,
by two cohorts of around 70 students each.

The development team can also use motivational model to
visually show progress to the client at the end of each sprint,
in the review meeting. As the client is already familiar with
the motivational model, colours of the goals gives a very quick
idea of the progress. Our students use colour coding during

their retrospective meetings at the end of each sprint to reflect
on their project progression.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have presented our experience teach-
ing students a combination of requirements elicitation and
modelling. Motivational models are easily understandable by
non-technical stakeholders, becoming an excellent boundary
object to support discussions between client and development
team. Moreover, they have other lean uses in the software
development lifecycle, ranging from project management to
generation of user stories. We deem our approach particularly
suitable for agile development, as over 3 years, 300 students
working on agile software engineering projects with real-world
clients have applied the method. The requirements engineering
course, where the method is primarily taught, is challenging
for many students. Typical software engineering students tend
to be technically strong, but their communication and soft
skills are not so well developed, which is problematic for the
requirements engineering activities. After the course, students
reflect on the value of the lessons and many of them apply the
studied techniques in the year-long capstone project.

Our next step will be to develop a tool to support the
complete process. There are a range of tools that support the
creation of any diagram, in particular motivational models.
However, they tend to offer too many options, such as types
of diagrams, effects or layers, which are unnecessary for
motivational modelling and add clutter to the interface. They
also lack support of the process combining the elicitation via
do/be/feel method and motivation modelling. It would be ideal
to have a workflow that supports displaying the lists, creating
the clusters and establishing the goal hierarchies. In 2017,
two teams of students developed two proofs of concept for
a model editor. These prototypes were very good first steps
towards understanding the requirements of a tool to support the
complete elicitation and modelling process. In 2018, another
larger team of students is working on an extended version
of this tool based on the lessons learned from the 2017
experience.

We have applied these techniques in research projects
that also involved professional development companies. One
interesting point was raised by a UX designer after looking
at the motivational model. He thought that it was useful
to see explicitly emotional considerations, in this particular
case feeling hopeful, normal and empowered, in the context
of platform to support people recovering from psychosis.
However, he was unsure how to ensure that his interpretation
of those feelings were consistent with what they really meant
for the real users of the system. This is a key aspect that
needs further research: the translation of the emotional goals
into implementable requirements.

We welcome discussion on uses of motivational models
throughout the agile development lifecycle and the capabilities
of a future tool to support this.

ACKNOWLEDGEMENTS

The work was partially supported by Australian Research
Council Discovery project DP160104083.

REFERENCES

[1] R. J. Barnes, D. C. Gause, and E. C. Way. Teaching the unknown and
the unknowable in requirements engineering education. In Requirements
Engineering Education and Training, 2008. REET’08., pages 30–37.
IEEE, 2008.

[2] D. Callele and D. Makaroff. Teaching requirements engineering to an
unsuspecting audience. In ACM SIGCSE Bulletin, volume 38, pages
433–437. ACM, 2006.

[3] M. Cohn. User stories applied: For agile software development.
Addison-Wesley Professional, 2004.

[4] D. Damian, B. Al-Ani, D. Cubranic, and L. Robles. Teaching re-
quirements engineering in global software development: a report on a
three-university collaboration. In Proc. 1st International Workshop on
Requirements Engineering Education and Training (REET 2005), 2005.

[5] J. Lin, H. Yu, Z. Shen, and C. Miao. Using goal net to model user
stories in agile software development. In Software Engineering, Artificial
Intelligence, Networking and Parallel/Distributed Computing (SNPD),
2014 15th IEEE/ACIS International Conference on, pages 1–6. IEEE,
2014.

[6] K. Lundqvist, C. Anslow, M. Homer, K. Bubendorfer, and D. Carnegie.
An agile conversion masters degree programme in software develop-
ment. In In Proceedings of the ACM Special Interest Group on Computer
Science Education (SIGCSE), Baltimore, Maryland, USA, pages 846–
851. ACM, 2018.

[7] L. Macaulay and J. Mylopoulos. Requirements engineering: an educa-
tional dilemma. Automated Software Engineering, 2(4):343–351, 1995.

[8] J. Marshall. Agent-based modelling of emotional goals in digital media
design projects. In Innovative Methods, User-Friendly Tools, Coding,
and Design Approaches in People-Oriented Programming. Hershey, PA:
Information Science Publishing, 2018 – To Appear.

[9] A. Martin, C. Anslow, and D. Johnson. Teaching Agile Methods to
Software Engineering Professionals: 10 Years, 1000 Release Plans,
pages 151–166. Springer International Publishing, Cham, 2017.

[10] T. Miller, B. Lu, L. Sterling, G. Beydoun, and K. Taveter. Requirements
elicitation and specification using the agent paradigm: the case study
of an aircraft turnaround simulator. IEEE Transactions on Software
Engineering, 40(10):1007–1024, 2014.

[19] A. Van Lamsweerde. Goal-oriented requirements engineering: A guided
tour. In Requirements Engineering, 2001. Proceedings. Fifth IEEE
International Symposium on, pages 249–262. IEEE, 2001.

[11] T. Miller, S. Pedell, A. A. Lopez-Lorca, A. Mendoza, L. Sterling, and
A. Keirnan. Emotion-led modelling for people-oriented requirements
engineering: Case study of emergency systems. Journal of Systems and
Software, 105:54–71, 2015.

[12] G. Regev, D. C. Gause, and A. Wegmann. Experiential learning approach
for requirements engineering education. Requirements engineering,
14(4):269, 2009.

[13] D. Rosca. An active/collaborative approach in teaching requirements
engineering. In Frontiers in Education Conference, 2000. FIE 2000.
30th Annual, volume 1, pages T2C–9. IEEE, 2000.

[14] E. Schön, J. Thomaschewski, and M. J. Escalona. Agile requirements
engineering: Systematic literature review. Computer Standards &
Interfaces, 49:79–91, 2017.

[15] E.-M. Schön, D. Winter, M. J. Escalona, and J. Thomaschewski. Key
challenges in agile requirements engineering. In International Confer-
ence on Agile Software Development, pages 37–51. Springer, 2017.

[16] L. Sterling and K. Taveter. The art of agent-oriented modeling. MIT
Press, 2009.

[17] T. Tenso, A. H. Norta, H. Rootsi, K. Taveter, and I. Vorontsova.
Enhancing requirements engineering in agile methodologies by agent-
oriented goal models: Two empirical case studies. In 2017 IEEE 25th
International Requirements Engineering Conference Workshops (REW),
pages 268–275. IEEE, 2017.

[18] J. Tuya and J. Garcı́a-Fanjul. Teaching requirements analysis by means
of student collaboration. In Frontiers in Education Conference, 1999.
FIE’99. 29th Annual, volume 1, pages 11B4–11. IEEE, 1999.

[20] F. Wanderley and J. Araujo. Generating goal-oriented models from
creative requirements using model driven engineering. In Model-Driven
Requirements Engineering (MoDRE), 2013 International Workshop on,
pages 1–9. IEEE, 2013.

[21] E. S. Yu. Towards modelling and reasoning support for early-phase
requirements engineering. In Requirements Engineering, 1997., Pro-
ceedings of the Third IEEE International Symposium on, pages 226–235.
IEEE, 1997.

[22] D. Zowghi and C. Coulin. Requirements elicitation: A survey of
techniques, approaches, and tools. In Engineering and managing
software requirements, pages 19–46. Springer, 2005.

[23] D. Zowghi and S. Paryani. Teaching requirements engineering through
role playing: Lessons learnt. In Requirements Engineering Conference,
2003. Proceedings. 11th IEEE International, pages 233–241. IEEE,
2003.

	cover_page
	2018-lopez_lorca-teaching_motivational_models
	Introduction
	Teaching Trends in Requirements Engineering for Agile
	Motivational Models in Requirements Engineering
	Elicitation of goals
	Preparation and Setup
	Introducing the Activity
	Populating the Lists
	Adding Priorities to List Elements
	Closing the Activity and Capturing the Results

	Motivational Model Construction
	Reviewing elements in the lists
	Clustering lists contents
	Establishing the hierarchy
	Adding in the roles, quality and emotional goals
	Review and clarify with the client

	Motivational Models within Agile Development Teaching
	Motivational Models to Justify the Project
	Motivational Models as Shared Conceptualisation
	Motivational Models as Conversation Starters
	Motivational Models to Support Prioritisation
	Motivational Models Leading to User Stories
	Motivational Models as Project Management Tool

	Conclusions and Future Work
	References

