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Ensuring Cloud data reliability with minimum 
replication by proactive replica checking 

Wenhao Li, Yun Yang (IEEE Senior Member), Dong Yuan (IEEE Member) 

Abstract — Data reliability and storage costs are two primary concerns for current Cloud storage systems. To ensure data 

reliability, the widely used multi-replica (typically three) replication strategy in current Clouds incurs a huge extra storage 

consumption, resulting in a huge storage cost for data-intensive applications in the Cloud in particular. In order to reduce the 

Cloud storage consumption while meeting the data reliability requirement, in this paper we present a cost-effective data reliability 

management mechanism named PRCR based on a generalized data reliability model. By using a proactive replica checking 

approach, while the running overhead for PRCR is negligible, PRCR ensures reliability of the massive Cloud data with the 

minimum replication, which can also serve as a cost effectiveness benchmark for replication based approaches. Our simulation 

indicates that, compared with the conventional 3-replica strategy, PRCR can reduce from one-third to two-thirds of the Cloud 

storage space consumption, hence significantly lowering the storage cost in a Cloud. 

Index Terms — minimum data replication, proactive replica checking, data reliability, cost-effective storage, Cloud computing 

——————————      —————————— 

1 INTRODUCTION

HE size of Cloud storage is expanding at a dramatic 
speed. It is estimated that by 2015 the data stored in 

the Cloud will reach 0.8 ZB (i.e., 0.8*1021 Bytes or 
800,000,000 TB), while even more data is “touched” by 
the Cloud within the data lifecycle [8]. Meanwhile, with 
the development of the Cloud computing paradigm, 
Cloud-based applications have put forward a higher 
demand for Cloud storage. While the requirement of data 
reliability should be met in the first place, data in the 
Cloud needs to be stored in a highly cost-effective 
manner. 

Reliability is defined in standard TL9000 [4] as “the 
ability of an item to perform a required function under 
stated conditions for a stated time period”. For data 
reliability specifically, it can be understood as ”the 
probability of the data surviving in the system for a given 
period of time” [12]. In the area of distributed data 
storage, because of the inevitable occurrence of disk 
failures, data reliability has become one of the most 
important metrics of the storage system, indicating the 
ability to keep data consistent. In modern Clouds, data 
replication is the most commonly applied approach for 
providing data reliability assurance, which creates and 
stores multiple replicas of the data to reduce the 
probability of data loss. For example, storage systems 
such as Amazon S3 [1], Google File System [10] and 
Hadoop Distributed File System [5] all adopt similar data 
replication strategies that we call the conventional 3-
replica strategy, in which three replicas, i.e., three data 
copies including the original data, are stored for all data. 
However, due to the accelerating growth of Cloud data, 
current replication-based data reliability management 
has become a bottleneck for the development of Cloud 

data storage, because these data replication strategies are 
consuming too much extra storage space, thus incurring a 
huge storage cost. 

In this paper, our research focuses on minimizing the 
Cloud storage consumption by minimizing data 
replication while meeting the data reliability 
requirement. This paper presents three major 
contributions. 

Firstly, through analysis of existing studies, a 
generalized data reliability model for multiple replicas is 
proposed, in which the data reliability with variable disk 
failure rates is well investigated. Compared with much 
research that assumes a constant disk failure rate [2], [12], 
[20], our generalized data reliability model is able to 
better describe data reliability over a wide range of disk 
failure rate patterns, hence data reliability management 
over both virtual  and physical disks is feasible. 

Secondly, to minimize replicas, and therefore the 
storage consumption in the Cloud, a cost-effective data 
reliability management mechanism named PRCR is 
presented. This mechanism is designed to be 
implemented by the Cloud storage providers in order to 
increase the profit and/or the competitiveness by cost 
saving, as well as serve as, a benchmark for storage 
consumption of different approaches. PRCR could also 
potentially benefit Cloud storage users with cheaper 
storage services without jeopardizing data reliability. By 
applying PRCR, the Cloud data can be stored with the 
minimum replication while meeting the reliability 
requirement of Cloud data. PRCR has the following 
features:  
1. It is able to ensure the data reliability of storage 

devices with variable disk failure rates. 
2. It is able to manage large amounts of data in the 

Cloud with a negligible running cost. 
3. It provides data reliability management in a highly 
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cost-effective way. By applying PRCR, a wide range 
of data reliability assurance can be provided with the 
minimum number of replicas, which is no more than 
two. 
Thirdly, as a direct consequence of PRCR, the 

minimum replication benchmark with any data reliability 
requirement can be provided. This benchmark can be 
used for evaluating various replication-based data 
storage approaches. By comparing the minimum 
replication benchmark with the replication level of a data 
storage approach, the cost effectiveness of the data 
storage approach can be clearly demonstrated. 

This paper is one of a series of articles that towards 
reducing data storage consumption in the Cloud [17], 
[16], [23]. Prior to this paper, our preliminary version of 
this research was published in [16]. In that paper, we 
only investigated a special case of the data reliability 
model and PRCR by assuming that the disk failure rate is 
a constant. Compared to [16], this paper has substantially 
extended the data reliability model, PRCR mechanism 
and evaluation to demonstrate that the data reliability 
management with a variable disk failure rate is feasible 
and explicitly presents the minimum replication 
benchmark. In addition, existing research on how the 
variable disk failure rate affects distributed replicas is 
very limited. This paper is one of the few works 
investigating the data replication techniques with a 
variable disk failure rate. 

The rest of the paper is organized as follows. The 
related work on data reliability, data replication and cost-
effective data storage is addressed in Section 2. The 
problem analysis is stated in Section 3. The generalized 
data reliability model is proposed in Section 4. The idea 
of PRCR and its high level design are presented in 
Section 5. The detailed design for PRCR, including the 
working process and optimization algorithms, is 
described in Section 6. The evaluation of PRCR is 
discussed in Section 7. Conclusions and future work are 
summarized in Section 8. 

2 RELATED WORK 

Data reliability has always been a key issue in the field 
of distributed data storage. Considering factors that are 
due to the storage system itself, permanent disk failure 
caused by non-human factors is considered to be the 
major reason for data loss. The reliability of disks has 
been investigated for decades in both academia and 
industry [7], [20], [22]. Most of these studies have 
assumed an exponential data reliability model, in which 
the failure rate of each disk is a constant. For example, 
recent studies that analyze data reliability with Markov 
chain models assume that the failure rates of all disks in 
the storage system are the same [13], [20]. However, a 
constant disk failure rate cannot explain all of the 
phenomena happening in reality. It has been very well 
known that the failure rate of disk drives follows what is 
often called a "bathtub" curve, where disk failure rate is 

higher in the disk’s early life, drops during the first year, 
remains relatively constant for the remainder of the 
disk’s useful lifespan and rises again at the end of the 
disk’s lifetime [11], [22]. Some other studies have also 
obtained results that contradict the constant disk failure 
rate model. For example, [7]  shows that the disk failure 
probability of populations of disks generally do not 
follow an exponential distribution. For fixing this 
inconsistency, the International Disk Drive Equipment 
and Materials Association (IDEMA) proposed a 
compromised presentation for disk failure rates that uses 
discrete disk failure rates [14], where the lifespan of each 
disk are divided into different life stages with different 
failure rates. Such model has been demonstrated to be 
feasible in [22], and a nine-month investigation 
conducted by Google also obtained results very 
consistent to this model [19]. In this paper, we describe 
the disk failure rate pattern in the IDEMA style, which 
divides the lifespan of disks into discrete life stages with 
discrete disk failure rates, and we also conduct our 
research based on the disk failure rates provided by 
IDEMA standards and Google’s nine-month disk failure 
trend study. 

Apart from research on disk reliability, many efforts 
for ensuring data reliability have also been made in the 
software aspect. In [15], analytical data reliability model 
and data replica schemes are proposed for minimizing 
the data missing rate of the storage system. In [10], a data 
partitioning approach is implemented to improve the 
reliability, availability and data access performance in the 
storage system, in which the original data is stored in the 
form of data chunks of the same size. However, instead 
of taking the variable disk failure rate patterns of storage 
devices into consideration, these studies also consider the 
failure rates of the storage devices as a simple constant 
value. 

Among all the existing approaches for supporting data 
reliability, data replication has been considered as a 
dominant approach in current distributed storage 
systems. Some existing works on large-scale distributed 
storage systems have been proposed such as [3], [9]. 
Specifically, in Cloud computing, data replication 
technologies have been widely adopted in current 
commercial Cloud systems. Some typical examples 
include Amazon Simple Storage Service (Amazon S3) [1], 
Google File System (GFS) [10], Hadoop distributed file 
system (HDFS) [5]. Although data replication has been 
widely used, there is a side effect that it would consume 
considerable extra storage resources and incur significant 
additional cost. To address this issue, Amazon S3 
published its Reduced Redundancy Storage (RRS) 
solution to reduce the storage consumption [1]. However, 
such cost reduction is realized by sacrificing data 
reliability. By using RRS, only a lower level of data 
reliability can be offered. In addition to RRS, some of our 
previous works made contributions in reducing storage 
consumption for replication-based Cloud storage. For 
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example, in [17], we proposed a cost-effective dynamic data 

replication strategy for data reliability in Cloud data centers, in 

which an incremental replication method is applied to reduce 

the average replica number while meeting the data reliability 

requirement. However, for long-term storage or storage with a 

very high reliability requirement, this strategy could generate 

even more than three replicas for the data, so that its ability to 

reduce storage consumption is limited. 

Besides direct data replication, another type of data 
storage approach that leverages erasure coding 
techniques has also been studied [13], [21]. In [13], novel 
LRC codes are applied to Windows Azure Storage service 
as an alternative approach to replication that stores non-
changeable data blocks of over 1 GB.  In [21], an erasure 
coded storage system named Hitchhiker was proposed 
and implemented in HDFS. Unlike direct data replication 
approaches for storage, erasure coding approaches divide 
data into several data blocks and store them with 
additional erasure coding blocks. By using erasure 
coding approaches, data reliability can be ensured at a 
quite high level with very low data redundancy. 
However, the major disadvantage of erasure coding 
approaches is apparent, i.e., the computation overhead 
for coding and decoding data can be significant. As will 
be further explained in Section 3.2, erasure coding is not 
the best solution for the data storage of certain data-
intensive Cloud applications. 

The research presented in this paper focuses on the 
data reliability issue in the Cloud with a replication-
based data storage scheme. The issue is closely related to 
the aspects mentioned above, in which data replication 
and analysis of disk failure rates are combined to ensure 
the data reliability. Compared with existing research for 
data reliability, our research is more comprehensive in 
supporting data reliability assurance with variable disk 
failure rate. In terms of our data reliability assurance 
solution, PRCR minimizes storage consumption based on 
the premise of not sacrificing data reliability, which is 
different from the Amazon S3 RRS service. Moreover, our 
replication solution is more flexible. It allows data to be 
stored with only one replica for reducing storage 
consumption and a variety of data reliability 
requirements can be met without jeopardy when stored 
with two replicas. Compared with the conventional 3-
replica strategy, PRCR is able to provide the same or 
even higher reliability assurance. In general, PRCR 
consumes minimum storage with no more than two 
replicas for all the data in the Cloud with any data 
reliability requirement. 

3 MOTIVATING EXAMPLE AND PROBLEM 

ANALYSIS 

3.1 Motivating Example 

Potentially, in order to investigate the data storage 
issue of massive scientific research data, the scenario of a 
pulsar searching application has been investigated. The 

pulsar searching survey is one of the astronomical 
research programs currently being conducted by the 
Astrophysics Group at Swinburne University of 
Technology. With huge amounts of observation data 
obtained from Parkes Radio Telescope 
(http://www.parkes.atnf.csiro.au/), the pulsar searching 
application carries out many complex and time 
consuming tasks, and easily generates hundreds of 
terabytes of data during execution. For a better 
presentation of the pulsar searching application, a small 
application instance is presented in the Supplementary 
Material as an example. In the application instance, the 
raw telescope data for an eight-minute observation is 
processed. It generates hundreds of GBs of intermediate 
files and takes tens of hours for data processing. 
Nevertheless, for achieving different searching goals, the 
telescope observation time is often much longer, and 
hence more data needs to be generated and processed. 
For an observation conducted eight hours a day for 30 
days, the size of generated files could reach 543.6TB. 
Moreover, as the pulsar searching program continues, the 
number and size of generated files become bigger and 
bigger, so the cost for data storage becomes much higher. 

3.2 Problem Analysis 

For data-intensive Cloud applications similar to the 
pulsar searching application, there is a quite common 
situation that needs to be faced due to their data-
intensive characteristics. During the execution of such 
applications, large amount of data is generated and 
processed, so that the storage consumption incurred 
could be very high. However, whilst the cost for storing 
data is inevitable, there is still plenty of room to reduce it. 
On one hand, current Cloud storage systems often use 
multi-replica data replication strategies for ensuring data 
reliability, which generate high level data redundancy. 
For example, storage systems such as Amazon S3, Google 
File System and Hadoop Distributed File System all 
adopt the conventional 3-replica strategy, in which by 
default three replicas are stored for all data. By using the 
conventional 3-replica strategy, based on the original 
data (regarded as the first replica), two other replicas are 
generated at once for storage, i.e., 200 per cent of extra 
storage consumption. Such strategy causes a huge 
amount of extra storage consumption due to replication. 
For data-intensive applications such as the pulsar 
searching example, the extra storage consumption could 
be huge. For example, by applying the conventional 3-
replica strategy, storing 543.6TB pulsar searching data 
mentioned above needs about 1630TB storage space, of 
which two-third of storage space are for data 
redundancy. On the other hand, in Cloud applications, 
the data reliability requirements and storage durations of 
different data are not the same. Taking the pulsar 
searching application as an example, the generated files 
can be divided into two primary data types. One type is 
critical and would be reused for a long period of time, for 
examples, the extracted beam files, the XML files and the 
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de-dispersion files. These files record the current state of 
the universe, which are very important and can be reused 
for long term analysis. For data of such kind, high data 
reliability assurance and long-term storage duration are 
necessary. The other type is only used for shorter term 
and lacks long-term value, for examples, the accelerated 
de-dispersion files, seek result files and all the candidate 
lists. For data of such kind, because of the short storage 
duration, as will be demonstrated later in Section 4, one 
replica would suffice to meet both the requirements of 
data reliability and storage duration. However, by 
applying the conventional 3-replica strategy, all data is 
stored with the same number of replicas, which is 
inappropriate for both types. For the former data type, 
when a large amount of data is stored, the data reliability 
assurance of three replicas incurs high storage 
consumption. For the latter data type, the additional two 
replicas are simply not needed, thus consuming 
unnecessary extra storage space. 

Instead of using the erasure-coding-based data storage 
scheme, our research focuses on Cloud with a direct 
replication-based data storage scheme for two reasons: 
First, for pulsar searching and a wide range of similar 
Cloud applications that involve intensive large scale data 
processing and generation, applying erasure coding 
approaches is not desirable: both computation and time 
overheads for encoding and decoding the data are so 
high (at the level of seconds per MB or even more [13], 
[21]) that the overall cost saving advantage by reducing 
storage consumption can be significantly weakened. 
Second, the replication-based data storage scheme is 
currently the most widely used Cloud storage scheme, 
which is adopted by many Cloud service providers. In 
order to reduce the storage consumption without 
jeopardizing the data reliability requirement for data-
intensive applications in the Cloud, a new replication 
mechanism needs to be designed to replace the 
conventional 3-replica strategy.  

4 DATA RELIABILITY MODEL 

Instead of the conventional 3-replica strategy, there is 
a way in which we can provide data reliability with 
fewer replicas. A mathematical model for data reliability 
has provided the possibility of reducing the number of 
replicas while meeting the data reliability requirement. In 
this section we investigate the relationship between data 
reliability and variable disk failure rate, and propose a 
generalized data reliability model for data with multiple 
replicas. 

4.1 Data reliability with constant disk failure rate 

As mentioned in Section 2, many existing theories 
assume an exponential disk reliability model, in which 
the disk failure probability follows the exponential 
distribution with a constant disk failure rate. In that case, 
the reliability of a disk over period T (i.e., 1-disk failure 
probability) can be expressed as R(T), where:  

( ) TR T e                                  (1) 

The replicas stored in the disk should have the same 
reliability as the disk. Therefore, (1) is also applicable for 
calculating the reliability of a single replica when the disk 
failure rate is a constant. Therefore, R(T) also indicates 
the data reliability, i.e., the probability of the replica 
survives over period T with  as the disk failure rate.  

4.2 Data reliability with variable disk failure rate 

Although exponential distribution can be used to 
describe the data reliability when disk failure rate is a 
constant as mentioned in Section 2, the failure rates of 
disks actually vary from time to time. In practice, quality 
control is conducted for each batch of disks before they 
leave the factory, in which samples should be tested to 
ensure the quality of the product being consistent, and 
hence we consider the failure rate pattern of a batch of 
disks is known. As one of the same batch of disks, the 
actual failure pattern of the disk should adhere to the 
batch failure rate pattern quite well statistically. Hence 
each disk’s failure rate pattern should follow the failure 
rate pattern of the batch of disks, which is known. 

Here we investigate the data reliability with a variable 
disk failure rate. To calculate the data reliability with a 
variable disk failure rate, we first assume that the data 
survival probability with a constant disk failure rate 
follows exponential distribution (i.e., (1) holds). Second, 
according to the IDEMA standard, when the disk failure 
rate is a variable, we assume the disk failure rate pattern 
contains several life stages, and in each life stage of a 
disk, the disk failure rate does not change. Assume that 
replica r is stored in disk D between 

0t and
nt , in this 

period of time, the disk failure rate pattern of disk D 
contains n life stages, in which the disk failure rates are

1 2, ,..., n   respectively where 
i  

indicates the disk 
failure rate between time

1it 
and

it , i N . Fig. 1 shows 
the failure rate pattern of disk D between time

0t and
nt . 

...

Failure rate(%/year)

0

�1

�2

�3

...

Time(year)

t1 t2 ... tntn-1t0 t3  
Fig. 1. The failure rate pattern of disk D between time 

0t and
nt  

Let event
jA be disk D surviving from

1jt 
to

jt , where

j N , the probability that disk D survives from
0t to

nt

can be described as 1 1( ... )n nP A A A . According to the 

property of conditional probability, we have: 

1 1 1 1 1 2 1

1 1 1 2 1

2 1 1

( ... ) ( | ... ) ( ... )

... ( | ... ) ( | ... )...

( | ) ( )

n n n n n n

n n n n

P A A A P A A A P A A A

P A A A P A A A

P A A P A

   

  



  



 

in which
1 2 1( | ... )j j jP A A A A 

indicates the probability of 
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disk D surviving (i.e., the reliability of disk D) between

1jt 
and

jt , given that D is alive at time
1jt 

. Because 

replica r has the same reliability as disk D,

1 2 1( | ... )j j j tjP A A A A R   , where
tjR is the reliability of 

data stored from
1jt 

to
jt . Therefore, we have

1 1 1 2( ... ) ...n n t t tnP A A A R R R  . 

According to (1), 1( )j j jt t

tjR e
  

 . Let
1j j jT t t   , hence 

we have: 
1 1 2 2

1 1

1 1 1

( ... ) ...

exp(( / ) )

n nTT T

n n

n n n

j j j jj j j

P A A A e e e

T T T

 



 



  



    
 

Because of
1 1( ... ) ( )n nP A A A R T  , this equation can be 

denoted as: 

( )
T

R T e


                                  (2) 

In (2), several life stages of the disk during the whole 
lifespan of the replica are transformed into a single 

variable  , where
1 1

/
n n

j j jj j
T T 

 
  is the weighted 

mean of the disk failure rate with storage durations as 
weights (“weighted average failure rate” for short).

1

n

jj
T T


 is the sum of all storage durations, which is 

the lifespan of the data. From (2), we can tell that data 
reliability, i.e., the probability of one replica survives, 
with a variable disk failure rate, also follows the 
exponential distribution, while the disk failure rate 
becomes the weighted mean of all the disk failure rates 
during the storage. It can be seen that (1) is a special case 
of (2) when the disk failure rate is a constant. 

4.3 Generalized data reliability model 

In previous sub-sections we discussed the data 
reliability of storing one replica. Based on these 
discussions, a generalized data reliability model with a 
variable disk failure rate for multiple replicas is 
proposed. As indicated in Section 4.2, we assume that the 
failure rate pattern of each disk could theoretically be 
known by following the failure rate pattern of the batch 
of disks. In that case, each disk failure can be considered 
independent. Assume that replicas of the same data be 
stored in different disks. According to (2), the data 
reliability with multiple replicas can be derived from (3): 

1
( ) 1 (1 )i k

k T

k i
R T e




                          (3) 

In this equation, k is the number of replicas, i is the 

weighted average failure rate of the disk storing replica ir

and kT is the storage duration of the data with k replicas. 

The right-hand side of the equation describes the 
probability that at least one of the k replicas survives 

during the storage duration of kT . Equation (3) reveals 

the relationship between data reliability, the number of 
replicas, disk failure rates and storage duration. If the 
number of replicas and the failure rates of disks are 
known, the relationship between storage duration and 

data reliability can then be derived. It can be seen that (2) 
is a special case of (3) when k=1. 

5 COST-EFFECTIVE MECHANISM OF PRCR  

In this section, the idea of proactive replica checking is 
described. Based on this idea, we propose a cost-effective 
data reliability management mechanism for Cloud data 
storage named PRCR (Proactive Replica Checking for 
Reliability), and describe it at the high level. 

5.1 Proactive Replica Checking 

There is a well-known property of exponential 
distribution called the memory-less property, which is 
that for all , 0s t  , there are ( | ) ( )P T s t T s P T t     . 
Because the data reliability, i.e., the probability of a single 
replica surviving, follows exponential distribution, and 
the data reliability of each replica is independent, this 
property should also apply to our generalized data 
reliability model for multiple replicas. This property 
denotes that the data reliability from time s to s+t is 
equivalent to that from time 0 to t. According to this 
property, as long as we can guarantee that the data is not 
lost at a certain moment, the data reliability for any 
period from that moment can be calculated. More 
importantly, according to (3), shorter storage duration 
results in lower probability of data loss. Thus, the basic 
idea of managing data reliability based on proactive 
replica checking is formed. While data is stored on disks, 
each replica of the data is proactively checked 
periodically and the loss of replicas is discovered and 
recovered within each period. By conducting proactive 
replica checking at a certain frequency, a certain level of 
data reliability assurance can be provided. 

Based on this idea, the PRCR mechanism is proposed. 
In PRCR, the data in the Cloud is managed in different 
types according to its expected storage duration and 
reliability requirements. For data that is only for short-
term storage and/or requires the data reliability that a 
single replica can supply, one replica would be enough; 
for data that is for long-term use and/or has a data 
reliability requirement higher than the reliability 
assurance of a single replica, two replicas are stored 
which are periodically and proactively checked. During 
the proactive replica checking, replicas of the data are 
accessed to determine their existence 1 . The proactive 
replica checking tasks must always be conducted before 
the reliability assurance drops below the reliability 
requirement. Once found, any single replica loss can be 
quickly recovered according to certain strategy, such as 
[6], [18], so that the reliability of the data can be ensured.  

In some extreme cases, both replicas may be lost in a 
small time window. The probability of such a situation is 
already incorporated in the data reliability model. Given 

                                                           
1
As the proactive replica checking is conducted inside the Cloud, we 

believe that the instability of the network is minimized, hence the 
replica is considered lost when it cannot be accessed. 
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a certain data reliability requirement, PRCR is 
responsible for the probability of data loss being within 
the agreed range, so that the data reliability requirement 
is met. For example, given the data reliability 
requirement of 99.99 per cent per year, PRCR ensures 
that the data loss rate is no bigger than 0.01 per cent of all 
the data per year, and hence does not jeopardize the 
reliability assurance in overall terms. 

5.2 Overview of PRCR 

Manageme

nt

PRCR node

Replica 

management 

module

Data 

tableUser 

interface

Cloud virtual 

machines

Cloud data

PRCR structure

 

Fig. 2.  PRCR architecture 

PRCR is a data reliability management mechanism 
that can manage large amounts of data in the Cloud. By 
using PRCR, Cloud data can be stored with minimum 
replication while meeting the data reliability requirement 
which can also serve as a cost effectiveness benchmark. 
For the ease of description, we simply use the term “file” 
as the data storage unit managed by PRCR. PRCR is 
normally conducted as a data reliability management 
service provided by the Cloud storage providers. It runs 
on virtual machines in the Cloud. Fig. 2 shows the 
architecture of PRCR. Note that Cloud virtual machines 
are for running user interface, PRCR nodes and 
conducting proactive replica checking respectively at the 
storage provider’s cost. 
User interface: It is the component of PRCR responsible 
for determining the minimum replica number, creating 
replicas (if necessary), creating and distributing metadata 
of files. First, when the original replica of a file is created 
(generated or uploaded) in the Cloud, the user interface 
determines the minimum number of replicas (i.e., one or 
two replicas). Second, if a file needs to be stored with two 
replicas, the user interface calls Cloud service to create 
the second replica for the file. Third, if a file is stored 
with two replicas, the metadata of the file is created and 
distributed to an appropriate PRCR node. For all files 
managed by PRCR, there are in total six types of 
metadata attributes, which are file ID, time stamp, data 
reliability requirement, expected storage duration, 
checking interval, and replica address. File ID is the 
unique identification of the file. Time stamp records the 
time when the last proactive replica checking task for the 
file was conducted. The data reliability requirement and 
expected storage duration are requirements for the 
storage qualities. Checking interval is the time interval 

between two consecutive proactive replica checking tasks 
for the same file. Replica address indicates the location of 
each replica. The file ID and replica address are 
automatically given when the original and second replica 
of the file are created. Time stamp is updated when the 
proactive replica checking task is conducted. The data 
reliability requirement and expected storage duration are 
given by the storage user, and maintained for rebuilding 
metadata in case of replica loss. These two attributes are 
the only information that can be provided by the storage 
user, while default value may apply if they are not given 
(e.g., 99.9999% per year for data reliability requirement 
and 1 year for expected storage duration). All the other 
storage structure related attributes are transparent to 
them. The checking interval is obtained based on the data 
reliability requirement and the expected storage 
duration, by using the storage duration prediction 
algorithm that will be mentioned in the next section. One 
or more checking intervals may apply throughout the 
lifespan of the file in the Cloud. Depending on the time 
stamp and the checking interval, PRCR is able to 
determine the time that files need to be checked. All 
replicas of the file can be found through their addresses. 
PRCR node: It is the core component of PRCR 
responsible for the management of metadata and 
replicas. In order to provide data reliability assurance to 
meet a wide range of data reliability requirement with 
different storage durations, the PRCR normally should be 
composed of one user interface and multiple PRCR nodes. 
PRCR nodes work independently, so can easily be 
created and destroyed, as required by variation in the 
amount of data to be managed. Each PRCR node contains 
two sub-components: data table and replica management 
module. 

Data Table: For all files that each PRCR node 
manages, the above mentioned metadata attributes are 
maintained in the data table. To ensure the data 
reliability of files, all metadata are periodically scanned 
by the replica management module. The so called “scan” 
inspects the metadata of a file in the data table to 
determine whether replica checking is necessary. In the 
data table, each round of the scan is called a scan cycle, in 
which all of the metadata in the data table is sequentially 
scanned once. The scan cycle of each PRCR node is set to 
a fixed value to scan files at certain frequency. By doing 
so, the frequency of conducting proactive replica 
checking tasks can be determined, which corresponds to 
certain data reliability assurance that can be provided. 
However, due to the limited performance of the virtual 
machine that the PRCR node is running on, the time 
constraint of scan cycle means that the maximum 
capacity, i.e., maximum number of managed files, of the 
PRCR node is also limited. The reliability of the data table 
itself is beyond the scope of this paper. In fact, a 
conventional primary-secondary backup mechanism may 
well serve the purpose. 

Replica Management Module: It is responsible for 
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scanning the metadata in the data table and co-operating 
with the Cloud virtual machines to process the proactive 
replica checking tasks. In each scan cycle, the replica 
management module scans the metadata in the data table 
and determines whether the file needs to be checked. If a 
file needs to be checked, the replica management module 
obtains its metadata from the data table and sends it to a 
Cloud virtual machine for proactive replica checking. 
After the proactive replica checking task is finished, the 
replica management module conducts further actions 
according to the returned result. In particular, if any 
replica is lost, the replica management module initializes 
the recovery process for creating a new replica. For the 
recovery of data with different usages, contents and 
formats, different data recovery strategies can be applied 
to achieve required goals [6], [18]. 

6 DESIGN OF PRCR 

In this section, the design details of PRCR are 
presented at a high level. 

6.1 Working Process of PRCR 

      PRCR node

User 

interface

Replica 

management 

module

Data table

1.original 
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3. store 

metadata

5. extract 

metadata
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machines
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replica checking task
8. return result
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 one 
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Fig. 3. High level working process of PRCR 

In Fig. 3, we illustrate the high level working process 
by following the lifecycle of a file managed by PRCR in 
the Cloud without unnecessary implementation details. 
1. The process starts at the time when the original 

replica of the file is created in the Cloud. According to 
the disk failure rate, the expected storage duration 
and data reliability requirement, the user interface 
determines whether to store the file with one replica 
or two.  

2. According to the calculation in the user interface, if 
one replica cannot satisfy the data reliability and 
storage duration requirements of the file, the user 
interface creates a second replica by calling Cloud 
services, and calculates the checking interval(s) of the 
file. Its metadata is then distributed to the appropriate 
PRCR node (2a). If one replica is sufficient, only the 
original replica is stored and the metadata of the file is 
not created (2b). 

3. Metadata attributes of the file are stored in the data 
table of the corresponding PRCR node. 

4. Metadata is scanned periodically according to the 
scan cycle of the PRCR node. According to file’s time 
stamp and the current checking interval, PRCR 
determines whether proactive replica checking is 

needed. 
5. If proactive replica checking is needed, the replica 

management module obtains the metadata of the file 
from the data table. 

6. The replica management module assigns the 
proactive replica checking task to one of the Cloud 
virtual machines for proactive replica checking. The 
Cloud virtual machine executes the task, in which 
both replicas of the file are checked. 

7. The Cloud virtual machine conducts further action 
according to the result of the proactive replica 
checking task: if both replicas are alive or lost, go to 
step 8; if only one replica is lost, the virtual machine 
calls the Cloud services to generate a new replica 
based on the replica that is alive. 

8. The Cloud virtual machine returns the result of the 
proactive replica checking task, while in the data 
table, the time stamp and checking interval(s) are 
updated. Specifically, (1) if both replicas are not lost, 
the next checking interval is put forward as the 
current checking interval; and (2) if a replica is lost 
and recovered on a new disk, the new replica address 
is stored and all the checking interval(s) are 
recalculated. Otherwise, further steps could be 
conducted, for example, a data loss alert could be 
issued. 

Note: Steps 4 to 8 form a continuous loop until the 
expected storage duration is reached or the file is deleted. 
If the expected storage duration is reached, either the 
storage user could renew the PRCR service or PRCR 
could delete the metadata of the file and stop the 
proactive replica checking process. 

6.2 Key Algorithms for PRCR 

Within the whole working process of PRCR, in order 
to determine the minimum replica number and improve 
the performance of PRCR including computation 
overhead and utilization of the data management 
capacity, two algorithms are proposed, which are storage 
duration prediction algorithm and metadata distribution 
algorithm respectively. 

Storage duration prediction algorithm 

The storage duration prediction algorithm has two 
purposes. First, it determines the minimum replica 
number (i.e., one or two) for meeting the data reliability 
requirement. Second, given a certain data reliability 
requirement, it calculates the longest storage duration of 
the data while the data reliability requirement is met 
(“LSDWP” for short). It equals to the checking interval in 
PRCR but it indicates the time that the reliability 
assurance drops to the level that the reliability 
requirement can no longer be met. In PRCR, the scan 
cycle should be no bigger than LSDWPs of each file so as 
to provide sufficient data reliability assurance. The 
algorithm is applied to both the user interface and PRCR 
nodes. In the user interface it is used for determining the 
minimum replica number and calculating LSDWPs of 
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files. In PRCR nodes it is used to recalculate LSDWPs of 
files after replicas are recovered on new disks. 

In a commercialized storage system such as that of the 
Cloud, “data reliability” has two aspects of meaning - 
data reliability requirement RR(t) and data reliability 
assurance RA(t). RR(t) indicates the data reliability that 
storage users need to achieve in the duration of t, while 
RA(t) indicates the data reliability that the system is able 
to provide within the duration of t. Usually, RR(t) is 
provided under unit time (i.e., RR(1)), while RA(t) is used 
to determine whether the data reliability requirement is 
met. In order to meet the data reliability requirement, a 
storage system must comply with the following rules: 
Rule 1: The data reliability assurance must not be lower 
than the data reliability requirement. 
Rule 2: The data reliability assurance should follow the 
generalized data reliability model. 

1
( ) 1 (1 )i

k t

i
RA t e 


    

According to Rule 1, the loss rate of files must be 
smaller than that of user expectation. Therefore, we have: 

1 (1) 1 ( )
1

RR RA t
t

 
  

Note that value “1” on the denominator of the left hand 
side indicates the unit storage duration of 1 year. The 
above inequality can be transformed to: 

( ) 1 (1 (1))RA t RR t  
  

                       (4) 

According to Rule 2, the data reliability assurance with 
single replica and two replicas can be derived, which are: 

with single replica,             1( ) tRA t e 
                            

(5) 

with two replicas, 
  

1 2( ) 1 (1 )(1 )t tRA t e e     
           

(6) 

Inequality (4) is the key to build the relationship 
between the data reliability requirement and the storage 
duration in the storage system. After combining (4) and 
(5) above, we have: 

1( 1)
(1)

te t
RR

t

  
                         (7) 

This inequality shows the relationship between data 
reliability requirement and the storage duration with 
single replica. If this inequality holds, it means that single 
replica suffices to meet the data reliability requirement. 
Otherwise, if this inequality does not hold, the storage 
with single replica may jeopardize the data reliability 
requirement, and the storage with two replicas is 
necessary.  

After combining (4) and (6) above, we have: 
1 2(1) 1 (1 )(1 ) /t tRR e e t       

This inequality shows the relationship between data 
reliability requirement and LSDWP with two replicas. 
From this inequality, it can be found that while the data 
reliability requirement is given, LSDWP cannot exceed a 
certain value. By solving (8) below, this certain storage 
duration can be obtained. 

1 2(1) 1 (1 )(1 ) /t tRR e e t                       (8) 
Due to the variable nature of the average disk failure 

rate, variable   changes along with the storage duration 
and the exact age of the disk. In addition, the LSDWP of a 
file is also not a constant. Therefore, the process of 
solving (8) needs to be conducted more than once to 
obtain all the LSDWPs throughout the lifespan of the file. 

Due to the variable nature of the average disk failure 
rate, there are two difficulties to solve (8) in Section 6.2. 

The first one is that   changes along with the storage 

duration and the exact age of the disk. The second one is 
that the LSDWP of a file is also not a constant, so that the 
process of solving (8) needs to be conducted more than 
once to obtain all the LSDWPs throughout the lifespan of 
the file. PRCR includes solutions to overcome the two 
difficulties. For the first one, the average disk failure rate 

is converted into a piecewise function ( )t . According to 

the disk failure rate pattern of the disk (which is 
described in IDEMA style) and the start time of the 
storage period, the average disk failure rate can be 
calculated by following a piecewise function containing n 
sub functions, in which n is the number of life stages 
contained in the disk failure rate pattern after the start 
time. By doing this, (8) is transformed into an equation in 

which t is the only independent variable and variable  is 

eliminated. For the second one, we notice that when 
replicas are first created and stored, the disks for storing 
these replicas and the disk failure rate patterns are 
determined. Therefore, the algorithm calculates the 
LSDWPs of a file in one go when the file is first created in 
the Cloud. As long as replicas of the data are not lost, the 
algorithm does not need to be conducted again, resulting 
in better efficiency.  

Algorithm:  Data Reliability Prediction Algorithm

Input:    ET;                      // Expected storage duration

             RR(1);                 // Data reliability requirement 

             P1,P2;                  // Disk failure rate patterns of disks 1 and 2

             StartT;                 // Start time of the algorithm

Output: SDS;                   // Set of longest storage durations

01.           calculateAverageFailureRate(P1,StartT,ET);

02. if (                                            ){   // Determine replica number

03.     T=StartT;               // The start time of each storage period

04.      while (T<=ET+StartT) {

05.          λ1(t)     obtainPiecewiseFunction(P1,T);

06.          λ2(t)     obtainPiecewiseFunction(P2,T);

07.          solve (8);

08.          SD    the positive real root of (8);// Longest storage duration

09.          T=T+SD;

10.          SDS    SD;

11.        } return SDS;

12. } else return -1;          // The file can be stored with only one replica

1

0)1(
)1( 1






RR
ET

ETe
ET









 
Fig. 4. Pseudo code of storage duration prediction algorithm 

Fig. 4 shows the pseudo code of the storage duration 
prediction algorithm. In Fig. 4, ET is the expected storage 

duration of the file.
1P

 
and 

2P are the disk failure rate 

patterns of the two disks for storing two replicas of the 

file, where 1P  is the pattern of the disk storing the 

original replica and 2P  is the pattern of the randomly 

picked disk for the new replica. StartT is the time that the 
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replicas are stored in the Cloud. SDS is the result set 
containing all LSDWPs. The algorithm first calculates the 
average failure rate of the file stored on disk 1 for the 
duration of ET (line 1). According to this value and (7), it 
determines the number of replicas that need to be stored, 
i.e., to store the file with one replica or two (line 2). If two 
replicas need to be stored, the algorithm calculates all 
LSDWPs throughout the expected storage duration of the 
file in one go, and returns the LSDWPs set as a result 
(lines 3-11). 

To address the earlier statement mentioned in the 
introduction that the generalized data reliability model is 
able to provide data reliability management for both 
virtual and physical disks, the storage duration 
prediction algorithm is also applicable when the disk 
failure rate is a constant (e.g., Amazon S3 2). In that case, 
the storage duration prediction algorithm is significantly 
simplified, as the steps of calculating average failure rate 
(line 1) and obtaining piecewise functions (lines 5-6) can 
be omitted. The process of solving (8) only needs to be 
conducted once, and the LSDWP obtained does not 
change unless any replica of the file is lost. 

Optimization of the algorithm 

In the storage duration prediction algorithm, solving 
the complicated data reliability equation is a time 
consuming and expensive process. In particular, the 

involvement of piecewise function ( )t and the 

calculation for more than one LSDWP would make the 
time overhead more significant. To optimize the 
performance of the algorithm, the data reliability 
equations need to be simplified to reduce the 
computation complexity. During the design of the 
algorithm, it is observed that the curve of data reliability 

with a single replica (i.e., te  ) changes almost linearly 

when t  is within a certain range. Therefore, in this 

value range, the curve can be substituted by a straight 

line with t being the dependent variable without 

sacrificing much accuracy of the result as detailed in 
Section 7.1. Assuming that the function of the substituted 

straight line is ( )f t a t b   , (8) can be simplified to (9): 

1 2(1) 1 (1 )(1 ) /RR a t b a t b t                    (9) 

As the average disk failure rate can be expressed as a 
first degree piecewise function of t, (9) is essentially a 
quartic function of t. Compared to the original non-
polynomial equation of (8), the simplified equation of (9) 
can be solved by the methods for solving polynomial 
equations, which are much more efficient, hence the 
performance of the storage duration prediction algorithm 
can be optimized. 

                                                           
2
 This is based on the durability and reliability statement of Amazon 

S3 available at http://aws.amazon.com/s3/details/. 

Metadata distribution algorithm 

Due to the limit that the scan cycle of the PRCR node 
must be no bigger than LSDWPs of files, each file should 
be managed by a proper PRCR node. In order to 
maximize the utilization of PRCR, the metadata 
distribution algorithm is proposed. 

According to the LSDWP of the file and the scan cycles 
of PRCR nodes, the metadata distribution algorithm is 
able to distribute the metadata of the file to the most 
appropriate PRCR node so that the capacity of PRCR can 
be maximized. The principle of the algorithm is simple: it 
compares the LSDWP of the file with the scan cycle of 
each PRCR node. Among the PRCR nodes with a scan 
cycle smaller than the LSDWP of the file, the metadata is 
distributed to the node (or a random one of the nodes) 
that has the biggest scan cycle.  

Theorem.  Given several PRCR nodes with different scan 
cycles, the distribution of metadata following the metadata 
distribution algorithm maximizes the utilization of PRCR. 

Proof. Assume that all PRCR nodes reach the maximum 
capacity while all the metadata are distributed by 
following the metadata distribution algorithm. 

Therefore, for any file f  managed by PRCR node A 

and any PRCR node i with scan cycle bigger than A,:
( ) ( ) & ( ) ( )LSDWP f ScanCycle A LSDWP f ScanCycle i 

Without losing generality, we randomly create 
another metadata distribution other than the current 
metadata distribution by swapping the metadata of a 
pair of files. Assume two PRCR nodes B and C, in 
which ( ) ( )ScanCycle B ScanCycle C and assume that 

files 
1f and

2f  be managed by PRCR node B and 

PRCR node C respectively, swap their managing 

PRCR nodes, since )()( 2 BScanCyclefLSDWP  , the 

data reliability requirement of f2 cannot be met. 

Therefore, file 
2f  cannot be managed by PRCR by 

following the new metadata distribution. Therefore, 
the utilization of PRCR nodes by following this new 
distribution is lower than that by following the 
metadata distribution algorithm. According to the 
above reasoning, it can be deduced that there is no 
other metadata distribution that has higher utilization 
than the distribution by following the metadata 
distribution algorithm. Hence the theorem holds. 

The metadata distribution algorithm is conducted at 
the user interface of PRCR. Fig. 5 shows the pseudo code 
of the algorithm. SD indicates the current LSDWP of the 
file. S indicates the set of all the PRCR nodes. The 
algorithm first calculates the differences between SD and 
the scan cycles of all available PRCR nodes (lines 2-3). 
Then, from all the PRCR nodes with a scan cycle smaller 
than SD, the ones with the smallest difference values are 
selected as the candidates of the destination node (lines 4-
6). Finally, one of the candidates is randomly chosen as 
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the destination node (line 7). The reason for randomly 
choosing one node from the node set is to deal with the 
case where two PRCR nodes have the same scan cycle. 
Algorithm:  Metadata distribution algorithm

Input:    SD;        // Current longest storage duration of the file

             S;          // The set of all the PRCR nodes

Output: node;    // the destination PRCR node 

01. Set diff, nodes; // define two sets

02. for (each i     S & scancycle(i) < SD)

03.      diff       SD - scancycle(i);

 // calculate the SD - scancycle value for all available PRCR nodes

04. for (each j     S & scancycle(i) < SD) {

05.      if (SD - scancycle(j) = min(diff))

06.      nodes       j; }

// find the nodes with the smallest SD - scancycle value

07. node       random(nodes); // randomly return one of the nodes

08. return node;










Fig. 5. Pseudo code of metadata distribution algorithm 

The metadata distribution algorithm is able to 
effectively optimize the utilization of all the PRCR nodes. 
However, there are three issues that need to be further 
addressed. First, the capacity of each PRCR node is 
limited. When more and more files are managed by 
PRCR, the capacity of PRCR nodes could gradually run 
out. Fortunately, the independence of each PRCR node 
has provided great elasticity to the organization of PRCR. 
When one of the PRCR nodes is reaching or about to 
reach its maximized capacity, a new PRCR node is 
created, where the scan cycle of the new PRCR node can 
be set to the same length. Second, the data reliability 
model with a variable disk failure rate has led to the side 
effect that the LSDWP of each file changes from time to 
time. Once the LSDWP increases to a threshold that is 
equal to the scan cycle of another PRCR node, current 
metadata distribution becomes sub-optimal. To address 
this issue, several solutions could be applied. For 
example, the scan cycles of PRCR nodes need to be well 
organized so that each file is managed by the PRCR node 
with a scan cycle smaller than all the LSDWPs the files 
could have. Or, if the metadata of files needs to be 
redistributed regardless, the redistribution could be 
conducted in a batch mode to reduce its impact and 
computation overhead. Third, the metadata is distributed 
according to the calculation of the storage duration 
prediction algorithm. However, the predicted storage 
duration could be different from that of the disks in 
reality, and hence prediction errors could occur. Such a 
situation is most likely caused by the deviation of disk 
failure rates, and the only type of error that could 
possibly jeopardize data reliability is that the disk failure 
rates are being underestimated, so that the LSDWP value 
is overestimated. In general, the situation of prediction 
errors is very similar to the second issue. Therefore, the 
solutions for the second issue are still applicable to 
prediction errors. 

7 EVALUATION 

In this section we evaluate PRCR from the aspects of 

performance and cost effectiveness. 

7.1 Performance of PRCR 

To evaluate the performance of PRCR, first of all, we 
evaluate the major procedures in PRCR. We find that the 
calculation of LSDWP (i.e., the storage duration 
prediction algorithm), metadata scanning and proactive 
replica checking are the three major procedures which 
most affect the performance of PRCR. Therefore, 
investigations of these three procedures are conducted 
respectively. In addition, we also evaluate the impact of 
using PRCR on data access performance compared with 
the conventional 3-replica strategy. 

Evaluation of storage duration prediction algorithm 

The storage duration prediction algorithm is mainly 
conducted at the beginning of the storage of a file. The 
performance of this algorithm is of great significance to 
the PRCR for determining the minimum number of 
replicas and calculating LSDWPs for each file.  

In order to fully investigate the storage duration 
prediction algorithm and the effect of our optimization, 
the evaluation is carried out as follows: four versions of 
the algorithm are implemented, which are the original 
constant disk failure rate version (version ORC), the 
optimized constant disk failure rate version (version 
OPC), the original variable disk failure version (version 
ORV) and the optimized variable disk failure version 
(version OPV). The original versions (i.e., ORC and ORV) 
of the algorithm calculate LSDWPs by solving (8), while 
the optimized versions (i.e., OPC and OPV) calculate 
LSDWPs by solving (9). The evaluation of the constant 
disk failure rate versions of the algorithm corresponds to 
the discussion in Section 6.2 about the algorithm working 
in a constant failure rate environment.  

In (9) as addressed in Section 6.2, we use the tangent 

line of te  at point (0, 1) as a substitution for the original 

curve te  . The function of the tangent line is

( ) 1f t t   , which is a special case of ( )f t a t b  

mentioned in Section 6.2, where a=-1 and b=1. Fig. 6 

shows both the original curve of te   and the substitution 

curve of tangent line ( ) 1f t t   , where the unit of x 

axis is calculated as “% per year * year”, which has no 
explicit time unit. In the figure, the substitution curve is 

located at the lower side of the original curve of te  . 

According to the disk failure rate range of the IDEMA 
standard and the disk nominal lifespan of five years3, the 

range of t  is (0, 0.219). In this range, it can be seen that 

the deviation of the tangent line is relatively small. With 

the decrease of t , the deviation gets even smaller. After 

this substitution, (9) is further simplified into function

                                                           
3
 B. Schroeder and G. Gibson, "Disk failures in the real world: What 

does an MTTF of 1,000,000 hours mean to you?," in USENIX 

Conference on File and Storage Technologies, pp. 1-16, 2007. 
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1 2(1) 1RR t   . Compared to the original equation, the 

simplification of the complexity of the equation is 
obvious. In addition to reducing the complexity of the 
equation, there is another advantage of using the tangent 
line as a substitution. By solving (9), the result (i.e., the 
LSDWP of the file) is always conservatively 
underestimated, so that the deviation caused by the 
substitution does not reduce the data reliability assurance 
that PRCR provides. In fact, by using the tangent line 
substitution, the data reliability assurance PRCR provides 
is always higher than the calculated result. 

 

Fig. 6. Original curve and tangent line of
te 
 

The execution time and accuracy rate of the algorithm 
for all four versions are tested under the same file 
settings and the same disk settings for constant failure 
rate versions and variable failure rate versions 
respectively (ET=1 year,   for ORC and OPC is 1% and 
disk failure rate pattern for ORV and OPV ranges from 
0.5% to 4.38% which is based on the IDEMA standard). 
Note that the accuracy rate stands for the ratio between 
LSDWPs of optimized versions of the algorithm and 
original versions of the algorithm, which indicates the 
accuracy of the results produced by the optimized 
versions of the algorithm. The results of one 
representative experiment are shown in Table 1. 

TABLE 1 

EXECUTION TIME AND ACCURACY RATE OF STORAGE 

DURATION PREDICTION ALGORITHM 

 One replica Two replicas 

Average Execution Time (ms) & (Number of LSDWPs) 

Reliability 99% 99.9% 99.99% 99.999% 

ORC 0.69 15.34 15.62 16.20 

OPC 0.69 0.69 0.69 0.69 

ORV 0.72(1) 16.26(1) 16.30(1) 155.82(10) 

OPV 0.72(1) 4(1) 7.81(2) 41.52(11) 

Accuracy Rate 

OPC NA 89.52% 99.00% 99.90% 

OPV NA 89.61% 99.00% 99.90% 

The upper half of Table 1 shows the average execution 
time of all four versions of the algorithm. In addition, the 
number of LSDWPs calculated in each run of the 
algorithm is also shown in parentheses for ORV and OPV 
versions of the algorithm, respectively. It can be seen that 

the optimized versions of the algorithm outperform the 
original versions in several respects. First, despite the 
equal execution time when data reliability is 99 per cent, 
at which one replica suffices to meet the data reliability, 
in other cases the execution time of optimized versions of 
the algorithm (i.e., OPC and OPV) is significantly smaller 
than that of original versions of the algorithm (i.e., ORC 
and ORV) respectively. Second, although the overall 
trend for all versions of the algorithm is that the 
execution time increases with the increase in data 
reliability requirement, the execution time of optimized 
versions of the algorithm increases much slower than 
that of original versions. In the accuracy rate part of Table 
1, due to storage with a single replica, the accuracy rate 
for data reliability of 99 percent is not applicable. In other 
cases, the accuracy rate increases with the increase in 
data reliability requirement. In Table 1, the accuracy rates 
of optimized versions of the algorithm reach 99.9 per 
cent. In fact, this value can be even larger when the data 
reliability requirement becomes higher. 

In general, the results in Table 1 show that, depending 
on the data reliability assurance provided, the storage 
duration prediction algorithm is able to calculate 
LSDWPs of files between a few milliseconds to hundreds 
of milliseconds. However, the reliability assurance shown 
in the table could be even higher. To provide higher data 
reliability assurance, more time could be taken to conduct 
the storage duration prediction algorithm as more 
LSDWP values are calculated. The execution time of 
optimized versions of the algorithm is much shorter than 
that of original versions, and the accuracy rate increases 
with increasing data reliability assurance. 

Evaluation of metadata scanning and proactive 
replica checking 

To evaluate the metadata scanning and proactive 
replica checking procedures, an experimental PRCR is 
implemented with Amazon Web Services (AWS). The 
structure of the experimental PRCR consists of one user 
interface, one PRCR node and one more Cloud virtual 
machine for proactive replica checking, each runs on a 
single AWS EC2 instance. Based on the experimental 
PRCR, the metadata scanning time and the proactive 
replica checking time are measured on independent EC2 
instances respectively. 

TABLE 2 

METADATA SCANNING TIME AND PROACTIVE REPLICA 

CHECKING TIME 

 t1.micro m1.small m1.large m1.xlarge 

Scanning Time ≈700ns ≈400ns ≈700ns ≈850ns 

Checking Time ≈27ms ≈27ms ≈30ms ≈27ms 

In the experiments, the metadata scanning procedure 
and the proactive replica checking procedure are 
simulated on four types of EC2 computing instances (i.e., 
virtual machines in EC2) for the management of 3000 S3 
objects (i.e., files). Table 2 shows the results of the 
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experiments. It can be seen that the metadata scanning 
time is at a magnitude of hundreds of nanoseconds, and 
the proactive replica checking time is at a magnitude of 
tens of milliseconds.  

Impact of PRCR on data access performance 

Compared with the conventional 3-replica strategy, by 
using PRCR, intuitively, data access performance could 
potentially be affected. Specifically, such impact could 
primarily be on the data transfer speed. However, such 
impact may vary due to different Cloud data access 
strategies and different data storage plans. In this 
subsection, we only briefly discuss this issue as it is 
essentially not how PRCR impacts on data access 
performance but how storing no-more-than-two replicas 
could impact on data access performance in comparison 
to storing three replicas. 

For evaluation, we conducted data access speed tests 
with Amazon S3 services so as to analyze the impact of 
storing no-more-than-two replicas compared with storing 
conventional three replicas. As Amazon has stated that 
“latency and throughput for reduced redundancy storage 
are the same as for standard storage” 
(http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingRRS.html), 
we conducted data access performance tests for Amazon 
S3 standard storage only. Specifically, we created 
Amazon AWS EC2 instances in different AWS regions as 
well as used a local computer at Swinburne University of 
Technology in Melbourne, Australia to experiment the 
data transfer speed for accessing files stored in S3 in 
different regions. In each test, a 10MB file is transferred 
from the data source to the target location. 

The results are shown in Table 3. Based on the results, 
a major observation can be clearly seen, i.e., data transfer 
within the same region is always of the highest speed, 
where the data are transferred much quicker than that 
between different places (>3000 KB/s vs. <300 KB/s). 

TABLE 3 

TRANSFER SPEED FOR ACCESSING DATA IN AMAZON S3 

Source 

Target 
Oregon Ireland Singapore Sydney Local 

Oregon 3372KB/s 170KB/s 184KB/s 172KB/s 86KB/s 

Ireland 231KB/s 3284KB/s 211KB/s 36KB/s 54KB/s 

Singapore 190KB/s 209KB/s 3466KB/s 202KB/s 107KB/s 

Sydney 137KB/s 110KB/s 230KB/s 3205KB/s 224KB/s 

According to the above results, in summary, we have 
the following conclusions for the impact of using PRCR 
on data access performance compared with the 
conventional 3-replica strategy.  

First, in the case that all replicas are stored in one 
region in practice as in Amazon S3, as addressed above, 
according to the description of Amazon S3, latency and 
throughput of standard storage and reduced redundancy 
storage are the same. This in fact means that on Amazon 

S3 the data access performance by using 3 replicas is the 
same to that by using less than 3 replicas. Therefore, for 
PRCR which uses no more than 2 replicas without 
jeopardizing reliability, it would have the same data 
access performance with S3, and hence no performance 
degradation in general. 

Second, in the case that all replicas are stored in 
different regions, there would be some impact on data 
transfer speed for some users. For example, on Amazon 
S3, if 3 replicas are stored in different regions such as 
Oregon, Ireland and Sydney in a traditional manner 
whilst in PRCR only 2 replicas are stored in regions such 
as Oregon and Ireland (i.e.,, no replica stored in Sydney), 
there would be performance degradation to some users 
from such as Australia to access data because they would 
suffer slower data transfer speed to either Oregon or 
Ireland (at 86KB/s or 54KB/s respectively from 
Swinburne) in comparison to faster access to Sydney (at 
224Kb/s from Swinburne). Similarly, the impact on a 
single replica can be analyzed. To solve this issue, on one 
hand, research in another area on data placement can be 
conducted to minimize the performance impact, e.g., the 
replica accessed least and/or slowest can be eliminated. 
On the other hand, in the case that access performance 
for certain data is of ultimate goal, extra replica(s) can be 
added at the extra cost, which would not jeopardize the 
effectiveness of PRCR for data reliability. 

7.2 Cost effectiveness of PRCR 

The cost effectiveness of PRCR in managing a large 
number of files is evaluated. There are two major costs 
incurred for managing data with PRCR: the running 
overhead of PRCR and the cost for storing data replicas. 

Running overhead of PRCR 

Considering the large amounts of data in the Cloud, 
PRCR nodes would normally be well loaded, i.e., being 
or being close to their maximum capacity. Therefore, the 
running overhead of each file can be derived by dividing 
the total PRCR running cost by the maximum capacity of 
PRCR nodes.  

TABLE 4 

MAXIMUM CAPACITY OF PRCR NODES (NUMBER OF FILES) 

        

 RA 
0.1 0.05 0.02 0.01 

99% 5*10
13

 files 2.3*10
14

 files 2.8*10
15

 files NA 

99.9% 4.5*10
12

 files 1.8*10
13

 files 1.2*10
14

 files 5*10
14

 files 

99.99% 4.5*10
11

 files 1.8*10
12

 files 1.1*10
13

 files 4.5*10
13

 files 

99.999% 4.5*10
10

 files 1.8*10
11

 files 1.1*10
12

 files 4.5*10
12

 files 

Based on Table 2, for the ease of illustration, we 
choose 700ns as the standard execution time for the 
metadata scanning process. Given the reliability 
assurance and disk failure rate, we are able to calculate 
the LSDWP of the file, and hence the biggest scan cycle of 
the corresponding PRCR node. Further, with the 
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standard execution times, the maximum capacity, i.e., 
number of files to be managed, of the PRCR nodes is 
calculated (Maximum capacity = Scan cycle / Metadata 
scanning time) and presented in Table 4. In the table, the 
relationships among the reliability requirement, the 
average failure rate of a single replica  and the 
maximum capacity of PRCR nodes are clearly revealed. 
With different single replica failure rates and reliability 
requirements, each PRCR node is able to manage from 
4.5*1010 to 2.8*1015 files, which is quite large. Although 
the maximum capacity of PRCR nodes reduces with the 
increment of disk failure rates and data reliability 
requirements, the maximum capacity of PRCR nodes is 
deemed big enough to be practical for the management of 
a large number of files in the Cloud. 

The total PRCR running cost is composed of the 
running cost for user interface, PRCR nodes and Cloud 
virtual machines for proactive replica checking. 
According to Amazon EC2 prices, the corresponding cost 
of an EC2 micro instance is only $14.40/month each 
($0.02/hour * 24 hours/day * 30 days/month). Therefore, 
for a complete PRCR running over AWS, the running 
cost could be as little as several tens of dollars per month. 
According to the maximum capacity of PRCR, the 
running overhead for each file is very small, which is no 
more than $10-9/file*month (i.e., $14.40*3/(4.5*1010files)). 
Such an overhead is so small in comparison to the cost 
for data storage, which is at the level of $10-2/GB*month. 
For example, the storage of a file with the size of 1GB has 
a running overhead about 107 times cheaper than the 
storage cost (several cents/month). Therefore, the cost of 
running PRCR is negligible. 

Data storage saving by using PRCR 

The data storage saving using PRCR is investigated. 
We simulate the data reliability management process of 
PRCR to manage the files of the pulsar searching 
example as illustrated in Supplementary Material. In the 
simulation, the storage consumption is compared with 
the conventional 3-replica strategy, which is widely used 
in current Clouds. 

In the simulation, four different storage plans are 
tested: 1-replica, 1+2 replica, 2-replica and 3-replica. The 
1-replica plan stores all files with one replica, which 
stands for the data storage without any replication. The 
2-replica plan stores all files with two replicas. These two 
storage plans can be redeemed as two data storage 
strategies, but also represent the lower and upper bounds 
of storage consumption by using PRCR. The 3-replica 
plan stores all files with three replicas, which represents 
the conventional 3-replica strategy. The 1+2 replica plan 
divides all the files into two categories and stores them 
with one replica or two replicas, respectively, which 
represents the actual data management of PRCR. 
According to the pulsar searching example, the extracted 
and compressed beam files, the XML files and the de-
dispersion files should be stored for long-term use and 
have higher reliability requirements, so they are stored 

with two replicas. The other files that are for temporary 
usage are stored in the 1-replica mode. 

Fig. 7 shows the average replica numbers and total 
data sizes with different storage plans for the pulsar 
searching data. By applying the 2-replica plan, one-third 
of the generated data size can be reduced in comparison 
to the 3-replica strategy, and the average replica number 
for each file is reduced accordingly. By applying the 1+2 
replica plan, the consumption of storage space is further 
reduced and minimized. In our simulation, by applying 
the 1+2 replica plan, the ratio between the number of the 
two types of files for pulsar searching application reaches 
a staggering 1:41, and the ratio between the accumulated 
sizes of two types of files is about 2.34:1. Compared with 
the 2-replica plan, more than 95 per cent of replicas with 
23 per cent of the total data size are reduced. Compared 
with the 1-replica plan, the 1+2 replica plan generates 
only 53 per cent additional storage space for all the 
pulsar searching data (i.e., the data redundancy is 1.53), 
and the data reliability requirement of all the files can be 
met without jeopardy. 

 
Fig. 7. Average replica numbers and data sizes 

In general, by using PRCR, the storage consumption 
could be reduced significantly. For the pulsar searching 
application, up to 49% (i.e., (3-1.53)/3) of the storage 
space can be saved compared with the conventional 3-
replica data storage strategy, i.e., 277TB of storage space 
can be saved for an observation of eight hours a day for a 
month. Meanwhile, the running cost of PRCR for 
managing such an amount of data is only tens of dollars 
per month. For other Cloud applications with different 
data composition, say more data with less data reliability 
requirement, the storage space reduction effect of PRCR 
could be even higher.  Moreover, here we only compared 
PRCR with the conventional 3-replica strategy. To 
manage data with even more replicas needed [6], 
according to the nature of PRCR that stores no more than 
two replicas, the storage saving by using PRCR could be 
even more. 

8 CONCLUSIONS AND FUTURE WORK 

In this paper, we have presented a cost-effective 
reliability management mechanism (PRCR) based on a 
generalized data reliability model. It applies an 
innovative proactive replica checking approach to ensure 
the data reliability while the data can be maintained with 
the minimum number of replicas (serving as a cost 
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effectiveness benchmark for evaluation), which is no 
more than two. Evaluation of PRCR has demonstrated 
that this mechanism is able to manage large amounts of 
data in the Cloud, significantly reduce the Cloud storage 
space consumption at a negligible overhead.  

In the near future, this research can be extended in two 
directions. First, a more detailed design of PRCR will be 
conducted including further optimization. Second, as 
PRCR inevitably reduces the replication level of Cloud 
data, the location of replicas becomes more important 
which deserves further research on improving data 
access performance. 
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