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ABSTRACT
The galaxy pairwise velocity dispersion (PVD) can provide important tests of non-standard
gravity and galaxy formation models. We describe measurements of the PVD of galaxies
in the Galaxy and Mass Assembly (GAMA) survey as a function of projected separation
and galaxy luminosity. Due to the faint magnitude limit (r < 19.8) and highly complete
spectroscopic sampling of the GAMA survey, we are able to reliably measure the PVD
to smaller scales (r⊥ = 0.01 h−1 Mpc) than previous work. The measured PVD at projected
separations r⊥ � 1 h−1 Mpc increases near monotonically with increasing luminosity from
σ12 ≈ 200 km s−1 at Mr = −17 mag to σ12 ≈ 600 km s−1 at Mr ≈ −22 mag. Analysis of the
Gonzalez-Perez et al. (2014) GALFORM semi-analytic model yields no such trend of PVD with
luminosity: the model overpredicts the PVD for faint galaxies. This is most likely a result of
the model placing too many low-luminosity galaxies in massive haloes.

Key words: galaxies: kinematics and dynamics – galaxies: statistics.

1 IN T RO D U C T I O N

The pairwise velocity dispersion (PVD, σ 12), the dispersion in rel-
ative peculiar velocity of galaxy pairs, has an illustrious history in
observational cosmology. It was first measured in 1973 by Geller &
Peebles (1973), and soon became popular as a way of estimating the
mean mass density of the Universe, �m, via the cosmic virial theo-
rem or cosmic energy equation (e.g. Peebles 1976a,b, 1979; Bean
et al. 1983; Davis & Peebles 1983; Bartlett & Blanchard 1996). In
fact, these measurements provided perhaps the first evidence that
we live in a Universe which has a sub-critical mass density, �m < 1.

� E-mail: J.Loveday@sussex.ac.uk

Use of the PVD to constrain cosmological parameters then fell
out of favour, largely due to its sensitivity to the presence or absence
of rich clusters in the survey data used (Mo, Jing & Borner 1993).

Nevertheless, knowledge of the (non-linear) PVD is required
when modelling the linear, large-scale Kaiser (1987) infall in order
to constrain the growth rate of structure (e.g. Peacock et al. 2001;
Guzzo et al. 2008; Blake et al. 2013). The PVD is an important
quantity for modelling the galaxy redshift–space correlation func-
tion, and can be used to test predictions of galaxy formation and
evolution models, the focus of this paper, and of the cold dark matter
paradigm in general.

Recently, interest in use of the PVD as a cosmological di-
agnostic has been reawakened, both due to the availability of
large spectroscopic surveys which encompass fair samples of the
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Universe, and due to theoretical developments in modified gravity.
There have been several recent efforts to model modified gravity
using N-body simulations, allowing one to compare the predictions
of small-scale galaxy dynamics (e.g. Fontanot et al. 2013; Falck
et al. 2015; Winther et al. 2015; Bibiano & Croton 2017). In par-
ticular, Hellwing et al. (2014) have shown that the PVD provides
one of the most sensitive diagnostics of modified gravity, with some
of these models predicting dispersions about 30 per cent larger or
smaller than General Relativity.

Since the first measurements of Geller & Peebles (1973), the PVD
has been measured for most redshift surveys (e.g. Bean et al. 1983;
Davis & Peebles 1983; Loveday et al. 1996; Jing et al. 1998;
Jing & Borner 2001a; Landy 2002; Zehavi et al. 2002; Hawkins
et al. 2003; Jing & Borner 2004; Li et al. 2006; Van Den Bosch
et al. 2007; Cabré & Gaztañaga 2009). Predictions of the PVD
from halo occupation distribution (HOD) models and/or simula-
tions have been made by Slosar, Seljak & Tasitsiomi (2006), Li
et al. (2007), Tinker et al. (2007) and Van Den Bosch et al. (2007).
A good summary of previous results for the overall PVD, i.e. mea-
sured over all galaxy types and a wide range of scales, is provided
by Landy (2002). Most estimates range from around 300 to 600
km s−1, and are sensitive to the presence or absence of rich clus-
ters in the data used (Mo et al. 1993). The advent of large red-
shift surveys, such as the two-degree Field Galaxy Redshift Survey
(2dFGRS; Colless et al. 2001) and the Sloan Digital Sky Survey
(SDSS; York et al. 2000), enabled detailed studies of the dependence
of the PVD on galaxy type and scale. Hawkins et al. (2003) measure
the PVD for 2dFGRS galaxies, finding a peak σ12 ≈ 600 km s−1 at
projected separations r⊥ ≈ 0.2–0.8 h−1 Mpc, with σ 12 declining to
300–400 km s−1 at smaller and larger scales, consistent with con-
temporary semi-analytic model predictions. Jing & Borner (2004)
find that at a scale of k = 1 h Mpc−1, the 2dFGRS PVD has a mini-
mum value of σ12 ≈ 400 km s−1 for galaxies of luminosity M∗ − 1,
increasing rapidly for both fainter and brighter galaxies. Li et al.
(2006) measure the PVD for SDSS galaxies as a function of lu-
minosity and stellar mass as well as other galaxy properties. Con-
sistent with Jing & Borner (2004), they find that the PVD mea-
sured at k = 1 h Mpc−1 has a minimum value of σ12 ≈ 500 km s−1

for galaxy luminosities around M∗ − 1, increasing somewhat for
less luminous galaxies, and markedly (to σ12 ≈ 700 km s−1) for
the most luminous galaxies in the sample. They also find that
red galaxies have systematically higher PVDs than blue galax-
ies, particularly for less luminous galaxies. In a followup paper,
Li et al. (2007) compare the clustering and PVD of SDSS galax-
ies with semi-analytic models, finding that the models overpredict
the clustering strength and PVD for sub-L∗ galaxies, particularly at
small scales.

The Galaxy and Mass Assembly (GAMA) survey (Driver
et al. 2011) provides an ideal opportunity for a new measurement
of the PVD due to (i) being two magnitudes fainter than the SDSS
main galaxy sample, and (ii) having very high (>98 per cent) spec-
troscopic completeness, even in high-density regions. The latter
point means that completeness corrections for ‘fibre collisions’ are
not an issue with GAMA data. We utilize the three equatorial re-
gions in GAMA-II (Liske et al. 2015), covering a total area of
180 deg2, and including galaxies down to Petrosian r-band appar-
ent magnitude r = 19.8. The GAMA-II data base has previously
been used to measure the projected galaxy clustering in bins of
stellar mass and luminosity (Farrow et al. 2015) and to measure the
growth rate of large-scale structure via linear-regime redshift-space
distortions (RSD) (Blake et al. 2013). Here, we focus on measuring
RSD in the non-linear regime, r⊥ � 10 h−1 Mpc.

The paper is structured as follows. We discuss the GAMA
data, mock and random catalogues in Section 2 and measurement
of two-dimensional and projected correlation functions in Sec-
tion 3. In Section 4, we describe two models for the redshift–space
correlation function, and demonstrate that the pairwise velocity
distribution function is close to exponential. We test three differ-
ent ways of measuring the PVD using mock catalogues in Sec-
tion 5. PVDs for the GAMA data in luminosity bins, along with a
comparison of mock predictions, are shown in Section 6; we con-
clude in Section 7. Throughout, we assume a Hubble constant of
H0 = 100 h km s−1 Mpc−1 and an �M = 0.25, �� = 0.75 cosmol-
ogy in calculating distances, comoving volumes and luminosities.
Uncertainties on all results from GAMA data and mocks are based
on jackknife sampling and from the scatter between realizations,
respectively.

2 DATA , M O C K A N D R A N D O M C ATA L O G U E S

2.1 GAMA data

Our observed sample consists of galaxies from the GAMA-II
equatorial regions G09, G12 and G15, each 5 × 12 deg in ex-
tent and 98 per cent spectroscopically complete to r = 19.8 mag
(Liske et al. 2015). Specifically, galaxy coordinates and magnitudes
come from TilingCatv46 (Baldry et al. 2010). Redshifts, corrected
by the multi-attractor flow model of Tonry et al. (2000), as de-
scribed by Baldry et al. (2012), are taken from DistancesFramesv14.
K-corrections to reference redshift z0 = 0.1 (Blanton &
Roweis 2007) and fourth-order polynomial fits are obtained from
kCorrectionsv05 (Loveday et al. 2012).

In order to estimate errors on our results, we subdivide each
GAMA field into three 4 × 5 deg regions, and determine the co-
variance by omitting each of the nine jackknife regions in turn.
The median velocity uncertainty in GAMA is 33 km s−1 (Baldry
et al. 2014), significantly less than the smallest measured velocity
dispersions, and so we quote PVDs uncorrected for these mea-
surement errors. Similarly, we ignore the effect of blended galaxy
spectra, where galaxies are either lensed or overlapping (Holwerda
et al. 2015), since this affects only 0.05 per cent of the GAMA
sample.

2.2 GALFORM mock catalogues

We compare our GAMA results with mock galaxy catalogues based
on the Millennium-WMAP7 Simulation (Guo et al. 2013) and the
Gonzalez-Perez et al. (2014) GALFORM model, with lightcones pro-
duced using the method of Merson et al. (2013); see Farrow et al.
(2015) for further details of these GAMA mocks. Specifically, we
queried the tableGAMA_v1..LC_multi_Gonzalez2014a via
the Durham-hosted Virgo-Millennium Database1 (Lemson & the
Virgo Consortium 2006).

We utilize 26 mock realizations of the three equatorial GAMA
fields (G09, G12 and G15), selecting galaxies down to apparent
SDSS r-band magnitude r < 19.8 mag. These mocks were extracted
from the Millennium-WMAP7 simulation cube using random ob-
server position and orientations. As such they are not independent,
but do allow some assessment of sample variance. Since the mocks
provide both an observed and a cosmological redshift, we can make
a direct estimate of the PVD to compare with our clustering-based

1 Millennium DB at http://virgodb.dur.ac.uk.
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PVD estimators. Covariance estimates for the mocks come from
comparing the 26 realizations. In practice, we use only the diagonal
elements of the covariance matrix. Since we focus on the small-scale
PVD, the relatively small number and lack of true independence of
the mocks is not a serious issue.

2.3 Random catalogues

In order to account for the survey boundaries and selection effects,
we generate random catalogues obeying the same mask and se-
lection function as the GAMA data, but without clustering. The
mask and selection function are derived independently from those
of Farrow et al. (2015); we have checked that we obtain consis-
tent results for the projected correlation function (see Appendix A).
The mock catalogues have a simple mask corresponding to the
RA–dec boundaries of the GAMA equatorial regions. The radial
distribution of random points for analysing the mocks is obtained
by taking the mock galaxy redshifts from all 26 realizations of the
three GAMA fields; large-scale structure in individual realizations
is rendered invisible in the combined distribution. The following
subsections describe the survey mask and radial selection function
for the GAMA data.

2.3.1 Survey mask

Since GAMA-II target selection was made from SDSS DR7
(Abazajian et al. 2009) r-band imaging, we mask out regions of
r-band imaging identified by the SDSS photometric pipeline as any
of BLEEDING, BRIGHT_STAR, TRAIL, HOLE2. In addition, we mask out
areas around bright stars (V < 12 mag) in the Tycho and Hipparcos
catalogues (see Baldry et al. 2010 for details).

In order to map spectroscopic completeness as a function of
position on the sky, we obtain a list of GAMA 2dF field cen-
tres from the table AATFieldsv25. The (zero-weight) mask regions
and (unit-weight) spectroscopic fields are then combined using the
PIXELIZE, SNAP and BALKANIZE commands in MANGLE (Hamilton &
Tegmark 2004; Swanson et al. 2008). The result is a list of polygons
defined by overlap regions of the 2dF fields with masked regions set
to zero weight. We then set the weight of each non-masked polygon
to its spectroscopic completeness by dividing the number of main-
survey targets (survey_class >3) with reliable redshifts (nQ > 2)
by the number of targets within each polygon. Finally, we trim the
polygons to lie within the equatorial coordinate ranges of the three
GAMA regions, namely α = (129.0, 141.0), (174.0, 186.0), (211.5,
223.5), δ = (−2.0, 3.0), (−3.0, 2.0), (−2.0, 3.0), for G09, G12
and G15, respectively. The resulting spectroscopic completeness
maps are shown in Fig. 1. Angular coordinates of random points
are generated using the MANGLE RANSACK command with density
proportional to the completeness within each polygon.

2.3.2 Radial selection function

When analysing samples that are not volume-limited, the radial
coordinates of random points are generated from each sample using
the joint stepwise maximum likelihood (JSWML) method of Cole
(2011), as adapted for use with GAMA by Loveday et al. (2015),
assuming evolution parameters P = Q = 1.

For volume-limited samples, we distribute points drawn at
random from a distribution uniform in comoving volume modu-
lated by the density-evolution factor 100.4Pz (Loveday et al. 2015,

2 See http://www.sdss.org/dr7/algorithms/masks.html.

Figure 1. Spectroscopic completeness mask for the GAMA-II regions.
Black regions correspond to holes cut around bright stars and SDSS imaging
defects.

equation 5). Limiting redshifts for each volume-limited sample are
chosen such that the distribution of individual K-corrections for
galaxies close to the limiting redshift results in a sample that is 95
per cent complete.

2.3.3 Comparison with previous GAMA clustering measurements

Since both the angular mask and radial selection function for the
random catalogues have been derived independently from a previous
measurement of galaxy clustering from the GAMA data (Farrow
et al. 2015), we compare our clustering estimates for a number
of galaxy subsamples in Appendix A. We find results that are in
excellent agreement on all small scales.

2.4 Data subsamples

We measure the PVD of GAMA galaxies in bins of absolute magni-
tude, as summarized in Table 1. For all GAMA samples, we employ
individual K-corrections to rest-frame z = 0.1 and assume luminos-
ity evolution given by Q = 1 as described in Loveday et al. (2015).
We use a superscript prefix of 0.1, 0.1Mr, to indicate an absolute
magnitude K-corrected to a passband blueshifted by z = 0.1. This
is done for the GAMA data to allow comparison with the results of
Li et al. (2006). A superscript prefix of 0.0 indicates an absolute
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Table 1. GAMA and mock galaxy subsamples. GAMA magnitudes are
evolution-corrected 0.1Mr; mock magnitudes, 0.0Mr, are taken directly from
the mock catalogues.

Name GAMA mag Ngal Mock mag Nmock

V0 [−23, −20] 41 757 [−23, −20] 53 878 ± 3 038
M1 [−23, −22] 3 730 [−23.47, −22.36] 3 507 ± 108
M2 [−22, −21] 37 904 [−22.36, −21.02] 38 278 ± 934
M3 [−21, −20] 68 791 [−21.02, −19.85] 67 704 ± 2 468
M4 [−20, −19] 43 105 [−19.85, −18.19] 44 115 ± 2 133
M5 [−19, −18] 17 550 [−18.19, −17.00] 17 224 ± 1 570
M6 [−18, −17] 6 037
M7 [−17, −16] 2 080
M8 [−16, −15] 805

magnitude K-corrected to the rest-frame of the galaxy, as appropri-
ate for the mock data.

Because the mocks do not provide an exact match to GAMA in
terms of luminosity function, K-corrections and evolution, we can-
not obtain a fair comparison by using the same magnitude limits.
Instead, we select samples matched on number density, as is com-
mon in the literature (e.g. Berlind et al. 2003; Zheng et al. 2005;
Contreras et al. 2013; Farrow et al. 2015).

Allowing for the fact that the GAMA mask removes about 0.7
per cent of the survey area (Baldry et al. 2010) and that the GAMA
redshift incompleteness is about 1.5 per cent (Liske et al. 2015),
one would expect the GAMA catalogues to contain about 2.5 per
cent fewer galaxies than the mocks if they have the same underlying
number density.3 Starting with an absolute magnitude threshold of
0.1Mr = −23 mag, we count the number of GAMA galaxies brighter
than this threshold within redshift z < 0.65. We find the correspond-
ing mock absolute magnitude threshold that gives 1.025 times as
many galaxies when averaged over the 26 mock realizations within
the same redshift limit. This process is repeated for the remain-
ing magnitude bins; the corresponding magnitude limits for the
mocks are given in Table 1. Note that the GAMA magnitudes are
K- and evolution-corrected to z0 = 0.1, assuming luminosity evolu-
tion given by Q = 1, whereas we use absolute r-band magnitudes
(SDSS_r_rest_abs) taken directly from the mock catalogue
without any evolution correction. For sample M5, we set the mock
faint magnitude limit to be −17 mag, even though this sample con-
tains fewer galaxies than the corresponding GAMA sample. This is
due to the resolution limit of the Millennium Simulation: samples
fainter than 0.0Mr ≈−17 mag will be incomplete in a halo-dependent
way. This incompleteness in the mock catalogues may explain the
spuriously high clustering signal measured by Farrow et al. (2015,
fig. 11) for the −18 < 0.0Mr < −17 mag mock sample.

For testing our methods in Sections 4 and 5, we employ a volume-
limited sample (V0), with 0.1Mr < −20 mag and redshift z < 0.258.
These limits are chosen in order to roughly maximize the number of
galaxies in a volume-limited sample. We choose the same limits for
the mocks, since number densities are very similar at this magnitude.
While the corresponding redshift limit will not be identical for the
mock catalogues, this is not an issue, as the random distribution
for analysing mock galaxy clustering is generated from the mocks
themselves.

3 Although the GAMA regions are underdense with respect to SDSS by
about 15 per cent within z < 0.1 (Driver et al. 2011), there is no evidence that
this underdensity extends out to larger redshifts. The overall sample variance
of GAMA is expected to be about 3 per cent (Driver & Robotham 2010).

The real-space correlation function for the V0 mock sample is
well-fitted on scales r � 16 h−1 Mpc by a power law with γ = 1.81,
r0 = 5.6 h−1 Mpc. From numerical integration of this power law, we
find that the variance of galaxy counts in 8 h−1 Mpc radius spheres
is very close to 1, σ 2

8,g ≈ 0.98. Since the simulations assume the
WMAP7 cosmology (�m = 0.272, σ 8 = 0.807; Guo et al. 2013),
the bias of this mock galaxy sample is b = σ 8, g/σ 8 ≈ 1.23 and
hence the expected value of the redshift space distortion parameter
is given by β = �0.6

m /b ≈ 0.37.
Our primary results (Section 6) show galaxies in non-volume-

limited bins of luminosity (M1–M8), as well as five samples drawn
from a single volume-limited sample.

3 M E A S U R I N G T H E C O R R E L AT I O N
F U N C T I O N

Our measurements of the PVD are based on the two-dimensional
galaxy correlation function ξ (r⊥, r‖); the excess probability above
random of finding two galaxies separated by r‖ along the line of
sight (LOS) and r⊥ perpendicular to the LOS. These separations are
calculated in the usual way (e.g. Fisher et al. 1994). Two galaxies
with position vectors r1 and r2 are separated by vector s = r2 − r1.
For an observer at the origin, the vector to the midpoint of the pair is
given by l = (r1 + r2)/2. The LOS and perpendicular separations
of the galaxies are then given by r‖ = |s.l̂|, with l̂ being the unit

vector in the direction of l , and r⊥ =
√

s.s − r2
‖ .

To estimate ξ (r⊥, r‖), we use the Landy & Szalay (1993)
estimator,

ξ (r⊥, r‖) = DD − 2DR + RR

RR
, (1)

where DD, DR and RR are the normalized and weighted num-
bers of data–data, data–random and random–random, respectively,
pairs in a given (r⊥, r‖) bin. The random points are generated as
described in the previous section. For non-volume-limited sam-
ples, the pair counts are weighted to allow for the declining selec-
tion function with redshift, giving a minimum-variance estimator
(Hamilton 1993). Each galaxy pair is given a weight

wij = {[1 + 4πn(zi)J3(sij )][1 + 4πn(zj )J3(sij )]}−1, (2)

where n(z) is the average galaxy number density of the correspond-
ing unclustered sample at the redshift of each galaxy, zi and zj,
and J3(sij ) = ∫ sij

0 s2ξ (s)ds. For this integral, we assume a power
law for the correlation function, ξ (s) = (s/s0)−γ , with parameters
s0 = 5.59 h−1 Mpc and γ = 1.84, and we integrate out to the sepa-
ration sij of the galaxy pair, or 30 h−1 Mpc, if the separation is larger
than this. We have checked that the correlation function estimates
are insensitive to the details of the assumed power law. If, instead,
we assume a power law consistent with the clustering of GAMA
galaxies in the faint magnitude bin M6, viz. s0 = 3.68 h−1 Mpc,
γ = 1.84, individual wp(r⊥) estimates change by less than the 1σ

error bars. For volume-limited samples, weighting is uniform, i.e.
wij ≡ 1.

We then normalize for the relative total numbers of galaxies,
Ng, and random points, Nr, by dividing the summed pair weights
DD, DR and RR for each separation bin by Ng(Ng − 1), NgNr, and
Nr(Nr − 1), respectively.

The two-dimensional correlation function for our volume-limited
sample of GAMA galaxies, along with the average correlation func-
tion from 26 mock samples, are shown in Fig. 2. Elongation of the
clustering signal along the LOS (r‖-axis) at small projected sepa-
rations, r⊥ � 5 h−1 Mpc, and a compression of the LOS clustering
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Figure 2. The two-dimensional correlation function ξ (r⊥, r‖) for Mr <−20
volume-limited samples for (top) GAMA-II galaxies and (bottom) the aver-
age from 26 mock catalogues. To visually clarify departures from isotropy
due to peculiar velocities, and to minimize aliasing effects when the Fourier
transform is taken, the clustering signal is reflected about both axes. Follow-
ing Li et al. (2006), contour levels increase by factors of 2 from ξ = 0.1875
to ξ = 48.

signal at larger separations are both clearly visible. For this plot,
we have calculated ξ (r⊥, r‖) in 1 h−1 Mpc bins in both coordinates.
We wish to determine the PVD measurement on the smallest pos-
sible scales, fully exploiting the high spectroscopic completeness
of the GAMA survey. When estimating the PVD, we thus measure
ξ (r⊥, r‖) in logarithmically spaced bins in both directions, with
log10(r/ h−1 Mpc) ranging from −2 to 2 in 20 bins.

Determination of the PVD also requires that the real-space corre-
lation function ξ r(r) be known. We estimate ξ r(r) from the data via
the projected correlation function, wp(r⊥), which is obtained in the
usual way by integrating the observed two-dimensional correlation
function ξ (r⊥, r‖) along the LOS direction r‖:

wp(r⊥) = 2
∫ r‖max

0
ξ (r⊥, r‖)dr‖. (3)

We use an upper integration limit of r‖max = 40 h−1 Mpc; see Ap-
pendix B for justification of this choice.

The real-space correlation function ξ r(r) may then be obtained
by performing the inversion

ξr (r) = − 1

π

∫ ∞

r

wp(r⊥)
(
r2
⊥ − r2

)−1/2
dr⊥. (4)

This integral is evaluated by linearly interpolating between
the binned wp(r⊥) values (Saunders, Rowan-Robinson &
Lawrence 1992); we use 20 logarithmically spaced bins from 0.01
to 100 h−1 Mpc. Since this estimate of ξ r(r) can be be rather noisy,
we also approximate ξ r(r) using a power-law fit to the projected cor-
relation function wp(r⊥) over the separation range 0.01 h−1 Mpc <

r⊥ < 5 h−1 Mpc. For a power-law fit, ξ r(r) = (r/r0)−γ , equation (4)
yields (Davis & Peebles 1983),

wp(r⊥) = Ar
1−γ
⊥

A = r
γ
0 �(1/2)�[(γ − 1)/2)]/�(γ /2), (5)

where � is the standard gamma function.

4 MO D E L L I N G T H E C O R R E L AT I O N
F U N C T I O N

Historically, two complementary approaches have been taken to
model the two-dimensional galaxy correlation function in the pres-
ence of galaxy peculiar motions, the ‘streaming’ and ‘dispersion’
models. In this section, we briefly review these two models and then
proceed to demonstrate that the peculiar velocity distribution func-
tion at small scales is reasonably well-fit by an exponential function
for GAMA galaxies.

4.1 Streaming model

In the streaming model (e.g. Peebles 1980, 1993; Davis &
Peebles 1983; Fisher 1995; Zehavi et al. 2002), ξ (r⊥, r‖) is given by
a convolution of the isotropic real-space correlation function ξ r(r)
with the pairwise LOS velocity distribution f(v12):

1 + ξ (r⊥, r‖) = H0

∫ ∞

−∞
[1 + ξr(r)] f (v12)dy. (6)

Here, y is the true LOS separation of the galaxy pair, the total true
separation is r =

√
r2
⊥ + y2, and v12 = H0(r‖ − y) is the relative

LOS peculiar velocity.
The pairwise velocities are most often assumed to follow an

exponential distribution:

fe(v12) = 1√
2σ12(r⊥)

exp

(
−

√
2|v12 − v12|
σ12(r⊥)

)
, (7)

or a Gaussian distribution

fG(v12) = 1√
2πσ12(r⊥)

exp

(
− (v12 − v12)2

2σ 2
12(r⊥)

)
. (8)

The mean relative peculiar velocity of galaxies separated by a
distance r (by symmetry directed along the separation vector r) is
given by v12 = −H0g(r)r , and thus v12 = −H0g(r)y is the LOS
component of this mean velocity. As discussed by Peebles (1993,
p 478), one expects g(r) to be close to unity on small scales where
the peculiar velocity cancels out the Hubble flow within bound
structures. At larger scales, g(r) should tend to zero as uncorrelated
galaxies move with the Hubble flow. In this work, we use the expres-
sion given by Juszkiewicz, Springel & Durrer (1999, equation 6,
hereafter ‘JSD model’) for the mean radial pairwise velocity v12(r).

The streaming model has been developed and improved by a num-
ber of authors, including Fisher (1995), Sheth (1996), Scoccimarro
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(2004), Reid & White (2011), Bianchi, Chiesa & Guzzo (2015) and
Uhlemann, Kopp & Haugg (2015), in order to find a more com-
plete description of the velocity distribution function f(v12). The
main focus of these works has been to improve the model in the
linear regime. In this work, we are focused on strongly non-linear
scales, for which we show that assuming an exponential velocity
distribution provides a good fit to simulations, provided that σ 12(k)
is allowed to vary with scale.

4.2 Dispersion model

Rather than assuming a model for the mean streaming velocity
v12(r), the dispersion model combines the Kaiser (1987) linear infall
model with an assumed small-scale velocity distribution function.
In Fourier space, the redshift space power spectrum Ps(k, μ) may
be related to the real space power spectrum Pr(k) by Peacock &
Dodds 1994, Cole et al. 1995 and Jing & Borner 2001b4

Ps(k, μ) = Pr(k)(1 + βμ2)2D(kμσ12(k)), (9)

where μ is the cosine of the angle between the wavevector k and the
LOS. The factor (1 + βμ2)2 is the Kaiser (1987) linear compression
effect5 and the factor D is the damping caused by random motions
of galaxies. For an exponential form of the pairwise velocity distri-
bution (equation 7), its Fourier transform D is a Lorentzian

D(kμσ12(k)) = [1 + 0.5(kμσ12(k))2]−1. (10)

The Kaiser (1987) linear infall model has been translated from
Fourier to configuration space by Hamilton (1992) to predict the
shape of the two-dimensional correlation function ξ ′(r⊥, r‖) due to
coherent infall:

ξ ′(r⊥, r‖) = ξ0(s)P0(μ) + ξ2(s)P2(μ) + ξ4(s)P4(μ), (11)

where the Pl(μ) are Legendre polynomials and the harmonics of
the correlation function are defined in Appendix C. One can then
approximate the observed two-dimensional correlation function by
convolving ξ ′(r⊥, r‖) with the peculiar velocity distribution, e.g.
Hawkins et al. (2003),

ξ (r⊥, r‖) =
∫ ∞

−∞
ξ ′(r⊥, r‖ − v12/H0)f (v)dv, (12)

where f(v12) is now assumed to be distributed around zero, and is
thus given by equation (7) or (8) with v12 ≡ 0.

4.3 Pairwise velocity distribution function

The previous work (e.g. Loveday et al. 1996; Landy et al. 1998;
Hawkins et al. 2003) has found that the galaxy pairwise velocity
distribution is better fit by an exponential than a Gaussian function.
Sheth (1996) shows that an exponential distribution is expected on
highly non-linear scales from Press–Schechter theory. We determine
the pairwise velocity distribution for the GAMA-II data using the
method of Landy et al. (1998), also used by Landy (2002) and
Hawkins et al. (2003), which deconvolves the real-space correlation
function from the peculiar velocity distribution.

4 See Scoccimarro (2004) for an improved version of the dispersion model
that allows for coupling between the velocity and density fields.
5 The linear redshift distortion parameter β = f(�m)/b, where f (�m) ≈
�0.6

m is the dimensionless growth rate of structure in the linear regime and b
is the galaxy bias parameter.

Figure 3. The peculiar velocity distribution function (bottom) and its
Fourier transform (top) for the GAMA V0 sample (symbols with error bars).
The continuous green and red dashed lines show the best-fitting dispersion
model predictions with exponential and Gaussian velocity distribution func-
tions, respectively.

We take the 2D Fourier transform6 of the ξ (r⊥, r‖) grid measured
out to 32 h−1 Mpc to give ξ̂ (k⊥, k‖).7 By the slicing-projection the-
orem (Landy et al. 1998), cuts of ξ̂ (k⊥, k‖) along the k⊥ and k‖
axes, i.e. ξ̂ (k⊥, 0) and ξ̂ (0, k‖), are equivalent to the Fourier trans-
forms of the real-space projections of ξ (r⊥, r‖) on to the r⊥ and r‖
axes. The projection on to the r⊥ axis is distortion free, whereas the
projection on to the r‖ axis gives the real-space correlation func-
tion convolved with the peculiar velocity distribution function. The
ratio F [f (v12)](k) = ξ̂ (k⊥ = k, 0)/ξ̂ (0, k‖ = k) is thus the Fourier
transform of the peculiar velocity distribution function; taking the
inverse transform of this ratio yields f(v12).

We fit the dispersion model to both the observations and mocks,
with free parameters β and σ , by performing a χ2 least-squares fit
of the predicted to the measured F [f (v12)]. We fit to F [f (v12)]
rather than f(v12) since the covariance matrix of f(v12) estimates
shows significant anticorrelations between odd and even-numbered
bins. Both F [f (v12)] and the inferred f(v12) for GAMA and mock
volume-limited samples are shown in Figs 3 and 4, along with

6 We utilize the Numerical Python discrete Fourier transform package
numpy.fft.
7 The true power spectrum will only be obtained by taking the Fourier
transform of the correlation function measured on all scales. We have verified
that we get consistent results in this section when starting with ξ (r⊥, r‖)
measured out to 64 h−1 Mpc.
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Figure 4. As Fig. 3 but from the average of 26 mock catalogues.

best-fitting predictions from dispersion models with exponential
and Gaussian velocity distribution functions. The best-fitting pa-
rameters and χ2 values are given in Table 2. It is clear that the
exponential distribution function provides a much better fit to both
the GAMA data and the mocks than the Gaussian distribution, which
also gives unphysical, negative values for β. We therefore assume
an exponential form for f(v12) for the rest of this paper.

While this method is useful for determining the shape of the
distribution function f(v12), it is not ideal for estimating the values
of β and the velocity dispersion σ 12, since it averages over a range of
linear and non-linear separations. In fact, the value of β obtained for
the mock V0 samples is completely inconsistent with the expected
value of β ≈ 0.37 (Section 2.4). The uncertainties quoted in Table 2
account only for scatter between realizations, and not for systematic
errors due to inadequacies in the dispersion model when applied
over a wide range of scales. In the following section, we obtain
separation-dependent estimates of the velocity dispersion σ 12(r⊥)
by fitting directly to the ξ (r⊥, r‖) grid.

5 MO C K T E S T S O F P V D ES T I M ATO R S

In this section, we test three methods for recovering the PVD from
observational data, two based on the correlation function in red-
shift space, via the streaming and dispersion models, and one based
on the dispersion model in Fourier space. All start with the 2d
correlation function ξ (r⊥, r‖), measured as described in Section 3,
and are based on least-squares fitting of a model 2d correlation
function or power spectrum to the measured one. The ξ (r⊥, r‖) val-
ues are strongly correlated, and so one should in principle use the

full covariance matrix or its principal components (e.g. Norberg
et al. 2009) in least-squares fitting. In practice, even when using
mock catalogues, for which a covariance matrix may be reasonably
well-determined, improvements over using just the diagonal ele-
ments are negligible, at best. With only nine jackknife samples for
GAMA data, covariance matrix estimates are even more susceptible
to noise. Therefore, all fitting to data is done using only diagonal
elements of the covariance matrix. We show in Section 5.3 below
that this introduces only a small bias in the inferred PVD using the
dispersion model.

Before describing these clustering-based estimators of the PVD,
we first discuss a direct measurement of the PVD from the mock
catalogues, which will be used to test the veracity of the clustering-
based estimates.

5.1 Direct mock-PVD measurement

Using the observed (zobs) and cosmological (zcos) redshifts provided
in the mock galaxy catalogues, one can determine the LOS peculiar
velocity (vpec) for each galaxy using (Harrison 1974)

1 + vpec/c = (1 + zobs)/(1 + zcos). (13)

We then define the relative LOS velocity for a pair of galaxies as
v12 = vpec, 2 − vpec, 1, where galaxy 1 is the closer of the pair, so that
v12 is negative for galaxies that are approaching each other. Note
that this formula is only accurate for galaxy pairs at small angular
separation, and so we limit our measurements to pairs of galaxies
separated by less than 12◦ (the RA extent of each GAMA region).

The LOS pairwise velocity distributions for mock galaxy pairs
in four representative bins of projected separation, including all
pairs along the line-of-sight direction up to r‖ = 50 h−1 Mpc, are
shown in Fig. 5. Visually, the distributions are reasonably well-fit
by exponential functions for galaxy pairs at projected separation
r⊥ � 1 h−1 Mpc (e.g. top two panels), even though the reduced
χ2 values formally rule out an exponential fit (the standard error
from the scatter between mock realizations is tiny). At larger sep-
arations, a growing skewness in the distributions towards negative
velocities,8 and decreasing random errors, result in poorer fits. It is
clear that a Gaussian grossly underfits the tails of the distribution at
all separations.

For pairs of galaxies in logarithmically spaced separation bins
(r⊥, r‖) in redshift space, we calculate the mean and standard de-
viation of the pairwise LOS velocity distribution, v12 and σ 12, re-
spectively, as well as the maximum-likelihood velocity dispersion
σ

exp
12 for an exponential distribution (equation 7), namely

σ
exp
12 =

√
2

N

N∑
i=1

|v12,i − v12|, (14)

where the sum is carried out over all N galaxy pairs in each separa-
tion bin.

In Fig. 6, we show the mean and exponential dispersion of the
mock LOS pairwise velocities in bins of two-dimensional redshift-
space separation. It is interesting to see that the largest (negative)
mean velocities and dispersions occur at very different separation
bins. The most negative mean velocities of v12 � −300 km s−1

8 This skewness in the pairwise velocity distribution has previously been
reported from simulations by Juszkiewicz, Fisher & Szapudi (1998) and
Magira, Jing & Suto (2000). See Bianchi, Chiesa & Guzzo (2015) and
Bianchi, Percival & Bel (2016) for a bivariate Gaussian description for the
pairwise velocity distribution function that can account for this asymmetry.
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Table 2. Fits of β infall parameter and velocity dispersion σ 12 (in km s−1) to the Fourier
transformed velocity distribution function for both the GAMA V0 sample and the mean of the
26 mock V0 samples. For all fits there are 29 degrees of freedom.

GAMA Mocks
Model β σ 12 χ2 β σ 12 χ2

Exponential 0.75 ± 0.03 676 ± 34 32 0.68 ± 0.05 690 ± 71 5
Gaussian − 0.88 ± 0.08 106 ± 12 178 − 0.92 ± 0.04 111 ± 10 112

Figure 5. LOS relative velocity distributions for mock galaxy pairs (stepped
histograms), exponential fits (continuous lines) and Gaussian fits (dashed
lines) in four bins of projected separation as labelled. We include all pairs
along the line of sight direction up to r‖ = 50 h−1 Mpc. Fit parameters and
reduced χ2 values are shown for the exponential fits on the left and for
Gaussian fits on the right.

Figure 6. Mean (top) and exponential dispersion (bottom) of the mock LOS
pairwise velocities, in logarithmic bins of redshift space separation. Contour
lines from left to right connect bins containing 102, 103, 104, 105 and 106

galaxy pairs.

are seen at projected separation r⊥ � 3 h−1 Mpc and LOS sepa-
ration r‖ � 3 h−1 Mpc. The highest velocity dispersions, of up to
σ

exp
12 ≈ 1500 km s−1, are seen at r⊥ � 1 h−1 Mpc and 10 � r‖ �

30 h−1 Mpc. The PVD is uniformly low, σ exp
12 � 300 km s−1, at LOS

separations r‖ � 5 h−1 Mpc regardless of projected separation r⊥.
Values of v12(r⊥) and σ

exp
12 (r⊥) as a function of projected sepa-

ration r⊥ alone are obtained by averaging over r‖ separation bins,
weighting by the number of galaxy pairs per bin. It is clear that most
of the contribution to the velocity dispersion σ

exp
12 (r⊥) will come

from LOS separations 5 � r‖ � 30 h−1 Mpc. The estimated disper-
sion is insensitive to the upper limit of LOS separation beyond r‖ ≈
30 h−1 Mpc due to the modest drop in σ

exp
12 values at larger r‖. The

estimated mean velocity v12(r⊥) is sensitive to the limiting r‖ due
to the steady decline in |v12| beyond r‖ � 30 h−1 Mpc, so that the
amplitude of v12(r⊥) decreases with increasing r‖max. Since galax-
ies with LOS separation r‖ � 40 h−1 Mpc (v � 4000 km s−1) are
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Figure 7. LOS mean pairwise velocity v12 (upper panel), and velocity
dispersion σ 12 (lower panel) for pairs of mock galaxies as a function of
projected separation. The different line styles and colours represent different
upper limits to projected separation r‖ as indicated in the lower panel.

unlikely to be correlated, we impose an upper limit of r‖ =
40 h−1 Mpc when calculating v12(r⊥) and σ

exp
12 (r⊥).

Note that it is unlikely that the mock catalogues have sufficient
resolution to reliably predict galaxy dynamics on scales below about
0.1 h−1 Mpc. Nevertheless, by comparing clustering-inferred esti-
mates of the PVD with those obtained directly from the peculiar
velocity information, we can still use the mocks to test our methods
down to scales r⊥ = 0.01 h−1 Mpc.

Maximum-likelihood estimates of mean pairwise velocity and
exponential velocity dispersion are shown in Fig. 7 as a func-
tion of projected separation r⊥, including pairs with LOS sepa-
ration up to three different values of r‖ as indicated in the lower
panel. We see net LOS infall between pairs of galaxies on all
scales, with maximum infall of v12(r⊥) ≈ −200 km s−1 at sepa-
ration r⊥ ≈ 2 h−1 Mpc with r‖ < 40 h−1 Mpc. Exponential veloc-
ity dispersion rises from σ

exp
12 (r = 0.01 h−1 Mpc) ≈ 200 km s−1,

peaking at σ
exp
12 (r ≈ 0.4 h−1 Mpc) ≈ 600 km s−1 and tending to

σ
exp
12 (r ≈ 100 h−1 Mpc) ≈ 500 km s−1 on large scales. Note that the

velocity dispersion estimates are insensitive to the upper limit of
projected separation.

Figure 8. Pairwise LOS velocity dispersion estimates from the mock galaxy
V0 samples. The continuous line and shaded region show the direct estimate
of σ 12(r⊥) and its standard deviation reproduced from Fig. 7. Symbols show
PVD estimates recovered by fitting the streaming model (Section 5.2) to the
two-dimensional correlation function. Black circles and blue squares show
results using the measured v12(r) and power-law and binned measurements
of ξ r(r), respectively. Green and red triangles show results using the JSD
model v12(r) and power-law and binned measurements of ξ r(r), respectively.

Having made a direct measurement of the PVD from the mock
catalogues, we can now investigate PVD estimates based on the
anisotropy of redshift-space clustering.

5.2 Streaming model

We find the velocity dispersion σ 12(r⊥) in bins of projected sepa-
ration r⊥ by least-squares fitting of the observed two-dimensional
correlation function ξ (r⊥, r‖) with the prediction from equation
(6), using LOS bins r‖ < 40 h−1 Mpc. We test this estimator for
the PVD using the volume-limited mock catalogues in Fig. 8. We
compare results obtained using power-law and binned estimates of
ξ r(r), as well as both directly measured and the JSD model for
mean-streaming velocities v12(r). All estimates are consistent with
the directly determined PVD on small scales, r⊥ � 0.3 h−1 Mpc; all
tend to underestimate the PVD on larger scales. Of the four variants
of this estimator, that using the JSD model for v12 along with a
power-law fit for ξ r(r), performs better than the others, providing
reliable estimates of the PVD to r⊥ � 1 h−1 Mpc.

5.3 Dispersion model in configuration space

We find the velocity dispersion σ 12(r⊥) in bins of projected sepa-
ration r⊥ by least-squares fitting of the observed two-dimensional
correlation function ξ (r⊥, r‖) with the prediction from equation
(12), using LOS bins r‖ < 40 h−1 Mpc. We test this estimator for
the PVD using the volume-limited mock catalogues in Fig. 9. This
plot shows results using both power-law fits and binned measure-
ments of the real-space correlation function ξ r(r), and also with β

fixed at β = 0.45 or allowed to vary as a free parameter. It is clear
that the binned estimates of ξ r(r) (blue squares and red triangles
for fixed and free β, respectively) give a more reliable measure of
the PVD over a wider range of scales than a single power-law fit
to wp(r⊥) (black circles and green triangles). The former measure-
ments lie within ≈1σ of the directly determined PVD on all scales
from 0.01 to 10 h−1 Mpc.

Fig. 10 explores the effects of using the full covariance matrix of
the correlation function measurements ξ (r⊥, r‖), just the diagonal
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Figure 9. As Fig. 8 but showing PVD estimates recovered by fitting the
dispersion model (Section 5.3) to the two-dimensional correlation function.
Black circles show the results of using a power-law fit to wp(r⊥) to predict
ξ r(r), blue squares use a numerical inversion of the binned wp(r⊥) measure-
ments to predict ξ r(r). Both of these measurements assume a fixed value
of β = 0.45. Allowing β to vary as a free parameter, the power-law ξ r(r)
favours β = 0.66 (green triangles); the binned ξ r(r) favours β = 0.43 (red
triangles).

Figure 10. Dispersion model estimates of the PVD using the full covariance
matrix of ξ (r⊥, r‖) (green triangles), the diagonal components only (black
circles), or the first five principal components (blue squares). We use binned
ξ r(r) measurements and hold β fixed at β = 0.5.

components, or the first five principal components, when fitting the
dispersion model. While we see that using the full covariance matrix
improves the estimates on scales r‖ � 1 h−1 Mpc, they are worsened
on larger scales. The full covariance matrix estimates for the GAMA
data will be nosier than those for the 26 mock realizations, and so
for our main results we use only the diagonal elements.

5.4 Dispersion model in Fourier space

We determine the redshift space power spectrum Ps(k, μ) from the
two-dimensional correlation function ξ (r⊥, r‖) using the method of
Jing & Borner (2004):

Ps(k, μ) = 2π
∑
i,j

r2
‖ i

 ln r⊥j ξ (r⊥j , r‖i) cos(k‖r‖i)

× J0(k⊥r⊥j )Wg(r⊥j , r‖i),

where J0 is the zeroth-order Bessel function. Following Li et al.
(2006), r‖i runs from −40 to 40 h−1 Mpc with r‖i = 1 h−1 Mpc

Figure 11. Real-space power spectrum Pr(k) (top panel) and pairwise ve-
locity dispersion σ 12(k) (bottom panel) estimated from the mock catalogues
using the methods described in Section 5.4. The continuous line and shaded
region in the lower panel show the direct estimate of the real-space expo-
nential velocity dispersion σ

exp
12 (r) and its standard deviation reproduced

from Fig. 7, assuming that k = 2π/r . Blue squares and green triangles,
respectively, denote smoothing scales of S = 20, 25 h−1 Mpc in equation
(15).

and r⊥j runs from 0.1 to 50 h−1 Mpc with ln r⊥j = 0.23. Wg is
a Gaussian window function used to down-weight noisy ξ (r⊥, r‖)
measurements at large scales:

Wg(r⊥, r‖) = exp

(
− r2

⊥ + r2
‖

2S2

)
, (15)

with smoothing scale S = 20 or 25 h−1 Mpc.
As advised by Jing & Borner (2001a), we reduce the effects of

finite bin sizes in r‖ and r⊥ by dividing each r‖ and ln r⊥ bin into
N sub-bins and interpolate ξ (r⊥, r‖) at each sub-bin using a bilinear
cubic spline. We have found that N = 21 sub-bins is sufficient
to obtain reliable Ps(k, μ) measurements on small scales (large k
values).

In Fig. 11, we show the real-space power spectrum Pr(k) and pair-
wise velocity dispersion σ 12(k) estimated from the mock catalogues
by fitting the model Ps(k, μ) (equation 9) to the observed one, as-
suming a fixed value of β = 0.45. The 2 × nk-parameters, where
nk is the number of bins in which Pr(k) and σ 12(k) are estimated,
and the covariances between the parameters, are determined us-
ing the EMCEE (Foreman-Mackey et al. 2013) Markov Chain Monte
Carlo code. Both power spectrum and velocity dispersion mea-
surements become very noisy at small scales, k � 8 h Mpc−1 or
r � 0.6 h−1 Mpc. At larger scales, k � 8 h Mpc−1, the PVD esti-
mated in Fourier is in very good agreement with the direct estimate,
particularly with a smoothing length of 25 h−1 Mpc.

5.5 Summary of tests

From these tests using mock catalogues, we conclude that the
configuration space dispersion model provides the most reliable
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Figure 12. Pairwise velocity dispersions with projected separation r⊥ in bins of absolute magnitude as defined in Table 1. Blue and green lines show direct
estimates from the GALFORM mocks and EAGLE simulation, respectively, with the 1σ error band shaded in both cases. Blue squares and black circles show
dispersion model estimates from the mocks and GAMA galaxies, respectively. To aid visual comparison, the dotted line reproduces the direct mock estimate
for the M3 sample in the other panels. The mock error bars show the standard deviation from 26 realizations; the GAMA error bars are determined from
jackknife sampling. The mock error bars are slightly larger than the GAMA ones, accounting as they do more fully for sample variance.

estimate of the PVD on scales (0.01 h−1 Mpc � r⊥ � 10 h−1 Mpc).
The Fourier-space dispersion model provides reliable estimates on
larger scales (0.6 h−1 Mpc � r⊥ � 30 h−1 Mpc). We show results
using both of these methods in the following section.

6 R ESULTS AND DI SCUSSI ON

In Fig. 12, we show the PVD σ 12 as a function of projected sep-
aration in bins of absolute magnitude for both GAMA and mock
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galaxies. In each panel, for luminosity bins M1–M5, one should first
compare the direct (blue line) and dispersion model (blue squares)
estimates from the mocks. If these are in good agreement, then the
GAMA dispersion-model results are likely to be reliable. The space
density of galaxies in bin M1 is too low for a reliable estimate of
the PVD on small scales, but the estimates converge for separa-
tions r⊥ � 1 h−1 Mpc. For the remaining luminosity bins, M2–M5,
agreement between direct and dispersion-model estimates of the
mock PVDs is excellent on all scales measured.

Comparing GAMA and mock PVDs, for luminous galaxies,
bins M1–M3, the amplitudes are consistent, and both peak at
r⊥ ≈ 0.3 h−1 Mpc. For fainter galaxies, bins M4 and M5, the mock
PVDs are systematically higher than the GAMA PVDs. This is
particularly noticeable for bin M4, where the GAMA estimates are
unusually low. Since the large-scale GAMA PVD increases again
in lower-luminosity bins, M5 and M6, this is most likely a sam-
pling fluctuation, perhaps due to the significant underdensity in the
GAMA redshift distribution around z ≈ 0.2–0.26, a region from
which many of the galaxies in bin M4 lie (see figs 4 and 5 of Farrow
et al. 2015).

Since the GALFORM mock catalogues are reliable at only relatively
bright magnitudes (Mr � −17 mag), we also compare our GAMA
PVD estimates with those from EAGLE hydrodynamical simula-
tion RefL0100N1504 (Crain et al. 2015; Schaye et al. 2015;
McAlpine et al. 2016). Placing the observer at the origin of the
z = 0.1 data cube, we use the Cartesian velocities of each subhalo
to calculate the line-of-sight peculiar velocity of each galaxy, and
hence the PVD, as a function of projected separation. Uncertain-
ties are estimated by subdividing the simulation cube into eight
sub-cubes and calculating jackknife errors. We have verified that
EAGLE r-band absolute magnitudes are consistent with GAMA:
the luminosity functions agree extremely well over the magnitude
range −22 < Mr < −15. We therefore use the same absolute magni-
tude limits when comparing EAGLE with GAMA. Note that Artale
et al. (2017) have recently compared small-scale galaxy clustering
in EAGLE with GAMA, and find very good agreement.

EAGLE simulation results, shown in Fig. 12 as a green line,
are noisy for luminous galaxies due to the limited volume probed
(106 Mpc3 for h = 0.6777). For moderate luminosities (bins
M3–M5), the agreement with GALFORM is good. The GAMA PVD
is also consistent with EAGLE for bin M6, but falls below the EA-
GLE prediction for the two faintest bins, M7 and M8. The GAMA
jackknife errors likely underestimate the uncertainties in these very
small volume samples, and so this is not necessarily indicating a
discrepancy with EAGLE at low luminosities.

To show the PVD dependence on luminosity more clearly, in
Fig. 13 we show the PVD σ 12 as a function of absolute magnitude
in broad bins of projected separation. To do this, we determine the
average PVD for four sets of three adjacent separation bins, with
separation limits as given in the figure legend. When averaging, we
weight each bin by its inverse-variance, and the variance on the
average is determined in the usual way as the reciprocal of the sum
of inverse variances.

For small scales, r⊥ � 1 h−1 Mpc, corresponding to the top
three panels, the PVD for GAMA galaxies tends to decline near-
monotonically from bright to faint luminosities. The mock PVD
is much flatter, possibly even showing a small increase to fainter
luminosities. Thus, the mocks do a good job at matching the ob-
served PVD for luminous galaxies, but overpredict the PVD for
fainter objects. The same result was found by Li et al. (2007) when
comparing two previous Millennium-based semi-analytic models
(Kang et al. 2005; Croton et al. 2006) with SDSS PVD measure-

Figure 13. Pairwise velocity dispersion for GAMA galaxies (black cir-
cles connected by continuous lines) and mocks (blue squares connected by
dashed lines) as a function of absolute magnitude in bins of projected separa-
tion r⊥ as labelled. Green triangles connected by dotted lines show the PVD
for galaxies selected from a volume-limited sample with Mr < −18 mag.

ments. Li et al. (2007) show that the mocks most likely place too
many faint galaxies in massive haloes. This problem thus appears
to persist in more recent semi-analytic models. This interpretation
is reinforced by the fact that the same mock catalogue significantly
overpredicts the small-scale projected correlation function of faint
(Mr > −18 mag) galaxies (Farrow et al. 2015, fig. 11).

One should, however, be aware that the faintest galaxies can
only be seen in the very nearby Universe. Thus, if the local
volume is underdense, as has been claimed by several authors (e.g.
Busswell et al. 2004; Keenan, Barger & Cowie 2013; Whitbourn &
Shanks 2016), a paucity of local, large structures might explain the
low observed PVD and projected clustering for the faintest galax-
ies. In order to address this concern, we have defined a second,
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Figure 14. Pairwise velocity dispersions with wavenumber k in bins of absolute magnitude. Blue and green lines show direct estimates from the GALFORM

mocks and EAGLE simulation, respectively, with the 1σ error band shaded in both cases. Blue squares and black circles show Fourier-space estimates from
the mocks and GAMA galaxies, respectively. Green triangles show estimates from SDSS (Li et al. 2006). To aid visual comparison, the dotted line reproduces
the direct mock estimate for the M3 sample in the other panels.

fainter, volume-limited sample from GAMA with 0.1Mr < −18 mag
and z < 0.116. We then extract subsamples in bins of absolute
magnitude [−22, −21], [−21, −20], [−20, −19], [−19, −18]. The
galaxies in these absolute magnitude bins are visible throughout the

volume and hence will not suffer from sampling fluctuations due
to Malmquist bias. We show the PVDs from this volume-limited
sample as green triangles in Fig. 13. While the trend with lumi-
nosity is less clear than for the full GAMA sample, the results are
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broadly consistent. Unfortunately, one cannot extend this analysis
to the full luminosity range plotted due to the tiny volume within
which fainter galaxies can be seen. Note that forming a (separate)
volume-limited sample for each luminosity bin would not alleviate
sampling fluctuations.

In Fig. 14, we show the Fourier-based PVD estimate as a func-
tion of wavenumber k. From comparison with the direct mock
estimates, we conclude that these Fourier-based PVD estimates
should be reliable for moderate luminosity galaxies (bins M2–M5,
−22 � Mr � −18) over the range of scales 0.2 � k � 5 h Mpc−1.
We also show comparison results from Li et al. (2006). Given the
uncertainties, our results are broadly consistent with those of Li
et al. where we overlap, although we do measure systematically
lower PVD than Li et al. for the M4 (−20 < Mr < −19 mag) bin.

In future, we plan to investigate the dependence of the PVD on
location within the cosmic web, on stellar mass and on redshift.
We also plan to investigate improvements to the mock catalogues
to better match the luminosity-dependence of the observed galaxy
PVD, along with other observational constraints. In the longer term,
it is hoped that such measurements may be instrumental in ruling
out certain models of modified gravity.

7 C O N C L U S I O N S

We have presented measurements of the PVD for luminosity-
selected samples of galaxies from the GAMA equatorial regions,
using mock catalogues to check our estimators. GAMA’s relatively
deep flux limit, r < 19.8, and high redshift success rate, >98 per
cent, have enabled us to measure the PVD down to a factor of 10
smaller in projected separation than was possible using SDSS data
(Li et al. 2007). Our findings can be summarized as follows.

(i) In agreement with previous work (e.g. Hawkins et al. 2003),
we find that the form of the pairwise velocity distribution is much
better fit by an exponential than a Gaussian function.

(ii) The dispersion model can make reliable predictions of
the PVD in configuration space for galaxy pairs with projected
separation 0.01–10 h−1 Mpc, thus allowing detailed tests of galaxy
formation models and hydrodynamical simulations.

(iii) In Fourier space, one can reliably measure the PVD of
GAMA galaxies for wave numbers in the range 0.2–8 h Mpc−1.
This is similar to the range of scales probed by Li et al. (2007) using
SDSS data; thus the Fourier method employed here does not enable
us to exploit the small-scale fidelity of the GAMA data as well as
configuration-space methods.

(iv) For most luminosity bins, the PVD peaks at σ12 ≈
600 km s−1 at projected separations r⊥ ≈ 0.3 h−1 Mpc, although
some fainter bins show a monotonic increase in σ 12 with separation.

(v) On small scales, r⊥ � 1 h−1 Mpc, the measured PVD for
GAMA galaxies declines slightly from ≈600 km s−1 at high lu-
minosities to ≈400 km s−1 at low luminosities. This trend is not
seen at larger scales (0.8–3.3 h−1 Mpc).

(vi) While the GALFORM mocks analysed here give a similar-
amplitude PVD as the GAMA galaxies, they show very little trend
with luminosity: if anything, they predict a slightly increasing PVD
with decreasing luminosity for L∗ and fainter galaxies. Thus, the
mocks do a good job at matching the observed PVD for luminous
galaxies, but overpredict the PVD for fainter objects.
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A P P E N D I X A : C O M PA R I S O N W I T H PR E V I O U S
G A M A C L U S T E R I N G M E A S U R E M E N T S

A comparison of the projected correlation function for various sub-
samples of GAMA galaxies from this work and from Farrow et al.
(2015) is presented in Fig. A1. We select our samples using the same
redshift and luminosity limits as specified for the largest samples
in five 0.0Mr absolute magnitude bins from the top of table 2 in
Farrow et al. Agreement is excellent on all scales. We thus find
that our independently determined survey mask and radial selection

Figure A1. Comparison of the projected correlation function for various
sub-samples of GAMA galaxies. Blue circles show measurements from this
work; green squares show the comparison from Farrow et al. (2015). Both
sets of measurements have been divided by the reference power law used by
Farrow et al. in their fig. 10 (viz r0 = 5.33 h−1 Mpc, γ = 1.81).

function do not impact measurements of the projected correlation
function, on which our PVD estimates are based.

A P P E N D I X B : AC C U R AC Y O F P RO J E C T E D
A N D R E A L - S PAC E C O R R E L AT I O N F U N C T I O N
ESTIMATES

We here test how accurately one can recover the projected,
wp(r⊥), and real space, ξ r(r), correlation functions from the two-
dimensional redshift-space correlation function ξ (r⊥, r‖), making
use of the GAMA mock catalogues. Since these mock catalogues
include cosmological redshift, due purely to Hubble expansion, as
well as observed redshift, including the LOS component of pecu-
liar velocity, one can obtain a direct estimate of ξ r(r) using equa-
tion (1), with galaxy coordinates determined using cosmological
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Table B1. Testing estimates of wp(r⊥) and ξ r(r) using 26 volume-limited
mock catalogues. The first row gives the power-law parameters obtained
directly from the direction-averaged correlation function calculated in real
space, i.e. using cosmological redshifts. The remaining rows show results
obtained by integrating ξ (r⊥, r‖) up to different values of r‖max in equation
(3). The first column gives the upper integration limit, r‖max, the second and
third columns the mean and standard deviation of the recovered power-law
parameters γ and r0. The fourth column (χ2

d ) gives the χ2 residual (for 20
degrees of freedom) between the direct estimate of ξ r(r) using cosmological
redshifts, and the non-parametric estimates obtained by inverting wp(r⊥).
The fifth column (χ2

pl) gives the χ2 residual (for 11 degrees of freedom) for
the power-law fit to the non-parametric estimate.

r‖max ( h−1 Mpc) γ r0 ( h−1 Mpc) χ2
d χ2

pl

Direct 1.84 ± 0.01 4.84 ± 0.24 60
10 1.86 ± 0.01 5.09 ± 0.23 141 22
20 1.85 ± 0.02 4.95 ± 0.31 20 29
30 1.86 ± 0.02 4.82 ± 0.33 14 27
40 1.87 ± 0.02 4.85 ± 0.32 10 20
50 1.87 ± 0.02 4.85 ± 0.34 11 17
60 1.86 ± 0.03 4.86 ± 0.37 12 17
100 1.88 ± 0.03 4.67 ± 0.39 12 15

redshift and counting galaxy and random pairs as a function of total
separation.

Carrying out this procedure for each of our mock catalogues, we
obtain a real-space correlation function well-described by a power-
law ξ r(r) = (r/r0)−γ over the range of separations 0.01–5 h−1 Mpc
with parameters given in Table B1.

We then calculate the projected correlation function wp(r⊥) for
each of the mock catalogues as described in Section 3, fit a power
law over the same range of scales, and use equation (5) to find the
real-space power-law parameters r0 and γ . We next invert wp(r⊥)
using equation (4) to obtain ξ r(r) estimates, and calculate the χ2

residuals from the direct estimate. For both power-law fits and χ2

estimates, we utilize the full covariance matrices of wp(r⊥) and
ξ r(r), respectively.

Our results, obtained using different values of r‖max in equation
(3), are given in Table B1. These results show that the χ2 resid-
ual between direct and indirect estimates of ξ r(r) is minimized for
r‖max = 40 h−1 Mpc. Moreover, power-law fits to wp(r⊥) have con-
verged by this point; therefore we use r‖max = 40 h−1 Mpc when
calculating wp(r⊥) from the GAMA data.

In Fig. B1, we compare the real-space correlation function from
the mock catalogues obtained directly using the cosmological red-
shifts, and using equations (3) and (4) with r‖max = 40 h−1 Mpc.
The deprojected correlation function is systematically lower than
the directly measured one, but the bias is within the standard devi-
ation of each measurement.

A P P E N D I X C : H A M I LTO N LI N E A R IN FA L L
E QUAT I O N S

Kaiser (1987) showed that coherent infall in Fourier space leads to a
redshift-space power spectrum Ps(k) = (1 + βμ2

k)Pr(k). Hamilton
(1992) translated this into configuration space to show that the

Figure B1. Average real-space correlation function ξ r(r) measured from
26 mock catalogues using direction-averaged correlation function and cos-
mological redshifts (green squares) and estimated from projecting and
inverting the two-dimensional correlation function (equations 3 and 4
with r‖max = 40 h−1 Mpc, blue circles). Both sets of measurements have
been divided by the power-law fit to the direct ξ r(r) measurement (viz
r0 = 4.84 h−1 Mpc, γ = 1.84).

redshift-space correlation function is given by

ξ ′(r⊥, r‖) = ξ0(s)P0(μ) + ξ2(s)P2(μ) + ξ4(s)P4(μ), (C1)

where the Pl(μ) are Legendre polynomials. The harmonics of the
correlation function are given by

ξ0(s) =
(

1 + 2β

3
+ β2

5

)
ξ (r), (C2)

ξ2(s) =
(

4β

3
+ 4β2

7

)
[ξ (r) − ξ (r)], (C3)

ξ4(s) = 8β2

35

[
ξ (r) + 5

2
ξ (r) − 7

2
ξ (r)

]
, (C4)

where

ξ (r) = 3

r3

∫ r

0
ξ (r ′)r ′2dr ′, (C5)

ξ (r) = 5

r5

∫ r

0
ξ (r ′)r ′4dr ′. (C6)

For a power-law form for the correlation function, ξ (r) = (r/r0)−γ ,
equations (C2–C4) reduce to (Hawkins et al. 2003)

ξ0(s) =
(

1 + 2β

3
+ β2

5

)
ξ (r), (C7)

ξ2(s) =
(

4β

3
+ 4β2

7

) (
γ

γ − 3

)
ξ (r), (C8)

ξ4(s) = 8β2

35

[
γ (2 + γ )

(3 − γ )(5 − γ )

)
ξ (r). (C9)
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