

 Swinburne Research Bank
 http://researchbank.swinburne.edu.au

Liu, C., & Li, J. (2006). Designing quality XML schemas from E-R diagrams.

Originally published in J. X. Yu, M. Kitsuregawa, & H. V. Leong (eds.). Proceedings of the 7th
International Conference on Advances in Web-Age Information Management (WAIM 2006),

Hong Kong, China, 17–19 June 2006.
Lecture notes in computer science (Vol. 4016, pp. 508–519). Berlin: Springer.

Available from: http://dx.doi.org/10.1007/11775300_43

Copyright © 2006 Springer-Verlag Berlin Heidelberg.

The original publication is available at www.springer.com.

This is the author’s version of the work. It is posted here with the permission of the publisher for
your personal use. No further distribution is permitted. If your library has a subscription to these
conference proceedings, you may also be able to access the published version via the library

catalogue.

Accessed from Swinburne Research Bank: http://hdl.handle.net/1959.3/5806

Designing Quality XML Schemas from E-R Diagrams

Chengfei Liu and Jianxin Li

Faculty of Information and Communication Technologies
Swinburne University of Technology

 Melbourne, VIC 3122, Australia
{cliu, jili}@ict.swin.edu.au

Abstract. XML has emerged as the standard for representing, exchanging and
integrating data on the Web. To guarantee the quality of XML documents, the
design of quality XML Schemas becomes essentially important. In this paper,
we look into this problem by designing quality XML Schemas from given E-R
diagrams. We first discuss several criteria in designing a good XML Schema.
Following these criteria, transformation rules are then devised that take all con-
structs of an E-R diagram into account. Finally, a recursive algorithm is devel-
oped to transform an E-R diagram to a corresponding quality XML Schema.

1 Introduction

XML has emerged as the standard for representing, exchanging and integrating
data on the Web. Given that the structure of XML documents is much more flexible
than that of a relational database, the design of a quality XML document for an appli-
cation is non-trivial. By a quality XML document, we mean that it reflects the seman-
tics of the application accurately and can be accessed, updated and integrated effi-
ciently. To guarantee the quality of XML documents, the design of quality XML
schemas becomes essentially important.

We reckon that several criteria need to be followed in designing a quality
schema. (1) information preservation - it is fundamental that the target XML Schema
preserves structural and semantic information of the application entirely. (2) highly
nested structure - nesting is important in XML documents because it allows naviga-
tion of the paths in the document tree structures to be processed efficiently. (3) no
redundancy - there is no data redundancy in the XML documents that conform to the
target XML schema, thus no inconsistency will be introduced while updating the
XML documents. (4) consideration of dominant applications - the structure of XML
document should be accommodated such that dominant applications can be guaran-
teed to be processed efficiently. (5) reversibility of design - the original design can be
achieved from the target XML schema, which is fundamentally important to data
integration.

Kleiner and Lipect [1] proposed a method for generating XML DTD [2] from E-
R diagrams. The method preserved as much structural information from E-R dia-
grams as possible. However, due to the limitation of the DTD, only annotations were

used to represent some E-R constructs that have no counterparts in DTD. Many-to-
many relationships were translated into top-level elements only so nesting is not
maximised. Some advanced features in E-R model such as ISA and aggregation were
not considered in their work. Bird et al. [3] proposed an approach to design XML
Schemas from the Object Role Model (ORM) [4]. The approach considered the
dominant applications by analysing the weighting and anchoring of factor types.
However, nesting was not discussed in their work. Effort has been put for translating
relational database schemas to XML Schemas. An early work in transforming rela-
tional schema to XML schema is DB2XML [5]. DB2XML uses a simple algorithm to
map flat relational model to flat XML model in almost one-to-one manner. DTD is
used for the target XML schema. Based on a flat translation similar to DB2XML, Lee
et al. [6] presented two algorithms NeT and CoT. NeT derives nested structures from
flat relations by repeatedly applying the nest operator on tuples of each relation. The
resulting nested structures may be useless because the derivation is not at the type
level. CoT considers inclusion dependencies as constraints to generate a more intui-
tive XML Schema. XViews [7] constructs a graph based on primary key/foreign key
relationship and generates candidate views by choosing the node with either maxi-
mum in-degree or zero in-degree as the root element. The candidate XML views
generated maybe highly nested. DTD is also chosen for target XML schema. This
approach does not consider the preservation of integrity constraints. It also suffers
considerable level of data redundancy. Liu et al. [8] proposed an approach that en-
sures the transformed schema in XML Schema [9] is highly nested, redundancy free
and preserves all the integrity constraints. However, the dominant applications and
the reversibility of transformation were not discussed in their work. Bohannon et al.
[10] developed the notion of DTD schema embedding that preserves information by
ensuring both effective invertible mapping and efficient XML query translation. Lots
of work has been done on mapping from XML to relational databases for storage
purpose. Recently, Barbosa et al. [11] proposed a framework for information-
preserving XML-to-relational mapping. The framework is extensible and guarantees
the target relational schema is equivalent to the original XML Schema.

We aim at designing quality XML Schemas that follows all five criteria we dis-
cussed above. Similar to conventional database design, we use E-R model [12] for
conceptual modelling, so we assume that E-R diagrams are given when we design
XML schema. In this paper, we present our transformation rules and algorithms that
automatically generate quality XML Schemas from E-R diagrams by following all
five criteria. To preserve information, we choose XML Schema as the target schema
language instead of DTD because XML Schema provides far more powerful model-
ling features than DTD.

The rest of the paper is organised as follows. In Section 2, we briefly introduce
the E-R model and XML Schema. Following our design criteria, we design transfor-
mation rules that consider all the constructs in the E-R model in Section 3. In Section
4, we propose a recursive algorithm that generates a quality XML schema from a
given E-R diagram. Section 5 concludes the paper.

2 E-R Model and XML Schema

Before we discuss the mapping from an E-R diagram to its correspondent
schema in XML Schema, we briefly review both the E-R model and XML Schema.

The E-R model employs three basic notions: entities (entity sets), relationships,
and attributes. There are two types of entity sets: regular and weak. The existence of
a weak entity depends on another entity (its parent entity). A relationship has two
basic properties: cardinality (one-to-one, one-to-many, many-to-many) and participa-
tion (total and partial). Two or more participants may be involved in a relationship.
The former is called binary while the latter is called n-ary. Sometimes, a relationship
may have participants that belong to same entity set and play different roles. This
relationship is called a recursive relationship. The relationship from a parent entity
set to a weak entity set is called identifying relationship. An attribute can be atomic or
composite by having its own attributes, and meanwhile can be single-valued or multi-
valued.

The set of attributes that can uniquely identify an entity in a regular entity set is
called a key. The set of attributes that can identify a weak entity in the context of its
parent entity is called a local key. A global key of a weak entity consists of its local
key and the key of its parent entity. A key for a relationship consists of all keys of its
participant entity sets.

The E-R model is also extended to support some advanced features. These in-
clude ISA (generalisation and specialisation), and aggregation where some relation-
ships are treated as high-level entity sets.

To incorporate all the constructs introduced above, we give a formal definition
in connection to an E-R diagram as follows.
Definition 1: An E-R diagram is represented δ = (E, R, A, ρ , nd, s, p, k), where
(1) E is the set of entity sets. Each e∈E is defined as (ne, t) where ne, t are the name

and type of e, and t ∈{regular, weak, high-level}. If t(e) = “high-level”, e has its
own E-R diagram eδ which includes a single relationship.

(2) R is the set of relationships. Each r∈R is defined as (nr, {(e, card, par, role)})
where nr is the name of the relationship and each tuple (e, card, par, role) in the
set is used to describe a participant entity set. The participant entity set, its cardi-
nality, participation and role in the relationship are recorded. Here, e∈E, card
∈{1, n}, par ∈{total, partial}.

(3) A is the set of attributes. Each a∈A is defined as (na, vt, st) where na is the attrib-
ute name, vt ∈{single-valued, multi-valued}, and st ∈{atomic, composite}.

(4) ρ : E ∪ R ∪ A → A2 defines the attribute sets of entities, relationships, and
composite attributes.

(5) nd is the name of the diagram.
(6) s : E → E defines the ISA relationship. For e∈E, s(e) is the super entity set of e.
(7) p : E → E defines the identifying relationship. For a weak entity set e∈E, p(e) is

the parent entity set of e.

(8) k : E → A2 defines the key for entity sets. If t(e) = “weak”, k(e) gives the attrib-
ute set for its local key only. The key for a relationship is derived from the keys
of all its participant entity sets.
XML Schema is the W3C XML language for describing and constraining the

content of XML documents. Compared with DTD, it offers many appealing features.
(1) XML Schema provides very powerful data typing. A rich set of built-in data types
are provided. Based on that, users are allowed to derive their own simple types by
restriction and complex types by both restriction and extension. An ISA construct in
an E-R diagram can be mapped to complex type derived by extension. In DTD, only
very limited number of built-in types is provided, most for defining attributes only.
User cannot define their own types, not to mention complex types. (2) XML Schema
provides comprehensive support for representing integrity constraints such as id/idref,
key/keyref, unique, fine grained cardinalities, etc. while DTD only provides limited
support such as id/idref. The cardinality constraints provided by DTD is mainly based
on Kleine closure. (3) Apart from the sequence and selection compositors for group-
ing elements, XML Schema also provides other compositors such as set. (4) XML
Schema has the same syntax as XML. This allows schema itself be processed by the
same tools that read the XML documents it describes. In contrast, DTD is in a non-
XML syntax. (5) Namespaces are well supported in XML Schema while not in DTD.
While DTD is still used for very simple applications, XML Schema is becoming a
dominant XML schema language.

For the purpose of information preservation, obviously XML Schema rather
than DTD is a better choice for the target schema language.

3 Transformation Rules

To map all constructs of an E-R diagram defined in Section 2 and follow all cri-
teria discussed in Section 1, we design the following set of transformation rules.
Rule 1: E-R diagram - For an E-R diagramδ (E, R, A, ρ , nd, s, p, k), a root ele-
ment named nd is created as follows.
<xsd:element name=“nd”>
 <xsd:complexType>
 <xsd: sequence >
 <!-- detail of transformed XML schema goes here -->
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>
Rule 2: Regular entity set - For an entity set e(ne, t) of the E-R diagram δ where
t(e) = “regular”, an element named ne is created and put under the element for δ .
The key of e is specified by a key declaration where k(e) = {k1, … ,kn}.
 <xsd:element name=“ne”>
 <xsd:complexType>
 <xsd: sequence >
 <!-- detail of the entity set goes here -->
 </xsd:sequence>

 </xsd:complexType>
</xsd:element>
<xsd:key name=“key_ne”>
 <xsd:selector xpath=“path_ne”/><xsd:field xpath=“k1”/> … <xsd:field xpath=“kn”/>
</xsd:key>
Rule 3: Weak entity set - For an entity set e(ne, t) of the E-R diagram δ where t(e)
= “weak” and p(e) = e’, an element named ne is created and put under the element for
e’. The key of e is specified by a key declaration where k(e’) = {k11, … ,k1m}, k(e) =
{k21, … ,k2n}.
<xsd:key name=“key_ne”>
 <xsd:selector xpath=“path_ne”/>
 <xsd:field xpath=“../k11”/> … <xsd:field xpath=“../k1m”/>
 <xsd:field xpath=“k21”/> … <xsd:field xpath=“k2n”/>
</xsd:key>
Rule 4: High-level entity set - For an entity set e(ne, t) of the E-R diagram δ where
t(e) = “high-level”, an element named ne is created and put under the element for δ .
A high-level entity set is used to represent one and only one relationship. As such, the
key of e is the key of the relationship which can be achieved while generating the
detail of the entity by applying Rule 1 to its own E-R diagram eδ .

Dominant queries are those queries that are most frequently used. Instead of de-
fining a dominant query, we define the dominant entity set (or role) of a relationship
and the dominant relationship of an entity as follows.
Definition 2: Dominant entity set (or role): The dominant entity set e or role l of a
relationship r(nr, {(e, card, par, role)}) is one of its participant entity sets or roles
such that e or l has the highest frequency from which r is visited.
Definition 3: Dominant relationship: The dominant relationship r of an entity set
e(ne, t) is one of its participating relationships such that r has the highest frequency
from which e is visited.
Rule 5: One-to-one relationship - For a relationship of the form r(nr, {(e1, 1, p1, _),
(e2, 1, p2, _)}), an element named nr is first created, then depending on p1 and p2,
apply different rules as follows.
(1) both are “total” - suppose that e1 is the dominant entity set, put the element for r

under the element for e2 and change to put the element for e2 to under the ele-
ment for e1.

(2) one of them, say p1, is “partial” - put the element for r under the element for e2
and change to put the element for e2 to under the element for e1.

(3) both are “partial” - suppose that e1 is the dominant entity set, put the element for
r under the element for e1. Foreign key attributes are added in r with a separate
keyref declaration where k(e2) = {k1, … ,kn}.
<xsd:keyref name=“foreignKey_r” refer=“key_ne2”>

 <xsd:selector xpath=“path_r”/><xsd:field xpath=“k1”/> … <xsd:field xpath=“kn”/>
</xsd:keyref>

Rule 6: One-to-many relationship - For a relationship of the form r(nr, {(e1, 1, p1,
_), (e2, n, p2, _)}), an element named nr is first created, then depending on p2, apply
different rules as follows.

(1) p2 is “total” - put the element for r under the element for e2, then change the
element for e2 by adding maxOccurs=“unbounded” and move it to under the ele-
ment for e1.

(2) p2 is “partial” - put the element for r under the element for e2. Foreign key at-
tributes are added in r with a separate keyref declaration where k(e1) =
{k1, … ,kn}.
<xsd:keyref name=“foreignKey_r” refer=“key_ne1”>

 <xsd:selector xpath=“path_r”/><xsd:field xpath=“k1”/> … <xsd:field xpath=“kn”/>
</xsd:keyref>

Rule 7: Many-to-many relationship - For a relationship of the form r(nr, {(e1, n, _,
_), (e2, n, _, _)}), an element named nr is first created with maxOccurs attribute set to
“unbounded”, then put the element for r under the element for the dominant entity
set, say e1. Foreign key attributes are added in r with a separate keyref declaration
where k(e2) = {k1, … ,kn}.
<xsd:keyref name=“foreignKey_r” refer=“key_ne2”>
 <xsd:selector xpath=“path_r”/><xsd:field xpath=“k1”/> … <xsd:field xpath=“kn”/>
</xsd:keyref>
Rule 8: Recursive relationship - For a relationship of the form r(nr, {(e1, c1, _, r1),
(e1, c2, _, r2)}), depending on c1 and c2, apply different rules as follows.
(1) c1 = c2 = “1” - suppose that r1 is the dominant role, an element named nr_r1 is

created and put under the element for e1, and foreign key attributes for r2 are
added with a separate keyref declaration.

(2) c1 = c2 = “n” - suppose that r1 is the dominant role, an element named nr_r1 is
created with maxOccurs set to =“unbounded” and put under the element for e1,
foreign key attributes for r2 are added with a separate keyref declaration.

(3) c1 ≠ c2 (suppose c1 > c2) - an element named nr_r1 is created and put under the
element for e1, and foreign key attributes for r2 are added with a separate keyref
declaration.

Rule 9: ISA relationship - For an entity set e1, if e2 = s(e1) is defined and the com-
plexType defined for the element for e2 is t_e2, then an element for e1 can be created
with the t_e2 as the extension type.
<xsd:element name=“e1”>

<xsd:complexType>
 <xsd:extension base=“t_e2”>
 <xsd:sequence>
 <!-- transformation of extra attributes of e1 goes here -->
 </xsd:sequence>
 </xsd:extension>
<xsd:complexType>

</xsd:element>
Rule 10: N-ary relationship - For a relationship of the form r(nr, {(e1, c1, _, _), … ,
(en, cn, _, _)}), an element named nr is created and put under the element for the
dominant entity set, say e1. Foreign key attributes are added in r with n-1 separate
keyref declarations where k(e2) = {k21, … ,k2m1}, … , k(en) = {kn1, … ,knmn}. If exists
ci=“n”, (2≤i≤n), maxOccurs=“unbounded” is added to the element.
<xsd:keyref name=“foreignKey_r_e2” refer=“key_ne2”>
 <xsd:selector xpath=“path_r”/><xsd:field xpath=“ k21”/> … <xsd:field xpath=“ k2m1”/>

</xsd:keyref>
… …
<xsd:keyref name=“foreignKey_r_en” refer=“key_nen”>
 <xsd:selector xpath=“path_r”/><xsd:field xpath=“ kn1”/> … <xsd:field xpath=“ knmn”/>
</xsd:keyref>
Rule 11: Composite attribute - For an attribute a(na, vt, st) where st(a)= “compos-
ite”, of the entity set e or relationship r or composite attribute a’, an element named na
is created and put under the element for e or r or a’. maxOccurs=“unbounded” is
added to the element if vt(a)= “multi-valued”.
Rule 12: Atomic attribute - For an attribute a(na, vt, st) where st(a)= “atomic”, of
the entity set e or relationship r or composite attribute a’, different rules apply de-
pending on vt(a).
(1) If vt(a) = “multi-valued”, an element named na is created and put under the ele-

ment for e or r or a’. maxOccurs=“unbounded” is added to the element. The type
of a is specified in the type attribute of the element.

(2) If vt(a) = “single-valued”, either an attribute named na associated with the ele-
ment for e or r or a’, or an element named na can be created and put under the
element for e or r or a’.

From the above transformation rules, it is easy to find that
- Information preservation and design reversibility criteria have been considered in

all the transformation rules.
- Highly nested structure criterion has been taken into account in Rules 3, 5, 6 and

7.
- No redundancy criterion has been applied in Rules 3 and 6.
- Dominant applications criterion has been used in Rules 5, 7 and 8.

4 Mapping E-R Diagrams to XML Schemas

Given an E-R diagram δ (E, R, A, ρ , nd, s, p, k), we design a transformation
algorithm called ERD2XSD to generate a corresponding XML schema by applying
the transformation rules introduced in the previous section. Normally an ISA relation-
ship only applies to regular entity sets. In ERD2XSD, we first generate XML schema
elements for regular entity sets (Line 4-9) and ISA relationships (Line 10-14), then
generate elements for all other entity sets (Line 15-26). If an entity set is of type
“high-level”, the algorithm is called recursively to transform the E-R diagram of the
high-level entity set first. The weak entity sets are processed after the regular and
high-level entity sets because of the global key derivation caused by the existence
dependency. If a weak entity set e1 depends on another weak entity set e2, e1 will also
be processed after e2. After that, relationships are processed (Line 27-49). The order
for transforming relationships is considered carefully in the algorithm such that nest-
ing of one entity set under another is done just once. Finally, XML schema ele-
ments/attributes are generated for composite or atomic attributes in the diagramδ
(Line 50-54).

4.1 Transformation Algorithm

The algorithm ERD2XSD is given below.

Algorithm : ERD2XSD
Input: an E-R diagram δ (E, R, A, ρ , nd, s, p, k)
Steps:
1. apply Rule 1 to create the root element for δ ;
2. E1 = {e | e ∈ E ∧ t(e) = “regular”};
3. E2 = E – E1;
4. for each e ∈ E1 { /* process “regular” entity sets without supersets
5. if s(e) is not defined {
6. apply Rule 2 to generate the element for e;
7. E1 = E1 – {e};
8. }
9. }
10. while E1 ≠ ∅ do { /* process ISA relationships
11. get e ∈ E1 such that s(e) ∉ E1; /* no dependency on entity sets in E1
12. apply Rule 9 to generate the element for e based on its s(e);
13. E1 = E1 – {e};
14. }
15. while E2 ≠ ∅ do { /* process “high-level” and “weak” entity sets
16. get e ∈ E2;
17. if t(e) = “high-level” {
18. apply Rule 4 to generate the element for e;
19. ERD2XSD(eδ); /* recursively processing e
20. E2 = E2 – {e};
21. }
22. else if p(e) ∉ E2 { /* check dependency between weak entity sets
23. apply Rule 3 to generate the element for e;
24. E2 = E2 – {e};
25. }
26. }
27. R1 = R; /* process relationships other than 1:1 relationships
28. for each r ∈ R1 {
29. if nary(r) > 2 { /* nary(r) returns the number of participant entity sets
30. apply Rule 10 to generate and nest the element for r;
31. R1 = R1 – {r};
32. }
33. else if nary(r) = 1 {
34. apply Rule 8 to generate and nest the element for r;
35. R1 = R1 – {r};
36. }
37. else if card(r.e1)=“n”∧card(r.e2)=“n” {/* card(r.e) returns cardinality of e in r
38. apply Rule 7 to generate and nest the element for r;

39. R1 = R1 – {r};
40. }
41. else if card(r.e1)=“n”∨ card(r.e2)=“n” {
42. apply Rule 6 to generate and nest the element for r and to adjust

 the nesting of e1 and e2;
43. R1 = R1 – {r};
44. }
45. }
46. for each r ∈ R1 { /* the remaining relationships are all 1:1
47. apply Rule 5 to generate and nest the element for r;
48. R1 = R1 – {r};
49. }
50. for each a ∈ A { /* the remaining relationships are all 1:1
51. if st(a)= “atomic” apply Rule 12 to generate and nest an ele-

ment/attribute for a;
52. else apply Rule 11 to generate and nest an element for a;
53. A = A – {a};
54. }

Output: the root element named nd for δ in the target XML schema

4.2 Transformation Example

dependentOf

supervise ISA

workFor

employee
clerk

dependent

manager manage

worksOn

job

department

control

project

ssn

jobID

deptID

nameprojID

name

name

workTime

startDate

name

.........
hourlyRate

n

1

n

n

n

n

1
1

1

1

1

emp

mgr

.....

duration

Figure 1. An example E-R diagram company

Figure 1 shows an E-R diagram named company. The keys and local keys for
regular and weak entity sets are underlined with solid and dotted lines, respectively.
Given this E-R diagram as input to the ERD2XSD algorithm, the XML schema with
the following root element will be generated.

<xsd:element name=“company”>
 <xsd:complexType>

 <xsd:sequence>
 <xsd:element name=“employee” type=“t_employee” maxOccurs=“unbounded”/>
 <xsd:element name=“job” maxOccurs=“unbounded”>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name=“worksOn” maxOccurs=“unbounded”>
 <xsd:complexType>
 <xsd:attribute name=“projID” type=“xsd:int”/>
 <xsd:attribute name=“ssn” type=“xsd:int”/>
 <xsd:attribute name=“workTime” type=“xsd:time”/>
 </xsd:complexType>
 <xsd:keyref name=“foreignKey_worksOn_employee” refer=“key_employee”>
 <xsd:selector xpath=“//worksOn”/><xsd:field xpath=“@ssn”/>
 </xsd:keyref>
 <xsd:keyref name=“foreignKey_worksOn_project” refer=“key_project”>
 <xsd:selector xpath=“//worksOn”/><xsd:field xpath=“@projID”/>
 </xsd:keyref>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:attribute name=“jobID” type=“xsd:int” use=“required”/>
 <xsd:attribute name=“hourlyRate” type=“xsd:int”/>
 <xsd:key name=“key_job”>
 <xsd:selector xpath=“//job”/><xsd:field xpath=“@jobID”/>
 </xsd:key>
 </xsd:element>
 <xsd:element name=“department” maxOccurs=“unbounded”>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name=“name” type=“xsd:string”/>
 <xsd:element name=“clerk” maxOccurs=“unbounded”>
 <xsd:complexType>
 <xsd:extension base=“t_employee”>
 <xsd:sequence>
 <xsd:element name=“worksFor”> … … </xsd:element>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name=“manager”>
 <xsd:complexType>
 <xsd:extension base=“t_employee”>
 <xsd:sequence>
 <xsd:element name=“manage”>
 <xsd:complexType>
 <xsd:sequence><xsd:element name=“startDate” type=“xsd:date”/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:extension>

 </xsd:complexType>
 </xsd:element>
 <xsd:element name=“project” maxOccurs=“unbounded”>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name=“control”/>
 <xsd:complexType><xsd:attribute name=“duration” type=“xsd:duration”/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name=“projID” type=“xsd:int” use=“required”/>
 <xsd:attribute name=“name” type=“xsd:string”/>
 </xsd:complexType>
 <xsd:key name=“key_project”>
 <xsd:selector xpath=“//project”/><xsd:field xpath=“@projID”/>
 </xsd:key>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name=“deptID” type=“xsd:int” use=“required”/>
 <xsd:attribute name=“name” type=“xsd:string”/>
 </xsd:complexType>
 <xsd:key name=“key_department”>
 <xsd:selector xpath=“//department”/><xsd:field xpath=“@deptID”/>
 </xsd:key>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>
<xsd:key name=“key_employee”>
 <xsd:selector xpath=“//employee”/><xsd:field xpath=“@ssn”/>
</xsd:key>
<xsd:complexType name=“t_employee”>
 <xsd:sequence>
 <xsd:element name=“supervise_emp” >
 <xsd:complexType> <xsd:attribute name=“mgr” type=“xsd:int”/></xsd:complexType>
 <xsd:keyref name=“foreignKey_supervise” refer=“key_employee”>
 <xsd:selector xpath=“//supervise_emp”/><xsd:field xpath=“@mgr”/>
 </xsd:keyref>
 </xsd:element>
 <xsd:element name=“dependent” maxOccurs=“unbounded”>
 <xsd:complexType>
 <xsd:attribute name=“name” type=“xsd:string”/>
 </xsd:complexType>
 <xsd:key name=“key_dependent”><xsd:selector xpath=“//dependent”/>
 <xsd:field xpath=“../@ssn”/><xsd:field xpath=“@name”/>
 </xsd:key>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name=“ssn” type=“xsd:int”/>
 <xsd:attribute name=“name” type=“xsd:string”/>
</xsd:complexType>

5 Conclusion

 In this paper, we first discussed design criteria of a good quality XML schema.
Then, we designed transformation rules that translate all the constructs of an E-R
model into their counterparts in XML Schema. We claimed that these set of rules
follow all five criteria discussed in the paper, i.e., information preservation, highly
nested structures, no redundancy, consideration of dominant applications, and design
reversibility. Based on the transformation rules, a recursive algorithm called
ERD2XSD was proposed that takes an arbitrary E-R diagram as input and generates a
correspondent high quality XML schema as output. An illustrative example was
given in the end. In the future, we will build a prototype using this algorithm and
improve it as a real XML schema design tool.

Acknowledgement

This work was supported by the Australian Research Council Discovery Project un-
der the grant number DP0559202.

Reference

1. C. Kleiner and U. W. Lipeck: Automatic Generation of XML DTDs from Conceptual
Database Schemas. GI Jahrestagung (1) 2001. pp. 396-405.

2. C. M. Sperberg-McQueen, E. Maler, T. Bray, J. Paoli and F. Yergeau: Extensible Markup
Language (XML) 1.0 (Third Edition). W3C Recommendation, 2004.
http://www.w3.org/TR/REC-xml/.

3. L. Bird, A. Goodchild and T. A. Halpin: Object Role Modeling and XML-Schema. ER
2002. pp. 309-322.

4. P. Bernus, K. Mertins and G. Schmidt: Handbook on Architecture of Information Sys-
tems. Chapter 4. pp. 81-101. Springer-Verlag, Berlin, 1998.

5. V. Turau: Making Legacy Data Accessible for XML Applications. 2001.
http://www.informatik.fh-wiesbaden.de/~turau/DB2XML/.

6. D. Lee, M. Mani, F. Chiu and W. Chu: NeT & CoT: Translating Relational Schemas to
XML Schemas using Semantic Constraints. CIKM 2002. pp. 282-291.

7. C. Baru: XViews: XML Views of Relational Schemas. DEXA Workshop. 1999. pp. 700-
705.

8. C. Liu, M. W. Vincent and J. Liu: Constraint Preserving Transformation from Relational
Schema to XML Schema. World Wide Web Journal, 9(1):93-110, March 2006.

9. D. Beech, N. Mendelsohn, M. Maloney and H. S. Thompson: XML Schema Part 1: Struc-
tures Second Edition, W3C Recommendation, http://www.w3.org/TR/xmlschema-1/.

10. P. Bohannon, W. Fan, M. Flaster and P. P. S. Narayan: Information Preserving XML
Schema Embedding. VLDB 2005. pp. 85-96.

11. D. Barbosa, J. Freire and A. O. Mendelzon: Designing Information-Preserving Mapping
Schemas for XML. VLDB 2005. pp. 109-120.

12. P. Atzeni, S. Ceri, S. Paraboschi and R. Torlone: Database Systems Concepts, Languages
& Architectures, part 2. pp. 163-179. McGraw-Hill International (UK) Limited, 1999.

