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Abstract 

Nowadays, workflow technology is relatively mature and has been one of the most popular 

components of process aware systems over the last two decades. From the early centralised to 

recent decentralised such as Grid-based workflow and Peer-to-Peer (P2P) based, workflow 

has improved processing capacity significantly. However, there are still many challenges in 

front of today’s workflow systems. One of the challenges is that few of workflow 

architectures can efficiently support a large number of concurrent workflow instances, i.e. 

instance-intensive workflows, which requires a workflow management system (WfMS) to 

automatically scale out during peak time to tackle rapidly increasing throughputs and scale in 

during off-peak time to save resource usage cost.  

Cloud computing has many appealing features such as virtualisation, scalability, pay-as-

you-go, etc. It is able to offer powerful capacity to support large-scale applications so that it 

has become a favourite paradigm for large-scale applications. Current workflow research has 

introduced cloud features to improve workflow performance. However, the workflows with 

cloud features mainly focus on scientific workflows rather than instance-intensive workflows. 

This thesis introduces the workflow concepts and defines cloud workflow concepts and 

its features. Cloud workflow is a WfMS that is hosted in cloud, or staged in or out cloud over 

the Internet, and can economically and dynamically scale out or in to support large-scale 

workflow applications. Besides all functional features of a WfMS, the cloud workflow 

generally has following non-functional features: template with workflow services for 

instantiation; automatic scaling mechanism; load balancing mechanism; alarming mechanism; 

billing mechanism; and cost-effective service provision.  



 
 

Based on the concepts and features above, we innovatively enhance the traditional 

workflow reference model of workflow management alliance (WfMC) through introducing 

new components and thereby propose novel client-cloud architecture for cloud workflow to 

handle instance-intensive workflows. The architecture consists of the client side and the cloud 

side. Here, client-cloud means that the client side communicates with an elastic pool of 

workflow enactment services on the cloud side. In the architecture, besides the functional 

components identified by WfMC, we further propose several fundamental and essential non-

functional components, including workflow accompaniment tools and workflow relevant 

services. The workflow accompaniment tools cover cloud workflow relevant definition tools 

and administration and monitoring tools; while the workflow relevant services cover the load 

balancing service, the alarm service, the auto-scaling service, the workflow service component 

image service and the billing service, which can coordinate to elastically support workflow 

management.  

Based on the client-cloud architecture, we design the functional components identified 

by WfMC including process definition tool, process simulation tool, administration tool, 

workflow enactment service and so on, to support the fundamental workflow services. We 

design process representation model on the basis of the process meta-model and the primitives 

identified by WfMC and corresponding management tools to support workflow modelling. On 

the other hand, we design the workflow enactment services including workflow engine, task 

transaction engine, and navigation engine to support workflow execution. 

We further design the fundamental and essential non-functional components including 

build time definition tools; runtime administration tools and service components for 

organisation modelling, version controlling, tool agent invoking, billing, alarm, auto-scaling 

and so on. In the alarm service, we design an alarm estimation model for the alarm 

mechanism, which can measure the overall status of the cloud workflow system and send a 

notification to the auto-scaling service once the system is overloaded. In the auto-scaling 

service, we design a scaling estimation model for the auto-scaling mechanism, which can 

estimate and calculate the resource demands for the scaling-out or scaling-in actions, to 

guarantee the architecture to provision high-performance, cost-effective and sustainable 

workflow services. Furthermore, we investigate the coordination between the services in the 

client-cloud architecture. The coordination keeps all workflow enactment services recoverable 

and prevents them from running out due to overloading, or releases the idle to avoid the waste. 



 
 

 This research work proposes two principles which reveal the influence to the 

sustainability of the coordination between the services. The principles are: (1) if the alarm 

estimation-time plus the workflow enactment service launching-time are less than the 

workflow enactment service decaying-time, then the workflow enactment services can be kept 

recoverable; (2) if the load balancing service check-time is less than the alarm estimation-time, 

then the load balancing service is able to monitor timely the state change. 

It is different from the traditional client-server architecture where the client 

communicates with a static workflow enactment service or a cluster of workflow enactment 

services. Although the client-cloud architecture also has centralised workflow enactment 

services in cloud, the number of the services in the client-cloud architecture is able to scale out 

or in on demand while its counterpart in the client-server architecture is fixed and not elastic. 

It is also different from the decentralised architectures such as Grid and P2P where there is 

generally no central server(s) to manage all system components. But the client-cloud 

architecture is able to maintain a resizable pool of workflow enactment services which 

provision workflow services sustainably. 

With our novel client-cloud architecture, we design and implement a scalable 

SwinFlow-Cloud (Swinburne workFlow system on Cloud) prototype. Through our evaluation 

of the prototype on the Amazon AWS cloud, we demonstrate that our client-cloud based 

workflow system is able to handle large-scale instance-intensive workflows. 

The major contributions of this research are novel client-cloud architecture including the 

functional and non-functional components, and the alarm estimation model for the alarm 

mechanism and the scaling estimation model for the auto-scaling mechanism as well as two 

primary principles for sustainable coordination between the services in the architecture. The 

architecture promises a new solution for revamping traditional client-server model based 

workflow systems to handle large-scale instance-intensive workflows. The alarm mechanism 

can accurately estimate the status of cloud workflow and the auto-scaling mechanism can 

accurately predict the future resource demands to support the scalability of the client-cloud 

architecture. The two principles guarantee effective coordination of the services to 

appropriately handle all client requests. 
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Chapter 1  

Introduction 

This thesis presents the client-cloud architecture, design, and implementation of a cloud 

workflow system, addresses the functional and non-functional service components in the 

architecture, and an alarm mechanism and an auto-scaling mechanism for instance-intensive 

workflows. Moreover, the sustainable coordination between the service components is also 

investigated. We propose two principles to facilitate a sustainable coordination between the 

services in the client-cloud architecture: (1) if the alarm estimation-time plus the workflow 

enactment service launching-time are less than the workflow enactment service decaying-

time, then the workflow enactment services can be kept recoverable; (2) if the load balancing 

service check-time is less than the alarm estimation-time, then the load balancing service is 

able to monitor timely the state change. On the basis of the innovative architecture, we design 

and implement a SwinFlow-Cloud prototype for demonstration and evaluation purposes. The 

novel research reported in this thesis presents a new approach to construct a workflow system 

which supports large-scale instance-intensive workflow applications. 

This chapter is structured as follows. First, we introduce cloud workflow management in 

Section 1.1. Then, Section 1.2 introduces concept of large-scale instance-intensive workflow. 

Section 1.3 outlines the key issues of this research. Finally, Section 1.4 presents an overview 

of the remainder of this thesis. 

1.1 Introduction to cloud workflow management 

Workflow has been widely applied in process aware applications of business processing and 

scientific computation since the workflow reference model was proposed by workflow 
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management coalition (WfMC) in 1995 [44]. Workflow technology has greatly facilitated the 

automation of the process logic and improved the process management efficiency. Today’s 

workflow management system (WfMS) has been one of the core components in many 

software architectures to satisfy requirements of various workflow applications. With 

workflow applied in more fields, more domain-specific requirements facilitate the architecture 

of WfMSs to be evolved. From the early centralised architecture to recent decentralised 

architecture, the architectures are able to provision more and more powerful capability in 

performing workflow. However, for the instance-intensive workflow, few of architectures of 

WfMSs can efficiently support with high scalability, high availability, high reliability, and 

cost-effectiveness. 

Recently, cloud computing is deeply impacting on and changing the architecture, 

deployment, and provision of the traditional and current software applications [7, 11]. Cloud 

computing is “a large-scale distributed computing paradigm that is driven by economies of 

scale, in which a pool of abstracted, virtualised, dynamically-scalable, managed computing 

power, storage, platforms, and services are delivered on demand to external customers over 

the Internet” [34]. Cloud computing enables computation capability to be utilised and 

delivered like water, electricity, or nature gas. It offers a new approach to tackle the 

exponentially growing workflow applications. This section introduces the workflow concept 

and relevant terminology and further addresses the concept, features, and functionalities of a 

cloud workflow. 

1.1.1 Workflow concept and relevant terminology 

In workflow communities, there are many similar concepts for defining workflow. In 1990s,  

WfMC proposed a glossary to define the workflow, WfMS concepts and other important 

concepts [84]. Here, we follow six primary concepts or definitions in the terminology and 

glossary for workflow management:  

1. Business process is a set of one or more linked procedures or activities which 

collectively realise a business objective or policy goal, normally within the context of 

an organisational structure defining functional roles and relationships. As indicated 

by the definition, business process is an abstract concept to define a business flow.  
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2. Process is a formalised view of a business process, represented as a co-ordinated 

(parallel and/or serial) set of process activities that are connected in order to achieve 

a common goal. As indicated by the process definition, process concept only considers 

the business process at one perspective of process. There are other perspectives to 

consider the business process, such as data perspective, application perspective, etc. 

The perspectives concern much with the domain-specific issues. 

3. Process definition is the representation of a business process in a form which supports 

automated manipulation, such as modelling, or enactment by a workflow management 

system. The process definition consists of a network of activities and their 

relationships, criteria to indicate the start and termination of the process, and 

information about the individual activities, such as participants, associated IT 

applications and data, etc. In contrast to the business process or process, it is more 

concentrate and can be considered as an operable or executable implementation of a 

business process or process. In addition, the process definition contains more 

information or data than the process. But for simplification, process definition can be 

denoted as process. Thus, process definition is usually considered as a synonym of 

workflow definition.  

4. Process instance is the representation of a single enactment of a process. Here, the 

process of the definition refers to process definition. That is, a process instance is 

corresponding to the process definition. The relationship between business process (or 

process), process definition and process instance is similar to that of algorithm, Java 

class and Java object in Java object oriented computing. A process instance is an 

execution of a process definition to achieve the expected goal and a process definition 

is an implementation of a business process or process. 

5. Workflow is the automation of a business process, in whole or part, during which 

documents, information or tasks are passed from one participant to another for action, 

according to a set of procedural rules. Workflow is an abstract automatic enactment of 

a business process. As indicated by the name, it does not only represent the concept of 

business process but also the dynamic and flowable characteristic of a business. Thus, 

workflow is considered as mainstream workflow research terminology instead of 

business process. The process definition is interchangeable with workflow definition 

and the process instance is also interchangeable with the workflow instance. In this 
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thesis, a workflow definition is a synonym of a process definition and a workflow 

instance is a synonym of a process instance. In addition, process can be considered as 

process definition or workflow in our context. For a wider scope of workflow 

management, process is synonym of workflow, while, from the process perspective, 

process is synonym of process definition. 

6. WfMS is a system that defines, creates and manages the execution of workflows 

through the use of software, running on one or more workflow engines, which is able 

to interpret the process definition, interact with workflow participants and, where 

required, invoke the use of IT tools and applications.  

The above six concepts are our research foundation. Furthermore, we will inherit the 

traditional workflow reference model of WfMC to architect cloud workflow [44]. The 

traditional reference model will be reviewed in detail in Section 2.1. 

1.1.2 What is cloud workflow 

Cloud workflow is a WfMS that is hosted in cloud, or staged in or out cloud over the Internet, 

and can economically, dynamically scale out or in to support large-scale workflow 

applications. Nowadays, workflow communities such as industry, open source, and research 

communities are introducing cloud computing to revamp the existing WfMSs. Nevertheless, 

some WfMSs only integrate cloud computing through invoking APIs of cloud infrastructure 

and do not change their architectures, while some other WfMSs are only staged or migrated in 

cloud and do not utilise any features of cloud computing. Such WfMSs should not be 

considered as cloud workflows.  

The definition of the cloud workflow contains a few key points. Firstly, the cloud 

workflow is a WfMS which hosts functional and non-functional workflow services. That is, it 

can define a process definition, and then exports the definition in workflow enactment service 

to create a process instance for execution. A process instance is a single enactment of a 

process definition. 

Secondly, the cloud workflow is a cloud application which is either a new WfMS which 

is designed to adapt cloud computing or a traditional WfMS which can be staged and deployed 

in cloud over the Internet. On the other hand, the definition indicates that a cloud workflow 
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can be encapsulated and delivered inside or outside the cloud over the Internet. That is, 

workflow services can be provisioned to workflow users like tap water. 

Thirdly, the cloud workflow utilises the features provided by underlying cloud 

infrastructure to automatically, elastically, theoretically unlimitedly, scale out or in on 

demand. Automatic scaling is not a new concept for traditional WfMS architectures. But the 

automatic scaling of cloud computing provides more elastic, flexible, dynamic, economic than 

that of the traditional WfMS architectures. Hence the cloud workflow has more efficacies in 

resource utilisation than the traditional architectures. 

Fourthly, the large-scale workflow application refers to the application which occupies a 

great deal of resources when a WfMS runs on it. The resources include workflow service 

resources such as enactment service resources, storage service resources, organisation service 

resources, user service resources and so on, and underlying system resources such as CPU, 

memory, network, IO and so on. The large-scale workflow can be categorised as different 

workflow classes according to different research foci. From the perspective of computation 

resources, e.g., CPU, it can be denoted as computation-intensive workflow; from the 

perspective of data management, it can be denoted as data-intensive workflow; from the 

perspective of enactment resources, it can be denoted as instance-intensive workflow, etc. In 

this thesis, we mainly focus on the instance-intensive workflow. 

Fifthly, the cloud workflow offers economical services to support cost-effective 

workflow applications for significantly saving hardware and software costs. That is, the cloud 

workflow owners need not frequently give a trade-off between WfMS performance and 

investment on hardware and software when the scale of workflow applications increasing, as 

they did in the past. Furthermore, the cloud workflow may lease workflow services to multiple 

organisations and host workflow applications to the organisations. The organisations pay for 

subscriptions of the workflow services and get services quickly without the needs for the 

investment in expensive high-performance hardware, software, and even workflow 

administration. 

From the perspective of cloud computing, everything can be considered as a service, that 

is, infrastructure as a service (IaaS), platform as a service (PaaS), or software as a service 

(SaaS), etc. With a view of the traditional process definition, WfMS is generally categorised 

as an application middleware and provisions workflow enactment services. When staged in 
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cloud, relative to the underlying cloud infrastructure, a WfMS is hosted on top of cloud 

software stacks and can be categorised as a SaaS. On the other hand, relative to the workflow 

applications, a WfMS is an underlying management platform to workflow services. Thus a 

WfMS can also be categorised as a platform as a service (PaaS). In this thesis, we consider a 

WfMS as SaaS. 

1.1.3 Features of cloud workflow 

As discussed above, cloud workflow is a WfMS. That means that the functional features in 

cloud workflow are compatible with those of the workflow reference model proposed by 

WfMC. Moreover, the cloud workflow concerns with more non-functional areas and offers the 

following prominent non-functional features: 

1. A template with workflow services for instantiation: A cloud workflow can be scaled 

out to support more workflows through instantiating new workflow service 

components from the template, which is preconfigured at build time or dynamically 

configured to meet the changing performance demands at runtime.  

2. Automatic scaling mechanism (auto-scaling): Scaling has existed in many traditional 

WfMS architectures and is not an exclusive concept in the cloud workflow. However, 

such scaling is implemented manually at the underlying infrastructure level by 

enhancing hardware capability or adding clusters. The scaling mechanism in cloud 

workflow automates the similar operations on the basis of cloud infrastructure. 

Moreover, it is an application-level mechanism other than the infrastructure-level 

provided by cloud and includes horizontal scaling, which adds new workflow service 

components that have same capability as the existing components; and vertical scaling, 

which changes on-the-fly the assigned underlying or platform resources to the existing 

components, for example, assign more physical CPU or Java virtual machine memory 

resources to the running workflow service components [80]. 

3. Load balancing mechanism: Load balancing has existed in many traditional WfMS 

architectures and is not an exclusive concept in the cloud workflow. Some cloud 

infrastructures also provide an infrastructure-level load balancing mechanism. But the 

mechanism of cloud workflow is an application-level mechanism which estimates the 
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status of workflow service components with finer granularities before dispatching 

requests. 

4. Alarming mechanism: This mechanism monitors the overall status of all the workflow 

service components and estimates whether the overall status of the workflow service 

components reaches or exceeds some predefined thresholds. If the thresholds are met, 

alarm is able to notify the automatic scaling mechanism to take actions to leverage it. It 

is an application-level mechanism other than the infrastructure-level.  

5. Billing mechanism: This mechanism is derived from the pay-as-you-go model of cloud 

computing [34]. A cloud workflow is a platform which manages massive workflow 

applications and is able to bill the applications on the basis of payment policies of the 

underlying pay-as-you-go model. 

6. Cost-effective service provider: A cloud workflow aims at providing economic 

workflow services to support large-scale workflow applications. Therefore, the 

investments of workflow customer can be reduced significantly. 

1.2 Introduction of large-scale instance-intensive workflow  

Large-scale instance-intensive workflow refers to the workflow applications which are able to 

produce a large number of concurrent workflow instances and occupy a great deal of 

workflow enactment resources and other related resources such as storage resources, 

communication resources, etc. The workflow applications have the following significant 

characteristics: 

1. Huge volume of workflow instances. The number is normally over a million or even a 

billion. The instances commonly swallow massive system resource though the 

individual occupation of one instance may be insignificant. There are many typical 

examples of the workflow applications, e.g., the mobile phone or landline telephone 

communication charge workflow, bank cheque processing workflow, network flow 

charge workflow, securities exchange workflow, etc. The workflow applications may 

generate enormous numbers of workflow instances all the time. 
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2. Regular or irregular upsurge or ebb in the volume with wide amplitude. The number of 

workflow instances is changing regularly or irregularly with a big range. For example, 

the number of a mobile phone charge workflow may regularly increase few times 

rapidly on New Year’s Eve and regularly decrease after the holidays but may 

irregularly increase or decrease due to some public incidents or large disaster such as 

earthquake.  

3. Light weight computation and data intensity. In contrast to computation-intensive or 

data-intensive workflow, instance-intensive workflow normally has no large-scale 

computation and datasets during the execution. 

As discussed above, the instance-intensive workflow commonly emerges in the enterprise-

level workflow applications.  

1.3 Key issues of this research 

As discussed above, few of current workflow systems are able to tackle instance-intensive 

workflow appropriately. Therefore, the most important key issue of this thesis is to investigate 

novel client-cloud architecture for instance-intensive workflow. This architecture will inherit 

all functional components of the traditional workflow reference model from WfMC and 

further add some new non-functional components. These new service components collaborate 

to guarantee the scalability, availability and reliability of cloud workflow. They are the bridges 

between cloud workflow and cloud infrastructures. Thus, another key issue of this research is 

the investigation of functionalities of the new non-functional components. In this thesis, we 

focus on the alarm and auto-scaling mechanisms in the client-cloud architecture. They are both 

the primary features of the cloud workflow. We will propose an alarm estimation model and a 

scaling estimation model to support those mechanisms.  

Furthermore, this research work investigates the sustainability of the coordination 

between the functional and non-functional service components in the client-cloud architecture. 

The key issue of the sustainability is to keep all workflow enactment services recoverable. We 

will analyse and reveal the constraints between the services and derive two principles. When 

ignoring the principles, it may be not sustainable for service coordination. Moreover, this 
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thesis discusses the influence of some other elements to the coordination. The two principles 

are expected to be helpful for the traditional or legacy WfMS to be staged in cloud. 

On the basis of the client-cloud architecture, we will represent our designs and 

implementation of cloud workflow – SwinFlow-Cloud prototype. The key issues of the 

implementation is to design a flexible and extensible structure regardless the client side or 

cloud side, that is, all workflow system components are designed as plug-and-play 

components and can be easily plugged in to or removed out from the system. Moreover, the 

prototype is able to be staged in cloud, i.e., Amazon AWS in this thesis, and demonstrated to 

support the instance-intensive workflow. 

1.4 Overview of this thesis 

This thesis covers the multiple aspects of cloud workflow, including concepts, features, 

architecture, functionalities, design and implementation. It represents comprehensive and in-

depth efforts of cloud workflow research.  

In Chapter 2, the familiar traditional workflow reference model from the WfMC is 

briefly reviewed. Then it further analyses the traditional WfMS architectures including 

centralised and decentralised, and investigates some representative commercial and open 

source workflow systems based on those architectures. The cloud workflow research and some 

well-known systems are reviewed. The research on the alarm and auto-scaling mechanisms in 

recent years is also surveyed.  

In Chapter 3, a motivating example is introduced to illustrate research problems. These 

problems are given an in-depth analysis and the system requirements which facilitate the 

design of cloud workflow are refined.  

In Chapter 4, this thesis presents the novel client-cloud architecture and addresses the 

service components in the architecture. Then we discuss the coordination between the services 

to provision the sustainability and the elements which can influence the coordination. 

In Chapter 5, we present the design of the functional components which are inherited 

from the traditional workflow reference model. The design covers the build time and runtime 
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functions. The build time function refers to the process management. The runtime functions 

cover the workflow enactment service, workflow administration and monitoring. 

In Chapter 6, we present the design of the models and functionalities of the non-

functional aspects. The design covers organisational management, version management, tool 

agent management, cloud workflow relevant service definition functionalities, cloud workflow 

relevant service administration and monitoring functionalities, and the workflow relevant 

services. In this chapter, our main contributions are that we propose an alarm estimation model 

and a scaling estimation model and further reveal the constraints between the elements in 

Chapter 4 and propose two primary principles to guarantee the sustainability of the 

coordination. 

In Chapter 7, the implementation of the cloud workflow prototype, SwinFlow-Cloud, 

based on the system design described in Chapters 5 and 6 is addressed in detail. We firstly 

introduce the technology which is used to develop SwinFlow-Cloud. Secondly, we address the 

system development. Thirdly, we give an overview of system runtime environments, i.e., 

Amazon AWS. Fourthly, we present the implementations of critical functional and non-

functional components. 

In Chapter 8, a demonstration experiment is presented for evaluation. This chapter uses 

the motivating example in Chapter 3 as case study. We use an experiment to evaluate whether 

SwinFlow-Cloud can meet the requirements refined in Chapter 3 and compare the results of 

the experiment with the data of the traditional non-cloud workflow system. 

In the last chapter, Chapter 9, we summarise the work presented in this thesis, the major 

contributions of this research, and consequent further research works. 
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Chapter 2  

Literature Review 

In this chapter, a brief introduction of the WfMC’s reference model is given in Section 2.1. 

Then Section 2.2 discusses various traditional workflow system architectures for supporting 

large-scale applications, some representative commercial or open source workflow systems, 

and their advantages and disadvantages. Section 2.3 introduces the current cloud workflow 

research including Hadoop based workflow and other commercial or open source cloud 

workflow and auto-scaling mechanism. 

2.1 The WfMC’s workflow reference model 

WfMC, found in 1993, published the workflow reference model in October 1994 [44]. The 

reference model identifies the fundamental functions and the interfaces of a WfMS which 

greatly contributes to the workflow research in past two decades. Figure 2.1 outlines the 

components and interfaces of the reference model. 

• Process definition tools: A variety of tool kits may be used to model, transfer, analyse, 

describe and document a process definition. The tools may interface (import/export 

process definitions) to the workflow enactment service via the process definition 

import/export interface (Interface 1). 

• Workflow engine: A service or "engine" that provides the runtime execution 

environment for a process instance.  

 



12 
 

 

Figure 2.1 The WfMC’s workflow reference model - components and interfaces 

• Workflow enactment service: A service that may consist of one or more workflow 

engines in order to create, manage and execute process instances. The service may 

interface to other components via the interfaces (Interfaces 1-5). 

• Administration & monitoring tools: A variety of tool kits may be used to monitor, 

administrate, control, and query a process instance. The tools may interface to the 

workflow enactment service via administration & monitoring interface (Interface 5). 

• Client apps/worklist handler: The worklist handler may be the user-friendly software 

which interacts with the end-user in the activities which need to involve human 

resources. The worklist handler may interface to the workflow enactment service via 

the client application interface (Interface 2). 

• Tool agent: The agent software or API packages may be accessed to the workflow 

enactment service. Typically it is a web service or Java API package or C API library. 

The tool agent may interface to workflow enactment service via the invoked 

applications interface (Interface 3). 

• Other workflow enactment services: The heterogeneous workflow enactment services 

are produced by different workflow system vendors. The services may interface to the 

workflow enactment service via the workflow application interoperability interface 

(Interface 4). 
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At an abstract level, in a WfMS, a process definition consists of a collection of tasks 

(activities or steps) and navigation rules among them to accomplish a specific goal. It is 

defined or depicted in XML based process definition language (XPDL) [21] or other definition 

formats and then delivered to an engine in a workflow enactment service for instantiation and 

execution. The engine will collect all essential information and create one or more process 

instances using the definition as template. Process instances will be executed and navigated 

step by step under the control of the engine. Client application tools or worklist handler can 

fetch current work items from the engine for interaction and submit them back to the engine 

after completion. Administration and monitoring tools are able to control the process through 

workflow operations such as launching, initiation, suspension, termination, and completion, 

etc. 

The release of the reference model is an important milestone in workflow research. 

Nowadays it has been a mainstream standard to identify a WfMS in workflow communities. 

Many workflow systems are designed based on or compatible with the reference model. For 

leading the workflow research and development, the WfMC further released other standard 

documents such as XPDL, and the workflow terminology and glossary [21] [84], etc.  

With workflow application areas expanding, two important branches emerge in 

workflow research communities: business workflow and scientific workflow [91]. The former 

means workflow applications that aim at implementing business targets and are normally used 

in enterprises, governments, or non-profit organisations. The latter means workflow 

applications that aim at implementing a complicated scientific computation, modelling, 

analysis, simulation, mining, derivation, etc., and are generally used in scientific research 

institutions, laboratories, or universities. The instance-intensive workflow that this thesis 

focuses on can be normally considered as a business workflow; while the computation-

intensive workflow can be generally considered as a scientific workflow. Although the 

reference model does not change or is mended in component structure, WfMC needs to 

confront the new challenges to adapt the new progress. The reference model was proposed 

long before the advent of the cloud computing. For current cloud workflow, this reference 

model is not able to meet the requirements of large-scale cloud workflow applications. 
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2.2 An overview of traditional WfMS architectures for large-scale 

workflows 

This section gives an overview of various WfMS architectures and analyses several 

representative commercial or open source WfMS and summaries the disadvantages for 

supporting large-scale instance-intensive workflow applications.  

2.2.1 Centralised WfMS architecture 

The centralised WfMS architecture means that all workflow enactment services are centralised 

in the central logical or physical hosts or platforms while workflow users or applications 

interact with them through sending requests to the hosts and receiving responses from the 

hosts on networks. The most dominant paradigm of the architecture is the client-server model 

based WfMS (C/S WfMS). The central logical or physical hosts or platforms are considered as 

the server side of WfMS, i.e., workflow server; while the workflow users or applications are 

considered as the client side, i.e., workflow client. With the revolution of the C/S model and 

development of the Internet and Web, the C/S WfMS has been a mainstream architecture for 

WfMS and adopted by many vendors or open communities of WfMS.  

The workflow server in the early C/S WfMS normally hosts in a standalone, high-

performance workflow server to bear all workflow instances. With the scale of workflow 

instances increasing, the disadvantages emerge: the standalone workflow server becomes a 

potential or realistic bottleneck of performance. Once the system resource of the workflow 

server runs out, the whole WfMS will fail or shut down. It urges the owners of WfMS to 

invest the higher performance hardware to try their best to reduce the possibility of the failure. 

However, the standalone C/S WfMS cannot guarantee high reliability, stability, availability, 

and adaptability in the performance due to lack of the scalability.  

The cluster is introduced in the centralised architecture for improving the scalability. 

The cluster in computer science means that “a group of interconnected, whole computers 

working together as a unified computing resource that can create the illusion of being one 

machine” [77]. The term “whole computer” means a system, here, it is a workflow server, 

which can run on its own, apart from the cluster; each workflow server in a cluster is typically 
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referred to as a node. The cluster has many advantages comparing with the standalone 

workflow server:  

• More powerful scalability: The cluster is a group of nodes to leverage the workflow 

workload instead of one standalone workflow server. Moreover, we can configure 

large clusters which have an enactment power far surpassing the current scale of 

workflow instance, or we can configure modest clusters which are possible to add new 

nodes to the cluster in small increments.  

• High availability: Each node in a cluster is a standalone workflow server. Therefore, 

the failure of any node does not mean loss of service. The high fault-tolerance also 

means high reliability and stability. 

• Superior price/performance: It is possible to build a cluster with equal or greater 

workflow enactment power than a single large workflow server, at much lower cost.  

Although the cluster uses a group of workflow servers to replace a standalone workflow 

server, the cluster has its disadvantages: 

• Complex configuration: The structure of clusters needs to be preconfigured before 

launching a WfMS. The cluster has various structures of nodes, such as passive 

standby, active secondary, or nodes sharing memory, etc., so that system designers 

need to spend a great deal of time to estimate the workflow workload at build time 

stage. At runtime stage, system administrators may need to frequently monitor and 

adjust the structures for meeting the high demand. 

• Redundancy: A cluster usually builds redundant nodes, which significantly surpass the 

current workload of workflow instances, to provide high availability, scalability, and 

reliability. If the master nodes in cluster cannot bear more workload of workflow 

instances, the cluster will allocate the workload to the redundant nodes for leveraging. 

If the master nodes can bear all workload, the redundant nodes will be left unused. 

Thereby the scalability obtained by the redundancy is inflexible and it increases the 

cost of system investment. 

• Limited scalability: The cluster undoubtedly enhances the scalability of the centralised 

architecture. However, as mentioned in the last item, the scalability is inflexible and 
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lacks elasticity. In other words, to ensure the scalability, it needs to provide a cluster 

which is much larger than current requirements. Moreover, it can just scale out but 

cannot scale in which means the waste of resources. 

Next some representative commercial and open source WfMSs are used to demonstrate 

our analysis: 

• IBM Business Process Manager (IBM BPM): This product is a typical WfMS to 

support large throughputs and high concurrency workflow instances1. There are four 

deployment topology patterns: (1) single cluster, (2) two clusters of remote messaging, 

(3) three clusters of remote messaging and remote support, (4) four clusters of remote 

messaging, remote support, and Web. For supporting a large-scale workflow, the ideal 

pattern is the last one which is able to ensure a powerful scalability. But it needs a 

investment at the large cost of hardware infrastructures. The hardware infrastructures 

bring the complex system configurations during deployments. Although the product 

provides a deployment wizard to generate deployment environments for simplifying 

the workload, system architects are not allowed to make changes and regenerate the 

deployment environment once it is generated. Also, if a generated resource is 

modified, that change is not reflected in the deployment environment. 

• SAP NetWeaver Business Process Manager (SAP NetWeaver BPM): It is an important 

component of the SAP NetWeaver platform component set2. The cluster of the SAP 

NetWeaver BPM is based on SAP NetWeaver Application Server3. For an example of 

building a cluster on SUSE Linux Enterprise High Availability Extension, there are 

four deployment patterns: (1) simple stack standalone, (2) simple stack high 

availability, (3) en-queue replication high availability, (4) en-queue replication high 

availability external database. For supporting large-scale applications, the ideal pattern 

is the third or fourth but it heavily increases the complexity of the cluster 

configuration.  

• jBPM: jBPM is a the flexible, lightweight, and open source WfMS4. For clustering to 

support the larger workflow instances, jBPM needs to configure and install jBoss5, 

                                                 
1 http://www-03.ibm.com/software/products/en/category/BPM-SOFTWARE 
2 http://global.sap.com/platform/ netweaver/components/index.epx 
3 http://www.sap.com/pc/tech/application-foundation-security/software/application-server/index.html 
4 http://www.jboss.org/jbpm/ 
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Apache Zookeeper6, Apache Helix7, etc. As shown in practice, the cluster of jBPM 

provides more powerful scalability than a standalone jBPM server but it does not avoid 

the disadvantages mentioned above. 

In summary, although the cluster of the centralised workflow architecture increases the 

availability, scalability and reliability, it is implemented at the cost of the configuration 

complexity and hardware investments. Moreover, the scalability of a cluster is problematic 

once the scale of workflow instances upsurges rapidly. 

2.2.2 Decentralised WfMS architecture 

The decentralised WfMS architecture has been another area on workflow research for 

handling challenges of large-scale applications since last century. The architecture means that 

workflow instances are distributed and executed in various enactment components which are 

dispersed at separate locations or platforms although there is still a unified workflow 

specification to define all relevant components. The dominant feature of the architecture is its 

loosely coupled components, which may be homogeneous or heterogeneous, complex or 

simple, organisational or cross-organisational, logical or physical to support workflow. In the 

architecture, the workflow can be graphically or textually depicted in any definition languages 

or scripts in definition tools. When a workflow definition is delivered to the architecture, it 

will be interpreted and mapped into many distributed components for execution. The typical 

paradigms of the architecture include Grid based WfMS, P2P based WfMS, Agent based 

WfMS, and hybrid WfMS. 

2.2.2.1 Grid based WfMS 

The Grid based WfMS is based on the Grid computing paradigm [25, 33, 92]. The WfMS 

includes two types of model: abstract model and concrete model. A workflow user designs a 

abstract model graphically or textually at build time then submits it to a Grid based WfMS for 

execution. The WfMS maps the abstract model onto an executable concrete workflow model 

which binds the specific Grid resources at runtime. After the concrete workflow model is 

launched, WfMS does not execute the tasks in the workflow but merely coordinates the 

execution of tasks. Many Grid based WfMSs initiate to orchestrate many cyber-infrastructures 

                                                                                                                                                        
5 http://www.jboss.com 
6 http://zookeeper.apache.org/ 
7 http://helix.incubator.apache.org/ 
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such as the supercomputers, experiment devices, or extra-large computation application, etc., 

for automating the research procedures in a workflow way to make it easier for scientists with 

little IT knowledge. Therefore, Grid nodes in a Grid based workflow are more heterogeneous 

than cluster nodes and normally hosted in various research communities. It is more suitable for 

large-scale scientific workflow applications to support large-scale complex data set analysis, 

simulation, or computation in high-energy physics, gravitational-wave physics, geophysics, 

astronomy or bioinformatics, etc. The Grid based WfMS has some significant advantages as 

follows: 

• Domain-specific scalability: Due to the capabilities in specific domains, Grid nodes in 

a WfMS are able to provision more powerful scalability to the workflow applications, 

which meet domain-specific process requirements, than cluster nodes. If clusters tackle 

the workflow applications, they need to configure very large and many clusters for 

scalability.  

• Efficient orchestration: The Grid based workflow can efficiently and dynamically 

orchestrate the distributed resources which are located in various communities or 

organisations to promote inter-organisational coordination. 

However, the Grid based workflow has its disadvantages as follows: 

• Unbalanced scalability: Although a Grid based workflow has more powerful 

scalability than clusters in specific domains, the scalability is on the basis of workflow 

applications meeting domain-specific requirements. For example, a supercomputer 

with astronomical computing applications is joined as a node for a Grid based 

workflow. It is able to represent extraordinary capacity and scalability on astronomical 

computation tasks when tackling an astronomical workflow. However, this 

supercomputer is not suitable for performing bioinformatics workflow applications 

where its capacity and scalability may be of limited power. Therefore, the overall 

scalability in a Grid based workflow is unbalanced. 

• High cost: Grid nodes are usually large-scale and complex and expensive computation 

devices or software and distributed in many physical locations, it is at a higher cost for 

Grid infrastructure to organise the nodes into Grid and maintain them. 
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In the last decade, the Grid based workflow communities has put great efforts to 

research and develop many Grid based WfMS and solved various complicated scientific 

issues. Next, we select two successful systems to demonstrate the Grid based WfMS. 

• Kepler: It is an open source scientific WfMS8. It is based on the Ptolemy II System9 

and inherits the actor-oriented modelling paradigm. Kepler’s application areas include 

bioinformatics, computational chemistry, eco-informatics, and geo-informatics, etc. 

• Pegasus: Pegasus10, which stands for planning an execution in Grid, is a framework 

that maps abstract workflows onto Grid resources [26, 27]. It enables scientists to build 

workflows in abstract representations without worrying about the details of the 

underlying execution environment. Through a complex mapping, Pegasus is able to 

generate a concrete workflow and optimistically execute the workflow in Grid. The 

mapping means that firstly Pegasus needs to look up a resource which is appropriate in 

many characteristics such as physical locations, usability, complexity, solution cost, 

etc.; then it locates the appropriate resources to execute the components and generates 

an executable workflow of jobs that can be submitted to the Grid. Pegasus has been 

used in a number of scientific domains including astronomy, bioinformatics, 

earthquake science, gravitational wave physics, ocean science, limnology, and so on. 

In summary, although the Grid based workflow improves the domain-specific 

scalability, its scalability is unbalanced and its cost is high.  

2.2.2.2 P2P based WfMS 

The P2P computing paradigm is that “no central coordination, no central database, no peer has 

a global view of the system, global behaviour emerges from local interactions, all existing data 

and services should be accessible, peers are autonomous, and peers and connection are 

unreliable” [2]. It is another popular decentralised technology for architecting distributed 

systems. In P2P environment, there is no client or server but only peer which is accessible to 

its computing resources. The status of any one peer is equal to that of another one. A peer can 

join or leave P2P anytime. Some research efforts have been put into the decentralised 

workflow area and developed some P2P based WfMSs for supporting workflow [31, 74, 85, 

86]. The P2P based WfMS means a WfMS in which all components, denoted as workflow 
                                                 
8 https://kepler-project.org/ 
9 http://ptolemy.eecs.berkeley.edu/ptolemyII/ 
10 http://pegasus.isi.edu/ 
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peer, are built on the basis of a P2P infrastructure to support workflow. The P2P based 

workflow architecture has some significant advantages as follows: 

• Decentralisation: The whole WfMS is decentralised in many peers in P2P 

infrastructures. The characteristic means a little possibility of single point of failure 

and enhances the availability, fault-tolerance, and robustness of a whole WfMS. 

• Dynamicity: A peer can easily join P2P for workflow functionality and leave P2P any 

time. It is more flexible than Grid nodes. 

• Powerful scalability: New peers can easily scale out to undertake a particular role or 

functionality in a workflow. In contrast to the Grid based workflow, a peer is able to 

provide more common capacities to tackle the workflow instances. Therefore, the 

scalability is more balanced than the Grid based workflow. 

• Powerful interoperability: The resource or data of every peer is shared by and 

accessible to all other peers. P2P is more interoperable than Grid. 

However, P2P based WfMS has its disadvantage as follows when tackling the instance-

intensive workflow: 

• High collaboration costs in peers: The WfMS completes workflow instances 

depending on the collaboration between many autonomous peers with various roles 

and functionalities. With the scale of workflow instance upsurging, the WfMS is able 

to scale out by more new peers to tackle the increasing workload. There is massive 

data to be transferred or accessed between the peers through requests or responses. 

High collaboration cost will be the main bottleneck of the WfMS when handling the 

instance-intensive workflow. The cost of the P2P based architecture is higher than that 

of the centralised architectures. 

Here, we introduce two representative P2P based WfMSs: 

• SwinDeW (Swinburne Decentralised Workflow) [86]: It adopts a flat, flexible, and 

loosely coupled architecture without the centralised data storage and control engine. 

The architecture consists of four layers: application layer, service layer, data layer, and 

communication layer. The application layer defines application-oriented semantics to 

fulfil workflow functions; the service layer is a core of the WfMS and consists of peer 
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management service, process definition service, process enactment service,   

monitoring and administration service; the data layer consists of the distributed data 

repositories (DRs) that store workflow-related information; the communication layer is 

the underlying network infrastructure which enables data transfer between physical 

machines through point-to-point connections. Workflow Participant Software (WfPS) 

is application layer software that provides interfaces to interact with a workflow 

participant and other WfPS, requesting services and responding to requests. As a basic 

working unit in SwinDeW, a peer consists of a WfPS and a set of DRs. It resides on a 

physical machine and enables direct communications with other peers to execute 

workflow. Furthermore, peer management service in the service layer provides system 

services such as peer configuration, discovery, or registration, etc. SwinDeW has some 

extension versions such as SwinDeW-B [74], SwinDeW-S [75], SwinDeW-G [89], 

SwinDeW-C [55], etc. They are all based on the P2P computing paradigm. 

• A WWPD and WWP based workflow architecture: This architecture is on the basis of 

the Web Workflow Peers Directory (WWPD) and Web Workflow Peer (WWP) [31]. 

The WWPD is an active directory system that maintains a list of all peers (WWPs) that 

are available to support Web workflows. Each WWP encapsulates adequate 

functionality and knowledge for workflow and to decide which WWP needs to be 

activated next in the workflow. When executing a workflow instance, the WWPD 

assists WWPs to locate other WWPs and use their services and resources. This 

architecture, workflow enactment functionality and data are distributed among the 

WWPs. It is completely decentralised as no central workflow engine is employed to 

coordinate workflow. The WWP encapsulates some necessary knowledge to perform 

the workflow and also to delegate other knowledge of the workflow to other WWPs. 

In summary, although P2P based workflow implements a powerful scalability through 

decentralising WfMS architecture, its collaboration costs increases when challenging the 

instance-intensive workflow. 

2.2.2.3 Agent based WfMS 

Software agent concept is originated in Artificial Intelligence (AI) research[66]. Generally a 

software agent is “reactive, autonomic, collaborative, inferential, continuously temporal, 

personal, adaptable and mobile” [12]. The agent based WfMS means all workflow enactment 

services are dispersed in an agent computing paradigm. Its key design is to take each 
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workflow functional component as a proactive and autonomic agent that is able to 

communicate and negotiate with other agents using interoperable agreements. Thus, the 

workflow enactment service consists of agent sets. Some characteristics of agent based WfMS 

are similar to P2P based WfMS, such as the loosely coupled architecture, autonomy, 

collaboration, etc. However, obvious differences exist between them. For example, P2P based 

WfMS has no central control. Any peer needs to discover and recognise other peers; while 

agent based WfMS has two special agents: one is responsible for creating, deleting, and 

naming other agents; the other stores the directory of all other agents for looking up. The main 

advantages of the agent based WfMS architecture for instance-intensive workflow are as 

follows: 

• Centralised fundamental service: Not like P2P infrastructure, agent infrastructure has 

some centralised fundamental service such as naming, looking up, recognising, 

registering, etc., to support an efficient interoperation between agents. While in P2P 

based architecture, generally it needs to implement a functional component through 

underlying APIs. 

• Decentralisation: An agent based WfMS is all decentralised in many agents in agent 

infrastructure. The characteristic is very similar to P2P based WfMS. However, peers 

undertake a workflow function through collaborations while an agent is able to 

undertake a complete function independently.  

• Powerful scalability: New agent for workflow functions can be easily registered in an 

agent based WfMS for scaling out to undertake a particular role or functionality in a 

workflow.  

• Powerful integration competency: According to the characteristics of agent, it is 

superior to build an integration component for accessing external applications outside a 

WfMS. The applications have just the interoperability protocols, standards, or APIs 

which are compatible with those of the WfMS even if they are completely 

heterogeneous to the WfMS. 

As discussed above, some advantages or characteristics of agent-based WfMS is very 

similar to that of P2P based WfMS. This is the reason why an agent paradigm is used to 
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construct P2P architecture. However, agent based WfMS has also disadvantage as follows for 

instance-intensive workflow: 

• High collaboration costs in agents: Like P2P based WfMS, agent based WfMS 

completes workflow instances through the collaboration of many agents with various 

roles and functionalities. As the workflow instances increasing rapidly, it unavoidably 

results in higher collaboration costs similar to the P2P based WfMS.  

Next we introduce two agent based WfMSs: 

• JBees: It is a distributed and adaptive WfMS, which is combined with an agent 

paradigm and coloured Petri nets formalism, with monitoring and controlling 

capabilities [30]. The workflow enactment services in JBees consist of some agent 

components: management agent, storage agent, process agent, resource agent, resource 

broker agent, monitor agent, and control agent, etc. Each agent provisions a workflow 

relevant functionality to support workflow. A new process agent is created by the 

management agent for executing a new workflow instance. Then the execution of the 

instance starts from the process agent through requesting the further instance data to 

the storage agent. The functionality of the process agent is similar to the workflow 

engine in the reference model shown in Section 2.1. For executing workflow, the 

resource agent or the resource broker agent participates in a resource allocation. 

During the execution, the monitor and control agent watch the status of the workflow 

instance for administration. Furthermore, JBees offers an adaptability from the 

perspective of agent based WfMS architecture. If a running workflow instance is 

modified according to the changing requirements, the management agent will create a 

new process agent for executing the modified instance. With the number of the 

workflow instances increasing, the agent number and the workload on the agents such 

as the storage agent, the resource agent, the resource broker agent and so on, will be 

stretched. 

• AWfMS: It is an agent-based workflow management system (AWfMS) with resource 

description framework (RDF)11 ontology schema to enable design chains cooperation, 

design knowledge reuse and coordination in real time [45]. The architecture is a three-

tier system structure consists of user presentation layer, application/business logic 

                                                 
11 http://www.w3.org/RDF/ 
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layer, and data access layer. The core application/business logic layer has workflow 

management mechanism (WfMM) and agent communication mechanism (ACM). The 

WfMM utilises a hierarchical agent structure to manage workflow: the interface agent 

including user agent; the workflow agent including system maintenance agent, 

workflow monitoring and control agent, workflow maintenance agent, and workflow 

execution agent; the resource agent including buffer agent and workflow enactment 

agent. The agents collaborate to complete workflow instances though data requests and 

responses between them. 

In summary, the agent based WfMS architecture is not popular in workflow research 

communities[46]. The architecture mainly aims at the business workflows, especially the 

workflows with human participations, other than the scientific workflows. For the instance-

intensive workflow, the architecture does not represent the more powerful capacities than P2P 

based WfMS. 

2.2.2.4 Hybrid WfMS 

Hybrid WfMS architecture is not a new concept for workflow communities. The hybrid 

workflow architecture aims to take advantages of more than one paradigm to optimise the 

approaches to the research issues. Undoubtedly, the hybrid may introduce some optimisations 

and advantages in architecting a WfMS. However, we have investigated the dominant 

characteristics of the underlying infrastructures for architecting the hybrid WfMS in previous 

sections. Here, we introduce two hybrid workflow architectures: 

• SwinDeW-G (SwinDeW for Grid): It is a typical hybrid decentralised WfMS, which is 

derived from existing work on the P2P based WfMS, SwinDeW, which is mentioned 

above but redeveloped as Grid services and deployed on SwinGrid, a Grid 

infrastructure of Swinburne University of Technology, with communications between 

peers conducted in a P2P fashion [89]. This enables peers in SwinDeW-G to access to 

Grid nodes in SwinGrid with the resources required by the peers. Moreover, the peers 

can use P2P to exchange various information required to execute a workflow. In 

SwinDeW-G, a workflow instance can be executed by different peers that may be 

distributed at different Grid nodes. In contrast to Grid based WfMS, this hybrid WfMS 

utilises the advantage of the point-to-point communication in P2P, which is more 

efficient in the transmission time and reduce the bottlenecks caused by the mediated 

approaches, to transfers data between workflow enactment services. Furthermore, 
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unlike normal Grid services, SwinDeW-G is always considered more dynamic than 

Grid based WfMS due to the easy joining and leaving of peers. 

• Multi-Agent Based P2P WfMS: This system is built by plugging multi-agents into a 

P2P based WfMS architecture [6]. In this architecture, P2P is responsible to build time 

functions: workflow modelling, workflow storing and distributing workflow to 

workflow agents; while multi-agent is responsible to runtime functions: workflow 

process instantiation, task coordination, exception handling, and workflow monitoring, 

etc. Agents reside in different peers and can execute a workflow. Furthermore, agents 

in the peers can monitor workflow instances and react to unforeseen events. Through 

the architecture, it can build a virtual organisation involved in the inter-organisational 

workflow. The workflow has no central control and is represented by workflow peers 

with workflow agent engines. In other words, this system utilises the characteristics of 

no central control and dynamicity in P2P and collaboration in multi-agent to facilitate 

an inter-organisational cooperation. 

In summary, although the hybrid WfMS does not receive sufficient attention in 

workflow research communities, the research is helpful to solve some specific issues. 

However, for the instance-intensive workflow, the WfMS does not ultimate the disadvantages 

of the underlying infrastructure.  

As discussed above, we overviewed the various WfMS architectures which are proposed 

and may be considered as a potential alternative for the large-scale instance-intensive 

workflow. The popularisation of WfMS architectures depends on development of the 

underlying computing paradigms and the specific requirements. For example, the C/S WfMS 

architecture is used to construct a WfMS due to the development of Web, the Internet and N-

tier software architecture. The cluster is introduced to architect a WfMS due to the exponential 

growth of the scale of workflow. The Grid based WfMS is proposed due to the development 

of Grid computing and the requirements of resource sharing and system integration which are 

desirable for sophisticated scientific workflows. The P2P based WfMS is proposed due to the 

development of P2P and problems of the centralised workflow architecture such as limited 

scalability, etc. Unfortunately, based on the analysis in this section, for the large-scale 

instance-intensive workflow, none of the WfMS architectures above is able to provide a 

satisfactory solution for supporting high scalability, high availability, high reliability, and cost-

effectiveness. 
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2.3 An overview of cloud workflow research 

With the advent of cloud computing, cloud workflow has been received more and more efforts 

by workflow communities. In this section, we firstly discuss the novel Hadoop based 

workflow. Secondly, we give an overview of the cloud workflow in industry communities. 

Finally, we focus on the state-of-the-art of cloud workflow in research communities. 

2.3.1 Hadoop based WfMS 

Recently, Apache Hadoop project has been almost a de facto standard for processing large 

datasets12. It offers an open source software library which is a framework for developing 

reliable, scalable, and distributed software to support large concurrent computation utilising a 

simple programming model and scale out from few of computers to many computers. To 

enhance parallelisation, Hadoop based applications are deployed in the cyber-infrastructure 

which can provision massive computation resources. Cloud infrastructure is able to meet the 

requirements of Hadoop based applications. Therefore, Hadoop and cloud computing are often 

discussed or mentioned together by many researchers. Hadoop based WfMS is one of the 

Hadoop applications. Here, we categorise Hadoop based WfMS into cloud workflow due to it 

can be hosted in cloud to support Hadoop computing. 

This project includes five modules: Hadoop common, common utility kits for other 

modules; Hadoop distributed file system (HDFS), a distributed file system that provides high-

throughput access to application data; YARN, a framework for job scheduling and cluster 

resource management; MapReduce, a programming model for parallel processing of large data 

sets. MapReduce [24] includes two abstract programming interface functions: Map and 

Reduce. Programmers need to implement the Map function and Reduce function and submit 

the functions to Hadoop. In Hadoop, the processing over clusters includes two steps: 

• Map step: A master node takes the input, divides it into smaller sub-problems, and 

distributes them to worker nodes. The worker nodes handle the smaller problems, and 

pass the results back to its master node. 

                                                 
12 http://hadoop.apache.org/ 
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• Reduce step: The master node collects the results to all the sub-problems and combines 

them in some way to form the output - the solution to the problem it was originally 

trying to solve. 

MapReduce has been proven to be useful abstraction and greatly simplifies large-scale 

computations on processing parallelisable across huge datasets using the clusters with a large 

number of computers (node). Recently, Hadoop has been introduced as a core functionality of 

some WfMSs for solving the large-scale workflow applications[67].  

• CloudWF, developed in 2009, is a Hadoop-based computational WfMS [94]. It is able 

to flexibly integrate and invoke workflow applications. The XML-based workflow 

definition, which contains blocks and connectors as workflow components, is staged in 

CloudWF and stored in HBase13. Every block has either a MapReduce or a workflow 

application. Each connector has block-to-block dependency which may involve file 

copies between connected blocks. Both blocks and connectors can execute 

independently, that is, the workflow’s execution is decentralised by multiple Map or 

Reduce tasks. The workflow enactment on Hadoop is able to greatly improve 

scalability and parallelisation of workflow. However, we cannot find the experiments 

and evaluations about CloudWF. As indicated by the authors, CloudWF needs to be 

further tested through large-scale biological image processing workflow although 

theoretically it has high scalability. 

• Oozie: Apache Oozie14 is an open source, scalable, reliable, and extensible workflow 

scheduler system to orchestrate Apache Hadoop jobs. Oozie workflow definition 

consists of actions and navigation rules among them to be a directed acyclic graph 

(DAG) at build time. This graph can contain two types of nodes: the control nodes 

provide the navigation rules for beginning and ending a workflow and control the 

workflow execution path with possible decision points known as fork and join nodes; 

while the action nodes trigger the execution of actions. The significant advantages are 

that Oozie is able to simplify and automate the process of managing coordination 

among jobs and is fully integrated with the Apache Hadoop stack and supports Hadoop 

jobs for Apache MapReduce, Pig15, Hive16, and Sqoop17 through setting an action 

                                                 
13 http://hbase.apache.org/ 
14 http://oozie.apache.org/ 
15 http://pig.apache.org/ 
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node as a MapReduce job, a Pig application, a file system task, or a Java application. 

After instantiation, Oozie is able to execute the workflow by the rules and perform the 

actions when the rules are satisfied at runtime.  

In addition, there are some other similar workflow engines such as Hamake 18 , 

Azkaban19, and Cascading20, etc., to offer similar functions for Hadoop job scheduling.  

Given workflow architecture, Hadoop based WfMSs are undoubtedly a perfect 

alternative for processing the large-scale applications with high scalability, availability, 

reliability, and cost-effectiveness. Especially, it can integrate the MapReduce job into 

workflow. However, it aims at processing the workflow applications with extra-large 

computations or datasets, i.e., the computation-intensive workflow mentioned in Section 1.1.2, 

other than the instance-intensive workflow. These extra-large computations or datasets can be 

decomposed into many Map or Reduce tasks and orchestrated in workflow definition for 

executions. 

2.3.2 Cloud workflow in industry communities 

In industry communities, some vendors such as IBM, SAP, or Amazon of the commercial 

WfMSs provide functionalities or versions utilising cloud features. For example, IBM BPM 

on Cloud is a new version of IBM BPM mentioned in Subsection 2.2.121. It is dedicated to and 

hosted in IBM SmartCloud Enterprise data centres in the United States, Canada, and Europe22. 

IBM BPM on Cloud includes all build time and runtime functions such as workflow design, 

execution, administration, and optimisation, and so on. It is only staged in cloud from the 

traditional architecture. One of the advantages is that workflow customers can get started with 

the workflow management quickly and conveniently through a subscription-based monthly 

consumption without complicated installation, deployment, and configuration of IBM BPM on 

cloud. However, although the system is secure and reliable as announced by IBM, the security 

of deploying a core system in public cloud is still a sensitive consideration for the industry 

communities.  

                                                                                                                                                        
16 http://hive.apache.org/ 
17 http://sqoop.apache.org/ 
18 http://code.google.com/p/hamake/ 
19 http://data.linkedin.com/opensource/azkaban 
20 http://www.cascading.org/ 
21 http://www-03.ibm.com/software/products/en/business-process-manager-cloud/ 
22 http://www.ibm.com/cloud-computing/us/en/ 
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Like IBM on Cloud, Amazon Simple Workflow (SWF) is also a build-in WfMS and 

hosted in Amazon AWS23. Its functionalities are similar to IBM BPM on Cloud, whereas its 

design is prone to integrating and orchestrating various cloud applications or external 

applications. Although workflow designers do not need to concern about managing the 

infrastructure plumbing of workflow automation, like IBM BPM on Cloud, they need to write 

complex scripts or programs to implement the activity workers, which depict workflow tasks; 

deciders, and navigation rules. The scripts or programs decrease the usability to workflow 

customers. 

2.3.3 Cloud workflow in research communities 

In workflow research communities, there are two prominent directions in cloud workflow 

area. The first direction is that some research tends to shift from traditional workflow research 

to cloud workflow. The second direction is that some new WfMSs based on or utilising cloud 

computing are developed. 

At present, most researchers focus on the first direction. They put great efforts to extend 

or shift their existing work to cloud. For example, Yet Another Workflow Language (YAWL) 

is a workflow language which is developed based on Petri Nets. Using this workflow 

language, Wil van der Aalst and Arthur ter Hofstede developed YAWL, a famous standalone 

WfMS, in 2002 and contributed on many workflow researches24. Recently, for saving cost and 

sharing infrastructure resource in Netherlands, a standalone YAWL is staged in cloud to be a 

cloud workflow, named as YAWL in the Cloud, but has no change on the existing architecture 

[72]. In cloud, there will be many YAWLs running to support the requests from cloud client 

side. Each YAWL is unaware of the others. To overcome the possible duplications of 

identifier of workflow instances among YAWLs, YAWL in the Cloud uses unique global 

cloud identifiers and maintains a mapping between global (cloud assigned) identifiers and 

local (engine specific) identifiers. Furthermore, YAWL in the Cloud adds some new 

components to support the processing of requests and responses. At front end, there is a single 

Web portal point to access YAWL in the Cloud. At back end, YAWL in the Cloud adds router 

components, which are responsible for mapping between global and local identifiers, or route 

the requests to the correct YAWL engine; a central database, which is used to store the global 

                                                 
23 http://aws.amazon.com/swf/ 
24 http://www.yawlfoundation.org/ 
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identifier; a management component, which is responsible for communications with the 

routers and the central database; load balancers, which are responsible for both the incoming 

and outgoing requests. As indicated by the authors, the partial functions in YAWL in the 

Cloud are implemented and now the work is ongoing. Unfortunately, the design of the 

architecture of YAWL in the Cloud is not compensated by the scalability. 

Cloudbus Workflow Engine (CWFE), developed by the Cloud Computing and 

Distributed Systems (CLOUDS) laboratory in the University of Melbourne, is derived on the 

basis of Grid Workflow Engine25. CWFE includes some key components to support users to 

execute and manage workflow applications: user interface applications, which provide build 

time functions for workflow, runtime functions for administrations; workflow engine core, 

which provides runtime function for workflow enactment; plugins, which support workflow to 

interoperate with the heterogeneous environments and platforms such as clusters, grids, 

clouds. Here CWFE considers cloud as an accessible application and provides a plugins 

mechanism to integrate cloud management tools. Therefore, CWFE is a WfMS which is prone 

to utilising cloud features to complete workflow. 

SwinDeW-C (SwinDeW for Cloud) [55] is developed based on SwinDeW-G [89] and 

hosted in SwinCloud, which is a cloud computing simulation environment on the basis of Grid 

infrastructure of Swinburne University of Technology. The architecture of SwinDeW-C 

inherits the most of components of SwinDeW-G and renovates SwinDeW-G peers as 

SwinDeW-C peer through adding QoS management components, data management 

components, and security management components. SwinDeW-C aims at solving the large-

scale workflow applications such as insurance claims or pulsar searching through introducing 

QoS constraints and security considerations and data persistence management. However, the 

experiment results show that renovation based on P2P does not efficiently eliminate the 

disadvantages of SwinDeW-G. 

In the second direction, few of new cloud workflows are proposed for solving the 

specific issues. For example, a workflow engine for computing clouds is proposed to integrate 

various types of cloud applications into one workflow through specifying the tasks in the 

workflow [35]. This architecture of the WfMS proposes a cloud abstract layer which defines 

unified abstract APIs and is able to map the APIs onto concrete APIs for secure interoperation 

between the WfMS and the cloud applications or cloud infrastructures. The functionality of 
                                                 
25 http://www.cloudbus.org/workflow/ 
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the layer is similar to that of the plugins in CWFE above. The advantage of APIs or plugins is 

able to significantly reduce the architectural change in the existing WfMS. However, they only 

utilise cloud feature in the traditional WfMS to complement the disadvantages of the WfMS 

and do not overcome the disadvantages. 

CloudDragon is an OpenNubula 26  based cloud workflow which is able to support 

scientific workflow [96]. This system architecture implements an integration of Swift 

scientific WfMS27 and OpenNubula cloud infrastructure through a four-layer architecture: a 

client layer, which is responsible for build time functions of workflow; a service layer, which 

is a Swift scientific WfMS based cloud workflow service 28 ; a middleware layer, which 

consists of the components connecting this layer with the underlying infrastructure layer, 

including cloud resource manager, a virtual cluster provider, and a task execution service; and 

an infrastructure layer which is OpenNubula. In this architecture, Swift scientific WfMS is 

considered as a gateway to OpenNubula. Regarding the relative positions between the WfMS 

and the cloud, the integration is outlined as four levels: Operational-Layer-in-the-Cloud, Task-

Management-Layer-in-the-Cloud, Workflow-Management-Layer-in-the-Cloud, and All-in-

the-Cloud. In other words, they can be presented as: a cloud workflow where a WfMS is 

outside of cloud, or partly staged in cloud, or is entirely staged in cloud [62]. In our 

experience, the relative positions cannot describe the complex integration in architecture. For 

example, they cannot describe the integration of P2P workflow and cloud: one part of P2P 

based workflow enactment service is inside cloud while the other part is outside cloud. 

As discussed above, cloud computing is facilitating the workflow research communities 

to renovate the existing workflow architecture to tackle scientific workflow applications. For 

the large-scale instance-intensive workflow, the renovation has not advanced more significant 

breakthrough with the high scalability, high availability, high reliability, and cost-

effectiveness. 

2.3.4 Auto-scaling mechanism research 

Auto-scaling, i.e., the capability or mechanism automatically scaling up/out or scaling down/in 

during demand spikes to maintain performance, is one of highlight features of cloud 

                                                 
26 http://opennebula.org/ 
27 http://swift-lang.org/main/ 
28 http://swift-lang.org/main/ 
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computing and is able to support dynamic resource provisioning or withdrawing to meet the 

changing requirements, and also a fundamental service for developers to implement cost-

effective applications. It includes two types of scaling: “horizontal scaling (i.e. adding new 

server replicas and load balancers to distribute load among all available replicas) or vertical 

scaling (on-the-fly changing of the assigned resources to an already running instance, for 

instance, letting more physical CPU to a running virtual machine (VM))” [80]. As indicated by 

the scaling definition, the horizontal scaling is relatively easy to implement, while the vertical 

scaling is hard to implement because the most common operating systems do not support on-

the-fly (without rebooting) changes on the available CPU or memory to support this vertical 

scaling.  

In recent years, cloud communities have put efforts to propose several algorithms or 

models for improving the mechanism. However, in the open source communities, some well-

known cloud infrastructures do not recognise auto-scaling mechanism as fundamental service 

components and hence do not provide it.  

In the industry communities, auto-scaling is considered as an important service 

component to construct or deploy cloud applications. For example, in Amazon AWS, auto-

scaling is a Web service which supports to automatically launch or terminate one or more 

Amazon Elastic Compute Cloud (Amazon EC2) virtual machine instances, i.e., Amazon EC2 

instances for short, through user-defined auto-scaling policies29. This Web service is one of 

infrastructure-level components and hosted in Amazon EC2.  

Auto-scaling in Amazon EC2 provides both horizontal scaling and vertical scaling. For 

the vertical scaling, Amazon provides an offline (with rebooting) changing to implement, i.e., 

Amazon EC2 cloud application owners need to manually shut down their Amazon EC2 

instances and change the type of the instances using Amazon EC2 management tools then 

restart the instances. The instances will have new computation capacities as it has been 

changed from old system configurations to new system configurations.  

For the horizontal scaling, the auto-scaling in Amazon EC2 firstly constructs a launch 

configuration and an auto-scaling group. The launch configuration is a script or command 

about Amazon EC2 instance type, Amazon EC2 image which is used to instantiate new 

instance, and some security information, etc., while the auto-scaling group is an Amazon EC2 

                                                 
29 http://aws.amazon.com/autoscaling/ 
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instance pool and identifies the maximum number, the minimum number, the normally desired 

number, and the scaling number per time of running Amazon EC2 instances. Secondly, the 

auto-scaling in Amazon EC2 creates a specific conditions based scaling plan for the auto-

scaling group and then starts by launching the minimum number (or the desired number, if 

specified) of instance(s) and then starts executing the scaling plan. To be aware whether the 

conditions in the scaling plan are met, the auto-scaling in Amazon EC2 needs to periodically 

sample, makes a statistics of the sampling results and compares with a predefined threshold. If 

the comparison shows that the conditions are met, the auto-scaling group will scale out by 

launching the scaling number of Amazon EC2 instances until the specified maximum number, 

or scale in by terminating the scaling number of Amazon EC2 instances until the specified 

minimum number. The auto-scaling in Amazon EC2 is able to ensure that each Amazon EC2 

instances in the auto-scaling group is running at a good status through a periodic individual 

health check. If it finds any unhealthy instance, it terminates this instance, removes it from the 

auto-scaling group and launches a new one and adds it into the group. 

The auto-scaling in Amazon EC2 is simple and easy to be integrated into the cloud 

applications [32]. However, the infrastructure-level scaling is neither practical nor feasible for 

many cloud applications, especially for the long-term running cloud workflow with high 

throughput requirement. For vertical scaling, if WfMS administrators take the vertical scaling 

actions manually, they must shut down the Amazon EC2 instances with a running WfMS or 

workflow enactment components. It likely results in the losses of the executing workflow 

instances or the incoming requests and even data inconsistency in the WfMS. For horizontal 

scaling, the auto-scaling group is able to terminate any unhealthy Amazon EC2 instances. 

However, in our experience, the infrastructure-level horizontal scaling cannot be aware of the 

status of the cloud applications running in Amazon EC2 instances if only utilising the 

approaches provided by Amazon EC2. That means that it likely results in the problems above 

in the same way. This risk is fatal to any large-scale WfMS. Thus it can be seen that all the 

infrastructure-level auto-scaling mechanisms would face the similar issues like Amazon auto-

scaling. 

In research communities, there are mainly two directions in auto-scaling mechanism 

[36]. One direction focuses on a prediction model of resource demand. Roy et al. propose an 

approach based on model predictive control ideas. It can predict the application workload and 

assess the system behaviour over prediction horizon using a performance model. Then, using 



34 
 

the principles of the receding horizon control, it iterates over the number of look-ahead steps 

and computes cumulative cost for selecting each possible resource allocation [69]. Gong et al. 

present a novel PRedictive Elastic reSource Scaling (PRESS) scheme for cloud systems [38, 

39]. PRESS first uses signal processing techniques to identify repeating patterns called 

signatures for predictions. If no signature is discovered, PRESS uses a statistical state-driven 

approach to capture short term patterns in resource demand, and uses a discrete-time Markov 

chain for predictions. The resource prediction models are repeatedly updated when resource 

consumption patterns change. Shen et al. present a system that automates fine-grained elastic 

resource scaling for multi-tenant cloud computing infrastructure, CloudScale system [76]. The 

system also uses a prediction model to estimate the resource demand online. But the 

estimation has inaccuracy inevitably. So the system provides the complementary under-

estimation error handling schemes to correct the errors. They also developed a light-weight 

schema for cloud providers. This schema uses the dynamic patterns from application resources 

demands to adjust the resource allocations. 

Utilising a predictive model to forecast the future possible workload is a good option for 

supporting the auto-scaling mechanism [9, 15, 41, 42, 48, 51, 53, 95]. However, the research 

in this direction mainly focuses on the infrastructure-level auto-scaling [5, 10, 40, 50, 81]. 

Furthermore, researchers propose some infrastructure-level models or frameworks to monitor 

the cloud resource usages [3, 7, 37, 43, 64, 68]. In cloud workflow, the infrastructure-level 

auto-scaling and monitoring are hard to be accurately aware of the usage of the interior cloud 

workflow resources such as thread pool [49, 62, 78]. It only abstractly estimates the usage of 

the common resource of CPU, memory, etc. Therefore, it is very difficult to precisely predict 

the future workloads on one WfMS. Therefore, the infrastructure-level prediction model based 

auto-scaling mechanism is not suitable to cloud workflow. 

The other direction focuses on using some specific performance metrics to estimate the 

future resource requirements of cloud applications [8, 13, 17, 28, 63, 65]. Mao et al. utilise a 

deadline that users specify in jobs as a basic performance requirement to find a scaling plan 

minimising the cost in cloud applications [59]. But for workflow applications, the deadline 

may not be generally an important metric. For example, for scientific workflow, the workflow 

is generally a computation-intensive application that exhausts long time to complete. The 

workflow application owners are more concerned about the experimental results than the 

deadline. Mao et al. also focus on response time, an application-level performance metric, in 
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the previous works [60, 61]. For workflow applications with many manual tasks, it is a metric 

to measure a workflow system performance [20, 23, 47, 82]. But for the workflow applications 

with many system invocations, the response time may not be over concerned [71]. Therefore, 

in this direction, it is very important to select appropriate metrics for the auto-scaling 

mechanism. 

The auto-scaling research mainly focuses on vertical scaling in cloud infrastructures [17-

19, 22, 83, 87, 88, 90]. However, as mentioned above, vertical scaling is currently not a very 

feasible solution for the scalability of cloud applications.  

Furthermore, for cloud workflow, the scaling needs to be aware of both the system 

resource usage and the interior application resource usage to estimate whether to take actions 

to support scalability of cloud workflow [4, 16, 18, 29, 52, 73, 79]. Unfortunately, the research 

of the application-level auto-scaling mechanism is very limited in research communities.  

2.4 Summary 

In this chapter, we firstly introduced the WfMC’s traditional workflow reference model and 

then gave a broad overview of traditional WfMS architectures, including the centralised and 

decentralised architectures, and the current state-of-the-art of cloud workflow research. In the 

overview, we gave an in-depth analysis on the advantages and disadvantages of the WfMSs 

for supporting large-scale workflow applications with about 20 representative WfMS 

illustrations. Furthermore, we investigated the research of auto-scaling mechanism in the 

cloud along the line of discussing the cloud workflow research. 
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Chapter 3  

System Requirements and Analysis 

The research in this thesis is motivated by a real world workflow application. In this chapter, a 

motivating example of mobile charge workflow is given for discussing the disadvantages of 

using the existing WfMSs to solve the instance-intensive workflow to be addressed in Section 

3.1. In Section 3.2, we analyse the system requirements through an in-depth discussion on the 

example. On the basis of the analysis, Section 3.3 refines the research problems in this thesis. 

3.1 Motivating example 

China Mobile Limited is a leading mobile services provider in China and has the world's 

largest mobile customer base30. There were a total number of customers exceeding 740 million 

by June 30, 2013, as announced in its 2013 interim results31. Mobile communication is the 

main operating business and major source of the revenue for China Mobile Limited. Suppose 

the 740 million customers send two short messages on average every day, there would be 1.48 

billion messages to be billed and charged. Using mobile short message service (SMS) charge 

workflow to bill and charge, it would be 1.48 billion workflow instances to be processed every 

day. This example meets the first characteristic of the instance-intensive workflow in Section 

1.2, i.e. huge number of workflow instances. The number of the mobile SMS charge 

workflows is regularly many times more in public holidays such as Chinese New Year than 

that of an average day. This meets the second characteristic of the instance-intensive workflow 

in Section 1.2, i.e. regular or irregular spikes in the volume. The execution time of a mobile 

SMS charge workflow instance can be only a few milliseconds on average. This meets the 

                                                 
30 http://www.chinamobileltd.com/en/global/home.php  
31 http://www.irasia.com/listco/hk/chinamobile/announcement/a112098-e00941_ann_0815_0115.pdf  
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third characteristic of the instance-intensive workflow in Section 1.2, i.e. short response time. 

Therefore, the workflow can be regarded as a representative instance-intensive workflow 

example.  

Here the object of workflow processes is a mobile service usage record, which is a data 

record produced by a telecommunication exchange equipment. In telecommunication, the 

record is defined as call detail record (CDR)32. A CDR consists of unique record ID, calling 

party (phone number), called party (phone number), starting time, terminating time, call type 

(voice, SMS, etc.), calling location, etc. Fig. 3.1 depicts a high level structure of the mobile 

SMS charge workflow. There are nine abstract tasks in this workflow: 

Collect 
CDRs from 

the 
exchange 

equipment

Pre-process 
CDRs

Check 
whether the 

CDR is 
duplicated

Remove the 
duplicated 

CDRs

First 
pricing 

the CDR

Insert all 
data into 
database

Generate 
a bill

Charge 
the billDuplicated?

N

Y

Second 
prcing the 

CDR

Any offer?
N

Y

 

Figure 3.1 Mobile SMS charge workflow 

1. Collect CDRs from the exchange equipment: In China Mobile Limited, every CDR 

stores the detailed information of a standard message that does not exceed 70 words. 

For the extra-long message, there may be multiple CDRs. This task is to obtain one or 

more CDRs of a message from the telecommunication exchange equipment and store 

the CDRs to a workflow data variable.  

2. Pre-process CDRs: In general, CDRs are produced by various telecommunication 

exchange equipment and have the equipment-specific formats that cannot be 

recognised and used to generate the bill. This task is to interpret the equipment-specific 

formats into a unified format that can be used in the workflow. Furthermore, this task 

merges multiple unified CDRs into one CDR to ensure that a CDR is corresponding to 

one short message. 

3. Check whether the CDR is duplicated: Because the exchange equipment may produce 

duplicated CDRs for one short message, this task is to check whether the merged CDR 

is uniquely corresponding to one short message. If there are multiple merged CDRs to 

be corresponding to one short message, the duplicated CDRs will be removed.   
                                                 
32 https://supportforums.cisco.com/docs/DOC-13842  
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4. Remove duplicated CDRs: When the multiple merged CDRs are checked, this task 

removes the duplicated from the CDRs to make sure that every message has unique 

CDR to be processed after pre-processing task. 

5. First pricing CDRs: This task calculates the amount of the CDR of the short message 

according to the China Mobile Limited SMS charge policies. The amount is a standard 

price excluding any special policies such as promotion offers. This task generates a 

consumption detail manifest for this short message. 

6. Second pricing CDRs: This task calculates the amount of the CDR of the short 

message according to the special policies. This amount is the price that is applied to 

special policies. If the manifest has been generated, the task will update it using new 

pricing. 

7. Insert all data into database: This task inserts all data including CDR, the consumption 

detail manifest into database through invoking a database service.  

8. Generate a bill: This task generates a bill for this short message to charge. This bill 

includes the primary information in the CDR and the consumption detail manifest.  

9. Charge the bill: This task charges the user according to the consumption detail 

manifest. In fact, in real product, it is impossible for a system directly charging a user 

unless this user prepaid some money for SMS usage. Furthermore, a system must 

merge all bills of a user mobile services usage in one charge period, including voice 

bills, SMS bills, Internet bills, etc. Therefore, we add the “Charge the bill” task in 

order to complete the description of a mobile SMS charge workflow.  

At present, in China Mobile Limited, the mobile SMS charging system bears huge 

workload for processing SMS charge workflow every day. The statistics of China Mobile 

Limited indicates that mobile users sent 744.5 billion short messages in 201233, i.e., about 2.03 

billion short messages per day on average. However, the volume of the SMS often has a steep 

increase during the public holidays. Especially, during the Chinese New Year holiday, i.e. the 

Spring Festival, short messages have become one of the most popular ways to exchange 

greetings. Most of people send many greeting short messages to their relatives and friends. 

The statistics of China Mobile Limited indicated that a total of 8.83 billion short messages 

                                                 
33 http://www.chinamobileltd.com/en/business/business.php  
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were sent on the Chinese New Year’s Eve before 2012 Spring Festival (January 23, 2012)34. 

In other words, the volume of SMS on the Chinese New Year’s Eve is over four times than the 

daily average. In contrast, the volume of the SMS is often lower than the daily average after 

the peak of the holidays. 

For the traditional centralised WfMS, its architecture cannot guarantee an economic and 

flexible scalability to tackle the instance-intensive workflow. The centralised WfMS normally 

configure more clusters to improve scalability to leverage the upsurge in instance-intensive 

workflows. Aiming at the characteristics of the instance-intensive workflow, system designers 

need to monitor and analyse the massive historic or real time workflow execution data for 

configuring the clusters to surpass the maximum workflow workload. Obviously, on one hand 

the configuration cannot guarantee the new upsurge when a scale of workflow instances is 

much larger than the existing situation. On the other hand, it is likely redundant when the scale 

of workflow instances is far lower than the existing situation.  

Theoretically, the traditional decentralised WfMSs such as Grid based WfMS or P2P 

based WfMS are also able to support the processing of instance-intensive workflows. For 

example, the infrastructure and Grid nodes of Grid based WfMS is distributed on various 

logical or physical locations. After creating a workflow instance, Grid based WfMS maps the 

tasks in the workflow instance onto the specified Grid node for execution. The dispersed Grid 

nodes can guarantee the availability and reliability individually. There exist data 

transformation and delivery among the Grid nodes according to the navigation rules during the 

execution. When one billion workflow instances launch, the workloads and costs of the data 

transformation and delivery can be enormous and defer the executions. Thereby, the Grid 

based WfMS normally cannot guarantee to complete the workflow instances in time with high 

availability and reliability. There exist similar issues in the P2P based WfMS when executing 

a large number of workflow instances.  

A cloud workflow system has inherent capability in supporting the instance-intensive 

workflow. However, as discussed in Section 2.3, current cloud workflow research puts more 

efforts on computation-intensive workflow. At present, China Mobile Limited produces 

hundreds of billion SMS bill records in its business system every year. It needs to spend long 

time in locating a bill or making statistics of bills according to the specific conditions in such a 

big dataset using traditional database query. If using the Hadoop based cloud workflow, as 
                                                 
34 http://www.cnii.com.cn/telecom/2013-02/18/content_1091763.htm (in Chinese) 
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mentioned in Subsection 2.3.1, this query can be decomposed as multiple Map or Reduce 

tasks in workflow and executed efficiently to obtain results. In our experience, if decomposing 

the tasks in the mobile SMS charge workflow as multiple Map or Reduce tasks, because the 

light weight computation workload, a traditional WfMS executes such a workflow instance 

more efficiently than the Hadoop based cloud workflow which firstly distributes all the tasks 

in clusters and then collects all data from the clusters to construct final charge data. 

Therefore, the analysis above motivates us to research a new cloud workflow system 

architecture to support instance-intensive workflow. 

3.2 System requirements 

With the perspective of system requirement analysis, the functions of WfMS architecture 

include both functional and non-functional aspects. The functional aspect mainly regards the 

essential and inherent functions, which are clearly addressed in the reference model in WfMC 

in 1995 [44], such as workflow modelling, enactment, administration, monitoring, worklist 

handler, and definitions of various interoperation interfaces and so on, while the non-

functional aspects mainly regard quality requirements of a WfMS such as performance, 

security, scalability, availability, reliability, etc. With the maturity of the workflow research, 

workflow communities put more focus on the non-functional aspects, which are important for 

designing a WfMS and can also be considered as the extended functional aspects, to meet the 

domain-specific requirements, such as workflow data management, storage management, data 

mining, integrity, organisation management, etc.  

According to the cloud workflow definition, it inherits the functions that the workflow 

reference model represented but it presents the more powerful functions to support instance-

intensive workflow. In addition, in this thesis research, we put great efforts to satisfy the 

following functional and non-functional requirements. 

R1. Cloud workflow architecture: This is a functional requirement for system architecture. 

To support instance-intensive workflow, the architecture should cover the concepts and 

features of cloud workflow. 

R2. High throughputs: To tackle large-scale workflow applications, the cloud workflow 

should be able to execute workflow instances with high throughputs. The throughput 
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refers to the sum of the workflow instances which a cloud workflow completes in a 

time period. The completion means an entire lifecycle of a workflow instance from 

launching to the end. The throughput is an important metric to measure the 

performance of a cloud workflow. 

R3. Sustainable scalability: The cloud workflow should be able to utilise the underlying 

cloud features to scale out by more workflow enactment service components to 

leverage the increasing requests from the cloud side and scale in to save the exhaust of 

resources. The scalability should be sustainable when the cloud workflow is running. 

In this thesis, we mainly focus on horizontal scaling.  

R4. High availability: An available workflow enactment service component means that the 

component is running and can provide services whenever receiving a request. If the 

component runs out due to heavy workloads, it will be unavailable and result in 

failures of workflow instances. Cloud workflow must prevent any workflow enactment 

service component from running out. In a cloud workflow, the availability is 

represented on the availability of each workflow service component. The high 

availability means that any workflow enactment service component is available 

anytime when it processes instance-intensive workflow. The cloud workflow should 

provide sustainable coordination to guarantee the availability of each workflow 

enactment service component. 

R5. High reliability: In the cloud workflow, the high reliability is represented on the low 

failure rate or the short recovery time when a failure emerges. The novel cloud 

workflow should have capabilities to reduce the failure rate or recover in a shorter 

time. 

R6. Cost-effectiveness: The cloud workflow should be able to support a cost-effective 

execution of instance-intensive workflows and control the costs of cloud workflow in 

use of cloud computing resources. 

With the above objectives archived, the instance-intensive workflows will be expected 

to be supported efficiently by the novel cloud workflow system. 
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3.3 Research problem analysis 

As briefly addressed in Section 1.3, the major research problems in this thesis are on designing 

the novel cloud workflow architecture and implementing a prototype to meet the requirements 

as listed in the previous section.  

The cloud workflow definition and features have extended the workflow management 

concepts in the traditional workflow reference model. Therefore, to meet requirement R1 

addressed in the previous section, besides for implementing the concept and the features, the 

cloud workflow architecture further enhances the traditional workflow reference model by 

adding new services for supporting cloud features. The new features enable the traditional 

workflow reference model to be a new reference model, communicate with cloud and 

collaborate with other services of the cloud workflow architecture to elastically support the 

workflows. The components in the traditional workflow reference model such as the process 

definition tools, administration and monitoring tools, worklist handler and so on will be Web 

based or desktop based applications of the cloud workflow architecture, while the workflow 

enactment service will be a service provider and reside on the cloud side and may be 

configured as a template for duplication.  

To meet requirement R2 addressed in the previous section, the cloud workflow needs to 

coordinate mechanisms of the auto-scaling, the load balancing and the alarm defined in 

Subsection 1.1.3. The coordination enables the cloud workflow architecture to scale out for 

supporting high throughputs. To achieve the coordination, the alarm mechanism needs to 

make a comprehensive awareness of status of individual workflow enactment service 

component and whole cloud workflow. The load balancing mechanism can balance workloads 

of the workflow enactment service components through checking the status data. The auto-

scaling mechanism makes a decision to take scaling actions through computing the future 

system status on the basis of the current or historic status data. In theory, the cloud workflow 

can scale out by infinite workflow enactment services to concurrently support unlimited 

throughputs. 

To meet requirement R3 addressed in the previous section, the cloud workflow needs to 

sustainably scale out or in. It means that the coordination between the service components in 

cloud workflow is sustainable. The sustainability in nature is that the behaviours of service 
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components satisfy some constraints on some elements related to cloud workflow. The 

constraints guarantee that the load balancing mechanism is able to get the proper status data 

from the workflow service components; the alarm mechanism is able to get the proper 

estimation results from the workflow service components; the auto-scaling mechanism is able 

to scale out by adding more new workflow enactment service components before the existing 

workflow service enactment service components are running out and vice versa. A sustainable 

coordination can prevent the service components from resource running out and keep them 

available when they are approaching to the boundary of running out.  

To meet requirement R4 addressed in the previous section, the cloud workflow needs to 

guarantee that all workflow enactment service components can provision available workflow 

services throughout the runtime and avoid the resource running out. In cloud workflow, the 

alarm mechanism provides an accurate estimation to facilitate workload control of workflow 

enactment service components to avoid overloading. 

To meet requirement R5 addressed in the previous section, one approach is that the 

cloud workflow guarantees the correctness of workflow instances. Therefore, the workflow 

enactment service component in the cloud workflow needs to guarantee the correctness of 

each workflow instance. 

To meet requirement R6 addressed in the previous section, the cloud workflow needs to 

administrate and monitor the costs of system through the billing mechanism and control the 

costs to meet the budget. 

3.4 Summary 

In this chapter, we gave a motivating example to present the characteristics of the instance-

workflow application and addressed the disadvantages of the traditional WfMS architectures 

tackling the workflow applications. Based on the motivating example, we analysed the system 

requirements that a cloud workflow system needs to satisfy when processing the workflow 

applications. Furthermore, this chapter discussed the research problems on the basis of the 

system requirements. 
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Chapter 4  

A Client-Cloud Architecture for Cloud 

Workflow 

In this chapter, according to the analysis in Section 3.3, we propose the client-cloud model 

based architecture to satisfy the system requirements addressed in Section 3.2. In Section 4.1, 

we give an overview of the novel client-cloud model based architecture. Section 4.2 presents 

the client side of the architecture. Section 4.3 addresses the services on the cloud side in detail. 

Section 4.4 discusses the advantages of the architecture and the benefit for designing cloud 

workflow. 

4.1 An overview of the architecture 

According to the definition of cloud workflow in Section 1.1 and the analysis in Section 3.3, 

we propose novel architecture for cloud workflow to meet requirement R1 addressed in 

Section 3.2. The architecture is mended from the architecture which is addressed in our 

previous work [14, 54, 56-58, 93]. The mended architecture presents a client-cloud model at 

an abstract level and consists of two sets of components: the client side components and the 

cloud side components, as shown in Fig. 4.1. The client-cloud model based architecture, i.e., 

the client-cloud architecture for short, is derived from the concepts of C/S WfMS, but the 

similarities and differences exist between the two architectures.  

Like the client side in C/S WfMS, the client side in the client-cloud architecture can 

communicate with the cloud side through various protocols over the Internet such as HTTP, 

HTTPS, SOAP, or SSH and so on, and consists of the functional workflow management tools, 

such as the process definition tools, administration and monitoring tools and so on, and further 

introduce new components. The new components are defined as workflow accompaniment 

tools. As indicated by the name, the new components accompany a WfMS and satisfy the non-

functional aspects of workflow management. The workflow accompaniment tools can be 
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considered as a set of important supplementary components and facilitate WfMS to satisfy the 

more domain-specific requirements. For cloud workflow, the non-functional aspects mainly 

include the workflow service image component, load balancing, alarm, auto-scaling and 

billing mechanisms. To facilitate the cloud workflow to satisfy the requirements addressed in 

Section 3.2, the mechanisms need build time tool components to customise specifications and 

runtime tool components to administrate and monitor the services on the cloud side. These 

tools are composed of the cloud workflow relevant service definition tools and cloud 

workflow relevant service administration and monitoring tools, other tools such as 

organisation management tools, etc. 

  

Figure 4.1 Client-cloud model based architecture 

The server side in C/S WfMS is one static server or fixed clusters of servers, while the 

cloud side is a group of scalable virtualised service components. The servers in C/S WfMS 

provision workflow services individually, while the components on the cloud side can 

collaborate for supporting powerful instance-intensive workflow applications to meet the 

requirement R2 in Subsection 3.2. But the proposed novel client-cloud architecture can be 

categorised as a centralised approach from a high-level perspective due to the central cloud 

side similar to the server side. 
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With the view of functionality requirements, the novel architecture innovates on the 

basis of the traditional workflow reference model depicted in Fig. 2.1. It can be seen that the 

cloud side retains all the functional runtime service components and the interface definitions 

in the traditional workflow reference model and further introduces some new non-functional 

service components. The new service components are defined as the workflow relevant 

services. As indicated by the name, all the services which are closely related to workflow 

management and concern with the non-functional areas of workflow management can be 

categorised into the relevant services. For cloud workflow, the workflow relevant services 

refer to the non-functional runtime service components, including the workflow service 

component image, load balancing, alarm, auto-scaling and billing service components which 

satisfy the requirements R3 to R6 addressed in Section 3.2. All these new components will be 

addressed in detail in Section 4.3. 

4.2 Client side 

The cloud client, i.e., workflow client, on the client side is a set of Web-based or desktop-

based applications and is able to construct the requests and send them to the specific workflow 

services on the cloud side for processing and display the results received from the services. 

The functional components of the workflow client are addressed in the traditional workflow 

reference model in detail [44]. The non-functional components, i.e., workflow accompaniment 

tools, include: 

• Cloud workflow relevant service definition tools: The tools are to create the service-

specific specifications which can be interpreted by the workflow relevant services on 

the cloud side and used to drive the services. For the cloud-cloud architecture, the tools 

are able to define the metrics with specific data structures which can support the 

features of cloud workflow, such as the pay-as-you-go model, the alarm mechanism, 

the auto-scaling mechanism, etc.  

• Cloud workflow relevant service administration and monitoring tools: The 

functionalities of the tools are similar to the administration and monitoring tools in the 

traditional workflow reference model. The tools provide an interface to allow the 

workflow system administrators to monitor the operations of the workflow relevant 

services and administrate the services through the manual or the automatic ways if 
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necessary. For the cloud-cloud architecture, the tools can watch the status of the 

services including the load balancing service, the auto-scaling service, the alarm 

service, and the billing service and so on and administrate the specified metrics and 

further generate the report for analysis. 

In this thesis, we focus on both the functional and non-functional aspects of cloud 

workflow. We utilise the functional components as a foundation to design the non-functional 

components of cloud workflow for satisfying the requirements addressed in Section 3.2. For 

constructing a complex cloud workflow, the workflow accompaniment tools in workflow 

client are able to contain the more components to meet various non-functional requirements.  

4.3 Cloud side  

As we know, the cloud side of the novel client-cloud architecture consists of a group of 

functional and non-functional service components, which can be composed to support the 

large-scale instance-intensive workflow in this thesis. The functional component is the 

workflow enactment service, which has been addressed in the traditional workflow reference 

model [44], while the non-functional components are the workflow service component image, 

the billing service, the load balancing service, the alarm service, the auto-scaling service, etc. 

In this section, we focus on non-functional services and the coordination between the last three 

services for scalability in detail. 

4.3.1 Workflow service component image service 

A workflow service component image (WfSMI) can be virtually instantiated to a new 

workflow enactment service component under the control of the auto-scaling mechanism of 

cloud workflow for meeting requirement R3 in Section 3.2. The WfSMI service is used to 

manage WfSMIs to support the scalability of cloud workflow. It is designed for the feature of 

cloud workflow: the template with workflow services for instantiation as addressed in 

Subsection 1.1.3. 

Many cloud infrastructures offer the Web-based or command-line based tools to manage 

an image for cloud applications. However, the tools provide many complex steps to 

administrate an image. For example, in Eucalyptus cloud infrastructure, to bundle a new 
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machine image, it needs the designers to be proficient in the Eucalyptus operation commands. 

This is not always an enjoyable thing as they need to take a great deal of time to learn the 

comprehensive administration knowledge and skills about the Eucalyptus. As an application-

level component, the WfSMI service can encapsulate APIs of various cloud infrastructures for 

managing images at unified abstract level and can deploy workflow enactment service 

components into a virtual machine created by cloud.  

Like the images created by infrastructure, a WfSMI can be duplicated to multiple new 

workflow enactment service components when the existing components overloading. The new 

components can be added into the cloud workflow for balancing the workloads when the 

existing components cannot handle. A WfSMI presents a cloud-based alternative solution to 

upgrading system functions other than traditional hardware-based upgrading. We can 

preconfigure a WfSMI to upgrade a workflow enactment service component for adapting the 

changing requirements, even for troubleshooting the faults of the service components. Once 

the WfSMI is instantiated, the cloud workflow will be upgraded or the faults will be fixed. 

4.3.2 Billing service 

The billing service, designed for the feature of cloud workflow: the billing mechanism as 

addressed in Subsection 1.1.3, implements a pay-as-you-go model in cloud workflow and 

enables the workflow services to be cost-effectively delivered to workflow customers like gas, 

electricity. 

As a SaaS, cloud workflow is a cloud application on top of software stacks and hosted in 

cloud computing environment, in the meanwhile, it is a workflow management platform to 

support workflow applications to achieve business or scientific goals. Therefore, a cloud 

workflow is not only billed by cloud infrastructures but also a biller for charging the workflow 

applications. Hence, the billing service enables cloud workflow to be a cost-effective 

workflow service provider which meets the feature of cloud workflow: cost-effective service 

provider. 

Although many cloud infrastructures provide the billing service, the service only 

charges cloud workflow and cannot bill the resource utilisation in cloud workflow. Therefore, 

the billing service of cloud workflow is an essential service component to support workflow 

applications.  
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4.3.3 Load balancing service 

The load balancing service, designed for the feature of cloud workflow: the load balancing 

mechanism addressed in Subsection 1.1.3, is a Web portal of the cloud side. All requests and 

responses between the client side and the cloud side are passed through this service.  

Some cloud infrastructures, e.g., Amazon AWS, provide the infrastructure-level load 

balancing service. The service can be integrated into a cloud application for balancing the 

workloads between multiple service components. However, the service is under the control of 

cloud infrastructures. It cannot be aware of the status of cloud workflow accurately. The 

application-level load balancing service reside inside cloud workflow and is able to estimate 

the status of cloud workflow more accurately to avoid the overloading before dispatching a 

request. 

4.3.4 Alarm service 

The alarm service, designed for the feature of cloud workflow: the application-level alarm 

mechanism addressed in Subsection 1.1.3, can give an early alarm to the performance 

bottleneck resources in cloud workflow through the estimation of the service. 

Comparing to the alarm service at the cloud infrastructure level, the implementation of 

the alarm mechanism at the application level can be aware of the runtime status of the cloud 

workflow at finer granularities. The alarm service of cloud workflow can even obtain the 

runtime details of every workflow instance such as its CPU usage, memory usage, thread 

number, execution progress, disk read/write bytes, etc., which is difficult to be obtained by the 

cloud infrastructure-level applications. The cloud infrastructure can only be aware of the 

rough resource usages. Whereas the details are very important for the alarm service to 

accurately estimate the status of cloud workflow. Moreover, it is also important for the auto-

scaling service to take actions with more appropriate scale. 

4.3.5 Auto-scaling service 

The auto-scaling service is a core service component which provisions the scalability of cloud 

workflow. It is designed for the application-level automatic scaling mechanism addressed in 

Subsection 1.1.3.  
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The auto-scaling service is provided by few of cloud infrastructures such as Amazon 

AWS but other cloud infrastructures do not provide the service such as Eucalyptus Cloud35, 

Openstack Cloud36 and so on. However, the service implemented at the application level is 

able to more accurately analyse the future resource demands and scale out by a more 

appropriate number of workflow enactment service components to balance the workloads or 

scale in to save costs. 

4.3.6 Coordination of services for sustainability 

In previous subsections, we addressed several services to support cloud workflow. The 

services work together to prevent the critical resources in cloud workflow from running out. 

When processing instance-intensive workflow, the critical resources are very likely to run out 

quickly. The resources may be any competitive resource such as CPU, memory, IO devices, or 

even workflow enactment service components. In this thesis, we mainly concern about the 

workflow enactment service components when discussing the coordination of the services, 

i.e., the critical resources refer to the workflow enactment service components. If the resources 

run out, it may result in a fault status of the resources, such as unavailable, or no response for a 

long time, etc. We denote the fault status of the resources as an unrecoverable status; 

otherwise, the status of the resources is recoverable. The recoverable can be further separated 

into the idle status, the under loaded status, the normal working status, the busy status, and the 

extra-busy status; while the unrecoverable status generally refers to the overloaded status. If a 

part of or even the whole resources in a cloud workflow enter the unrecoverable status, they 

will result in the cloud workflow crashing down. Thus, the cloud workflow has not 

sustainability in this case. The sustainability of cloud workflow is to keep any resource on a 

recoverable status without the large fluctuations and release the idle resources to avoid the 

waste. It is inherent to cloud workflow to meet requirements R1 to R6 presented in Section 

3.2. 

To achieve sustainability, it necessitates to compose the abovementioned services to 

coordinate: the load balancing service checks the status of the resources and chooses an 

appropriate one for dispatching requests; the alarm service watches periodically the status of 

                                                 
35 https://www.eucalyptus.com/  
36 https://www.openstack.org/  
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the resources and notifies the auto-scaling service when necessary; the auto-scaling service 

scales out by more resources to balance workloads and scales in for cost saving.  

In essence, the coordination provisions a sustainable scalability to guarantee the scaling-

out timely before the existing resources run out, or the scaling-in after the existing resources 

are idle. Supposing that the load balancing service, the auto-scaling service, and the alarm 

service are working at healthy or normal status, then, the elements that impact the coordination 

on provisioning a sustainable scalability are:  

• The pending time: It is the time when a scaling-up action spends in instantiating the 

workflow enactment service components.  If the time is too long, one or more existing 

resources may have become unrecoverable before new resources are ready. It will 

breach the sustainability of the scalability. To shorten the time, one strategy is that 

cloud workflow instantiates new resources as quickly as possible; and the other 

strategy is that cloud workflow prepares some instantiated resources somewhere which 

can be made available in shorter time once necessary.  

• The decaying time: It is the time when cloud workflow spends in tackling a workflow 

application from the recoverable status to the unrecoverable status. If the time is too 

short, one or more existing resources would enter the unrecoverable status before the 

new resources are ready. It will breach the sustainability of the scalability. In theory, 

the higher configurations of hardware or software, the longer decaying time. For 

instance-intensive workflow, cloud workflow needs to prolong the time for keeping the 

existing resources recoverable through adding new resources. 

• The time period: To monitor or control the resources, the alarm and load balancing 

service periodically check the status of the existing resources. If the period is too long, 

the services cannot be timely aware of status of the existing resources. Theoretically, 

the shorter the period is, the more sensitive the services are to status of the existing 

resources. If the time period is not appropriate, it may also breach the sustainability of 

the scalability. Cloud workflow needs to define the appropriate time period for 

checking. 

• The predefined thresholds to estimate the system status: The thresholds can be used to 

compare to determine whether cloud workflow reaches a specific status or not. If the 
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selected thresholds are not accurate, it is difficult to determine whether the resources 

are unrecoverable or recoverable. Therefore, selections of appropriate thresholds will 

impact the sustainability of the scalability. 

• The quantity of the available resources: A large quantity of the available resources can 

guarantee to balance more workload of workflow and may result in an idleness of part 

of the resources when workloads decrease. If the quantity is too small, it is more likely 

to breach the sustainability of the scalability due to the heavy workloads decaying the 

resources quickly. Cloud workflow needs to define the appropriate number of the 

resources to keep an efficient processing according to normal workloads of a workflow 

application. 

• The quantity of the resources to scale out or in: The appropriate amount of the 

resources guarantees a stable performance of cloud workflow and economic usages 

when workload spikes of workflow are emerging. If the quantity is not appropriate, it 

will not be able to balance the surplus workload so that the incoming requests will not 

be able to be handled correctly. It will breach the sustainability of the scalability. 

The elements above can cause the scalability of cloud workflow being unsustainable 

when they are predefined. We will further consider their impacts in cloud workflow and 

address them in the Chapter 6. 

4.4 Discussion 

The client-cloud architecture takes a great effort to provision scalable workflow services for 

large-scale instance-intensive workflow and eliminate the disadvantages of traditional WfMS 

architectures. Undoubtedly, a client-cloud WfMS has more powerful capacity, availability, 

reliability, and scalability than a C/S WfMS. Moreover, the scaling of the former is more 

economic and convenient than that of the latter based on hardware upgrade regardless 

horizontal or vertical scaling. 

In contrast to the decentralised WfMSs, all workloads of workflow instances are evenly 

loaded on all virtualised workflow service components under the control of sustainable 

coordination of the services on the cloud side. Any component is not overloaded and never a 

bottleneck at any time. Therefore, the overall workload of the client-cloud architecture is more 



53 
 

balanced than the decentralised architectures. Moreover, cloud workflow provides an 

application provision service for integration with various external homogeneous or 

heterogeneous legacy applications or WfMSs. Another difference from the decentralised 

architectures which are logically or physically dispersed in many locations is that the 

communication costs of all the service components of the cloud-cloud model based 

architecture are greatly lower than that of the decentralised architectures because the cloud-

cloud architecture is hosted in the cloud infrastructures which provide high performance 

communication services.  

The novel service oriented client-cloud architecture is not based on the traditional 

computing paradigms but is completely innovated on the cloud computing paradigm and has 

many novel prominent characteristics. Moreover, it is designed for large-scale instance-

intensive workflow applications, which is not well supported by most of current cloud 

workflow systems. Therefore, the research in this thesis is valuable for workflow 

communities. 

4.5 Summary 

In this chapter, we proposed novel client-cloud architecture for cloud workflow and further 

addressed its service components and the coordination between them in detail. Finally, we 

gave a discussion about the comparison between the cloud-cloud architecture and the 

traditional centralised or decentralised architectures and other cloud workflow systems. 
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Chapter 5  

SwinFlow-Cloud: Functional Design 

based on Client-Cloud Architecture 

We design a cloud workflow prototype system, named as SwinFlow-Cloud, based on the 

client-cloud architecture addressed in the previous chapter. In this chapter and next chapter, 

we will represent our novel design for the system. This chapter firstly represents the design of 

the functional aspects, while next chapter will represent the design of the non-functional 

aspects. In this chapter, Section 5.1 gives an overview of the build time and runtime functions. 

Section 5.2 addresses the build time functions, while Section 5.3 addresses the runtime 

functions.  

5.1 Overview of the functional design 

The functional design focuses on the fundamental and essential components in SwinFlow-

Cloud. The functional areas include the build time functions and runtime functions. The 

former covers process modelling, verification, and simulation, while the latter discusses the 

workflow instance concept in SwinFlow-Cloud and addresses workflow enactment service, 

administration and monitoring. 

The build time design addresses the process management functions for graphically 

defining, verifying and simulating a process. A process can be designed through adding, 

deleting, modifying the tasks and the relationship between them. Then the process can be 

verified on syntax and semantics for checking the possible errors or faults, and prompted to 

workflow designers. Any error can result in a failure of a process execution. Workflow 
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designers can amend the design according to the results of process verification. Then a well-

verified process can be simulated in similar runtime environments for further checking the 

possible runtime errors or faults. If there are no errors in the process, it will be an executable 

process at runtime. 

The runtime design focuses on the workflow enactment. A well-defined process can be 

transferred to the workflow enactment service to run. The workflow enactment service can 

instantiate a process instance (workflow instance) and launch, initialise, execute, terminate, or 

complete the process instance. The administration and monitoring function can watch the 

status of one or more process instances and control the execution of instances. 

5.2 Build time functions 

This section addresses the build time management in the functional aspects of SwinFlow-

Cloud. For the build time functions, the traditional workflow reference model mainly focuses 

on the process management and proposes the process definition meta-model and primitives 

for supporting the management. Therefore, in our build time design, we also focus on the 

process management, including process modelling, verification, and simulation. 

5.2.1 Process modelling 

Process modelling refers to constructing or defining a process definition using a network of 

tasks with partial orders. In this thesis, we propose a simple process definition model based on 

the process definition meta-model and the primitives identified in the Terminology and 

Glossary proposed by WfMC [84], as shown in Fig. 5.1.  
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Figure 5.1 Process definition meta-model in SwinFlow-Cloud 
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5.2.1.1 Process definition 

A process definition, i.e., process, consists of various types of the data variables, which may 

have initial values, including Integer, Float, Boolean, String, etc., task nodes, including Java 

API invoker task, manual task, assignment task, waiting task, etc., point nodes, including start 

point, end point, sub-process point, parallel split point, parallel joint point, etc., edges, i.e., 

transitions, and navigation rules.  

The elements in the process are able to explicitly represent workflow meta-model 

elements of WfMC, such as workflow relevant data, activities, AND-Split, AND-Join, OR-

Split, OR-Join, transitions, transition conditions, etc. The workflow relevant data can be 

depicted by the data variables. The activities can be depicted by the task nodes. The AND-

Split can be depicted by the parallel split point. It can connect one input transition for a 

sequential relationship or more input transitions for a choice relationship and one output 

transition for a sequential relationship or more output transitions for a parallel relationship. 

The AND-Joint can be depicted by the parallel joint point. It can connect one input transition 

for a sequential relationship or more input transitions for a parallel relationship and one output 

transition for a sequential relationship or more output transitions for a choice relationship. No 

specific and individual OR-Split and OR-Join definitions are in the process. The start point is 

an entry point of a process and only connects one output transition for a sequential relationship 

or more output transitions for a choice relationship, while the end point is an exit point of a 

process and only connects one input transition for a sequential relationship or more input 

transitions for a choice relationship. Except the start point, the end point, the parallel joint 

point and the parallel split point, other point and task nodes are able to connect one input or 

output transition to represent a sequential relationship and are considered as OR-Split or OR-

Join when they connects more output or input transitions. An edge connects two nodes to 

construct a directed graph. We also denote the edge as transition. The navigation rules attach 

on the transitions for navigating the process execution. 

Furthermore, a process may have specific resource demand during execution due to 

domain-specific objectives. For example, a process needs powerful network bandwidth 

resources to support remote access. Hence, it should be assigned to a workflow enactment 

service with more powerful network bandwidth for execution. Cloud workflow can offer 

workflow enactment service on demand. Therefore, the process in SwinFlow-Cloud can be 

specified the particular resource demand when it is modelled. The load balancing service can 
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dispatch the requests of the process to the appropriate workflow enactment service for 

execution according to the resource demand specification.  

5.2.1.2 Data variables  

Data variables of a process store the data, which are initialised or generated at runtime, and are 

able to be used to construct the Boolean expressions in the navigation rules for controlling the 

process routing. We define seven fundamental types of variables to guarantee that the primary 

data can be stored in a process: 

• Integer variable: It can store a positive or zero or negative integer number with a large 

range. The variable can be transformed to an Integer object in a programming language 

for calculation. 

• Real variable: It can store a positive or zero or negative decimal number with a large 

range. The variable can be transformed to a Float or Double object in a programming 

language for calculation. 

• Boolean variable: It can store a Boolean data, i.e., “TRUE” or “FALSE”. The variable 

can be transformed automatically to a Boolean object in a programming language for 

calculation. 

• String variable: It can store a character string data, e.g., “abc”. The variable can be 

transformed to a String object in a programming language for operations. 

• Binary object variable: It can store a complex type of data. The data can be a procedure 

object, a word file, a BMP file, or a JPEG file, etc. The variable is not used for 

operations but to support workflow users to modify the complex object in a specific 

user interface components. 

• Date variable: It can store a date object and can be transformed to Date object in a 

programming language to support various date operations. The data can be represented 

as multiple date formats in a specific user interface components. 

• Time variable: It can store a time object and can be transformed to Time object in a 

programming language to support various time operations. The data can be represented 

as multiple time formats in a specific user interface components. 
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5.2.1.3 Task and point nodes  

Task nodes undertake actions to support the workflow. There are five types of task nodes: 

• Java API invoker task: It can invoke a Java API in a Java JAR package on a remote 

host. The task node contains the detail for an invocation, which is provided in a tool 

agent, such as URL, JAR file name, package name, Java class name, invoked method 

name, input or output parameters and types, etc. We will discuss the tool agent in 

Subsection 6.2.3. The task node can implement an access to a remote Java API and 

deliver data through the information above. The design meets the integrity of workflow 

applications with Java applications. 

• Web service invoker: It can invoke a Web service on a Web site. The task node 

contains the detail for an invocation, which is provided in a tool agent, such as URL, 

service name, data format definitions, input or output parameters, etc. The task node 

can implement an access to a Web service and deliver data through the information 

above. The design meets the integrity of workflow applications with Web services. 

• Manual task: It can provision an interaction with workflow users. This task node can 

be attached with an external client application as a client interface and represent the 

form to workflow users for submission at runtime. It can also be bound with resource 

assignment strategies or rules for allocating this task to appropriate workflow users. 

Workflow users are able to submit the form to the task when they finish interacting 

with the form. The task can collect the data input by the users and transfer them to the 

process for use at runtime. The design meets the primary function of workflow 

applications. 

• Assignment task: It can implement one or more assignments of a value from a data 

variable to another data variable in a process, that is, the value of a computation 

expression can be assigned to a data variable. The assignment offers flexible and 

independent data transfer in a process. The design enables the data transfer more 

flexible and explicit and improves the automation of a workflow application. 

• Wait task: It can enable a process to be pending on a path at runtime through defining a 

waiting time period from a minimum of one millisecond to a maximum of a few days. 

The time period is a number which can be manually assigned at build time or 
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calculated from data expressions at runtime. The design enables a process to meet the 

necessary deferring requirements when some tasks exhausting a long time are 

executing. 

Besides the task nodes, the point nodes are very important for modelling workflow and 

able to control the process routing. There are five types of point nodes in our process: 

• Start point: This node is an entry point when starting an execution of a workflow 

instance. Every process has only a single start point in the structure. If a process does 

not have the start point, it is a structurally wrong process. Workflow enactment service 

will look up the start point to begin the execution of a workflow instance after the 

instance is launched and initialised. If a process is a sub-process of its parent process, 

the start point of the process can obtain the data transferred from the parent process 

and evaluate the data to the data variables of this process. The design of the start point 

reduces the computation of workflow enactment service to look up the entries of a 

process for starting an execution. 

• End point: This node is an exit point when ending an execution of a workflow 

instance. Every process has only a single end point in the structure. If a process does 

not have the exit point, it is also a structurally wrong process. A correct process means 

that all executable paths are able to reach the end point. Ending a process means that 

all executing paths reach the end point. If a process is a sub-process of its parent 

process, the end point finally executed in the process can transfer data to the parent 

process. The design of the end point reduces the computation of workflow enactment 

service to determine whether a process can be ended. 

• Parallel split point: This node implements the AND-Split function proposed in the 

Terminology and Glossary by WfMC. A process splits one path into multiple paths at 

this point without any conditions. The tasks on the split paths will automatically 

independently execute simultaneously. This parallel point commences a parallel task 

block in a process. Any parallel block must start at a parallel split point. The design 

offers a parallel capacity of a process to execute tasks concurrently. 

• Parallel joint point: This node implements the AND-Joint function proposed in the 

Terminology and Glossary by WfMC. The multiple paths can be merged into one path 
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at this point without any conditions. This point completes a parallel block in a process. 

Any parallel block should end at a parallel joint point. However, if every split parallel 

path ends at the end point, there may be not a parallel joint point for ending the parallel 

block. The design offers a parallel capacity of a process to execute tasks concurrently. 

• Sub-process point: It is dedicated to connecting a sub-process. The sub-process will be 

addressed in Subsection 5.2.1.4 in detail. Any process can be attached at this point as a 

synchronous or asynchronous sub-process at build time but a sub-process point can 

only attach a process as sub-process. The point can define the input parameters for 

inputting data to the sub-process and the output parameters for outputting data from the 

sub-process. The design enables processes to hierarchically represent a complex 

workflow.  

As an edge with a directed arrow, the transition enables two nodes to be a directed graph 

through a connection. The node that connects the end of the transition without the arrow is the 

source node of the transition, while the node that connects the end of the transition with the 

arrow is the target node of the transition. The transition is the input edge of the target node and 

is output edge of the source node. In the nodes above, except that the start point has no input 

transition and the end point has no output transition, the other nodes have both input 

transition(s) and output transition(s). The navigation rule attached on a transition is a condition 

to control process routing. Not all transitions need a navigation rule. The output transition of 

the parallel split point has no navigation rule, that is, the target node of this transition will be 

executed without any conditions. The input transition of the parallel joint point has no 

navigation rule, that is, the parallel joint point will be executed without any conditions. 

A process supports control-flow patterns: sequence, parallel split, synchronization, 

exclusive-choice, simple merge, and structured loop [1, 70]. The patterns are also basic 

structures of a process definition identified in the Terminology and Glossary proposed.   

5.2.1.4 Sub-process 

A process is denoted as a sub-process if it is attached in a sub-process point in a process. The 

process where the sub-process point exists is denoted as parent process. In theory, on one 

hand, a parent process can have infinite sub-processes through attaching them onto the sub-

process points of the parent. On the other hand, a process can be attached on multiple sub-
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process points as its sub-process. Therefore, a process with multiple sub-processes has a tree 

structure. The root of the tree is denoted as main process.  

As mentioned in discussions of the sub-process point, all sub-processes in the main 

process have two execution patterns: synchronous execution with the parent and asynchronous 

execution with the parent. Synchronous execution means that the parent process will be 

pending automatically at the path where the sub-process point is after the sub-process 

launching until the sub-process ends. Asynchronous execution means that after the sub-

process launching, the parent process will not be pending and continue at the path where the 

sub-process point is, but the parent process will check whether the sub-process ends before 

ending. 

The communication between the main or the parent process and the sub-process is to 

transfer data between two data variables with the same data types existing in the two processes 

respectively. A parent process is able to collect the output data from its sub-process which 

synchronously executes with its parent, while it is not able to collect the output data from its 

sub-process which asynchronously executes with its parent because under the 

asynchronisation conditions, the parent process has completed when its sub-process is 

executing so that the parent cannot collect the output data from the sub-process. 

The sub-process enables SwinFlow-Cloud to model hierarchically a workflow 

application with a top-down design. 

5.2.2 Process verification 

Process verification refers to syntax verification and semantics verification. The syntax 

verification is to check the build time syntax correctness of a process according to the process 

defined in the last subsection, including process completeness, such as a process must have an 

entry point and an exit point, a process cannot have only an entry point or an exit point, etc., 

and structure correctness, such as a parallel block must have both a parallel split point and a 

parallel joint point, the input transitions of a parallel joint point cannot have navigation rules, 

the output transitions of a parallel split point cannot have navigation rules, etc. 

The semantics verification is to check the runtime semantics correctness of a process. 

For example, a task node has three output transitions with navigation rules, if no navigation 
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rule is met, it will result in a termination of a process at these transitions. The verification 

needs to debug a process for estimation at build time in order to predict possible errors.  

5.2.3 Process simulation 

Process simulation is to build a simulation environment to test whether a process can achieve 

the expected goals at runtime. The simulation can reduce risks of process design faults and 

verify the semantics correctness of a process at runtime.  

The process simulation of SwinFlow-Cloud can obtain details of an execution of a 

process such as overall log details of the process at runtime, size of every node, details of 

every data variables, etc. It can debug a process with the operations step by step, such as 

launch, run, pause, resume, terminate, etc. Similar to the operations on a process, it can also 

operate a task node, such as run by one step, run by multiple steps, pause, terminate, skip, etc. 

The point nodes are only used to construct the directed graph and are not real task. In theory, 

the execution time of the point nodes is zero. Thus, the simulation does not provide pause, 

terminate, or skip operations at the point nodes. 

5.3 Runtime functions 

The runtime functions include the workflow enactment service, and administration and 

monitoring tools. We firstly address the design of the workflow instance before represent the 

design of the runtime functions. 

5.3.1 Workflow instance 

In SwinFlow-Cloud, a well-defined process definition can be instantiated to an executable 

workflow instance by the workflow enactment service. A workflow instance consists of data 

variable instances and task instances. The data variable instances are the real data objects 

which are interpreted from the data variables for computation or comparison. The references 

or specifications in the task instances are interpreted to bind with real resources or map onto 

APIs or systems. A workflow instance has a life cycle from the beginning to the end. The life 

cycle of a workflow instance is accompanied with state transformation, as shown in Fig. 5.2. 
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Figure 5.2 State transformations for a workflow instance 

The transformations between states (represented by the arrows) take place in response to 

a phase ending. The basic states are: 

• Instantiated: Workflow instance has been created, but the whole instance is not 

initialised yet, including any associated process or task state update and data variable.  

• Initiated: Workflow instance has been initialised, including states of the process and all 

tasks initialised, and the initial value of all data variables computed, and possibly, the 

data triggering this workflow instance creation stored in the instance. 

• Running: Initialised workflow instance has started execution and the start point is 

started. It is in the running state until the end point in this workflow instance has been 

fulfilled. 

• Completed: Workflow instance has fulfilled the end point for completion and the some 

internal post-completion operations such as data collecting or transferring to the parent 

process will be performed if it is a sub-process, and then the workflow instance will be 

destroyed.  

• Suspended: Workflow instance is quiescent and no task is started until the workflow 

instance has returned to the running state. 

• Terminated: Execution of the workflow instance has been forcedly stopped before its 

normal completion due to some abnormal causes and then the workflow instance will 

be destroyed. 

• Exception: Workflow instance has one or more errors in execution. This state is 

different from the suspended state: the execution of the workflow instance does not 
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stop on the exception state but the execution stops on the suspended state. This means 

that when multiple paths in the workflow instance are executing in parallel, any error 

in a task instance may only result in a stop on the path where the task instance is, but 

does not influence other paths. 

Besides a workflow instance, its task instances have a life cycle. The following state 

transformation of a task instance depicts its life cycle, as shown in Fig. 5.3. 
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Figure 5.3 State transformations for a task instance 

• Un-enabled: A task instance is created but has not yet been activated because the 

navigation rules on its input transitions have not been met. 

• Enabled: A task instance is activated because all the navigation rules on its input 

transitions have been met but the task instance is not initialised yet. The enabled state 

may transform to the un-enabled state because any of the navigation rules on its input 

transitions are not met, or to the running state because the executing command drives, 

or to the skipped state because the skipping command drives. 

• Skipped: A task instance is skipped and the target nodes of the output transitions of 

this task instance will be activated under controls of the navigation rules on them. 

• Running: A task instance is executing and not non-interruptible during the execution 

but it can be forcedly terminated just as a Java process can be forcedly terminated by 

Java console. The state of the task instance can change to the terminated state. Actually 

any error in the task instance can result in its state from the running state to the 

exception state. If the task instance completes successfully, its state will transfer to the 

completed state. 
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• Completed: A task instance is completed successfully and activates the next task 

instance if any navigation rule on the output transitions has been met. 

• Exception: A task instance has some errors during its execution. This state may be 

transferred to the terminated state through a terminating command, or to the enabled 

state through a rollback command. 

• Terminated: A task instance has been terminated by force. 

5.3.2 Workflow enactment service 

The workflow enactment service in SwinFlow-Cloud offers a runtime environment which is 

able to support one or more workflow engines. Its functionalities concern with the workflow 

management and aim at achieving workflow goals. This service consists of the following 

modules: workflow engine, task transition engine, and navigation engine. In this subsection, 

we address the details of these function modules. 

5.3.2.1 Workflow engine 

A workflow engine controls execution and state transformations of a workflow instance and 

drives the workflow instance from one phase to the next: instantiation, initialisation, 

execution, completion and exception handling if necessary. It will be destroyed after 

completing the workflow instance. The workflow enactment service creates a workflow 

engine for every request of launching new workflow instance and transfers the associated data 

into the workflow instance and destroys the workflow engine after completion. 

In the instantiation phase, the workflow engine creates a workflow instance referencing 

a workflow definition and assigns a new identity (ID) to the new instance. The workflow 

instance is specified as the instantiated states and stores ID of the workflow definition as a 

reference, workflow creator information and workflow instance creating timestamp. If the 

workflow definition has a main process and one or more sub-processes, the workflow instance 

will just have the main process because the sub-processes attached on the sub-process points 

may not execute during the execution of whole workflow instance. 

In the initialisation phase, all the elements in the workflow instance will be initialised 

for supporting workflow enactment. All data variables are specified as null if no initial 
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expression, or as the calculated initial value if having an initial expression. All the task 

instances are initialised as the un-enabled state except that the start point is specified as the 

enabled state. The workflow engine creates three queues for each workflow instance: enabled 

task queue, running task queue, and exception task queue and further puts the start point into 

the enabled task queue. 

If the main process in a workflow instance is a sub-process of another workflow 

instance, the former will be attached in the sub-process point in the latter and map the data 

variables in the former onto the input or output specifications in the sub-process point in the 

latter. Finally, the workflow instance is specified as the initialised state. 

An initialised workflow instance can automatically launch under the control of the 

workflow engine or manually launch through a launching command with the state from 

initialised to running. The instance can also be terminated by a terminating command and 

suspended by a suspended command or due to any errors during the initialisation phase. 

In the execution phase, the workflow instance is specified as the running state and de-

queues the enabled task instances one by one to execute. Every enabled task instance de-

queued from the enabled task queue will be specified as the running state and en-queues the 

running task queue. The workflow engine creates a task transaction engine for executing the 

running task instance. The transaction engine will be addressed in detail in the next subsection. 

Once the running task instance is completed, it activates the next task instances using the 

navigation engine and changes its state to the completed state and is de-queued from the 

running task queue. If the running task instance has any error during execution, it will be 

specified as the exception state and de-queues from the running task queue and en-queued to 

the exception task queue. Any exception task instance in a workflow instance will result in the 

state of the workflow instance from the running state to the exception state. If the workflow 

instance is a sub-process, the exception will change the state of the parent to the exception 

state until the state of the main process changes to the exception state. 

In the exception handling phase, the workflow engine is on the quiescent status for 

waiting for the manual interference by workflow users.  

In the completion phase, the workflow engine checks whether all task queues for the 

running workflow instance are empty. If the task queues are empty, that means that the 
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workflow instance has completed and is specified as the completed state. The workflow 

engine will be destroyed after the workflow instance is completed. 

5.3.2.2 Task transaction engine 
 

The task transaction in SwinFlow-Cloud guarantees the completeness of the execution of a 

task instance and the data consistency. It offers an interface framework to a task instance for 

execution. The framework consists of three primary operations: 

• Begin: A transaction of a task instance collects the data to support the execution and 

temporarily stores the data for recovering when rolling back. 

• Commit: A transaction executes the task instance non-interruptedly. If the execution 

has any exception, the transaction will terminate through throwing an exception and 

rollback. 

• Rollback: A transaction rolls back and recovers all data to the initial status of the 

transaction. 

The interface framework for supporting the execution of a task instance is extensible for 

developing the new task in SwinFlow-Cloud. If new task meets and inherits the meta-model of 

the process in Subsection 5.2.1, the task instance of the task can be supported by the task 

transaction. 

The task transaction in SwinFlow-Cloud executes under the control of the task 

transaction engine. The transaction engine can lock the task instance and the associated data to 

guarantee three operations run sequentially and correctly before a task transaction begins and 

unlock the task instance after the commission of the transaction. It can automatically 

terminate, roll back and record the exceptions when any error occurs during the operations. 

The transaction engine can be destroyed after a transaction terminated or completed. If a 

transaction engine is destroyed due to termination, then the workflow engine can create a new 

task transaction engine for each transaction execution when a task instance restarts. 

5.3.2.3 Navigation engine 

The navigation engine can navigate the execution of the workflow instance to the transitions 

of which the value of the navigation rule is true. On one hand, it is created to check the input 
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transitions of a task instance before a task transaction begins, or to calculate the navigation 

rules on the output transitions of a task instance after the task transaction is committed. On the 

other hand, it is created to recover the input transitions once the task transaction rolls back.  

5.3.3 Workflow administration and monitoring 

The workflow administration and monitoring in SwinFlow-Cloud enables workflow users to 

monitor and control the execution of the workflow instances. The component consists of three 

modules: 

• Workflow system administrator: It is the control panel of the workflow enactment 

service and can start, restart, stop the service and further monitor the performance of 

the service, including the utilisation of underlying resources of the service, such as 

CPU, memory, network traffic, I/O, etc., and application-level resources of the service, 

such as thread pool, connection pool, session number, etc. 

• Workflow instance searcher: It is able to search workflow instances through specifying 

the conditions such as ownership, workflow definition reference, creator, launch time, 

etc. The search results represent instance identity, instance name, version number, 

instance creator, launch time, size in memory, instance current state, last update time, 

and reference of workflow definition.  

• Workflow instance administrator: It is similar to the workflow process modelling tools. 

It can represent graphically the current and historic execution details of a workflow 

instance and provide the flexible commands to manually interfere the execution, such 

as suspending, terminating, resuming an instance, or skipping, rolling back, 

terminating a task instance, etc. 

5.4 Summary 

In this chapter, firstly, we gave an overview of the functional design in SwinFlow-Cloud. 

Secondly we presented the build time function, i.e., process management, including process 

modelling, verification, and simulation. Finally, the runtime functions were presented for 
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workflow enactment service, including workflow engine, task transaction engine, and 

navigation engine, and workflow administration and monitoring. 
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Chapter 6  

SwinFlow-Cloud: Non-functional Design 

based on Client-Cloud Architecture 

This chapter presents the non-functional design of SwinFlow-Cloud based on the client-cloud 

architecture proposed in Chapter 4. Section 6.1 gives an overview of the non-functional 

design. Section 6.2 addresses the design of build time functions. Finally, Section 6.3 addresses 

the design of runtime functions.  

6.1 Overview of the non-functional design 

The system design focuses on the non-functional areas in the workflow accompaniment tools 

or the workflow relevant services as depicted in Fig. 4.1, including the build time and runtime 

functions. The former covers version management, organisation management, tool agent 

management, cloud workflow relevant service definition functionalities, administration and 

monitoring functionalities, while the latter covers cloud workflow relevant service as defined 

in Section 4.1.  

The build time design addresses the management functions which can define the 

relevant specifications for cloud workflow. Version management efficiently facilitates a 

collaborative process design. Organisation management constructs a hierarchical model to 

integrate all perspectives of workflow. Tool agent management bridges the external 

applications and cloud workflow for invocations. Billing management defines the system-level 

or application-level budget plans for control the costs of the utilisation of cloud services or 

workflow service resources. WfSMI management is able to configure WfSMIs supported by 



71 
 

the cloud infrastructures. Alarm management represents the critical system resources and 

provide choices to the estimation model. And auto-scaling management defines scaling-out or 

scaling-in strategies for the scaling actions in the auto-scaling service. 

The runtime design represents the administration and monitoring functionalities, the 

workflow relevant service functionalities, and further proposes two core estimation models to 

support coordination between the services. In particular, billing administration and monitoring 

functionality can monitor utilisation of budget plans and generate a report for analysing of the 

utilisation. WfSMI administration and monitoring functionality can monitor utilisation of a 

WfSMI and analyse the performance influence of the instantiation of the WfSMI. And alarm 

administration and monitoring functionality can monitor utilisation of resources and optimise 

the specifications of utilisation. 

The design of the workflow relevant services includes the module structures in the 

services and their functionalities. Billing service can interpret the plans predefined in the cloud 

workflow relevant service definition tools on the client side and generate many rules to 

monitor the utilisation of various cloud services or workflow service resources. WfSMI 

service can manage the image configuration defined in the cloud workflow relevant service 

definition tools and support the generation of the images through invoking APIs of cloud 

infrastructure. Alarm service can estimate status of all workflow enactment services and give 

an alarm notification to auto-scaling service for taking scaling action when the status has been 

under loaded or overloaded. In this service, we propose an alarm estimation model for 

quantifying status and utilisation of the specific resources to estimate whether SwinFlow-

Cloud is overloaded or under loaded. Load balancing service can check status of each 

workflow enactment service and choose an available one to dispatch the request. Auto-scaling 

service can estimate resource demands and create scaling engines to implement scaling 

actions. In this service, we propose a scaling estimation model to calculate resources that need 

to be scaled. To efficiently support a sustainable coordination, we further discuss the elements 

which influence the coordination of the services above and reveal constraints between the 

elements and propose principles for a sustainable coordination. 
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6.2 Build time functions 

In this section, we address the design of build time functions. The build time functions are to 

manage the models or specifications to the runtime functions. The models include 

organisation, version, and tool agents; while the specifications include budget plans, WfSMIs, 

resource utilisation metrics, and scaling strategies, etc. The design covers organisation, 

version, tool agents, billing, WfSMI, alarming, and auto-scaling management. 

6.2.1 Version management 

SwinFlow-Cloud introduces the concepts of version control architecture to provide a flexible 

approach to manage the model changes or evolution, such as processes and WfSMI and so on. 

The architecture consists of the version state and control operations, as shown in Fig. 6.1. 

Drafted Versioned Released
release

recall 

version 

draft

draft
lock/unlock

 

Figure 6.1 Transformation between the version states 

In Fig. 6.1, there are three version states which can be transformed from one state to 

another through control operations: 

• Drafted: This is an editable version of a model with a version number. When a model 

is on this version, any workflow designer can exclusively modify the model through a 

lock operation. After the modification, the designer will unlock the model to share it to 

other workflow users. The lock or unlock operations will be addressed below. This 

version enables multiple workflow designers to collaborate to design or modify a 

model. 

• Versioned: This is a non-editable version of a model, which is created from the draft, 

with a version number. When a model is on this version, it is read-only and any 

workflow designer cannot modify it. This version is also defined usually as a fixed 

version.  
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• Released: This is a version of a model which is possible for workflow enactment 

service to execute. The version has no new version number and inherits the version 

number of the fixed version.  

Version management includes multiple version operations: 

• Lock: Locking means that a workflow user exclusively gains the edit privileges on an 

unlocked draft version of a model through a specific operation so that other users 

cannot gain the edit privileges any longer through any operation. The locking operation 

does not change the state of the draft version but change the properties of the model 

such as the designer, or update time, etc. 

• Unlock: Unlocking means that a workflow user waives the edit privileges, which are 

gained from the locking operation, on a locked draft version through a specific 

operation and other users can gain the edit privileges through the locking operation. 

The unlocking operation does not change the state of the draft version but change the 

properties of the model.  

• Version: This operation is to fix a draft as a new version with a version specific 

number for a process to protect the edited model from being modified by any other 

one, that is, it changes a model from the drafted state to the versioned state and 

automatically or manually creates a new version number, for example, the automatic 

version is like “2014-02-13 16:56”, or the manual version is like “v1.0”. 

• Draft: This operation is to create a draft from a fixed version or a released version with 

a timestamp version number which is generated automatically. It changes a model 

from the versioned state or the released state to the drafted state. 

• Release: This operation is to create a released version from a fixed version without 

new version number. It changes a model from the versioned state to the released state. 

This operation is to publish a model to runtime environments. 

• Recall: This operation is to recall a released version and changes a model from the 

released state to the versioned state. The design is to provide an approach to recall or 

delete a model from the runtime environments due to some specific considerations. 
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The version control management in SwinFlow-Cloud facilitates collaboration in 

modelling and provides an approach to trace the evolution of model designs. For the 

convenience of operations, the version management is not designed as a standalone 

management module in SwinFlow-Cloud but the above operations are integrated into the other 

management functionalities. 

6.2.2 Organisation management 

The organisation structure model is an important perspective in workflow management 

although it is not explicitly addressed in the traditional workflow reference model. 

Organisation is the owner of a WfMS and a workflow application. In SwinFlow-Cloud, we 

design organisation model as a hierarchical forest structure, denoted as organisation space, and 

organise all workflow perspectives into an organisation space. In the space, various workflow 

users can individually participate in managing the workflow associated models or components 

without the needs of concerning with other users. The model enables SwinFlow-Cloud to 

contain many organisations and administrate multiple inter-organisation workflow 

applications on one platform. It facilitates SwinFlow-Cloud to cost-effectively deliver the 

workflow services to various organisations with a payment model. As the backbone of 

SwinFlow-Cloud, the organisation management is undoubtedly a critical function and covers 

organisation structure management, user management, and authorisation management. In the 

next subsections, we address these functionalities. 

6.2.2.1 Organisation structure 

The organisation structure is a tree model. The nodes of the tree model are constituted by 

organisation, division, department, project team, position, role, user, etc. The root node is the 

organisation and the leaf node is the user and the non-leaf nodes are the division, the 

department, the project team, the position, the role, etc. 

• Organisation: Organisation is the largest abstract unit of an organisation structure in 

SwinFlow-Cloud to describe a social company, corporation, manufacturer, 

government, institution, branch, etc. The units usually have independent operations, 

collective goals, and financial systems and are constituted directly by divisions, 

departments, project teams, positions, roles, and users. But it does not describe a 

(corporate) group which owns one or more member organisations. That is to say, there 
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is not an organisation which contains other organisations. We design a group as a 

general organisation in SwinFlow-Cloud but its organisation structure does not 

describe the structures of the underlying member organisations. 

• Division: Division is a large abstract unit in an organisation without independent 

financial systems. It can be constituted by departments, project teams, positions, roles, 

and users. The division can also be denoted as branch. 

• Department: It is a middle abstract unit in an organisation and is constituted by one or 

more positions, project teams, roles, and users. 

• Project team: It can be considered as a virtualised department in an organisation for a 

specific project. A project team is always a temporary department.  The team consists 

of one or more roles and users.  

• Position (work position): It is a place with specific responsibilities or duties to 

complete a job, such as “manager”, “accountant”, “clerk”, etc. The position can be 

built in the division and/or the department and have one or more users. That means that 

the users on this position have same responsibilities or duties.  

• Role: Similar to the position, the role is also a place with responsibilities or duties. The 

role is only built in a project team to undertake a specific job and can have multiple 

users.  

• User: It is the staff who constitute an organisation. A user must be built on a position 

or a role. 

The organisation model provides a support for workflow resource assignment, that is, 

workflow enactment service determines an appropriate resource to complete a manual task 

when multiple resources are available for this task. 

Organisational structure management supports individually defining or editing an 

organisational structure, a divisional structure, a departmental structure, and a project team 

structure in a graphical editor. 
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6.2.2.2 User management 

User is a direct workflow participant or administrator. User management in SwinFlow-Cloud 

refers to user information, position assignment, and user group management, etc. 

• User information management: This component collects, updates, and removes a 

workflow user primary information, such as name, identity number, gender, phone 

number, email, address, duty status (e.g., on duty, on leave, quit, etc.), and work status 

(e.g., available, slightly busy, busy, very busy, away, offline, etc.). The primary 

information is used to support resource assignment in workflow management. If a user 

has been participating in workflow applications such as designing, administrating, 

launching a workflow instance, it means that the user has been referenced by other 

components. Then the user will not be able to be removed but only be written off 

using a flag because removing may result in data inconsistency. The component is 

able to import or export the information from or to the external system dedicated to 

user management.  

• User work management: The component, which is associated with the position or role 

in organisational structure management, administrates and monitors the user working 

on a position. It can trace work history and assess work performance of users 

according to the position capability or duty requirements.  

• User group management: This component creates, modifies, and removes a group for 

containing multiple users and can add or remove one or more users in a group. It is 

designed for authorisation management to grant access permissions to users. A group 

of users has same permissions to operate SwinFlow-Cloud. Moreover, a user can be 

added in multiple user groups and multiple level authorities. 

6.2.2.3 Authorisation management 

Authorisation, which is a security consideration in SwinFlow-Cloud, refers to the operation 

permission of an operator on a workflow component. The operator is the user group which is 

built in user management. The workflow component means all workflow system functional or 

non-functional modules in SwinFlow-Cloud. The operation permission refers to granting an 

action in a workflow component. The action is an atomic operation, for example, creating, 

modifying, deleting a process, etc. 
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The management component is to administrate all permissions on the workflow 

components and authorise users using the permissions for controlling access. 

6.2.3 Tool agent management 

The tool agent is an invocation proxy for Java API invocation task and other application 

invocation tasks which uses a unified approach to access the external applications residing in 

the various remote systems including Web server, other WfMS, FTP server, Amazon S3, 

Eucalyptus Walrus, and so on. The tool agent model is shown in Fig. 6.2. 

Tool Agent

Agent Call

Input Parameter Output Parameter

1:n - connection
1:1 - connection
direction
model

consists of

consists of

 

Figure 6.2 Tool agent model 

A tool agent contains the information of the location and the authentication including 

URL, port, username, password, etc. It can carry multiple remote calls, denoted as agent call. 

The agent call defines class path name, method name, and parameters. The parameters are 

composed of input parameters and output parameters. Some agent calls may have no output 

parameters. The parameters consist of parameter name and data type, i.e., integer number, real 

number, character string, etc.  

The tool agents are organisation assets in SwinFlow-Cloud and are administrated by the 

tool agent management in the spaces provided by owner organisations. Thus the management 

supports specifying a security access key to avoid the arbitrary invocations. 

6.2.4 Billing management 

Billing management aims at controlling the usage costs of the workflow services to meet the 

budget. Because the SwinFlow-Cloud is a cloud application, the management has two aspects: 
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cost management of cloud workflow in the cloud infrastructure and cost management of 

workflow applications in cloud workflow. 

For the former, we design a system billing manager for owners of SwinFlow-Cloud. The 

manager can collect utilisation and price policies of the used cloud services through APIs of 

cloud infrastructures, such as computation service, storage service, security service, network 

service, or Web deployment service and so on, and then support the owners of SwinFlow-

Cloud to make an annual system-level budget plan on the basis of the price policies of the 

cloud services. The budget plan is composed of cost budgets of the cloud services used in 

SwinFlow-Cloud. The cost budget consists of cloud service name, service utilisation metrics, 

price, currency, e.g. AUD, USD, RMB, etc., financial year, budget amount, cloud 

infrastructure name, and alarm thresholds etc. The metrics are different among cloud 

infrastructures, for example, for the data storage in AWS, 1 GiB per month37, for Internet data 

transfer in IBM SmartCloud, 1 GB per week, 1 GB per month, 1 TB per month38, etc. The 

thresholds are used to give an alarm when current utilisation of a service reaches or exceeds 

the budget. A designer may design multiple plans to support scalable SwinFlow-Cloud and 

adjust or switch to an appropriate plan to meet the changing costs of the cloud services. 

Furthermore, the system billing manager can also define a report template to represent the 

utilisation of the cloud services. The report is a critical reference for cost analysis on the 

utilisation of cloud services in SwinFlow-Cloud.  

For the latter, we design a workflow application billing manager for owners of workflow 

applications. Here, SwinFlow-Cloud can be considered as workflow management 

infrastructure in cloud to provision workflow services. The users of the manager include two 

roles: one is the owners or administrators of SwinFlow-Cloud; the other is the owners or 

administrators of the workflow applications residing in SwinFlow-Cloud. For the two user 

roles, the manager offers the system-level and application-level functionalities. 

The system-level functionalities include:  

• Making the pricing policies for the workflow applications. Here, the policy is similar 

to the prices made by the cloud infrastructures. It consists of the workflow service 

name, e.g., “workflow enactment”, “workflow storage”, and service utilisation metrics, 

                                                 
37 http://aws.amazon.com/pricing/  
38 http://www-935.ibm.com/services/ca/en/igs/cloud-development/estimator/Tool.htm?cfg=ca-en  
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e.g., $0.01 per workflow instance, 1,000 task instances per month, and price and 

currency and cloud infrastructure name.  

• Specifying various plans for charging utilisation of workflow services offered by 

SwinFlow-Cloud. The plan includes multiple billing items on the basis of the pricing 

policies and offers of some bonus credits for promotions and limits or regulations of 

the usages of workflow services. 

The application-level functionalities include:  

• Making the annual application-level budget plans for the usage of workflow services 

according to pricing policies of SwinFlow-Cloud to meet the specified overall budget.  

• Applying the plans offered at the system-level billing manager to charge consumptions 

of workflow services in a workflow application to meet the application-level budget 

plan. This is an express approach for the workflow applications using billing services 

and facilitates the workflow applications to migrate to cloud but not an appropriate 

approach because the billing items may not meet the usage requirements of the 

workflow application. 

• Defining plans to customise the consumptions of workflow services in SwinFlow-

Cloud to meet specific requirements of a workflow application. The plan consists of 

strategies to regularise the usage. The strategy describes the usage limit of the 

workflow services according to the price policies, for example, the usage of an 

enactment service per year is less than 200 dollars, or the 10G usage of storage 

services per year is not more than 50 dollars, and the information about the workflow 

application owners, the workflow applications, the bank account, the warning 

messages if exceeding the budget, etc. 

Furthermore, the billing management functionality offers a charge calculator for 

estimating consumptions of workflow services. The calculator can represent all pricing 

policies defined in system-level functionality as a report. The designers can input the budget 

details and gain a simple estimation for the consumptions of the workflow services. The 

estimation can provide a reference for making a budget plan.  
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6.2.5 WfSMI management 

WfSMI management offers an approach to manage query, create, update, discard, etc. 

WfSMIs are able to be instantiated to a workflow enactment service that meets the budget 

plan. 

A WfSMI is a software configuration package with a unique image identity in 

SwinFlow-Cloud. The configuration includes the hardware and software aspects. The 

hardware aspect refers to CPU, memory, disk, and network card, etc., while the software 

aspect refers to operation system infrastructure such as Microsoft Windows, CentOS Linux, 

Unbuntu Linux, or Red Hat Linux, etc., and the application servers such as Apache Tomcat, 

etc.  

The WfSMI has a life cycle from creating, updating to discarding. In the life cycle, the 

image may be frequently updated for satisfying the changing requirements. Therefore, 

SwinFlow-Cloud introduces version control, as addressed in Subsection 6.2.1, to manage 

changes of WfSMIs. Under controls of version management, designers can modify the 

configured WfSMIs and trace the modifications. The WfSMIs with the different version 

numbers can meet the requirements with more granularities. The WfSMI service of 

SwinFlow-Cloud can use a WfSMI configuration to generate an image through invoking APIs 

of cloud infrastructures. The image is an image file, which is stored in cloud and able to be 

instantiated a workflow enactment service to cloud infrastructures, and labelled with a unique 

image identity and a version number. 

For creating, the management can represent the budget-met underlying hardware and 

software configurations obtained from cloud infrastructures and the scaling demands obtained 

from the auto-scaling service. Designers choose the appropriate configurations, i.e., meeting 

the budget plans and the scaling demands, submit them to the WfSMI service to generate a 

virtual machine on the cloud side. The procedure is similar to configuring a real computer. 

Then the designers can launch it to install an application server and deploy a standalone 

workflow enactment service. After the installation and deployment, the designers can test and 

verifies the availability of workflow enactment service component. If the testing succeeds, a 

new image with a unique identity and a version number will be generated through invoking 

APIs of cloud infrastructures. If the testing fails, the installation and deployment will be 

repeated again until succeeded. 
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For updating, the management can represent details of all existing WfSMIs. The 

designers can modify configurations of the WfSMIs, submit them to the WfSMI service on the 

cloud side for regenerating a virtual machine, reinstall an application server, and redeploy a 

standalone workflow enactment service component. Like creation, the designers need to test 

and verify the configurations of the modified WfSMIs. If the testing is successful, a new 

image will be generated with a new version number. 

For discarding, the management can represent details of all existing WfSMIs in a list 

and enables to select one to specify a deprecated flag then submit it to the WfSMI service for 

discarding. If the image is in use for instantiations, the WfSMI service will not mark the flag 

until it is not in use. The deprecated images cannot be used for instantiations any more.  

6.2.6 Alarm management 

The alarm management can enumerate utilisation of system resources which may significantly 

impact on performance of a workflow enactment service component, i.e., performance 

bottlenecks, and specify them to the alarm service for supporting a comprehensive estimation. 

The estimation model in the alarm service will be addressed in Subsection 6.3.6 in detail. 

The resources in a workflow enactment service component can be categorised into 

system-level, platform-level and application-level resources. The first covers the resources 

associated with underlying hardware, such as CPU, physical memory, disk, and network, and 

so on; the second covers the runtime platform resources, such as Java heap memory; the third 

covers the internal resources in a workflow enactment service component, such as the 

workflow instance thread resource pool, task instance thread resource pool, database 

connection pool, and session number and so on.  

Obviously, the available capacity of the upper-level resources is determined by their 

lower-level counterparts. For example, size of the physical memory determines maximum size 

of Java heap memory, and heap size mostly determines maximum thread number that a JDK 

platform can contain. Hence, we can look up utilisation of critical system resources to make 

estimation. However, merely monitoring the utilisation of critical resources is not enough to 

accurately give an estimation of workflow executions because the utilisation only represents 

rough performance of the resources in a workflow enactment service component. For 

example, suppose the physical memory size is 8 GB and the Java maximum heap memory size 
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is specified as 4 GB, if a current occupation of a workflow enactment process in Java is 3.5 

GB, then, for total physical memory size, the utilisation ratio is 43% (i.e. 3.5/8), but for the 

Java heap memory size, it is 87.5% (i.e. 3.5/4). The 43% is not accurate because we should 

use 4 GB to calculate the utilisation of the workflow enactment process due to the heap size 

that the process can use is 4 GB not 8 GB. Certainly, when we specify the heap memory as 5.5 

GB, the utilisation ratio will be 63% (i.e. 3.5/5.5). This is important for the auto-scaling 

service to take actions, if the utilisation ratio is 87.5%, the service most likely needs to take 

actions to scale out for balancing the future incoming loads; and if it is 63%, it may not need 

to take actions. 

To support cost-effective workflow executions, it requires that the alarm service 

accurately estimates workflow resource utilisation. Moreover, accurate estimation can 

facilitate prediction for future resource utilisation in the auto-scaling service.  

Here, for simplicity, we only consider the same resources and their capacities and their 

utilisation in each workflow enactment service. In this chapter, we will formally discuss and 

model the resources, capacities and utilisation. For conveniently exploring and searching, we 

give a notation index which is defined and used in this thesis in appendix. 

Suppose there are m workflow enactment service components in SwinFlow-Cloud and n 

resources in each component. For any resource, its utilisation at any moment t in a time period 

T, 𝑡 ∈ 𝑇, ,...}1,0{=T and capacity are denoted as 𝑢(𝑡) and 𝑐. Thus, we define an utilisation 

metric for each resource in the components which can be used to estimate the system status.  

The metric is a ratio at 𝑡, denoted as 𝑟(𝑡), which is the rate of 𝑢(𝑡) and 𝑐, with a range 

of values from 0 to 1, i.e., 𝑟(𝑡) ∈ [0, 1]: 

𝑟(𝑡) =
𝑢(𝑡)
𝑐

 

Here, we enumerate nine representative resource utilisation metrics: 

• CPU utilisation rcpu(t): It is a ratio of a summary of the CPU time occupations ucpu (t) 

of all workflow engines and task transaction engines at t to total CPU time occupations 

ccpu. rcpu (t) can reflect the total CPU usages in workflow enactment service 

component. It rises up gradually with the number of the engines increasing; otherwise, 

it declines with it decreasing.  
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• Memory utilisation rmem(t): It is a ratio of the summary of the occupied memory size 

umem (t) of all workflow engines and task transaction engines at t to the maximum 

memory size cmem. rmem (t) can reflect the total memory occupations in a workflow 

enactment service component. It rises up with the number of the engines increasing; 

otherwise, it declines with it decreasing. 

• Network in utilisation rnet_i(t): It is a ratio of the summary of the incoming bytes unet_i 

(t) of all the engines at t to the maximum incoming bytes cnet_i of the network device, 

such as network card. If there are multiple network devices, rnet_i (t) is a mean of all 

ratios of the individual network in utilisation. The ratio identifies the workload of 

network incoming traffic. It rises up with the incoming bytes increasing; otherwise, it 

declines with incoming bytes decreasing. 

• Network out utilisation rnet_o(t): It is a ratio of the summary of the outgoing bytes 

unet_o(t) of all the engines at t to the maximum outgoing bytes cnet_o of a network 

device, such as network card. When there are multiple network devices, rnet_o(t)  is the 

mean of all ratios of the individual network out utilisation. The ratio reflects the 

workload of network outgoing traffic. It rises up with the outgoing bytes increasing; 

otherwise, it declines with the outgoing bytes decreasing. 

• IO utilisation rio(t): The IO can be considered as any IO device except for the network 

device, such as disk, printer, scanner, sensor, sound card, etc. rio(t) is a ratio of the 

write/read bytes uio(t) of a IO device at t to the maximum read/write bytes cio of the IO 

device. It rises up with the bytes increasing; otherwise, it declines with the bytes 

decreasing. 

• Workflow engine thread pool utilisation rproc(t): The thread pool is a critical resource 

for many software applications. If the available threads in the workflow engine thread 

pool are used up, the new workflow instance must enter a waiting queue. Thereby the 

length of the queue is too long and workflow instances waits for too long, the queue 

may overflow or discard the incoming workflow instances. rproc(t) is a ratio of the 

waiting workflow instances uproc(t) at t to the length cproc of the wait queue of the 

workflow engine thread pool. It rises up with the instances increasing, that means that 

the workload will rise; otherwise, it declines means that the workload will reduce. 



84 
 

• Task transaction engine thread pool utilisation rtask(t): A workflow instance may have 

multiple task instances hence the number of task instances is more than the workflow 

instances after instantiation. The task transaction engine thread pool is another critical 

resource. rtask(t) is another ratio of the number of the waiting task instances utask(t) at t 

to the length ctask of the wait queue of the task transaction engine thread pool. 

• Connection pool utilisation rpool(t): The connection pool refers to the resource pool that 

manages a WfMS connecting to the external application or platform such as database, 

object library, cloud infrastructures, etc. The pool keeps the active connection objects 

for WfMS utilisation. If the available active connections are used up, the execution of 

workflow instances or task instances may be suspended and enter a waiting queue for 

waking up. rpool(t) is a ratio of the number of the waiting instances upool(t) at t to the 

length cpool of the wait queue. 

• Session number utilisation rsession(t): The session number is a limited resource for 

keeping the active connections between the client side and the workflow enactment 

service on the cloud side. rsession(t) is a ratio of the session number usession(t) at t to the 

maximum session number csession which a workflow enactment service can offer. If it 

rises up with the session number increasing, it means that the workload is increasing; 

otherwise, the number declining means that the workload is reducing. 

Thus, for n resources, 𝑟𝑖(𝑡) , 𝑖 ∈ {𝑐𝑝𝑢,𝑚𝑒𝑚,𝑛𝑒𝑡𝑖,𝑛𝑒𝑡𝑜 , 𝑖𝑜, 𝑝𝑟𝑜𝑐, 𝑡𝑎𝑠𝑘,𝑝𝑜𝑜𝑙, 𝑠𝑒𝑠𝑠𝑖𝑜𝑛, 

… } or 𝑖 = 1. .𝑛 represents the status of the resources in one workflow enactment services. 

Then, in m workflow enactment services, 𝑟𝑖 is denoted as 𝑟𝑖𝑗(𝑡) ∈ [0, 1], the utilisation 𝑢𝑖(𝑡) 

is denoted as 𝑢𝑖𝑗(𝑡), the capacity is denoted as 𝑐𝑖𝑗 , 𝑖 = 1. . 𝑛, 𝑗 = 1. .𝑚. The capacity of a 

resource is generally a constant in a service, Here, the resource configurations of one service 

may be different from those of the others. The capacities of each resource of the service are 

also different from those of the others. For example, for memory resource, it is 8GB in one 

service, but it is 16GB in another service. Obviously, the capacity of the former is different 

from that of the latter. Hence, we denote the capacity as 𝑐𝑖𝑗. 

The maximum value 1 means that a resource is fully loaded; while the minimum value 0 

means that the resource is idle. Hence, 0 and 1 are two extreme cases. However, they cannot 

identify the status of the resource with finer granularities. We design to specify more 

thresholds in the range to discretise the continuous range values into multiple states for 
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estimating the status of the resources in the workflow enactment service. For example, in a 

range [0, 1], 0.2 is a threshold, 0.5 is another threshold, [0, 0.2] means that the utilisation is on 

an idle status, [0.2, 0.5] means that the utilisation is on a normal status. The threshold can be 

refined or extracted according to the experimental or historical data. In this thesis, the 

thresholds are gained by the experimental data. In the future work, we will research to extract 

the thresholds based on historical data. 

6.2.7 Auto-scaling management  

Auto-scaling management provides an approach to manually manage the auto-scaling 

specifications. The specification can be created manually or generated automatically by the 

auto-scaling service. It includes the scaling-out and scaling-in strategies. The former contains 

policy identity, image identity, scaling-out number, and deprecated flag; while the latter 

contains policy identity, image identity, scaling-in number, and deprecated flag. The policy 

identity is a unique global number. The image identity refers to the unique identity number of 

a WfSMI without a deprecated flag. The scaling-out or scaling-in number refers to the number 

of the workflow enactment service components which are scaled out or in. It is an integer 

number of the workflow enactment service components in the available group of the load 

balance service. A strategy is to be used in the scaling actions to scale out or in by the 

specified number to balance workloads. If a strategy has the deprecated flag, then it cannot be 

used in scaling actions. 

The management includes querying, creating, updating, and discarding the scaling-out 

or scaling-in strategies. For querying, it supports conditional queries for scaling strategies. If 

an image identity in a scaling strategy has a deprecated flag, then the image will be not able to 

be used and the strategy will also be marked with a deprecated flag. 

For creating, it can obtain and represent all the available images with the configuration 

manifests. The designers can select an appropriate image and specify the scaling-out or 

scaling-in number to create a new strategy with unique identity.  

For updating, it can support modifying the primary information in a strategy, including 

the image identity, the scaling-out or scaling-in number, and the deprecated flag. The 

modification enables the strategy to adapt new demands.  
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For discarding, it can mark a strategy using the deprecated flag. If the strategy is in use 

of scaling, it will not be marked until it is not in use. The deprecated strategy can be removed 

from the auto-scaling service. 

6.3 Runtime functions 

In this section, we address the design of the runtime functions. The design, covering all the 

features of cloud workflow listed in Subsection 1.1.3, includes the administration and 

monitoring functionalities and the services which support the alarm and auto-scaling 

mechanisms. The administration and monitoring functionalities are able to administrate the 

utilisation of the specifications defined at build time. The services collaborate to provision the 

sustainable scalability to elastically support instance-intensive workflow applications. 

For quantitatively analysing the resource demands, we propose the alarm estimation 

model to measure utilisation of resources in the workflow enactment services and the scaling 

estimation model to calculate the number by which the auto-scaling service needs to scale out 

or in. 

6.3.1 Billing administration and monitoring 

Billing administration and monitoring manage the budget plans to control consumptions of 

system resources. The functionalities include: 

• Administrating two aspects of utilisation costs: the utilisation costs of cloud workflow 

in cloud infrastructure and the utilisation costs of workflow applications in SwinFlow-

Cloud.  

• Generating automatically a report of utilisation costs. The report describes billing 

items, charge details, statement period, and billing date, etc.  

• Giving a notification on utilisation which reaches or exceeds the budget. The 

notification is implemented through comparing specified thresholds and real time 

usages of the workflow enactment services. The notification may be by email or short 

message.   
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We further design a cost analyser which is able to illustrate the consumption of the 

workflow enactment services and compare costs with the annual budget plans. The analysis 

can be used to support the decisions for making new annual budget plans.  

6.3.2 Billing service 

The billing service is to interpret various plans or policies defined at build time and control the 

cost according to the interpretation to meet the budget.  

The interpretation is to generate the runtime rules to constrain the utilisation of various 

resources regardless those of the cloud infrastructures or cloud workflow. The rule contains 

budget, thresholds, utilisation metrics, charging time period, etc.  

The service can watch and calculate any operation in SwinFlow-Cloud and accumulate 

costs of utilisation then compare the costs with the responsible rules. The billing service 

schedules the rules for improving access efficiency according to access frequency.  

6.3.3 WfSMI administration and monitoring 

WfSMI administration and monitoring manage instantiations of the WfSMIs created at build 

time and can analyse the influence of the instantiations to the overall system performance. 

The instantiation is that a WfSMI is concurrently instantiated to multiple available 

workflow enactment services under control of cloud infrastructures. Hence, the detail of the 

instantiation contains begin and end timestamp of the instantiation, number of the created 

workflow enactment service components, timestamp of each component being created, 

timestamp of each component being available, pending time of each component, timestamp of 

each component being stopped, timestamp of each component being terminated, life period of 

each component, etc. An instantiation is a reference of a WfSMI to balance the workloads and 

can make an influence in the overall performance of SwinFlow-Cloud. Thus, every 

instantiation is recoded in the instantiation history of the WfSMI. 

The functionalities of the WfSMI administration and monitoring include:  

• Administrating the WfSMIs. The administration operations include starting to use a 

released WfSMI, stopping to use a released WfSMI with a deprecated flag, calling 
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back a released WfSMI, etc. The operations enable administrators to manually manage 

the WfSMIs for support the auto-scaling service.  

• Monitoring the instantiations of the WfSMIs. It can explore historical details of the 

instantiations of the WfSMIs, illustrate life cycle of the WfSMIs and the instantiated 

workflow enactment services, and trace the instantiation frequency, instantiation time 

period change, and instantiation number changes in an annual budget plan. 

• Analysing influence of the instantiations to performance of SwinFlow-Cloud. The 

analysis is to illustrate the performance change after every instantiation, and give an 

alarm when the instantiations cannot balance the increasing workload or may be 

redundant, and provide an approach to manually adjust the instantiations, such as 

adding the instantiation number for balancing or releasing the workload, reducing the 

number for saving costs.  

6.3.4 WfSMI service 

WfSMI service manages WfSMIs and supports scaling-out actions in the auto-scaling service 

and records historical details of instantiations. The service administrates various operations 

such as query, create, update, and discard a WfSMI, etc.  

For querying, the service retrieves one or more WfSMIs according to a search or statistic 

condition from the client side. The search results can be returned to the client side. 

For creating, the service is able to collect available software or hardware configurations 

from cloud infrastructures within constraints of the system-level annual budget plans and 

support creation of new virtual machine. It can further support the instalment, deployment and 

testing of application server and workflow enactment service through invoking APIs of cloud 

infrastructures. 

For updating, the service is able to support modification of configurations of an existing 

WfSMI and regenerate a new image with a new version number through invoking the APIs of 

cloud infrastructures. The regenerated image may be assigned a new image identity or keep 

the original image identity on demand and be released to the cloud side for updating an 

existing image. The service provides two approaches to update: adding the regenerated image 
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as new image; replacing or overwriting the existing image using the regenerated image when 

the existing image is not in use.  

For discarding, the service is able to remove the existing WfSMIs from the cloud side. 

An existing WfSMI cannot be removed directly because it may be used anytime. For 

removing, an image can be specified using a deprecated flag. The auto-scaling service will 

check the flag and choose the image which has no flag to scale out. The image can be removed 

when it is not in use permanently.  

6.3.5 Alarm administration and monitoring 

Alarm administration and monitoring manage changes of various utilisation metrics defined in 

Subsection 6.2.6 and updates specifications of the metrics and tunes thresholds in the alarm 

estimation model on demand. The estimation model in the alarm service will be addressed in 

Subsection 6.3.6 in detail. The functionalities include: 

• Graphically representing the utilisation metrics. The representation enables 

administrators to manually select the resources which they concern about for 

monitoring, for example, the resources which are running out or idle or under loaded 

or overloaded. The monitoring can further provide indications on the basis of the 

comparisons with the preconfigured thresholds.  

• Modifying the specifications of the utilisation metrics, i.e., adding or reducing one or 

more metrics in the alarm estimation model. The functionality enables the model to 

concern about the utilisation metrics which change significantly in a time period. If the 

model estimates all utilisation metrics, the estimation may influence the performance 

of workflow enactment service components because of frequently obtaining data of the 

critical resources. 

• Tuning the thresholds of the utilisation metrics of the resources. The thresholds 

influence estimations to the resources and eventually influence scaling actions in the 

scaling service. 
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6.3.6 Alarm service 

The alarm service collects status data of all workflow enactment services in SwinFlow-Cloud 

and periodically estimates the status for the load balancing service for checking the availability 

and the auto-scaling service for giving a scaling notification. The checking needs the alarm 

service to provide a comprehensively quantified estimation result of each workflow enactment 

service component, which can indicate whether a request is acceptable or not. The result 

integrates the utilisation metrics defined in Subsection 6.2.6 into a unified metric for checking. 

On the other hand, each system resource may be a potential performance bottleneck due to full 

loading or overloading during workflow enactment. The bottlenecks may result in overall 

unavailability of a workflow enactment service. Therefore, the auto-scaling service needs the 

alarm service to provide details of the performance bottlenecks in alarm notifications for 

taking the resources-targeted scaling actions to eliminate the bottlenecks economically. 

To achieve the goals, we propose an alarm estimation model to integrate the utilisation 

metrics and represent the overall availability. The alarm service periodically uses the model to 

estimate system status. If the time period is 𝑇 = {0,1,2, … }, then for any moment 𝑡, 𝑡 ∈ 𝑇. 

If there are m workflow enactment services with n resources, then for service 𝑗, 𝑗 =

1. .𝑚, at any moment 𝑡, an utilisation metric 𝑟𝑖𝑗(𝑡) ∈ [0, 1], 𝑖 = 1. .𝑛 is a ratio of the resource 

utilisation 𝑢𝑖𝑗(𝑡) and the capacity 𝑐𝑖𝑗 . Here, we define a weight 𝑤𝑖𝑗(𝑡) as a coefficient of 

𝑟𝑖𝑗(𝑡)  to represent the impact on 𝑟𝑖𝑗(𝑡) . 𝑤𝑖𝑗(𝑡)  can further assist to identify a resource 

bottleneck. In theory, when a workflow enactment service is idle, the utilisation of each 

resource is 0 and has adequate capacities to execute workflows. It means that there are no 

bottlenecks in the workflow enactment service and each resource has same weight 𝑤𝑖𝑗(𝑡), 

denoted as 𝑤0. For n resources, 𝑤0is: 

𝑤0 = 1
𝑛
                                                                     (1) 

From Eq. (1), ∑ 𝑤𝑖𝑗(𝑡) = 1𝑛
𝑖=1 . 𝑤𝑖𝑗(𝑡) is able to change with a ∆𝑤𝑖𝑗(𝑡) when 𝑟𝑖𝑗(𝑡) is 

changing. We define 𝑤𝑖𝑗(𝑡) as follows, 

𝑤𝑖𝑗(𝑡) = 𝑤0 + ∆𝑤𝑖𝑗(𝑡)                                                            (2) 

∆𝑤𝑖𝑗(𝑡) = 𝑟𝑖𝑗(𝑡)−
∑ 𝑟𝑖𝑗(𝑡)𝑛
𝑖=1

𝑛
                                                            (3) 
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From Eq. (3), ∑ ∆𝑤𝑖𝑗(𝑡) = 0𝑛
𝑖=1 , ∆𝑤𝑖𝑗(𝑡) ∈ [0, 1]. Thus, it ensures ∑ 𝑤𝑖𝑗(𝑡) = 1𝑛

𝑖=1 . In 

Eq. (3), when the other resource utilisation is kept smooth and steady, if 𝑟𝑖𝑗(𝑡) changes more 

significantly, then ∆𝑤𝑖𝑗(𝑡) is also more distinct. Using 𝑤𝑖𝑗(𝑡), we further define a metric, 

called composite index 𝐼, to assess the overall status of a workflow enactment service. Each 

workflow enactment service has I at moment t, thus, for service 𝑗, 𝐼𝑗(𝑡) is: 

𝐼𝑗(𝑡) = ∑ 𝑤𝑖𝑗(𝑡) ∙ 𝑟𝑖𝑗(𝑡)𝑛
𝑖=1                                                          (4) 

In Eq. (4), 𝑟𝑖𝑗(𝑡) ∈ [0, 1] , 𝑤𝑖𝑗(𝑡) ∈ [−1, 1] , then 𝐼𝑗(𝑡) ∈ [0, 1] . Theoretically the 

minimum value 0 of 𝐼𝑗(𝑡) means that the system is idle due to no resource being used and 

 𝑟𝑖𝑗(𝑡) is 0, while the maximum value 1 of 𝐼𝑗(𝑡) means that all resources are in full workload 

and  𝑟𝑖𝑗(𝑡) is 1. Generally speaking, 𝐼𝑗(𝑡) vary between the two extreme values.  

Therefore, the index model indicates the overall status of a workflow enactment service 

from the idle to the fully loaded. Obviously, there are other states within this range including 

the under loaded, the normal load, busy, extra busy, and overloaded etc. Generally speaking, 

the discrete states can be mapped onto the multiple continuous ranges within [0, 1] through 

specifying the thresholds. That is, we use a threshold set 𝑇𝐻 = {𝑡ℎ1, 𝑡ℎ2, … 𝑡ℎ𝑘}, to divide the 

open interval of [0, 1] into 𝑘 + 1 parts. When I changes from [𝑡ℎ𝑘−2, 𝑡ℎ𝑘−1] to [𝑡ℎ𝑘−1, 𝑡ℎ𝑘], 

the workflow enactment service will change from one state to another, e.g., from the under 

loaded to the normal load.  

Based on the composite index model, we can estimate the system status of SwinFlow-

Cloud through analysing the composite index obtained from each workflow enactment 

services. For m workflow enactment services, the mean of 𝐼(̅𝑡) and the mean of ∆𝑤𝑖(𝑡) are: 

𝐼(̅𝑡) =
∑ 𝐼𝑗(𝑡)𝑚
𝑗=1

𝑚
                                                                   (5) 

∆𝑤𝑖(𝑡) =
∑ ∆𝑤𝑖𝑗(𝑡)𝑚
𝑗=1

𝑚
                                                              (6) 

𝐼(̅𝑡) and ∆𝑤𝑖(𝑡)  are stochastically variables in [0, 1] and depend on 𝑇. Therefore, we 

can consider 𝐼(̅𝑡)  and ∆𝑤𝑖(𝑡)  as two stochastic processes depending on 𝑇 , denoted as 

{𝐼(̅𝑡), 𝑡 ∈ 𝑇}, {∆𝑤𝑖(𝑡), 𝑡 ∈ 𝑇}. Then, [0, 1] is their state space.  
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The estimation is to demonstrate that 𝐼(̅𝑡) is changing from one state to another due to 

some resource utilisation spiking significantly. The spike of the resource utilisation is 

generally rapid when SwinFlow-Cloud tackling large-scale applications, especially the 

instance-intensive workflows. Therefore, the time period T of the estimation must be short to 

enable 𝐼(̅𝑡) to reflect the current utilisation and provide an estimable basis for near future 

utilisation.  

Thus, on the basis of the specifications above, obtaining 𝐼(̅𝑡), we utilise the quadratic 

curve fitting regression to calculate the tendency of the state transformation, i.e., from one 

state to another, as shown in Fig. 6.3, and further utilise discrete-time Markov chains to 

predict the probability of future 𝐼(̅𝑡) which stays on the new state. 

For the quadratic curve fitting, we consider 𝐼(̅𝑡) as an input data sequence, denoted as 

(𝑡, 𝐼(̅𝑡)), 𝑡 ∈ 𝑇,𝑇 = {0,1, … ,𝑘 − 1}. We assume that the quadratic equation is 

 𝐼(̅𝑡) = 𝑎0 + 𝑎1𝑡 + 𝑎2𝑡2                                                  (7) 
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Figure 6.3 Quadratic curve fitting on 𝑰�(𝒕) 

Then we solve the following equation group to calculate 𝑎0, 𝑎1, 𝑎2: 

�
𝑘 ∑ 𝑡𝑘−1

𝑖=0 ∑ 𝑡2𝑘−1
𝑖=0

∑ 𝑡𝑘−1
𝑖=0 ∑ 𝑡2𝑘−1

𝑖=0 ∑ 𝑡3𝑘−1
𝑖=0

∑ 𝑡2𝑘−1
𝑖=0 ∑ 𝑡3𝑘−1

𝑖=0 ∑ 𝑡4𝑘−1
𝑖=0

��
𝑎0
𝑎1
𝑎2
� = �

∑ 𝐼(̅𝑡)𝑘−1
𝑖=0

∑ 𝑡 ∙ 𝐼(̅𝑡)𝑘−1
𝑖=0

∑ 𝑡2 ∙ 𝐼(̅𝑡)𝑘−1
𝑖=0

�                     (8) 

After solving 𝑎0, 𝑎1, 𝑎2, we can utilise first derivative to derivate the quadratic equation 

and get 𝐼′�(𝑡) = 𝑎1 + 2𝑎2 ∙ 𝑡. If 𝐼′�(𝑡) > 0 or 𝐼′�(𝑡) < 0, it means that 𝐼(̅𝑡) is monotonically 

increasing or decreasing. 𝐼(̅𝑡) is possible to change its status in the near future. If 𝐼′�(𝑡) = 0, it 

means that 𝐼(̅𝑡) keeps steady on the current status. 
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As a stochastic process, 𝐼(̅𝑡) has memory-less property, that is, if we know current 𝐼(̅𝑡𝑖), 

then future 𝐼(̅𝑡𝑖+1) has no relationship with past 𝐼(̅𝑡𝑖−1), 𝑡𝑖−1, 𝑡𝑖, 𝑡𝑖+1 ∈ 𝑇. Therefore, when 

obtaining 𝐼′�(𝑡) ≠ 0 , we utilise a discrete-time Markov chain to further calculate the 

probability of the state transformation. But the discrete-time Markov chain needs a state set 

with a finite number to build a transition matrix Pt. As discussed above, we can discretise the 

continuous state space of 𝐼(̅𝑡), [0, 1] into finite open intervals using a threshold set 𝑇𝐻 and 

map the intervals onto finite states. We define a state set S for the discrete-time Markov chain, 

including: 

• The idle state (IDLE): This state represents that all resources of a workflow enactment 

service are close to idle and do not bear any workload. 

• The under loaded state (UNDL): It represents that the resources of the workflow 

enactment service are under loaded. The auto-scaling service should take scaling-down 

actions to stop or terminate the workflow enactment service for saving costs. 

• The normal load state (NLLD): It represents that the resources of the workflow 

enactment service are working fine. The workloads are appropriate for the resources. It 

is a normal and practical state for cloud workflow running. 

• The busy state (BUSY): It represents that the resources of the workflow enactment 

service are busy in executing workflows. The workload may be heavy for the resources. 

• The extra busy state (EXBY): It represents that the resources of the workflow 

enactment service are extra busy and some resources are likely overloaded or running 

out at any time. It is a warning state for the resources. The workflow enactment service 

cannot tackle new requests and must not be distributed new requests. The auto-scaling 

service should take scaling-out actions to add new workflow enactment services for 

balancing the workloads. 

• The overloaded state (OVRL): It represents that the resources of the workflow 

enactment service ran out. The service may be unrecoverable due to the overloaded 

workload. This is a fatal state and should not occur. 

That is, there are six states in the set 𝑆 = {𝐼𝐷𝐿𝐸,𝑈𝑁𝐷𝐿,𝑁𝐿𝐿𝐷,𝐵𝑈𝑆𝑌,𝐸𝑋𝐵𝑌,𝑂𝑉𝑅𝐿} to 

identify the status of 𝐼(̅𝑡). The six states are mapped onto the open interval [0, 1] using the 
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threshold set 𝑇𝐻 = {𝑡ℎ1, 𝑡ℎ2, . . , 𝑡ℎ5}, i.e., the IDLE state refers to [0, 𝑡ℎ1); the UNDL state 

refers to [𝑡ℎ1, 𝑡ℎ2); the NLLD state refers to [𝑡ℎ2, 𝑡ℎ3); the BUSY state refers to [𝑡ℎ3, 𝑡ℎ4); 

the EXBY state refers to [𝑡ℎ4, 𝑡ℎ5); the OVRL state refers to [𝑡ℎ5, 1].  

In this thesis, 𝑟𝑖𝑗 has the same state set S like 𝐼(̅𝑡). Thus, the threshold set of 𝑟𝑖𝑗 which S 

is mapped on, denoted as 𝑇𝐻𝑖𝑗 , has the same quantity of thresholds. But for the same i 

resources in m services, if m services have various configurations, the threshold set may be 

different. For example, for the memory resource, if two services have 100 MB and 200 MB 

memory respectively, 𝑇𝐻 = {𝑡ℎ1, 𝑡ℎ2, . . , 𝑡ℎ5} of the former may be {0.14, 0.22, 0.55, 0.8,0.9}, 

while 𝑇𝐻 of the latter may be {0.153, 0.25, 0.574, 0.79,0.89}. Then, 𝑇𝐻 of the 𝐼(̅𝑡) can be 

calculated through 𝑇𝐻𝑖𝑗 of 𝑟𝑖𝑗.  

Moreover, we define a random variant 𝑋(𝐼(̅𝑡𝑘)) , 𝑡𝑘 ∈ 𝑇 . Then, the probability of 

𝑋(𝐼(̅𝑡𝑘)) ∈ 𝑆 is 𝑃(𝑋(𝐼(̅𝑡𝑘)) ∈ 𝑆). It means that the probability P of X getting the value of S is 

determined by 𝐼(̅𝑡𝑘) and 𝐼(̅𝑡𝑘) is determined by 𝑡𝑘. From 𝑡𝑘 to 𝑡𝑘+1, the conditional transition 

probability is 

 𝑃{𝑋𝑡𝑘+1 = 𝑠𝑖|𝑋𝑡𝑘 = 𝑠𝑗} =
𝑃(𝑋𝑡𝑘𝑋𝑡𝑘+1)

𝑃(𝑋𝑡𝑘)
, 𝑡𝑘, 𝑡𝑘+1 ∈ 𝑇; 𝑠𝑖, 𝑠𝑗 ∈ 𝑆                    (9) 

Thus, Pt is a 6x6 transition matrix where the element 𝑝𝑖𝑗at row i and column j describes 

the conditional probability of a transition from state i to state j. Thus,  

𝑝𝑖𝑗 = 𝑃�𝑋 = 𝑠𝑖�𝑋 = 𝑠𝑗�                                                (10) 

Generally speaking, the conditional transition probability can be approximately 

calculated by the frequency of 𝐼(̅𝑡𝑘)being in the interval [𝑡ℎ𝑙 , 𝑡ℎ𝑙+1]  which 𝑠𝑖  expresses 

𝑡ℎ𝑙 , 𝑡ℎ𝑙+1 ∈ 𝑇𝐻; 𝑡𝑘 ∈ 𝑇; 𝑠𝑖 ∈ 𝑆. Using Pt, we can calculate the one step transition, i.e., the 

probability of 𝐼(̅𝑡𝑘+1) being on 𝑠𝑖 at next moment tk+1.  

If 𝑠𝑖 and 𝑠𝑗 are states of S, 𝐼(̅𝑡𝑘), 𝑡𝑘 ∈ 𝑇, is able to transit from 𝑠𝑖 to 𝑠𝑗 through n steps 

because the range of value of 𝐼(̅𝑡𝑘)  is [0, 1]. Thus, the discrete-time Markov chain is 

homogeneous and can calculate the next n steps transition probability of 𝐼(̅𝑡𝑘) by applying the 

Chapman-Kolmogorov equation, i.e., 𝑷𝑡(𝑛) = 𝑷𝑡𝑛. 
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As discussed above, we can use the discrete-time Markov chain to predict the 

probability of 𝐼(̅𝑡𝑘) being on specific states when 𝐼′�(𝑡𝑘) ≠ 0. If the prediction indicates that 

the tendency of 𝐼(̅𝑡𝑘) is on the UNDL or EXBY state approaching the IDLE or OVRL state, it 

means that cloud workflow needs to scale out or in. The alarm service will give an alarm 

notification to the auto-scaling service for taking scaling actions. 

 

 

Figure 6.4 Structure of alarm service 

Furthermore, we design a module structure, as shown in Fig. 6.4. The sampler 

periodically communicates with each workflow enactment service component, obtains a 

snapshot of the specified utilisation metrics and generates a report with a timestamp t for 

estimation. 

The reports comprehensively describe the specified resource utilisation and the possible 

performance bottlenecks in the workflow enactment service components. The report consists 

of identity, utilisation metric item, and timestamp, etc. A utilisation metric item describes the 

identity of a workflow enactment service, 𝐼(𝑡), 𝑟𝑖𝑗(𝑡), 𝑢𝑖𝑗, 𝑐𝑖𝑗, ∆𝑤𝑖𝑗(𝑡) and 𝑤𝑖𝑗(𝑡), 𝑖 = 1. . 𝑛., 

and the moment t, etc. 

The estimator calculates 𝐼(̅𝑡) in every report, collects 𝐼(̅𝑡) for a time period T and solves 

𝑎0, 𝑎1, and 𝑎2 in Eq. (7). If 𝐼(̅𝑡) is on the UNDL or EXBY state and 𝐼′�(𝑡) < 0 or 𝐼′�(𝑡) > 0 in 

several continuous time periods and 𝐼′�(𝑡) is decreasing or increasing in these periods, the 

estimator will further predict the probability of 𝐼(̅𝑡) being approaching the IDLE or OVRL 

state. If the prediction indicates the probability is much higher than 𝐼(̅𝑡) being on other states, 

the alarm service will send a notification to the auto-scaling service. 
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The notification quantitatively describes the system status, including the details of the 

resource utilisation of all workflow enactment services and estimation results from the alarm 

service in several time periods and a timestamp. The notification is a basic evidence for the 

auto-scaling service to take actions. 

6.3.7 Load balancing service 

As presented in the client-cloud architecture, the service component balances evenly the 

workflow requests onto all workflow enactment service components in SwinFlow-Cloud to 

prevent the requests from aggregating on one component. The structure of the service 

component is illustrated in Fig. 6.5. 
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Figure 6.5 Structure of load balancing service 

The component separates the workflow enactment service components into three 

resizable groups. The first group is composed of the components which are able to accept new 

workflow requests due to under loaded, denoted as available group; the second group is 

composed of the components which are not able to accept new workflow requests due to fully 

or over loaded, denoted as unavailable group. The unavailability of components means one or 

more critical resources may be fully or over loaded and they need time to handle the accepted 

requests and they can accept new requests after responding the existing requests; The third 

group is composed of some idle workflow enactment service components, denoted as 

candidate group. The components in this group can be added into the available group any 

time. There are three modules in the service: 
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• Web listener: It listens to the SOAP based workflow requests on the 80 port. The 

requests can be transferred to the request balancer for transiting.  

• Request balancer: It can distribute the requests onto the workflow enactment service 

components in the available group. The workflow requests are usually attached by the 

session information. The session contains the information about workflow service, 

workflow instance, operation content, workflow user (operator), etc. Once receiving a 

new request, the balancer will look up appropriate service component in two groups 

according to the session and check whether the component is available and healthy, 

i.e., request-acceptable, through communicating with the alarm service. If the balancer 

found the service component but checked that it is not in the available group, the 

balancer puts the request into a queue to wait for the service component. The balancer 

checks the availability of all service components in two groups at every fixed time 

interval. It looks up the unavailable service components in the available group and 

moves the unavailable into the unavailable group; it also looks up the available service 

components in the unavailable group and moves the available into the available group. 

Once the service components are available, the balancer will distribute the waiting 

request to them.  

• Register: It is able to register or deregister a workflow enactment service component 

and move it into or out from the candidate group, then send a notification about the 

detail of the service component to the request balancer and the alarm service. Once 

receiving a confirmation from them, it adds the service component into the available 

group or moves the service component out from the candidate group.  

6.3.8 Auto-scaling service 

Auto-scaling service estimates resource demands through interpreting notifications from the 

alarm service and takes the scaling-out and scaling-in actions.  

The notification cannot explicitly indicate the concrete resource demands which the 

auto-scaling service needs to create or add to balance the workloads on current status because 

there are no inherent relationships between the resource utilisation in workflow enactment 

services and the future resource demands. For example, if the utilisation of 100 MB memory 

in a workflow enactment service component is mostly 90% at a moment, for the vertical 
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scaling, it does not mean that the utilisation of the memory will decrease to 45% in the future 

after we add 100 MB memory to the service component; for the horizontal scaling, if adding a 

new workflow enactment service component with 100 MB memory, it does not mean that 

utilisation of the memory of the previous service component will decrease 45% in the future. 

If the pervious service does not complete the current workflow instances, it may keep 90% 

utilisation of the memory for a long time. 

Moreover, for a workflow instance, its resource utilisation is unknown and cannot be 

predicted because the workflow instance may have multiple patterns of execution paths, 

including sequential, parallel, choice, or iterative, etc. The resource demands of each execution 

path cannot be predicted individually if there are no historical executions as a reference. Even 

if there are the historical executions, for a resource, e.g., CPU, it may be much different 

because the capacity varies. For example, the utilisation of CPU in 32-bit system is different 

from that in 64-bit system when executing a workflow instance.  

Therefore, the appropriate approaches to solve the unpredictable resource demands are 

to analyse the utilisation of the resources inside the workflow enactment service components 

for scaling out or in. 

Based on the discussion above, we propose a scaling estimation model to analyse the 

utilisation of the resource metrics which the notifications contain and calculate the number or 

capacity of the resource demands in the future.  

As addressed in the final paragraph in Subsection 6.3.6, the notification consists of the 

details of resource utilisation of all workflow enactment service components and estimation 

results in T. It is constituted by multiple resource utilisation sections. A resource utilisation 

section represents the resource utilisation and results which the alarm estimation model 

calculates in T and consists of multiple resource utilisation segments. Each resource utilisation 

segment consists of an overall resource utilisation item and multiple individual resource 

utilisation items of the service components. The overall resource utilisation item, calculated by 

the alarm estimation model, includes the mean of 𝐼(̅𝑡),  𝑟𝑖(𝑡),  ∆𝑤𝑖(𝑡) and 𝑤𝑖(𝑡), the sum 

∑𝑢𝑖  of i resource and the sum ∑𝑐𝑖  of i resource, 𝑖 = 1. .𝑛 , of 𝑛  resources of all service 

components, at moment t in T; while the individual resource utilisation item of each service 

component includes 𝐼𝑗(𝑡), 𝑟𝑖𝑗(𝑡), ∆𝑤𝑖𝑗(𝑡), 𝑤𝑖𝑗(𝑡), 𝑢𝑖𝑗, 𝑐𝑖𝑗, and 𝑇𝐻𝑖𝑗, 𝑡 ∈ 𝑇. 
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For scaling analysis, if there are m service components with n resources that are 

providing workflow services, we can obtain m individual resource utilisation items at 𝑡, 𝑡 ∈ 𝑇.  

In the items, we find 𝑟𝑖𝑗(𝑡) with ∆𝑤𝑖𝑗(𝑡) > 0 and 𝑇𝐻𝑖𝑗 to calculate resource demands. 

We denote 𝑟𝑖𝑗(𝑡) with ∆𝑤𝑖𝑗(𝑡) > 0 as 𝑟𝑖𝑗′ (𝑡). As defined in Subsection 6.3.6, the open interval 

[𝑡ℎ4, 𝑡ℎ5) ⊂ [0, 1] is corresponding to the EXBY state.  

Here, we utilise the quadratic curve fitting methodology to fit 𝑟𝑖𝑗′ (𝑡), denoted as input 

data sequence, (𝑡, 𝑟𝑖𝑗′ (𝑡)), 𝑡 ∈ 𝑇,𝑇 = {0,1, … ,𝑘 − 1}. Assuming the quadratic equation is  

𝑟𝑖𝑗′ (𝑡) = 𝑏0 + 𝑏1𝑡 + 𝑏2𝑡2                                                  (11) 

The curve of 𝑟𝑖𝑗′ (𝑡) is similar to that of 𝐼(𝑡) in Eq. (7), as shown in Fig. 6.6.  
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Figure 6.6 Quadratic curve fitting to estimate scaling-out 

Then we solve the following equation group to calculate 𝑏0, 𝑏1, 𝑏2: 

�
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𝑖=0

∑ 𝑡2 ∙ 𝑟𝑖𝑗′ (𝑡)𝑘−1
𝑖=0

�                      (12) 

After solving 𝑏0, 𝑏1, 𝑏2, we utilise first derivative to derivate the quadratic equation:  

[𝑟𝑖𝑗′ (𝑡)]′ = 𝑏1 + 2𝑏2𝑡                                                      (13) 
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In Eq. (13), if [𝑟𝑖𝑗′ (𝑡)]′ > 0, it means that 𝑟𝑖𝑗′ (𝑡) is monotonically increasing. 𝑟𝑖𝑗′ (𝑡) is 

possible to change status in the near future. We further calculate an slope, denoted as 𝑘𝑜: 

𝑘𝑜 = 𝑡ℎ5−𝑡ℎ4
𝑇

> 0                                                                  (14) 

Here, we define 𝑘𝑜 as maximum speed at which 𝑟𝑖𝑗′ (𝑡) increases. If  [𝑟𝑖𝑗′ ]′ > 𝑘𝑜, then we 

can conclude that the increase of 𝑟𝑖𝑗′ (𝑡) in T is higher than the maximum speed. Thus, we can 

collect 𝑟𝑖𝑗′ (𝑡) in the workflow enactment service components, of which increase is higher than 

the maximum speed, and take scaling actions. For example, if [𝑟𝑖𝑗′ ]′, 𝑖 = 𝑚𝑒𝑚 , of the 

utilisation of memory in T is higher than 𝑘𝑜, then, for scaling-out actions, we can configure a 

WfSMI with much more memory capacity to create new service components for balancing the 

workloads. 

Based on the analysis above, we can be aware of the significantly under loaded or 

overloaded resources in the service components. It needs to provision much more number or 

capacities of the resources when taking scaling actions.  

Next we further estimate and calculate the number or capacities of resource demands at 

one scaling-out or scaling-in action. As analysed above, it cannot determine the accurate 

number of the resources or service components which are scaled out or in by recovering the 

resource utilisation ratios to the NLLD state. Theoretically, we can scale out by infinite service 

components for decreasing 𝐼(̅𝑡) to the NLLD state without cost considerations. But it is not a 

cost-effective scaling. In this thesis, we try to determine an appropriate number range of the 

services with the more powerful capacity of the resources to guarantee a cost-effective scaling. 

For m service components, if 𝑟𝑖𝑗′ (𝑡) of 𝑘′ resources in 𝑙′ services is overloaded in T, 

denoted as {𝑟𝑖𝑗′ (𝑡), 𝑖 = 1. .𝑘′, 𝑗 = 1. . 𝑙′, 𝑡 ∈ 𝑇}, and the capacity of these resources is  {𝑐𝑖𝑗, 𝑖 =

1. .𝑘′, 𝑗 = 1. . 𝑙′}.  

A scaling-out action is to add one or more service components to decrease 𝑟𝑖𝑗′ (𝑡) to 

avoid the resources running out because 𝑟𝑖𝑗′ (𝑡) enables 𝐼(̅𝑡) to reach the EXBY state. Through 

parsing the notifications from the alarm service, we can obtain 𝑟𝑖𝑗′ (𝑡) and 𝑐𝑖𝑗. Thus, we can 

calculate the total utilisation 𝑠𝑢𝑖 of the i resource in 𝑙′ service components is: 

𝑠𝑢𝑖 = ∑ 𝑟𝑖𝑗′ (𝑡) ∙𝑙′
𝑗=1 𝑐𝑖𝑗                                              (15) 
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To decrease 𝐼(̅𝑡) to the NLLD state, we need decrease and keep 𝑠𝑢𝑖 in [𝑡ℎ2, 𝑡ℎ3) .Then, 

the total capacity 𝑐𝑝𝑖 for this utilisation of the i resource is: 

𝑐𝑝𝑖 = 𝑠𝑢𝑖
𝑡ℎ2+𝑡ℎ3

2

                                                         (16) 

Here, we can obtain the maximum available resource capacity 𝑐max𝑖 in billing budget 

plans offered the billing service and calculate the minimum quantity of the i resource which 

should be scaled out. When obtaining the set of the minimum quantities of the 𝑘′ resource, we 

can get the maximum quantity 𝑠𝑐min in the set to notify the WfSMI service to create new 

workflow enactment service components. Therefore, to recover 𝐼(̅𝑡) to the NLLD state, we 

need at least 𝑠𝑐min service components to balance the remainder of workloads. 

Furthermore, if adding 𝑠𝑢min services, the total number of services is 𝑚 + 𝑠𝑢min and 

𝑟𝑖𝑗(𝑡), 𝑖 = 1. .𝑛, in new services is 0, thus 

𝐼𝑗(𝑡) = ∑ 𝑟𝑖𝑗(𝑡) ∙ ∆𝑤𝑖𝑗(𝑡)𝑛
𝑖=1 , 𝑗 = 1. .𝑚 + 𝑠𝑐min, 𝑡 ∈ 𝑇                               (17) 

𝐼𝑛𝑒𝑤(𝑡) =
∑ 𝐼𝑗(𝑡)𝑚+𝑠𝑐min
𝑗=1

𝑚+𝑠𝑐min
<

∑ 𝐼𝑗(𝑡)𝑚
𝑗=1

𝑚
= 𝐼(𝑡)�����                                      (18) 

If 𝑠𝑐min is equal to 𝑚, i.e., 𝐼𝑛𝑒𝑤(𝑡) = 𝐼(𝑡)�����

2
, but 𝐼(̅t) ∈ [𝑡ℎ4,  𝑡ℎ5], then 𝐼(̅𝑡)

2
∈ �𝑡ℎ4

2
, 𝑡ℎ5

2
�. 

As defined in Subsection 6.3.6, 𝑡ℎ5 ≤ 1, thus, 𝑡ℎ5
2
≤ 0.5, thereby, 𝐼𝑛𝑒𝑤(𝑡) ≤ 0.5. Therefore, 

the composite index 𝐼𝑛𝑒𝑤(𝑡) can decrease to under 0.5 after adding m services. 

According to the analysis above, a scaling-up action should scale out by at least 𝑠𝑐min 

services but not more than m services to recover the overall composite index 𝐼(𝑡)�����  for 

balancing the remainder of the workload. We denote the scaled-out number as 𝑆𝐶𝐿𝑢, then 

𝑆𝐶𝐿𝑢 ∈ [𝑠𝑐min,𝑚]. 

A scaling-in action is to stop or terminate 𝑙′ , 𝑙 < 𝑚, service components with 𝐼𝑗(𝑡), 

𝑗 = 1. . 𝑙′ at the UNDL states to facilitate 𝐼(̅𝑡) to stay at or recover to the NLLD state for a cost-

effective execution. The services with 𝐼𝑗(𝑡) at the UNDL states results in 𝐼(̅𝑡) decreasing to the 

UNDL state, i.e., 𝐼(̅𝑡) ∈ [𝑡ℎ1, 𝑡ℎ2). Obviously, 𝐼𝑗(𝑡) have two distributions in [0, 1]: the one is 

𝑙′ services with 𝐼𝑗(𝑡) ≤ 𝐼(̅𝑡), while the other is 𝑚 − 𝑙′ services with 𝐼𝑗(𝑡) ≥ 𝐼(̅𝑡). The former 

means that the utilisation of the resources is lower than those of the latter. Therefore, for 
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scaling-down, we should stop or terminate 𝑙′ service components. However, 𝑙′ may vary due 

to 𝐼𝑗(𝑡), 𝑗 = 1. .𝑚. If 𝐼𝑗(𝑡) ≤ 𝑡ℎ2, 𝑗 = 1. .𝑚, then 𝐼(̅𝑡) ≤ 𝑡ℎ2, thereby 𝑙′ = 𝑚. Thus a scaling-

down may stop or terminate all service components. But it is only a theoretical possibility. In 

practice, there is a minimum number Z of service components in system to support the lowest 

limit of workflow services. That is, the scaling-down can decrease m to Z at most. 

Therefore, according to the above analysis, a scaling-in action should scale in by at least 

𝑙′ services but not more than m-Z services to recover 𝐼(̅𝑡) to the NLLD state. We denote the 

scaled-in number as 𝑆𝐶𝐿𝑑, then 𝑆𝐶𝐿𝑑 ∈ [𝑙′,𝑚− 𝑍]. 

The auto-scaling service supports the scaling estimation model and generates the 

scaling-out or scaling-in strategies for scaling actions and creates scaling engines to execute 

the actions.  

The estimator listens and interprets the notifications from the alarm service and 

calculates the scaling-out or scaling-in number using the scaling estimation model. In 

SwinFlow-Cloud, the horizontal scaling and vertical scaling are integrated into one strategy 

for support the scaling.  

The scaling-out number range is [𝑠𝑐min. .𝑚], and the scaling-out capacities include the 

calculated 𝐶𝑃𝑖  of 𝑟𝑖′ , 𝑖 = 1. . 𝑛 . The estimator can dynamically create multiple scaling-out 

strategies using the data according to the annual budget plans. For scaling number, if m is 

multiple times as many as 𝑠𝑐min , the estimator will generate three strategies with three 

numbers: 𝑠𝑐min, 𝑚+𝑠𝑐min
2

, and m to scale out; if m is one time as many as 𝑠𝑐min, the estimator 

will generate three strategies with two numbers: 𝑠𝑐min and m to scale out. The scaling-out 

resource capacities, as resource demands, can be sent to the image service to automatically 

generate the images which meet the demands. But in this thesis, the automatic generation of an 

image is not a research focus. We can predesign or predefine multiple images for supporting 

the scaling-out capacities and look up for the most approximate images to meet the resource-

demands. 

The scaling-in number range is [𝑙′. .𝑚− 𝑍] . The estimator can dynamically create 

multiple scaling-in strategies using the data. For scaling number, if 𝑚 − 𝑍 is multiple times as 

many as 𝑙′, the estimator will generate three strategies with three numbers: 𝑙′, 𝑚−𝑍+𝑙
′

2
, and 
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𝑚 − 𝑍  to scale down; if m is one time as many as 𝑙′ , the estimator will generate three 

strategies with two numbers: 𝑙′ and m to scale in. 

After generating these scaling strategies, the auto-scaling service creates one or more 

scaling actions to implement these strategies. Every action references a scaling strategy. The 

service further creates a scaling engine for each scaling action. Once an engine is created, it 

will be executed to recover 𝐼(̅𝑡) to the NLLD state.  

A scaling engine is an execution framework of a scale action and can integrate APIs of 

cloud infrastructures to create or remove one or more service components using an image. The 

execution of an engine is separated by several phases:  

• Launching: The scaling engine can collect all relevant data according to the scaling 

action, including referenced image, number of the services which needs to scale out or 

in, waiting interval to query the completion status of new service components. 

• Running: The scaling engine can invoke APIs of cloud infrastructures to create or 

remove service components according to the specification in the scaling strategy. It 

needs to spend some time in creating or removing a service component. The engine is 

able to wait for the completion of creation and removal through a query for every 

waiting interval specified. Once the creation or removal is completed, the engine will 

send a notification to the load balancing service or the alarm service for registering or 

deregistering.  

• Completed: The scaling engine can complete and notify the auto-scaling service for 

launching next scaling engine. The execution of a scaling engine is exclusive for any 

other scaling engines and estimations in the auto-scaling or alarm service. That is, 

when an engine is running, the estimations of the services will be suspended. Because 

the number of the service components is changing during the scaling engine execution, 

the number may influence the estimations of the services. Therefore, the execution 

period of a scaling engine should be as short as possible to reduce the influence.  

The auto-scaling service will send a notification to the alarm service to estimate at once 

for ensuring 𝐼(̅𝑡) to recover the NLLD state. If not, the alarm service will send the notifications 

again. The auto-scaling service can create a new scaling engine to take actions with bigger 

number of scaling out or in. 
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6.3.9 Principles for the coordination sustainability 

As addressed in subsections above, the runtime functions which every service, i.e., billing, 

WfSMI, load balancing, alarm, and auto-scaling, undertakes are closely associated with other 

services and implemented by efficient coordination between them. The coordination 

guarantees that SwinFlow-Cloud provisions sustainable workflow services which meet the 

requirements analysed in Section 3.2. As discussed in Subsection 4.3.6, the sustainability is 

impacted by the elements. Aiming at the design of the runtime functions of SwinFlow-Cloud 

in this chapter, we further discuss these elements and reveal the constraints between them. 

These constraints can directly or indirectly influence the sustainability of the coordination and 

are the references to facilitate SwinFlow-Cloud to support a workflow application. 

The elements include the pending time, denoted as 𝑡𝑝𝑑, the decaying time, denoted as 

𝑡𝑑𝑐 , the time period for the alarm service, denoted as 𝑇𝑎𝑙 , the time period for the load 

balancing service, denoted as 𝑇𝑙𝑑, the thresholds of 𝐼(̅𝑡), denoted as 𝑇𝐻 = {𝑡ℎ1, 𝑡ℎ2, … }, the 

quantity of the available resources, denoted as 𝑍, and the quantity of the resources to scale out 

or in, i.e., 𝑆𝐶𝐿𝑢 or 𝑆𝐶𝐿𝑑. 

𝑡𝑝𝑑 reflects the efficiency of the scaling-up action, i.e., the shorter 𝑡𝑝𝑑 is, the higher the 

efficiency. As discussed in the last subsection, when a scaling-out action is running, the 

estimations of the auto-scaling service and the alarm service will be suspended. It means that 

the composite index 𝐼(̅𝑡) may be approaching to the OVRL state but the alarm service cannot 

be aware if the efficiency of the scaling-out action is lower. It will be a fatal risk of impacting 

the sustainability. Hence, decreasing 𝑡𝑝𝑑is a goal of configuring an efficient scaling-out action. 

𝑡𝑑𝑐 reflects on a maximum speed of SwinFlow-Cloud from the recoverable status to the 

unrecoverable status, i.e., the OVRL state. The higher the speed is, the shorter 𝑡𝑑𝑐 is. If 𝑡𝑑𝑐 is 

longer, it means that 𝐼(̅𝑡) needs longer time to transit on the OVRL state. In theory, if 𝑡𝑑𝑐 is 

infinitely long, 𝐼(̅𝑡) will never be on the OVRL state. For instance-intensive workflow, the 

scaling-out actions are to decrease the speed of the workflow applications exhausting the 

resources to prolong 𝑡𝑑𝑐 . That is to say, the speed of the scaling-out action creating new 

workflow enactment service components must be faster than that of the workflow applications 

exhausting the resources, i.e., it must be 𝑡𝑝𝑑 < 𝑡𝑑𝑐. 𝐼(̅𝑡) is able to keep recoverable and does 

not transit to the OVRL state.  
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Thus, if 𝑡𝑝𝑑 < 𝑡𝑑𝑐, then cloud workflow is able to keep the system status recoverable 

and prevent from transiting to the OVRL state. 

𝑇𝑎𝑙 reflects the sensitivity of the alarm service to SwinFlow-Cloud. As a core estimator 

to support the load balancing service and the scaling service, the alarm service must be 

sensitive to the system status. In theory, if 𝑇𝑎𝑙 is zero, the alarm service will be aware of the 

system status in real time. But it is not possible in practice. If 𝑇𝑎𝑙 is longer, it may result in 

system status transiting to the OVRL state but the alarm service will not be aware of it.  

Thus, if 𝑇𝑎𝑙 < 𝑡𝑑𝑐, then the alarm service can monitor timely the state transitions of 𝐼(̅𝑡).  

Furthermore, if the alarm service is aware of 𝐼(̅𝑡) transiting to the OVRL state, it notifies 

the scaling service to scale out. The scaling service takes a scaling-out action to prevent 𝐼(̅𝑡) 

from transiting to the OVRL state. The action spends 𝑡𝑝𝑑 in completing the scaling. If the total 

time of the alarm service estimation and the scaling-out action is longer than 𝑡𝑑𝑐 i.e., 𝑇𝑎𝑙 +

𝑡𝑝𝑑 > 𝑡𝑑𝑐, then undoubtedly 𝐼(̅𝑡) will transit to the OVRL state. Thus, we propose a principle 

for this case. 

Principle 1: if 𝑇𝑎𝑙 + 𝑡𝑝𝑑 < 𝑡𝑑𝑐, then 𝐼(̅𝑡) is able to keep recoverable. 

𝑇𝑙𝑑  reflects the sensitivity of the load balancing service to the workflow enactment 

services for determining whether to distribute a request. The load balancing service is aware of 

the status of the 𝐼(̅𝑡) through the estimation of the alarm service. Thus, if the alarm service 

does not estimate the status of 𝐼(̅𝑡) timely, the load balancing service will not be able to check 

the status of 𝐼(̅𝑡) for distribution. On the other hand, if 𝑇𝑙𝑑 is longer than 𝑇𝑎𝑙, it may result in 

𝐼(̅𝑡) transiting to the OVRL state but the load balancing service cannot be aware of it. Thus, 

we propose another principle for this case. 

Principle 2: when the load balancing service needs to check 𝐼(̅𝑡) before dispatching a 

request, if 𝑇𝑙𝑑 < 𝑇𝑎𝑙 , then the load balancing service is able to monitor timely the state 

transitions of 𝐼(̅𝑡).  

In this subsection, we discussed the constraints between the elements that affect the 

coordination sustainability and theoretically propose the two principles. There are still more 

constraints between the elements which need to be revealed. We will further research the other 

constraints in future. 
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6.4 Summary 

In this chapter, we firstly gave an overview of the non-functional design in SwinFlow-Cloud 

and then addressed the build time and runtime function design. The build time aspects cover 

management for such as versioning, organisation, tool agent invocation, billing, WfSMI, 

alarm, and auto-scaling; while the runtime aspects cover the administration and monitoring 

and services. The administration and monitoring include billing, WfSMI, alarm, etc. The 

services cover billing, WfSMI, alarm, load balancing, and auto-scaling service. Finally, we 

discussed the principles for the coordination sustainability. 
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Chapter 7  

SwinFlow-Cloud Prototype 

Implementation 

This chapter presents the prototype implementation of SwinFlow-Cloud based on the client-

cloud architecture proposed in Chapter 4. Firstly, Section 7.1 gives an overview of the 

prototype implementation and the related technology. Then Section 7.2 addresses the 

implementation of the build time functions. Finally, Section 7.3 addresses the implementation 

of the runtime functions.  

7.1 Overview of the implementation 

This section introduces development technology, system development, and system runtime 

environment of SwinFlow-Cloud. 

7.1.1 Development technology 

SwinFlow-Cloud prototype is developed in Java programming language on J2SE 1.6 platform  

based on the design of the build time and runtime functions described in Chapters 5 and 6. 

This section addresses the key parts of the critical Java based technologies for building this 

prototype. 

The client side is composed of the desktop-based applications which are developed 

based on the technology of Eclipse Rich Client Platform (RCP). The Eclipse RCP is a 

framework for creating modular user interfaces based on Open Services Gateway Initiative 
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(OSGi). As a model to modularised Java applications, OSGi technology is a set of 

specifications that defines a dynamic component system for Java in 1998 and developed by the 

OSGi Alliance found in 199939. The model provides a mature and modular architecture to 

reduce software complexity and maintenance costs and enables a remote service management 

on the fly. Utilising OSGi modules to build software systems is like an assembly using in-

house and off-the-shelf spare parts. It significantly increases development productivity and 

makes them much easier to modify and evolve. The OSGi technology is adopted by many 

software vendors or open source organisations such as IBM40, Oracle41, JBoss42, Eclipse43, 

etc. 

Eclipse foundation, recognising the advantages of OSGi, implements the specifications 

of OSGi core frameworks: Equinox44 as an underlying infrastructure platform to support all of 

Eclipse. Eclipse is an open source and extensible platform based on Java. Eclipse provides a 

plug-in model based on Equinox OSGi core framework implementation. A plug-in is a 

structured package which embodies a certain type of service. It can define one or more 

extension points where other plug-ins can add new functionalities or can use the extensions 

provided by other plug-ins. It can be exported as a directory or as a jar which can be added to 

other applications, and be grouped into features which can be distributed and installed into 

other applications.  An Eclipse based program or product contains one or more plug-ins, which 

can be added, replaced or removed to alter the functionality of the program.  

Eclipse RCP technology is a subset of Eclipse. It contains the core framework and 

services for building an Eclipse based application. As the name "rich client" implies, Eclipse 

RCP is an excellent development framework for the applications that interacts with application 

servers, database servers, or other backend resources to deliver a rich user experience on the 

desktop. So far, Eclipse RCP has been applied to much domain-specific software development 

for such as banking, automotive, medical, space exploration, etc. 

The workflow client based on Eclipse RCP is able to provide three excellent features:  

                                                 
39 http://www.osgi.org/Main/HomePage  
40 http://www-01.ibm.com/software/websphere/  
41 http://www.oracle.com/us/corporate/Acquisitions/bea/index.html  
42 http://www.jboss.org/overview/  
43 https://www.eclipse.org/  
44 http://eclipse.org/equinox/  
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(1) Plug-and-play extensibility. Any new functionality can be capsulated as a plug-in 

which complies with RCP plug-ins specifications and plugged into the client at build time, 

deployment time or even runtime. The new plug-ins can utilise the extension points of the 

existing plug-ins of the client and provide new extension points to other plug-ins.  

(2) Flexible user interface layout. The client provides the flexible drag-and-drop tab-

based layout management to users and enables various user interface components, including 

property sheets, viewers, console windows, and outline windows and so on, to organise around 

the editing area in client. 

(3) Dynamic remote maintenance. The Eclipse RCP based workflow client can 

implement dynamic remote maintenance on the fly, including upgrading, troubleshoot, 

updating and so on, without the needs of users learning more IT or workflow management 

knowledge. 

The cloud side is Web service-based applications which are developed based on the 

technology of Apache Axis 245. Axis 2 is the third generation Web Services/SOAP/WSDL 

engine. It provides a complete object model and a modular architecture that makes it easy to 

add functionality and support for new Web services related specifications and 

recommendations. The advantages of Axis 2 for software development include: 

• Send SOAP messages; 

• Receive and process SOAP messages; 

• Create a Web service out of a plain Java class; 

• Create implementation classes for both the server and client using WSDL; 

• Easily retrieve the WSDL for a service; 

• Send and receive SOAP messages with attachments; 

The cloud side based on Web services is able to provide some significant features:  

• Plug-and-play extensibility. Any new functionality of cloud workflow service can be 

capsulated as a normal Web service regardless in any programming language and 
                                                 
45 http://axis.apache.org/axis2/java/core/  
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deployed on an application server on the fly. The new functionality can be recognised 

by Axis 2 automatically.  

• Complex object transports. Any complex serialisable object communicated between 

the client side and the cloud side can be serialised to byte input or output stream and 

transported over the Internet.  

• Crossing firewall. The SOAP is based on HTTP. The Web services can cross the 

firewall without particular specifications on firewall. 

Some graphical representations in SwinFlow-Cloud, such as process modelling, 

organisational modelling and process simulation and so on, use Eclipse Graphical Editing 

Framework (GEF) 46. Eclipse GEF project provides a technology to create rich graphical 

editors and views. It is composed of three principle frameworks: Draw2D, GEF, and Zest. 

Draw2D is a lightweight drawing framework for rendering, layout, or printing graphical 

information without interactive behaviours. Zest is built on top of Draw2D, providing a JFace-

like interface for easily binding a Java model with a Draw2D diagram. GEF is also built on top 

of Draw2D, providing rich APIs for creating an interactive diagram with advanced features, 

including palettes, drag-and-drop supports, a command stack for undoing and redoing 

commands, support for painting, and so on. 

The graphical representations based on Eclipse GEF have some excellent features:  

• Simplified development for graphical editing. The mature capsulations of underlying 

drawing APIs of native methods simplify system development and facilitate graphical 

representation to run across multiple platforms. 

• Extensible graphical modelling. This feature is inherited from RCP plug-in model. 

Any new graphical modelling element can be capsulated into a plug-in and integrated 

into graphical editor to enhance the modelling capacities. 

For navigation rule editing, we introduce ANTLR (ANother Tool for Language 

Recognition) to recognise and parse the custom expressions of navigation rules. ANTLR is a 

language tool that provides a framework for constructing recognisers, interpreters, compilers, 

and translators from grammatical descriptions containing actions in a variety of target 

                                                 
46 http://www.eclipse.org/gef/  
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languages. A navigation rule in SwinFlow-Cloud is a Boolean expression with a textual 

character string and consists of the data variables with Java objects. ANTLR parses the 

expression definitions and generates a compiler to recognise the textual string and further 

calculate the value of the expression. ANTLR is a simple and highly efficient compiler 

generator and appropriate to the calculation of the navigation rules of SwinFlow-Cloud.  

7.1.2 System development 

SwinFlow-Cloud is an open source cloud workflow prototype to support large-scale instance-

intensive workflows. The whole system has over 170 thousand lines of code, over 1300 Java 

class files and over 180 functionality packages.  

For the system development environment, the development of the workflow client is 

Eclipse IDE for RCP Developers, which is a complete set of tools for developers who want to 

create Eclipse plug-ins, Rich Client Applications; while the service development of the cloud 

side is Eclipse IDE for Java EE Developers, which is the tools for Java developers creating 

Java EE and Web applications, including a Java IDE, tools for Java EE, JPA, JSF, Mylyn, 

EGit and others. 

The system framework of the client side is built as a plug-in application based on RCP. 

Each management tool of workflow client is built as a perspective extension point. Each 

runtime service on cloud side is built as a Web service and deployed on cloud infrastructure. 

We design a fundamental Java class structure to depict and represent the core data 

structure of SwinFlow-Cloud, as shown in Fig. 7.1. The top class is an abstract workflow 

entity, named as WorkflowEntity, which means that any data structure can be considered as a 

basic workflow entity at an abstract level and is constructed from the abstract entity. The 

entity is simple and only contains an identity, a name and owner properties. The data type of 

the owner property is WorkflowEntity. These properties indicate that all workflow entities 

have an identity and a name and an abstract owner. Using these properties, we can further 

construct a tree data structure, named as TreeNode, which means that most of the workflow 

entities can be further considered as a tree node and organised in a tree or a forest structure. 

The tree or forest structure provides efficient searching, adding, removing, and updating 

operations. On the basis of the structures, we design the version class which inherits from 

TreeNode class, named as Version, to represent the tree nodes with version number, status, 
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author, and update timestamp properties. On the basis of the fundamental Java classes, we 

design the other Java classes at multiple perspectives of workflow management, including 

Folder, Process, AbstractTask, Transition, AbstractOrganisation, ToolAgent, Rule and so on. 

Furthermore, we design a workflow entity container to implement workflow-specific 

collection operations. The concentrate classes will be further addressed in this Chapter. 

+ID
+Name
+Owner : WorkflowEntity

WorkflowEntity

+Parent : TreeNode
+Children[] : TreeNode

TreeNode

+VersionNumber
+Author
+State
+Lastupdate

Version

«inherits»

«inherits»

+Code
+Lastupdate
+State
+Type
+Description

Process

+Type

Folder

+State
+Input[] : Transition
+Output[] : Transition

AbstractTask

+State
+SourceTask : AbstractTask
+TargetTask : AbstractTask

Transition

+Code
+Abbreviation
+Address
+Since
+EmployeeNumber
+Type

AbstractOragnisation

«inherits»

«inherits»

«inherits»

«inherits»

«inherits»

+Code
+ToolAgentSecurityAccessKey
+InvokedApplicationType
+UserNameForApplication
+PasswordForApplication

ToolAgent

«inherits»

+DataType
+ExpressionContent[] : WorkflowEntity

Rule

«inherits»

+Apped()()
+Add()()
+Search()()
+Remove()()
+RemoveAll()()
+Get()()
+Size()()
+Has()()

+Entities[] : WorkflowEntity
+Owner : WorkflowEntity

EntityContainer

 

Figure 7.1 Fundamental Java class structure 

7.1.3 System runtime environment 

For the runtime environment of SwinFlow-Cloud, we choose a popular commercial cloud 

service infrastructure, Amazon AWS as runtime environment for deployment. Amazon AWS 

provides complete cloud services to support workflow enactment service performing, data 

persistency, image creation, system resource monitoring, billing, and network communication 

and so on. 
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Amazon Elastic Compute Cloud (Amazon EC2) offers various image configurations, 

named as Amazon Machine Image (AMI), to support workflow enactment service 

performing47. We choose Amazon Linux AMI with 64-bit, which can instantiate and launch 

an Amazon EC2 Linux instance in a short time period, as a target platform to migrate the 

workflow enactment service. Furthermore, we choose Amazon Linux AMI to create specific 

Amazon EC2 Linux instances to install and deploy the load balancing service, the alarm 

service, the WfSMI service, the billing service, and/or the auto-scaling service. In Amazon 

EC2, we can build various AMIs using the available resources to support image creation in the 

WfSMI service. 

Apache Tomcat48 is a popular Web application server for running Apache Axis 2 Web 

service engine49. We choose Tomcat as the application server to install and deploy a workflow 

enactment service, or other services mentioned above. Note that each service needs to be 

installed individually in a Tomcat of an Amazon EC2 Linux instance. 

Amazon Simple Storage Service (Amazon S3) offers quick, easy and simple file 

storages over Internet like local disks50. We choose Amazon S3 to store the log files of the 

workflow enactment services and the library files or Java jar files for remotely accessing and 

invoking the external applications. 

Amazon Relational Database Service (Amazon RDS) offers relational database 

service 51. It supports the setup of various relational databases such as MySQL database, 

Oracle database, Microsoft SQLServer database, PostgreSQL database, etc. We choose 

MySQL as workflow storage management repository to implement workflow data persistency, 

including workflow relevant data, workflow control data, process definitions, organisation 

model, tool agents, etc.  

Amazon CloudWatch offers monitoring services to watch the performance of workflow 

enactment services in Amazon EC2 Linux instances52. We choose the service to monitor the 

workflow enactment service components. For monitoring, we customise the resource 

                                                 
47 http://aws.amazon.com/ec2/  
48 http://tomcat.apache.org/  
49 http://axis.apache.org/axis2/java/core/  
50 http://aws.amazon.com/s3/  
51 http://aws.amazon.com/rds/  
52 http://aws.amazon.com/cloudwatch/   
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utilisation metrics according to the specifications in the alarm service. The metrics can be used 

to estimate the system status. 

Amazon AWS offers various pricing policies53. We obtain the policies from AWS to 

make the budget for planning the resource utilisation of SwinFlow-Cloud and monitor the 

budget on AWS. 

7.2 Key functional component implementation 

Using Eclipse RCP framework, we developed the build time functions in four perspectives: 

process, simulation, organisation, tool agent, etc. These perspectives enable workflow 

designers to focus on the management which they are responsible to.  

7.2.1 Process manager 

The process manager is used to query, create, modify, delete, and simulate a process 

definition.  

Its fundamental Java class structure as depicted in Fig. 7.2 includes Process, 

AbstractTask, and Transition. The Process contains various tasks in its children array. The 

AbstractTask is the parent class of all concentrate Java classes for depicting tasks in a process 

which include StartPoint, EndPoint, ParallelJointPoint, ParallelSplitPoint, AssignTask, 

InvokeTask, ManualTask, DataVariable, and SubprocessPoint. The AssignTask class may 

contain one or more Assignment objects which implement assignment between data variables. 

The SubprocessPoint class can contain one or more SubprocessInput and SubprocessOutput 

objects to support sub-process invocation and access. The DataVariable class operates the 

workflow relevant data. The DataVariable objects use constructs expressions to calculate 

values for evaluation. The value can be used to make a decision such as navigating workflow 

execution.  

The process manager uses “org.eclipse.ui.perspectives” extension point in Eclipse RCP 

to create a process perspective and consists of process viewer, property sheet (editor), outline 

                                                 
53 http://aws.amazon.com/pricing/  
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viewer, process editor, process verifier, version controller, and simulator, etc. The manager 

implementation is shown in Fig. 7.3.  

 

+ID
+Name
+Owner : WorkflowEntity

WorkflowEntity

+Parent : TreeNode
+Children[] : TreeNode

TreeNode

+VersionNumber
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+State
+Lastupdate

Version

«inherits»

«inherits»

+Code
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+ToolAgentId
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InvokeTask
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SubProcessPoint
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1
1..*

1

0..*

InputParameter OutputParameter

1

1..*
1

1

InputParameter

11..*

1

1..*

1
1..*

+Expression[] : WorkflowEntity
+InitialValue : WorkflowEntity

DataVariable

1

0..*

 

Figure 7.2 Java class structures from the process perspective 

The process viewer can explore all processes owned by current organisation and 

organise the processes into folder tree structure on the left. Each folder can contain one or 

more processes. The process can be copied or moved between the folders and created, 

renamed, or deleted in the viewer. The property sheet can represent all properties of a task or a 

process and edit or modify the properties. The outline viewer can assist to select or locate a 

graphical element in a process and provide a snapshot of the process. The process editor may 

edit a process and changed any element and aligned to the left, right, centre, top or bottom. A 

workflow designer can drag and drop new graphical elements into the editor for modelling a 
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process, and define new data variables. The new data variable can be specified as multiple 

data types including BYTE, INTEGER, DOUBLE, STRING, etc. Each new data variable can 

be specified an initial value. The initial value can be a constant or an expression which needs 

the expression editor to edit. The version management modular can manage the status of 

process version. It can create, lock or unlock a draft version, and specify the version author 

and timestamp, and create a fixed version with a new version number, and release a versioned 

process to workflow enactment service for execution. 

 

Figure 7.3 Process manager 

The simulator can test a process through simulating the runtime configuration to verify 

the runtime correctness, as shown in Fig. 7.4. The simulator consists of process simulation 

editor, case viewer, variable watch viewer, console, etc. The process simulation editor can 

dynamically represent the process execution paths between the tasks with different colours. 

The case viewer can represent all the simulating process definitions including the sub-

processes in these processes and can control the process to execute, pause, resume, terminate, 

or remove, etc. The variable watches viewer can represent the status of a process or a task or 

runtime values of data variables in the process. The console can print the execution logs or 

prompts of each step during execution of a process. If the execution has any errors or 

exceptions, the console can print the details of them like the console of Eclipse IDE. 
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The expression editor shown in Fig. 7.5 can define a new expression. The expression 

can be used in a navigation rule, an initial value, sub-process input, sub-process output or an 

assignment, etc. The editor utilises the compiler generated by ANTLR and all primary 

calculation operations of data variables. It can check the syntax errors before finishing the 

editing. 

 

Figure 7.4 Process simulator 
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Figure 7.5 Expression editor 

7.2.2 Organisation manager 

The organisation manager is used to create, modify, delete an organisation and its structure, 

divisions, departments, project teams, positions, project roles, and users. 

Its fundamental Java class structure, as shown in Fig. 7.6, includes 

AbstractOrganisation, AbstractPosition, Organisation, Department, Division, ProjectTeam, 

Position, ProjectRole, and User. 

+ID
+Name
+Owner : WorkflowEntity

WorkflowEntity

+Parent : TreeNode
+Children[] : TreeNode

TreeNode

«inherits»

+SerialNumber
+KeyPerformanceIndex
+Capability

AbstractPosition

+Address
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«inherits»
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DivisionDepartment

«inherits»
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+Duty
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+Capability
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Position
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+ProjectName
+ProjectPeriod
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+MemberNumber
+ProjectDocuments[]

ProjectTeam

«inherits»

1

1..*

1

1..*

1

1..*

1

1..*

1

1..*

11..*

+FullName
+Gender
+Identity
+Address
+ContactNumber
+Email
+Postalcode

User

«inherits»

1

1..*

1

1..*

 

Figure 7.6 Java class structures from the organisation perspective 

The AbstractOrganisation class is a parent class of Organisation class, ProjectTeam 

class, Division class, and Department class. The AbstractPosition class is a parent class of 

ProjectRole class and Position class. An Organisation object may contains one or more 

Division objects, Department objects, and ProjectTeam objects. A Division object may 
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contains one or more Division objects, Department objects and ProjectTeam objects. A 

Department object contains one or more Position objects but does not contain Division 

objects. A ProjectTeam object may contains one or more ProjectRole objects but does not 

contain Department objects and Position objects. A Position or ProjectRole object contains 

one or more User objects. But a Position object does not contain ProjectRole objects and a 

ProjectRole object does not contain Position objects. 

 

Figure 7.7 Organisation manager 

The manager consists of organisation structure viewer and organisation structure editor 

as shown in Fig. 7.7. The viewer can explore all organisations, which are visible for the 

permitted users, and activate creation, modification, deletion, and renaming action to update 

the organisation properties. The organisation structures include division, department, project 

team, position, project role, and authority group which can authorise user operation 

authorities.  

In the manager, an organisation structure consists of division structure, department 

structure, position structure, and project team structure. These structures can be edited in a 

structure editor. A designer can drag and drop add and delete structure components and align 

the components to the left, right, middle, top, and bottom, and transform the components 

structures, including rotate 90 degrees, flip vertical or horizontal and so on, and modify the 
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spaces between the components. The editor can zoom in or out for changing the size of graph 

of the structures at 400%, 200%, 100%, 50%, 20%, etc. The manager can shift to other 

managers through the swift button on the top-left corner. Like the process manager, the 

manager has also a property editor which is not shown in Fig. 7.7. The designer can modify or 

update the properties of any component in organisation structures. 

7.2.3 Tool agent manager 

The manager is to create, modify, or delete a tool agent. The fundamental Java class structure 

is shown in Fig. 7.8.  

+ID
+Name
+Owner : WorkflowEntity

WorkflowEntity

+Parent : TreeNode
+Children[] : TreeNode

TreeNode

«inherits»

+Code
+ToolAgentSecurityAccessKey
+InvokedApplicationType
+UserNameForApplication
+PasswordForApplication
+URL
+Port

ToolAgent

«inherits»

+PackageName
+ClassName
+MethodName

AgentCall

«inherits»

+DataTypeName
+Value : Rule

Parameter

«inherits»

1

1..* 1
1..*

 

Figure 7.8 Java class structures from the application perspective 

The ToolAgent class, AgentCall class and Parameter class inherit from the TreeNode 

class. ToolAgent stores the fundamental information for invoking an application, including 

Code, ToolAgentSecurityAccessKey, which controls the permissions to access the application, 

InvokedApplicationType, which indicates the application types such as Java applications, or 

WebService, or C++, etc., UserNameForApplication, which is provided by the applications to 

control accesses, PasswordForApplication, which is provided by the application to control 
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accesses, URL, which indicates the location of the invoked applications, Port, which indicates 

the port number of the invoked applications. One ToolAgent object may contain one or more 

AgentCall objects. The AgentCall class is used to describe the invoked methods in the invoked 

applications and contain PackageName, ClassTypeName, and MethodName, which can 

indicate the details of invocations. An AgentCall can only implement an invocation but there 

may be multiple invocations in one application. The Parameter class describes the input or 

output parameters in an AgentCall and contains DataTypeName, which indicates the data type 

of a parameter, and Value, which indicates the value of a parameter. The value can be a rule 

expression at build time. Therefore, the value is a rule object. 

 

Figure 7.9 Tool agent manager 

The manager consists of tool agent viewer on the left and tool agent editor on the right 

as shown in Fig. 7.9. The viewer can explore all tool agents in an organisation and organise 

these agents into the tree folder structure and can create, modify, delete, search copy, and 

rename a tool agent. The editor consists of three components:  tool agent property detail 

editor, package or library explorer, class selector and method selector. The detail editor can 

represent all property details of a tool agent and is able to update the details including security 

access key, host, port, types of the invoked applications, etc. The package or library explorer 
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can list the library or package file details on the specified URL or host and select a file for 

specifying the class. The class selector can support a selection of Java class to list the static 

methods in the class. The method selector can select one or more static methods to create one 

or more AgentCalls. Each AgentCall can support invocation of Java static method. 

The manager is developed and implemented through using advanced Java reflect 

technology. Hence, we can test the availability of Java methods through specifying an 

AgentCall. 

7.2.4 Workflow enactment service 

The workflow enactment is a fundamental functional service to support workflow 

management and consists of three core modular: workflow engine, task transaction engine, 

and navigation engine. 

7.2.4.1 Workflow engine 
 

The workflow engine is a suite of algorithms, including workflow engine algorithm (Fig. 

7.10), initialisation algorithm (Fig. 7.11), task running algorithm (Fig. 7.12), and process 

suspending algorithm (Fig. 7.13). 
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Algorithm 1: Workflow engine
Input: wfen;      // java object;
Output:

var: proc;         // a process object;
var: enabledTaskQueue; runningTaskQueue; exceptionTaskQueue; // queues

if (wfen is a identity of a process) // this wfen is a main process
     proc = createNewProcess(wfen); // create a new process instance
     initialise(proc);                            // initialise the process instance
if (wfen is subprocessPoint of a process) // this wfen is a sub-process
     if (wfen.subprocess is null)
          proc = createNewProcess(wfen);
          initialise(proc);
          addProcessIntoSubprocessPoint(wfen, proc); // add new process to parent
     else
           proc = wfen.subprocess;
if (proc.state == LAUNCHED)  // the process instance is launched
     proc.state = RUNNING;        // change the state to the running state
try
    while (true)
          run(getEnabledTaskFromQueue(enabledTaskQueue); // get a task instance to run
          if (proc is completed) // if the process instance completed
               proc.state = COMPLETED; // change the state to the completed state
               break;
catch
     if (proc has exception) // if the process instance has any exception
          suspendProcess(proc); // suspend the process instance
          proc.state == SUSPENDED; // change the state to the suspended state
          rollbackAllActiveTransactions(); // roll back all started transactions 

01.
02.
03.
04.
05.
06.
07.
08.
09.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.  

Figure 7.10 Algorithm for workflow engine 

The workflow engine will invoke three critical methods, including initialisation 

algorithm (Fig. 7.11), task running algorithm (Fig. 7.12), and process suspending algorithm 

(Fig. 7.13), to complete the process instance. Algorithm 1 has a loop to get new enabled tasks 

to run. Once the EndPoint task is ended, the the process will complete. 

 

Algorithm 2: Initialise
Input: proc;      // a process object;
Output:

setStartTimestamp(proc); // set the start time stamp for the proc
proc.state = LAUNCHED; // change the state to the launched state
for (each child: proc.children) // if it has children, specify states of children
      if (child is a task) 
           child.state = UNENABLED;

01.
02.
03.
04.
05.
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Figure 7.11 Algorithm for initialisation 

 

Algorithm 3: Task_run
Input: task;      // a task object;
Output:

if (task is one of {StartPoint, EdnPoint, InvokeTask, WaitTask, 
                             AssignTask, ManualTask, SubprocessPoint, 
                             ParallelJointPoint, ParallelSplitPoint}) {
     // if task is one element class in the set above
     // crate a new transaction engine to execute a transaction
     createTaskTransactionEngine(createTransaction(task)).run();
}       

01.
02.
03.
04.
05.
06.
07.  

Figure 7.12 Algorithm for task running 

Algorithm 4 (Fig. 7.13) uses iteration to change the state of current process instance and 

its sub-processes. 

Algorithm 4: Suspend_process
Input: proc;      // a process object;
Output:

proc.state = SUSPENDED; // change current state to the suspended state
for (each child: proc.children) // its all sub-processes will change state.
     if (child is SubprocessPoint && child.subprocess is not null &&
         (child.subprocess.state == LAUNCHED||child.subprocess.state == RUNNING)) 
          suspend_process(child.subprocess);   // iterate to call this algorithm.

01.
02.
03.
04.
05.  

Figure 7.13 Algorithm for process suspending  
 

7.2.4.2 Task transaction engine 

The task transaction engine (Fig. 7.14) can execute a task transaction and control the 

transaction rollback for any exception. The transaction engine is designed as a simple engine 

to meet requirement R2 addressed in Section 3.2.  
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Algorithm 5: Transaction_running
Input: trans;      // a transaction object;
Output:

prepare(trans); // preparation can initialise transaction object;  
                           // backup the data into cache for rollback;
trans.state = PREPARED; // change state of a transaction to the prepared state
var ne = createNavigationEngine(trans); // create a new navigation engine ne
try                                                             
      handleInputTransitions(ne); // ne is used to handle input transitions
      commit(trans); // commit the current transaction for completing it
      trans.state = COMMITED; // change state of transaction to commited state
      handleInputTransitions(ne); // ne is used to handle output transitions
catch
      rollback(trans); // roll back the transaction
      trans.state = EXCEPTION; // change the state to the exception state
      handleInputTransitions(ne); // rollback all input transitions

01.
02.
03.
04.
05.
06.
07.
08.
09.
10.
11.
12.
13.  

Figure 7.14 Algorithm for transaction running 

As shown in Fig. 7.14, the system will create a transaction for each task instance to 

execute. The transaction engine can handle the input and output transitions and commit the 

executed results to the process instance for updating. The transactions are sequential on same 

execution path but concurrent on the parallel execution path. 

7.2.4.3 Navigation engine 

The navigation engine is to navigate the input and output transitions of the specified task. The 

engine needs to clear the status of the input transitions and activate the status of the output 

transitions of the specified task. Therefore the engine is composed of two algorithms: the 

navigation input transition algorithm (Fig. 7.15) and the navigation output transition algorithm 

(Fig. 7.16). The two algorithms are executed in the task transaction engine to support 

calculation of navigation rules for updating the states of the input or output transitions of the 

task instance. 
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Algorithm 6: Navigate_input_transitions
Input: task;      // a task object;
Output:

if (task is ParallelJointPoint) // if task is parallel joint point
     var allCompleted = true;
     for (each input: task.Inputs) // all input transitions are completed
           if (input.state != ENABLED) // if not all completed
                allCompleted = false;   // it means one or more task instance before
                break;                   // the current parallel joint point does not complete
     if (allCompleted)  // if all completed, mark the completed state
           for (each input:task.Inputs)
                  input.state = COMPLETED;
else 
     for (each input: task.Inputs) // if task is not parallel joint point
           if (input.state == ENABLED) // find the enabled transition
                input.state = COMPLETED;
                if (input.sourceTask is not ParallelSplitPoint) // mark all target tasks on
                     for (each output: input.sourceTask.Outputs) // the output transitions
                             if (input != output && output.state==ENABLED) // as unenabled
                                  out.state = UNENABLED;
                                  out.targetTask.state = UNENABLED;

01.
02.
03.
04.
05.
06.
07.
08.
09.
10.
11.
12.
13.
14.
15.
16.
17.
18.  

Figure 7.15 Algorithm for navigating input transitions 
 

Algorithm 7: Navigate_output_transitions
Input: task; // a task object;
            enabledTaskQueue; // a queue contains enabled tasks;
Output:

if (task is ParallelSplitPoint) // if task is parallel split point
     for (each output: task.Outputs) // its all output transitions will be
           output.State = ENABLED; // enabled and all target task instances
           output.TargetTask = ENABLED; // on the output transitions will
           enqueue(enabledTaskQueue, output.TargetTask); // be enabled
else
     if (task.Outputs is null) 
           return;
     for (each output: task.Outputs) // if task is not parallel split point, then
           output.State = ENABLED; // the first transition with navigation 
           output.TargetTask = ENABLED; // rules will be enabled

01.
02.
03.
04.
05.
06.
07.
08.
09.
10.
11.   

Figure 7.16 Algorithm for navigating output transitions 

7.3 Key non-functional component implementation 

This section represents the implementation of the key non-functional components. In the non-

functional components, the core is the alarm and scaling estimation models.  



127 
 

7.3.1 Alarm service 

The implementation is the alarm estimation model which consists of four core algorithms: the 

alarm estimation algorithm (Fig. 7.17), the getting composite index algorithm (Fig. 7.18), the 

quadratic curve fitting algorithm (Fig. 7.19), and Markov predict algorithm (Fig. 7.20) 

. 

Algorithm 8: Alarm_estimate
Input:
Output: notification; // the notification will be sent to the auto-scaling service

01.                                                                 = Get_composite_index(            );
02. var: tendency = Quadtractic_curve_fitting(      ); // use quadratic curve to fitting 
03. var: state;
04. if (tendency is true) 
05.     state = Makov_prediction(      );   // use Markov chain to predict
06. if (state is EXBY || state is UNDL)    // if overloading or under loading, send notification
07.     Return createNotification(                                                                       );
08. else
09.     Return null;
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Figure 7.17 Algorithm for alarm estimation 

 

Algorithm 9: Get_composite_index
Input: 
Output:

01. var:                                              
02.                            // get the initial weight
03. for (var j = 1; j <= m; j++) 
04.     for (var i = 1; i <= n; i++)
05.                                         // the each resource utilisation in each workflow enactment service
06. var:            ;                                 
07. for (var j = 1; j <=m; j++) 
08.     for (var i = 1; i <= n; i++)
09.                                                          // compute the sum of 
10. for (var j = 1; j <= m; j++) 
11.                                                               // compute the mean of the sum
12. for (var j = 1; j <= m; j++) 
13.     for (var i = 1; i <= n; i++)
14.                                                              // compute  
15.                                                              // compute 
16. for (var j = 1; j <= m; j++) 
17.     for (var i = 1; i <= n; i++)
18.                                                    // compute        of each enactment service               
19. for (var j = 1; j <= m; j++) 
20.                                                          
21.                                                    // get         of all enactment services
22. for (var i = 1; i <= m; i++) 
23.      for (var j = 1; j <= n; j++)
24.                                                                 
25.                                                                                 // get           of each resource utilisation
26. Return 
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Figure 7.18 Algorithm for getting composite index 
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Algorithm 10: Quadratic_curve_fitting
Input:                          // the mean of composite indexes of all workflow enactment service
Output: true or false; // if monotonically increasing or decreasing, true; otherwise, false

01. var: t1, t2, t3, t4, sum1, sum2, sum3; // temp variables
02. for (var i=0; i<T; i++) // compute the temp variables for constructing the equation group (8)
03.                                                  //           in (8)
04.                                                  //           in (8)
05.                                                  //           in (8)
06.                                                  //           in (8)
07.                                                                        //            in (8)
08.                                                                        //                in (8)
09.                                                                        //                 in (8)
10. // construct equation group (8) in Subsection 6.3.6
11.
12. 
13.
14.
15. // get a0, a1, a2, construct the first derivative
16. var: fdu = false;
17. var: fdd = false;
18. for (var i=0; i<T; i++)
19.     if (                           ) // monotonically increasing
20.           fdu = true;
21.     if (                           ) // monotonically decreasing
22.           fdd = true;
23. if (                  ) 
24.      Return true;            // if true, do Markov prediction
25. else
26.      Return false;
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Figure 7.19 Algorithm for quadratic curve fitting 
 

Algorithm 11: Markov_predict
Input:                             // the mean of composite indexes of all workflow enactment service
           S;       // as defined in Subsection 6.3.6, S contains {IDLE,UNDL,EXBY, ...}
Output:                // return a state in S, UNDL, EXBY, ...

01. var: trProbMatrix[S][S], // transition probability matrix
02.         trCounMatrix[S][S], // transition counting matrix
03.         initDistribution[S]; // initial distribution probability vector
04. for (var i = 0; i < T; i++) 
05.     if (i < T - 1)
06.
07. for (each state1: S)    // compute the transition matrix
08.     var: sum = 0;
09.     for (each state2: S)
10.         sum += trCounMatrix[state1][state2];
11.     if (sum > 0)
12.         for (each state2: S)
13.               trProbMatrix[sate1][state2] = trCounMatrix[state1][state2] / sum;
14.     initDistribution[state1] = sum / T;  // compute the initial distribution probability
15. var: m[S] = initDistribution[S]·trProbMatrix[S][S]; // one step;
16. Return MaxProbability(m[S]);  // return the state in S with maximum probability.
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Figure 7.20 Algorithm for Markov prediction 
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7.3.2 Auto-scaling service 

The implementation is the auto-scaling estimation model which consists of three core 

algorithms: the scaling analysis algorithm (Fig. 7.21), the auto-scaling algorithm (Fig. 7.22), 

and the auto-scaling algorithm (Fig. 7.23). 

Algorithm 12: Scaling_analyse
Input:                             
Output: []; // this is a set to store the analysed overloaded 

01.                                            = getRc                                                         ;
02. var: RC;          // RC is a set to store the overloaded 
03. for (each      :           )
02.     var: t1, t2, t3, t4, sum1, sum2, sum3; // the temp variables for computing the equation
03.     for (var i = 0; i < T; i++)                   // group in (12)
04.                                                     //           in (12)
05.                                                     //           in (12)
06.                                                     //           in (12)
07.                                                     //           in (12)
08.                                                     //               in (12)
09.                                                     //                  in (12)
10.                                                     //                    in (12)
11.         // construct equation group (12) in Subsection 6.3.8
12.
13.
14.
15.
15.        // get b0, b1, b2, construct the first derivative
16.        var: fdu = false;
17.        for (var i = 0; i < T; i++)
18.             if (                           ) // monotonically increasing
19.                fdu = true;
20.        if (!fdu)
21.
22.           for (var i = 0; i < T; i++)
23.                if (                          )
24.                    putToSet(RC,    );
25. Return RC;
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Figure 7.21 Algorithm for scaling analysis 

Algorithm 13: Scaling_out
Input:                                                                                          ;                             
                                                  ;
                                      ;      // cmaxi is the maximum available resource capacity
                                             // in billing budget plans offered by the billing service 
Output: []; // the quantity range needs to be scaled out by

01. var: C;          // C is a set that contains the minimum quantity of 
02.                       // each resource need to be scaled
03. for (var i = 1;          ; i++)
04.      var: sc;        // sum of rij· cij
05.      for (var j = 1;          ; j++)     //
06.            sc = sc + r'ij· cij;
07.      sc = sc / ((th2+th3) / 2);    // [th2, th3) is the interval of the NLWK state
08.      sc = sc / cmaxi;                   //
09.      putToSet(C, sc);               
10. var: scmin = MAX(C);            // scm is the minimum quantity of workflow enactment 
11.                                               // service that needs to be scaled out
12. Return [scmin, m];                // m is obtained in Subsection 6.3.8
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Figure 7.22 Algorithm for scaling out 
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Algorithm 14: Scaling_in
Input:
           Z; // the minimum quantity of workflow enactment services
Output: SCLd; // the quantity range needs to be scaled in by

01. var: UndL;
02. if (                )   // if       is more than the th2 of the UNDL state
03.       for (var j = 1; j <= m; j++) // find the servers on UNDL state
04.             if (                )
05.                  putToSet(UndL,      ); // put the servers in a set for
06.       SCLd = UndL.size;                 // scaling in
07. else
08.       SCLd = m - Z;  // if       is less than the th2 of the UNDL state
09.                               // then only reserve Z servers
10. Return SCLd
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Figure 7.23 Algorithm for scaling in 

7.4 Summary 

In this chapter, we firstly gave an overview of the technologies developing SwinFlow and the 

motivations of choosing the technologies. Secondly, we surveyed the system development. 

Thirdly, we introduced the development environment of SwinFlow-Cloud: Amazon AWS and 

its characteristics. Next, we represented the implementation of key fundamental functional and 

non-functional components and algorithms to support SwinFlow-Cloud. The functional 

components include process manager, organisation manager, tool agent manager, workflow 

engine, task transaction engine, and navigation engine. The non-functional components 

include the alarm service and the auto-scaling service. 
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Chapter 8  

Case Study, Experiments and Evaluation 

This chapter uses the motivating example in Section 3.1 to represent a case study and deploy 

SwinFlow-Cloud on Amazon AWS for demonstration and evaluation based on the case study. 

The case is discussed in Section 8.1. Section 8.2 represents the experiments based on the case. 

Section 8.3 evaluates the results of the experiments. 

8.1 Case study: mobile charge 

8.1.1 Case analysis 

In Section 3.1, we introduced the mobile charge workflow and its task structure as motivating 

example. In this section, the case will be further discussed in detail and modelled in 

SwinFlow-Cloud. The aim of the workflow is to process the CDRs and complete the charge of 

an SMS. The workflow consists of automatic tasks without manual interactions and is able to 

launch and execute automatically through external events triggering.  

The first task invokes a specific application, named as Collect CDRs, to collect CDRs. 

The application accesses the APIs of external telecommunication exchange equipment to 

import CDRs. As defined in Section 3.1, CDR is a character string with some specific 

delimiters and can be stored in a String variable. This workflow defines a String variable 

array, denoted as cdrs[], to store multiple CDRs.  

The second task invokes a specific application, named as Pre-process CDRs, and sends 

all CDRs as parameters into the application for transferring various equipment-specific CDR 

formats into a unified format. There may be multiple CDRs for one SMS. This task merges the 
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CDRs into one CDR. That is, a CDR is only to charge one SMS. The format can be recognised 

by other tasks of this workflow.  

To simplify workflow modelling and improve performance, we merge the third, fourth, 

and fifth tasks in Section 3.1 into one task. The task further checks the duplications for one 

SMS and removes the duplications to guarantee that an SMS only has one CDR. As the 

parameter, the CDR of an SMS will be returned by the application and stored into a String 

variable, denoted as cdr. 

The third task invokes a specific application, named as Price CDR, and sends the CDR 

to the application for pricing the SMS. The application can calculate the usage amount and 

generate a consumption cost according to the standard policies of China Mobile Limited SMS 

charge. The cost is an amount and stored into a Real variable, denoted as cost. 

The workflow checks a Boolean variable, denoted as b, to determine whether there is 

any offer such as promotion plans or bonus in this SMS. If the variable indicates that there is 

an offer in the SMS, the workflow will execute the fourth task to price the CDR again; 

otherwise, workflow will execute the fifth task. 

The fourth task invokes Price CDR again and sends the CDR to the application for 

pricing the SMS. Most of SMSs charge according to the standard price policies. The 

application can calculate the usage amount again and generate a consumption cost according 

to the special policies of China Mobile Limited SMS charge. The cost is overwritten into cost. 

The fifth task invokes a specific application, named as Store into DB, and sends the 

CDR and the details to the database. The application can access the database through APIs. 

The sixth task transfers the CDR and the detail to a specific application, named as 

Generate Bill, to generate a bill. The application returns a bill which is in a character string 

format and stores the bill into a String variable, denoted as bill. 

The seventh task sends the bill into a specific application, named as Charge Bill, to 

charge. The charge has two patterns: real time charging and regular charging. To simplify the 

complexity of the case, we define this last task as following: the task sends the generated bill 

to a charge service. 
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8.1.2 Process modelling and tool agent defining 

As discussed above, the tasks need to access multiple external applications, i.e., Collect CDRs, 

Pre-process CDRs, Price CDR, Store into DB, Generate Bill, and Charge Bill. We need to 

create six tool agents to support the workflow invocations to the applications. To idealise the 

experiments, we suppose that all applications can offer adequate capacity and performance to 

support workflow invocations. Furthermore, we need to create one String variable array, i.e., 

cdrs[], two String variables, i.e., cdr, bill, one Real variable, i.e., cost, and one Boolean 

variable, i.e., b. 

According to the analysis, we can design the process in process manager, as shown in 

Fig. 8.1, and define the tool agent in tool agent manager, as shown in Fig. 8.2. 

 

Figure 8.1 Mobile SMS charge process definition 

We create a process, named as Mobile Charging, and add nine nodes and two navigation 

rules in it. Except the StartPoint and EndPoint, there are seven system invocation tasks for 

supporting workflow execution. Meanwhile, we define the data variables as listed above. The 

b variable can be used to support the navigation rule, e.g., b == TRUE means that the SMS 

needs to price again, while b == FALSE means that it does not need to do so. 
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Figure 8.2 Tool agent definitions for mobile SMS charge 

We define six tool agents to support the invocations of the workflow, including Collect 

CDRs, Pre-process CDRs, Price CDR, Store into DB, Generate Bill, and Charge Bill. The 

agents can transfer data in to or out from the external applications or services. The applications 

or services located in remote servers provide one or more static methods and specific 

parameters.  

After defining the tool agents, we specify them in the invocation tasks in the Mobile 

SMS Charge, as shown in Fig. 8.3. In this figure, we only represent the specification of the 

first task, Collect CDRs. Other specifications are similar to that of the first task. The 

parameters of the tool agent can be specified using the expression editor. In this task, the 

obtained CDRs from the tool agent, Collect CDRs, is stored into the variable cdrs[]. 
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Figure 8.3 Specifying tool agents to mobile SMS charge 

 

Figure 8.4 Simulation for mobile SMS charge 
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The Mobile Charging can be simulated in the simulation tool, as shown in Fig. 8.4. We 

can check the variable status and logs in the watch viewer and console. The simulation 

indicates that the Mobile Charging can execute successfully.  

We create a new version of the Mobile Charging and release the process to the 

workflow enactment service for execution, as shown in Fig. 8.5 and Fig. 8.6. 

 

Figure 8.5 Creating a new version for mobile SMS charge 

 

Figure 8.6 Releasing to workflow enactment service 
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8.2 Experiments 

8.2.1 Experiment of functional components 

The previous section modelled and defined the workflow, and released to the workflow 

enactment service. In this section, we will represent an experiment for the functional aspects 

addressed in Chapter 5. The experiment can be monitored by the workflow administrator and 

monitoring tool.  

 

Figure 8.7 A released process definition 

 

Figure 8.8 A running workflow instance in administration and monitoring tool 
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As shown in Fig. 8.7, the mobile SMS charge process definition is released to the 

workflow enactment service. We launch a workflow instance using this process definition and 

check the workflow instance in workflow administration and monitoring tool as shown in Fig. 

8.8. According to our experiment, on average the workflow enactment service takes 2 seconds 

to execute a workflow instance. 

 

Figure 8.9 Logs of a workflow instance 

After a workflow instance completed, the logs of the instance are represented in Fig. 8.9. 

The logs record the execution of a workflow instance in detail. 

8.2.2 Experiment of non-functional components 

In this section, we will represent an experiment for the non-functional aspects of SwinFlow-

Cloud. The cloud side is deployed in Amazon AWS. We build a workflow client on client side 

emulator to simulate massive workflow requests sent to the cloud side.  
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8.2.2.1 Preparation  

We addressed the runtime environment of SwinFlow-Cloud in Section 7.1.3. In this Section, 

we give a detailed preparation for the experiment, including both the client side and the cloud 

side. 

For the client side, we design a client emulator based on Apache JMeter54, which is open 

source Java application software that is designed to test functional behaviour and measure 

performance, to simulate massive workflow requests. The emulator is specified to send about 

3,000 requests to the cloud side every five seconds on average. 

For the cloud side, to reduce the communication delays between the services, we first 

deploy load balancing service, alarm service, and auto-scaling service onto one Amazon Linux 

EC2 instance in Amazon AWS, i.e., a virtual machine with Linux operation system, and 

configure the initial specifications as follows: for the composite index I, we consider the three 

typical resource utilisation rates to calculating the index: rcpu (CPU resource utilisation), rproc 

(Workflow engine thread pool utilisation) and rtask (Task transaction engine thread pool 

utilisation). We also deploy a workflow enactment service onto another Amazon Linux EC2 

instance, denoted as workflow server. Then we measure the decaying time of a workflow 

server (i.e., 𝑡𝑑𝑐) being about 130 seconds and the pending time (i.e., 𝑡𝑝𝑑) of a workflow server 

being about 60 seconds. The time period for the alarm service is 𝑇𝑎𝑙. The time period for the 

load balancing service is 𝑇𝑙𝑑. The initial quantity of available workflow server Z is 1. 

8.2.2.2 Simulation experiments 

According to the pre-configurations above, initially, there are Z workflow servers to handle 

the requests from the client side. Our experiments consist of two separate sets. The first set of 

experiment is to demonstrate the workflow instance throughputs of SwinFlow-Cloud on 

Amazon AWS with the pre-configurations of 𝑇𝑙𝑑and 𝑇𝑎𝑙 meeting the two principles described 

in Subsection 6.3.9, while the second set of experiment is to demonstrate the throughput with 

the pre-configurations not meeting the two principles. 

For the first set of experiment, we set 𝑇𝑙𝑑 of the load balancing service as 40 seconds 

and 𝑇𝑎𝑙 as 60 seconds. Thus, 60 (𝑇𝑎𝑙) + 60 (𝑡𝑝𝑑) < 130 (𝑇𝑑𝑐) meets Principle 1 (if 𝑇𝑎𝑙 + 𝑡𝑝𝑑 <

𝑡𝑑𝑐, then 𝐼(̅𝑡) is able to keep recoverable); while 40 (𝑇𝑙𝑑) < 60 (𝑇𝑎𝑙) meets Principle 2 (when 

                                                 
54 https://jmeter.apache.org/ 

https://jmeter.apache.org/
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the load balancing service needs to check 𝐼(̅𝑡) before dispatching a request, if 𝑇𝑙𝑑 < 𝑇𝑎𝑙, then 

the load balancing service is able to monitor timely the state transitions of 𝐼(̅𝑡)  ). The 

experimental results are shown in Fig. 8.10. The experiment lasted for five hours. All 

workflow servers were kept recoverable throughout the experiment. After five hours, we 

terminated the client emulator. The cloud side automatically scaled in and released the 

workflow servers.  Note: The Y-axis is the sum of input (the started workflow instances) and 

output (the completed workflow instances) records every ten minutes. The X-axis is time. Its 

interval is ten minutes. The line with dots demonstrates the changes of the input, while the line 

with crosses demonstrates the changes of the output. 

 

Figure 8.10 Throughputs of workflow servers with two principles 

 

Figure 8.11 Workflow servers in the first set of experiment 
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Fig. 8.11 shows that SwinFlow-Cloud scaled out by ten workflow servers in total to 

handle the requests from the client emulator. The maximum input of these workflow servers is 

more than 81,000 workflow instances every ten minutes with an average of about 75,000, 

while the maximum output is about 80,000 workflow instances every ten minutes with an 

average of about 70,000. Therefore, the total throughput of the SwinFlow-Cloud is about 

4,350,000 in five hours. The experimental results show that the coordination between the 

services is sustainable due to applying the two principles. 

For the second set of experiment, we set 𝑇𝑙𝑑 as 120 seconds (𝑇𝑙𝑑 > 𝑡𝑑𝑐) and set 𝑇𝑎𝑙 as 

150 seconds (𝑇𝑎𝑙 + 𝑡𝑝𝑑 > 𝑡𝑑𝑐), which do not obey the two principles. The experimental results 

are shown in Fig. 8.12. The figure shows that the throughput keeps increasing for the first one 

and half hours and reaches to the maximum point of over 14,000. It then decreases sharply and 

approaches to zero after one and half hours.  

The reason for such a sharp decrease is due to 𝑇𝑙𝑑 > 𝑡𝑑𝑐, which means that the moment 

when the load balancing service found out the workflow servers unrecoverable is later than the 

moment when the workflow servers became unrecoverable. When the massive number of 

requests is sent to the workflow servers on the cloud side, the servers run out quickly and 

become unrecoverable and unavailable before detected by the load balancing service. After the 

load balancing service has detected one or more workflow server instances that are 

unrecoverable and unavailable, it will stop dispatching new requests to them and dispatch the 

requests to the recoverable workflow servers. SwinFlow-Cloud will reduce the capacity due to 

the decreasing quantity of the recoverable and available servers and may be overloaded. On 

the other hand, 𝑇𝑎𝑙 + 𝑡𝑝𝑑 > 𝑡𝑑𝑐 results in that the alarm service cannot be aware of the status 

of the workflow servers timely and notify the auto-scaling service to create new workflow 

servers for balancing the incoming requests. Thus, it will result in that the more workflow 

servers are created and change onto the unrecoverable status. Fig. 8.12 demonstrates the 

analysis above. SwinFlow-Cloud has no capacity to accept more requests after the servers are 

unrecoverable, though it eventually created over 20 workflow server instances, as shown in 

Fig. 8.13. If the experiment is going on, more workflow servers will be created. According to 

our observation, the new workflow servers changed to the unrecoverable status. Therefore, the 

coordination between the services on cloud side will not be sustainable without the application 

of the two principles. 
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Figure 8.12 Throughputs of workflow servers without two principles 

 

Figure 8.13 Workflow servers in the second set of experiment 

8.3 Evaluation against requirements 

The client-cloud SwinFlow-Cloud is a WfMS and supported the large-scale instance-intensive 

workflow in this experiment. The architecture meets requirement R1 (cloud workflow 

architecture). 

 In this experiment, SwinFlow-Cloud gained about 4,350,000 throughputs in five hours. 

The throughputs demonstrate that SwinFlow-Cloud has the capacity to support the workflow 
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applications with high throughputs. It meets requirement R2 (high throughputs) addressed in 

Section 3.2. 

In this 5-hour experiment, the auto-scaling service scaled out by a total of additional ten 

workflow servers to meet the resource demand and scaled in for saving cost. It meets 

requirement R3 (Sustainable scalability) addressed in Section 3.2.  

In the first set of the experiment, SwinFlow-Cloud keeps all workflow servers 

recoverable. The sustainable coordination guarantees the availability and reliability. Therefore, 

it meets requirements R4 (high availability) and R5 (high reliability) addressed in Section 3.2. 

According to the Amazon pricing policies 55 , the cost for our experiment which 

simulated the total throughput of 4,350,000 in 5 hours is $4.03 maximum. That is, the 

workflow system would only cost a maximum of $7,000 per year. Based on the performance 

in our experiment, we can extrapolate that the total cost is about $500,000 per year to handle 

1.36 billion mobile SMS charge workflow instances on a daily basis which is marginal to the 

annual net profit of about $20 billion in China Mobile Limited. Hence, requirement R6 (cost-

effectiveness) addressed in Section 3.2 is also met.  

The experiment is our initial and basic experiment to demonstrate whether our cloud 

workflow is able to achieve the requirements we proposed in Section 3.2. We will further 

collect and research more experiment data in future. 

8.4 Summary 

In this chapter, we firstly gave an in-depth study and analysis to the motivating example 

in Section 3.2. Secondly, we deployed SwinFlow-Cloud on Amazon AWS and completed an 

experiment and further analysed the results. Finally, we evaluated the results of experiment 

and concluded the results met the requirements addressed in Section 3.2. 

                                                 
55 http://aws.amazon.com/pricing/  
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Chapter 9  

Conclusions and Future Work 

This chapter addresses the conclusions and future work of this thesis. Section 9.1 summarises 

this thesis. Section 9.2 addresses the main contributions of this research. Section 9.3 gives an 

overview of our future research work. 

9.1 Summary of this thesis 

The objective of this thesis was to propose novel client-cloud architecture for cloud workflow 

to process large-scale instance-intensive workflows, and design and implement SwinFlow-

Cloud to demonstrate the architecture. The thesis was organised as follows: 

• Chapter 1 introduced workflow concepts which can be easily confused, clarified the 

relationship between the concepts, and further defined concepts and features of cloud 

workflow, and large-scale instance-intensive workflows. This chapter also described 

the key research issues and the structure of this thesis. 

• Chapter 2 reviewed the WfMS architectures supporting large-scale workflow 

applications and the related literatures. In this chapter, we firstly surveyed the 

traditional workflow reference model proposed by WfMC in 1990s. Secondly, we gave 

an overview of the traditional WfMS architectures for large-scale workflows, including 

the centralised architectures and the decentralised architectures. Finally, we further 

discussed the start-of-the-art and state-of-the-practice cloud workflow research. 
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• Chapter 3 represented a motivating example of the representative large-scale instance-

intensive workflow applications, refined the system requirements of designing cloud 

workflow and further analysed the research problems addressed in this thesis. 

• Chapter 4 represented novel client-cloud architecture for cloud workflow. The client 

side consists of the Web-based or desktop-based applications including the functional 

workflow management tools and non-functional workflow accompaniment tools. The 

cloud side consists of the functional workflow enactment service and the non-

functional workflow relevant services, including billing service, WfSMI service, load 

balancing service, alarm service, auto-scaling service, etc. We further discussed the 

elements which influence the sustainable coordination between the services. 

• Chapter 5 addressed the functional design of SwinFlow-Cloud based on the client-

cloud architecture. The functional design includes the build time and runtime 

functions. The former presented the process management, while the latter described the 

workflow instance, workflow enactment service which covers the workflow engine, 

the task transaction engine, and the navigation engine, and workflow administration 

and monitoring functionality. 

• Chapter 6 addressed the non-functional design of SwinFlow-Cloud based on the client-

cloud architecture. The non-functional design covers the organisation, version, and tool 

agent invocation management, the cloud workflow relevant service definition, 

administration and monitoring functionality, and the workflow relevant services. This 

chapter proposed two models: the alarm estimation model and the scaling estimation 

model. The former constructs a composite index to quantify the utilisation of various 

resources in workflow enactment services, uses the quadratic curve fitting 

methodology to monitor the tendency of the index, and further utilises the discrete-

time Markov chain to predict future probability of the index. The latter estimates the 

overloaded resources, calculates the resource demands for balancing the remainder of 

workloads, and calculates the quantity of the workflow enactment services which 

needs to be scaled out or in. Finally, we discuss the principles for coordination 

sustainability. 

• Chapter 7 represented the implementation of SwinFlow-Cloud prototype and the 

technology for developing the prototype. We firstly gave an overview of the 
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technologies developing SwinFlow-Cloud, discussed the motivations of choosing the 

technologies and surveyed the system development, and then introduced the 

development environment of SwinFlow-Cloud: Amazon AWS and its characteristics. 

Secondly, we represented the implementation of key fundamental functional and non-

functional components and algorithms to support SwinFlow-Cloud. The functional 

components include process manager, organisation manager, tool agent manager, 

workflow engine, task transaction engine, and navigation engine. The non-functional 

components include the alarm service and the auto-scaling service. 

• Chapter 8 represented the case study, experiments and evaluation. We deeply analysed 

the motivating example. The example is modelled in process manager and defined 

with multiple tool agents for invocation in the process. Then, we completed the two 

sets of experiment and demonstrated the principles which are able to facilitate the 

sustainability of the coordination between the services. Finally, we evaluated the 

results of the experiments and concluded that SwinFlow-Cloud based on the client-

cloud architecture can meet all the requirements proposed in Section 3.2. 

9.2 Contributions of this thesis 

The significance of this research is that we have investigated comprehensively cloud workflow 

and further proposed novel cloud workflow architecture to support large-scale instance-

intensive workflows. Because cloud computing is extending in broad areas, the architecture of 

the cloud workflow presented in this thesis can provide a reference for constructing complex 

applications in cloud.  

In particular, the major contributions of this thesis are: 

1. Novel client-cloud architecture for cloud workflow. This thesis utilises the cloud 

computing paradigm to innovate novel client-cloud model for architecting WfMS to 

support large-scale instance-intensive workflows. The client-cloud model offers more 

powerful scalability, availability, and reliability and provides a more cost-effective 

solution for WfMS. 

2. The functional and non-functional components in the architecture. In the architecture, 

this thesis further inherits the functional component structure from the traditional 
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workflow reference model and proposes new non-functional components, workflow 

accompaniment tools and workflow relevant services, to enhance the traditional WfMS 

architecture. 

3. The alarm estimation model. This estimation model can be sensitively aware of the 

tendency of the index and the status of cloud workflow for spikes of the workload of 

workflow emerging during processing large-scale instance-intensive workflows.  

4. The scaling estimation model. This estimation model can quantitatively predict future 

resource demands for supporting automatic scaling up or down. The calculation for 

prediction promotes the cloud workflow to be a cost-effective workflow service 

provider. 

5. Principles for coordination sustainability. The principles represent the constraints of 

the elements which influence the coordination between the services. The constraints 

are important in designing a cloud workflow based on the client-cloud architecture but 

often ignored by the designers. Thus, the principles improve the availability and 

reliability. 

9.3 Future work 

The current work in this thesis is that we have completed most of the fundamental designs of 

SwinFlow-Cloud including functional and non-functional aspects and deployed SwinFlow-

Cloud in Amazon AWS. Based on the current work presented in this thesis, future work can 

be conducted from the following aspects: 

1. For our system experiment, we will further conduct experiments to demonstrate and 

reveal more constraints we have discussed in Subsection 4.3.6 and Subsection 6.3.9. 

The constraints are critical to cloud workflow for guaranteeing the sustainability of the 

coordination between the services. 

2. For system development, the current workflow client of SwinFlow-Cloud is a big 

standalone desktop-based plug-in application based on Eclipse RCP. It will be divided 

into multiple modular plug-ins and organised into a mainframe which is based on 

Eclipse RCP to offer more flexible extensibility.  
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3. In the client-cloud architecture, there are multiple elements which influence 

coordination sustainability between the non-functional services. Current work in this 

thesis has revealed some constraints among them, as addressed in the two principles. 

But there are still more constraints to be revealed in future practice. We will further our 

research to reveal other constraints. 

4. Cloud workflow can rapidly accumulate massive data during processing instance-

intensive workflow applications. Therefore, data management of cloud workflow, 

including data mining, data analysing, data security, data transferring and so on, should 

be further investigated in the future. 

5. Current SwinFlow-Cloud is deployed in Amazon AWS for demonstration. In the 

future, we will abstract and capsulate the API level of SwinFlow-Cloud and migrate 

this system prototype onto other cloud infrastructures, such as Eucalyptus, OpenStack, 

Microsoft Azure56, IBM SmartCloud, or Google Cloud57, etc. We will compare the 

performances of which SwinFlow-Cloud running on these cloud platforms. 

                                                 
56 https://www.windowsazure.com/en-us/   
57 https://cloud.google.com/  



149 
 

Bibliography 

[1] W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski and A. P. Barros, 

Workflow Patterns, Distributed and Parallel Databases, 14 (1): pp. 5-51, (2003) 

[2] K. Aberer and M. Hauswirth, Peer-to-Peer Information Systems: Concepts and 

Models, State-of-the-Art, and Future Systems, in Proceedings of the 8th European 

Software Engineering Conference held jointly with 9th ACM SIGSOFT International 

Symposium on Foundations of Software Engineering(ESEC/FSE 2001), Vienna, 

Austria, pp. 326-327, (2001) 

[3] G. Aceto, A. Botta, W. d. Donato and A. Pescapè, Cloud Monitoring: Definitions, 

Issues and Future Directions, in Proceedings of the 1st IEEE International 

Conference on Cloud Networking (CLOUDNET), Paris, France, pp. 63-67, (2012) 

[4] G. Aceto, A. Botta, W. d. Donato and A. Pescapè, Cloud Monitoring: A Survey, 

Computer Networks, 57 (9): pp. 2093-2115, (2013) 

[5] Y. W. Ahn, A. M. K. Cheng, J. Baek, M. Jo and H.-H. Chen, An Auto-Scaling 

Mechanism for Virtual Resources to Support Mobile, Pervasive, Real-time Healthcare 

Applications in Cloud Computing, Network, IEEE, 27 (5): pp. 62-68, (2013) 

[6] A. Aldeeb, K. Crockett and M. J. Stanton, Multi-Agent Based Peer-to-Peer Workflow 

Management System, in Proceedings of the Scope of the Symposium, Manchester, UK, 

pp. 1-8, (2008) 

[7] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwinski, G. Lee, D. 

A. Patterson, A. Rabkin, I. Stoica and M. Zaharia, Above the Clouds: A Berkeley 

View of Cloud Computing, Berkeley, CA, U.S.A., pp. 1-25, (2009) 

[8] I. Astrova, A. Koschel and M. Schaaf, Automatic Scaling of Complex-Event 

Processing Applications in Eucalyptus, in Proceddings of the 15th IEEE International 

Conference on Computational Science and Engineering (CSE), Nicosia, Cyprus, pp. 

22-29, (2012) 



150 
 

[9] A. Bashar, Autonomic Scaling of Cloud Computing Resources Using BN-based 

Prediction Models, in Proceedings of the 2nd IEEE International Conference on 

Cloud Networking (CloudNet), San Francisco, USA, pp. 200-204, (2013) 

[10] M. Beltr´an and A. Guzm´an, An Automatic Machine Scaling Solution for Cloud 

Systems, in Proceedings of the 19th IEEE International Conference on High 

Performance Computing (HiPC), Pune, India, pp. 1-10, (2012) 

[11] G. Boss, P. Malladi, D. Quan, L. Legregni and H. Hall, Cloud Computing, IBM: pp. 

17, (2007) 

[12] J. M. Bradshaw, An Introduction to Software Agents, in Software Agents, MIT Press, 

Cambridge, MA, USA, pp. 3-46, (1997) 

[13] N. M. Calcavecchia, B. A. Caprarescu, E. D. Nitto, D. J. Dubois and D. Petcu, 

DEPAS: A Decentralized Probabilistic Algorithm for Auto-Scaling, Computing, 94 

(8-10): pp. 701-730, (2012) 

[14] D. Cao, X. Liu and Y. Yang, Novel Client-Cloud Architecture for Scalable Instance-

Intensive Workflow Systems, in Proceedings of the 14th International Conference on 

Web Information Systems Engineering (WISE), Nanjing, China, pp. 270-284, (2013) 

[15] E. Caron, F. e. e. Desprez and A. Muresan, Forecasting for Grid and Cloud 

Computing On-Demand Resources Based on Pattern Matching, in the 2nd IEEE 

International Conference on Cloud Computing Technology and Science (CloudCom), 

Indianapolis, U.S.A., pp. 456 - 463, (2010) 

[16] M. a. B. d. Carvalho, R. P. Esteves, G. d. C. Rodrigues, L. Z. Granville and L. M. R. 

Tarouco, A Cloud Monitoring Framework for Self-Configured Monitoring Slices 

Based on Multiple Tools, in Proceedings of the 9th IEEE International Conference on 

Network and Service Management (CNSM), Zurich, Switzerland, pp. 180-184, (2013) 

[17] S. Chaisiri, B.-S. Lee and D. Niyato, Optimization of Resource Provisioning Cost in 

Cloud Computing, Services Computing, IEEE Transactions on, 5 (2): pp. 164-177, 

(2012) 

[18] S. Chaisiri, R. Kaewpuang, B.-S. Lee and D. Niyato, Cost Minimization for 

Provisioning Virtual Servers in Amazon Elastic Compute Cloud, in Proceedings of the 

19th IEEE International Symposium on Modeling, Analysis & Simulation of 

Computer and Telecommunication Systems (MASCOTS), Singapore pp. 85-95, (2011) 

[19] C. Chapman, W. Emmerich, F. G. Márquez, S. Clayman and A. Galis, Software 

Architecture Definition for On-Demand Cloud Provisioning, Cluster Computing, 15 

(2): pp. 79-100, (2012) 



151 
 

[20] T. C. Chieu, A. Mohindra, A. A. Karve and A. Segal, Dynamic Scaling of Web 

Applications in a Virtualized Cloud Computing Environment, in 2009 IEEE 

International Conference on e-Business Engineering (ICEBE), IEEE. pp. 281 - 286 

(2009) 

[21] W. M. Coalition, Workflow Process Definition Interface -- XML Process Definition 

Language, pp. 87, (2002) 

[22] S. Costache, N. Parlavantzas, C. Morin and S. Kortas, Themis: Economy-based 

Automatic Resource Scaling for Cloud Systems, in Proceedings of the 9th IEEE 

International Conference on High Performance Computing and Communication & 

the 14th IEEE International Conference on Embedded Software and Systems (HPCC-

ICESS), Liverpool, UK, pp. 367-374, (2012) 

[23] R. Cushing, S. Koulouzis, A. S. Z. Belloum and M. Bubak, Prediction-Based Auto-

Scaling of Scientific Workflows, in Proceedings of the 9th International Workshop on 

Middleware for Grids, Clouds and e-Science, ACM, Lisbon, Portugal. pp. 1-6, (2011) 

[24] J. Dean and S. Ghemawat, MapReduce: Simplified Data Processing on Large 

Clusters, Communications of the ACM - 50th Anniversary Issue: 1958 - 2008, 51 (1): 

pp. 107-113, (2008) 

[25] E. Deelman, D. Gannonb, M. Shieldsc and I. Taylor, Workflows and e-Science: An 

Overview of Workflow System Features and Capabilities, Future Generation 

Computer Systems, 25 (5): pp. 528-540, (2009) 

[26] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, S. Patil, M.-H. Su, K. Vahi 

and M. Livny, Pegasus: Mapping Scientific Workflows onto the Grid, in Proceedings 

of the 2nd EuropeanAcrossGrids Conference (AxGrids 2004), Nicosia, Cyprus, pp. 

11-20, (2004) 

[27] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi, 

G. B. Berriman, J. Good, A. Laity, J. C. Jacob and D. S. Katz, Pegasus: A framework 

for mapping complex scientific workflows onto distributed systems, Scientific 

Programming, 13 (3): pp. 219-237, (2005) 

[28] B. Dougherty, J. White and D. C. Schmidt, Model-driven auto-scaling of green cloud 

computing infrastructure, Future Generation Computer Systems, 28 (2): pp. 371-378, 

(2012) 

[29] S. Dutta, S. Gera, A. Verma and B. Viswanathan, SmartScale: Automatic Application 

Scaling in Enterprise Clouds, in Proceddings of the 5th IEEE International 

Conference onCloud Computing (CLOUD), Honolulu, USA, pp. 221-228, (2012) 



152 
 

[30] L. Ehrler, M. Fleurke, M. Purvis and B. T. R. Savarimuthu, Agent-based Workflow 

Management Systems (WfMSs), Information Systems and E-Business Management, 4 

(1): pp. 5-23, (2006) 

[31] G. J. Fakas and B. Karakostas, A Peer to Peer (P2P) Architecture for Dynamic 

Workflow Management, Information and Software Technology, 46 (6): pp. 423-431, 

(2004) 

[32] F. L. Ferraris, D. Franceschelli, M. P. Gioiosa, D. Lucia, D. Ardagna, E. D. Nitto and 

T. Sharif, Evaluating the Auto Scaling Performance of Flexiscale and Amazon EC2 

Clouds, in Proceedings of the 14th International Symposium on Symbolic and 

Numeric Algorithms for Scientific Computing (SYNASC), Timisoara, Rumania, pp. 

423-429, (2012) 

[33] I. Foster and C. Kesselman, The Grid 2: Blueprint for a new computing 

infrastructure, Morgan Kaufmann, USA. (2003) 

[34] I. Foster, Y. Zhao, I. Raicu and S. Lu, Cloud Computing and Grid Computing 360-

Degree Compared, in Proceedings of Grid Computing Environments Workshop, 2008 

(GCE 2008), Austin, Texas, U.S.A., pp. 1-10, (2008) 

[35] D. Franz, J. Tao, H. Marten and A. Streit, A Workflow Engine for Computing Clouds, 

in Proceedings of the 2nd International Conference on Cloud Computing, GRIDs, and 

Virtualization (CLOUD COMPUTING), Rome, Italy, pp. 1-6, (2011) 

[36] G. Galante and L. C. E. d. Bona, A Survey on Cloud Computing Elasticity, in 

Proceedings of the 5th IEEE International Conference on Utility and Cloud 

Computing (UCC), Chicago, USA, pp. 263-270, (2012) 

[37] S. V. Gogouvitis, V. Alexandrou, N. Mavrogeorgi, S. Koutsoutos, D. Kyriazis and T. 

Varvarigou, A Monitoring Mechanism for Storage Clouds, in Proceedings of the 2nd 

IEEE International Conference on Cloud and Green Computing (CGC), Xiangtan, 

China, pp. 153-159, (2012) 

[38] Z. Gong, X. Gu and J. Wilkes, PRESS: PRedictive Elastic ReSource Scaling for 

Cloud Systems, in 2010 International Conference on Network and Service 

Management (CNSM), Niagara Falls, USA, pp. 9 - 16, (2010) 

[39] Z. Gong, P. Ramaswamy, X. Gu and X. Ma, SigLM: Signature-driven load 

management for cloud computing infrastructures, in Proceedings of the 17th 

International Workshop on Quality of Service (IWQoS), Charleston, USA, pp. 1-9, 

(2009) 



153 
 

[40] T. J. Hacker and K. Mahadik, Flexible resource allocation for reliable virtual cluster 

computing systems, in Proceedings of 2011 International Conference for High 

Performance Computing, Networking, Storage and Analysis, ACM, Washington, 

USA. pp. 1-12, (2011) 

[41] R. Han, L. Guo, Y. Guo and S. He, A Deployment Platform for Dynamically Scaling 

Applications in the Cloud, in the 3rd IEEE International Conference on Coud 

Computing Technology and Science (CloudCom), Athens, Greece, pp. 506 - 510 

(2011) 

[42] R. Han, L. Guo, M. M. Ghanem and Y. Guo, Lightweight Resource Scaling for Cloud 

Applications, in the 12th IEEE/ACM International Symposium on Cluster, Cloud and 

Grid Computing, Ottawa, Canada, pp. 644 - 651, (2012) 

[43] Y. He, X. Wang, Y. Chen, Z. Du, W. Huang and X. Chai, A Simulation Cloud 

Monitoring Framework and Its Evaluation Model, Simulation Modelling Practice and 

Theory, 38 (0): pp. 20-37, (2013) 

[44] D. Hollingsworth, Workflow Management Coalition: The Workflow Reference 

Model, Winchester, Hampshire, UK, pp. 1-55, (1995) 

[45] C.-J. Huang, A. J. C. Trappey and Y.-H. Yao, Developing an Agent-based Workflow 

Management System for Collaborative Product Design, Industrial Management & 

Data Systems, 106 (5): pp. 680-699, (2006) 

[46] D. Hull, K. Wolstencroft, R. Stevens, C. Goble, M. R. Pocock, P. Li and T. Oinn, 

Taverna: a tool for building and running workflows of services, Nucleic Acids 

Research, 34 (suppl 2): pp. W729-W732, (2006) 

[47] A. Iosup, S. Ostermann, M. N. Yigitbasi, R. Prodan, T. Fahringer and D. H. J. Epema, 

Performance Analysis of Cloud Computing Services for Many-Tasks Scientific 

Computing, IEEE Transactions on Parallel and Distributed Systems, 22 (6): pp. 931-

945, (2011) 

[48] J. Jiang, J. Lu, G. Zhang and G. Long, Optimal Cloud Resource Auto-Scaling for Web 

Applications, in Proceedings of the 13th IEEE/ACM International Symposium on 

Cluster, Cloud and Grid Computing (CCGrid), pp. 58-65, (2013) 

[49] A. Kamel, A. Al-Fuqaha, D. Kountanis and I. Khalil, Towards a Client-side QoS 

Monitoring and Assessment Using Generalized Pareto Distribution in a Cloud-based 

Environment, in Proceedings of the IEEE Wireless Communications and Networking 

Conference Workshops (WCNCW), Shanghai, China, pp. 123-128, (2013) 



154 
 

[50] H. Kang, J.-i. Koh, Y. Kim and J. Hahm, A SLA Driven VM Auto-Scaling Method in 

Hybrid Cloud Environment, in Proceddings of the 15th Asia-Pacific Network 

Operations and Management Symposium (APNOMS), Hiroshima, Japan, pp. 1-6, 

(2013) 

[51] A. Khan, X. Yan, S. Tao and N. Anerousis, Workload Characterization and 

Prediction in the Cloud: A Multiple Time Series Approach, in Proceddings of the 

IEEE Network Operations and Management Symposium (NOMS), Maui, USA, pp. 

1287-1294, (2012) 

[52] C.-C. Lin, J.-J. Wu, J.-A. Lin, L.-C. Song and P. Liu, Automatic Resource Scaling 

Based on Application Service Requirements, in Proceeedings of the 5th IEEE 

International Conference on Cloud Computing (CLOUD), Honolulu, USA, pp. 941-

942, (2012) 

[53] C.-C. Lin, J.-J. Wu, P. Liu, J.-A. Lin and L.-C. Song, Automatic Resource Scaling for 

Web Applications in the Cloud, in Grid and Pervasive Computing, J. Park, et al., 

Springer-Verlag Berlin Heidelberg, pp. 81-90, (2013) 

[54] X. Liu, Y. Yang, D. Cao and D. Yuan, Selecting Checkpoints Along the Time Line: A 

Novel Temporal Checkpoint Selection Strategy for Monitoring a Batch of Parallel 

Business Processes, in Proceedings of the 35th International Conference on Software 

Engineering (ICSE), San Francisco, USA, pp. 1281-1284, (2013) 

[55] X. Liu, D. Yuan, G. Zhang, J. Chen and Y. Yang, SwinDeW-C: A Peer-to-Peer based 

Cloud Workflow System, in Handbook of Cloud Computing, B. Furht and A. 

Escalante, Springer US, pp. 309-332, (2010) 

[56] X. Liu, Y. Yang, D. Cao, D. Yuan and J. Chen, Managing Large Numbers of Business 

Processes with Cloud Workflow Systems, in Proceedings of the 10th Australasian 

Symposium on Parallel and Distributed Computing, Australian Computer Society, 

Inc.: Melbourne, Australia, pp. 33-42, (2012) 

[57] X. Liu, Y. Yang, D. Yuan, G. Zhang, W. Li and D. Cao, A Generic QoS Framework 

for Cloud Workflow Systems, in Proceedings of the 9th IEEE International 

Conference on Dependable, Autonomic and Secure Computing (DASC), Sydney, 

Australia, pp. 713-720, (2011) 

[58] X. Liu, D. Yuan, G. Zhang, W. Li, D. Cao, Q. He, J. Chen and Y. Yang, The Design 

of Cloud Workflow Systems, Springer, (2012) 



155 
 

[59] M. Mao and M. Humphrey, Auto-Scaling to Minimize Cost and Meet Application 

Deadlines in Cloud Workflows, in International Conference for High Performance 

Computing, Networking, Storage and Analysis (SC), Seatle, USA, pp. 1 - 12, (2011) 

[60] M. Mao and M. Humphrey, Scaling and Scheduling to Maximize Application 

Performance within Budget Constraints in Cloud Workflows, in Proceedings of the 

27th IEEE International Symposium on Parallel & Distributed Processing, Boston, 

USA, pp. 67-78, (2013) 

[61] M. Mao, J. Li and M. Humphrey, Cloud Auto-scaling with Deadline and Budget 

Constraints, in the 11th IEEE/ACM International Conference on Grid Computing 

(GRID), Brussels, Belgium, pp. 41 - 48, (2010) 

[62] G. A. McGilvary, J. Rius, I. n. Goiri, F. Solsona, A. Barker and M. Atkinson, C2MS: 

Dynamic Monitoring and Management of Cloud Infrastructures, in Proceedings of 

the 5th IEEE International Conference on Cloud Computing Technology and Science 

(CloudCom), Bristol, UK, pp. 290-297, (2013) 

[63] D. Moldovan, G. Copil, H.-L. Truong and S. Dustdar, MELA: Monitoring and 

Analyzing Elasticity of Cloud Services, in Proceedings of the 5th IEEE International 

Conference on Cloud Computing Technology and Science (CloudCom), Bristol, UK, 

pp. 80-87, (2013) 

[64] N. S. More and S. R. Hiray, Load balancing and resource monitoring in cloud, in 

Proceedings of the CUBE International Information Technology Conference, ACM: 

Pune, India. pp. 552-556, (2012) 

[65] D. Niu, H. Xu, B. Li and S. Zhao, Quality-Assured Cloud Bandwidth Auto-Scaling for 

Video-On-Demand Applications, in Proceedings of the IEEE INFOCOM, Orlando, 

USA, pp. 460-468, (2012) 

[66] H. S. Nwana and D. T. Ndumu, An Introduction to Agent Technology, in Software 

Agents and Soft Computing Towards Enhancing Machine Intelligence, H. Nwana and 

N. Azarmi, Springer Berlin / Heidelberg, Berlin/Heidelberg, pp. 1-26, (1997) 

[67] C. Olston, G. Chiou, L. Chitnis, F. Liu, Y. Han, M. Larsson, A. Neumann, V. B. N. 

Rao, V. Sankarasubramanian, S. Seth, C. Tian, T. ZiCornell and X. Wang, Nova: 

continuous Pig/Hadoop workflows, in Proceedings of the 2011 ACM SIGMOD 

International Conference on Management of data, ACM: Athens, Greece. pp. 1081-

1090, (2011) 

[68] J. Park, H. Yu, K. Chung and E. Lee, Markov Chain Based Monitoring Service for 

Fault Tolerance in Mobile Cloud Computing, in Proceedings of the IEEE Workshops 



156 
 

of International Conference on Advanced Information Networking and Applications 

(WAINA), Biopolis, Singapore, pp. 520-525, (2011) 

[69] N. Roy, A. Dubey and A. Gokhale, Efficient Autoscaling in the Cloud using 

Predictive Models forWorkload Forecasting, in International Conference on Cloud 

Computing, Washington, USA, pp. 500 - 507, (2011) 

[70] N. Russell, A. H. M. ter Hofstede, W. M. P. van der Aalst and N. Mulyar, Workflow 

ControlFlow Patterns: A Revised View, pp. 1-134, (2006) 

[71] P. Saripalli, G. Kiran, R. S. R, H. Narware and N. Bindal, Load Prediction and Hot 

Spot Detection Models for Autonomic Cloud Computing, in Proceedings of the 4th 

IEEE International Conference on Utility and Cloud Computing (UCC), Melbourne, 

Australia, pp. 397-402, (2011) 

[72] D. M. M. Schunselaar, T. F. van der Avoort, H. M. W. Verbeek and W. M. P. van der 

Aalst, YAWL in the Cloud, in Proceedings of the 1st YAWL Symposium, Sankt 

Augustin, Germany, pp. 41-48, (2013) 

[73] J. Shao, H. Wei, Q. Wang and H. Mei, A Runtime Model Based Monitoring Approach 

for Cloud, in Proceedings of the 3rd IEEE International Conference on Cloud 

Computing (CLOUD), Miami, USA, pp. 313-320, (2010) 

[74] J. Shen, Y. Yang and Q. H. Huy, SwinDeW-B: A P2P based Composite Service 

Execution System with BPEL, in Proceeding of the International Workshop on 

Dynamic Web Processes (DWP), Amsterdam, Netherlands, pp. 73-84, (2005) 

[75] J. Shen, Y. Yang and J. Yan, Adapting P2P based Decentralised Workflow System 

SwinDeW-S with Web Service Profile Support, in Proceedings of the 9th International 

Conference on Computer Supported Cooperative Work in Design (CSCWD), 

Coventry, UK, pp. 535-540, (2005) 

[76] Z. Shen, S. Subbiah, X. Gu and J. Wilkes, CloudScale: Elastic Resource Scaling for 

Multi-Tenant Cloud Systems, in the 2nd ACM Symposium on Cloud Computing 

(SoCC), Cascais, Portugal, pp. 1-14, (2011) 

[77] W. Stallings, Operating Systems: Internals and Design Principles, 7 ed, New Jersey, 

U.S.A. Prentice Hall. 768. (2012) 

[78] A. D. Stefano, G. Morana and D. Zito, Scalable and Configurable Monitoring System 

for Cloud Environments, in Proceedings of the 22nd IEEE International Workshop on 

Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE), 

Hammamet, Tunisia, pp. 134-139, (2013) 



157 
 

[79] J. Styles and H. Hoos, Ordered Racing Protocols for Automatically Configuring 

Algorithms for Scaling Performance, in Proceedings of the 15th ACM Annual 

Conference on Genetic and Evolutionary Computation, Amsterdam, Netherlands, pp. 

551-558, (2013) 

[80] L. M. Vaquero, L. Rodero-Merino and R. Buyya, Dynamically Scaling Applications 

in the Cloud, ACM SIGCOMM Computer Communication Review, 41 (1): pp. 45-52, 

(2011) 

[81] S. Venugopal, H. Li and P. Ray, Auto-Scaling Emergency Call Centres Using Cloud 

Resources to Handle Disasters, in Proceddings of the 19th IEEE International 

Workshop on Quality of Service (IWQoS), San Jose, USA, pp. 1-9, (2011) 

[82] C. Wang, J. Chen, B. B. Zhou and A. Y. Zomaya, Just Satisfactory Resource 

Provisioning for Parallel Applications in the Cloud, in Proceddings of the 8th World 

Congress on Services (SERVICES), Honolulu, USA, pp. 285-292, (2012) 

[83] W. Wang, H. Chen and X. Chen, An Availability-Aware Approach to Resource 

Placement of Dynamic Scaling in Clouds, in Proceddings of the 5th IEEE 

International Conference on Cloud Computing (CLOUD), Honolulu, USA, pp. 930-

931, (2012) 

[84] WfMC, Workflow Management Coalition: Terminology & Glossary, Winchester, 

Hampshire, UK., pp. 1-65, (1999) 

[85] J. Yan, Y. Yang and G. K. Raikundalia, A Decentralised Architecture for Workflow 

Support, in Proceedings of the 7th International Symposium on Future Software 

Technology (ISFST 2002), Wuhan, China, pp. 23-25, (2002) 

[86] J. Yan, Y. Yang and G. K. Raikundalia, SwinDeW—A p2p-Based Decentralized 

Workflow Management System, IEEE Transactions on Systems, Man, and 

Cybernrtics—Part A: Systems and Humans, 36 (5): pp. 922-935, (2006) 

[87] J. Yang, C. Liu, Y. Shang, Z. Mao and J. Chen, Workload Predicting-Based 

Automatic Scaling in Service Clouds, in Proceedings of the 6th IEEE International 

Conference on Cloud Computing, Santa Clara, USA, pp. 810-815, (2013) 

[88] J. Yang, C. Liu, Y. Shang, B. Cheng, Z. Mao, C. Liu, L. Niu and J. Chen, A Cost-

Aware Auto-Scaling Approach Using the Workload Prediction in Service Clouds, 

Information Systems Frontiers, 16 (1): pp. 7-18, (2014) 

[89] Y. Yang, K. Liu, J. Chen, L. J. and H. Jin, Peer-to-Peer Based Grid Workflow 

Runtime Environment of SwinDeW-G (e-Science07), in Proceedings of the 3rd IEEE 



158 
 

International Conference on e-Science and Grid Computing, Bangalore, India, pp. 51-

58, (2007) 

[90] L. Yazdanov and C. Fetzer, VScaler: Autonomic Virtual Machine Scaling, in 

proceedings of the 6th IEEE International Conference on Cloud Computing 

(CLOUD), pp. 212-219, (2013) 

[91] U. Yildiz, A. Guabtniy and A. H. H. Nguz, Business versus Scientific Workflow: A 

Comparative Study, pp. 20, (2009) 

[92] J. Yu and R. Buyya, A Taxonomy of Scientific Workflow Systems for Grid Computing, 

ACM SIGMOD Record, 34 (3): pp. 44-49, (2005) 

[93] D. Yuan, X. Liu, L. Cui, T. Zhang, W. Li, D. Cao and Y. Yang, An Algorithm for 

Cost-Effectively Storing Scientific Datasets with Multiple Service Providers in the 

Cloud, in Proceedings of the 9th IEEE International Conference on eScience 

(eScience), Beijing, China, pp. 285-292, (2013) 

[94] C. Zhang and H. D. Sterck, CloudWF: A Computational Workflow System for Clouds 

Based on Hadoop, in Proceddings of The 1st International Conference on Cloud 

Computing (CloudCom 2009), Beijing, P.R. CHINA, pp. 393-404, (2009) 

[95] Q. Zhang, Q. Zhu and R. Boutaba, Dynamic Resource Allocation for Spot Markets in 

Cloud Computing Environments, in Proceddings of the 4th IEEE International 

Conference on Utility and Cloud Computing (UCC), Melbourne, Australia, pp. 178-

185, (2011) 

[96] Y. Zhao, Y. Zhang, W. Tian, R. Xue and C. Lin, Designing and Deploying a 

Scientific Computing Cloud Platform, in Proceedings in the 13th ACM/IEEE 

International Conference on Grid Computing (GRID) pp. 104-113, (2012) 

 



159 
 

Appendix 

Notation Index 

Notation name Definition Page defined  

c capacity of a resource 82 

ccpu total CPU time consumption in a workflow enactment 

service 

82 

cio maximum read/write bytes of an IO device 83 

cmem maximum memory size in a workflow enactment service 83 

cnet_i maximum incoming bytes of the network device 83 

cnet_o maximum outgoing bytes of the network device 83 

cpi total capacity of the i resource to keep the sui in [th2, th3) 100 

cproc length of the waiting queue of the workflow engine 

thread pool 

83 
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csession maximum session number a workflow enactment service 

can offer 

84 

ctask length of the waiting queue of the task transaction engine 

thread pool 

84 

Ij(t) composite index to assess the overall status of jth 

workflow enactment service at t, Ij(t) ∈ [0, 1] 

91 

𝐼(𝑡) mean of Ij(t), i=1..m 91 

𝐼′(𝑡) first derivative of 𝐼(𝑡) 92 

ko slope which indicates the maximum speed at which r'ij(t) 

increases 

99 

m number of workflow enactment services in SwinFlow-

Cloud 

82 

n number of the considered resources in each workflow 

enactment service 

82 

Pt transition matrix of the discrete-time Markov chain 94 

𝑟(𝑡) rate of u(t) and c, with a range of values from 0 to 1, i.e., 

r∈[0,1] 

82 

rcpu(t) utilisation ratio of CPU in a workflow enactment service 

at t 

82 
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ri (t) for n resources, the utilisation ratio of ith resource, i∈

{cpu, mem, net_i, net_o, io, proc, task, pool, session, …} 

or i=1..n, ri(t) ∈ [0,1] 

84 

rij(t) for m workflow enactment services, the utilisation ratio 

of ith resource in jth service, i=1..n,  j=1..m, rij(t) ∈ [0, 1] 

84 

r'ij(t) rij(t) with ∆wij(t) > 0 99 

[r'ij(t)]' first derivative of r'ij(t) 99 

rio(t) utilisation ratio of uio(t) to cio 83 

rmem(t) memory utilisation ratio of umem(t) to cmem 83 

rnet_i(t) utilisation ratio of unet_i(t) to cnet_i 83 

rnet_o(t) utilisation ratio of unet_o (t) to cnet_o 83 

rpool(t) utilisation ratio of upool(t) to cpool 84 

rproc(t) utilisation ratio of uproc(t) to cproc 83 

rsession(t) utilisation ratio of usession(t) to csession 84 

rtask(t) utilisation ratio of utask(t) to ctask 84 

S discrete state of 𝐼(𝑡), S =  {IDLE, UNDL, NLLD, BUSY, 

EXBY, OVRL} 

93 
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SCLd scaled-in number 102 

SCLu scaled-out number 101 

sui total utilisation of the i resource in l' services 100 

T time period, T = {0,1,...} 82 

t any moment in T, t ∈ T 82 

TH threshold set, TH = {th1,th2,..,th5} 93 

u(t) utilisation of a resource 82 

ucpu(t) summary of the CPU time occupations of all workflow 

engines and task transaction engines at t 

82 

𝑢𝑖(𝑡) for n resources, the utilisation of ith resource, i∈{cpu, 

mem, net_i, net_o, io, proc, task, pool, session,…} or 

i=1..n 

84 

uij(t) for m workflow enactment services, the utilisation of ith 

resource in jth workflow enactment service, i=1..n, j=1..m 

84 

uio(t) write/read bytes of an IO device at t 83 

umem(t) summary of the occupied memory size of all workflow 

engines and task transaction engines at t 

83 
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unet_i(t) summary of the incoming bytes of all the engines at t 83 

unet_o (t) summary of the outgoing bytes of all the engines at t 83 

upool(t) number of the waiting objects which needs to use the 

connections in the pool at t 

84 

uproc(t) number of the waiting workflow instances at t 83 

usession(t) session number of a workflow enactment service at t 84 

utask(t) number of the waiting task instances at t 84 

w0 initial wij(t) 90 

wij(t) coefficient of rij(t) to represent the impact on rij(t) at t 90 

∆𝑤𝑖(𝑡) mean of ∆wi (t), i=1..m 91 

∆𝑤𝑖𝑗(𝑡) offset or changes of wij(t) with rij(t), ∆wij(t) ∈ [0, 1] 90 

Z minimum number of workflow enactment services 103 
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