

 Swinburne University of Technology | CRICOS Provider 00111D | swinburne.edu.au

Swinburne Research Bank
http://researchbank.swinburne.edu.au

Yongchareon, S., Liu, C., Zhao, X., & Xu, J. (2010). An artifact-centric approach to
generating web-based business process driven user interfaces.

Originally published in H. Kitagawa, Y. Ishikawa, Q. Li, & C. Watanabe (eds.)
Proceedings of the 11th International Conference on Web Information Systems

Engineering (WISE 2010), Hong Kong, China, 12-14 December 2010.
Lecture notes in computer science (Vol. 6488, pp. 419–427). Berlin: Springer.

 Available from: http://dx.doi.org/10.1007/978-3-642-17616-6_38

Copyright © Springer-Verlag Berlin Heidelberg 2010.

This is the author’s version of the work, posted here with the permission of the
publisher for your personal use. No further distribution is permitted. You may also be
able to access the published version from your library. The definitive version is
available at http://www.springerlink.com/.

An Artifact-centric Approach to Generating Web-

based Business Process Driven User Interfaces

Sira Yongchareon, Chengfei Liu, Xiaohui Zhao, Jiajie Xu

Faculty of Information and Communication Technologies

Swinburne University of Technology

Melbourne, Victoria, Australia

{syongchareon, cliu, xzhao, jxu}@swin.edu.au

Abstract. Workflow-based web applications are important in workflow

management systems as they interact with users of business processes. With the

Model-driven approach, user interfaces (UIs) of these applications can be

partially generated based on functional and data requirements obtained from

underlying process models. In traditional activity-centric modelling approaches,

data models and relationships between tasks and data are not clearly defined in

the process model; thus, it is left to UI modellers to manually identify data

requirement in generated UIs. We observed that artifact-centric approaches can

be applied to address the above problems. However, it brings in challenges to

automatically generate UIs due to the declarative manner of describing the

processes. In this paper, we propose a model-based automatic UI generation

framework with related algorithms for deriving UIs from process models.

1. Introduction

Over the past several years, the use of workflow management system in organizations

has been considered as a promising automation approach to enable them to design,

execute, monitor and control their business processes. It is conceived that current

workflow technologies support organization’s own developed web applications for

users to efficiently interact with the processes they involve. The interaction of users

and these workflow-based applications are through user interfaces (UIs) that are

designed and developed when workflows are modelled. This can bring an issue of

coupled alignment between business processes and UIs, i.e., changes of the processes

that impact on UIs are to be managed in an ad-hoc manner [9]. Several works [9-12]

have been proposed the adoption of Model Driven Approach (MDA) that specify the

association between models that support the propagating changes and control the

alignment of business processes and UIs of underlying applications.

Traditionally, business processes are modelled by identifying units of work to be

done and how these works can be carried out to achieve a particular business goal.

This approach, so called activity-centric business process modelling, has been

recognized as a traditional way of process modelling and it has also been used in

many MDA approaches, e.g., in OOWS-navigational model [12], for the semi-

automatic generation of UIs by deriving task-based models from business process

models. These approaches require UI modellers to know information that is needed to

be inputted from users and then to manually assign it to corresponding UIs. Thus, the

changes of the data requirements of any task are still not able to reflect to the UIs if

the process changes, so a better approach is required.

We observed the traditional approaches of business process modelling and found

that they have some drawbacks and are limited to support only partially automatic UI

derivation. Especially, the data model and task model are defined independently and

their relation may not be coherently captured in the activity-centric model. In

addition, as the limitation of the model, the current derivation approaches can provide

only one-to-one transformation, i.e., one task to one page of UI. A mechanism to

combine multiple tasks to fit within a single page without losing control or breaking

the integrity of the process, e.g. transaction, is not supported. To this end, we consider

a new paradigm of process modelling called artifact-centric approach [1-4].

By using the artifact-centric approach, UIs can be automatically generated from

business processes by deriving both behavioural aspect (navigational control flow

relations between UIs) and informational aspect (related/required data in each UI)

from the underlying processes. In this paper, we propose a web-based business

process driven user interface framework. It comprises two models, Artifact-Centric

Business Process (ACP) model and User Interface Flow (UIF) model, and a

mechanism to derive UIF model from ACP model. The UIF model describes the

constitution of UIs and their navigational control flows which can be derived from the

underlying ACP model. In summary, our work makes the following contributions to

the research in business process modelling and web engineering areas:

• Analyze the relations between artifact-centric web-based processes and UIs

• Facilitate the UIs derivation for processes with UIF models and algorithms

The remainder of this paper is organized as follows. Section 2 provides the formal

model for artifact-centric business processes. Section 3 presents the approach for UIF

model generation. Section 4 reviews the related works. Finally, the concluding

remarks are given in Section 5 together with our future work.

2. Artifact-Centric Business Process Models

The concept of modelling artifact-centric processes has been established under the

framework proposed in [4] with the formal model [5]. Our artifact-centric business

process model (ACP model) extends their work. The model consists of three core

constructs: artifacts, services, and business rules. An artifact is a business entity or an

object involved in business process(es). A service is a task that requires input data

from artifact(s) or users, and produces an output by performing an update on

artifact(s). A business rule is used to associate service(s) with artifact(s) alike in a

Condition-Action-Role style. To explain the model, we use a retailer business scenario

consisting of two business processes: product ordering and shipping. The ordering

process starts when a customer places an order to the retailer for a particular product

and ends when the customer pays the invoice. The shipping process starts when the

retailer creates a shipment and ends when the item arrives to the customer.

Figure 1 illustrates artifact lifecycle diagram of each artifact used in our business

processes. We denote l.v[m.s] for the transition to be triggered by a performer with

role l invokes service v if artifact m is in state s.

Figure 1: Lifecycle diagram of each artifact used within our business scenario

2.1 Syntax and components of ACP model

Definition 1: (Artifact class). An artifact class abstracts a group of artifacts with

their data attributes and states. An artifact class C is a tuple (A, S) where,

− A = {��, ��, …, ��}, ��∈A(1≤i≤x) is an attribute of a scalar-typed value (string

and real number) or undefined value

− S = {��, ��, …, ��}∪{����	} is a finite set of states, where ����	denotes initial state

Definition 2: (Artifact schema). An artifact schema
 contains a set of artifact

classes, i.e.,
 �
��, ��, … , ��� where ��∈
(1≤i≤n) is an artifact class.

From our business scenario, we define a primary set of artifact classes as below.

− Order = ({orderID, customerID, grandTotal}, {open_for_item,

ready_for_shipping, in_shipping, shipped, billed, closed})

− Shipment = ({shipID, customerID, shipDate, shipCost}, {open_for_shipitem,

ready_to_dispatch, in_shipping, completed})

− OrderItem = ({orderID, productID, shipID, qty, price}, {newly_added, on_hold,

ready_to_ship, added_to_shipment, in_shipping, shipped})

− Invoice = ({invoiceID, ordereID, invoiceDate, amountPaid}, {unpaid, paid})

We also define two predicates over schema
 (1) defined(C, a) if the value of

attribute a∈C.A in artifact of class C is defined and (2) instate(C, s) if the current state

of artifact of class C is s, where s∈C.S

Definition 3: (Service). A service or task provides a particular function. A service

may involve with several artifacts of classes ��, ��, …, ��, where ��∈
(1≤i≤y).

Definition 4: (Business Rule). A business rule regulates which service can be

performed by whom, under what condition, and how artifacts’ states change

accordingly. Rule r can be defined as tuple (c, v, �) where,

− c is a conditional statement defined by a quantifier-free first-order logic formula (

only AND connective (∧) and variables are allowed).

− v∈V is a service to be invoked, and v can be nil if no service is required
− � is a set of transition functions where � =
��, ��, …, ��}, each ��∈�(1≤i≤y)

denotes a function chstate(C, s) to assign the state s∈C.S to the current state of an

artifact of class C

Table 1 lists some business rules in our business scenario.

Table 1: Examples of business rules
r1 : Customer c requests to make an Order o

Condit ion instate(o, init) ∧ ¬defined(o.orderID) ∧ ¬defined(o.customerID) ∧

defined(c.customerID)

Action createOrder(c, o),

chstate(o , open_for_item)

r2: Add OrderItem oi of Product p with a quanti ty qty to Order o

Condit ion instate(o, open_for_item) ∧ instate(oi, ini t) ∧ defined(p.productID) ∧

defined(oi .productID) ∧ ¬defined(oi .orderID) ∧ defined(oi.qty) ∧ ¬

def ined(oi .price)

Action addItem(o , oi , p),

chstate(o , open_for_item), chstate(oi , newly_added)

r3: Complete Order o

Condit ion instate(o, open_for_item) ∧ o.grandTotal > 0

Action completeOrder(o),

chstate(o, ready_for_shipping)

r4: Pay Invoice v for Order o

Condit ion instate(o, bi lled) ∧ instate(v, unpaid) ∧ defined(v.orderID) ∧ o.orderID

= v.orderID ∧ o.grandTotal = v.amountPaid

Action payInvoice(v, o), chstate(v, paid)

2.2 Artifact system for artifact-centric processes

In this section we define artifact system as the operational model for capturing the

behavior of artifact-centric processes. The artifact system is modeled by adopting the

concept of state machine for describing behaviors of objects in a system [6].

Definition 5: (Artifact Machine). An artifact machine defines state transitions of an

artifact class. An artifact machine m for an artifact of class C can be defined as tuple

(S, ����	 , T), where S is a set of states of C, ����	∈S is the initial state, and T⊆ S × V ×

G × S is a 4-ary relation of a set of states S, services V, and guards G. A transition t =

(��, v, g, �)∈T means that the state of the artifact will change from �� to �	 if service

v is invoked and condition g holds.

Definition 6: (Artifact System). An artifact system Λ is a tuple (
, V, R, M) where

is an artifact schema, V and R are sets of services and business rules over
,

respectively, and M is a set of artifact machines, each for a class in

For an artifact class C∈
, given service set V and rule set R, its artifact machine

m∈M can be generated by deriving from corresponding business rules that are used to

induce state transitions of C.

3. User Interface Flow Model Generation

In this section, we formally describe the constructs in User Interface Flow Model

(UIF model), and propose an approach to derive UIF models from underlying artifact-

centric process models. The model comprises (1) a set of web pages and (2) relations

between these pages. A page may contain a single or multiple input forms. Each form

contains input fields that user must fill in data to make a form completed. There are

two abstract aspects of the UIF models: behavioural aspect (navigational control flow

relations between UIs) and informational aspect (related/required data for each UI).

Figure 2: (a) UIF Model, (b) UIC with an interface and its required attributes of artifacts

Figure 2 shows the components and structure of the UIF model. The round-

rectangle depicts a User Interface Container (UIC), which represents a single web

page of UIs. An Interface represents a form comprising a set of required attributes of

corresponding artifact that is used in the form. A single UIC may contain either empty

interface (for the final or initial UIC), or a single or multiple interfaces (for normal

UIC). The Navigational Control Flow (NCF) is used to indicate that once the

interface with all required data has been submitted, then the action, e.g., service,

corresponding to such interface is performed and the following UIC then becomes

active. The UIF starts at the initial UIC and terminates when it reaches the final UIC.

3.1 Syntax of UIF model

Definition 7: (Interface). An interface represents a form of web page. It contains a

required set of attributes of artifact, as well as a role of users and a corresponding

service that will be invoked if users complete the form. Let b denote an interface and

it is defined as tuple (O, �, ∆, v), where

− O⊆
, is a finite set of artifact classes used in the interface

− � ⊆ � �� . ��
 is a required attribute set, which can be inputted/edited by users

− ∆ defines a set of current states of each artifact of class in O when they are in the

interface b, i.e., ∀��∈∆,∃��∈O, ∃��∈�� .S, such that instate(�� , ��). We use ���
�

 to

denote the �� state of artifact of class �� .
− v∈V is a corresponding service which can be performed after attributes in � are

all completed by users

Note that an interface may contain nothing, called empty interface, where O, �, ∆ � ∅
and v = nil. It is only used in the initial and the final UICs.

Definition 8: (User interface Flow Model or UIF Model). The UIF model, denoted

as �, represents UI components and their relations, and it is tuple (∑, Ω, B, F) where,

− ∑ = {ε�, ε�, …, ε�}, ε�∈∑ (1≤i≤x) is a UIC

− B = {!�, !�, …, !"}∪{!��#}, !�∈B (1≤i≤z) is an interface, where !��# denotes an

empty interface

− Ω ⊆ ∑ × B defines the relation between UICs and interfaces

− F ⊆ Ω × ∑ is a finite set of Navigational Control Flow (NCF) relations. A flow f

= ((ε$, !�), ε)∈F corresponds to a NCF relation between the source UIC ε� and

the target UIC ε	, such that when ε� is active and every attribute in � of interface

!� is completed then ε	 is enabled (activated) and ε� is disabled (deactivated).

According to two aspects of the UIF model, the behavioral aspect is represented by

its UIs components and their NCF relations, while the informational aspect is

represented by internal information of artifacts required for each interface. Once we

defined ACP and UIF models, then the next step is to derive UIF models from

underlying ACP models. Two main steps are required: (1) generating the interfaces

and their NCF relations for constructing the behavior of the model and (2) mapping

the required artifacts and their attributes for constructing the information for each

interface. These steps are described in Section 3.2 and 3.3, respectively.

3.2 Constructing the behavior of UIF models

Every machine in the system is required to be composed into a single machine as to

generate the entire behavior of the system, i.e., behavioural aspect of UIF models

according to the control logic of underlying business processes. In this section we

define artifact machine system for the completed composition of all machines in the

artifact system by adapting the compositional technique presented in [6].

Definition 9: (Artifact system machine). Let %�& %� denote the result machine

generated by combining artifact machine %� and machine %�. For an artifact system

with machine set M for its artifacts, the combined artifact machine, i.e., &' %�, is

called artifact system machine. Combined machine %(� %� & %� = ()(, �(
���	 , *(),

where set of states)(⊆ %�.S × %�.S, initial state �(
���	 = (%� . �

���	 , %�. �
���	+,

transition relation *(⊆)(× V × ,(×)(, and ,(is guards, such that ,(contains no

references to states in %� and %�.

Figure 3: The behavioral aspect of UIF model

After completing the composition for artifact system machine, we need to process

a mapping from such machine to the UIF model. The mapping contains two steps: (1)

states to UICs mapping and transitions to interfaces mapping. (2) NCF relation

generation. There can be multiple interfaces in a single UIC if such state has multiple

exit transitions. The result of mapping shows the behavioral aspect of the model.

Figure 3 shows the result of applying this mapping to our business processes.

3.3 Mapping information of artifacts to interfaces

Once we completed behavioral aspect mapping of UIF model, then we need to

generate its informational aspect by assigning artifacts onto interfaces. In this step,

we need to find all the corresponding artifacts required for each interface. We can

classify the information needs for a particular interface into: (1) a set of artifacts to be

read or updated, and (2) a set of required values to be assigned to attributes of such

artifacts. We can simply find both sets by extracting them from every condition of

business rules that corresponds to a service to be invoked of such interface. Note that

the required attribute set and artifacts for each interface are minimal and sufficient.

They can be extended if users would like to incorporate other related artifacts by

adding them into the interface; however, these additional artifacts need to be validated

as to ensure that the behaviour consistency between UIF and ACP models is

preserved. Here, we can say that our proposed information mapping explicitly

overcomes the drawbacks of current approaches in which activities, data and their

relation are treated separately.

4. Related Work and Discussion

In the context of business process modelling, Küster Ryndina, & Gall [7] established

a notion of business process model compliance with an object life cycle. They also

proposed a technique for generating a compliant business process model from a set of

given reference object life cycles in forms of state machines. Redding et al. [8]

conducted a similar work, where they proposed the transformation from objects

behavior model to process model by using the heuristic net for capturing the casual

relations in the object model. Compared with our work, their transformations use an

object behavior model as input, while our work uses the artifact process models. In

addition, these approaches are different from ours in such way that they do not

consider state dependency between artifacts but we do.

In the area of web engineering in user interfaces, both Sousa et al. [9] and

Sukaviriya et al. [10] presented a model-driven approach to link and manage software

requirements with business processes and UI models. With their approaches, a

process model is mapped to a UI model, thus change propagation can be managed

more efficiently. Guerrero et al. [11] and Torres et al. [12] applied the similar concept

for developing UIs corresponding to workflow models. All these approaches

considered traditional activity-centric process models and proposed approaches to

define the internal components and functionalities of the UIs at different levels, e.g.,

task-base model, abstract UI, and concrete UI. In comparison with these approaches,

we considered the artifact-centric model to capture data requirements and their

relation with tasks, and propose an automatic generation framework to provide a

highly-cohesive bridge between the operational back-end system of business

processes and the front-end UI system. The generated UIs can be further customized

by UI modelers without a concern of the integrity of business logic. Moreover,

changes of data requirement that specified in the model can be reflected on UIs.

5. Conclusion and Future Work

This paper has proposed a model-based automatic UI generation framework for web-

based business processes based on artifact-centric process modeling approach. In the

framework, the ACP model and the UIF model are defined with a mechanism to

derive the UIF model from the ACP model. The UIF models reflect the logic of

business processes and intuitively represent what information is required during the

processes. In the future, we plan to improve the model for supporting wider user

interface requirements e.g., optional data elements, role-based configuration.

References

1. Nigam, A. and N.S. Caswell, Business artifacts: An approach to operational

specification. IBM Syst. J., 2003. 42(3): p. 428-445.

2. Liu, R., K. Bhattacharya, and F. Wu, Modeling Business Contexture and Behavior

Using Business Artifacts, in CAiSE 2007. p. 324-339.

3. Bhattacharya, K., et al., Artifact-centered operational modeling: Lessons from

customer engagements, in IBM SYSTEMS JOURNAL. 2007. p. 703-721.

4. Hull, R., Artifact-Centric Business Process Models: Brief Survey of Research

Results and Challenges, in On the Move to Meaningful Internet Systems: OTM

2008. p. 1152-1163.

5. Bhattacharya, K., et al., Towards Formal Analysis of Artifact-Centric Business

Process Models, in BPM 2007. p. 288-304.

6. Lind-Nielsen, J., et al., Verification of Large State/Event Systems Using

Compositionality and Dependency Analysis. Formal Methods in System Design,

2001. 18(1): p. 5-23.

7. Küster, J., K. Ryndina, and H. Gall, Generation of Business Process Models for

Object Life Cycle Compliance, in BPM 2007. p. 165-181.

8. Redding, G., et al., Generating business process models from object behavior

models. Information Systems Management, 2008. 25(4): p. 319-331.

9. Sousa, K., et al., User interface derivation from business processes: A model-

driven approach for organizational engineering. in ACM SAC 2008: p. 553-560.

10. Sukaviriya, N., et al., Model-driven approach for managing human interface

design life cycle. in MoDELS 2007. p. 226-240.

11. Guerrero, J., et al. Modeling User Interfaces to Workflow Information Systems. in

ICAS 2008.

12. Torres, V. and Pelechano, V., Building Business Process Driven Web

Applications, in BPM 2006, pp. 322-337.

