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Abstract— Modelling traffic generated by Internet based 
multiplayer  computer  games has attracted a great deal of 
attention in the past few years. In par t this has been dr iven by a 
desire to proper ly simulate the network impact of highly 
interactive online game genres such as the first person shooter  
(FPS). Past work has dealt with packet size and packet 
interarr ival times without consideration of packet size 
autocor relations. Packet size auto-cor relation is an impor tant 
element in the creation of plausible traffic generators for  network 
simulators such as ns-2 and omnet++. In this paper  we present an 
analysis of the auto-cor relation of packet size for  Half-L ife, Half-
L ife Counterstr ike, Half-L ife 2, Half-L ife 2 Counterstr ike, Quake 
I I I  Arena and Wolfenstein Enemy Terr itory. We show that 
packet sizes appear  to be autocor related. 

Keywords- Network applications, games and services, 
Teletraffic Analysis, Traffic Engineering 

I.  INTRODUCTION 

Modeling traffic generated by Internet based multiplayer 
computer games has attracted a great deal of attention in the 
past few years [2, 4-7, 10-12, 15]. Highly interactive genres 
such as the first person shooter (FPS) are of particular interest 
to network engineers. Like voice over IP (VoIP) and other 
interactive conference-style applications, FPS games are 
generally sensitive to packet loss, jitter and high latency. FPS 
games commonly use UDP rather than TCP, and transmission 
rates reflect in-game activity without any particular regard to 
network congestion. FPS games are typically based on a client-
server model for network traffic, with thousands or tens of 
thousands of FPS servers active on the Internet at any given 
time [1]. This has motivated research community interest in 
predicting the traffic load imposed on network links by 
multiplayer FPS games. Since it is usually impractical to build 
and measure a full-size network, such analyses are usually 
investigated through simulation using statistical models created 
from the answers to the first question. Good traffic models are 
needed to ensure the simulations are useful [8]. 

Consequently, there has been a great deal of work in 
understanding traffic for the purpose of constructing simulation 
models of FPS games [1, 2, 5, 7, 10-12]. However, an 
important question so far neglected in these models relates to 
whether the sizes of successive packets are correlated or 
entirely random. If there is some form of correlation, is it 

positive where long packets tend to be followed by long 
packets and short packets tend to be followed by short packets, 
or is it negative where long packets tend to be followed by 
short packets and vice-versa? FPS traffic models developed so 
far have implicitly assumed that there is no correlation between 
packet lengths. Understanding correlation between packet 
lengths is important in the construction of realistic models. A 
succession of long packets followed by a succession of short 
packets will have a different impact on the network than a 
succession of long and short packets randomly interspersed. 
Long range traffic dependence has been a significant area of 
research for more than a decade [13] and has been shown to be 
present in many different forms of traffic. Consequently it 
seems reasonable to assume game traffic is also not entirely 
random. 

Understanding correlation between packet lengths allows us 
to predict what happens to delay and delay variation when the 
traffic is multiplexed with other types of traffic and what link 
and server capacities are necessary to meet a given grade of 
service. In the same way that web and other traffic has been 
analyzed and modeled to predict the consequences for the 
Internet, it is necessary to analyze game traffic and produce 
models that can also be used in the same way [3]. 

Traffic in the client to server direction usually consists of 
small IP packets whose size distribution varies within a narrow 
band. On the other hand, traffic in the server to client direction 
consists of much larger packets that show great variation in 
size [1]. In this paper we investigate the autocorrelation of 
server to client packet lengths from FPS games with between 2 
and 9 players. We use the public game traffic trace archives 
contained in Swinburne University of Technology’s SONG 
database [14]. We investigate the autocorrelations from six 
FPS games released between 1998 and 2005: Half-Life 
Deathmatch (HLDM), Half-Life Counterstrike (HLCS), Quake 
III Arena (Q3A), Wolfenstein Enemy Territory (ET), Half-Life 
2 Deathmatch (HL2DM) and Half-Life 2 Counterstrike 
(HL2CS). 

We show that packet lengths appear to be auto-correlated 
for all six games and for any number of players. We show that 
simple Markov chain models may satisfactorily capture the 
correlation but that some games exhibit more complex, long-
range correlations that may require more sophisticated traffic 
models. 



The rest of our paper is structured as follows. Section II 
reviews the basic network architecture and traffic patterns of 
modern FPS games. Section III discusses Server to Client 
packet length autocorrelation. Section IV presents a number of 
autocorrelation plots from the six FPS games we tested. 
Section V shows how autocorrelation of a Markov process can 
be captured in a Markov chain transition matrix and Section VI 
concludes the paper. 

II. FIRST PERSON SHOOTER GAMES 

In this section we review underlying reasons for the 
network traffic generated by modern FPS games. Readers 
familiar with FPS games may skip to section 3. 

A. Client-server Architecture 

Multiplayer online games have an underlying requirement 
that game-state information is shared amongst all players in 
something close to real-time. Each game client acts as an 
interface between the local human player and the virtual game-
world within which the player interacts with other players. In 
principle clients might be designed to communicate directly 
with each other in a peer-to-peer fashion. In practice, most FPS 
games utilize a client-server model (including the six examples 
presented in this paper). Every client’ s actions are sent in short 
messages to the server, and every client is regularly updated 
with the actions taken by other players. The server implements 
the game-world’s state machine, regulating client actions in 
order to maintain the game’s internal rules and minimize 
opportunities for cheating. 

B. Game-state Updates 

A typical FPS game involves an ISP or game enthusiast 
hosting a game server on the Internet, and players joining the 
game using client software running on a home PC or IP-
enabled game console. (In reality the game could also be run 
on a private, local IP network – commonly referred to as ‘LAN 
parties’ . For the purpose of this paper we focus on the case 
where both the game server and clients are all on the public 
Internet.) The game client updates and renders the game’s 
virtual world on screen based on regular messages received 
from the game server. User inputs to the game client (actions 
such as walking, looking around or shooting weapons) are 
passed to the game server to be verified and propagated to 
other players. 

Game-state updates must occur in a timely and prompt 
manner, with minimal bias or favor towards any particular 
player. Timeliness is achieved by sending a unicast IP packet 
to each client every Y milliseconds (ms). Y is typically in the 
range of 30 to 60ms – for example, the default update interval 
is 60ms for HLDM, 50ms for Q3A and 33ms for HL2DM. To 
minimize bias, update packets to different clients are sent in 
back-to-back bursts (for example, a four-player Q3A game 
server would default to sending bursts of four back-to-back 
update packets every 50ms, one IP packet to each active 
client). Each client will receive an update packet every Y ms 
regardless of how much in-game activity is occurring. The 
choice of Y for a given game depends on the available network 
capacity (longer Y for lower bandwidth demand) versus player 

expectations of smooth interactivity (shorter Y for more 
frequent updates). 

Clients send their own updates to the game server at less 
precisely defined intervals, often influenced by the client’s 
processor speed, graphics card settings and player activity. 
Typical intervals vary from 10ms to over 40ms [1]. 

C. Traffic Compression 

Modern FPS games actively compress server to client data 
to maximize playability over a wide range of network 
conditions and consumer access technologies. Simple 
compression involves the use of smallest possible bit-fields to 
carry variable data. More complex compression involves the 
server only sending information to a client about regions of the 
virtual world currently visible to the client. Since every client 
has a different perspective on the virtual world the server 
effectively customizes every client update packet for the client 
to which it is sent.  

Packets from server to client exhibit substantial variations 
in length as in-game activity surrounding a given client varies 
with time. For example, during active play of Q3A for a 9-
player game, packets from server to client range between 32 
and 960 bytes with 90% being between 98 and 460 bytes. For 
HL2DM packet lengths during active play are between 16 and 
1400 bytes with 90% between 95 and 501 bytes. 

A typical human can trigger only a limited number of 
events in any given 10ms to 40ms window. Consequently 
packets from client to server are typically much smaller than 
the packets from server to client, and exhibit very limited 
variation in size. For example, client to server IP payload 
lengths range between 25 and 45 bytes for Q3A during active 
game play, with 90% of all packets between 28 and 38 bytes 
long. For HL2DM, packet lengths vary between 36 and 99 with 
90% of all packets being between 57 and 75 bytes long. 

D. Phases of game-play and game traffic 
There are roughly three different phases of interaction 

between client and server that impact on network traffic. 

• A client initially connects to the server, and receives data 
from the server to update the client’s local virtual world 
information (map definitions, avatar ‘ skins’ , etc) 

• The client is connected to the server and game is in 
progress (players running around shooting and interacting 
with each other) 

• The client is connected to the server, and the game has 
been paused as the server changes maps or restarts a 
previous map (after someone wins the previous ‘ round’ ) 

Tight control over network jitter and packet loss is really 
only required during active game-play. During periods of 
player inactivity (initial client connection and server changing 
maps) the network can exhibit fluctuating latency, jitter and 
packet loss without upsetting the player. Our analysis is of data 
obtained during active game-play. 



III. SERVER TO CLIENT PACKET LENGTH 

AUTOCORRELATION 

In this section we discuss the need for empirical 
experiments to model basic server to client packet traffic, and 
introduce the autocorrelation plot as a way of measuring 
correlation between successive packet lengths. 

A. Modeling server to client traffic from empirical data 

A primary motive for modeling FPS network traffic is to 
assist in provisioning the network to provide a quality game 
playing experience. Therefore we simplify the modeling 
process by focusing on traffic patterns that exist during active 
game play. We further focus on server to client packet size 
distributions, as client to server packet length distributions are 
usually quite simple. 

In principle one could estimate the correlation of server to 
client packet sizes by applying models of player mobility and 
behavior onto a given map. Simulated interactions would lead 
to simulated in-game events and hence simulated server to 
client packets. However, such an approach is likely to be rather 
complex, and begs the question of where to find realistic player 
mobility models applicable to each map. 

In practice it is easier to simply gather server to client 
packet statistics while observing actual games in progress. 
Trials can be run and monitored for specific maps, and specific 
numbers of players. The resulting server to client packet size 
distributions will reflect each player’s natural movements and 
the player-player interactions induced by the particular map. 

B. Measuring packet length autocorrelation 

A purely random sequence of packet lengths will exhibit 
near zero correlation with successive packet lengths whereas if 
the traffic is not random the correlation between successive 
packet lengths will be significantly greater than zero. 

Autocorrelation plots are commonly used for investigating 
the randomness or otherwise of a data set. An autocorrelation 
plot shows the autocorrelations between the data for varying 
packet shifts (often referred to as ‘ lag’ ). 

The simplest autocorrelation models (apart from purely 
random) are Markov models. In Markov models prediction of 
the next value (in this case packet length) is based solely on the 
current value. An indication of whether or not traffic exhibits 
Markov characteristics is the rate at which correlation between 
two samples decreases as the distance between the samples 
increases [13]. For a Markov process, the correlation between 
two samples decreases exponentially as the distance (or lag) 
time between the samples increases. For a Process showing 
longer range dependence the correlation decreases more 
slowly. 

IV. AUTOCORRELATION PLOTS 

In this section we show autocorrelation plots for HLDM, 
HLCS, Q3A, ET, HL2DM, and HL2CS. The plots show 
autocorrelation spanning 250 packets, corresponding to 
approximately 5 seconds of game play. For reasons of space 
we show only 2- and 9- player games. Each plot contains both 

the empirically derived autocorrelation function and a best-fit 
exponential function. If the autocorrelation function decays 
more quickly than the exponential function then that is some 
evidence of randomness. If the autocorrelation function is 
approximately exponential, then that is evidence that the packet 
length autocorrelation can be captured with a Markov model. If 
the autocorrelation function decays much more slowly than the 
exponential function then that is evidence of a more complex, 
long rang dependence.  

All plots suggest that the games exhibit autocorrelation. 
Whether or not Markov models are adequate will depend on 
the purpose of the simulation but from the plots it appears that 
Q3A, ET, HL2DM and HL2CS can be adequately modeled by 
Markov methods. HLDM and HLCS appear to exhibit longer-
range dependence that may require more complex models. 

A. Half-Life 
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Figure 1. Half-L ife Deathmatch empir ical and exponential 2-
player  autocor relation functions 
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Figure 2. Half-L ife Deathmatch empir ical and exponential 9-

player  autocor relation functions 

B. Half-Life Counterstrike 
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Figure 3. Half-L ife Counterstr ike empir ical and exponential 2-

player  autocor relation functions 
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Figure 4. Half-L ife Counterstr ike empir ical and exponential 9-

player  autocor relation functions 

C. Quake III Arena 
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Figure 5. Quake I I I  Arena empir ical and exponential 2-player  

autocor relation functions 
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Figure 6. Quake I I I  Arena empir ical and exponential 9-player  

autocor relation functions 

D. Wolfenstein Enemy Territory 
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Figure 7. Wolfenstein Enemy Terr itory empir ical and 

exponential 2-player  autocorrelation functions 
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Figure 8. Wolfenstein Enemy Terr itory empir ical and 

exponential 9-player  autocorrelation functions 

E. Half-Life 2 
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Figure 9. Half-L ife 2 Deathmatch empir ical and exponential 2-

player  autocor relation functions 
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Figure 10. Half-L ife 2 Deathmatch empir ical and exponential 9-

player  autocor relation functions 

F. Half-Life 2 Counterstrike 
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Figure 11. Half-L ife 2 Counterstr ike empir ical and exponential 2- 

player  autocor relation functions 
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Figure 12. Half-L ife 2 Counterstr ike empir ical and exponential 9- 
player  autocor relation functions 

V. MARKOV CHAIN REPRESENTATION OF 

AUTOCORRELATION 

In the previous section we have shown that there is 
evidence of autocorrelation in packet lengths generated by an 
FPS game. We now give a brief outline of how such 
autocorrelation can be implemented in a simulation. We will 
illustrate this using the HL2CS 9-player game whose 
autocorrelation function is shown in Figure 12. From the 
autocorrelation function we can see that the autocorrelation 
function is approximately exponential and so can reasonably be 
modeled with a Markov process. Because it is easy to 
implement in a simulation we will illustrate how this data can 
be implemented with a discrete time Markov Chain [9].  

A Markov chain is a sequence of random variables, X1, X2, 
X3,… with the property that the future state is dependent only 
on the current state. That is:  

)|Pr(,...),|Pr( 111 ijnknijn xXnxXxXxXnxX ====== +−+  

Where the number of states xi is finite, the conditional 
probabilities can be represented by a transition matrix T. If the 
process is in state i, the probability of the next state being state 
j  is given by the element Ti, j 

From the data used to construct the autocorrelation plot for 
HL2CS, we can construct the transition matrix T of conditional 
probabilities. The transition matrix for the 9-player Half-Life 2 
Counterstrike game is shown in the following matrix.  

�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�

�

�

=

08.008.027.019.008.008.008.015.000.0

07.016.007.020.009.018.011.013.000.0

00.003.035.009.005.006.025.016.000.0

00.000.001.034.011.010.019.016.006.0

00.000.001.005.020.016.038.018.000.0

00.000.000.001.003.029.043.022.001.0

00.000.000.000.001.006.057.035.000.0

00.000.000.000.000.001.009.085.004.0

00.000.000.000.000.000.001.017.00.82

T

 

In this matrix we have ‘binned’  packet lengths into 0 to 50 
bytes, 51 to 100, 101 to 150 and so on. The matrix can be used 
to generate correlated output by going from bin i to bin j  with 
probability T i, j and randomly choosing a packet length in the 
range represented by that bin. By binning the data we avoid 
over-fitting the data set and keep the transition matrix to a 
manageable size.  

VI. CONCLUSION 

Previous work modeling server to client FPS traffic has 
typically made a simplifying implicit assumption that packet 
lengths are uncorrelated. We have shown this assumption to be 
of doubtful validity. Empirical evidence from six modern FPS 
games, with varying numbers of players, reveals packet length 
autocorrelation. We have shown how this autocorrelation can 
be captured in a Markov Chain model.  

Future work will involve investigating the effectiveness or 
otherwise of Markov process models in capturing the nature of 
this autocorrelation. 
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