
An Online Monitoring Approach
for Web Service Requirements

Qianxiang Wang, Member, IEEE, Jin Shao, Fang Deng, Yonggang Liu,

Min Li, Jun Han, Member, IEEE, and Hong Mei, Senior Member, IEEE

Abstract—Web service technology aims to enable the interoperation of heterogeneous systems and the reuse of distributed functions

in an unprecedented scale and has achieved significant success. There are still, however, challenges to realize its full potential. One of

these challenges is to ensure the behavior of Web services consistent with their requirements. Monitoring events that are relevant to

Web service requirements is, thus, an important technique. This paper introduces an online monitoring approach for Web service

requirements. It includes a pattern-based specification of service constraints that correspond to service requirements, and a monitoring

model that covers five kinds of system events relevant to client request, service response, application, resource, and management,

and a monitoring framework in which different probes and agents collect events and data that are sensitive to requirements. The

framework analyzes the collected information against the prespecified constraints, so as to evaluate the behavior and use of Web

services. The prototype implementation and experiments with a case study shows that our approach is effective and flexible, and the

monitoring cost is affordable.

Index Terms—Web services, requirements, monitoring, constraints.

Ç

1 INTRODUCTION

WEB services are Internet-based software applications
published using standard interface description lan-

guages and universally available via XML-based commu-
nication protocols. While this technology is widely expected
to enable the interoperation of heterogeneous systems and
the reuse of distributed functions, the industry uptake of
this technology has been slow [1]. Some research has
revealed that the lack of quality assurance and guarantee,
thus, leading to deviation of service behavior from require-
ments, is one of the important factors [2].

Software requirements are about the expected behavior
of the target software in some environment. For service-
oriented software, the behavior of service is not only
determined by the program itself, but also affected by
many other factors, e.g., hardware, network, and even the
client requests. For example, limited hardware resources or
low network bandwidth tend to cause a long response time,
too many client requests may bring about low performance,
and malicious requests may even lead to the denial of
service, or wrong result. All these unexpected results are
deviations of Web service behavior from the requirements.

Thus, to be able to monitor (i.e., extract and analyze) certain
runtime information about these behavior-related factors is
an important issue in ensuring the behavior of Web services
consistent with requirements.

Many traditional technologies, such as fault tolerance,
transaction, and security assurance, are approaches to
ensure the behavior of software systems consistent with
requirements. In recent years, some similar but more
general approaches have been proposed, e.g., autonomous
computing [3], adaptive software [4], and self-managed
system [5]. Monitoring is the first step to all these
approaches, where the further actions such as decision
making and system adaptation are all based on the
information extracted through monitoring.

1.1 Monitoring and Research Issues

Software monitoring involves obtaining the information
relating to the state, behavior, and environment of a
software system at runtime, so as to deal with potential
deviations of system behavior from requirements at the
earliest possible time. Monitoring is usually carried out in
parallel with the system’s normal execution, without
interrupting its operation. Starting from early 1960s with
the advent of debuggers, software monitoring has been
widely used for debugging and testing, correctness check-
ing, security and dependability analysis, performance
evaluation and enhancement, and system control [6]. A
recent taxonomy shows that runtime software monitoring
has been used also for profiling, software optimization, as
well as software fault detection, diagnosis, and recovery [7].

As a special form of software, Web services also require
monitoring as discussed above. In particular, different from
traditional software, Web services and their clients are
usually distributed in different physical locations and often
controlled by different stakeholders. The behavior of Web
services and their clients are more difficult to predict. Early

338 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 2, NO. 4, OCTOBER-DECEMBER 2009

. Q. Wang, J. Shao, F. Deng, and H. Mei are with the Institute of Software,
School of Electronics Engineering and Computer Science, Peking
University, Beijing, China, 100871.
E-mail: {wqx, meih}@pku.edu.cn, {shaojin07, dengfang07}@sei.pku.edu.cn.

. Y. Liu is with the Netease Corporation, Beijing, China.
E-mail: liuyg05@sei.pku.edu.cn.

. M. Li is with the China Life Insurance Company, Beijing, China.
E-mail: limin05@sei.pku.edu.cn.

. J. Han is with the Information and Communication Technologies,
Swinburne University of Technology, John Street, Hawthorn/Melbourne,
Vic. 3122, Australia. E-mail: jhan@swin.edu.au.

Manuscript received 15 Jan. 2009; revised 4 May 2009; accepted 19 May
2009; published online 28 July 2009.
For information on obtaining reprints of this article, please send e-mail to:
tsc@computer.org, and reference IEEECS Log Number TSCSI-2009-01-0007.
Digital Object Identifier no. 10.1109/TSC.2009.22.

1939-1374/09/$25.00 � 2009 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 23,2010 at 23:00:07 EDT from IEEE Xplore. Restrictions apply.

research work on Web service monitoring was reported in
[8], following the work of requirements monitoring in
dynamic environments [9]. Since then, other researchers
have reported their work, with different motivations and
frameworks, including [10], [11], [12], [13].

Although there have been many efforts focusing on Web
services monitoring, there are still some critical issues that
have not been well explored:

. Requirements specification as constraints. The con-
cept of “constraint” has different meanings in
different areas. This paper refers to “constraint” as
the predetermined condition or rule about the service
behavior and other factors impacting on the service
behavior. Many requirements for Web services can
directly be specified as constraints. The violation of
certain constraint will lead to abnormal behavior.
Constraints, thus, serve as the basis to check the
information extracted from the system. Especially, if
the constraints can be specified formally, monitoring
mechanisms can be developed to detect abnormal
system behaviors automatically. However, there has
not been widely accepted constraint specification
approach to date.

. Information extraction. Which kinds of information
are sensitive to the behavior of Web services, and
thus, need to be extracted from the services? How can
information be extracted from the services? Although
all proposed approaches extract certain specific data
for particular purposes, few efforts systematically
explore the types of information and extracting
mechanisms for Web services, so as to provide a
foundation for monitoring implementation.

. Monitoring cost. Many researchers have noted the
issue concerning the intrusiveness of monitoring.
Some use terms from physical sciences and called it
Uncertain Principle in software [6]: “Most monitor-
ing systems, particularly those that rely on software
added to sensors, are intrusive to some degree.
Completely nonintrusive monitoring systems use
dedicated hardware for monitoring.” For software-
based monitoring mechanisms, to what degree do
monitoring mechanisms cost? Are they affordable?
Few efforts explore this issue in detail.

1.2 Main Contributions

In this paper, we introduce a new approach for Web service
requirements monitoring. Compared with the existing
online monitoring efforts, our approach has the following
specific features:

. A pattern-based constraint specification approach.
While most current work focuses on temporal
constraints on service interaction messages [10],
[11], [12], [13], this approach can express not only
temporal constraints on messages, but also con-
straints on parameter values of messages. In addi-
tion, it is extensible, providing the capability for
expressing new types of constraints.

. A monitoring model. System events related to Web
service behavior are usually difficult to monitor

because they are usually scattered in the whole
system. This paper deals with this problem by
introducing a monitoring model, systematically
covering the different kinds of events.

. A flexible monitoring mechanism. Based on the
monitoring model, the mechanism is able to generate
automatically monitoring code from the constraint
specification. The monitoring code can be deployed
into the target system by administrator.

. A monitoring realization process. It provides gui-
dance to system developer to build the monitoring
system for given Web services.

. Assessment of monitoring cost. The performance
cost of monitoring is examined through a number of
experiments. The results show that the cost is
acceptable.

The paper is organized as follows: Section 2 motivates
this work by presenting and analyzing an auction system,
which is built on the Web and published as a service.
Section 3 introduces the pattern-based constraint specifica-
tion approach. Section 4 discusses the monitoring model.
Section 5 describes the monitoring framework and its
prototype implementation in detail, while Section 6
demonstrates the activities of using the proposed frame-
work by applying the approach to motivating example.
Section 7 presents some experiments assessing the perfor-
mance cost of the monitoring system. Section 8 provides an
overview of related work. Finally, Section 9 concludes the
paper and lists some future work.

2 MOTIVATION

To ascertain that the behavior of Web services meets their
requirements, one may make assumptions about their
operating environment and test them before it is deployed,
so as to rectify defects of the system. But it is well known that
testing can only tell us there was some defect, never reach a
conclusion of “no defect.” Furthermore, many environmen-
tal factors cannot be emulated realistically during test.
Online monitoring and consequent remedial actions to deal
with system behavior deviation from requirements should
thus be considered as the last barrier of defense against
software defects. Considering the distributed nature of client
programs and unreliable nature of networks, the importance
of monitoring is more pronounced for Web services,
compared with traditional software systems.

Let us consider an online Auction Service, which provides
a virtual place for selling and bidding items. It has two kinds
of clients: the sellers and the bidders. The sellers can register
with the service (by sending message “opRegisterRequest”),
login to the system (by sending message “opLoginRequest”),
and publish the information about the item on sale (by
sending message “opPublishRequest”). The bidder can
register, login to the system (by sending the same aforemen-
tioned messages), bid for an article (by sending message
“opBidRequest”), or retract a bid (by sending message
“opRetractRequest”).

Fig. 1 shows part of the WSDL description of the Auction
Service, listing only the description about operation
“opBid,” which involves messages “opBidRequest” and

WANG ET AL.: AN ONLINE MONITORING APPROACH FOR WEB SERVICE REQUIREMENTS 339

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 23,2010 at 23:00:07 EDT from IEEE Xplore. Restrictions apply.

“opBidResponse.” The complete description of the auction
system is available at www.sei.pku.edu.cn/~wqx/mass/
auction-example.

WSDL specifies only the operation signature of a
service (abstract definition) and location information
(concrete part). The research community has widely
recognized the need for richer service description to
provide more information about a service, e.g., its
interaction protocols [13]. In the Auction Service, besides
the service signature, there are some important constraints
that request messages must follow:

Constraint 1. The parameter “password” of “opRegis-
terRequest” is an instance of type “String,” and consists
only of letters “a-z” and numbers “0-9,” and the length is
not longer than 16 and not shorter than 8.

Constraint 2. All parameters that are instances of the
type “Price” must be greater than 0 and are instances of the
type “float” with two fraction digits.

Constraint 3. The interval between two “opBidRequest”
messages from the same bidder should be longer than one
second.

Constraint 4. For each bid session, all the “opBidRequest”
messages can only be sent if the “opLoginRequest” message
has been sent.

These constraints reflect some of the original require-
ments for the Auction Service example.

To monitor the Auction Service, we should formally
describe these constraints first. Then, the monitoring me-
chanism can check the extracted system behavior information
against them automatically. We will introduce our approach
to formal constraint specification in the next section.

A constraint may be concerned with system behavior
involving different points of interest in the service. For the
Auction Service, the aforementioned four constraints are
quite different: Constraint 1 is about one message para-
meter which has type “String”; Constraint 2 is about all
message parameters of a given type; Constraint 3 is about

the time interval between request messages; Constraint 4
concerns the order of different request messages. Of course,
they are only part of all potential constraints. How can we
identify the monitoring points systematically? We need a
model that identifies and classifies the factors for monitor-
ing, just like that quality models were widely used to help
us to analyze the software quality [14]. Such a monitoring
model is the focus of Section 4.

Monitoring mechanisms rely heavily on the implementa-
tion of the target system. Even for one specific target
software and for some specific constraint, multiple monitor-
ing mechanisms may be available. For example, to verify the
value “password” in constraint 1, we can insert verifying
code directly into the implementation procedure of Web
services. We can also use existing mechanisms of the system
software (Operation system or Middleware). With Apache
Axis, for example, the Handler that processes SOAP
messages can be used to obtain the value of “password.”
(Handlers are also used to support security, transaction, etc.,
in Web services.) The extracted information can be checked
against the constraint inline, or sent to one central analyzer
for analysis. Section 5 deals with these issues.

3 CONSTRAINT SPECIFICATION

Specification of software is a well-explored issue. It has
been pointed out that: specifications “are intrinsically
incomplete because system correctness depends not only
on computational functionality but also on other proper-
ties. . . . It is impractical to expect full specifications of all
these properties because of the prohibitive effort required to
specify a wide variety of properties. . . . Although complete-
ness is impractical, it is still appropriate to expect
specifications for a common core of properties” [15]. That
may explain why although WSDL can describe “operation
signature” very well, much attention has been paid to
extending the specification of Web services, e.g., security
[16], reliability [17], Qos [18], and service interaction
protocols [13]. Some of them have been successfully
adopted as formal specification, e.g., WS-Security, WS-
Reliability, and most Web service platforms provide
relevant internal services for these specifications.

From the monitoring viewpoint, there are still many other
constraints that deserve much attention. Considering that
there are many kinds of constraints, we propose a pattern-
based formal constraint description approach. As general
repeatable solutions to commonly occurring problems in
software design, design patterns [19] have achieved great
success, and motivated a series of work on patterns, e.g.,
analysis pattern [20] and specification pattern [21]. We
believe that patterns can be used to capture not only the
description of recurring solutions to software design and
analysis problems, but also the description of properties or
requirements of services and service-based systems [22].

In this paper, we consider mainly two kinds of constraint
patterns: value constraint and event constraint. Both of
them are divided further into subcategories. The framework
of the pattern hierarchy is shown in Fig. 2.

We designed a new description language, called Web
Service Constraint Description Language (WSCDL), to

340 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 2, NO. 4, OCTOBER-DECEMBER 2009

Fig. 1. Part of WSDL description for operation “opBid.”

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 23,2010 at 23:00:07 EDT from IEEE Xplore. Restrictions apply.

describe formally these constraints. The WSCDL has the
following features:

. It separates the basic description and constraint
description for Web services by defining them in
WSDL and WSCDL files, respectively. The former
information is functional and relatively stable, while
the latter is optional and configurable. In such a way,
we can change or remove constraints easily: when
we change some constraint of service, we can just
modify the WSCDL file, without modifying the basic
description information in WSDL.

. The syntax of WSCDL is quite simple. Our specifica-
tion approach is based on Resource Description
Framework (RDF) [23] and focuses on the triple
concepts of “<subject, predicate, object>.”

. It inherits the extensibility mechanism of RDF
naturally. You can add your own specification of
the newly discovered constraints by extending the
specification of a constraint schema.

. Reusable specification is supported in our approach.
If there are two constraints that are the same in
different services, we can give one WSCDL specifi-
cation for one service, and let the other refer to it
instead of specifying once again.

WSCDL is complementary to WSDL. It lies in the same
layer as WSDL in the protocol stack of Web services (i.e.,
service description layer). Each WSCDL file is attached to a
certain WSDL file, and their corresponding relationship can
be indicated by their identical main file name but with
different postfixes (foo.wsdl versus foo.wscdl). It may also
refer to other WSCDL with the “import” keyword declara-
tion to reuse constraint specifications. Two WSCDL files are
shown in Figs. 3 and 4, which will be explained below. The
remainder of this section provides an overview of our
approach to constraint specification. Further details can be
found in [24].

3.1 Value Constraint

All interactions between Web services and their clients are
carried out through the request and response messages, as
defined in the WSDL file. Value constraints are about
parameter values of these messages. Many preconditions
and postconditions on service operations are constraints on
parameters. These constraints are important in determining
whether a request is valid, or the Web service behaves
correctly. We specify this kind of constraints based on the

WANG ET AL.: AN ONLINE MONITORING APPROACH FOR WEB SERVICE REQUIREMENTS 341

Fig. 2. Pattern hierarchy of Web services constraints. It can be extended to include other constraints, e.g., those about security and reliability.

Fig. 3. XML-based formal description of Constraint 1.

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 23,2010 at 23:00:07 EDT from IEEE Xplore. Restrictions apply.

XML data types and the constraint facets to these types [25].
To date, we have identified three subpatterns for this
constraint pattern: Single Value Constraint, Type Con-
straint, and Inter Value Constraint.

3.1.1 Single Value Constraint

This subpattern is used to specify the value range of a
specific parameter in a message. In WSDL, only the type
information is declared. With this pattern, we can identify a
constraint, which is represented by one of the 12 constraint
facets in XML Data Type (minExclusive, minInclusive,
maxExclusive, maxInclusive, length, minLength, max-
Length, totalDigits, fractionDigits, pattern, enumeration,
and whiteSpace), and apply it to the corresponding para-
meter. We don’t consider these constraint facets as sub-
constraint patterns under the single value constraint pattern,
but operators for expression of value constraints. See Fig. 2.

Constraint 1 on the Auction Service example is a typical
single value constraint. Fig. 3 presents the XML-based
constraint description of Constraint 1.

3.1.2 Type Constraint

Some WSDL file defines “User-derived datatypes” using
“Built-in datatypes” in the XML Data Type when there are
multiple parameters that have similar restrictions. We can
attach the type constraint to this kind of type definition.
With this pattern, we only need to define one type
constraint for multiple parameters with similar constraints,
not each parameter.

Constraint 2 on Auction Service example is a typical
Type Constraint: there are multiple “float” parameters
representing the price of different articles and all of them
have two fraction digits. So we define a type constraint “the
length of ‘fraction digits’ is two” on the type “Price” defined
in WSDL, which is just a “float” type.

This subpattern employs the same constraint facet
operators with the “SingleValueConstraint” pattern. The

only difference between them is: The former is applicable
for a group of parameters that is instance of the same type,
while the latter is applicable for a single parameter.

3.1.3 Inter Value Constraint

This pattern is used to specify value constraints that are
related to multiple parameters, which belong to different
types. They may belong to the same message, belong to
different messages of the same Web service, or even belong
to different Web services. The constraints may use different
computational operators: “Add,” “Subtract,” “Multiply,”
“Divide,” and “Mod.” Because the computation result is
still a value, all the constraint facets in Single Value
Constraint Pattern are applicable to this pattern.

For the considered Auction Service example, the value of
returned price in “opBidResponse” message should be equal
to the value of published price in “opBidRequest” message.

3.2 Event Constraint

Event constraints are usually temporal rules on occurrence
of messages. Many library APIs of a programming language
have implicit event constraints. For example, the Java
standard class library v1.3.1 contains 914 classes, out of
which at least 81 classes have method temporal constraints
[26]. So far, we have identified two subpatterns or this
constraint pattern: Time Constraint and Order Constraint.

3.2.1 Time Constraint

This pattern is used to specify the time aspects of one
message. Three further subpatterns have been derived so
far: 1) frequency constraint, which indicates the number of
times that a message can occur in certain duration;
2) interval constraint, which represents the duration of
time between two messages’ occurrence; and 3) response
time constraint, which refers to the duration of time
between the request message to a service and the
corresponding reply message. These three subpatterns are
quite common constraints in the Web service context.

Time constraints can be applied to messages of some
specific operation or messages of all operations. Such a
constraint could also be applied to the messages of all
operations, i.e., the interval between all operations should
be longer than one second. Constraint 3 on the Auction
Service example is about the request message of operation
“opBidRequest.”

3.2.2 Order Constraint

This pattern is used to describe the occurrence sequence of
some messages, such as the precondition, postcondition,
and other limitations. Constraint 4 on the Auction Service
example is a typical Order Constraint. Fig. 4 lists XML-
based formal specification for Constraint 4.

We identify four further subpatterns to this pattern:
“precede,” “lead to,” “last,” and “next.” Suppose that we
have two events A and B, then:

1. “A precedes B” means when B happens, then A
must have happened at least once before.

2. “A leads to B” means once A occurred, then before
the end of the whole event sequence, B must occur.

342 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 2, NO. 4, OCTOBER-DECEMBER 2009

Fig. 4. XML-based formal description of Constraint 4.

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 23,2010 at 23:00:07 EDT from IEEE Xplore. Restrictions apply.

3. “Last event of A is B” means that in the whole event
sequence, B is the immediate preceding event of A.

4. “Next event of A is B” means that in the whole event
sequence, B is the direct next event of A.

3.3 Pattern Extension

In this paper, the pattern-based approach is used to tackle

the incomplete description problem of Web service. One

benefit of the pattern-based approach is that it is easy to be

extended when a new constraint type is identified.
There are two ways to extend the pattern hierarchy:

horizontal and vertical. By horizontal extension, we mean

that when some new constraint types are discovered and

are not within the scope of the current pattern hierarchy, we

can add new patterns to the hierarchy. For example, we can

consider WS-Security, WS-Reliability as extensions at the

same level as Value Constraint and Event Constraint.
By vertical extension, we mean descriptions that belong

to some known patterns, but need some more specification.

The typical vertical extension examples are time scope and

parameter condition. According to [22], 10 percent of

constraints have scopes, which are the extent of the program

execution that the pattern must hold. There are four main

kinds of scopes: “before,” “after,” “between. . . and,” and

“after. . . until.” One example of scope is that “before event

C happens, event A precedes event B.” Parameter condi-

tions are used to filter some specific messages and set

constraints on these messages. Details about parameter

conditions can be found in [13].

4 MONITORING MODEL

When a system is in operation, various activities and events

happen to the system and its operating environment (e.g.,

request, response, method invocation, etc.), while the system

states also undergo frequent changes. For all events and

states relevant to a service to be monitored, we need to know

first which of them will affect the service behavior. To

understand these events and states systematically, we divide

them into different categories, using the Chinese Stone Mill1

model (“Mill model” for short). The model represents

graphically the different kinds of events that are constraint

sensitive, and thus, need to be monitored (see Fig. 5).
The Mill model has five parts as follows:

1. request message,
2. response message,
3. application (state and event),
4. resource (state), and
5. management operation.

Although these five parts are shown separately, they are

actually closely related to each other. For example, lacking

resource usually leads to bad response time; malicious

requests may lead to the failure of application; code defect

of memory leak may quickly exhaust available memory.

4.1 Request Message

Web services are request-driven software systems. Different
from traditional software that often provides service for
only one client, Web services usually provide services for
multiple clients, even up to thousands of clients at the same
time. Thus, the request messages from one client may have
effect on response messages to other clients. The number of
concurrent client connections and the frequency of client
requests also have effects on the response time to the clients.
Some application-dependent events such as invalid re-
quests and malicious request may also lead to low efficiency
or unavailability of service.

Monitoring of request message focuses on the invoked
method, parameter values, and client role. Service admin-
istrator can specify constraints on these factors, so as to
verify whether the request message is acceptable.

For example, in the Auction Service, Constraint 4 is about
request messages: For each bid session, all “opBidRequest”
messages can only happen after the “opLoginRequest”
message.

4.2 Response Message

Request message and response message are the two most
important events to be monitored in the proposed frame-
work. Events related to response messages are usually used
to evaluate different attributes of service quality. There has
been much research into attributes of service quality, from
the viewpoint of service selection, composition, and
management. This paper separates the attributes of service
quality into two classes: basic quality attributes and high-
level quality attributes.

Basic service quality attributes are those that can be
monitored directly by sniffing response messages. They are
also attributes from the client’s viewpoint. In other words, a
client can “feel” these attributes directly. Availability,
correctness, and efficiency are all typical basic service
quality attributes.

Availability. Can a client receive the service result,
regardless of its correctness? This attribute is application
independent and is usually easy to monitor.

Correctness. Can a client receive the correct service
result? This attribute relies on the return values in the
response message. This attribute is application specific and
may include parameter value error, system-level exception,
or application-level exception.

Efficiency. Can a client receive the service result under
some constraints, such as within limited time period and
expected precision? A typical constraint is the response time

WANG ET AL.: AN ONLINE MONITORING APPROACH FOR WEB SERVICE REQUIREMENTS 343

Fig. 5. The Mill model for Web service monitoring, which captures the

main factors that should be monitored.

1. Chinese stone mill is a kind of mill that has two stone pies with the
same vertical axis and one handle that drive the upper stone. When we
classify the factors to be monitored, we have a model that has a similar
shape to the stone mill.

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 23,2010 at 23:00:07 EDT from IEEE Xplore. Restrictions apply.

concerning the time interval between the request and
response messages. Many research efforts into Web service
QoS focus on this issue, e.g., [27], [28]. In the Auction Service
example, Constraint 2 involves response messages: the value
of bid price in “opBidResponse” must be greater than zero.

4.3 Application

Application here means internal events and states of the
service. In fact, application itself has the most important
effect on service behavior. For example, wrong business
logic, deadlock, data race, and inconsistent data are all
typical reasons that may bring the service into an error
state, or even breakdown of the service. Application-related
events occur inside the service such as method executions
and changing of variable values. Some applications have in
themselves some instrumented code that is designed to
raise some important events. Some applications may
provide reflective interfaces that can be used to expose
some important internal states such as the number of EJB
instances. If the application itself doesn’t provide such
capabilities, monitoring these events relies totally on the
system software. Monitoring on this part of Web services
has been well explored by traditional monitoring mechan-
isms [6], [7]. So this paper doesn’t explain how to monitor
these internal events and states.

4.4 Resource

The execution of application depends highly on low-level
resources, e.g., CPU, memory, and file system. The states of
those resources, thus, affect the service behavior, especially
the performance of the service.

Some typical factors relating to resource state include
CPU usage, memory usage, and the number of opened files.
There are also some other resource states beyond the
operating system. For example, the network bandwidth is a
special resource for service provision and the liveliness of a
computing node is a more general changing state that
affects service availability.

Constraints on these resources are usually specified in
the implementation phase and seldom stated directly in
service requirements. End users care little about these
constraints as well. But they are very important for service
providers, so as to ensure the quality of service while
consuming the least resources.

Monitoring of such resource-related states depends
strongly on APIs that the operating system provides. Many
traditional technologies, e.g., fault tolerance and load
balancing, have explored this issue very well. As such, we
will not further discuss it in this paper either.

4.5 Management Operation

Many Web services provide a management interface for
administrator, in addition to the interface for end users. The
management interface is used to control the services:
reconfiguration, component updating, resource adjusting,
message blocking, and so on. These operations are issued
by the service administrator and need to be monitored as
well, so as to assess whether those operations are correct
and effective. For example, some critical adjusting opera-
tions can only be issued if there is no active session, in order
to keep the service in a safe state. In this area, OASIS has

published the Web Services Distributed Management
(WSDM) to enhance the management of Web services [29].

Although the interfaces for administrators have quite
different functions from the interfaces for end users, the
monitoring mechanisms for them are quite similar: Both of
them are message-based and rely on the implementation of
the Web service platform. We can consequently use similar
mechanism to monitor events and states.

5 MONITORING FRAMEWORK

While the monitoring model aims to answer the question of
“what should be monitored,” the monitoring framework
tries to answer the question of “how to monitor?” We can
divide this question further into a series of subquestions:
“What are useful low-level mechanisms for online Web
service monitoring?” “How to analyze the monitored
events?” Despite the fact that the runtime environments
that the monitoring framework depends on are different,
we aim to provide a generic framework to realize the
common capabilities.

Our monitoring framework is composed of distributed
probes, an agent, a central analyzer, and a management
center. Fig. 6 shows the relationship between main
components of the proposed framework and the service
under monitoring.

5.1 Probe

As the key component of the monitoring framework, probe
extracts events from the target system. Different mechan-
isms are available to implement probes. Generally, these
mechanisms can be classified along two dimensions:
instrumentation-based versus interceptor-based and in-
line-based versus outline-based [6], [33].

Instrumentation is the most widely used monitoring
mechanism. It is also widely used in program testing. In this
approach, the monitoring code is embedded inside the
target code. Traditionally, the instrumentation code is
inserted manually by the programmers. The most impor-
tant feature of the instrumentation approach is that: the
code can be inserted freely into any location of the
monitored code. Another reason for using instrumentation
is that it does not need support from the platform. In recent
years, some new instrumentation mechanisms (such as
Javaassit and AspectJ) are developed, in order to instrument
code automatically according to configuration information.

Interceptors are widely used in Web services implemen-
tation. Interceptor can obtain details of the messages to and
from the monitored service, and thus, can be used naturally
as probes. Interceptors in CORBA, Handlers in AXIS, and
JVMTIs in JVM are all well-known interceptors that can do
some processing to messages. The most important feature of
interceptors is that it is independent of the target system
both at coding time and runtime.

Besides the difference in ways of event extraction, probes
are also different in analysis capability. Many probes just
capture the event and send it to the central analyzer.
However, some probes can do some basic analysis,
especially for those constraints that are easy to be checked,
e.g., parameter value, response time. For those probes that
have analysis ability, it needn’t forward the extracted

344 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 2, NO. 4, OCTOBER-DECEMBER 2009

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 23,2010 at 23:00:07 EDT from IEEE Xplore. Restrictions apply.

information to the central analyzer. The proposed frame-
work can support the following four kinds of probes (see
Fig. 6):

1. instrumented probe with analysis,
2. instrumented probe without analysis,
3. intercepting probe with analysis, and
4. intercepting probe without analysis.

Probes are generated from the information contained in
the service constraint description. This information iden-
tifies the events to be monitored, the verification logic for
the constraint, and the ways of deviation reporting.
Different probing mechanisms are chosen according to
the constraint patterns. For example, inline instrumented
probe is generated for constraints of value pattern by
default and outline interceptor probe is generated for event
pattern constraints by default.

5.2 Agent

While probes observe events in application passively, an
agent acts as an active events collector. As discussed in
Section 5.1, probes run in the same process as the
application. As another mechanism to extract events from
Web services, an agent is deployed independent of the
specific application and runs in its own process. It collects
events by calling APIs of resource or application periodi-
cally and proactively. Examples of such APIs include
Windows Management Instrumentation (WMI), Java Man-
agement Extensions (JMXs), and so on.

This mechanism is called agent because it is independent
of the application and can invoke APIs automatically. It
always sends the processed information rather than raw
event to the central analyzer. It is responsible for certain
calculation, e.g., average CPU usage ratio and memory
usage ratio in the past 10 minutes.

5.3 Central Analyzer

The central analyzer is used to process different kinds of

monitored events. The analysis result can present the

service quality at a higher level, and can be used directly

in further actions such as adaptation or reconfiguration.
The basic analysis approach is to validate the monitored

events against a prespecified constraint. The central

analyzer can be responsible for the following tasks:

1. Constraint violation detection. Parameter values that
are out of range, wrong message order, overloading,
and too long response time are all constraint
violations and can be detected by online comparison.

2. Problem determination. This function is used to
identify the reason of service behavior deviation. It is
very important for deciding what to do next, so as to
guarantee the service quality. Typical reasons
include deficient memory and malicious clients.
According to the analysis result, the central analyzer
will offer some suggestions to the administrator.

5.4 Management Center

From the management center, administrators of Web

service can be aware of its states through human-friendly

management interface and perform potential actions to

keep the behaviors of service consistent with requirement.

The framework provides a visual presentation of Web

service states, based on the analysis result, including a list

of violated constraints, why and where the violation

occurred, and even some potential solutions.

5.5 Framework Implementation

As a preliminary prototype, the implementation of our

framework is based on Java and used to monitor Web

services developed in Java-based platform. The prototype

WANG ET AL.: AN ONLINE MONITORING APPROACH FOR WEB SERVICE REQUIREMENTS 345

Fig. 6. Relationships among the main components of the monitoring framework and the Web service under monitoring. The elements with darker

borderline are main components of the monitoring framework.

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 23,2010 at 23:00:07 EDT from IEEE Xplore. Restrictions apply.

includes the following parts: constraint specification editor,
monitoring code generator, monitoring code deployment
manager, agent, central analyzer, and management center,
as shown in Fig. 7.

The constraint specification editor helps the user to
specify constraints by providing a graphical user interface,
which can reduce possible errors caused by manually
editing an XML file. This editor supports the tabular and
graphical specification modes for value and temporal
constraints, respectively, and produces the XML-based
constraint specification file. In Section 2, Figs. 3 and 4 list
such XML-based constraint specifications for Constraints 1
and 4. The structural information (such as port type and
operation signature) about the service to be monitored is
first extracted from its WSDL file. Based on this informa-
tion, the user can then construct the constraint description
via the graphical interface. The constraint specification is
implemented using Eclipse Modeling Framework (EMF).
The snapshot of editor tool is illustrated in Fig. 8.

The monitoring code generator receives as input the
XML-based constraint specification file from the constraint
specification editor. As shown in Fig. 3, the constraint
description file contains information indicating the location

of probe (the “context” node), constraint type (the “cate-
gory” node), and verification logic (the “content” node).
The generator then generates the monitoring code, includ-
ing the probes and the verification unit. The deployment
manager takes charge of their deployment.

Appropriate probe type is chosen according to the
constraint type by default. In general, inline instrumenta-
tion probe is generated for value constraint and outline
interceptor probe is generated for temporal constraint. But
this correspondence between constraint types and probe
types can also be changed in the constraint specification file.
In the prototype, we employ AspectJ [34] as our instru-
mentation mechanism. An autogenerated probe is added to
the original Web service via an aspect in which the join
point is defined as the operation under monitoring. Thus, a
probe can be instrumented into the system by either
compile-time weaving or load-time weaving.

Intercepting probe needs the support from the execution
platform of the Web service. In our prototype, we use
Apache Axis2 as the supporting Web service platform.
Handlers in Axis support the implementation of intercep-
tors. A handler can intercept the SOAP request and
response messages.

Agent is implemented as an independent module in the
framework. It obtains state information of the application
and resources by calling the relevant reflective APIs, such as
the Windows Management Instrumentation, Java Manage-
ment Extension, or Java Virtual Machine Tool Interface. The
concerned data are collected and transferred to the central
analyzer according to the policy set in the agent.

The central analyzer is implemented in Java as an
independent application, which can be run on the same or
a separate host as the Web service. The central analyzer
includes the verification unit and the analysis unit. The
central analyzer loads the generated verification unit
dynamically. The verification unit maintains one finite state
automaton for each temporal constraint, which accepts event
of interest from probes and then changes the state. When
reaching an error state, a constraint violation occurs and is
reported. The analysis unit receives information from the
agent, verifies it, and sends the analysis result to the
administrator.

346 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 2, NO. 4, OCTOBER-DECEMBER 2009

Fig. 7. Architecture of the monitoring framework, including the components used at the monitor development phase.

Fig. 8. A snapshot of the constraint specification editor.

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 23,2010 at 23:00:07 EDT from IEEE Xplore. Restrictions apply.

We use Java RMI to implement the communications
between the probes and the central analyzer, agent and the
central analyzer.

All the verification and analysis results are then sent to the
management center for presentation to the administrator.

6 HOW TO USE THE FRAMEWORK

In order to use the proposed approach, there are four main
steps to take:

1. acquire service constraints,
2. select suitable probe mechanisms,
3. instantiate the monitoring system, and
4. monitor the service.

6.1 Acquire Service Constraints

The key to instantiating the monitoring model is to acquire
the service constraints. Service constraints are additional
description to the service’s functional description. The most
effective analysis results, no matter from probes or from the
central analyzer, are obtained by comparing the monitored
events against the prespecified constraints. The constraints
can be described formally using the constraint description
language. Such descriptions are used to generate automa-
tically the corresponding probe code or rules in the central
analyzer automatically. The constraint specification editor is
used to assist the developer to specify the constraints.

6.2 Select Suitable Probe Mechanisms

For application-independent resource monitoring, the best
way to extract information is by agent. Agent is also suitable
for extracting events and states from applications if the Web
service platform provides the relevant APIs. Application-
related events can also be acquired through instrumenta-
tion. If the application is developed with components like
EJBs, interceptor can also be used to extract messaging
between different components of the application.

All other three kinds of events (request, response, and
management) are message based. Probes can be implemen-
ted using the instrumentation or interceptor mechanism. The
selection of one mechanism over the other depends on many
factors. The following factors are of particular importance:

1. Which kind of platform does the service run on?
Different platforms have different ability to support a
particulate probe mechanism, and only some certain
platforms support the interceptor mechanism.

2. Is the service source code accessible? Instrumenta-
tion requires the availability of the application
source code, while interceptor does not.

3. To what degree can the service endure the intrusion?
Different monitoring mechanisms bring about dif-
ferent degrees of intrusiveness to the target. Instru-
mentation probes suffer more from this perspective.
When there are multiple monitoring probes inside a
module, the matter becomes more complex. The
scattered monitoring code makes the module diffi-
cult to understand.

4. Is the loss of performance acceptable? All software
monitoring mechanisms lead to negative impact on
system performance, while instrumentation has the

least performance cost (see Section 7 for the detailed
cost evaluation).

All the monitoring codes, including probes and verifica-

tion units in the central analyzer, can be generated

automatically from the XML-based constraint specification

file written in WSCDL. For Constraint 1 on the Auction

Service example, an inline instrumentation probe can be

generated in the form of an AspectJ aspect and the

verification code is encapsulated in a separate validating

class. The generated code segments are shown in Fig. 9.

6.3 Instantiate the Monitoring System

The monitoring framework constitutes the main part of the

monitoring system. However, it alone does not form the

entire monitoring system. To complete the monitoring

system, we need to deploy the probe code into the service

and load the verification unit into the central analyzer.
The deployment process for the probe code is strongly

dependent on the deployment time. The typical life cycle

phases for deployment includes: coding, compiling, loading,

WANG ET AL.: AN ONLINE MONITORING APPROACH FOR WEB SERVICE REQUIREMENTS 347

Fig. 9. Automatically generated monitoring code from Constraint 1.

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 23,2010 at 23:00:07 EDT from IEEE Xplore. Restrictions apply.

and runtime. Both the instrumentation and interceptor
mechanisms can be deployed at either of these phases.

At the coding time, the probe source code can be added
to the service easily. The disadvantage of coding time
deployment is that the probe code may make service
difficult to understand, thus, difficult to maintain.

In our approach, a probe can be added to the monitored
service by compile-time weaving and load-time weaving.
At compile time, the probe source code can be weaved to
the service automatically. At load time, the probe code and
the service are integrated when the system is being loaded
into main memory. Both of them involve code manipulation
in binary or intermediate form.

6.4 Monitor the Service

Once all the monitoring codes are deployed successfully,
the monitoring framework begins to monitor the service
against the specified constraints. The central analyzer
begins to process and analyze the monitored events, and
the results are presented to the administrator via the
management center.

For value constraints, the verifications are performed in
the probes every time the probes receive the value, and any
violation is reported to the central analyzer. For temporal
constraints, the verification is performed outline in the
central analyzer, where the loaded verification unit main-
tains a finite state automaton for each temporal constraint.
The automation accepts events of interest from the probes
and advances its state. When an error state is reached, a
constraint violation is detected and reported.

7 EVALUATION AND DISCUSSION

To assess the effectiveness and impact of the proposed
approach and framework, we carried out some experiments
in association with the motivating Auction Service example
system. The goal of these experiments is to evaluate how
the monitoring system impacts on the target service,
especially its end users. In particular, we have strong
interest in the following two issues: Whether the impact is
affordable? And what is the better probe mechanism for a
specific event or constraint in a specific situation? Since
performance monitoring has been studied widely and is not
our focus, we do not show experiments on CPU and
memory utilization that are monitored by the Agent.

7.1 Evaluation

We implemented the prototype framework and the Auction
Service example in the following environment: the hard-
ware configuration is an Intel Pentium4 3.0 GB with 512 MB
main memory; the software configuration is Windows
XP+SP2, with JDK1.5 and Eclipse þ WTP (Web Tools
Platform, a plug-in used for quick Web Service develop-
ment, integrated with Axis2). It should be noted that in the
experiments, all the clients, Web service, and the analyzer
run on the same host. These experiments are carried out in a
simulated environment in laboratory.

The experiments were conducted on the same example
given in Section 2. Each auction activity is initialized by a
seller’s requesting an auction. Only the successfully regis-
tered bidders can log in to the system and make bids on any

item published in the auction system. Each auction activity

lasts for a certain period of time. During that time, bidders

can query the current highest price. When the activities end,

the auction service should notify all the bidders and the

seller about the final bidding result of the item. If the

auction ends successfully, there must be one bidder that

likes to buy the item at a price higher than the owner’s

reserve price.
For this example, we have focused on message-related

events discussed in Section 4.1. Those events can be used to

validate two types of constraints: value constraint and order

constraint. Probes are deployed to collect those events and

they are checked against the constraints.
For Constraint 1 on Auction Service, we monitor the

“opRegisterRequest” message to the Auction Service. Each

probe is responsible for getting the values of four para-

meters of this method (socialNumber, creditCardNum,

userName, and password). These values are compared

with the prespecified value constraint. We calculate the

time cost (from the time that request messages were sent, to

the time that response messages were obtained) for the

following five cases:

1. Original function without probe (“No Probe” in
Fig. 10).

2. A probe with analysis ability is instrumented into
the function body (“Instrumented”).

3. A probe without analysis ability is instrumented into
the function body and the central analyzer is used to
check the value (“Instrumented+”).

4. A probe with analysis ability is encapsulated in an
interceptor (“Interceptor”).

5. A probe without analysis ability is encapsulated in
an interceptor and the central analyzer is used for
analysis (“Interceptor+”).

For each case above, we simulate the message for 100

times and calculate the average time cost to get more

reliable results.
The experiment results are shown in Fig. 10. It is easy to

see that in general, the cost of the monitoring system is

affordable: all monitoring costs are in the range of

milliseconds. Compared with the normal function execu-

tion, which costs several hundred milliseconds, this cost is

very low. Even for the probe of “Interceptor+” class, the

348 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 2, NO. 4, OCTOBER-DECEMBER 2009

Fig. 10. The average time cost of “opRegisterRequest” messages.

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 23,2010 at 23:00:07 EDT from IEEE Xplore. Restrictions apply.

cost is only 4.477 ms, which is about 0.83 percent of the “No
Probe” execution time.

For Constraint 4 on Auction Services, we monitor the
opLoginRequest message and opBidRequest message. The
correct request sequence is opLoginRequest and opBidRe-
quest. Other sequences will lead to a constraint violation.
The five cases are the same as in the value constraint
experiment. For each case, we simulate the message
sequence for 100 times and calculate the average results.
The experiment results are shown in Fig. 11. The result is
similar with Fig. 10, except that all the times are about 1/7
to 1/6 of those in Fig. 11. That is because that “opRegister”
operation, which is inside the application, needs to access
more data in DBMS, may consume much time.

From these two groups of experiment results, we also
observe that the time cost of instrumented probes is the
lowest: it is less than one millisecond in our experiments. The
time cost for the interceptor-based probes is a little higher
than instrumented probes. But note that this kind of probe is
independent of service implementation, and thus, is much
flexible than instrumented probes. For a monitoring system
that has better maintainability, it is still a good candidate.

Another obvious observation we can make is that outline
monitoring mechanisms have a higher cost than inline ones.
This reflects the additional message passing cost between
the probes and the central analyzer.

7.2 Discussions

Expressiveness and extensibility. Our Web service con-
straint specification language, WSCDL, supports not only
the temporal patterns in the Specification Pattern System
[26], but also value constraints on the parameters of service
interaction messages. By adding the time patterns, the
language can also express certain real-time constraints such
as Constraint 3 in Section 2.

We note that our pattern-based constraint specification
language is extensible. As they are discovered and for-
mulated, patterns concerning other aspects of services can
be added to the language, such as security and reliability.

Completeness. By analyzing systematically the issues
concerning service monitoring, our monitoring model
identifies and classifies the factors (events, states, and
messages) that need to be monitored, thereby providing a
reference model for designing (custom) monitoring systems.

By including instrumentation, interception, and agent-
based probe design techniques, our monitoring framework

gains more flexibility and general applicability. Instrumen-
tation, interception, and/or agent-based probing mechan-
isms can be adopted depending on the implementation
language and platform of Web services.

Generality. Our prototype implementation of the mon-
itoring framework is based on Java, and is used to monitor
Web services developed in Java and deployed in the
Apache Axis2 Web service platform. However, this frame-
work is not restricted to only this implementation. It
provides a generic way of implementing Web service
monitoring, which is independent of the platform and
operating environment. Practitioners can implement their
own monitoring tools in their particular environments by
referring to this framework.

8 RELATED WORK

Software monitoring has been explored for a long time in
various fields, such as performance evaluation and en-
hancement, fault tolerance, and autonomic computing [6],
[9], [30], [31]. Based on these efforts, Delgado et al. [7]
proposed a taxonomy and catalog for runtime monitoring
based on a comprehensive survey of the area, which
analyzed and summarized research concerned with mon-
itoring of traditional software. The specific characteristics of
Web service that differs a lot from traditional software (such
as dynamism and loose coupling) have posed additional
issues for investigation when implementing Web service
monitoring. While some work [36] focuses on monitoring of
nonfunctional requirements, our work together with [8],
[10], [11], [12], [13], and [35] focuses on monitoring of
functional requirements. As followed, our work is com-
pared with these works in three aspects.

8.1 Constraint Specification

There have been different ways of specifying constraints.
An early effort in the domain of monitoring Web service
requirements is the research conducted by Robinson [8] in
which requirements are expressed using KAOS. But KAOS
only presents a high-level goal-oriented software require-
ment, which cannot provide enough information needed for
monitoring. Thus, the transformation from specification to
code needed human involvement.

Mahbub and Spanoudakis [10] use event calculus to
specify behavioral properties and assumptions that are to
be monitored. The event logs recorded during the execution
of a service-based system were then checked against the
specifications. However, event calculus is not very intuitive
for software developers to use, which impeded the
adoption of this approach.

Based on Dwyer’s Property Specification Pattern System,
Li et al. [13] and [35] proposed their approaches for
specifying constraints, respectively. While Li et al. [13]
provide a way to specify interaction constraints in associa-
tion with the service interface definition using the OWL-S
framework, [35] identifies a subset of UML 2.0 Sequence
Diagram as a property specification language. Comparing
to their work, we are not only able to specify service
interaction constraints, but also able to specify value
constraints about message parameters, which has made
the constraint specification more complete.

WANG ET AL.: AN ONLINE MONITORING APPROACH FOR WEB SERVICE REQUIREMENTS 349

Fig. 11. The average time cost of “opLoginRequest” and “opBidRequest”

messages.

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 23,2010 at 23:00:07 EDT from IEEE Xplore. Restrictions apply.

8.2 Monitoring Target

There have been a number of frameworks focusing the
monitoring of service compositions in BPEL [10], [11], [12].
Mahbub and Spanoudakis [10] have introduced five
different types of system behavior deviations from require-
ments. The event stream is obtained from the BPEL engine,
instead of services. Another BPEL-oriented framework [11]
emphasizes the ability of self-healing. It instruments the
original BPEL specification to allow execution of the
required rules. The instrumentation feeds the monitoring
manager, a proxy service that is responsible for under-
standing the Web service. Barbon et al. [12] proposed an
architecture that separates the business logic of a Web
service from its monitoring functionality, and supports both
“instance monitors” and “class monitors.”

Comparing with these works, our work focuses on the
monitoring of individual Web services, including the client
and operating environment. However, it has the ability to
extend to service composition monitoring by treating
service compositions as an application.

The authors of [13] of proposed a Web service monitor-
ing framework. This framework focuses on the monitoring
of service interaction protocols. The proposed framework in
this paper covers more events inside the implementation of
Web services, such as resource state changes, and messages
among the components of application.

8.3 Interleaving Manner

Another aspect to be discussed is how the monitoring code
interleaves with the original service. Many approaches aim
to achieve nonintrusiveness in their monitoring frameworks
[10], [11]. But they usually need the support from the
underlying platform. Our framework accommodates both
intercepting probes (when there is platform support) and
instrumentation probes (when there is no platform support
for interceptors).

9 CONCLUSION AND FUTURE WORK

This paper has introduced an online monitoring approach
for Web service requirements. It is capable of extracting
relevant information about a Web service and its operating
environment, and providing support for checking the
service behavior against its requirements (in the form of
constraints). The proposed approach begins with the
pattern-based constraint specification in a new language,
WSCDL. The language supports the specification of value
and event constraints. The proposed monitoring model
covers a wide range of system events and states, and
systematically identifies the locations for deploying moni-
tors. The monitoring framework is able to use the formally
specified constraints to generate automatically monitoring
code. A process guide for how to use the proposed
framework is also introduced. Based on a prototype
implementation of the framework and a case study, we
have conducted a series of experiments to assess effective-
ness and impact of our approach. The experiment results
have shown that our approach is effective and flexible, and
the efficiency and monitoring cost are affordable.

Monitoring systems are usually static. That means, once
a monitoring system is deployed, it will not change, and

has the same life cycle as the target system. In the

proposed framework, the deployed probe can be managed

(add, remove, update) online, with the help of online

evolution capabilities.
As mentioned in Section 1, monitoring is only the first

step for quality assurance. Our ongoing work includes:

1) enhancing the analysis ability of the framework; 2) mining

request patterns from the execution of Web service, new

constraints from administration operations; and 3) extend-

ing our work in online updating [32] to include other online

quality assurance capabilities such as online tuning and

online migration.

ACKNOWLEDGMENTS

This work was supported in part by grants from the

National High-Tech Research and Development Plan of

China (No. 2006AA01Z175), the National Grand Funda-

mental Research Program of China (No. 2005CB321805),

the National Natural Science Foundation of China

(No. 60773160), the Key National Science Foundation of

China (No. 90412011), and the Australian Research Council

(No. LP0775188). Y. Liu and M. Li were with the Institute of

Software, School of Electronics Engineering and Computer

Science, Peking University, Beijing, China, 100871. H. Mei is

the corresponding author.

REFERENCES

[1] C.S. Langdon, “The State of Web Services,” Computer, vol. 36,
no. 7, pp. 93-94, July 2003.

[2] S. Degwekar, S.Y.W. Su, and H. Lam, “Constraint Specification
and Processing in Web Services Publication and Discovery,” Proc.
Second IEEE Int’l Conf. Web Services (ICWS ’04), pp. 210-217, 2004.

[3] J.O. Kephart and D.M. Chess, “The Vision of Autonomic
Computing,” Computer, vol. 36, no. 1, pp. 41-50, Jan. 2003.

[4] P. Oreizy, M.M. Gorlick, R.N. Taylor, D. Heimbigner, G. Johnson,
N. Medvidovic, A. Quilici, D.S. Rosenblum, and A.L. Wolf, “An
Architecture-Based Approach to Self-Adaptive Software,” IEEE
Intelligent Systems, vol. 14, no. 3, pp. 54-62, May/June 1999.

[5] J. Kramer and J. Magee, “Self-Managed Systems: An Architectural
Challenge,” Proc. Conf. Future of Software Eng. (FOSE ’07), pp. 259-
268, 2007.

[6] B.A. Schroeder, “On-Line Monitoring: A Tutorial,” Computer,
vol. 28, no. 6, pp. 72-78, June 1995.

[7] N. Delgado, A.Q. Gates, and S. Roach, “A Taxonomy and Catalog
of Runtime Software-Fault Monitoring Tools,” IEEE Trans. Soft-
ware Eng., vol. 30, no. 12, pp. 859-872, Dec. 2004.

[8] W.N. Robinson, “Monitoring Web Service Requirements,” Proc.
11th IEEE Int’l Conf. Requirements Eng. (RE ’03), pp. 65-65, 2003.

[9] S. Fickas and M.S. Feather, “Requirements Monitoring in Dynamic
Environments,” Proc. Second IEEE Int’l Symp. Requirements Eng.,
pp. 140-147, 1995.

[10] K. Mahbub and G. Spanoudakis, “Run-Time Monitoring of
Requirements for Systems Composed of Web-Services: Initial
Implementation and Evaluation Experience,” Proc. Third IEEE Int’l
Conf. Web Services (ICWS ’05), pp. 257-265, 2005.

[11] L. Baresi and S. Guinea, “Towards Dynamic Monitoring of Ws-
Bpel Processes,” Proc. Third Int’l Conf. Service-Oriented Computing
(ICSOC ’05), 2005.

[12] F. Barbon, P. Traverso, M. Pistore, and M. Trainotti, “Run-Time
Monitoring of Instances and Classes of Web Service Composi-
tions,” Proc. Fourth IEEE Int’l Conf. Web Services (ICWS ’06), pp. 63-
71, 2006.

[13] Z. Li, Y. Jin, and J. Han, “A Runtime Monitoring and Validation
Framework for Web Service Interactions,” Proc. 17th Australian
Software Eng. Conf. (ASWEC ’06), pp. 70-79, 2006.

[14] B.W. Boehm, Characteristics of Software Quality. North-Holland,
1978.

350 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 2, NO. 4, OCTOBER-DECEMBER 2009

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 23,2010 at 23:00:07 EDT from IEEE Xplore. Restrictions apply.

[15] M. Shaw, “Truth vs. Knowledge: The Difference between What a
Component Does and What We Know It Does,” Proc. Eighth Int’l
Workshop Software Specification and Design, pp. 181-185, 1996.

[16] D. Geer, “Taking Steps to Secure Web Services,” Computer, vol. 36,
no. 10, pp. 14-16, Oct. 2003.

[17] S. Ran, “A Model for Web Services Discovery with Qos,” ACM
SIGecom Exchanges, vol. 4, no. 1, pp. 1-10, 2003.

[18] V. Tosic, B. Pagurek, and K. Patel, “WSOL—a Language for the
Formal Specification of Classes of Service for Web Services,” Proc.
First Int’l Conf. Web Services (ICWS ’03), pp. 23-26, 2003.

[19] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995.

[20] M. Fowler, Analysis Patterns: Reusable Object Models. Addison-
Wesley Professional, 1997.

[21] S. Konrad and B.H.C. Cheng, “Real-Time Specification Patterns,”
Proc. 27th Int’l Conf. Software Eng., pp. 372-381, 2005.

[22] M.B. Dwyer, G.S. Avrunin, and J.C. Corbett, “Patterns in Property
Specifications for Finite-State Verification,” Proc. 21st Int’l Conf.
Software Eng. (ICSE ’99), pp. 411-420, 1999.

[23] W3C, Resource Description Framework (RDF), http://www.w3.org/
RDF/, 2004.

[24] Q. Wang, M. Li, N. Meng, Y. Liu, and H. Mei, “A Pattern-Based
Constraint Description Approach for Web Services,” Proc. Seventh
Int’l Conf. Quality Software (QSIC ’07), pp. 60-69, 2007.

[25] D. Peterson, S. Gao, A. Malhotra, C.M. Sperberg-McQueen, and
H.S. Thompson, W3c XML Schema Definition Language (XSD) 1.1
Part 2: Datatypes, World Wide Web Consortium (W3C) recom-
mendation, http://www.w3.org/TR/xmlschema11-2/, June 2008.

[26] J. Whaley, M.C. Martin, and M.S. Lam, “Automatic Extraction of
Object-Oriented Component Interfaces,” ACM SIGSOFT Software
Eng. Notes, vol. 27, no. 4, pp. 218-228, 2002.

[27] L. Taher, R. Basha, and H. El Khatib, “QoS Information &
Computation (QoS-IC) Framework for QoS-Based Discovery of
Web Services,” Standardization for ICT Security, vol. 6, no. 3, 2005.

[28] A. Mani and A. Nagarajan, “Understanding Quality of Service for
Web Services,” http://www.ibm.com/developerworks/library/
ws-quality.html, 2002.

[29] Oasis Web Services Distributed Management (WSDM) TC, OASIS,
http://www.oasis-open.org/committees/tc_home.php?wg_
abbrev=wsdm, 2006.

[30] D.K. Peters and D.L. Parnas, “Requirements-Based Monitors for
Real-Time Systems,” IEEE Trans. Software Eng., vol. 28, no. 2,
pp. 146-158, Feb. 2002.

[31] M.S. Feather, S. Fickas, A.V. Lamsweerde, and C. Ponsard,
“Reconciling System Requirements and Runtime Behavior,” Proc.
Ninth Int’l Workshop Software Specification and Design, p. 50, 1998.

[32] Q. Wang, J. Shen, X. Wang, and H. Mei, “A Component-Based
Approach to Online Software Evolution,” J. Software Maintenance
and Evolution: Research and Practice, vol. 18, no. 3, pp. 181-205, 2006.

[33] F. Chen and G. Rosu, “Towards Monitoring-Oriented Program-
ming: A Paradigm Combining Specification and Implementation,”
Electronic Notes in Theoretical Computer Science, vol. 89, no. 2,
pp. 108-127, 2003.

[34] G. Kiczales and E. Hilsdale, Aspect-Oriented Programming. Spring-
er, 2003.

[35] J. Simmonds, M. Chechik, S. Nejati, E. Litani, and B. O’Farrell,
“Property Patterns for Runtime Monitoring of Web Service
Conversations,” Proc. Eighth Workshop Runtime Verification, 2008.

[36] L. Fei, Y. Fangchun, S. Kai, and S. Sen, “A Policy-Driven
Distributed Framework for Monitoring Quality of Web Services,”
Proc. Sixth Int’l Conf. Web Services (ICWS ’08), pp. 708-715, 2008.

Qianxiang Wang received the PhD degree from
the Northwestern Polytechnic University, China,
in 1997. He is currently a professor in the School
of Electronics Engineering and Computer
Science at Peking University. His research
interests include software monitoring, program
analysis, and middleware. He has published
more than 50 papers. He is a member of the
IEEE and the IEEE Computer Society.

Jin Shao received the BSc degree from North-
eastern University, China, in 2007. She is
currently working toward the PhD degree in
computer science in the School of Electronics
Engineering and Computer Science at Peking
University. Her research interests include soft-
ware monitoring and middleware.

Fang Deng received the BSc degree from
Peking University, China, in 2007. She is
currently working toward the master’s degree
in computer science in the School of Electronics
Engineering and Computer Science at Peking
University. Her research interests include soft-
ware monitoring and middleware.

Yonggang Liu received the BSc degree from
the Beijing Information Technology Institute in
2003 and the master’s degree from Peking
University in 2008. He is now with the Netease
Corporation, Beijing, China.

Min Li received the BSc degree from the Civil
Aviation University of China in 2004 and the
master’s degree from Peking University in 2008.
She is now with the China Life Insurance
Company, Beijing, China.

Jun Han received the PhD degree from the
University of Queensland, Australia, in 2002. He
is currently a professor of software engineering
at the Swinburne University of Technology,
Australia. His research interests include services
engineering, software architecture, and adaptive
software systems. He has published more than
120 peer-reviewed articles. He is a member of
the IEEE and the IEEE Computer Society.

Hong Mei received the PhD degree from the
Shanghai Jiaotong University, China, in 1992.
He is currently a professor in the School of
Electronics Engineering and Computer Science
at Peking University. His research interests
include software engineering, software reuse,
and programming languages. He has published
more than 180 papers. He is a senior member of
the IEEE and the IEEE Computer Society.

WANG ET AL.: AN ONLINE MONITORING APPROACH FOR WEB SERVICE REQUIREMENTS 351

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 23,2010 at 23:00:07 EDT from IEEE Xplore. Restrictions apply.

