
Measuring the auto-correlation of server to client
traffic in First Person Shooter games

Philip Branch
Centre for Advanced Internet Architecture

Swinburne University of Technology
Melbourne, Australia
pbranch@swin.edu.au

Grenville Armitage
Centre for Advanced Internet Architecture

Swinburne University of Technology
Melbourne, Australia

garmitage@swin.edu.au

Abstract— Modelling traffic generated by Internet based
multiplayer computer games has attracted a great deal of
attention in the past few years. In par t this has been dr iven by a
desire to proper ly simulate the network impact of highly
interactive online game genres such as the first person shooter
(FPS). Past work has dealt with packet size and packet
interarr ival times without consideration of packet size
autocor relations. Packet size auto-cor relation is an impor tant
element in the creation of plausible traffic generators for network
simulators such as ns-2 and omnet++. In this paper we present an
analysis of the auto-cor relation of packet size for Half-L ife, Half-
L ife Counterstr ike, Half-L ife 2, Half-L ife 2 Counterstr ike, Quake
I I I Arena and Wolfenstein Enemy Terr itory. We show that
packet sizes appear to be autocor related.

Keywords- Network applications, games and services,
Teletraffic Analysis, Traffic Engineering

I. INTRODUCTION

Modeling traffic generated by Internet based multiplayer
computer games has attracted a great deal of attention in the
past few years [2, 4-7, 10-12, 15]. Highly interactive genres
such as the first person shooter (FPS) are of particular interest
to network engineers. Like voice over IP (VoIP) and other
interactive conference-style applications, FPS games are
generally sensitive to packet loss, jitter and high latency. FPS
games commonly use UDP rather than TCP, and transmission
rates reflect in-game activity without any particular regard to
network congestion. FPS games are typically based on a client-
server model for network traffic, with thousands or tens of
thousands of FPS servers active on the Internet at any given
time [1]. This has motivated research community interest in
predicting the traffic load imposed on network links by
multiplayer FPS games. Since it is usually impractical to build
and measure a full-size network, such analyses are usually
investigated through simulation using statistical models created
from the answers to the first question. Good traffic models are
needed to ensure the simulations are useful [8].

Consequently, there has been a great deal of work in
understanding traffic for the purpose of constructing simulation
models of FPS games [1, 2, 5, 7, 10-12]. However, an
important question so far neglected in these models relates to
whether the sizes of successive packets are correlated or
entirely random. If there is some form of correlation, is it

positive where long packets tend to be followed by long
packets and short packets tend to be followed by short packets,
or is it negative where long packets tend to be followed by
short packets and vice-versa? FPS traffic models developed so
far have implicitly assumed that there is no correlation between
packet lengths. Understanding correlation between packet
lengths is important in the construction of realistic models. A
succession of long packets followed by a succession of short
packets will have a different impact on the network than a
succession of long and short packets randomly interspersed.
Long range traffic dependence has been a significant area of
research for more than a decade [13] and has been shown to be
present in many different forms of traffic. Consequently it
seems reasonable to assume game traffic is also not entirely
random.

Understanding correlation between packet lengths allows us
to predict what happens to delay and delay variation when the
traffic is multiplexed with other types of traffic and what link
and server capacities are necessary to meet a given grade of
service. In the same way that web and other traffic has been
analyzed and modeled to predict the consequences for the
Internet, it is necessary to analyze game traffic and produce
models that can also be used in the same way [3].

Traffic in the client to server direction usually consists of
small IP packets whose size distribution varies within a narrow
band. On the other hand, traffic in the server to client direction
consists of much larger packets that show great variation in
size [1]. In this paper we investigate the autocorrelation of
server to client packet lengths from FPS games with between 2
and 9 players. We use the public game traffic trace archives
contained in Swinburne University of Technology’s SONG
database [14]. We investigate the autocorrelations from six
FPS games released between 1998 and 2005: Half-Life
Deathmatch (HLDM), Half-Life Counterstrike (HLCS), Quake
III Arena (Q3A), Wolfenstein Enemy Territory (ET), Half-Life
2 Deathmatch (HL2DM) and Half-Life 2 Counterstrike
(HL2CS).

We show that packet lengths appear to be auto-correlated
for all six games and for any number of players. We show that
simple Markov chain models may satisfactorily capture the
correlation but that some games exhibit more complex, long-
range correlations that may require more sophisticated traffic
models.

The rest of our paper is structured as follows. Section II
reviews the basic network architecture and traffic patterns of
modern FPS games. Section III discusses Server to Client
packet length autocorrelation. Section IV presents a number of
autocorrelation plots from the six FPS games we tested.
Section V shows how autocorrelation of a Markov process can
be captured in a Markov chain transition matrix and Section VI
concludes the paper.

II. FIRST PERSON SHOOTER GAMES

In this section we review underlying reasons for the
network traffic generated by modern FPS games. Readers
familiar with FPS games may skip to section 3.

A. Client-server Architecture

Multiplayer online games have an underlying requirement
that game-state information is shared amongst all players in
something close to real-time. Each game client acts as an
interface between the local human player and the virtual game-
world within which the player interacts with other players. In
principle clients might be designed to communicate directly
with each other in a peer-to-peer fashion. In practice, most FPS
games utilize a client-server model (including the six examples
presented in this paper). Every client’ s actions are sent in short
messages to the server, and every client is regularly updated
with the actions taken by other players. The server implements
the game-world’s state machine, regulating client actions in
order to maintain the game’s internal rules and minimize
opportunities for cheating.

B. Game-state Updates

A typical FPS game involves an ISP or game enthusiast
hosting a game server on the Internet, and players joining the
game using client software running on a home PC or IP-
enabled game console. (In reality the game could also be run
on a private, local IP network – commonly referred to as ‘LAN
parties’ . For the purpose of this paper we focus on the case
where both the game server and clients are all on the public
Internet.) The game client updates and renders the game’s
virtual world on screen based on regular messages received
from the game server. User inputs to the game client (actions
such as walking, looking around or shooting weapons) are
passed to the game server to be verified and propagated to
other players.

Game-state updates must occur in a timely and prompt
manner, with minimal bias or favor towards any particular
player. Timeliness is achieved by sending a unicast IP packet
to each client every Y milliseconds (ms). Y is typically in the
range of 30 to 60ms – for example, the default update interval
is 60ms for HLDM, 50ms for Q3A and 33ms for HL2DM. To
minimize bias, update packets to different clients are sent in
back-to-back bursts (for example, a four-player Q3A game
server would default to sending bursts of four back-to-back
update packets every 50ms, one IP packet to each active
client). Each client will receive an update packet every Y ms
regardless of how much in-game activity is occurring. The
choice of Y for a given game depends on the available network
capacity (longer Y for lower bandwidth demand) versus player

expectations of smooth interactivity (shorter Y for more
frequent updates).

Clients send their own updates to the game server at less
precisely defined intervals, often influenced by the client’s
processor speed, graphics card settings and player activity.
Typical intervals vary from 10ms to over 40ms [1].

C. Traffic Compression

Modern FPS games actively compress server to client data
to maximize playability over a wide range of network
conditions and consumer access technologies. Simple
compression involves the use of smallest possible bit-fields to
carry variable data. More complex compression involves the
server only sending information to a client about regions of the
virtual world currently visible to the client. Since every client
has a different perspective on the virtual world the server
effectively customizes every client update packet for the client
to which it is sent.

Packets from server to client exhibit substantial variations
in length as in-game activity surrounding a given client varies
with time. For example, during active play of Q3A for a 9-
player game, packets from server to client range between 32
and 960 bytes with 90% being between 98 and 460 bytes. For
HL2DM packet lengths during active play are between 16 and
1400 bytes with 90% between 95 and 501 bytes.

A typical human can trigger only a limited number of
events in any given 10ms to 40ms window. Consequently
packets from client to server are typically much smaller than
the packets from server to client, and exhibit very limited
variation in size. For example, client to server IP payload
lengths range between 25 and 45 bytes for Q3A during active
game play, with 90% of all packets between 28 and 38 bytes
long. For HL2DM, packet lengths vary between 36 and 99 with
90% of all packets being between 57 and 75 bytes long.

D. Phases of game-play and game traffic
There are roughly three different phases of interaction

between client and server that impact on network traffic.

• A client initially connects to the server, and receives data
from the server to update the client’s local virtual world
information (map definitions, avatar ‘ skins’ , etc)

• The client is connected to the server and game is in
progress (players running around shooting and interacting
with each other)

• The client is connected to the server, and the game has
been paused as the server changes maps or restarts a
previous map (after someone wins the previous ‘ round’)

Tight control over network jitter and packet loss is really
only required during active game-play. During periods of
player inactivity (initial client connection and server changing
maps) the network can exhibit fluctuating latency, jitter and
packet loss without upsetting the player. Our analysis is of data
obtained during active game-play.

III. SERVER TO CLIENT PACKET LENGTH

AUTOCORRELATION

In this section we discuss the need for empirical
experiments to model basic server to client packet traffic, and
introduce the autocorrelation plot as a way of measuring
correlation between successive packet lengths.

A. Modeling server to client traffic from empirical data

A primary motive for modeling FPS network traffic is to
assist in provisioning the network to provide a quality game
playing experience. Therefore we simplify the modeling
process by focusing on traffic patterns that exist during active
game play. We further focus on server to client packet size
distributions, as client to server packet length distributions are
usually quite simple.

In principle one could estimate the correlation of server to
client packet sizes by applying models of player mobility and
behavior onto a given map. Simulated interactions would lead
to simulated in-game events and hence simulated server to
client packets. However, such an approach is likely to be rather
complex, and begs the question of where to find realistic player
mobility models applicable to each map.

In practice it is easier to simply gather server to client
packet statistics while observing actual games in progress.
Trials can be run and monitored for specific maps, and specific
numbers of players. The resulting server to client packet size
distributions will reflect each player’s natural movements and
the player-player interactions induced by the particular map.

B. Measuring packet length autocorrelation

A purely random sequence of packet lengths will exhibit
near zero correlation with successive packet lengths whereas if
the traffic is not random the correlation between successive
packet lengths will be significantly greater than zero.

Autocorrelation plots are commonly used for investigating
the randomness or otherwise of a data set. An autocorrelation
plot shows the autocorrelations between the data for varying
packet shifts (often referred to as ‘ lag’).

The simplest autocorrelation models (apart from purely
random) are Markov models. In Markov models prediction of
the next value (in this case packet length) is based solely on the
current value. An indication of whether or not traffic exhibits
Markov characteristics is the rate at which correlation between
two samples decreases as the distance between the samples
increases [13]. For a Markov process, the correlation between
two samples decreases exponentially as the distance (or lag)
time between the samples increases. For a Process showing
longer range dependence the correlation decreases more
slowly.

IV. AUTOCORRELATION PLOTS

In this section we show autocorrelation plots for HLDM,
HLCS, Q3A, ET, HL2DM, and HL2CS. The plots show
autocorrelation spanning 250 packets, corresponding to
approximately 5 seconds of game play. For reasons of space
we show only 2- and 9- player games. Each plot contains both

the empirically derived autocorrelation function and a best-fit
exponential function. If the autocorrelation function decays
more quickly than the exponential function then that is some
evidence of randomness. If the autocorrelation function is
approximately exponential, then that is evidence that the packet
length autocorrelation can be captured with a Markov model. If
the autocorrelation function decays much more slowly than the
exponential function then that is evidence of a more complex,
long rang dependence.

All plots suggest that the games exhibit autocorrelation.
Whether or not Markov models are adequate will depend on
the purpose of the simulation but from the plots it appears that
Q3A, ET, HL2DM and HL2CS can be adequately modeled by
Markov methods. HLDM and HLCS appear to exhibit longer-
range dependence that may require more complex models.

A. Half-Life

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Lag (packets)

A
ut

oc
or

re
la
tio

n
(n

or
m

al
is
ed

)

Empirical
Exponential

Figure 1. Half-L ife Deathmatch empir ical and exponential 2-
player autocor relation functions

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Lag (packets)

A
ut

oc
or

re
la

tio
n

(n
or

m
al

is
ed

)

Empirical
Exponential

Figure 2. Half-L ife Deathmatch empir ical and exponential 9-

player autocor relation functions

B. Half-Life Counterstrike

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Lag (packets)

A
ut

oc
or

re
la

tio
n

(n
or

m
al

is
ed

)

Empirical
Exponential

Figure 3. Half-L ife Counterstr ike empir ical and exponential 2-

player autocor relation functions

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Lag (packets)

A
ut

oc
or

re
la
tio

n
(n

or
m

al
is
ed

)

Empirical
Exponential

Figure 4. Half-L ife Counterstr ike empir ical and exponential 9-

player autocor relation functions

C. Quake III Arena

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Lag (packets)

A
ut

oc
or

re
la

tio
n

(n
or

m
al

is
ed

)

Empirical
Exponential

Figure 5. Quake I I I Arena empir ical and exponential 2-player

autocor relation functions

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Lag (packets)

A
ut

oc
or

re
la

tio
n

(n
or

m
al

is
ed

)

Empirical
Exponential

Figure 6. Quake I I I Arena empir ical and exponential 9-player

autocor relation functions

D. Wolfenstein Enemy Territory

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Lag (packets)

A
ut

oc
or

re
la

tio
n

(n
or

m
al

is
ed

)

Empirical
Exponential

Figure 7. Wolfenstein Enemy Terr itory empir ical and

exponential 2-player autocorrelation functions

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Lag (Packets)

A
ut

oc
or

re
la

tio
n

(n
or

m
al

is
ed

)

Empirical
Exponential

Figure 8. Wolfenstein Enemy Terr itory empir ical and

exponential 9-player autocorrelation functions

E. Half-Life 2

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Lag (packets)

A
ut

oc
or

re
la

tio
n

(n
or

m
al

is
ed

)

Empirical
Exponential

Figure 9. Half-L ife 2 Deathmatch empir ical and exponential 2-

player autocor relation functions

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Lag (packets)

A
ut

oc
or

re
la

tio
n

(n
or

m
al

is
ed

)

Empirical
Exponential

Figure 10. Half-L ife 2 Deathmatch empir ical and exponential 9-

player autocor relation functions

F. Half-Life 2 Counterstrike

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Lag (packets)

A
ut

oc
or

re
la

tio
n

(n
or

m
al

is
ed

)

Empirical
Exponential

Figure 11. Half-L ife 2 Counterstr ike empir ical and exponential 2-

player autocor relation functions

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Lag (packets)

A
ut

oc
or

re
la

tio
n

(n
or

m
al

is
ed

)

Empirical
Exponential

Figure 12. Half-L ife 2 Counterstr ike empir ical and exponential 9-
player autocor relation functions

V. MARKOV CHAIN REPRESENTATION OF

AUTOCORRELATION

In the previous section we have shown that there is
evidence of autocorrelation in packet lengths generated by an
FPS game. We now give a brief outline of how such
autocorrelation can be implemented in a simulation. We will
illustrate this using the HL2CS 9-player game whose
autocorrelation function is shown in Figure 12. From the
autocorrelation function we can see that the autocorrelation
function is approximately exponential and so can reasonably be
modeled with a Markov process. Because it is easy to
implement in a simulation we will illustrate how this data can
be implemented with a discrete time Markov Chain [9].

A Markov chain is a sequence of random variables, X1, X2,
X3,… with the property that the future state is dependent only
on the current state. That is:

)|Pr(,...),|Pr(111 ijnknijn xXnxXxXxXnxX ====== +−+

Where the number of states xi is finite, the conditional
probabilities can be represented by a transition matrix T. If the
process is in state i, the probability of the next state being state
j is given by the element Ti, j

From the data used to construct the autocorrelation plot for
HL2CS, we can construct the transition matrix T of conditional
probabilities. The transition matrix for the 9-player Half-Life 2
Counterstrike game is shown in the following matrix.

�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�

�

�

=

08.008.027.019.008.008.008.015.000.0

07.016.007.020.009.018.011.013.000.0

00.003.035.009.005.006.025.016.000.0

00.000.001.034.011.010.019.016.006.0

00.000.001.005.020.016.038.018.000.0

00.000.000.001.003.029.043.022.001.0

00.000.000.000.001.006.057.035.000.0

00.000.000.000.000.001.009.085.004.0

00.000.000.000.000.000.001.017.00.82

T

In this matrix we have ‘binned’ packet lengths into 0 to 50
bytes, 51 to 100, 101 to 150 and so on. The matrix can be used
to generate correlated output by going from bin i to bin j with
probability T i, j and randomly choosing a packet length in the
range represented by that bin. By binning the data we avoid
over-fitting the data set and keep the transition matrix to a
manageable size.

VI. CONCLUSION

Previous work modeling server to client FPS traffic has
typically made a simplifying implicit assumption that packet
lengths are uncorrelated. We have shown this assumption to be
of doubtful validity. Empirical evidence from six modern FPS
games, with varying numbers of players, reveals packet length
autocorrelation. We have shown how this autocorrelation can
be captured in a Markov Chain model.

Future work will involve investigating the effectiveness or
otherwise of Markov process models in capturing the nature of
this autocorrelation.

ACKNOWLEDGMENT

This work was partly supported by the Smart Internet
Cooperative Research Centre http://www.smartinternet.com.au

REFERENCES

[1] Armitage, G., Claypoole, M. and Branch, P., "Networking and Online
Games : Understanding and Engineering Multiplayer Internet Games,"
John Wiley and Sons Ltd, Chichester, England, 2006.

[2] Borella, M., "Source models of network game traffic," Computer
Communications, 23 (4). 403-410.

[3] Cunha, C., Bestavros, A. and Crovella, M., "Characteristics of WWW
Client-based Traces," Boston University Technical Report, 19951995

[4] Farber, J., "Network game traffic modelling," in Proc of the first ACM
workshop on network and system support for games, (Braunschweig,
Germany, April 2002).

[5] Farber, J., "Traffic Modelling for Fast Action Network Games,"
Multimedia Tools and Applications, 23 (1). 31-46.

[6] Feng, W., Chang, F., Feng, W. and Walpole, J., "Provisioning on-line
games: a traffic analysis of a busy Counter-Strike server," in Proc. of
SIGCOMM Internet Measurement Workshop, (Marseille, France,
November 2002).

[7] Feng, W.-C., Chang, F., Feng, W.-C. and Walpole, J., "A traffic
characterization of popular on-line games," IEEE/ACM Transactions on
Networking, 13 (3).

[8] Floyd, S. and Kohler, E., "Internet Research Needs Better Models," in
First Workshop on Hot Topics in Networks, (Princeton, New Jersey, 28-
29 October).

[9] Kemeny, J., Knapp, A. and Snell, J., "Denumerable Markov Chains,"
von-Nostrand, Princetone, N. J., 1976.

[10] Lang, T. and Armitage, G., "A ns2 model for the Xbox system link game
HALO," in Proc. Australian Telecommunications Networks and
Applications Conference, (Melbourne, Australia, December 2003).

[11] Lang, T., Armitage, G., Branch, P. and Choo, H., "A synthetic traffic
model for Half-Life," in Proc. of the Australian Telecommunications
Network and Applications Conference, (Melbourne, December 2003).

[12] Lang, T., Branch, P. and Armitage, G., "A synthetic model for Quake III
traffic," in Proc. ACM SIGCHI Advances in Computer Entertainment
(ACE2004), (Singapore, June 2004).

[13] Paxson, V., "Empirically derived analytic models of wide-area TCP
connections," IEEE/ACM Transactions on Networking, 2 (4). 316-336.

[14] Swinburne University of Technology, "Simulating Online Network
Games (SONG) database," 2006 http://caia.swin.edu.au/sitcrc, 27
July2006

[15] Zander, S. and Armitage, G., "A traffic model for the XBOX game Halo
2," in 15th ACM International Workshop on Network and Operating
System Support for Digital Audio and Video (NOSSDAV 2005),
(Washington, June 2005).

