
Swinburne Research Bank
http://researchbank.swinburne.edu.au

Author: Li, Wenhao; Yang, Yun; Yuan, Dong
Title: Ensuring cloud data reliability with minimum

replication by proactive replica checking
Year: 2016
Journal: IEEE Transactions on Computers
Volume: 65
Issue: 5
Pages: 1494-1506
URL: http://hdl.handle.net/1959.3/427512

Copyright: Copyright © 2015 IEEE. This is the author's
accepted version of the article. Personal use of
this material is permitted. Permission from IEEE
must be obtained for all other users, including
reprinting/ republishing this material for
advertising or promotional purposes, creating new
collective works for resale or redistribution to
servers or lists, or reuse of any copyrighted
components of this work in other works.

This is the author’s version of the work, posted here with the permission of the publisher for your
personal use. No further distribution is permitted. You may also be able to access the published
version from your library.

The definitive version is available at: http://dx.doi.org/10.1109/TC.2015.2451644

Powered by TCPDF (www.tcpdf.org)

Swinburne University of Technology | CRICOS Provider 00111D | swinburne.edu.au

http://www.tcpdf.org

IEEE TRANSACTIONS ON COMPUTERS MANUSCRIPT ID 1

Ensuring Cloud data reliability with minimum
replication by proactive replica checking

Wenhao Li, Yun Yang (IEEE Senior Member), Dong Yuan (IEEE Member)

Abstract — Data reliability and storage costs are two primary concerns for current Cloud storage systems. To ensure data

reliability, the widely used multi-replica (typically three) replication strategy in current Clouds incurs a huge extra storage

consumption, resulting in a huge storage cost for data-intensive applications in the Cloud in particular. In order to reduce the

Cloud storage consumption while meeting the data reliability requirement, in this paper we present a cost-effective data reliability

management mechanism named PRCR based on a generalized data reliability model. By using a proactive replica checking

approach, while the running overhead for PRCR is negligible, PRCR ensures reliability of the massive Cloud data with the

minimum replication, which can also serve as a cost effectiveness benchmark for replication based approaches. Our simulation

indicates that, compared with the conventional 3-replica strategy, PRCR can reduce from one-third to two-thirds of the Cloud

storage space consumption, hence significantly lowering the storage cost in a Cloud.

Index Terms — minimum data replication, proactive replica checking, data reliability, cost-effective storage, Cloud computing

—————————— ——————————

1 INTRODUCTION

HE size of Cloud storage is expanding at a dramatic
speed. It is estimated that by 2015 the data stored in

the Cloud will reach 0.8 ZB (i.e., 0.8*1021 Bytes or
800,000,000 TB), while even more data is “touched” by
the Cloud within the data lifecycle [8]. Meanwhile, with
the development of the Cloud computing paradigm,
Cloud-based applications have put forward a higher
demand for Cloud storage. While the requirement of data
reliability should be met in the first place, data in the
Cloud needs to be stored in a highly cost-effective
manner.

Reliability is defined in standard TL9000 [4] as “the
ability of an item to perform a required function under
stated conditions for a stated time period”. For data
reliability specifically, it can be understood as ”the
probability of the data surviving in the system for a given
period of time” [12]. In the area of distributed data
storage, because of the inevitable occurrence of disk
failures, data reliability has become one of the most
important metrics of the storage system, indicating the
ability to keep data consistent. In modern Clouds, data
replication is the most commonly applied approach for
providing data reliability assurance, which creates and
stores multiple replicas of the data to reduce the
probability of data loss. For example, storage systems
such as Amazon S3 [1], Google File System [10] and
Hadoop Distributed File System [5] all adopt similar data
replication strategies that we call the conventional 3-
replica strategy, in which three replicas, i.e., three data
copies including the original data, are stored for all data.
However, due to the accelerating growth of Cloud data,
current replication-based data reliability management
has become a bottleneck for the development of Cloud

data storage, because these data replication strategies are
consuming too much extra storage space, thus incurring a
huge storage cost.

In this paper, our research focuses on minimizing the
Cloud storage consumption by minimizing data
replication while meeting the data reliability
requirement. This paper presents three major
contributions.

Firstly, through analysis of existing studies, a
generalized data reliability model for multiple replicas is
proposed, in which the data reliability with variable disk
failure rates is well investigated. Compared with much
research that assumes a constant disk failure rate [2], [12],
[20], our generalized data reliability model is able to
better describe data reliability over a wide range of disk
failure rate patterns, hence data reliability management
over both virtual and physical disks is feasible.

Secondly, to minimize replicas, and therefore the
storage consumption in the Cloud, a cost-effective data
reliability management mechanism named PRCR is
presented. This mechanism is designed to be
implemented by the Cloud storage providers in order to
increase the profit and/or the competitiveness by cost
saving, as well as serve as, a benchmark for storage
consumption of different approaches. PRCR could also
potentially benefit Cloud storage users with cheaper
storage services without jeopardizing data reliability. By
applying PRCR, the Cloud data can be stored with the
minimum replication while meeting the reliability
requirement of Cloud data. PRCR has the following
features:
1. It is able to ensure the data reliability of storage

devices with variable disk failure rates.
2. It is able to manage large amounts of data in the

Cloud with a negligible running cost.
3. It provides data reliability management in a highly

T

 xxxx-xxxx/0x/$xx.00 © 200x IEEE

————————————————

 W. Li is with the School of Computer Science and Technology, Shandong
University, China, Y. Yang is with the School of Computer Science and
Technology, Anhui University, China and the School of Software and
Electrical Engineering, Swinburne University of Technology, Australia,
and D. Yuan is with the School of Electrical and Information Engineering,
University of Sydney, Australia. E-mails: ayumi_5420467@hotmail.com,
yyang@swin.edu.au, yd0116@gmail.com

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TC.2015.2451644

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

2 IEEE TRANSACTIONS ON COMPUTERS

cost-effective way. By applying PRCR, a wide range
of data reliability assurance can be provided with the
minimum number of replicas, which is no more than
two.
Thirdly, as a direct consequence of PRCR, the

minimum replication benchmark with any data reliability
requirement can be provided. This benchmark can be
used for evaluating various replication-based data
storage approaches. By comparing the minimum
replication benchmark with the replication level of a data
storage approach, the cost effectiveness of the data
storage approach can be clearly demonstrated.

This paper is one of a series of articles that towards
reducing data storage consumption in the Cloud [17],
[16], [23]. Prior to this paper, our preliminary version of
this research was published in [16]. In that paper, we
only investigated a special case of the data reliability
model and PRCR by assuming that the disk failure rate is
a constant. Compared to [16], this paper has substantially
extended the data reliability model, PRCR mechanism
and evaluation to demonstrate that the data reliability
management with a variable disk failure rate is feasible
and explicitly presents the minimum replication
benchmark. In addition, existing research on how the
variable disk failure rate affects distributed replicas is
very limited. This paper is one of the few works
investigating the data replication techniques with a
variable disk failure rate.

The rest of the paper is organized as follows. The
related work on data reliability, data replication and cost-
effective data storage is addressed in Section 2. The
problem analysis is stated in Section 3. The generalized
data reliability model is proposed in Section 4. The idea
of PRCR and its high level design are presented in
Section 5. The detailed design for PRCR, including the
working process and optimization algorithms, is
described in Section 6. The evaluation of PRCR is
discussed in Section 7. Conclusions and future work are
summarized in Section 8.

2 RELATED WORK

Data reliability has always been a key issue in the field
of distributed data storage. Considering factors that are
due to the storage system itself, permanent disk failure
caused by non-human factors is considered to be the
major reason for data loss. The reliability of disks has
been investigated for decades in both academia and
industry [7], [20], [22]. Most of these studies have
assumed an exponential data reliability model, in which
the failure rate of each disk is a constant. For example,
recent studies that analyze data reliability with Markov
chain models assume that the failure rates of all disks in
the storage system are the same [13], [20]. However, a
constant disk failure rate cannot explain all of the
phenomena happening in reality. It has been very well
known that the failure rate of disk drives follows what is
often called a "bathtub" curve, where disk failure rate is

higher in the disk’s early life, drops during the first year,
remains relatively constant for the remainder of the
disk’s useful lifespan and rises again at the end of the
disk’s lifetime [11], [22]. Some other studies have also
obtained results that contradict the constant disk failure
rate model. For example, [7] shows that the disk failure
probability of populations of disks generally do not
follow an exponential distribution. For fixing this
inconsistency, the International Disk Drive Equipment
and Materials Association (IDEMA) proposed a
compromised presentation for disk failure rates that uses
discrete disk failure rates [14], where the lifespan of each
disk are divided into different life stages with different
failure rates. Such model has been demonstrated to be
feasible in [22], and a nine-month investigation
conducted by Google also obtained results very
consistent to this model [19]. In this paper, we describe
the disk failure rate pattern in the IDEMA style, which
divides the lifespan of disks into discrete life stages with
discrete disk failure rates, and we also conduct our
research based on the disk failure rates provided by
IDEMA standards and Google’s nine-month disk failure
trend study.

Apart from research on disk reliability, many efforts
for ensuring data reliability have also been made in the
software aspect. In [15], analytical data reliability model
and data replica schemes are proposed for minimizing
the data missing rate of the storage system. In [10], a data
partitioning approach is implemented to improve the
reliability, availability and data access performance in the
storage system, in which the original data is stored in the
form of data chunks of the same size. However, instead
of taking the variable disk failure rate patterns of storage
devices into consideration, these studies also consider the
failure rates of the storage devices as a simple constant
value.

Among all the existing approaches for supporting data
reliability, data replication has been considered as a
dominant approach in current distributed storage
systems. Some existing works on large-scale distributed
storage systems have been proposed such as [3], [9].
Specifically, in Cloud computing, data replication
technologies have been widely adopted in current
commercial Cloud systems. Some typical examples
include Amazon Simple Storage Service (Amazon S3) [1],
Google File System (GFS) [10], Hadoop distributed file
system (HDFS) [5]. Although data replication has been
widely used, there is a side effect that it would consume
considerable extra storage resources and incur significant
additional cost. To address this issue, Amazon S3
published its Reduced Redundancy Storage (RRS)
solution to reduce the storage consumption [1]. However,
such cost reduction is realized by sacrificing data
reliability. By using RRS, only a lower level of data
reliability can be offered. In addition to RRS, some of our
previous works made contributions in reducing storage
consumption for replication-based Cloud storage. For

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TC.2015.2451644

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON COMPUTERS 3

example, in [17], we proposed a cost-effective dynamic data

replication strategy for data reliability in Cloud data centers, in

which an incremental replication method is applied to reduce

the average replica number while meeting the data reliability

requirement. However, for long-term storage or storage with a

very high reliability requirement, this strategy could generate

even more than three replicas for the data, so that its ability to

reduce storage consumption is limited.

Besides direct data replication, another type of data
storage approach that leverages erasure coding
techniques has also been studied [13], [21]. In [13], novel
LRC codes are applied to Windows Azure Storage service
as an alternative approach to replication that stores non-
changeable data blocks of over 1 GB. In [21], an erasure
coded storage system named Hitchhiker was proposed
and implemented in HDFS. Unlike direct data replication
approaches for storage, erasure coding approaches divide
data into several data blocks and store them with
additional erasure coding blocks. By using erasure
coding approaches, data reliability can be ensured at a
quite high level with very low data redundancy.
However, the major disadvantage of erasure coding
approaches is apparent, i.e., the computation overhead
for coding and decoding data can be significant. As will
be further explained in Section 3.2, erasure coding is not
the best solution for the data storage of certain data-
intensive Cloud applications.

The research presented in this paper focuses on the
data reliability issue in the Cloud with a replication-
based data storage scheme. The issue is closely related to
the aspects mentioned above, in which data replication
and analysis of disk failure rates are combined to ensure
the data reliability. Compared with existing research for
data reliability, our research is more comprehensive in
supporting data reliability assurance with variable disk
failure rate. In terms of our data reliability assurance
solution, PRCR minimizes storage consumption based on
the premise of not sacrificing data reliability, which is
different from the Amazon S3 RRS service. Moreover, our
replication solution is more flexible. It allows data to be
stored with only one replica for reducing storage
consumption and a variety of data reliability
requirements can be met without jeopardy when stored
with two replicas. Compared with the conventional 3-
replica strategy, PRCR is able to provide the same or
even higher reliability assurance. In general, PRCR
consumes minimum storage with no more than two
replicas for all the data in the Cloud with any data
reliability requirement.

3 MOTIVATING EXAMPLE AND PROBLEM

ANALYSIS

3.1 Motivating Example

Potentially, in order to investigate the data storage
issue of massive scientific research data, the scenario of a
pulsar searching application has been investigated. The

pulsar searching survey is one of the astronomical
research programs currently being conducted by the
Astrophysics Group at Swinburne University of
Technology. With huge amounts of observation data
obtained from Parkes Radio Telescope
(http://www.parkes.atnf.csiro.au/), the pulsar searching
application carries out many complex and time
consuming tasks, and easily generates hundreds of
terabytes of data during execution. For a better
presentation of the pulsar searching application, a small
application instance is presented in the Supplementary
Material as an example. In the application instance, the
raw telescope data for an eight-minute observation is
processed. It generates hundreds of GBs of intermediate
files and takes tens of hours for data processing.
Nevertheless, for achieving different searching goals, the
telescope observation time is often much longer, and
hence more data needs to be generated and processed.
For an observation conducted eight hours a day for 30
days, the size of generated files could reach 543.6TB.
Moreover, as the pulsar searching program continues, the
number and size of generated files become bigger and
bigger, so the cost for data storage becomes much higher.

3.2 Problem Analysis

For data-intensive Cloud applications similar to the
pulsar searching application, there is a quite common
situation that needs to be faced due to their data-
intensive characteristics. During the execution of such
applications, large amount of data is generated and
processed, so that the storage consumption incurred
could be very high. However, whilst the cost for storing
data is inevitable, there is still plenty of room to reduce it.
On one hand, current Cloud storage systems often use
multi-replica data replication strategies for ensuring data
reliability, which generate high level data redundancy.
For example, storage systems such as Amazon S3, Google
File System and Hadoop Distributed File System all
adopt the conventional 3-replica strategy, in which by
default three replicas are stored for all data. By using the
conventional 3-replica strategy, based on the original
data (regarded as the first replica), two other replicas are
generated at once for storage, i.e., 200 per cent of extra
storage consumption. Such strategy causes a huge
amount of extra storage consumption due to replication.
For data-intensive applications such as the pulsar
searching example, the extra storage consumption could
be huge. For example, by applying the conventional 3-
replica strategy, storing 543.6TB pulsar searching data
mentioned above needs about 1630TB storage space, of
which two-third of storage space are for data
redundancy. On the other hand, in Cloud applications,
the data reliability requirements and storage durations of
different data are not the same. Taking the pulsar
searching application as an example, the generated files
can be divided into two primary data types. One type is
critical and would be reused for a long period of time, for
examples, the extracted beam files, the XML files and the

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TC.2015.2451644

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://www.parkes.atnf.csiro.au/

4 IEEE TRANSACTIONS ON COMPUTERS

de-dispersion files. These files record the current state of
the universe, which are very important and can be reused
for long term analysis. For data of such kind, high data
reliability assurance and long-term storage duration are
necessary. The other type is only used for shorter term
and lacks long-term value, for examples, the accelerated
de-dispersion files, seek result files and all the candidate
lists. For data of such kind, because of the short storage
duration, as will be demonstrated later in Section 4, one
replica would suffice to meet both the requirements of
data reliability and storage duration. However, by
applying the conventional 3-replica strategy, all data is
stored with the same number of replicas, which is
inappropriate for both types. For the former data type,
when a large amount of data is stored, the data reliability
assurance of three replicas incurs high storage
consumption. For the latter data type, the additional two
replicas are simply not needed, thus consuming
unnecessary extra storage space.

Instead of using the erasure-coding-based data storage
scheme, our research focuses on Cloud with a direct
replication-based data storage scheme for two reasons:
First, for pulsar searching and a wide range of similar
Cloud applications that involve intensive large scale data
processing and generation, applying erasure coding
approaches is not desirable: both computation and time
overheads for encoding and decoding the data are so
high (at the level of seconds per MB or even more [13],
[21]) that the overall cost saving advantage by reducing
storage consumption can be significantly weakened.
Second, the replication-based data storage scheme is
currently the most widely used Cloud storage scheme,
which is adopted by many Cloud service providers. In
order to reduce the storage consumption without
jeopardizing the data reliability requirement for data-
intensive applications in the Cloud, a new replication
mechanism needs to be designed to replace the
conventional 3-replica strategy.

4 DATA RELIABILITY MODEL

Instead of the conventional 3-replica strategy, there is
a way in which we can provide data reliability with
fewer replicas. A mathematical model for data reliability
has provided the possibility of reducing the number of
replicas while meeting the data reliability requirement. In
this section we investigate the relationship between data
reliability and variable disk failure rate, and propose a
generalized data reliability model for data with multiple
replicas.

4.1 Data reliability with constant disk failure rate

As mentioned in Section 2, many existing theories
assume an exponential disk reliability model, in which
the disk failure probability follows the exponential
distribution with a constant disk failure rate. In that case,
the reliability of a disk over period T (i.e., 1-disk failure
probability) can be expressed as R(T), where:

() TR T e (1)

The replicas stored in the disk should have the same
reliability as the disk. Therefore, (1) is also applicable for
calculating the reliability of a single replica when the disk
failure rate is a constant. Therefore, R(T) also indicates
the data reliability, i.e., the probability of the replica
survives over period T with as the disk failure rate.

4.2 Data reliability with variable disk failure rate

Although exponential distribution can be used to
describe the data reliability when disk failure rate is a
constant as mentioned in Section 2, the failure rates of
disks actually vary from time to time. In practice, quality
control is conducted for each batch of disks before they
leave the factory, in which samples should be tested to
ensure the quality of the product being consistent, and
hence we consider the failure rate pattern of a batch of
disks is known. As one of the same batch of disks, the
actual failure pattern of the disk should adhere to the
batch failure rate pattern quite well statistically. Hence
each disk’s failure rate pattern should follow the failure
rate pattern of the batch of disks, which is known.

Here we investigate the data reliability with a variable
disk failure rate. To calculate the data reliability with a
variable disk failure rate, we first assume that the data
survival probability with a constant disk failure rate
follows exponential distribution (i.e., (1) holds). Second,
according to the IDEMA standard, when the disk failure
rate is a variable, we assume the disk failure rate pattern
contains several life stages, and in each life stage of a
disk, the disk failure rate does not change. Assume that
replica r is stored in disk D between

0t and
nt , in this

period of time, the disk failure rate pattern of disk D
contains n life stages, in which the disk failure rates are

1 2, ,..., n respectively where
i

indicates the disk
failure rate between time

1it
and

it , i N . Fig. 1 shows
the failure rate pattern of disk D between time

0t and
nt .

...

Failure rate(%/year)

0

�1

�2

�3

...

Time(year)

t1 t2 ... tntn-1t0 t3
Fig. 1. The failure rate pattern of disk D between time

0t and
nt

Let event
jA be disk D surviving from

1jt
to

jt , where

j N , the probability that disk D survives from
0t to

nt

can be described as 1 1(...)n nP A A A . According to the

property of conditional probability, we have:

1 1 1 1 1 2 1

1 1 1 2 1

2 1 1

(...) (| ...) (...)

... (| ...) (| ...)...

(|) ()

n n n n n n

n n n n

P A A A P A A A P A A A

P A A A P A A A

P A A P A

in which
1 2 1(| ...)j j jP A A A A

indicates the probability of

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TC.2015.2451644

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON COMPUTERS 5

disk D surviving (i.e., the reliability of disk D) between

1jt
and

jt , given that D is alive at time
1jt

. Because

replica r has the same reliability as disk D,

1 2 1(| ...)j j j tjP A A A A R , where
tjR is the reliability of

data stored from
1jt

to
jt . Therefore, we have

1 1 1 2(...) ...n n t t tnP A A A R R R .

According to (1), 1()j j jt t

tjR e

 . Let
1j j jT t t , hence

we have:
1 1 2 2

1 1

1 1 1

(...) ...

exp((/))

n nTT T

n n

n n n

j j j jj j j

P A A A e e e

T T T

Because of
1 1(...) ()n nP A A A R T , this equation can be

denoted as:

()
T

R T e

 (2)

In (2), several life stages of the disk during the whole
lifespan of the replica are transformed into a single

variable , where
1 1

/
n n

j j jj j
T T

 is the weighted

mean of the disk failure rate with storage durations as
weights (“weighted average failure rate” for short).

1

n

jj
T T

 is the sum of all storage durations, which is

the lifespan of the data. From (2), we can tell that data
reliability, i.e., the probability of one replica survives,
with a variable disk failure rate, also follows the
exponential distribution, while the disk failure rate
becomes the weighted mean of all the disk failure rates
during the storage. It can be seen that (1) is a special case
of (2) when the disk failure rate is a constant.

4.3 Generalized data reliability model

In previous sub-sections we discussed the data
reliability of storing one replica. Based on these
discussions, a generalized data reliability model with a
variable disk failure rate for multiple replicas is
proposed. As indicated in Section 4.2, we assume that the
failure rate pattern of each disk could theoretically be
known by following the failure rate pattern of the batch
of disks. In that case, each disk failure can be considered
independent. Assume that replicas of the same data be
stored in different disks. According to (2), the data
reliability with multiple replicas can be derived from (3):

1
() 1 (1)i k

k T

k i
R T e

 (3)

In this equation, k is the number of replicas, i is the

weighted average failure rate of the disk storing replica ir

and kT is the storage duration of the data with k replicas.

The right-hand side of the equation describes the
probability that at least one of the k replicas survives

during the storage duration of kT . Equation (3) reveals

the relationship between data reliability, the number of
replicas, disk failure rates and storage duration. If the
number of replicas and the failure rates of disks are
known, the relationship between storage duration and

data reliability can then be derived. It can be seen that (2)
is a special case of (3) when k=1.

5 COST-EFFECTIVE MECHANISM OF PRCR

In this section, the idea of proactive replica checking is
described. Based on this idea, we propose a cost-effective
data reliability management mechanism for Cloud data
storage named PRCR (Proactive Replica Checking for
Reliability), and describe it at the high level.

5.1 Proactive Replica Checking

There is a well-known property of exponential
distribution called the memory-less property, which is
that for all , 0s t , there are (|) ()P T s t T s P T t .
Because the data reliability, i.e., the probability of a single
replica surviving, follows exponential distribution, and
the data reliability of each replica is independent, this
property should also apply to our generalized data
reliability model for multiple replicas. This property
denotes that the data reliability from time s to s+t is
equivalent to that from time 0 to t. According to this
property, as long as we can guarantee that the data is not
lost at a certain moment, the data reliability for any
period from that moment can be calculated. More
importantly, according to (3), shorter storage duration
results in lower probability of data loss. Thus, the basic
idea of managing data reliability based on proactive
replica checking is formed. While data is stored on disks,
each replica of the data is proactively checked
periodically and the loss of replicas is discovered and
recovered within each period. By conducting proactive
replica checking at a certain frequency, a certain level of
data reliability assurance can be provided.

Based on this idea, the PRCR mechanism is proposed.
In PRCR, the data in the Cloud is managed in different
types according to its expected storage duration and
reliability requirements. For data that is only for short-
term storage and/or requires the data reliability that a
single replica can supply, one replica would be enough;
for data that is for long-term use and/or has a data
reliability requirement higher than the reliability
assurance of a single replica, two replicas are stored
which are periodically and proactively checked. During
the proactive replica checking, replicas of the data are
accessed to determine their existence 1 . The proactive
replica checking tasks must always be conducted before
the reliability assurance drops below the reliability
requirement. Once found, any single replica loss can be
quickly recovered according to certain strategy, such as
[6], [18], so that the reliability of the data can be ensured.

In some extreme cases, both replicas may be lost in a
small time window. The probability of such a situation is
already incorporated in the data reliability model. Given

1
As the proactive replica checking is conducted inside the Cloud, we

believe that the instability of the network is minimized, hence the
replica is considered lost when it cannot be accessed.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TC.2015.2451644

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

6 IEEE TRANSACTIONS ON COMPUTERS

a certain data reliability requirement, PRCR is
responsible for the probability of data loss being within
the agreed range, so that the data reliability requirement
is met. For example, given the data reliability
requirement of 99.99 per cent per year, PRCR ensures
that the data loss rate is no bigger than 0.01 per cent of all
the data per year, and hence does not jeopardize the
reliability assurance in overall terms.

5.2 Overview of PRCR

Manageme

nt

PRCR node

Replica

management

module

Data

tableUser

interface

Cloud virtual

machines

Cloud data

PRCR structure

Fig. 2. PRCR architecture

PRCR is a data reliability management mechanism
that can manage large amounts of data in the Cloud. By
using PRCR, Cloud data can be stored with minimum
replication while meeting the data reliability requirement
which can also serve as a cost effectiveness benchmark.
For the ease of description, we simply use the term “file”
as the data storage unit managed by PRCR. PRCR is
normally conducted as a data reliability management
service provided by the Cloud storage providers. It runs
on virtual machines in the Cloud. Fig. 2 shows the
architecture of PRCR. Note that Cloud virtual machines
are for running user interface, PRCR nodes and
conducting proactive replica checking respectively at the
storage provider’s cost.
User interface: It is the component of PRCR responsible
for determining the minimum replica number, creating
replicas (if necessary), creating and distributing metadata
of files. First, when the original replica of a file is created
(generated or uploaded) in the Cloud, the user interface
determines the minimum number of replicas (i.e., one or
two replicas). Second, if a file needs to be stored with two
replicas, the user interface calls Cloud service to create
the second replica for the file. Third, if a file is stored
with two replicas, the metadata of the file is created and
distributed to an appropriate PRCR node. For all files
managed by PRCR, there are in total six types of
metadata attributes, which are file ID, time stamp, data
reliability requirement, expected storage duration,
checking interval, and replica address. File ID is the
unique identification of the file. Time stamp records the
time when the last proactive replica checking task for the
file was conducted. The data reliability requirement and
expected storage duration are requirements for the
storage qualities. Checking interval is the time interval

between two consecutive proactive replica checking tasks
for the same file. Replica address indicates the location of
each replica. The file ID and replica address are
automatically given when the original and second replica
of the file are created. Time stamp is updated when the
proactive replica checking task is conducted. The data
reliability requirement and expected storage duration are
given by the storage user, and maintained for rebuilding
metadata in case of replica loss. These two attributes are
the only information that can be provided by the storage
user, while default value may apply if they are not given
(e.g., 99.9999% per year for data reliability requirement
and 1 year for expected storage duration). All the other
storage structure related attributes are transparent to
them. The checking interval is obtained based on the data
reliability requirement and the expected storage
duration, by using the storage duration prediction
algorithm that will be mentioned in the next section. One
or more checking intervals may apply throughout the
lifespan of the file in the Cloud. Depending on the time
stamp and the checking interval, PRCR is able to
determine the time that files need to be checked. All
replicas of the file can be found through their addresses.
PRCR node: It is the core component of PRCR
responsible for the management of metadata and
replicas. In order to provide data reliability assurance to
meet a wide range of data reliability requirement with
different storage durations, the PRCR normally should be
composed of one user interface and multiple PRCR nodes.
PRCR nodes work independently, so can easily be
created and destroyed, as required by variation in the
amount of data to be managed. Each PRCR node contains
two sub-components: data table and replica management
module.

Data Table: For all files that each PRCR node
manages, the above mentioned metadata attributes are
maintained in the data table. To ensure the data
reliability of files, all metadata are periodically scanned
by the replica management module. The so called “scan”
inspects the metadata of a file in the data table to
determine whether replica checking is necessary. In the
data table, each round of the scan is called a scan cycle, in
which all of the metadata in the data table is sequentially
scanned once. The scan cycle of each PRCR node is set to
a fixed value to scan files at certain frequency. By doing
so, the frequency of conducting proactive replica
checking tasks can be determined, which corresponds to
certain data reliability assurance that can be provided.
However, due to the limited performance of the virtual
machine that the PRCR node is running on, the time
constraint of scan cycle means that the maximum
capacity, i.e., maximum number of managed files, of the
PRCR node is also limited. The reliability of the data table
itself is beyond the scope of this paper. In fact, a
conventional primary-secondary backup mechanism may
well serve the purpose.

Replica Management Module: It is responsible for

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TC.2015.2451644

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON COMPUTERS 7

scanning the metadata in the data table and co-operating
with the Cloud virtual machines to process the proactive
replica checking tasks. In each scan cycle, the replica
management module scans the metadata in the data table
and determines whether the file needs to be checked. If a
file needs to be checked, the replica management module
obtains its metadata from the data table and sends it to a
Cloud virtual machine for proactive replica checking.
After the proactive replica checking task is finished, the
replica management module conducts further actions
according to the returned result. In particular, if any
replica is lost, the replica management module initializes
the recovery process for creating a new replica. For the
recovery of data with different usages, contents and
formats, different data recovery strategies can be applied
to achieve required goals [6], [18].

6 DESIGN OF PRCR

In this section, the design details of PRCR are
presented at a high level.

6.1 Working Process of PRCR

 PRCR node

User

interface

Replica

management

module

Data table

1.original

replica

created

3. store

metadata

5. extract

metadata

Virtual

machines

6. send proactive

replica checking task
8. return result

2a.replicate

data and

distribute

metadata

4. scan

2b.store w
ith

 one

replica

7. recover data

Fig. 3. High level working process of PRCR

In Fig. 3, we illustrate the high level working process
by following the lifecycle of a file managed by PRCR in
the Cloud without unnecessary implementation details.
1. The process starts at the time when the original

replica of the file is created in the Cloud. According to
the disk failure rate, the expected storage duration
and data reliability requirement, the user interface
determines whether to store the file with one replica
or two.

2. According to the calculation in the user interface, if
one replica cannot satisfy the data reliability and
storage duration requirements of the file, the user
interface creates a second replica by calling Cloud
services, and calculates the checking interval(s) of the
file. Its metadata is then distributed to the appropriate
PRCR node (2a). If one replica is sufficient, only the
original replica is stored and the metadata of the file is
not created (2b).

3. Metadata attributes of the file are stored in the data
table of the corresponding PRCR node.

4. Metadata is scanned periodically according to the
scan cycle of the PRCR node. According to file’s time
stamp and the current checking interval, PRCR
determines whether proactive replica checking is

needed.
5. If proactive replica checking is needed, the replica

management module obtains the metadata of the file
from the data table.

6. The replica management module assigns the
proactive replica checking task to one of the Cloud
virtual machines for proactive replica checking. The
Cloud virtual machine executes the task, in which
both replicas of the file are checked.

7. The Cloud virtual machine conducts further action
according to the result of the proactive replica
checking task: if both replicas are alive or lost, go to
step 8; if only one replica is lost, the virtual machine
calls the Cloud services to generate a new replica
based on the replica that is alive.

8. The Cloud virtual machine returns the result of the
proactive replica checking task, while in the data
table, the time stamp and checking interval(s) are
updated. Specifically, (1) if both replicas are not lost,
the next checking interval is put forward as the
current checking interval; and (2) if a replica is lost
and recovered on a new disk, the new replica address
is stored and all the checking interval(s) are
recalculated. Otherwise, further steps could be
conducted, for example, a data loss alert could be
issued.

Note: Steps 4 to 8 form a continuous loop until the
expected storage duration is reached or the file is deleted.
If the expected storage duration is reached, either the
storage user could renew the PRCR service or PRCR
could delete the metadata of the file and stop the
proactive replica checking process.

6.2 Key Algorithms for PRCR

Within the whole working process of PRCR, in order
to determine the minimum replica number and improve
the performance of PRCR including computation
overhead and utilization of the data management
capacity, two algorithms are proposed, which are storage
duration prediction algorithm and metadata distribution
algorithm respectively.

Storage duration prediction algorithm

The storage duration prediction algorithm has two
purposes. First, it determines the minimum replica
number (i.e., one or two) for meeting the data reliability
requirement. Second, given a certain data reliability
requirement, it calculates the longest storage duration of
the data while the data reliability requirement is met
(“LSDWP” for short). It equals to the checking interval in
PRCR but it indicates the time that the reliability
assurance drops to the level that the reliability
requirement can no longer be met. In PRCR, the scan
cycle should be no bigger than LSDWPs of each file so as
to provide sufficient data reliability assurance. The
algorithm is applied to both the user interface and PRCR
nodes. In the user interface it is used for determining the
minimum replica number and calculating LSDWPs of

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TC.2015.2451644

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

8 IEEE TRANSACTIONS ON COMPUTERS

files. In PRCR nodes it is used to recalculate LSDWPs of
files after replicas are recovered on new disks.

In a commercialized storage system such as that of the
Cloud, “data reliability” has two aspects of meaning -
data reliability requirement RR(t) and data reliability
assurance RA(t). RR(t) indicates the data reliability that
storage users need to achieve in the duration of t, while
RA(t) indicates the data reliability that the system is able
to provide within the duration of t. Usually, RR(t) is
provided under unit time (i.e., RR(1)), while RA(t) is used
to determine whether the data reliability requirement is
met. In order to meet the data reliability requirement, a
storage system must comply with the following rules:
Rule 1: The data reliability assurance must not be lower
than the data reliability requirement.
Rule 2: The data reliability assurance should follow the
generalized data reliability model.

1
() 1 (1)i

k t

i
RA t e

According to Rule 1, the loss rate of files must be
smaller than that of user expectation. Therefore, we have:

1 (1) 1 ()
1

RR RA t
t

Note that value “1” on the denominator of the left hand
side indicates the unit storage duration of 1 year. The
above inequality can be transformed to:

() 1 (1 (1))RA t RR t

 (4)

According to Rule 2, the data reliability assurance with
single replica and two replicas can be derived, which are:

with single replica, 1() tRA t e

(5)

with two replicas,

1 2() 1 (1)(1)t tRA t e e

(6)

Inequality (4) is the key to build the relationship
between the data reliability requirement and the storage
duration in the storage system. After combining (4) and
(5) above, we have:

1(1)
(1)

te t
RR

t

 (7)

This inequality shows the relationship between data
reliability requirement and the storage duration with
single replica. If this inequality holds, it means that single
replica suffices to meet the data reliability requirement.
Otherwise, if this inequality does not hold, the storage
with single replica may jeopardize the data reliability
requirement, and the storage with two replicas is
necessary.

After combining (4) and (6) above, we have:
1 2(1) 1 (1)(1) /t tRR e e t

This inequality shows the relationship between data
reliability requirement and LSDWP with two replicas.
From this inequality, it can be found that while the data
reliability requirement is given, LSDWP cannot exceed a
certain value. By solving (8) below, this certain storage
duration can be obtained.

1 2(1) 1 (1)(1) /t tRR e e t (8)
Due to the variable nature of the average disk failure

rate, variable changes along with the storage duration
and the exact age of the disk. In addition, the LSDWP of a
file is also not a constant. Therefore, the process of
solving (8) needs to be conducted more than once to
obtain all the LSDWPs throughout the lifespan of the file.

Due to the variable nature of the average disk failure
rate, there are two difficulties to solve (8) in Section 6.2.

The first one is that changes along with the storage

duration and the exact age of the disk. The second one is
that the LSDWP of a file is also not a constant, so that the
process of solving (8) needs to be conducted more than
once to obtain all the LSDWPs throughout the lifespan of
the file. PRCR includes solutions to overcome the two
difficulties. For the first one, the average disk failure rate

is converted into a piecewise function ()t . According to

the disk failure rate pattern of the disk (which is
described in IDEMA style) and the start time of the
storage period, the average disk failure rate can be
calculated by following a piecewise function containing n
sub functions, in which n is the number of life stages
contained in the disk failure rate pattern after the start
time. By doing this, (8) is transformed into an equation in

which t is the only independent variable and variable is

eliminated. For the second one, we notice that when
replicas are first created and stored, the disks for storing
these replicas and the disk failure rate patterns are
determined. Therefore, the algorithm calculates the
LSDWPs of a file in one go when the file is first created in
the Cloud. As long as replicas of the data are not lost, the
algorithm does not need to be conducted again, resulting
in better efficiency.

Algorithm: Data Reliability Prediction Algorithm

Input: ET; // Expected storage duration

 RR(1); // Data reliability requirement

 P1,P2; // Disk failure rate patterns of disks 1 and 2

 StartT; // Start time of the algorithm

Output: SDS; // Set of longest storage durations

01. calculateAverageFailureRate(P1,StartT,ET);

02. if (){ // Determine replica number

03. T=StartT; // The start time of each storage period

04. while (T<=ET+StartT) {

05. λ1(t) obtainPiecewiseFunction(P1,T);

06. λ2(t) obtainPiecewiseFunction(P2,T);

07. solve (8);

08. SD the positive real root of (8);// Longest storage duration

09. T=T+SD;

10. SDS SD;

11. } return SDS;

12. } else return -1; // The file can be stored with only one replica

1

0)1(
)1(1

RR
ET

ETe
ET

Fig. 4. Pseudo code of storage duration prediction algorithm

Fig. 4 shows the pseudo code of the storage duration
prediction algorithm. In Fig. 4, ET is the expected storage

duration of the file.
1P

and

2P are the disk failure rate

patterns of the two disks for storing two replicas of the

file, where 1P is the pattern of the disk storing the

original replica and 2P is the pattern of the randomly

picked disk for the new replica. StartT is the time that the

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TC.2015.2451644

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON COMPUTERS 9

replicas are stored in the Cloud. SDS is the result set
containing all LSDWPs. The algorithm first calculates the
average failure rate of the file stored on disk 1 for the
duration of ET (line 1). According to this value and (7), it
determines the number of replicas that need to be stored,
i.e., to store the file with one replica or two (line 2). If two
replicas need to be stored, the algorithm calculates all
LSDWPs throughout the expected storage duration of the
file in one go, and returns the LSDWPs set as a result
(lines 3-11).

To address the earlier statement mentioned in the
introduction that the generalized data reliability model is
able to provide data reliability management for both
virtual and physical disks, the storage duration
prediction algorithm is also applicable when the disk
failure rate is a constant (e.g., Amazon S3 2). In that case,
the storage duration prediction algorithm is significantly
simplified, as the steps of calculating average failure rate
(line 1) and obtaining piecewise functions (lines 5-6) can
be omitted. The process of solving (8) only needs to be
conducted once, and the LSDWP obtained does not
change unless any replica of the file is lost.

Optimization of the algorithm

In the storage duration prediction algorithm, solving
the complicated data reliability equation is a time
consuming and expensive process. In particular, the

involvement of piecewise function ()t and the

calculation for more than one LSDWP would make the
time overhead more significant. To optimize the
performance of the algorithm, the data reliability
equations need to be simplified to reduce the
computation complexity. During the design of the
algorithm, it is observed that the curve of data reliability

with a single replica (i.e., te) changes almost linearly

when t is within a certain range. Therefore, in this

value range, the curve can be substituted by a straight

line with t being the dependent variable without

sacrificing much accuracy of the result as detailed in
Section 7.1. Assuming that the function of the substituted

straight line is ()f t a t b , (8) can be simplified to (9):

1 2(1) 1 (1)(1) /RR a t b a t b t (9)

As the average disk failure rate can be expressed as a
first degree piecewise function of t, (9) is essentially a
quartic function of t. Compared to the original non-
polynomial equation of (8), the simplified equation of (9)
can be solved by the methods for solving polynomial
equations, which are much more efficient, hence the
performance of the storage duration prediction algorithm
can be optimized.

2
 This is based on the durability and reliability statement of Amazon

S3 available at http://aws.amazon.com/s3/details/.

Metadata distribution algorithm

Due to the limit that the scan cycle of the PRCR node
must be no bigger than LSDWPs of files, each file should
be managed by a proper PRCR node. In order to
maximize the utilization of PRCR, the metadata
distribution algorithm is proposed.

According to the LSDWP of the file and the scan cycles
of PRCR nodes, the metadata distribution algorithm is
able to distribute the metadata of the file to the most
appropriate PRCR node so that the capacity of PRCR can
be maximized. The principle of the algorithm is simple: it
compares the LSDWP of the file with the scan cycle of
each PRCR node. Among the PRCR nodes with a scan
cycle smaller than the LSDWP of the file, the metadata is
distributed to the node (or a random one of the nodes)
that has the biggest scan cycle.

Theorem. Given several PRCR nodes with different scan
cycles, the distribution of metadata following the metadata
distribution algorithm maximizes the utilization of PRCR.

Proof. Assume that all PRCR nodes reach the maximum
capacity while all the metadata are distributed by
following the metadata distribution algorithm.

Therefore, for any file f managed by PRCR node A

and any PRCR node i with scan cycle bigger than A,:
() () & () ()LSDWP f ScanCycle A LSDWP f ScanCycle i

Without losing generality, we randomly create
another metadata distribution other than the current
metadata distribution by swapping the metadata of a
pair of files. Assume two PRCR nodes B and C, in
which () ()ScanCycle B ScanCycle C and assume that

files
1f and

2f be managed by PRCR node B and

PRCR node C respectively, swap their managing

PRCR nodes, since)()(2 BScanCyclefLSDWP , the

data reliability requirement of f2 cannot be met.

Therefore, file
2f cannot be managed by PRCR by

following the new metadata distribution. Therefore,
the utilization of PRCR nodes by following this new
distribution is lower than that by following the
metadata distribution algorithm. According to the
above reasoning, it can be deduced that there is no
other metadata distribution that has higher utilization
than the distribution by following the metadata
distribution algorithm. Hence the theorem holds.

The metadata distribution algorithm is conducted at
the user interface of PRCR. Fig. 5 shows the pseudo code
of the algorithm. SD indicates the current LSDWP of the
file. S indicates the set of all the PRCR nodes. The
algorithm first calculates the differences between SD and
the scan cycles of all available PRCR nodes (lines 2-3).
Then, from all the PRCR nodes with a scan cycle smaller
than SD, the ones with the smallest difference values are
selected as the candidates of the destination node (lines 4-
6). Finally, one of the candidates is randomly chosen as

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TC.2015.2451644

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://en.wiktionary.org/wiki/phase_function

10 IEEE TRANSACTIONS ON COMPUTERS

the destination node (line 7). The reason for randomly
choosing one node from the node set is to deal with the
case where two PRCR nodes have the same scan cycle.
Algorithm: Metadata distribution algorithm

Input: SD; // Current longest storage duration of the file

 S; // The set of all the PRCR nodes

Output: node; // the destination PRCR node

01. Set diff, nodes; // define two sets

02. for (each i S & scancycle(i) < SD)

03. diff SD - scancycle(i);

 // calculate the SD - scancycle value for all available PRCR nodes

04. for (each j S & scancycle(i) < SD) {

05. if (SD - scancycle(j) = min(diff))

06. nodes j; }

// find the nodes with the smallest SD - scancycle value

07. node random(nodes); // randomly return one of the nodes

08. return node;

Fig. 5. Pseudo code of metadata distribution algorithm

The metadata distribution algorithm is able to
effectively optimize the utilization of all the PRCR nodes.
However, there are three issues that need to be further
addressed. First, the capacity of each PRCR node is
limited. When more and more files are managed by
PRCR, the capacity of PRCR nodes could gradually run
out. Fortunately, the independence of each PRCR node
has provided great elasticity to the organization of PRCR.
When one of the PRCR nodes is reaching or about to
reach its maximized capacity, a new PRCR node is
created, where the scan cycle of the new PRCR node can
be set to the same length. Second, the data reliability
model with a variable disk failure rate has led to the side
effect that the LSDWP of each file changes from time to
time. Once the LSDWP increases to a threshold that is
equal to the scan cycle of another PRCR node, current
metadata distribution becomes sub-optimal. To address
this issue, several solutions could be applied. For
example, the scan cycles of PRCR nodes need to be well
organized so that each file is managed by the PRCR node
with a scan cycle smaller than all the LSDWPs the files
could have. Or, if the metadata of files needs to be
redistributed regardless, the redistribution could be
conducted in a batch mode to reduce its impact and
computation overhead. Third, the metadata is distributed
according to the calculation of the storage duration
prediction algorithm. However, the predicted storage
duration could be different from that of the disks in
reality, and hence prediction errors could occur. Such a
situation is most likely caused by the deviation of disk
failure rates, and the only type of error that could
possibly jeopardize data reliability is that the disk failure
rates are being underestimated, so that the LSDWP value
is overestimated. In general, the situation of prediction
errors is very similar to the second issue. Therefore, the
solutions for the second issue are still applicable to
prediction errors.

7 EVALUATION

In this section we evaluate PRCR from the aspects of

performance and cost effectiveness.

7.1 Performance of PRCR

To evaluate the performance of PRCR, first of all, we
evaluate the major procedures in PRCR. We find that the
calculation of LSDWP (i.e., the storage duration
prediction algorithm), metadata scanning and proactive
replica checking are the three major procedures which
most affect the performance of PRCR. Therefore,
investigations of these three procedures are conducted
respectively. In addition, we also evaluate the impact of
using PRCR on data access performance compared with
the conventional 3-replica strategy.

Evaluation of storage duration prediction algorithm

The storage duration prediction algorithm is mainly
conducted at the beginning of the storage of a file. The
performance of this algorithm is of great significance to
the PRCR for determining the minimum number of
replicas and calculating LSDWPs for each file.

In order to fully investigate the storage duration
prediction algorithm and the effect of our optimization,
the evaluation is carried out as follows: four versions of
the algorithm are implemented, which are the original
constant disk failure rate version (version ORC), the
optimized constant disk failure rate version (version
OPC), the original variable disk failure version (version
ORV) and the optimized variable disk failure version
(version OPV). The original versions (i.e., ORC and ORV)
of the algorithm calculate LSDWPs by solving (8), while
the optimized versions (i.e., OPC and OPV) calculate
LSDWPs by solving (9). The evaluation of the constant
disk failure rate versions of the algorithm corresponds to
the discussion in Section 6.2 about the algorithm working
in a constant failure rate environment.

In (9) as addressed in Section 6.2, we use the tangent

line of te at point (0, 1) as a substitution for the original

curve te . The function of the tangent line is

() 1f t t , which is a special case of ()f t a t b

mentioned in Section 6.2, where a=-1 and b=1. Fig. 6

shows both the original curve of te and the substitution

curve of tangent line () 1f t t , where the unit of x

axis is calculated as “% per year * year”, which has no
explicit time unit. In the figure, the substitution curve is

located at the lower side of the original curve of te .

According to the disk failure rate range of the IDEMA
standard and the disk nominal lifespan of five years3, the

range of t is (0, 0.219). In this range, it can be seen that

the deviation of the tangent line is relatively small. With

the decrease of t , the deviation gets even smaller. After

this substitution, (9) is further simplified into function

3
 B. Schroeder and G. Gibson, "Disk failures in the real world: What

does an MTTF of 1,000,000 hours mean to you?," in USENIX

Conference on File and Storage Technologies, pp. 1-16, 2007.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TC.2015.2451644

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON COMPUTERS 11

1 2(1) 1RR t . Compared to the original equation, the

simplification of the complexity of the equation is
obvious. In addition to reducing the complexity of the
equation, there is another advantage of using the tangent
line as a substitution. By solving (9), the result (i.e., the
LSDWP of the file) is always conservatively
underestimated, so that the deviation caused by the
substitution does not reduce the data reliability assurance
that PRCR provides. In fact, by using the tangent line
substitution, the data reliability assurance PRCR provides
is always higher than the calculated result.

Fig. 6. Original curve and tangent line of
te

The execution time and accuracy rate of the algorithm
for all four versions are tested under the same file
settings and the same disk settings for constant failure
rate versions and variable failure rate versions
respectively (ET=1 year, for ORC and OPC is 1% and
disk failure rate pattern for ORV and OPV ranges from
0.5% to 4.38% which is based on the IDEMA standard).
Note that the accuracy rate stands for the ratio between
LSDWPs of optimized versions of the algorithm and
original versions of the algorithm, which indicates the
accuracy of the results produced by the optimized
versions of the algorithm. The results of one
representative experiment are shown in Table 1.

TABLE 1

EXECUTION TIME AND ACCURACY RATE OF STORAGE

DURATION PREDICTION ALGORITHM

 One replica Two replicas

Average Execution Time (ms) & (Number of LSDWPs)

Reliability 99% 99.9% 99.99% 99.999%

ORC 0.69 15.34 15.62 16.20

OPC 0.69 0.69 0.69 0.69

ORV 0.72(1) 16.26(1) 16.30(1) 155.82(10)

OPV 0.72(1) 4(1) 7.81(2) 41.52(11)

Accuracy Rate

OPC NA 89.52% 99.00% 99.90%

OPV NA 89.61% 99.00% 99.90%

The upper half of Table 1 shows the average execution
time of all four versions of the algorithm. In addition, the
number of LSDWPs calculated in each run of the
algorithm is also shown in parentheses for ORV and OPV
versions of the algorithm, respectively. It can be seen that

the optimized versions of the algorithm outperform the
original versions in several respects. First, despite the
equal execution time when data reliability is 99 per cent,
at which one replica suffices to meet the data reliability,
in other cases the execution time of optimized versions of
the algorithm (i.e., OPC and OPV) is significantly smaller
than that of original versions of the algorithm (i.e., ORC
and ORV) respectively. Second, although the overall
trend for all versions of the algorithm is that the
execution time increases with the increase in data
reliability requirement, the execution time of optimized
versions of the algorithm increases much slower than
that of original versions. In the accuracy rate part of Table
1, due to storage with a single replica, the accuracy rate
for data reliability of 99 percent is not applicable. In other
cases, the accuracy rate increases with the increase in
data reliability requirement. In Table 1, the accuracy rates
of optimized versions of the algorithm reach 99.9 per
cent. In fact, this value can be even larger when the data
reliability requirement becomes higher.

In general, the results in Table 1 show that, depending
on the data reliability assurance provided, the storage
duration prediction algorithm is able to calculate
LSDWPs of files between a few milliseconds to hundreds
of milliseconds. However, the reliability assurance shown
in the table could be even higher. To provide higher data
reliability assurance, more time could be taken to conduct
the storage duration prediction algorithm as more
LSDWP values are calculated. The execution time of
optimized versions of the algorithm is much shorter than
that of original versions, and the accuracy rate increases
with increasing data reliability assurance.

Evaluation of metadata scanning and proactive
replica checking

To evaluate the metadata scanning and proactive
replica checking procedures, an experimental PRCR is
implemented with Amazon Web Services (AWS). The
structure of the experimental PRCR consists of one user
interface, one PRCR node and one more Cloud virtual
machine for proactive replica checking, each runs on a
single AWS EC2 instance. Based on the experimental
PRCR, the metadata scanning time and the proactive
replica checking time are measured on independent EC2
instances respectively.

TABLE 2

METADATA SCANNING TIME AND PROACTIVE REPLICA

CHECKING TIME

 t1.micro m1.small m1.large m1.xlarge

Scanning Time ≈700ns ≈400ns ≈700ns ≈850ns

Checking Time ≈27ms ≈27ms ≈30ms ≈27ms

In the experiments, the metadata scanning procedure
and the proactive replica checking procedure are
simulated on four types of EC2 computing instances (i.e.,
virtual machines in EC2) for the management of 3000 S3
objects (i.e., files). Table 2 shows the results of the

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.5

0.6

0.7

0.8

0.9

1

Lambda*t

D
a

ta
 r

el
ia

b
il

it
y

Original Curve

Tangent Line Curve

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TC.2015.2451644

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

12 IEEE TRANSACTIONS ON COMPUTERS

experiments. It can be seen that the metadata scanning
time is at a magnitude of hundreds of nanoseconds, and
the proactive replica checking time is at a magnitude of
tens of milliseconds.

Impact of PRCR on data access performance

Compared with the conventional 3-replica strategy, by
using PRCR, intuitively, data access performance could
potentially be affected. Specifically, such impact could
primarily be on the data transfer speed. However, such
impact may vary due to different Cloud data access
strategies and different data storage plans. In this
subsection, we only briefly discuss this issue as it is
essentially not how PRCR impacts on data access
performance but how storing no-more-than-two replicas
could impact on data access performance in comparison
to storing three replicas.

For evaluation, we conducted data access speed tests
with Amazon S3 services so as to analyze the impact of
storing no-more-than-two replicas compared with storing
conventional three replicas. As Amazon has stated that
“latency and throughput for reduced redundancy storage
are the same as for standard storage”
(http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingRRS.html),
we conducted data access performance tests for Amazon
S3 standard storage only. Specifically, we created
Amazon AWS EC2 instances in different AWS regions as
well as used a local computer at Swinburne University of
Technology in Melbourne, Australia to experiment the
data transfer speed for accessing files stored in S3 in
different regions. In each test, a 10MB file is transferred
from the data source to the target location.

The results are shown in Table 3. Based on the results,
a major observation can be clearly seen, i.e., data transfer
within the same region is always of the highest speed,
where the data are transferred much quicker than that
between different places (>3000 KB/s vs. <300 KB/s).

TABLE 3

TRANSFER SPEED FOR ACCESSING DATA IN AMAZON S3

Source

Target
Oregon Ireland Singapore Sydney Local

Oregon 3372KB/s 170KB/s 184KB/s 172KB/s 86KB/s

Ireland 231KB/s 3284KB/s 211KB/s 36KB/s 54KB/s

Singapore 190KB/s 209KB/s 3466KB/s 202KB/s 107KB/s

Sydney 137KB/s 110KB/s 230KB/s 3205KB/s 224KB/s

According to the above results, in summary, we have
the following conclusions for the impact of using PRCR
on data access performance compared with the
conventional 3-replica strategy.

First, in the case that all replicas are stored in one
region in practice as in Amazon S3, as addressed above,
according to the description of Amazon S3, latency and
throughput of standard storage and reduced redundancy
storage are the same. This in fact means that on Amazon

S3 the data access performance by using 3 replicas is the
same to that by using less than 3 replicas. Therefore, for
PRCR which uses no more than 2 replicas without
jeopardizing reliability, it would have the same data
access performance with S3, and hence no performance
degradation in general.

Second, in the case that all replicas are stored in
different regions, there would be some impact on data
transfer speed for some users. For example, on Amazon
S3, if 3 replicas are stored in different regions such as
Oregon, Ireland and Sydney in a traditional manner
whilst in PRCR only 2 replicas are stored in regions such
as Oregon and Ireland (i.e.,, no replica stored in Sydney),
there would be performance degradation to some users
from such as Australia to access data because they would
suffer slower data transfer speed to either Oregon or
Ireland (at 86KB/s or 54KB/s respectively from
Swinburne) in comparison to faster access to Sydney (at
224Kb/s from Swinburne). Similarly, the impact on a
single replica can be analyzed. To solve this issue, on one
hand, research in another area on data placement can be
conducted to minimize the performance impact, e.g., the
replica accessed least and/or slowest can be eliminated.
On the other hand, in the case that access performance
for certain data is of ultimate goal, extra replica(s) can be
added at the extra cost, which would not jeopardize the
effectiveness of PRCR for data reliability.

7.2 Cost effectiveness of PRCR

The cost effectiveness of PRCR in managing a large
number of files is evaluated. There are two major costs
incurred for managing data with PRCR: the running
overhead of PRCR and the cost for storing data replicas.

Running overhead of PRCR

Considering the large amounts of data in the Cloud,
PRCR nodes would normally be well loaded, i.e., being
or being close to their maximum capacity. Therefore, the
running overhead of each file can be derived by dividing
the total PRCR running cost by the maximum capacity of
PRCR nodes.

TABLE 4

MAXIMUM CAPACITY OF PRCR NODES (NUMBER OF FILES)

 RA
0.1 0.05 0.02 0.01

99% 5*10
13

 files 2.3*10
14

 files 2.8*10
15

 files NA

99.9% 4.5*10
12

 files 1.8*10
13

 files 1.2*10
14

 files 5*10
14

 files

99.99% 4.5*10
11

 files 1.8*10
12

 files 1.1*10
13

 files 4.5*10
13

 files

99.999% 4.5*10
10

 files 1.8*10
11

 files 1.1*10
12

 files 4.5*10
12

 files

Based on Table 2, for the ease of illustration, we
choose 700ns as the standard execution time for the
metadata scanning process. Given the reliability
assurance and disk failure rate, we are able to calculate
the LSDWP of the file, and hence the biggest scan cycle of
the corresponding PRCR node. Further, with the

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TC.2015.2451644

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingRRS.html

IEEE TRANSACTIONS ON COMPUTERS 13

standard execution times, the maximum capacity, i.e.,
number of files to be managed, of the PRCR nodes is
calculated (Maximum capacity = Scan cycle / Metadata
scanning time) and presented in Table 4. In the table, the
relationships among the reliability requirement, the
average failure rate of a single replica and the
maximum capacity of PRCR nodes are clearly revealed.
With different single replica failure rates and reliability
requirements, each PRCR node is able to manage from
4.5*1010 to 2.8*1015 files, which is quite large. Although
the maximum capacity of PRCR nodes reduces with the
increment of disk failure rates and data reliability
requirements, the maximum capacity of PRCR nodes is
deemed big enough to be practical for the management of
a large number of files in the Cloud.

The total PRCR running cost is composed of the
running cost for user interface, PRCR nodes and Cloud
virtual machines for proactive replica checking.
According to Amazon EC2 prices, the corresponding cost
of an EC2 micro instance is only $14.40/month each
($0.02/hour * 24 hours/day * 30 days/month). Therefore,
for a complete PRCR running over AWS, the running
cost could be as little as several tens of dollars per month.
According to the maximum capacity of PRCR, the
running overhead for each file is very small, which is no
more than $10-9/file*month (i.e., $14.40*3/(4.5*1010files)).
Such an overhead is so small in comparison to the cost
for data storage, which is at the level of $10-2/GB*month.
For example, the storage of a file with the size of 1GB has
a running overhead about 107 times cheaper than the
storage cost (several cents/month). Therefore, the cost of
running PRCR is negligible.

Data storage saving by using PRCR

The data storage saving using PRCR is investigated.
We simulate the data reliability management process of
PRCR to manage the files of the pulsar searching
example as illustrated in Supplementary Material. In the
simulation, the storage consumption is compared with
the conventional 3-replica strategy, which is widely used
in current Clouds.

In the simulation, four different storage plans are
tested: 1-replica, 1+2 replica, 2-replica and 3-replica. The
1-replica plan stores all files with one replica, which
stands for the data storage without any replication. The
2-replica plan stores all files with two replicas. These two
storage plans can be redeemed as two data storage
strategies, but also represent the lower and upper bounds
of storage consumption by using PRCR. The 3-replica
plan stores all files with three replicas, which represents
the conventional 3-replica strategy. The 1+2 replica plan
divides all the files into two categories and stores them
with one replica or two replicas, respectively, which
represents the actual data management of PRCR.
According to the pulsar searching example, the extracted
and compressed beam files, the XML files and the de-
dispersion files should be stored for long-term use and
have higher reliability requirements, so they are stored

with two replicas. The other files that are for temporary
usage are stored in the 1-replica mode.

Fig. 7 shows the average replica numbers and total
data sizes with different storage plans for the pulsar
searching data. By applying the 2-replica plan, one-third
of the generated data size can be reduced in comparison
to the 3-replica strategy, and the average replica number
for each file is reduced accordingly. By applying the 1+2
replica plan, the consumption of storage space is further
reduced and minimized. In our simulation, by applying
the 1+2 replica plan, the ratio between the number of the
two types of files for pulsar searching application reaches
a staggering 1:41, and the ratio between the accumulated
sizes of two types of files is about 2.34:1. Compared with
the 2-replica plan, more than 95 per cent of replicas with
23 per cent of the total data size are reduced. Compared
with the 1-replica plan, the 1+2 replica plan generates
only 53 per cent additional storage space for all the
pulsar searching data (i.e., the data redundancy is 1.53),
and the data reliability requirement of all the files can be
met without jeopardy.

Fig. 7. Average replica numbers and data sizes

In general, by using PRCR, the storage consumption
could be reduced significantly. For the pulsar searching
application, up to 49% (i.e., (3-1.53)/3) of the storage
space can be saved compared with the conventional 3-
replica data storage strategy, i.e., 277TB of storage space
can be saved for an observation of eight hours a day for a
month. Meanwhile, the running cost of PRCR for
managing such an amount of data is only tens of dollars
per month. For other Cloud applications with different
data composition, say more data with less data reliability
requirement, the storage space reduction effect of PRCR
could be even higher. Moreover, here we only compared
PRCR with the conventional 3-replica strategy. To
manage data with even more replicas needed [6],
according to the nature of PRCR that stores no more than
two replicas, the storage saving by using PRCR could be
even more.

8 CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a cost-effective
reliability management mechanism (PRCR) based on a
generalized data reliability model. It applies an
innovative proactive replica checking approach to ensure
the data reliability while the data can be maintained with
the minimum number of replicas (serving as a cost

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TC.2015.2451644

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

14 IEEE TRANSACTIONS ON COMPUTERS

effectiveness benchmark for evaluation), which is no
more than two. Evaluation of PRCR has demonstrated
that this mechanism is able to manage large amounts of
data in the Cloud, significantly reduce the Cloud storage
space consumption at a negligible overhead.

In the near future, this research can be extended in two
directions. First, a more detailed design of PRCR will be
conducted including further optimization. Second, as
PRCR inevitably reduces the replication level of Cloud
data, the location of replicas becomes more important
which deserves further research on improving data
access performance.

ACKNOWLEDGEMENT

This work is partly supported by Australian Research
Council grants under Discovery Project DP110101340 and
Linkage Project LP130100324. The work was done when
W. Li and D. Yuan were with Swinburne University of
Technology and Y. Yang is the corresponding author.

REFERENCES

[1] Amazon. (2011). Amazon simple storage service (Amazon S3).

Available: http://aws.amazon.com/s3/

[2] R. Bachwani, L. Gryz, R. Bianchini, and C. Dubnicki,

"Dynamically quantifying and improving the reliability of

distributed storage systems," in IEEE Symposium on Reliable

Distributed Systems, pp. 85-94, 2008.

[3] B. Balasubramanian and V. Garg, "Fault tolerance in

distributed systems using fused data structures," IEEE

Transactions on Parallel and Distributed Systems, vol. 24, pp. 701-

715, 2013.

[4] E. Bauer and R. Adams, Reliability and availability of cloud

computing: IEEE Press, 2012.

[5] D. Borthakur. (2007). The Hadoop distributed file system:

Architecture and design. Available: http://hadoop.apache.org/

common/docs/r0.18.3/hdfs_design.html

[6] B. G. Chun, F. Dabek, A. Haeberlen, E. Sit, H. Weatherspoon,

M. F. Kaashoek, J. Kubiatowicz, and R. Morris, "Efficient

replica maintenance for distributed storage systems," in

Symposium on Networked Systems Design & Implementation, pp.

45-58, 2006.

[7] J. G. Elerath and S. Shah, "Server class disk drives: how reliable

are they?," in Annual Symposium on Reliability and

Maintainability, pp. 151-156, 2004.

[8] J. Gantz and D. Reinsel, "Extracting value from chaos,"

International Data Corporation (IDC), 2011.

[9] A. Gharaibeh, S. Al-Kiswany, and M. Ripeanu, "ThriftStore:

finessing reliability trade-offs in replicated storage systems,"

IEEE Transactions on Parallel and Distributed Systems, vol. 22, pp.

910-923, 2011.

[10] S. Ghemawat, H. Gobioff, and S. Leung, "The Google file

system," in ACM Symposium on Operating Systems Principles, pp.

29-43, 2003.

[11] G. Gibson, "Redundant disk arrays: reliable, parallel secondary

storage," University of California, Berkeley. Technical Report

UCB/CSD 91/613, 1991.

[12] G. Gibson and D. Patterson, "Designing disk arrays for high

data reliability," Journal of Parallel and Distributed Computing,

vol. 17, pp. 4-27, 1993.

[13] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J.

Li, and S. Yekhanin, "Erasure coding in Windows Azure

storage," in USENIX Annual Technical Conference, pp. 2-13, 2012.

[14] IDEMA, "R2-98: specification of hard disk drive reliability,"

IDEMA Standards, 1998.

[15] M. Lei, S. V. Vrbsky, and Z. Qi, "Online grid replication

optimizers to improve system reliability," in IEEE International

Parallel and Distributed Processing Symposium, pp. 1-8, 2007.

[16] W. Li, Y. Yang, J. Chen, and D. Yuan, "A cost-effective

mechanism for Cloud data reliability management based on

proactive replica checking," in International Symposium on

Cluster, Cloud and Grid Computing, pp. 564-571, 2012.

[17] W. Li, Y. Yang, and D. Yuan, "A novel cost-effective dynamic

data replication strategy for reliability in cloud data centres," in

International Conference on Cloud and Green Computing, pp. 496-

502, 2011.

[18] W. Li, Y. Yang, and D. Yuan, "An energy-efficient data transfer

strategy with link rate control for Cloud,"

(http://www.ict.swin.edu.au/personal/yyang/papers/IJAACS-

Li.pdf) International Journal of Autonomous and Adaptive

Communications Systems, Accepted on Oct. 11, 2013.

[19] E. Pinheiro, W. Weber, and L. A. Barroso, "Failure trends in a

large disk drive population," in USENIX Conference on File and

Storage Technologies, pp. 17-29, 2007.

[20] S. Ramabhadran and J. Pasquale, "Analysis of long-running

replicated systems," in IEEE Conference on Computer

Communications, pp. 1-9, 2006.

[21] K. V. Rashmi, N. B. Shah, D. Gu, H. Kuang, D. Borthakur, and

K. Ramchandran, "A hitchhiker's guide to fast and efficient

data reconstruction in erasure-coded data centers," in

SIGCOMM, pp. 331-342, 2014.

[22] Q. Xin, T. J. E. Schwarz, and E. L. Miller, "Disk infant mortality

in large storage systems," in IEEE International Symposium on

Modeling, Analysis, and Simulation of Computer and

Telecommunication Systems, pp. 125-134, 2005.

[23] D. Yuan, Y. Yang, X. Liu, W. Li, L. Cui, M. Xu, and J. Chen, "A

highly practical approach towards achieving minimum

datasets storage cost in the Cloud," IEEE Transactions on Parallel

and Distributed Systems, vol. 24, pp. 1234-1244, 2013.

BIOGRAPHIES

Wenhao Li received the BEng and MEng degrees from Shandong
University, China in 2007 and 2010, respectively, and the PhD
degree from Swinburne University of Technology, Australia, in 2014.
He is currently a research fellow in the School of Computer Science
and Technology, Shandong University, China. His research interests
include parallel and distributed computing, cloud computing, data
management in distributed computing environment and big data
Yun Yang received the BSci degree from Anhui University, China, in
1984, the MEng degree from the University of Science and
Technology of China, China, in 1987, and the PhD degree from the
University of Queensland, Australia, in 1992. He is currently a full
professor in the School of Software and Electrical Engineering at
Swinburne University of Technology, Australia. His current research
interests include software engineering, cloud computing, workflow
systems, and service-oriented computing.
Dong Yuan received the BEng and MEng Degrees from Shandong
University, Jinan, China, in 2005 and 2008, the PhD degree from
Swinburne University of Technology, Australia, in 2012, all in
computer science. He is currently a Lecturer in School of Electrical
and Information Engineering, University of Sydney. His research
interests include cloud computing, data management in parallel and
distributed systems, scheduling and resource management,
business process management and workflow systems.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TC.2015.2451644

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://aws.amazon.com/s3/
http://hadoop.apache.org/common/docs/r0.18.3/hdfs_design.html
http://hadoop.apache.org/common/docs/r0.18.3/hdfs_design.html
http://www.ict.swin.edu.au/personal/yyang/papers/IJAACS-Li.pdf
http://www.ict.swin.edu.au/personal/yyang/papers/IJAACS-Li.pdf

	cover_page-2
	TC2451644

