On the maximum grain size entrained by photoevaporative winds

Mark A. Hutchison,1⋆ Guillaume Laibe2 and Sarah T. Maddison1

1Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
2School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9SS, UK

Accepted 2016 August 29. Received 2016 August 24; in original form 2016 June 30

ABSTRACT

We model the behaviour of dust grains entrained by photoevaporation-driven winds from protoplanetary discs assuming a non-rotating, plane-parallel disc. We obtain an analytic expression for the maximum entrainable grain size in extreme-UV radiation-driven winds, which we demonstrate to be proportional to the mass-loss rate of the disc. When compared with our hydrodynamic simulations, the model reproduces almost all of the wind properties for the gas and dust. In typical turbulent discs, the entrained grain sizes in the wind are smaller than the theoretical maximum everywhere but the inner disc due to dust settling.

Key words: planets and satellites: atmospheres – protoplanetary discs – circumstellar matter – stars: pre-main-sequence.

1 INTRODUCTION

Small dust grains in the upper atmosphere dominate the opacity for the disc at many wavelengths, thereby shielding the bulk of the disc from energetic radiation from the star and controlling the disc’s thermal/geometric structure (Calvet et al. 1991; Chiang & Goldreich 1997; D’Alessio et al. 1998). Imaging scattered starlight and thermal re-emission of absorbed stellar radiation from dust in these upper layers is still a vital diagnostic tool used to characterize discs and their structure (Watson et al. 2007; Andrews 2015). It therefore follows that physical processes that affect the dynamics of these grains (e.g. settling, grain growth, and disc winds) may have an impact in the way that we interpret observations of protoplanetary discs (Testi et al. 2014).

Aerodynamic drag from disc winds can loft dust into the atmospheres surrounding discs. Using order-of-magnitude force balance arguments, Takeuchi, Clarke & Lin (2005) estimate the maximum grain size that can be carried out by photoevaporative winds. Better estimates were obtained by Owen, Ercolano & Clarke (2011) who test a posteriori whether dust can be entrained along gas streamlines in single-phase photoevaporation simulations. More recently, we have performed fully coupled, gas, and dust hydrodynamic simulations of protoplanetary discs undergoing dust settling and extreme ultraviolet (EUV-) induced photoevaporation (Hutchison et al. 2016, hereafter, HPLM16). Based on the suite of simulations for that study, we concluded that only micron-sized dust grains and smaller are entrained by photoevaporative winds in typical discs found around T Tauri stars. The exact cutoff, however, was found to depend on stellar mass, stellar irradiation flux, gas density at the base of the flow, and distance from the central star.

Numerical simulations of gas and dust potentially provide one of the best windows on dust dynamics in discs, but owing to the numerical difficulty associated with simulating small dust grains in such steeply stratified atmospheres, they are still too unwieldy to use in a practical sense for global disc studies across multiple systems. A nice alternative to using numerical simulations is the self-similar solution for thermal disc winds derived by Clarke & Alexander (2016). In this study, we provide another alternative by deriving an easy to use (semi-)analytic solution that recovers the majority of the results from our hydrodynamic simulations.

The paper is organized as follows: in Section 2, we derive the equations for our semi-analytic model and compare the model with hydrodynamic simulations; in Section 3, we use our model to explore different parameters that affect dust entrainment in disc winds; in Section 4, we discuss the effects of settling; and in Section 6, we summarize our findings.

2 SEMI-ANALYTIC DUSTY WIND MODEL

Previously, Hutchison & Laibe (2016) derived an analytic solution for EUV-driven winds assuming a non-rotating, plane-parallel atmosphere. The simple geometry makes the problem tractable, retains the vertical disc structure, and reproduces the vertical winds near the ionization front. Later, HPLM16 showed using hydrodynamic simulations that the back reaction on outflowing gas due to entrained dust grains is negligible due to the small dust-to-gas ratios in the upper atmospheres of discs. We exploit this fact to extend our model to two fluids by directly inserting the analytic wind solution for the gas into the fluid equations for dust.

2.1 Gas

We assume an isothermal thin disc supported by pressure–gravity balance due to the vertical component of gravity from a central star

\[g = -\frac{GMz}{(R^2 + z^2)^{3/2}}. \]

(1)
where G is the gravitational constant, M is the mass of the central star, and z is the height above the mid-plane. In this geometry, the parameter R and the variable z make up a quasi-2D coordinate system centred on the star. The wind speed for isothermal photoevaporation can be written in closed form using the Lambert W function (Corless et al. 1996; Veberič 2012),

$$ v_g = c_s \sqrt{-W_0 \left[- \exp \left(-\frac{2GM}{c_s^2 \sqrt{R^2 + z^2}} - 1 \right) \right]}, \quad (2) $$

where v_g is the gas velocity and $c_s \approx 10\, \text{km}\,\text{s}^{-1}$ is the isothermal sound speed of the wind. The gas density is related to the velocity via the relation

$$ \dot{m}_g = \rho_g v_g, \quad (3) $$

where \dot{m} is the constant mass-loss rate per unit area of the outflow in a stationary regime.

The value of \dot{m} is best determined by the fluid quantities at the base of the flow. The gas velocity in the wind is well constrained by equation (2), so this amounts to determining $\rho_g \varepsilon g$. For simplicity, we will assume the density in the disc and wind is piecewise continuous, but the reality is that collisional heating from the ionized wind will distort the density structure of the neutral disc near the ionization front, causing the density to decrease faster than if photoevaporation was not present. We have not performed an exhaustive study of how $\rho_g \varepsilon g$ changes with stellar and disc parameters, but the suite of simulations performed by HPLM16 show that collisional heating from the wind causes the initial outflow to level off at ~40 per cent of the assumed ionization front density. Neglecting this density offset equates to overestimating dust entrainment in the wind (see Section 3.3). However, HPLM16 also showed that a non-rotating, plane-parallel atmosphere underestimates dust entrainment by approximately the same amount. As a result, we only worry about scaling the density when comparing our model directly with numerical simulations.

2.2 Dust

2.2.1 Equations of motion

In the limit of small dust-to-gas ratio, the steady-state fluid equations for the dust are simplified to the following equations:

$$ \nabla \cdot (\rho_d \mathbf{v}_d) = 0, \quad (4) $$

$$ \mathbf{v}_d \cdot \nabla \mathbf{v}_d = \frac{1}{t_i} (\mathbf{v}_d - \mathbf{v}_d) + \mathbf{g}, \quad (5) $$

where t_i is the Epstein drag stopping time (Epstein 1924),

$$ t_i = \frac{\sqrt{\gamma} \rho_{\text{grain}} s}{8 c_s \rho_g} = \frac{\rho_{\text{eff}} s}{c_s \rho_g}, \quad (6) $$

and s and ρ_{grain} are, respectively, the intrinsic size and density of the individual dust grains. For convenience, we simplify the expression in the second equality by defining $\rho_{\text{eff}} = \rho_{\text{grain}} \sqrt{\gamma / 8}$ as an effective grain density.

The continuity equation (4) is identical in form to that of the gas, so the solution can be read directly from equation (3),

$$ \dot{m}_d = \rho_d \mathbf{v}_d, \quad (7) $$

Meanwhile, the momentum equation (5) reduces to a single ordinary differential equation

$$ \frac{\mathrm{d} \mathbf{v}_d}{\mathrm{d} z} = \frac{1}{t_i} (\mathbf{v}_d - \mathbf{v}_d) - \frac{GMz}{(R^2 + z^2)^{3/2}}, \quad (8) $$

where v_g is a function of z and is given by equation (2). Equation (8) can be written in dimensionless form using the parameters $\bar{v} = v/v_g$, $\bar{z} = z/R$, and $\bar{v}_d = \sqrt{GM/R}$:

$$ \frac{\mathrm{d} \bar{v}_d}{\mathrm{d} \bar{z}} = S t^{-1} \left(1 - \frac{\bar{v}_d}{\bar{v}_g} \right) - \frac{\bar{z}}{(1 + \bar{z}^2)^{3/2}}, \quad (9) $$

where, by analogy to dust dynamics in a disc, we have defined the Stokes number of the wind to be

$$ S_t = \frac{\rho_{\text{eff}} s v_g^2}{c_s \dot{m}_g R} = \frac{v_g^2 / R}{v_{\text{eff}} / t_{\text{eff}}}, \quad (10) $$

where $v_{\text{eff}}, \rho_{\text{eff}},$ and $t_{\text{eff}} = \rho_{\text{eff}} s / c_s \rho_g$ denote the gas velocity, the gas density, and the stopping time at the base of the flow, respectively. We emphasize that the Stokes number in the wind, denoted here as S_t, is a priori different to the Stokes number in the disc (S_t). Equation (10) can be seen as the ratio between the gravitational force and the force required to keep the grains entrained at the base of the flow.

2.2.2 Asymptotic behaviour

When $\bar{z} \to \infty$, the term $-\bar{z}/(1 + \bar{z}^2)^{3/2} \to 0$ while equation (2) implies that $\bar{v}_d \to 1$ and $\bar{d}_d/\mathrm{d} \bar{z} \to 0$. Upon applying these limits to equation (9), the solution $\bar{v}_d \simeq \bar{v}_g$, with a vanishing derivative can readily be seen by inspection. Note that this holds for all Stokes numbers. On the other hand, when $\bar{z} \to \bar{z}_i$, where \bar{z}_i is the location of the initial flow, the Stokes number determines the behaviour of the solution. Possible solutions can be categorized into two main classes based on whether the dust velocity is initially increasing or decreasing.

Increasing: for $S_t \to 0$ (i.e. high drag), the positive drag term dominates over the negative gravitational component, thus implying that $\mathrm{d} \bar{v}_d/\mathrm{d} \bar{z} > 0$ for all \bar{z}. However, to keep the drag term from becoming unbounded, the gas and dust velocities must be approximately equal, to zeroth order in S_t. Two distinct subclasses of grains are possible:

(i) perfectly entrained grains that adhere to the zeroth order approximation, and

(ii) well-entrained grains that do not.

Decreasing: for $S_t \to \infty$ (i.e. low drag), the solution satisfies, to zeroth order in S_t^{-1},

$$ \bar{v}_d \simeq -\frac{\bar{z}}{(1 + \bar{z}^2)^{3/2}}. \quad (11) $$

Fully entrained flows require $\bar{v}_d > 0$, but allowing $\bar{d}_d/\mathrm{d} \bar{z}$ to be general yields a total of three new subclasses:

(iii) weakly entrained dust grains with positive velocities throughout the flow (i.e. away from the mid-plane),

(iv) partially entrained dust grains whose velocities change sign in the flow, and

(v) non-entrained dust grains whose initial velocities are negative (i.e. towards the mid-plane).

Note that these latter two subclasses are best interpreted with an Eulerian perspective, since at large \bar{z}, the velocities will always
become positive and converge to the gas velocity. Although a steady state flow is impossible to achieve if v_\parallel reverses direction, this would imply a pile-up of some kind for partially entrained dust grains. Moreover, the distinction between weakly and partially entrained dust grains suggests that there exists a critical Stokes number St_c for which the minimum of \bar{v}_d is zero. This ensures that when $St < St_c$, particles are entrained by the photoevaporative wind.

2.2.3 Maximum-entrained grain size

We denote \bar{z}_c as the height at which $\bar{v}_d = d\bar{v}_d/d\bar{z} = 0$. Substituting these values into equation (9) yields the following relation,

$$\frac{St_c \bar{z}_c}{(1 + \bar{z}_c)^{3/2}} = 1. \quad (12)$$

Taking the derivative of equation (12) with respect to \bar{z}_c removes the St_c dependence and allows us to solve for \bar{z}_c,

$$\bar{z}_c = \pm \frac{1}{\sqrt{2}}. \quad (13)$$

This is also the location for the peak gravitational force. Substituting \bar{z}_c back into equation (12) gives us the critical Stokes number,

$$St_c = \frac{3\sqrt{2}}{2} \simeq 2.6. \quad (14)$$

From equation (10), we can then solve for the maximum entrainable grain size in the wind,

$$s_{\text{max}} = \frac{3\sqrt{3}}{2} c_m H_1 R \rho_{eff} v_k^2, \quad (15)$$

where m_g is obtained from equation (3) using initial conditions at the base of the flow. The critical height \bar{z}_c is close enough to the disc surface for the plane-parallel approximation to remain valid, but is subject to the validity of the assumptions made about the underlying disc.

We can alternatively derive this limit from a Lagrangian perspective by retaining the dv_d/dt term in equation (8) and rewriting the equation using an effective potential,

$$V_{\text{eff}} \equiv -\left(\frac{\bar{z}}{St} + \frac{1}{\sqrt{1 + \bar{z}_c^2}}\right), \quad (16)$$

such that

$$\frac{D^2 \bar{z}}{Dt^2} = -\frac{1}{St v_k \bar{z}} \frac{D V_{\text{eff}}}{Dt} - \frac{d V_{\text{eff}}}{d\bar{z}}, \quad (17)$$

where the convective derivative ($D/Dt \equiv d/dt + \bar{v} \cdot \nabla$) is taken with respect to the dimensionless time variable, $t \equiv \Omega K t$, with $\Omega K = v_k/R$. Except when $St > St_c$, the new effective potential monotonically decreases to infinity (i.e. dust grains are entrained and escape the system). Above St_c, a local minimum forms that keeps grains with $s > s_{\text{max}}$ bound to the disc. The important point here is that V_{eff} is independent of the functional form of v_{\parallel} as long as $v_{\parallel} \propto 1/\rho_{g}$, or equivalently, as long as the continuity equation is valid.

2.2.4 Underlying disc structure

We must integrate equation (9) numerically to find the dust velocity, but this requires initial conditions for the flow, including the gas and dust structure in the underlying disc. Equation (2) specifies the gas velocity for all z, but does not identify where the flow begins.

Physically, the ionization front location marking the base of the flow is set by the intensity of the impinging radiation field and its corresponding optical depth. For maximum flexibility, we leave $\rho_{g,0}$ as an input parameter for our model and parametrize the penetration depth of the EUV radiation by defining $\xi \equiv \rho_{g,0}/\rho_{g,0}$, where $\rho_{g,0}$ is the local mid-plane density of the disc. The location of the ionization front is then obtained by solving for the height z_i at which the disc density is equal to $\rho_{g,0}$.

For the density profile of the disc, we use the isothermal thin disc approximation

$$\rho_g(z) = \rho_{g,0} \exp \left[-\frac{z^2}{2H^2}\right], \quad (18)$$

where H is the local scaleheight of the disc. We specify the entire $R-z$ disc structure using a power-law parametrization (see e.g. Laibe, Gonzalez & Maddison 2012)

$$\Sigma_g = \Sigma_{g,1au} \left(\frac{R}{1\,\text{au}}\right)^{-p}, \quad (19)$$

$$H = H_{1\text{au}} \left(\frac{R}{1\,\text{au}}\right)^{3/2-q/2}, \quad (20)$$

$$\rho_{g,0} = \frac{\Sigma_g}{\sqrt{2\pi}H}, \quad (21)$$

where Σ_g is the local surface density for the gas, while quantities with the subscript 1 au are reference values measured at $R = 1$ au. The parameters p and q are power-law exponents controlling the density and temperature (i.e. flaring) of the disc, respectively. Observations and simulations indicate that p and q can cover a range of values – q being the better constrained out of the two (e.g. Dutrey et al. 1996; Andrews & Williams 2005, 2007; Laibe et al. 2012; Pinte & Laibe 2014). In keeping with these studies, we adopt the ranges $p \in [0, 1.5]$ and $q \in [0.4, 0.8]$.

We assume all grain sizes are uniformly distributed throughout the disc with the same density as the gas, only scaled by the dust-to-gas ratio $\varepsilon = 0.01$. While unphysical, distributing the dust in this manner makes it much easier to compare different grain sizes, identify trends, and gain valuable insight about how dust behaves in discs. The only caveat is that we partially lose the ability to make predictions about dust in real outflows, particularly for larger grains which we would expect to be concentrated closer to the mid-plane and away from the ionization front. In fact, from HPLM16, we know that settling can keep dust grains that are at least a few times smaller than s_{max} from ever entering the wind. Correctly accounting for this behaviour requires hydrodynamic simulations or assuming a steady-state stratified disc structure for the dust (see Section 4).

One may intuitively expect the initial dust velocity to start from rest, but this is physically inconsistent with the relation $\rho_{g} = m_d/v_g$, which would create an unphysical density spike at the surface of the disc. The numerical models from HPLM16 show that the ionization front is a very narrow, dynamically complicated transition region where neither phase is particularly well represented by the solutions above. Once the flow has settled, the dust already has a finite velocity and the solution is better represented using a zero derivative at $z_i = \bar{z}_i$. Substituting this into equation (9) and solving for \bar{v}_{\parallel} results in the following initial condition for the dust

$$\bar{v}_{\parallel,1} = \bar{v}_{\parallel,1} \left[1 - \frac{St \bar{z}_i}{(1 + \bar{z}_c)^{3/2}}\right]. \quad (22)$$
2.3 Verifying s_{max}

We verify that s_{max} is valid by comparing the semi-analytic model here with the hydrodynamic model in HPLM16. In doing so, we adopt the following values for our disc: $R = 5\,\text{au}$, $M = 1\,\text{M}_\odot$, $\Sigma_{\text{g,1au}} = 100\,\text{g cm}^{-2}$, $H_{\text{au}} = 0.05\,\text{au}$, $p = 1$, and $q = 0.5$. We assume the EUV penetration depth is $\xi = 10^{-5}$, which is consistent with thermo-chemical models of typical T Tauri discs (Woitke et al. 2016). In the ionized wind, gas particles are held isothermally (i.e. $\gamma = 1$) at $T = 10^4\,\text{K}$, such that $c_s \approx 10\,\text{km s}^{-1}$. Finally, we assume that the intrinsic dust density for all our dust grains is $\rho_{\text{d,grain}} = 3\,\text{g cm}^{-3}$. Plugging these values into equation (15) gives $s_{\text{max}} \approx 0.82\,\mu\text{m}$. Except where noted otherwise, we will use the fiducial values above for the remainder of the paper.

Although the outflow in this geometry is 1D in nature, the transition between disc and outflow is better captured in multidimensional simulations. This is because ionization of particles at the disc surface causes compression of adjacent neutral particles, which, in 1D, produces sporadic bursts of outflow. Thus, for our numerical simulation, we place 200028 particles on a uniform (staggered) lattice inside a Cartesian box, $(x, z) \in [-1.9, 1.9]\,\text{au}$ and set the gas/dust masses and dust fraction using the method described in HPLM16 for unequal-mass, one-fluid particles. We use periodic boundary conditions in x and dynamic boundaries in z, consistent with a steady-state wind flowing away from the disc (Hutchison & Laibe 2016). We create the dynamic boundaries by converting the ionized particles at $t = 0$ into ghost particles and forcing them to move in the vertical direction at the local wind speed prescribed by equation (2). The number of ghost particles produced by this setup is 5372 on each side of the disc. Photoevaporation is created by heating gas particles to $10^4\,\text{K}$ when $\rho_{\text{d}} \leq \rho_{\text{d,grain}} = \xi \rho_{\text{g,grain}}$. The disc begins the simulation in isothermal hydrostatic equilibrium, but is evolved adiabatically from $t = 0$ to capture the collisional heating at the ionization front.

We measure the reduction in $\rho_{\text{d,grain}}$ caused by ionization front heating in the simulation to be ~ 40 per cent, thereby reducing s_{max} from 0.82 to 0.33 μm. Note that we need not worry about specifying $\rho_{\text{d,grain}}$ because it has no influence in determining the value of s_{max}. Fig. 1 shows a snapshot of the hydrodynamic velocities at $t = 80\,\text{yr}$ overlaid with the semi-analytic curves assuming a 40 per cent reduction in gas density in the flow. The hydrodynamic solutions are somewhat noisy due to fluctuating motions in the flow produced by the stochastic ionization of gas particles at the ionization front, but they always oscillate about their respective semi-analytic solution. The trend of $v_y \to 0$ as $s \to s_{\text{max}}$ is a clear indicator that equation (15) is correct. As further proof, when we try $s = 4\,\mu$m, no dust is entrained in the outflow.

We emphasize that s_{max} is a robust, physical limit set by gas properties in the wind and is not affected by any properties of the disc. In fact, the above simulations were run with dust settling enabled to show that dust density in the disc has no effect on the entrainment properties in the wind (unless of course the density is zero, see Section 4). Because it does not matter what physical mechanisms supply the dust to the disc surface (e.g. turbulence, migration, accretion jets), s_{max} is model-independent. This is important because any observational constraint on s in the wind can be converted into a strict lower bound on m_d by inverting equation (15). In terms of surface density, this translates into a photoevaporative mass-loss rate of

$$\Sigma_{\text{g,photo}} \geq \frac{8\pi}{3\sqrt{3}} \frac{\rho_{\text{d,grain}} v_{\text{w,peak}}^2}{c_s^4},$$

where $\rho_{\text{d,grain}}$ is the largest grain size observed in the flow.

3 Dependence on Disc Parameters

In this section, we use equations (9) and (15) to investigate how s_{max} and dust entrainment depend on the model’s disc and stellar parameters by systematically varying the grain size, disc radius, base flow density, and stellar mass.

3.1 Grain size

Using the values above, we solve equation (9) for six different grain sizes, $s = [0.01, 0.1, 0.4, 0.7, 0.9, 1.2]\,\mu$m, and plot the resulting velocity and density profiles for both gas and dust at $R = 5\,\text{au}$ as a function of z in Fig. 2. There is a steady decline in entrainment with increasing grain size. We have selected these sizes in order to have at least one representative sample from each of our earlier defined entrainment subclasses:

- **Perfect**: the 0.01 μm grains mirror the gas velocity and density profiles almost exactly.
- **Well**: the 0.1 μm grains always have a positive acceleration, but noticeably deviate from the gas solution.
- **Weak**: both the 0.4 and 0.7 μm grains exhibit a tell-tale dip (peak) in their velocity (density) profiles.
- **Partial**: the velocity for the 0.9 μm grains goes negative, causing them to stall above the disc surface. They cannot escape or set up a steady-state outflow.
- **Non**: the initial velocity of the 1.2 μm grains is negative so that not even partial ejection can be achieved.

Also evident in Fig. 2 is the fact that all dust velocities converge to that of the gas for large z, regardless of grain size. This is even true – albeit unphysical – for partially and non-entrained dust grains at sufficiently large z (see the dotted lines). Finally, at this radius, $s_{\text{max}} \approx 0.82\,\mu$m and we have verified that $v_y \approx d\Sigma_d/dz = 0$ at $z = R/\sqrt{2}$. Thus, we can see that all of the classifications and asymptotic behaviours we predicted in Section 2.2.2 are indeed valid.

The range in vertical outflow velocities in Fig. 2 results in a unique angular momentum for each grain size. Thus, by analogy...
Figure 2. Velocity (top) and density (bottom) profiles for gas (dashed) and dust (solid) in a photoevaporative wind at $R = 5$ au. Grains with $s \gtrsim 0.8 \mu m$ cannot be entrained in the wind, but may lead to a pile-up near the surface of the disc. Large velocity differences between phases is an indication of the lack of dust entrainment. The velocity-density relation in equation (7) leads to a seasaw pattern in the density.

to classical projectile motion from a rotating disc, each grain size will follow a unique trajectory with smaller, faster grains extending higher in the flow than those that are larger and slower. The latter may be sufficiently decoupled from the wind that a combination of gravity and disc flaring can lead to recapture at larger radii. Transport and recapture of dust grains via photoevaporative winds could help explain the observed crystalline fractions at large radii, assuming that radial mixing can transport the crystalline grains to the launch point for the winds (e.g. Owen et al. 2011; Hansen 2014). We caution, however, that hydrodynamic simulations including settling show a smaller gradation in outflow velocities for entrained dust grains (HPLM16). This implies that the redistribution of grains in the disc via photoevaporative winds is not as effective as our unsettled model suggests.

An overdensity occurs near the disc surface whenever there is a local minimum in the velocity profile, a result of the velocity–density relation in equation (7). A similar result was found by Miyake, Suzuki & Inutsuka (2016) in magnetically driven winds. Beyond z_c, where aerodynamic drag takes over as the dominant force, the larger grains experience a greater acceleration due to their larger differential velocities with the gas. As a result, their dust densities drop more rapidly than small grains and a seasaw pattern develops with a common pivot point. Small, perfectly entrained grains that trace the density profile for the gas represent the smallest

Figure 3. Density contours for $s = 0.01$ and $0.7 \mu m$ dust grains are created by horizontally stacking 1D calculations at different radii. Empty regions, like the one in the bottom panel at $R \lesssim 5$ au, occur whenever $s > s_{\text{max}}$. When $s \sim s_{\text{max}}$, the maximum dust density in the wind occurs at z_c (dashed orange line) rather than along the ionization front (thick grey line). This suggests that the opacity in the wind may not monotonically decrease with z. The solid black line ($z = R$) and hash marks indicate the region where lack of the radial pressure gradients and centrifugal motion cause our approximation to break down.

(largest) possible density that can be achieved by the dust at small (large) z. Thus, assuming ϵ is constant in the wind is a good, fair, and poor approximation for perfectly, well-, and weakly entrained dust grains, respectively.

At the other extreme, the sign reversal in the velocity for grains $s \approx 0.8–1 \mu m$ suggests that a pile-up occurs just above the disc’s surface (below 1 μm, the initial velocities are negative). The opacity created by the structure in the density profile of the wind will affect the flux of radiation through the disc’s atmosphere. The feedback that this will have on photoevaporation is complicated and requires proper radiative transfer calculations. Furthermore, the thermal emission and/or scattered light from the dust grains in the flow can have observational signatures unique to photoevaporating discs, as shown by Owen et al. (2011). We leave this for future study as this goes beyond the scope of this paper.

3.2 Disc radius

The assumed underlying 2D disc structure makes our calculations radially consistent at the base of the flow so we can approximate the 2D dust density in the wind by horizontally stacking vertical density maps from different radii. Fig. 3 compares density contours for two different grain sizes, $s = 0.01$ and $0.7 \mu m$. However, beyond $z \sim R$ differential pressure and centrifugal effects become significant and our approximation breaks down (Hollenbach et al. 1994). The hash marks on the black line, $z = R$, indicate the region where our approximation likely breaks down. In contrast to smaller grains, whose density in the wind monotonically declines with z, large grains with $s \sim s_{\text{max}}$ tend to have strongly peaked dust densities with maxima near $z \sim z_c$. Fig. 3 shows that the entrainment region is not the same for all dust grains. This radial size sorting of dust, first pointed out by Owen et al. (2011), is nicely picked up by the

1 The common pivot point is actually a coincidence. In general, crossings are well-localized, but occur at different locations.
analytic expression for the maximum grain size in equation (15). A better illustration of this radial sorting is obtained by plotting \(s_{\text{max}} \) as a function of \(R \), as shown in Fig. 4 for five disc profiles varying \(p \in [0, 1.5] \) while holding \(q = 0.5 \) and five disc profiles varying \(q \in [0.4, 0.8] \) while holding \(p = 1 \). Physically, the exact shape of \(s_{\text{max}} \) is determined by the relative rate of decline between gravity and density as a function of \(R \) and \(z \). Thus, it comes as no surprise that \(s_{\text{max}} \) has a strong dependence on both \(p \) and \(q \), particularly at large radii where they affect the disc structure the most.

Usually grains with \(s < s_{\text{max}} \) have a unique inner and outer entrainment radius beyond which they cannot be dragged into the flow, but there are a few exceptions. First, because photoevaporation cannot operate below the so-called critical-radius (Liffman 2003; Adams et al. 2004; Alexander et al. 2014),

\[
R_{\text{EUV}} \simeq 1.8 \left(\frac{M}{M_\odot} \right) \text{au},
\]

all grains with \(s < s_{\text{max}} \) will share the same inner entrainment radius. A similar situation occurs for the outer entrainment radius if the disc is truncated at the outer edge (e.g. by external photoevaporation; see Facchini, Clarke & Bisbas 2016). For completeness’s sake, we also mention that \(s_{\text{max}} \) has no extremum when \(q \geq 2p \), suggesting there is no outer entrainment radius for grains. However, the reality is that discs are finite and \(s_{\text{max}} \) will eventually drop to zero regardless.

3.3 Base flow density

The penetration depth has a strong effect on dust entrainment by determining \(\rho_{g,i} \) and \(z_i \). Rigorously, \(\xi \) also influences \(v_{g,i} \) because the initial velocity is obtained by integrating backwards from the sonic point to \(z_i \). However, the disc density profile is so steep and the velocity profile is so shallow that the actual impact of \(\xi \) on \(v_{g,i} \) is small. Because \(\xi \) is directly proportional to the initial base flow density – and since \(\rho_g \) and \(s \) are inversely proportional in the Epstein drag regime – \(\xi \) scales the entrainment properties linearly in \(s \), as shown by the orange dashed line and axes in Fig. 5. Note that this scaling has no effect on the actual shape of the velocity/density profiles, just a vertical offset in the densities.

Varying \(\Sigma_{g,1\text{au}} \) has no other effect than to scale \(\rho_{g,0} \) and hence \(\xi \). The exponents \(p \) and \(q \) have a similar effect. The blue shaded region and axes in Fig. 5 illustrate the entire range of mid-plane densities produced by \(p \in [0.5, 1.5] \) and \(q \in [0.4, 0.8] \) at \(R = 5 \text{ au} \) and their associated values of \(s_{\text{max}} \) assuming \(\xi = 10^{-5} \). The range of \((p, q) \) pairs gives the data a slight spread, but the average slope of \(\rho_{g,0} \) versus \(s_{\text{max}} \) is almost identical to that obtained for \(\xi \). This is not true for \(H_{g,1\text{au}} \) and \(H \), however. In fact, \(H \) has the opposite effect because it is inversely proportional to \(\rho_{g,0} \). Smearing the same density over a larger volume results in a diminished base flow density and a smaller maximum grain size \(s_{\text{max}} \).

3.4 Stellar mass

Massive stars tend to have more massive discs and higher luminosities (Andrews et al. 2013; Andrews 2015), thereby affecting \(\Sigma_g \) and \(\xi \), respectively. However, before addressing these complexities, it is instructive to look at how gravity alone affects dust entrainment in winds. From equation (3), we can see that the overall velocity profile for the gas decreases as stellar mass increases. This is illustrated by the dashed lines in the top panel of Fig. 6 using the following stellar masses, \(M = [0.5, 0.75, 1, 1.25, 1.5] M_\odot \). The resulting dust velocities for \(s = 0.4 \mu m \) (solid lines in top panel) are shown in each case and go from being well-entrained at 0.5 M_\odot to being completely non-entrained at 1.5 M_\odot. Furthermore, in Fig. 7, we find that \(s_{\text{max}} \) globally decreases as the stellar mass increases. Thus, dust entrainment is inversely proportional to the stellar mass.

The gas and dust densities in the bottom panel of Fig. 6 are phenomenologically similar to those in Fig. 2, but illustrate two new points of interest. First, the density gradient in the wind gets steeper as the mass of the star increases. This suggests that the gas/dust envelope surrounding photoevaporating discs is smaller for host stars that are more massive. Secondly, placing identical dust distributions around stars of different masses will produce different density profiles in the wind. The weakened entrainment at higher stellar masses will result in diminished outflow velocities and higher wind densities. Therefore, although we expect a narrower grain size distribution in the wind, their densities will be enhanced compared to the same grains at lower stellar mass.

We can now see that increasing the stellar mass weakens dust entrainment while increasing disc mass and/or stellar luminosity.
On the maximum entrainable grain size

2737

4 EFFECTS OF DUST SETTLING

In this section, we use a turbulent disc model to derive the dust density for a settled disc. With this density relation, we derive a new constraint on the maximum grain size in winds that reflects how some entrainable dust grains settle well below the launch point for the flow. Finally, we discuss how settling affects the results in Section 3.

4.1 Turbulent disc model

We saw in Section 2.3, that settling does not affect the accuracy of the semi-analytic model in determining \(s_{\text{max}} \) or the velocity of entrained dust grains – as long as there is a non-zero dust density at the ionization front. With the velocities pinned down, the continuity equation ensures that the shape of the density profile is known too. However, Fig. 8 shows that dust settling within the disc will result in a size-dependent \(\rho_d \) that requires external calibration. In principle, this is similar to the 40 per cent shift we applied earlier to \(\rho_{g,i} \), but is made complicated by the unique interaction each grain size has with the disc. Calibrating \(\rho_d \) from simulations would render the model superfluous, so we approximate the density using a turbulent disc model.

The continuity approximation used throughout Section 3 can already be thought of as extreme turbulence in the disc. Here, we just switch to a more physical description by assuming a finite turbulent viscosity, \(\nu_t = \alpha c_s^2 / \Omega_1 \), where \(\alpha \) is a dimensionless constant (Shakura & Sunyaev 1973). Following Dubrulle, Morfill & Sterzik (1995), the vertical distribution of dust density in a turbulent disc governed by

\[
\frac{\partial \rho_d}{\partial t} + \nabla \cdot (\rho_d \mathbf{v}) = \nabla \cdot \left[\rho_d \kappa_t \nabla \left(\frac{\rho_d}{\rho_g} \right) \right],
\]

with the turbulent diffusivity, \(\kappa_t \), is given by

\[
\kappa_t = \frac{\Omega_t \alpha H^2}{\sqrt{1 + \Gamma}},
\]

where \(\Gamma = 5/3 \) for isotropic, incompressible turbulence. Equation (26) assumes that \(\Omega_t \ll 1 \), which is true for all grain sizes.
considered in this study. Noting that (i) the vertical time-scale is much shorter than the radial time-scale; (ii) assuming that the dust is always small enough to settle to the local terminal velocity (i.e. $\Delta t_r = -z\Omega^2 _{\text{tur}}$); and (iii) restricting ourselves to stationary solutions, allows us to rewrite equation (25) as a separable first-order differential equation,

$$-z\Omega^2 _{\text{tur}} \rho_\alpha = k_i \left(\frac{z}{H^2} \rho_\alpha + \frac{d\rho_\alpha}{dz} \right),$$

which has the solution

$$\rho_\alpha = \varepsilon_0 \rho_g \exp \left[-\frac{\sqrt{1 + t}}{\alpha} \frac{\rho_{\text{grain}} g \Omega_k}{\rho_g c_s} \left(\frac{\rho_g}{\rho_g^0} - 1 \right) \right].$$

4.2 Settling-limited maximum grain size

Our hydrodynamic simulations are non-turbulent, but they can provide an order of magnitude estimate of the α needed in this model to produce a realistic stratified dusty disc. Using $\alpha = 0.05$, equation (28) reproduces a density structure that is similar to that shown in Fig. 8. Although the dust density in the model and simulation can drop to arbitrarily low values, it is natural to believe that below some threshold the density becomes physically irrelevant. Alternatively, the threshold could be caused by a technological limitation in the observing power of a particular telescope. Either way, limiting ρ_α allows us to invert equation (28) and solve for the maximum grain size, s_{max}, allowed/observed to enter the wind due to settling in the disc:

$$s_{\text{max}} = \frac{\alpha}{\sqrt{2\pi}(1 + t)} \left(\frac{\xi}{1 - \xi} \right) \left(\frac{\rho_{\text{grain}}}{\rho_g} \right) \log \left(\frac{\rho_0}{\varepsilon_1} \right),$$

where we have defined $\varepsilon_1 = \rho_\alpha(z_i)/\rho_g(z_i)$.

In this study, we are more interested in the fundamental process by which settling limits the sizes in the flow than by observational feasibility; therefore, we define the above threshold as the point where $100 \times (1 - \beta)$ percent of the grains are contained within $|z| < z_i$. For this to be meaningful, we assume $0 < \beta \ll 1$. The role of β in this analysis is to determine the likelihood that a given grain size will have settled below the ionization front and not be entrained in the wind. Mathematically, we do this in three steps: (i) we normalize the density to get the probability density function (PDF), (ii) we integrate the PDF over the interval $[-z_i, z_i]$ and set it equal to the desired threshold fraction of grains in the disc:

$$\frac{\int_{-z_i}^{z_i} \rho_\alpha(z, s) dz}{\int_{-\infty}^{\infty} \rho_\alpha(z, s) dz} = 1 - \beta,$$

and (iii) we solve for the critical value s that makes this relation true. The family of solutions for equation (30) is indeed given by equation (29), but ε_1 is a non-linear function of both ξ and β. In the interest of keeping s_{max} analytic, we fit ε_1 with a polynomial surface

$$\varepsilon_1 \simeq \sum_{m=0}^{2} \sum_{n=0}^{3} C_{mn} \xi^m \beta^n,$$

with coefficients C_{mn} given in Table 1. The root mean square error for this fit is ~ 1 percent.

To keep our analysis as general as possible and still be able to make informed predictions about the maximum grain size found in winds, we restrict ourselves to using only the highest confidence levels. The more strict the upper limit we set on s_{max} in this model, the more likely it will apply in other turbulent disc models, albeit as a softer limit. Numerically, the smallest value of β we can use before experiencing roundoff errors is 10^{-15}. This corresponds to a $\geq 6\sigma$ confidence level that s_{max} has settled below the ionization front. The analytic form of s_{max} allows us to decrease β much lower, revealing that s_{max} asymptotically reaches a maximum value. However, extrapolating far beyond the fitted data often leads to erroneous results, so we feel it is sufficient to assume $\beta = 10^{-15}$.

Although we believe these predictions are representative of discs undergoing photoevaporation, the exact values and likelihoods are biased by the assumptions of our turbulent disc model. Turbulence in the upper disc is not well understood and could be different to what we assume here. Furthermore, recent non-ideal magneto-hydrodynamic simulations suggest that the accretion stress may be largely laminar in the inner $\lesssim 30$ au of the disc (e.g. Bai 2013, 2014; Lesur, Kunz & Fromang 2014; Gressel et al. 2015; Simon et al. 2015), thereby reducing values of α controlling turbulent mixing in these regions. This would result in even smaller values of s_{max}, i.e. a smaller reservoir of grains to be carried out by the wind. Finally, our analysis does not take into account the collisional evolution and redistribution of small dust grains, which can potentially trap small grains in a layer significantly thinner than the gas (Krijt & Ciesla 2016). This could similarly reduce s_{max} below that implied by equation (29).

4.3 Modification to earlier results

Given this new constraint, the true maximum grain size in the wind is given by the minimum of s_{max} and s_{tur}. Fig. 9 shows the effect this new relation has on our earlier calculations. The left-hand panel varies stellar mass (note s_{tur} does not depend on q). The dashed and dotted lines show s_{max} and s_{tur}, respectively, while the solid lines indicate the true maximum grain size entrained at each radius. In the right-hand panel, we have assumed that both ξ and $\Sigma_{g,1au}$ are multiplied by a mass factor, $\sqrt{M/M_{\odot}}$. The mass factor here is simply illustrative; without a mass dependence, the curves would be co-linear. As mentioned earlier, any positive correlation like this between stellar mass and ξ and/or $\Sigma_{g,1au}$ will increase the dust density in the wind. Thus, despite both s_{max} and s_{tur} being inversely proportional to stellar mass, when taking into account that telescopes have a limited resolution, the higher wind densities at higher stellar masses may result in a larger range of observable grain sizes in the wind (as opposed to entrainable grain sizes).

One of the most striking features of Fig. 9 is that dust settling is the dominant mechanism determining the maximum grain size in the wind at almost all radii in the disc. Moreover, since photoevaporation only operates at $R > R_{\text{EUV}}$, the region dominated by s_{max} can be very small. This is an important result because it means that only dust in the inner few au of the disc will experience weak entrainment in the winds. Consequently, processes reliant on slow moving dust grains, such as mass transport to the outer disc and pile-ups at the disc surface, are restricted to the inner disc. Note, this does not rule out photoevaporation as the transport mechanism for the earlier mentioned crystalline grains since these grains are formed in situ in the inner disc.

Table 1. Coefficients C_{mn} for the fit of ε_1 in equation (31).

<table>
<thead>
<tr>
<th>m</th>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>-1.046 00</td>
<td>0.852 90</td>
<td>-0.021 26</td>
<td>-0.001 092</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>-0.808 50</td>
<td>0.089 92</td>
<td>0.004 97</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>-0.068 33</td>
<td>-0.004 08</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
the upper atmospheres of discs (see Gorti et al. 2016). However, X-rays are primarily absorbed by heavy elements in the disc – many of which can be found in dust grains – and the effects of dust settling on X-ray-driven photoevaporation have not been studied in detail (Alexander et al. 2014). FUV winds are much more likely to be affected by changes in the dust phase. Gorti, Hollenbach & Dullemond (2015) report noticeable reductions in disc lifetimes when dust evolution (i.e. settling, migration, and coagulation/fragmentation) is considered alongside FUV photoevaporation. While increased mass-loss rates imply better entrainment, the radial variation in FUV wind temperatures and fragmentation efficiency (i.e. replenishment of small grains), plus the tendency for dust to migrate inwards, suggests the increase does not occur uniformly across all radii. Furthermore, the opacity from entrained dust grains has never been modelled self-consistently and could impede FUV photoevaporation rates, especially in the outer disc. Further studies need to be conducted in order to determine the relative importance of each of these processes and how they affect the radial profile of grain sizes carried into the winds.

6 CONCLUSIONS

We have developed a simple but powerful model using a non-rotating, plane-parallel, photoevaporating atmosphere to estimate the conditions by which dust grains can be carried into a photoevaporative wind. Equation (9) gives the maximum grain size, s_{max}, that can be entrained by the outflow. The model accurately recovers almost all of the results from our more rigorous hydrodynamic simulations in HPLM16 for different stellar and disc parameters. This implies that any observational constraint on the grain size in the wind can be translated into a strict lower bound on the mass-loss rate of the disc, equation (23).

This relation is consistent with, but more versatile than earlier estimates of s_{max} by Takeuchi et al. (2005) and Owen et al. (2011). We show, in particular, that s_{max} varies with disc radius with $\max(s_{\text{max}}) < 10 \, \mu m$ for typical T Tauri stars. However, the largest grain size entrained in the flow may be much smaller than s_{max}, since dust settling prevents the replenishment of large grains in the wind (except in the inner few au of the disc). In addition to determining the maximum entrained grain size, we uncover five distinct behavioural classes of dust grains in photoevaporative winds: perfectly, well-, weakly, partially, and non-entrained grains. These five
classes exhibit different outflow velocities, which may lead to stratified dust layers in the wind and recapture of weakly entrained dust grains by the disc at large radii.

The stellar mass has a non-linear relationship with s_{max} that alters the shape of the velocity and density profiles for the gas and dust. We find that more massive stars will tend to host winds with a more compact envelope, higher wind density, and higher dust-to-gas ratio. Although the maximum entrainable grain size decreases with increasing stellar mass, any positive correlation between luminosity and/or disc mass with the mass of the central star may result in a larger range of observable grain sizes at higher stellar mass.

ACKNOWLEDGEMENTS

We thank Daniel Price for useful discussions and the anonymous referee whose comments helped improve this paper. MH acknowledges funding from a Swinburne University Postgraduate Research Award (SUPRA) and support from the Astronomical Society of Australia. GL acknowledges funding from the European Research Council for the FP7 ERC advanced grant project ECOGAL. STM acknowledges partial support from PALSE (Programme Avenir Lyon Saint-Étienne). Simulations were performed on the swinSTAR supercomputer at Swinburne University of Technology.

REFERENCES

Epstein P. S., 1924, Phys. Rev., 23, 710

This paper has been typeset from a TEX/LaTeX file prepared by the author.