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Abstract

The economic dispatch (ED) of generation is one of the most critical optimization 

problems in operation and management of power systems. The current Iraq power 

generating system (PGS) is suffering from several concurrent challenges. One of these 

challenges is ED of the power of large-scale thermal generating units (TGUs) with 

various power constraints, which made it non-economic.  

The ED allows PGS analysts to schedule the committed online TGUs so as to meet 

the required load demand at a minimum operating cost while satisfying all online TGU 

and PGS inequality and equality constraints, such as ramp-rate limits, prohibited 

operating zones and valve-point loading effects. Practically, with these constraints, the 

fuel cost function of ED problem becomes multimodal and non-convex with highly 

non-linear characteristics.

Several evolutionary computation techniques (ECTs) sought to address such a 

complex problem. One popular type of ECT is the global particle swarm optimization 

(GPSO) algorithm, however, it is not capable of solving such a complex problem 

satisfactory.

This thesis introduces eight papers to address and solve the complex ED problem by 

proposing two novel algorithms called orthogonal PSO (OPSO) and multi-gradient PSO 

(MG-PSO) algorithms. In the OPSO algorithm, the m particles in a swarm are divided 

into two groups. The first group is an active group of best personal experience of d

particles. The second group is a passive group of personal experience of remaining (m ‒

d) particles. The target of creating two groups is to boost the diversity of the swarm’s

population. The d active group particles in each iteration undergo an orthogonal 

diagonalization process and are updated in such way that their position vectors are 

orthogonally diagonalized. Whereas, the passive group particles are not updated, as their 

contribution in obtaining correct direction is not significant. The particles in OPSO 

algorithm are updated using only one guide, thus avoiding the conflict between the two 

guides that occurs in the GPSO algorithm. 
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In the MG-PSO algorithm, multiple negative gradients are used in two phases 

(Exploration phase and Exploitation phase) by the m particles while searching for an 

optimum solution. In Exploration phase, a particle is called an Explorer. The

m Explorers operate in several episodes. In each episode, the m Explorers use a 

different negative gradient to explore a new neighbourhood. The m Explorers enhance 

global search ability of the MG-PSO algorithm. In the Exploitation phase, a particle is 

called an Exploiter. The m Exploiters use only one negative gradient which is less than 

that of the Exploration phase to exploit the best neighbourhood. Thus, the m Exploiters

enhance local search ability of the MG-PSO algorithm. This diversity in negative 

gradients helps the best particle to avoid from falling into a local minimum. The 

combination of two phases supplies a balance between Exploration and Exploitation in

a search space, thus avoiding the loss of balance between the two guides that occurs in 

the GPSO algorithm. 

The effectiveness of the OPSO and MG-PSO algorithms are verified using small, 

medium and large PGSs with several power constraints as well as a set of unimodal and 

multimodal benchmark functions with dimensions of 30 and 100 taken from the 

Congress on evolutionary computation 2015 (CEC 2015). Superior performance of the 

proposed OPSO and MG-PSO algorithms over the GPSO algorithm and several existing 

optimization techniques with several performance measures are shown in Papers A-H. 

In addition, by using an unpaired t-test, the statistical significance of the proposed 

OPSO and MG-PSO algorithms has been shown against several contending algorithms 

including top-ranked CEC 2015 algorithms.   
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Chapter 1: Introduction 

1.1 Chapter overview 

In this Chapter, an introduction of this study is addressed as follows. The background 

is given in Section 1.2. The current issues in economic dispatch problem are presented 

in Section 1.3. In section 1.4, motivation and research questions are presented. 

Limitations of data availability are addressed in Section 1.5. List of the author’s 

publications as part of thesis is presented in Section 1.6. Contribution of this thesis is 

presented in Section 1.7. In Section 1.8, outline of this thesis is presented. Finally, 

Chapter summary is presented in Section 1.9.

1.2 Background 

I was sponsored by the government of Iraq to study the problems and issues in Iraq 

power generating system (PGS). The current Iraq PGS is mainly divided into five 

operating regions based on the operation and control, as shown in a single line diagram 

in Figure 1.1. The five operating regions namely are North, Diyala and Anbar, Baghdad, 

Middle and South regions [1]. Each operating region has several power stations, and 

each power station consists of a number of power generating units (PGUs). These five 

regions are operated, controlled and managed as a unified and interconnected PGS by 

the national dispatch centre (NDC). Besides, there is a local dispatch centre in each 

operating region associated directly with the NDC. The PGS is connected directly to a 

large power grid of 132 kV ultra-high voltage network through substations, and then the 

electrical power is transmitted by different types of the transmission networks to the 

consumer. The consumer in this thesis represents residential, commercial and industrial 

electrical loads.  

Since Iraq has abundant fossil fuels (oil and natural gas reserves), the PGS largely 

depends on fossil fuels powered by a large-scale of thermal generating units (TGUs) to 

generate electricity. The statistical data issued by the NDC by the ministry of electricity 

has shown that total number of PGUs is 371-unit [2].
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Figure 1.1. A single line diagram of Iraq power generating system. 

These PGUs are classified as 342 TGUs (31 steam units, 194 gas units, 22 mobile 

diesel units and 95 fixed diesel units) and 29 hydropower generating units. Accordingly, 

91.5% of the generated electricity comes from the TGUs.  

Economic Dispatch (ED) of power (also termed as ED problem) is a fundamental 

tool in the PGS which plays a critical role in operation, planning and control of every 

power system. The primary purpose of ED investigation recognizes the optimum 

Power Station

Bas bar substation

Transmission line 

Power transformer substation



Chapter 1: Introduction

3

schedule of active output power of all committed PGUs to minimize the total fuel cost, 

while satisfying the power constraints imposed by PGSs [3]. Practically, the TGUs have 

several operating power constraints and limitations, e.g., power balance, transmission 

network loss (PL), generation limits, ramp-rate limits (RRLs), prohibited operating 

zones (POZs), feasible operating zones (FOZs), and valve-point loading (VPL) effects 

[4].

The power balance constraint is an equality constraint and must be satisfied such that 

the total generated active output power equals to the sum of the load demand (PD) and 

PL. Furthermore, the online TGU uses RRLs that are an inequality power constraint 

which represent the rate at which the active output power level of a given TGU can be 

modified to satisfy the power balance. In such a case, the active output power cannot be 

adjusted instantaneously. Their corresponding RRLs restrict the operating range of all 

online TGUs.

Another inequality power constraint is POZs which stems from physical limitations 

of a TGU, e.g., the amplification of vibrations in a shaft bearing at specific operating 

regions. Because of the POZs, the TGU may not be able to work in specific operating 

zones. For instance, mechanical vibrations could cause cumulative metal fatigue in 

steam-turbine blades and lead to the premature turbine blade failure. The POZs create 

gaps in the fuel cost curve and thus introduce discontinuity in the fuel cost function [5].

Therefore, each TGU must be operated within the FOZs avoiding any existing POZ. 

Another operating power constraint is VPL effects. These effects become prominent 

in the fuel cost function in the following case. Practically, a steam-turbine of the TGU 

has multiple valves that are used to control its active power outputs. When steam valves 

start to open and close simultaneously, this causes ripple-like effects. These ripples add 

to the fuel cost function. In such a case, the cost fuel function comprises non-linearity of 

a higher order [6]. The definitions of these power constraints are available in  

Papers A-H.

In this study, the ED of the power of online TGUs with various equality and 

inequality operating power constraints are addressed.
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1.3 Current issues in economic dispatch problem 

The current Iraq PGS is suffering from several concurrent challenges. One of these 

challenges is the ED of the power of large-scale TGUs with various practical operating 

power constraints.

A symposium was held in May 2013 in Baghdad under the sponsorship of ministry 

of higher education and scientific research and ministry of electricity, to evaluate the 

reality of the electricity sector. The team leader of the NDC emphasized as follows. 

“Operation and management of large-scale TGUs to govern electrical energy to the 

consumer are big challenges for us. We are spending billions of dollars in each year to 

generate electricity. We need new algorithms for solving the ED problem that are 

effective and compatible with modern technologies. We see that the current 

computational techniques used by the NDC, e.g., traditional methods and some other 

optimization techniques, are inefficient. Therefore, the NDC today can no longer solely 

rely on the current traditional means of Iraqi power generating system planning.”

Besides the problem stated above, several other technical issues are summarized as 

follows.

1.3.1 Low operational effeciency    

There exists a large gap between maximum actual generating power and installed 

generating capacity of the online TGUs. The Iraq PGS consists of 342 TGUs with total 

installed generating capacity (nameplate rating) equals to 24,646 MW. However, the 

maximum actual generating power by all TGUs is only about 8,746 MW, in the best 

cases [2].

Table 1.1 shows the operation of online TGUs during the period 2013-2016. One can 

see that despite an increase in maximum actual generating power from 2013 to 2016, 

the gap is still large. For example, in 2015, the total number of online TGUs was 

265-TGU. The maximum actual generating power attained was about 7,551 MW 

against installed generating capacity of 20,903 MW. Here, the gap is 63.87%. However, 

in 2016, the maximum actual generating power has increased up to 8,746 MW with 
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installed generating capacity of 20,087 MW. Here, the gap is 56.45%. It can be seen that 

the gap is reduced by 7.42% in 2016, but the gap still remains large.  

Figure 1.2 gives more details about the gap between the installed generating capacity 

and maximum actual generating power of online TGUs of three types of the power 

stations, i.e., steam, gas and diesel power stations during the period 2013-2016. The gap 

must be within an acceptable range of 10-20% for such types of power stations. The 

main reason of this gap is estimating of the ED of active output power of large-scale 

TGUs is not optimum because of the current inefficient optimization techniques. This 

large gap causes low operational efficiency and thus, the PGS becomes non-economic.   

Figure 1.2. Installed generating capacity and maximum actual generating power of 
steam, gas and diesel power stations of Iraq PGS. 

Steam Gas Diesel

5,535

9,768

1,9691,853
3,292

981

A
ct

iv
e 

ou
tp

ut
 p

ow
er

(M
W

)

2013

Steam Gas Diesel

6,475

10,067

1,9452,379
4,229

793

A
ct

iv
e 

ou
tp

ut
 p

ow
er

(M
W

)

2014 Installed genearing
capacity
Actual generating
power

Steam Gas Diesel

5,985

13,456

1,462
3,002

3,981

568A
ct

iv
e 

ou
tp

ut
 p

ow
er

 
(M

W
)

2015

Steam Gas Diesel

5,985

12,532

1,570
3,227

5,293

226A
ct

iv
e 

ou
tp

ut
 p

ow
er

(M
W

)

2016

Table 1.1. Installed generating capacity and maximum actual generating power of 
online TGUs during 2013-2016.

Year Number of online TGUs 
(out of 342 TGUs) 

Installed
generating capacity (MW) 

Maximum actual  
generating power (MW) 

Gap
(%)

2016 243 20,087 8,746 56.45
2015 265 20,903 7,551 63.87
2014 268 18,487 7,401 59.96
2013 277 17,272 6,126 64.53
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1.3.2 Unplanned increase of load demand  

The load demand PD has increased drastically due to a growing economy and a surge 

in consumer usages of the electrical appliances and electronic devices during the recent 

ten years. In addition, Iraqi government subsidizes the tariff of electricity. Despite the 

increase of supply electricity in the past two years (2015 and 2016), as shown in 

Figure 1.2, the current PGS is still unable to meet the PD growth projections.

According to the statistical data of the NDC, the maximum generating power of the 

current PGS (TGUs, hydropower PGUs and the imported power from neighbouring 

countries) is at about 10,630 MW of the power currently required, i.e., maximum PD =~ 

17,000-18,000 MW, during Summer season [2]. This means that 37.47% to 40.90% of 

the load demand is not satisfied during Summer season. Therefore, the programmed 

load shedding has been used to prevent any possible shutdown. Furthermore, the 

unplanned PD growth and improper system maintenance have led to cluster high loads 

(consumer) in the centre region.  

1.3.3 Practical operating power constraints 

Several practical operating power constraints need to be considered. Firstly, the 

inequality power constraints imposed on online TGUs are given by generation limits, 

RRLs ramp rate POZs, FOZs, VPL effects. Secondly, the equality power constraints 

imposed by the power grid are the PL, mismatch in PL (PL,mismatch) and power balance. 

Under these practical operating power constraints, the objective function, i.e., fuel cost 

function, becomes non-convex, non-smooth and discontinuous. When the PGS consists 

of a large number of TGUs and it is with these power constraints, the optimization of 

such a complex problem becomes very hard.   

1.3.4 High level of expenses in term of fuel cost  

The total fuel cost of electricity production, in fossil fuel thermal power plants, 

becomes very high due to the usage of large-scale TGUs. For example, the MWh 

production in 2016 using thermal power plants only was 76,613,972 MWh with an 

average cost of $100.00/MWh [2]. This cost is high compared with the average cost of 1 
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MWh production in other PGSs in the Middle East. For example, in UAE, the average 

cost is approximately $70.00/MWh [7].

1.3.5 High level of emissions  

Due to the usage of large-scale TGUs based on fossil fuel, they release a significant 

amount of the harmful pollutants, such as, carbon oxide (CO2), sulfur dioxide (SO2) and 

nitrogen oxides (NOx) that cause significant and long term damages to the environment. 

For example, the study in [8] has shown that the average of CO2 emission from online 

TGUs in Iraq was at about 1,190 g/kWh in 2015. Whereas, the standard and acceptable 

level of CO2 emission by online TGUs is at about 453 g/kWh [9]. Therefore, the 

optimum dispatch of power from these online TGUs is required to reduce the amount of 

harmful pollutants.

1.3.6 Use of large number of TGUs 

One of the important issues in PGS operation is finding an optimum solution to the 

practical ED problem. Efficient scheduling of the committed online TGUs results in 

significant cost savings. This scheduling becomes complicated when more and more 

TGUs need to be introduced into the PGS to meet the PD while reducing the total fuel 

cost. Besides, optimum scheduling of all online TGUs while considering the practical 

operating power constraints further complicates the ED problem. 

1.4 Motivation and research questions

The current issues discussed and reported in Section 1.3 give us the evidence and 

motivation in the re-considering reality of optimization of the ED problem in the current 

Iraq PGS. The issues associated with the explanations in Section 1.3 can be eliminated 

by finding an appropriate answer to the following questions: 

Question #1: Is the ED problem of large-scale TGUs in a power generating system with 

several power constraints a critical issue?

Question #2: What is the most effective technique/algorithm to solve such a complex ED 

problem?
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The answer to the above questions leads to analysis and formulation of the practical 

ED problem of large-scale TGUs under several practical operating power constraints 

and then finding novel algorithm(s) to solve such a complex problem. The answer to 

these questions is provided in this thesis.

1.5 Limitations of data availability

The NDC is facing a significant challenge in operation and management of 

large-scale TGUs with practical operating power constraints, since there is no use of an 

appropriate optimization methodology which would allow solving such a complex 

problem. However, due to recent developments in communication technologies and 

high-performance computing machines [10], the need to design or develop new 

optimization computational techniques for the ED problem in the PGSs becomes 

imperative. 

An important limitation that is being faced in this study is that, I am not authorized to 

use data of the Iraq PGS, for security reasons. Therefore, due to availability of the 

technical data of other power systems that are similar to Iraq PGS, two real power 

systems, e.g., Taiwan [11] and South Korea [12] power systems are considered in this 

thesis. They are complex and each one is a large-scale TGU power system. In addition, 

small-scale and medium-scale power systems are also considered in this study, in order 

to evaluate the performance of the proposed algorithms. 
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1.6 List of the author’s publications as part of thesis 

The following eight Papers appended in Appendix-1 are carefully selected out of ten 

Papers and considered as main part of this thesis. The Papers A-D have been published 

in top-tier peer-reviewed international conferences. The Paper C was awarded a 

certificate of merit by the IEEE Victorian Section, Australia. The Papers E-G have been 

published in reputed peer-reviewed international journals, whereas, Paper H is under 

review in an international journal.

Paper A.  L. T. Al-Bahrani and J. C. Patra, “Orthogonal PSO algorithm for solving 
ramp rate constraints and prohibited operating zones in smart grid 
applications,” in Proceedings of IEEE International Joint Conference on 
Neural Networks (IJCNN), Killarney, Ireland, 2015, pp. 1-7. 

Paper B.  L. T. Al-Bahrani and J. C. Patra, “Orthogonal PSO algorithm for economic 
dispatch of power under power grid constraints,” in Proceedings of IEEE 
International Conference on Systems, Man, and Cybernetics (SMC), Hong 
Kong, 2015, pp. 14-19. 

Paper C.  L. T. Al-Bahrani, J. C. Patra, and R. Kowalczyk, “Orthogonal PSO 
algorithm for optimal dispatch of power of large-scale thermal generating 
units in smart power grid under power grid constraints,” in Proceedings of 
IEEE International Joint Conference on Neural Networks (IJCNN),
Vancouver, Canada, 2016, pp. 660-667. 

Paper D.  L. T. Al-Bahrani, J. C. Patra, and R. Kowalczyk, “Multi-gradient PSO 
Algorithm for economic dispatch of thermal generating units in smart Grid,” 
in Proceedings of IEEE PES Innovative Smart Grid Technologies 2016 
Asian Conference (ISGT’2016 Asia), Melbourne, Australia, 2016, pp. 258-
263.

Paper E.  L. T. Al-Bahrani and J. C. Patra, “A novel Orthogonal PSO algorithm 
based on orthogonal diagonalization,” Swarm and Evolutionary
Computation, vol. xxx, pp. 1-23, 2017. In press. 

Paper F.  L. T. Al-Bahrani and J. C. Patra, “Orthogonal PSO algorithm for economic 
dispatch of thermal generating units under various power constraints in 
smart power grid,” Applied Soft Computing, vol. 58, pp. 401-426, 2017. 

Paper G.  L. T. Al-Bahrani and J. C. Patra, “Multi-gradient PSO algorithm for 
optimization of multimodal, discontinuous and non-convex fuel cost
function of thermal generating units under various power constraints 
in smart power grid,” Energy, vol. 147, pp. 1070-1091, 2018. 

Paper H. L. T. Al-Bahrani and J. C. Patra, “Multi-gradient PSO algorithm with 
enhanced exploration and exploitation,” Applied Soft Computing. Under 
review. 
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1.7 Contribution

As discussed in Sections 1.3 to 1.5, there is needed to develop powerful and 

effective optimization techniques to solve the ED problem for large-scale PGS with 

TGUs and power grid constraints. This thesis introduces two novel algorithms as 

stated below. 

1.7.1 Orthogonal PSO 

A novel orthogonal particle swarm optimization (OPSO) algorithm is proposed and 

applied to solve several complex unimodal and multimodal functions including ED 

problem. The m particles inside a swarm, i.e., possible solutions, are divided into two 

groups. An active group of best d particles and another is a passive group of (m ‒ d)

particles. The target of forming these two groups is to boost the diversity of the m

particles inside the swarm. In every iteration, the active group particles subject to an 

orthogonal diagonalization process and are updated in which that their position vectors 

are orthogonally diagonalized. However, the passive group particles are not updated as 

their contribution in finding the correct direction is not important.   

1.7.2 Multi-gradient PSO 

Another novel multi-gradient particle swarm optimization (MG-PSO) algorithm is 

proposed and applied to solve several complex unimodal and multimodal functions 

including the ED problem and to reduce execution time that is an issue in the OPSO 

algorithm when solving high-dimension functions. Two phases used in the MG-PSO 

algorithm are called Exploration phase and Exploitation phase. The m particles in the 

Exploration phase are named Explorers. They undergo multiple episodes. In each 

episode, the m Explorers use a different negative gradient to explore a new 

neighbourhood. The m particles in the Exploitation phase are named Exploiters. They 

use only one negative gradient that is less than that of the Exploration phase, to exploit 

the best neighbourhood. This diversity in negative gradients gives a balance between 

global search and local search of the m particles. 

Explanation of the learning strategy of the both OPSO and MG-PSO algorithms are 

presented in Papers A-H in Appendix-1. Furthermore, performance analysis of the two 
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algorithms is carried out by considering the generation limits, VPL effects, PL,

PL,mismatch, power balance, RRLs, and POZs as additional power constraints in solving 

the ED problem. In such cases, the fuel cost function is restricted by these power 

constraints and becomes non-linear, non-convex, multimodal and discontinuous.  

The contribution of this research work stems from proposing two new algorithms 

which resulted in the eight high quality research articles. The salient features of the four 

international journal papers and four peer-reviewed international conference papers are 

given in Table 1.2. Here, in this study, the proposed OPSO and MG-PSO algorithms are 

used to solve the complex ED problem of small-scale to large-scale PGS.  

Table 1.2. Contributions of the eight Papers, Paper A to Paper H, in this thesis.
Paper 

ID Abbreviated Contribution

Paper 
A IEEE-IJCNN 2015 

Analysis and formulation the ED problem of small-scale PGS (6-TGU). 
A novel algorithm called orthogonal particle swarm optimization 
(OPSO) algorithm was proposed.  
The OPSO algorithm was evaluated and tested using 6 TGUs with 
RRLs and POZs constraints. 
The OPSO algorithm was compared with several PSO variants and 
several other optimization methods.  
Superior performance of the OPSO algorithm compared to several 
competing algorithms has been shown in terms of minimum, maximum 
and mean costs as well as standard deviation.    
The OPSO algorithm was succeeded to improve the global PSO 
(GPSO) algorithm in terms of convergence rate, consistency and 
robustness.  

Paper 
B IEEE-SMC 2015 

Analysis and formulation the ED problem of medium-scale PGS
(15-TGU).
The OPSO algorithm was proposed to solve the ED problem of 
15 TGUs.  
The OPSO algorithm was evaluated and tested using 15 TGUs with
several equality and inequality constraints.  
The OPSO algorithm was compared with several PSO variants and 
several other optimization methods.  
The OPSO algorithm has provided better results in solving the total fuel 
cost of 15 TGUs and their power constraints.  
Superior performance of the OPSO algorithm compared to several 
competing algorithms has been shown in terms of minimum, maximum 
and mean costs as well as standard deviation.    
The OPSO algorithm was succeeded to improve the GPSO algorithm in 
terms of convergence rate, consistency and robustness. 

Paper 
C IEEE-IJCNN 2016 

Analysis and formulation the ED problem of large-scale Taiwan PGS
(40-TGU).
The OPSO algorithm was proposed to solve the ED problem of Taiwan 
PGS. 
The OPSO algorithm was evaluated and tested using Taiwan PGS with 
several equality and inequality constraints.  
The OPSO algorithm was compared with several PSO variants and 
several other optimization methods.  
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The OPSO algorithm has provided better results compared to several 
competing algorithms in solving the total fuel cost of 40 TGUs with
their power constraints. 
The OPSO algorithm was succeeded to improve the GPSO algorithm in 
terms of convergence rate, consistency and robustness. 

Paper 
D

IEEE (ISGT-Asia) 
2016 

Analysis and formulation the ED problem of small-scale (6-TGU) and 
medium-scale (15-TGU) PGSs.  
A novel algorithm called multi-gradient PSO (MG-PSO) algorithm was 
proposed. 
The MG-PSO algorithm was evaluated and tested using 6 and 15 TGUs.
The MG-PSO algorithm has provided better results compared to several 
competing algorithms in solving the total fuel cost of 6 and 15 TGUs 
and their power constraints. 
The MG-PSO algorithm was succeeded to improve the GPSO algorithm 
in terms of convergence rate, consistency and robustness. 

Paper 
E

Swarm and 
Evolutionary

Computation 2017 

The OPSO algorithm was proposed to improve the performance by 
overcoming the demerits of GPSO algorithm.  
The OPSO algorithm was evaluated and tested using 30 unimodal and 
multimodal benchmark functions.   
Superior performance of the OPSO algorithm compared with GPSO 
algorithm and several other optimization techniques has been shown in 
terms of convergence rate, accuracy, consistency, robustness and 
reliability. 
The OPSO algorithm was found to be successful in achieving an 
optimum solution in all the 30 benchmark functions. 

Paper 
F

Applied Soft 
Computing  2017 

The OPSO algorithm was proposed to solve the ED problem by taking 
three (small, medium and large) PGSs with several power constraints.  
Mathematical analysis and theoretical justification of the OPSO 
algorithm was provided. 
The OPSO algorithm was also applied for ten shifted and rotated
benchmark functions. 
Superior performance of the OPSO algorithm over the GPSO algorithm
and several existing optimization techniques has been shown in terms of 
several performance measures.  
Statistical significance of the OPSO algorithm has been shown using 
unpaired t-test against several contending algorithms including top-
ranked CEC 2015 algorithms. 
The OPSO algorithm has proved to be a robust and highly efficient
algorithm which is capable of solving unimodal and multimodal 
functions including non-convex ED problem.  

Paper 
G Energy 2018 

The MG-PSO algorithm was proposed to solve the fuel cost function of 
medium-scale and large-scale PGSs with several power constraints.   
Mathematical analysis and theoretical justification of the MG-PSO 
algorithm was provided. 
The effectiveness of the MG-PSO algorithm was demonstrated using 
four real medium-scale and large-scale PGSs.  
Superior performance of the MG-PSO algorithm has been shown over 
several PSO variants and several existing optimization techniques in 
terms of several performance measures.  
The statistical t-test was carried out to demonstrate the effectiveness of 
the MG-PSO algorithm.  
The MG-PSO algorithm has proved to be a robust and highly efficient 
algorithm which is capable of solving non-convex and multimodal ED 
problem.       

Paper 
H

Applied Soft 
Computing  2018 

The MG-PSO algorithm was proposed to solve unimodal and 
multimodal complex problems. 
Mathematical analysis and theoretical justification of the MG-PSO 
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algorithm was provided. 
The effectiveness of the MG-PSO algorithm was verified using ten 
selected shifted and rotated benchmark functions with dimensions of 30 
and 100.  
Superior performance of the MG-PSO algorithm has been shown over
several PSO variants and several existing optimization techniques in 
terms of several performance measures.  
Statistical significance of the MG-PSO algorithm has been shown using 
unpaired t-test against several contending algorithms including top-
ranked CEC 2015 algorithms.   

1.8 Outline of the thesis

This thesis is based on a combination of eight Papers and is integrated with five 

Chapters including the Introduction Chapter. The outline of rest of the Chapters 

presented in this thesis is organized as follows.

Chapter 2 provides the literature review for this thesis. In this Chapter, the 

investigations and research outcomes reported by other researchers are provided. Firstly, 

an overview of this Chapter is presented. Then, a brief explanation of the ED problem is 

given. After that, a review of the popular optimization techniques used for solving the 

ED problem with several TGU and PGS operating power constraints is presented. The 

classical optimization techniques, intelligent optimization techniques, i.e., evolutionary 

computation techniques (ECTs) and hybrid optimization techniques are addressed in 

this Chapter. Following that, several other improved ECTs are presented for solving 

such a complex problem. After that, several optimization techniques for ED problem of 

large-scale TGUs are discussed. Subsequently, some important observations are 

concluded from this literature review are presented in this Chapter. Finally, a summary 

of this Chapter is presented. 

Chapter 3 provides the research methodology used in this study. An overview of this 

Chapter is presented. Then, research design of this thesis is given in this Chapter. 

Following this, introduction to optimization is presented. After that, a summary of the 

methods (algorithms developed) used in this study is presented. Thereafter, a 

comparison between the proposed OPSO and MG-PSO algorithms and original PSO 

variants in terms of several critical parameters is presented. Then, a comparison 
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between the two proposed algorithms OPSO and MG-PSO algorithm, is provided. 

Finally, summary of this Chapter is presented. 

Chapter 4 provides a summary of each Paper of the eight Papers is concisely provided. 

The contribution and the research methodology in each Paper are also presented. 

Finally, a summary of this Chapter is provided.

Chapter 5 provides a discussion of this study. Firstly, main investigations of this study 

are presented. Then, the answer of the research questions is provided. After that, 

outcomes of this study are discussed. Then, the significant contribution of this study to 

the knowledge is presented. Subsequently, limitations and recommendations future 

study are given. Finally, conclusion of this study is presented in this chapter. 

Appendices: The eight Papers, Paper A to Paper H are attached in Appendix-1. The 

signed authorship indication form of each Paper is given in Appendix-2. Publisher 

permission for each published Paper is presented in the Appendix-3.

1.9 Chapter summary  

One of the biggest challenges that is being faced by the PGS in Iraq is the ED of 

power of large-scale TGUs and solving practical operating power constraints. Because 

of use of inefficient optimization techniques to solve such a complex problem, billions 

of dollars are being wasted each year for the PGS. In addition, non-optimum scheduling 

of large-scale TGUs causes the PGS to be non-economic, unstable and unreliable. In 

order to solve the complex ED problem, two novel algorithms, i.e., OPSO and         

MG-PSO algorithms are proposed. In addition, this Chapter provided the details of 

contribution of each Paper of the eight Papers and the outline of this thesis. 
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Chapter 2: Literature Review 

2.1 Chapter overview 

The methodologies proposed by other researchers and related literature on economic 

dispatch (ED) problem are addressed in this Chapter. Chapter 2 aims to establish a 

framework of the research topic through a comprehensive review of a large number of 

the recent studies reported by other researchers, to address the economic dispatch (ED) 

problem. Section 2.2 briefly describes the ED problem. Several optimization techniques 

have been applied to solve the ED problem in the recent years. In general, these can be 

classified into three main categories: classical optimization techniques, evolutionary 

computation techniques (ECTs) and hybrid optimization techniques. Details of each 

category and their merits and demerits are presented in Sections 2.3, 2.4 and 2.5.

Section 2.6 describes several studies that have been used to improve the performance of 

the ECTs to solve the ED problem of large-scale TGUs with several power constraints. 

In addition, some other optimization techniques using different methodologies are 

presented in Section 2.7. Some important observations are presented in Section 2.8.

Finally, a summary of this Chapter is provided in Section 2.9.

2.2 Economic dispatch problem

Solving ED problem of the online TGUs with different operating power constraints 

is an essential part in operation and management of the PGSs. It aims to determine and 

assign the active output power of each online TGU for a given time interval to meet a 

specific load demand, PD with minimum operating fuel cost subject to required equality 

and inequality power constraints. The theoretical justification and analysis of the ED 

problem, as well as mathematical formulation of the fuel cost function and its 

constraints, are available in the eight Papers appended in Appendix-1.

Ideally, the fuel cost of a TGU is characterised by a convex and smooth function 

[13]-[14]. The fuel cost function of each TGU is related to the active output power 

quadratically. Thus, it can be expressed by a quadratic function for solving of the ED 
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problem. However, in practice, with large-scale TGUs operating under VPL effects and 

several other power constraints, e.g., RRLs, and POZs, the fuel cost function becomes 

non-convex, non-smooth and discontinuous with non-linear characteristics. In such the 

case, the cost function of the ED problem is represented by a multimodal objective 

function.

Many optimization techniques have been proposed to solve the ED problem. In 

general, the optimization techniques used for the ED problem can be classified into 

three main categories. They are classical optimization techniques, evolutionary 

computation techniques and hybrid optimization techniques.   

2.3 Classical optimization techniques   

The classical optimization techniques are beneficial to obtain the optimum solution 

of the problems that involve continuous and differentiable objective function. Such kind 

of optimization techniques can achieve the maximum or minimum solution for the 

unconstrained and constrained continuous objective function. The objective function 

and its constraints of these techniques are used to guide the optimization process [15].

This means that they require complete information of the objective function and its 

dependence on the nature of each variable of the objective function. The classical 

optimization techniques are widely used to solve power system operation problems 

including ED problem. Some of the favourite classical optimization techniques used in 

solving the ED problem are described below. 

2.3.1 Linear programming 

The linear programming (LP) method is widely used in science and engineering. It 

is being applied to problems of power systems, such as reactive power calculations, 

power flow and ED of active output power of PGSs [16]. The LP method is also 

successfully applied to economic growth prediction, design of diets, conservation of 

resources, transportation systems [17]. The LP method used for optimizing a linear 

objective function, is a maximization or minimization problem, subject to a number of 

linear constraints [18]-[19]. Thus, the objective function and its constraints have linear 

characteristics.



Chapter 2: Literature Review 

17 

A maximization or minimization task is applied when solving the objective 

function. The structure of this method depends on the linear equation characteristics as 

follows.

                                                                                                                                                                                                                                                                                                    Objective function f(x) = c1 x1 + · · · + cd xd

                             Subject to a1,1 x1 + · · · + a1,d     xd ≥ b1                                          (1)

                                                                                 

                                                               an,1x1 + · · · + an,d xd ≥ bn

where ci, ai,j and bi (i = 1, 2, …, n) and (j = 1, 2, …, d) are real numbers, which form the 

input to the objective function. The f(x) to be minimized or maximized is the objective 

function and together with its constraints named the LP method [20]. The d is the 

dimension of f(x). Each constraint can be interpreted as a half-space dividing the d-

dimensional search space in two, and the intersection of all the half-spaces is named the 

feasible region, which is the set of all points satisfying all the constraints as shown in 

Figure 2.1. If the feasible region is empty or the solution vector x (x = x1, x2, …, xd)

outside the feasible region, the LP method itself is infeasible as shown in Figure 2.1(a).

If the solution vector x inside the feasible region then the LP method is feasible as 

shown in Figure 2.1(b). The solution may be bounded in the direction of the f(x). In 

such the case, the solution vector x lies within the boundary of a search space, as shown 

in Figure 2.1(c). The solution may be bounded and valid within an intersection of two 

lines, in this case, there is a unique solution as shown in Figure 2.1(d). The solution is 

not always unique in LP method and the constraints can cause any possible solutions to 

be invalid.

The LP method is simple in implementation. It is most suitable for solving the 

problems that have linear characteristics. In addition, the convergence characteristics of 

this method are fast [21]-[22]. However, when the fuel cost function of the ED problem 

is non-convex, non-smooth and discontinuous with non-linear characteristics, the LP 

method may be unable to solve such a complex problem. In addition, the LP method is 

inaccurate to evaluate the equality and inequality power constraints, such as PL and 

POZs constraints [15]. Furthermore, the LP method is inefficient to handle the problems 

that have high-dimensions because of the curse of dimensionality [23].
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Figure 2.1. Possible solutions in linear programming method.

2.3.2 Mixed integer programming  

The mixed integer programming (MIP) method is widely used in the field of 

optimization in power systems and communications. For example, unit commitment of 

TGU power systems and power flow analysis [24]-[25]. The MIP method is an 

optimization method where some or all the variables are restricted by integer values at 

the optimum solution [26]-[27]. The MIP method is formed as follows.  

                  Objective function f(x) = xT Q x + qT x 

                  Subject to Aeq x = beq     (linear equality constraints)                     (2) 

                              A x ≤ b (linear inequality constraints) 

                              xT Qi x + qi
T x ≤ bi   (quadratic constraints) 

                          l ≤ x ≤ u (bound constraints), 

where x, q, qi, l, and u are vectors of d dimension. The number of equality and 

inequality constraints is denoted by M. Some or all of the solution vector values, x, are 

integer. The A and Aeq are (M×d) matrices, Q and Qi are (d×d) matrices and the beq, b

and bi are vectors of equality, inequality and quadratic constraints, respectively.    

Use of integer values expands the scope of useful optimization problems. 

However, the integer values make an optimization problem to be non-convex [27]-[28],

and thus far more difficult to solve under high-dimensional search space optimization 

problems due to the complex combination of the integer variables. Also, many 

combinations of specific integer values for the variables must be tested, and each 

x

(a) (b) (c) (d)
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combination requires the solution of the optimization problem where the number of 

combinations may rise exponentially with the size of the optimization problem [29].

Furthermore, in most the real-world problems including ED problem, the optimum 

solution may be shifted or/and rotated at the origin. In such the case, tuning the integer 

values of the variables becomes hard. Moreover, the curve of the fuel cost function has 

some discontinuities due to the POZs imposed on several TGUs. The fuel cost function 

in such case becomes discontinuous and multimodal. Thus, solving such a complex 

problem by the MIP method may be very hard.    

2.3.3 Sequential quadratic programming 

Sequential quadratic programming (SQP) [30] is widely used in solving the practical 

optimization problems, e.g., image and signal processing, data analysis, reactive power 

optimization and ED problem [31]. The SQP is used for handling the non-linear 

objective function and its equality and inequality constraints. The SQP method closely 

simulates Newton’s method for constrained optimization just as is done for the 

unconstrained optimization problems [32]. The non-linear optimization problem with 

both equality and inequality constraints can be written as a quadratic function. The 

quadratic function is then solved at each iteration. In each iteration, the Lagrangian 

function is used to update the objective function and its constraints. Then, the quasi-

Newton approach is applied to generate a quadratic programming sub-problem whose 

solution is used to form a  search direction as guide for a search procedure [33]. The 

procedure of the SQP method can be described as follows.  

          Objective function xLxxfxxf TT
2
1)()(

                                                                                   (3)
           Subject to 0)()( xxhxh T

ii , i = 1, 2, …, k

0)()( xxgxg T
ii , i = 1, 2, …, k +1,

where k is the number of constraints, x is a position vector, ∆x is a change in x in each 

iteration, )(xf is a gradient of x, and L is Lagrangian function. The hi and gi are equality 

and inequality constraints, respectively. In each iteration, the SQP method approximates 

the f(x) to a quadratic form and linearizes the constraints. The quadratic function is then 

solved to get Δx. The value of x is updated with Δx. Again, the f(x) is approximated by a 

quadratic function, and its constraints are linearized with the new value of x. This 
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procedure is repeated in each iteration until there is no further improvement in the 

objective function. In this method, a region around x has to be evaluated by Δx where a 

quadratic approximation of the function holds. The region is adjusted so that f(x + Δx) < 

f(x).

The SQP method is widely used for the ED problem. Because, it can handle 

quadratic fuel cost function with non-linear characteristics [34]. However, as the fuel 

cost function to be minimized is multimodal and discontinuous due to presence of the 

POZs, the SQP method violates the POZs during the search process on a global 

optimum. In addition, the SQP method incorporates several derivatives, which may be 

evaluated in advance of iterating to a solution. Thus the SQP becomes quite slow for 

large-scale TGUs.  

The details of some popular classical optimization techniques reported above reveal 

they are not effective in solving the ED problem for a large-scale highly constrained, 

non-linear, non-convex, and discontinuous optimization problem with multiple local 

optima. In general, many studies reveal that the classical optimization techniques are 

inefficient to solve such a complex problem [15], [23], [35]-[36] due to their major 

drawbacks as summarized in Table 2.1.

Table 2.1. Disadvantages of the classical optimization techniques 

1. The convergence characteristics are sensitive to the initial values of vector x.

2. The objective function needs to be monotonically increasing in nature. 

3. These techniques are primarily affected by the shape of the objective function.

4. These techniques are trapped into local minima under high-dimensions with several constraints.

5. These techniques are inefficient for handling the ED problem with a discontinuous search space.

2.4 Intelligent techniques: evolutionary computation techniques 

Evolutionary computation techniques (ECTs) are a population-based optimization 

process. They are random search techniques inspired by the natural selection and 

survival of the fittest in the biological world [37]. The algorithm in these techniques 

comprises searching a population of candidate solutions. Each iterative step of an 

algorithm requires a competitive selection that eliminates poor candidate solutions. The 
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candidate solutions with high fitness are recombined with other candidate solutions by 

swapping individuals of the approximate solution with those of the others. Some 

categories of the ECTs such as genetic algorithm (GA) and differential evolution (DE) 

use mutations in their learning strategies [35]-[38]. Mutations are applied to candidate 

solutions by making a small change to a single individual of the solution vector 

containing the decision variables. Recombination and mutation are used to yield new 

candidate solutions that are biased towards regions of the search space where good 

solutions have already been seen.

Some other categories of the ECTs that involve colonies of bees and ants, fish 

schools, birds flock, animal herds are called swarm intelligence [39]. The swarm 

intelligence mimics natural and artificial systems composed of many individuals that 

coordinate using decentralised control and self-organisation [40]. Here, the algorithm 

focuses on the collective behaviours that result from the local interactions of the 

individuals or candidate solutions with each other and with the environment where 

these individuals stay. The fundamental feature of the swarm intelligence is its ability 

to act in a coordinated way without the presence of an external controller or a 

coordinator. In spite of the lack of individuals in charge of the swarm or group, the 

swarm as a whole does show intelligent behaviour. This is the result of interactions of 

spatially located neighbouring individuals using guide rules. 

The ECTs have been used successfully in many different fields of science and 

engineering including the ED problem. In the recent years, the ECTs have been widely 

used for solving real-world ED problem. Many researches have confirmed that the 

ECTs are suitable for solving the non-convex ED problem [41]-[75]. A brief 

description of several different types of the notable original ECTs for solving the ED 

problem is given below. 

2.4.1 Genetic algorithm 

Genetic algorithm (GA) is a search method used to find a possible best solution for 

an optimization problem. The GA belongs to the ECTs that inspired by evolutionary 

biology [41]. There are three key genetic operators of the GA, selection, crossover and 

mutation. The selection operator (reproduction) provides a driving force for the test 
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system to evolve toward the desired states. The selection operator is essentially used 

for the intensive exploitation. The crossover operator (recombination) is mainly used 

for mixing within a sub-space. The crossover operator helps the individuals to exploit 

and enhance the algorithm convergence. Then, the mutation operator provides a main 

mechanism for a global search process, and it can be generalized as a randomization 

technique.

The GA generates the solutions of an optimization problem using the three operators 

(selection, crossover and mutation) with ith individual or candidate solution (i = 1, 2, 

…, m) in a population (X). The X is denoted by a binary string of zeros (0s) and ones 

(1s) or sometimes using other forms of encodings as mentioned in [42]. The search 

process or the evolution process in GA starts from a population of individuals generated 

randomly within a d-dimensional search space and continues for iterations 

(generations). In each iteration, the fitness of each individual (candidate solution) is 

evaluated, and multiple individuals are randomly selected from the current population 

according to their fitness. Then, these are modified by the crossover and mutation 

operators to form a new population, which is then used in the next iteration of the 

evolution.

The fitness function fi, i = 1, 2, …, m, is defined to evaluate the fitness of ith

individual and it is associated with the objective function of the problem. The fitness 

value of an individual should be positive. For a minimization task, when the objective 

function value becomes small, its fitness value is large. The fitness value of the 

individual is used to determine the probability (pr) with which the individual is selected 

into the new population. This  GA procedure is known as roulette wheel selection [42].

Some other alternatives of selection operators are also used, such as tournament 

selection.  Subsequently, the search process terminates when either a maximum number 

of iterations have been achieved or when a satisfactory fitness level has been reached. 

The procedure of the GA is described in the following steps. 

Procedure of GA [43] 

Step #1: Encode the m individuals of the population (p) for the problem, generate 
the  initial population p(0).
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Step #2: Evaluate the fitness of each individual Xi(t), i =1, 2, …, m, in p(t), t = 1, 2, …, 
Niter, by fi = fitness (Xi(t)).

Step #3: If the termination condition is achived, then the algorithm terminates,
otherwise, determine the selection probability (pr) of each individual by 

,…2,1,=
1

mi,
f

fp m

j j

i
r,i (4)

Step #4: Using roulette wheel selection method, select multiple individuals from p(t)
with the above probability distribution to form a population as follows. 

p(1)(t+1) ={Xi(t), i = 1, 2, …, m} (5)

Step #5: Perform crossover operator on population p(1)(t+1) to form a population 
p(2)(t+1). 

Step #6: Mutate a single element (called a gene) of an individual with probability pr,m
to form a population p(3)(t+1).

Step #7: Set t = t+1, p(1)(t+1) = p(3)(t+1) and return to Step #2. 

In practice, the GA may often converge well and in many cases the global 

optimality can be achieved. The selection or survival of the fittest provides a good 

mechanism to select the best solution. This means that the individuals are able to 

enhance the convergence of the algorithm. However, when solving a complex problem 

such as the ED problem of large-scale TGUs with several power constraints, e.g., 40 

TGUs or more, the mutation in GA may make the individuals far away from the 

global optimum while at the same time slowing down the convergence. Thus, the GA 

may fall into local minima for a such complex problem [13], [44].

2.4.2 Differential evolution 

Differential evolution (DE) algorithm belongs to the class of ECTs. The DE 

algorithm was developed by R. Storn and K. Price in 1996 and 1997 [45]-[46]. It is a 

technique of mathematical optimization of multi-dimensional problems to find the 

global minimum (solution). It is fairly fast and reasonably robust. The DE algorithm is 

a population-based stochastic function minimizer and has become one of the most 

popular techniques used by the researchers [36]-[47] for solving the real-world 

problems including the ED problem. The DE can be explained as follows [48]-[49].

The learning strategy of DE algorithm depends on creating trial parameter vectors by 
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adding the differential weight between two population vectors Xp and Xq to a third one 

Xr that makes the structure completely self-organizing. The solution vectors Xi, i = 1, 

2,…, m, are used for the next iteration (t+1) to optimize the objective function f(x).

The mutation in the DE algorithm [48] are written by 

Xi = Xr + F (Xp − Xq), i = 1, 2, …, m (6)

where F is the differential weight and control parameter used to control the size of the 

disturbance in the mutation operator during the search process and to improve the 

convergence of the algorithm. The value of F is chosen using trial and error method 

within the range of [0,2] [48]. The Xr, Xp and Xq are three position vectors and they are 

generated by the random permutation. In addition, the DE has a crossover operator Cr

that is controlled by a crossover probability Cr  [0,1]. The actual crossover operator 

can be executed using binomial or exponential functions [49]. For the minimization 

task, the minimum objective value can be expressed by  

otherwise.)(
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One big challenge in the DE algorithm is that the search process is impaired during 

the search of the optimum solution due to the fast descending diversity of the m

individuals. In addition, because of the diversity of the individuals descends faster 

during the search process, the DE is fast in convergence. Thus, the m individuals leads 

to a higher probability of reaching a local minimum [36], [50].

2.4.3 Particle swarm optimization 

Particle swarm optimization (PSO) algorithm is another important algorithm 

developed by Kennedy and Eberhart in 1995 [51]. It was motivated by social behaviours 

of some animals such as birds flock or fish schooling. The PSO algorithm is a population-

based search optimization algorithm with an initial population of random solutions. 

The possible solutions are usually called particles [51]. These particles fly in a           

d-dimensional search space by following their own experiences and the current 

optimum particles. The search for an optimum solution is obtained by updating the 

particles in each iteration.
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The PSO algorithm begins with an initial population of random solutions. It 

searches for an optimum solution by updating the particles by changing the position of 

each particle in each iteration. It uses a velocity vector based on the social behaviour 

of the particles inside a swarm to update the current position of each particle flying in 

a d-dimensional search space. Each particle in a swarm adjusts its search direction 

using its personal experience, Gpers,i, i = 1, 2, …, m, and the best experience, Gbest of

the whole swarm through linear summation [52]. The velocity and position vectors of 

the ith particle, Vi and Xi, respectively, are updated as follows. 

             Vi(t+1) = Vi(t) + c1 r1 [Gpers,i(t) – Xi(t)] + c2 r2 [Gbest (t) – Xi(t)]                 (8)  

Xi(t+1) = Xi(t) + Vi(t+1),

where r1 and r2 are two random vectors with a range of [0,1]. The parameters c1and c2 are 

acceleration constants, which is typically taken as, c1 = c2 = 2.0 [53].

We can see from (8) that the new position Xi(t+1) is generated by a pattern-search 

mutation, whereas selection is implicitly made by using the current global best solution, 

Gbest found so far, as well as using the personal solution of ith particles, Gpers,i, i =1, 2, 

…, m. However, the role of individual best is not entirely clear, though the current global 

best seems very important for selection, as is shown in the accelerated PSO algorithm in 

[51] and [54]. Therefore, the PSO algorithm consists of mainly mutation and selection, 

but there is no crossover. This means that the PSO algorithm can have high mobility in 

particles with a high degree of an exploration.  

The PSO algorithm has been successfully applied in different applications in science 

and engineering, such as optimum power flow, reactive power calculation, image 

processing and solving the ED problem [55]-[56]. It is now one of the most widely used 

algorithms in the optimization [4], [57]-[58]. The PSO algorithm is easy to implement and 

is fast in convergence. Besides, it has a few parameters to adjust. However, the use of 

Gbest in PSO algorithm seems strongly selective. Its advantage is that it helps to speed up 

the convergence by drawing the optimum solution toward the current best Gbest, however, 

it may lead to premature convergence by falling into a local minimum.  
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2.4.4 Ant and bee algorithms 

Ant colony optimization (ACO) algorithm was developed by M. Dorigo [59]-[60]. It

mimics the foraging behaviour of ants. The ACO algorithm uses pheromone as a 

chemical messenger and the pheromone concentration as an indicator of the quality 

solutions to a problem of interest. The candidate solutions are related to the pheromone 

concentration, which leading the individuals to routes and paths marked by the higher 

pheromone concentrations as better solutions. The ants are able to find shortest routes 

through marking their paths based on their behaviour with the pheromone 

concentration in finding an optimum solution. The shortest path is the route with the 

most pheromone concentration marks which the ants will use to carry their food back 

home. 

In ACO algorithm, the random route generation is primarily mutation. Subsequently, 

pheromone-based selection gives a mechanism for selecting shorter routes. No explicit 

crossover operator available in ACO algorithm. However, the mutation operator is not as 

simple an action as flipping digits in the GA. The new solutions are essentially generated 

by fitness-proportional mutation [61]. The probability, pr of ants in a grid problem at a 

particular node i to choose the route or path from node i to node j is given by 
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where α > 0 and β > 0 are the influence parameters, φij is the pheromone concentration on 

the route or path between the node i and the node j , and dij is the desirability of the same 

route. The selection is related to some a priori knowledge about the route or path, such as 

the distance sij is often used so that dij  1/sij [54].

Recent studies have shown that the ACO algorithm is highly effective in solving 

several real-world problems including the ED problem [61-63]. However, theoretical 

analysis of the ACO algorithm is difficult, sequences of random decisions are not 

independent, and probability distribution changes by iteration search are experimental 

instead of theoretical. In addition, although the execution time to reach convergence is 

uncertain, however, the convergence is guaranteed [63]. Besides, under high-

dimensional multimodal ED problem, drawing the routes by the ants through the 
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search process for the optimum solution becomes complex. In such the case, the ants 

are easy to fall into a local minimum [39].

In the bee colony optimization (BCO) algorithm, the bees in the colony are divided 

into three groups. They are the employed bees or forager bees, onlooker bees or observer 

bees, and scouts [64]-[65]. The employed bees and scout bees are initialized randomly 

and both are mainly used in mutation process. Selection operator is related to the honey or 

objective function. In the BCO algorithm, no explicit crossover operator is carried out. 

The detailed procedure of the BCO algorithm is given by the following steps: 

Procedure of BCO algorithm 

Step #1: Initialize the population of solutions Xij, i = 1, 2, …, Nbees, where Nbees is
number of onlooker bees and equals to the number of employed bees, j = 1,
2, …, d, where d is dimension of the problem. 

Step #2: Evaluate the population at t = 0 . 

Step #3: Produce new solutions Xij(t+1), for the employed bees by using (10) and
evaluate them. 

Xij(t+1) = Xij(t) +φij (Xij(t) – Xkj(t)) (10)

where k  {1, 2,..., Nbees} and j {1, 2,..., d} are randomly chosen indexes.
The φij is a random number with a rage of [-1,1]. 

Step #4: Apply the greedy selection process [66].

Step #5: Calculate the probability values for the solutions Xij(t+1) by using (11) 

beesN

i i

i
i,r

f

fp

1

(11)

where fi is the fitness value of the solution i which is proportional to the 
nectar amount of the food source.  

Step #6: Produce the new solutions Xij(t+1) for the onlookers from the solutions Xij(t)
selected depending on i,rp and evaluate them. 

Step #7: Apply the greedy selection process [66].

Step #8: Determine the abandoned solution for the scout, if exists, and replace it with a
new randomly produced solution Xij(t) using (12) 

Xij= Xj,min+ rand (0,1) (Xj,max – Xj,min)                                           (12)

where Xj,min and Xj,max  are the limits for the abandonment. 
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Step #9: Memorize the best solution achieved so far. 

Step #10: t =t +1

Step #11: Go to Step #3 until t =Niter, where Niter is total number of iterations or
sometimes called total number of cycles [67]-[68].

Both the ACO and BCO algorithms use only mutation and fitness-related selection 

operators, and they can have good global search ability to explore the search space 

relatively effectively. However, the convergence may be slow because they lack 

crossover operator. In addition, the local search ability of the individuals is comparatively 

low [69]. This may explain that the ACO and BCO algorithms can perform well for some 

optimization problems with low dimensional search space. However, when solving a 

complex problem, such as the ED problem with a high-dimensional search space, obtaing 

of the global optimum using the ACO or BCO algorithms may become hard.   

2.4.5 Cuckoo search algorithm  

Cuckoo search (CS) algorithm was developed in 2009 [70]. It is a nature-inspired 

algorithm. The CS algorithm is based on the brood parasitism of some cuckoo species. It 

is enhanced by the so-called Lévy flights rather than by simple isotropic random walks 

[71]. The recent studies show that the CS is potentially more efficient than the PSO 

algorithm and GA [72-74]. The CS algorithm uses a balanced combination of a local 

random walk and the global explorative random walk, controlled by a switching 

parameter pa . The local random walk can be expressed by 

Xi(t+1) = Xi(t) + α s  H ( pa − ε)  (Xj(t) − Xk(t)), (13)

where Xj(t) and Xk(t) are position vectors with different solutions selected randomly by 

random permutation, H is a Heaviside function, ε is a random number drawn from a 

uniform distribution, and s is the step size. The symbol  denotes the entry-wise product. 

On the other hand, the global random walk is accomplished by using Lévy flights [71],

as flows.  

Xi(t+1) = Xi(t) + α L(s, λ), (14)

where,
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s
,sL ,    (s ≤ s0 ≤ 0)                        (15) 

where, the step size scaling factor α > 0, which should be related to the scales of the 

problem of interest.  

The CS algorithm has some drawbacks: it may be particular for a specific class of the 

optimization problems but may not be effective in other real-world problems, such as the 

ED problem with high-dimensional search space because it may get stuck into a local 

optimum [75].

2.4.6 Bat algorithm  

The bat algorithm (BA) was developed in 2010 [76]. It is inspired by the echolocation 

behaviour of bats. The BA uses frequency tuning to obtain the global optimum. Each bat 

is associated with a velocity vector Vi(t) and a position vector Xi(t), at iteration t , in a d-

dimensional search space. Among all the bats in a swarm, there exists a current best 

solution denoted by Xbest. The Xi(t) and Vi(t) are updating as follows. 

Ri = Rmin + (Rmax – Rmin) β (16) 

Vi(t+1) = Vi(t) + (Xi(t) – Xbest) Ri (17) 

Xi(t+1) = Vi(t+1) + Xi(t) (18) 

where Rmin and Rmax  are range of the search space of a problem, and β  [0,1] is a random 

vector drawn from a uniform distribution. The loudness and pulse emission rates are 

regulated as follows. 

Ai(t+1) = α Ai(t) (19)

ri(t+1) = ri(t) (1 – exp(–γ t), (20) 

where 0 < α < 1 and γ > 0 are constants.  

In the BA, the frequency tuning essentially acts as mutation operator, whereas 

selection operator pressure is relatively constant via the use of the current best solution 

Xbest found so far. There is no explicit crossover operator. However, mutation operator 

varies due to the variations in loudness and pulse emission. The BA is simple, flexible 

and easy to implement. A wide range of problems including highly non-linear problems 
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have been solved efficiently [77]. Also, the variations in loudness and pulse emission 

rates provide a mechanism for automatic control and auto-zooming ability so that 

exploitation becomes intensive as the search approaches the global optimality. In 

addition, the BA is fast in convergence. However, no mathematical analysis is used to 

link the parameters with convergence rates in this algorithm. 

The studies carried out by a large number of other researchers in this Section reveal 

that the original ECTs have several merits and demerits for solving the complex high-

dimensional search space problems, such as the ED problem. These merits and demerits 

are summarized in Tables 2.2 and 2.3, respectively.

Table 2.2. Merits of the ECTs. 

Table 2.3. Demerits of the ECTs. 

1. The ECTs may reach premature convergence and non-optimum local solution when solving the
objective function with non-linear and discontinuous characteristics.

2. The ECTs may have weakness in either exploration or exploitation of the individuals during the
search process.

3. The ECTs may lose the balance between global search and local search during the search process
when solving the complex problems with high-dimensional search space.

2.5 Hybrid optimization techniques 

The hybrid optimization technique is an integration of two or more optimization 

methods to provide complementary learning, searching and reasoning methods to 

combine domain knowledge and empirical data to develop  flexible  computing tools 

and then solving the real-world complex problems [78]. The aim of this integration is to 

1- The ECTs have the adaptability to change and ability to generate good enough solutions quickly. 

2- These are not affected by the shape of the objective function. 

3- The ECTs use information of the objective function directly through the search processes. 

4- The ECTs can deal with non-smooth, non-continuous, and non-differentiable objective function. 

5- The ECTs use stochastic transition rules, rather than deterministic rules, to select the population 
(individuals) in each iteration.

6- The ECTs can search a complicated and uncertain search space to find a global optimum. 

7- The ECTs can deal with complex problems that cannot be solved by the classical optimization techniques. 

8- The ECTs are easy to apply due to their simple mathematical structure and easy to combine with 
other techniques to create hybrid systems adding the strengths of every other technique. 
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overcome the limitations of the individual optimization techniques, e.g., classical 

optimization techniques and original ECTs through hybridization. The ECTs are robust 

and powerful global optimization techniques for solving many real-world problems. 

However, they are sometimes poor in terms of the convergence performance. Besides, 

most the original ECTs lack the balance between local search and global search during 

the search for a global optimum. Therefore, the hybrid algorithms are designed to yield 

better performance than the individual algorithms. Most studies achieved in the recent 

years show that hybrid optimization techniques include one or two original ECTs in 

their learning strategies [79]-[78]. Some of the major hybrid algorithms used in solving 

the ED problem are given below. 

2.5.1 Hybridization between GA and another ECT 

The GA is used with different types of ECTs for solving several practical problems 

including the ED problem. Some of these GA-based hybrid algorithms are a hybrid GA 

and bacterial foraging approach [79]. The original bacterial foraging (BF) algorithm 

suffers from poor convergence characteristics when solving the ED problem with a 

number of power constraints, e.g., VPL effects, RRLs and PL. To overcome this 

drawback, integration between the GA and BF algorithm is made to obtain a hybrid GA 

with BF (HGBF) algorithm. In a combination of GA and SQP method [80], the GA is 

used as main optimizer and the SQP method is combined to fine tune in the solution of 

the GA run. In addition, non-uniform mutation operator and simplex crossover operator 

are achieved through this hybridization. The GA is combined with an immune algorithm 

to produce a hybrid algorithm, is called hybrid immune-genetic algorithm (HIGA) [81].

The HIGA algorithm is used to solve multimodal and non-convex ED problem. These 

algorithms are successfully used in solving the ED problem, however, they are applied 

only for small-scale and medium-scale PGSs.   

2.5.2 Hybridization between DE and another ECT 

The DE has been combined with other types of ECTs for solving ED problem of 

large-scale TGUs under several non-linear power constraints. The DE algorithm is 

combined with greedy randomized adaptive search procedure (GRASP) to produce DE-

GRASP algorithm [12]. This algorithm is used to improve the global searching 
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capability and to prevent from falling into local minima. The DE-GRASP algorithm is 

evaluated using medium-scale to large-scale PGSs. A combination of the DE algorithm 

and harmony search (HS) algorithm is made to create a hybrid algorithm and is called 

DHS algorithm [82]. Here, in order to enhance the exploitation ability of harmony 

search, the pitch adjustment operation is operated with the different mutation 

operations. In addition, to enhance the exploration ability of evolution search, both the 

memory consideration and the pitch adjustment are made. This hybrid algorithm is 

evaluated using small to large PGSs. Another hybrid algorithm is called DE-PSO-DE 

(DPD) is built by paralleling the DE algorithm and the PSO algorithm [83]. Here, the 

population is divided into three groups. The DE algorithm enhances the inferior and 

superior groups, whereas the PSO algorithm is used to enhance the mid-group. This 

combination improves the solution quality of each individual algorithm. However, such 

a hybrid algorithm consumes long execution time due to more computational processes. 

2.5.3 Hybridization between PSO and another ECT 

The PSO algorithm has been combined with some other types of the ECTs. In the 

fuzzy based hybrid PSO-DE (FBHPSO-DE) algorithm [3], the combination of the DE 

and PSO algorithms is made to enhance the ability of the population in local search and 

global search processes. A fuzzy decision making strategy is applied to find and sort the 

Pareto-optimal solutions. The FBHPSO-DE algorithm is evaluated using small-scale to 

large-scale PGSs to solve the ED problem with different power constraints. The PSO 

algorithm is modified using gravitational search algorithm (GSA) to construct a hybrid 

algorithm called PSOGSA [84]. Here, the local search ability of the PSO algorithm is 

improved by using the GSA. In addition, a fuzzy logic is used to control the ability to 

search for the global optimum and to increase the performance of the PSOGSA. This 

algorithm is evaluated using small-scale to large-scale PGSs. The co-swarm shrinking 

hypersphere PSO (CSHPSO) algorithm is obtained by hybridizing the shrinking 

hypersphere PSO algorithm with the DE algorithm [85]. Here, the swarm is divided into 

two sub swarms in such a way that the first swarm uses the SHPSO algorithm, whereas 

the second swarm uses the DE algorithm. Thus, this procedure enhances the exploration 

and exploitation process to obtain a global optimum. 
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Table 2.4 gives a summary of some hybrid algorithms used in the recent years to 

solve the non-convex and non-smooth ED problem of large-scale TGUs. We can see 

from Table 2.4 that these hybrid algorithms are successfully used in solving the ED 

problem of large-scale TGUs but with only a few power constraints. This means that 

addition of more constraints requires more time for the algorithm to find a global 

optimum. In addition, these algorithms are found to generate a high-quality solution, 

robustness and consistency for such a complex problem.  

In addition to these merits of the hybrid optimization techniques in improving 

performance and solution of the original ECTs, they have several critical demerits as 

shown in Table 2.5.

Table 2.4. Some of the hybrid algorithms used in the recent years for solving the ED 
problem. 

Sl.
No. Algorithm Year

PGS Fuel
cost

Power constraints 

RR
limits

Generation
limits PL

PL
mismatch

Power
balance POZs VPL

effects# of 
TGUs

PD
(MW)

1
Fuzzy based hybrid PSO-DE 

(FBHPSO-DE) 
[3]

2017
40 10,500 √ - - √ - - √ √

160 43,200 √ - - √ - - √ √

2
DE with greedy randomized 
adaptive search (DE-GRAS) 

[12]
2017

40 10,500 √ - √ - - - - √

140 49,342 √ √ √ - - - √ √

3 DE-PSO-DE (DPD) 
[83] 2016 40 10,500 √ - √ - - - - √

4
PSO with gravitational search 

algorithm (PSOGSA) 
[84]

2015 40 10,500 √ - √ - - - - √

5
Co-swarm shrinking 

hypersphere PSO CSHPSO 
[85]

2014 40 10,500 √ - √ - - - - √

6
DE with harmony search 

(DHS) 
[82]

2013 40 10,500 √ - √ - - - - √

The symbol (√) represents that the corresponding constraint has been considered. The symbol (-)
represents that the corresponding constraint has not been considered.  

Table 2.5. Demerits of the hybrid optimization techniques. 

1. The hybrid optimization techniques are often consume a long execution time because of the structure
of these techniques is complicated. During this time of the search process, the algorithm may fall into
a local optimum.

2. The parallelization between two algorithms is a key of these techniques.

3. The appropriate integration of the combined algorithms may be difficult to achieve.

4. Choosing suitable parameters values is difficult.

5. The hybrid optimization techniques suffer from slow convergence to an optimum value and require a
large number of iterations in high-dimensional search space problems.

6. The balance between exploration and exploitation processes of the combined algorithms is hard to
obtain.
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2.6 Enhanced evolutionary computation techniques 

In spite of the advantages of the original ECTs to solve the ED problem, they are 

often prone to get trapped into local optima due to the loss of balance between global 

search and local search of the individuals in large-scale TGUs with several non-linear 

operating power constraints [13], [44]. To enhance the global search and local search 

performance of the original ECTs to solve such a complex problem, many improved 

variants have been developed in the recent years. Among them, extensive studies have 

been made on the improved PSOs [11], [55], [57] [86]-[88], [91], [94] and DEs [89]-

[90], [92]-[93], because of their popularity. These are summarized in Table 2.6.

Table 2.6 summarizes some of the improved PSO and DE algorithms used in the 

recent years to solve the non-convex and non-smooth ED problem. These algorithms 

improve the performance of the PSO and DE algorithms in terms of the high-quality 

solution, convergence rate, robustness and consistency. Also, they successfully applied 

to solve the ED problem of large-scale PGSs. However, they address few numbers of 

power constraints. For example, in Table 2.6, there is no algorithm solves the PL and

PL,mismatch constraints and satisfies the equality constraint due to the power balance of 

large-scale TGUs. This is due to that the data of these practical power systems may be 

not available or due to the complexity of these power systems. The optimization 

techniques mentioned in Table 2.6 are arranged based on date of the publication. 

Table 2.6. Some of the improved PSO and DE algorithms used in the recent years for 
solving the ED problem. 

Sl.
No. Algorithm Year

PGS Fuel
Cost

Power constraints 

RR
limits

Generation
limits PL PL,mismatch

Power
balance POZs VPL

effects# of
TGUs PD (MW)

1
Dynamic PSO with escaping 

prey (DPSOEP) 
[87]

2017 40 10,500 √ √ √ - - - - √

2
Improved random drift PSO 

(IRDPSO) 
[57]

2017
40 10,500 √ √ √ - - - √ √

140 49,342 √ - - - - - - √

3
Synergic predator-prey 
optimization (SPPO) 

[88]
2016 140 49,342 √ √ √ - - - √ -

4
Colonial competitive DE 

(CCDE)
[89]

2016
40 10,500 √ - - - - - - √

140 49,342 √ √ √ - - - √ √

5 Evolutionary DE (E-DE)
[90] 2016

100 Not
available √ - - - - - - - 

150 Not
available √ - - - - - - -
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6 Modified PSO (MPSO)
[91] 2015 40 10,500 √ √ √ - - - - - 

140 49,342 √ √ √ - - - √ √

7 Random drift PSO (RDPSO) 
[11] 2014 40 8,550 √ - - - - - - - 

8 Improved DE (IDE) 
[92] 2014 40 10,500 √ - - - - - - √

140 49,342 √ √ √ - - - √ √

9 Shuffled DE (SDE) 
[93] 2013 40 10,500 √ - - - - - - √

10 Theta PSO (θ-PSO) 
[86] 2013 40 10,500 √ - √ - - - - √

11

Iteration PSO with time 
varying acceleration 

coefficients (IPSO-TVAC) 
[94]

2012 40 10,500 √ √ √ - - - - - 

12 Improved PSO (IPSO)
[55] 2010 40 10,500 √ - - - - - - √

140 49,342 √ √ √ - - - √ √
The symbol (√) represents that the corresponding constraint has been considered. The symbol (-)
represents that the corresponding constraint has not been considered. 

2.7 Other optimization techniques used for the ED problem

Despite the success of the ECTs in solving the non-convex, non-smooth ED problem 

of large-scale TGUs with several operating power constraints, some other types of the 

optimization techniques use different learning strategies to address such a complex 

problem. List of some notable such optimization techniques are shown in Table 2.7. The 

optimization techniques mentioned in Table 2.7 are arranged based on date of the 

publication.

Table 2.7 summarizes some other optimization techniques used in the recent years to 

solve non-convex and non-smooth ED problem of large-scale TGUs. In addition, 

Table 2.7 indicates the current research trends of using different methodologies to solve 

such a complex problem. One can see that, despite these techniques reported in Table

2.7 were solved the ED problem of large-scale PGSs, they did not solve for all equality 

and inequality operating power constraints imposed by the TGUs and PGS. For 

example, the non-convex and non-smooth fuel cost function was evaluated by TPMIP 

algorithm [95] under  RRLs, generation limits, PL, PL mismatch, power balance, POZs 

and VPL effects. However, the equality constraints, i.e., PL,mismatch, and power balance, 

are not taking into consideration.
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Table 2.7. Some notable optimization techniques used in the recent years for solving the 
ED problem.

Sl.
No. Algorithm Year

PGS Fuel
cost

Power constraints 

RRLs Generation
limits PL PL,mismatch

Power
balance POZs VPL

effects# of 
TGUs

PD
(MW) 

1

Parallel hurricane 
optimization algorithm 

(PHOA) 
[96]

2018 40 4,242 √ - - √ - - - -

2
Oppositional grey wolf 
optimization (OGWO) 

[97]
2017

40 10,500 √ - - - - - - √
140 10,500 √ - - - - - - √
160 43,200 √ - - - - - - √

3
Lighting flash algorithm 

(LFA)
[98]

2017

40 10,800 √ - - - - - - √
80 21,600 √ - - - - - - √
160 43,200 √ - - - - - - √
320 172,800 √ - - - - - - √

4

Parallel augmented 
Lagrangian relaxation 

(PALR)
[99]

2017 323 √ √ √ - - - - -

5
Hybrid grey wolf optimizer 

(HGWO)
[100]

2016
40 10,500 √ - √ √ - - - √

80 21,000 √ - √ √ - - - √

6
Modified symbiotic 

organisms search (MSOS) 
[101]

2016

40 10,500 √ - √ √ - - √ √
80 21,000 √ - √ √ - - √ √
160 31,500 √ - √ √ - - - √
360 42,000 √ - √ √ - - - √

7
Crisscross optimization 

(CSO) 
[102]

2016

40 10,800 √ - - - - - - √
80 21,600 √ - - - - - - √
160 43,200 √ - - - - - - √
320 86,400 √ - - - - - - √
640 172,800 √ - - - - - - √

8
Modified social spider 

algorithm (MSSA) 
[103]

2016
40 10,500 √ - - - - - - √
80 21,000 √ - - - - - - √
140 49,342 √ - - - - - √ √

9
Tournament-based 

harmony search (THS) 
 [104]

2016
40 21,000 √ - - - - - - √

80 21,000 √ - - - - - - √

10
Theta-modified bat 
algorithm (θ-MBA)

[105]
2016 40 21,000 √ - - - - - √ √

11
Chaotic bat algorithm 

(CBA)
 [77]

2016
40 10,500 √ - - - - - - √

160 43,200 √ - - - - - - √

12
Flower pollination 
algorithm (FPA) 

[106]
2016 40 10,500 √ - - - - - - √

13
Two-phase mixed integer 
programming (TPMIP) 

[95]
2016

40 10,500 √ - - - - - - √
40

MW 7,000 √ √ √ √ - - √ √

140 49,342 √ √ √ √ - - √ √

14

Opposition-based greedy 
heuristic search (OGHS)

[107] 2016

40 10,500 √ - - - - - - √
52 7200 √ - √ - - - - √
52 10,800 √ - √ - - - - √

140 49,342 √ - - - - - √ √

15

Oppositional invasive 
weed algorithm (OIWO) 

 [108] 2015

40 10,500 √ - - √ - - - √
40 10,500 √ - - - - - - √
110 15,000 √ - - - - - - -
140 49,342 √ - - - - - √ √

16
Fully decentralized 

approach (FDA) 
 [109]

2015 40 10,500 √ - - - - - - √
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17
Mixed integer quadratic 
programming (MIQP) 

[110]
2014

40 7,000 √ √ √ √ - - √ -

40 10,500 √ - - - - - - √

The symbol (√) represents that the corresponding constraint has been considered. The symbol (-)
represents that the corresponding constraint has not been considered. 

2.8 Some important observations
Several observations have been made based on the review of the current literature, as 

stated below. 

2.8.1 Observation #1 

The first research question that has been mentioned in Section 1.4 is “Is ED problem 

of large-scale TGUs in a power generating system with several power constraints a 

critical issue?”

To answer this question, the discussion of the current issues of the ED problem in

Section 1.3 and outcomes of the literature review in this Chapter reveal that the ED  

problem is in deed a critical issue. The ED problem becomes significant, especially in a 

large-scale power system, when there is a need of optimal scheduling of TGU outputs 

with various power constraints with respect to the predicted load demand, PD. In order 

to economize the operating fuel cost, optimal dispatch of power generation from all the 

online TGUs while satisfying highly nonlinear power constraints to satisfy the power 

demand is in deed a critical issue. This issue need to be addressed so as to make the 

PGS economical, stable and reliable.

2.8.2 Observation #2 

The comprehensive literature review reveals that the ECTs are continuously 

being developed and improved year by year as shown in Tables 2.4 and 2.6, to deal 

with ever larger PGSs with an increasing number of the power constraints. Thus, 

the need to design a new approach or develop new optimization techniques instead of 

the inefficient current optimization methods becomes imperative.

2.8.3 Observation #3 

Although a large number of the ECTs-based algorithms have been proposed and 

applied for optimization of the non-convex and non-smooth fuel cost function, the issue 

of scalability has not been addressed sufficiently as shown in Tables 2.4 and 2.6. In 
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other words, the number of ECTs which can actually be applied for the ED problem of 

large-scale TGUs with several power constraints remains low. Thus, this is a gap in this 

field.

2.8.4 Observation #4 

This comprehensive literature review reveals that the PSO algorithm is widely used 

in this field compared with the other ECTs as shown in Tables 2.4 and 2.6. Besides, 

several studies in this literature review confirm that the performance of the original PSO 

algorithm were clearly improved by several newly proposed PSO-based algorithms 

[11], [55], [57], [86]-[88], [91], [94].

2.9 Chapter summary   

The literature review presented in this Chapter provided a comprehensive study of 

the optimization techniques used in the recent years to solve an important real-world 

problem in operation and management of large-scale TGUs to govern electrical energy 

to the consumer, i.e., the ED problem. Different categories of the optimization 

techniques were used for such a complex problem. Among them, the ECTs are widely 

used and updated year by year. However, the number of ECTs which can actually be 

applied for the ED problem of large-scale TGUs with several power constraints remains 

low and this is a gap in this field. 

The PSO algorithm is one popular type of the ECTs and has been widely used for the 

ED problem. However, the recent studies reported in literature review confirm that the 

original PSO algorithm is inefficient to solve the ED problem of large-scale TGUs with 

several power constraints.

The comprehensive study in this literature review tells us that the ED problem is a 

critical issue and the need to design new approaches to solve such a complex problem is 

necessary. 
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Chapter 3: Research Methodology

3.1 Chapter overview 

This Chapter provides the research methodology-based on the research design to 

develop new algorithms and to answer the research questions outlined in Section 1.4.

Summary of the research design is provided in Section 3.2. Then, algorithms developed 

are explained in Section 3.3. Following that, the comparison between the proposed 

algorithms and original PSO variants in terms of several critical parameters is presented 

in Sections 3.4 to 3.6. Finally, a summary of this Chapter is presented in Section 3.7. 

3.2 Research design

In order to address the two research questions underpinning this thesis, the procedure 

in Figure 3.1 shows the research design carried out in this thesis. The research design 

provides the methodology of this thesis.  

The first research question that mentioned in Section 1.4 was investigated in Section

2.8.1.

To investigate the second research question that mentioned in Section 1.4 is “What is 

the most effective technique/algorithm to solve such a complex ED problem?”  

First of all, an overview of the learning strategy of global particle swarm 

optimization (GPSO) algorithm and critical drawbacks that make it unable to solve such 

a complex problem is presented. Then, the proposed orthogonal PSO (OPSO) and 

multi-gradient (MG-PSO) algorithms based on the research design plan shown in 

Figure 3.1 are explained. The details of OPSO and MG-PSO algorithms and their 

applications are available in the eight Papers appended in Appendix-1.
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Figure 3.1. Research design of this thesis.

3.3 Algorithms developed 

Here, one version of the original PSO variants used in this thesis is the GPSO 

algorithm. Demerits that make the GPSO algorithm unable to solve the practical ED 

problem of large-scale TGUs are discussed. In addition, two proposed novel algorithms, 

i.e., orthogonal PSO and multi-gradient PSO algorithms used in this thesis are

investigated and their performances are evaluated.  

3.3.1 Global particle swarm optimization  

As discussed in Section 2.4.3, the original PSO algorithm [51] is a population-

based optimization technique. It emulates behaviours of some animals such as flock of 

birds or schools of fish. The population is called a swarm, and the individuals or 

possible solutions are called particles. The original PSO algorithm operates on a 

Intelligent system design, operation and management to govern electrical energy to the consumer 

Question #1 
Is ED problem of large-scale TGUs in a 
power generating system with several 
power constraints a critical issue? 

Question #2 
What is the most effective 
technique/algorithm to solve 
such a complex ED problem?

Orthogonal OPSO 
(OPSO) algorithm 

Multi-gradient PSO 
(MG-PSO) algorithm  

Apply the OPSO and MG-PSO algorithms to the 
ED problem. 

Evaluate the OPSO and MG-PSO algorithms using a set 
of benchmark functions taken from the Congress of 
evolutionary computation 2015 (CEC 2015).

Paper 
C

Paper 
A

Paper 
B

Paper 
D

Paper 
E

Paper 
F

Paper 
G

Paper 
H

The answer of Question #1 is 
available in Section 2.8.1.

Eight Papers are associated together to provide the answer of Question #2. 
The eight Papers are appended in Appendix-1.
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randomly created swarm of particles in a multi-dimensional search space.  It searches 

for an optimum solution by updating the velocity and position of the particles 

according to a guiding rule. Each particle learns from its personal experience and its 

neighbourhood’s experience. That is, each particle flying in the space, searches for an 

optimum solution by adjusting its flying trajectory according to its own experience 

and its neighbourhood’s experience. Depending on the selection of neighbourhood 

formation, the original PSO algorithm is classified into two versions: global PSO 

(GPSO) algorithm, and local PSO (LPSO) algorithm. Without loss the generality, this 

thesis studies performance of the GPSO algorithm. The merits and demerits of GPSO 

algorithm compared to LPSO algorithm are stated as follows.

i. The GPSO algorithm is simple in structure and easy to implement compared to

LPSO algorithm [111].

ii. The GPSO algorithm has faster convergence rate that the LPSO algorithm [111].

iii. The particles in GPSO algorithm are prone to fall into local minima [112].

iv. The GPSO algorithm uses only one neighbourhood topology structure (fully

connected network) for the particles inside a swarm. Whereas, in the LPSO

algorithm, different neighbourhood topologies are used for the particles, e.g., ring

structure, pyramid structure, and Neumann structure [113-115].

The learning strategy of GPSO algorithm is explained as follows. This algorithm 

depends on the distribution of the particles in a swarm, i.e., neighbourhood topology 

structure of the m particles, as shown in Figure 3.2. One can see from Figure 3.2 that the 

m particles are neighbours of each other. Also, they are attracted to the best particle in a 

swarm to form a fully connected network.    

Figure 3.2. Graphical representation of the neighborhood topology (fully connected 
network) for the m particles of GPSO algorithm.
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The learning strategy of GPSO algorithm is as follows. Firstly, Each particle i (i = 1, 

2, …, m) in a swarm flying in a d-dimensional search space adjusts its flying path based 

on two guides, its own experience, Gpers,i, and its neighbourhood’s best experience, 

Gbest. Secondly, when pursuing a global optimum, each particle learns from its own 

historical experience and its neighbourhood’s historical experience. Then, a particle 

while choosing the neighbourhood’s best experience uses the best experience of the 

whole swarm (m particles) as its neighbour’s best experience. Since the position of each 

particle in a swarm is affected by the best-fit particle. Thus, this version is named, 

global PSO [51]. The following steps explain the learning strategy of the GPSO 

algorithm.

Procedure of the GPSO algorithm 

Let us consider the m particles (m > 1) in a swarm refer to a swarm population. They 

are searching for a global optimum, i.e., minimum solution, of an objective function f(x)

in a d-dimensional search space. Total number of iterations is denoted by Niter. The 

purpose is to minimize the given objective function f(x). Each particle, i (i = 1, 2, ..., m),

has one d-dimensional velocity vector Vi and one d-dimensional position vector Xi and 

are denoted by 

Vi = [vi1, vi2, …, vid] (21)

Xi = [xi1, xi2, …, xid] (22)

Step #1: Initialization: Iteration, t = 0. 
for i = 1, 2, …, m

Initialize Vi and Xi randomly with a defined range of d-dimensional search 
space and denote these by Vi(0) and Xi(0), respectively.  
Initialize the personal position vector (Gpers) of particle i, i = 1, 2, ..., m,
Gpers,i(0) as follows. 
Gpers,i(0) = [gpi,1, gpi,2, …, gpi,d] = Xi(0)                                                       (23)
Evaluate the f(x) using Xi(0). 

end i loop
Determine the global best position vector Gbest(0). It is the best position vector
among all the m personal position vectors inside a swarm. The Gbest(0) is 
denoted by: 
Gbest(0) = [gb,1, gb,2, …, gb,d]                                                                            (24) 

Step #2 Update  
for t = 1, 2, …, Niter

for i = 1, 2, …, m
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Update Vi and Xi as follows. 
Vi(t) = Vi(t ‒ 1) + c1 r1(t) [Gpers,i(t ‒ 1) ‒ Xi(t ‒ 1)]

+ c2 r2(t) [Gbest(t ‒ 1) ‒ Xi(t ‒ 1)] (25)

Xi(t) = Xi(t ‒ 1) + Vi(t) (26)
where c1 and c2 are real and positive coefficients, called acceleration 
constants which are commonly set to 2.0 [51]. The r1(t) and r2(t) are
two randomly generated values with a uniform distribution in the 
range of    [0,1].
Evaluate f(x) for particle i using Xi (t).
Update Gpers,i(t) as follows. 

OtherwisetG

tGftXfiftX
tG

i,pers

i,persii

i,pers
)1(

))1(())(()(
)( (27)

Obtain f(Gpers,i(t))
end i loop 

(28)
Obtain f(Gbest(t)) as follows. 
f(Gbest(t))= min{f(Gpers,i(t))}
Obtain Gbest(t) corresponding to f(Gbest(t))

end t loop
Step #3: End of iteration: t = Niter

Optimum solution = Gbest(Niter) and optimum value = f(Gbest(Niter))              (29)
A flowchart of the GPSO algorithm is shown in Figure 3.3.

Figure 3.3. Flowchart of the GPSO algorithm.
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3.3.2 Global particle swarm optimization with inertia weight 

One significant operator used in the GPSO algorithm is the inertia weight (w) [116].

The w uses to accelerate the convergence speed of ith particle (i = 1, 2, …, m)  in a 

swarm to achieve better convergence through a balance between global search and 

local search particles. It is suggested that the value of w to change from 0.9 at the 

beginning search to 0.4 at the end of the search [117-119].

It has been shown that the GPSO-w algorithm has performed well on smooth and 

convex unimodal problems [4], [78], [120]-[121]. However, under high-dimensional 

complex unimodal and multimodal problems, the GPSO-w algorithm may suffer from 

the curse of dimensionality and may not perform well [112]. The following steps 

explain the learning strategy of the GPSO-w algorithm. 

Procedure of the GPSO-w algorithm

In GPSO-w algorithm, the m particles (m > 1) are searching for a global minimum, 

i.e., searching for an optimum solution of an objective function f(x) in a d-dimensional

space. The objective is to minimize the given f(x). Each particle i (i = 1, 2, ..., m), has 

one d-dimensional velocity vector Vi and one d-dimensional position vector Xi , as given 

by (21) and (22). 

Step #1: Same as Step #1 in Procedure of the GPSO algorithm. 

Step #2: Update  
for t = 1, 2, …, Niter

for i = 1, 2, …, m
Determine inertia weight, w(t) as given below. 

9050)( .tN
.tw
iter

(30)

Update Vi and Xi as follows. 
Vi(t) = w(t) Vi(t ‒ 1) + c1 r1(t) [Gpers,i(t ‒ 1) ‒ Xi(t ‒ 1)]

+ c2 r2(t) [Gbest(t ‒ 1) ‒ Xi(t ‒ 1)] (31)

Xi(t) = Xi(t ‒ 1) + Vi(t) (32)
Evaluate f(x) for particle i using Xi (t).
Update Gpers,i(t) as follows.
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Obtain f(Gpers,i(t))
end i loop 

(34)
Obtain f(Gbest(t)) as follows.
f(Gbest(t))= min{f(Gpers,i(t))}
Obtain Gbest(t) corresponding to f(Gbest(t))

end t loop

Step #3: End of iteration: t = Niter
Optimum solution = Gbest(Niter) and optimum value = f(Gbest(Niter))              (35)

A flowchart of the GPSO-w algorithm is shown in Figure 3.4.

Figure 3.4. Flowchart of the GPSO-w algorithm.
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3.3.3 Demerits of the PSO variants  

The PSO variants, i.e., GPSO and GPSO-w algorithms achive satisfactory 

performance in some optimization problems [4], [78], [120]-[121]. However, they are 

inefficient in solving complex real-world practical ED problem of large-scale TGUs 

with practical operating power constraints as shown in Papers A-H (Appendix-1). The 

main reasons that make the performance of the original PSO variants unsatisfactory are 

explained below.

3.3.3.1 Oscillation or zigzagging phenomenon

In both GPSO and GPSO-w algorithms, the ith particle (i = 1, 2, …, m) updates its 

flying velocity Vi and position Xi according to its personal position Gpers,i and its 

neighbourhood best position Gbest. Thus, search direction of the ith particle is updated 

based on these two guides Gpers,i and Gbest through a simple way, i.e., through a linear 

summation. This strategy can cause a phenomenon called “oscillation or zigzagging” 

[111]. The “oscillation or zigzagging” phenomenon is likely to be caused by the 

movement of Gpers,i and Gbest  through a linear summation, as shown in (25) and (31).

To explain this phenomenon, let us consider that ith Xi position vector, is lying 

between Gpers,i and Gbest, as shown in Figure 3.5. At first, when│Gpers,i - Xi│< │Gbest -

Xi│, as shown in Figure 3.6(a), the Xi will move towards Gbest because of its larger pull. 

Whereas, when│Gpers,i - Xi│>│Gbest - Xi│, as shown in Figure 3.6(b), the distance 

between Gpers,i and Xi will increase and then the Xi flying toward Gpers,i. Subsequently, 

the oscillation or zigzagging would occur. This phenomenon causes inefficiency to the 

search ability of the m particles and delays in convergence.

(a) (b)

Figure 3.5. Oscillation phenomenon in both GPSO and GPSO-w algorithms. (a) The Xi
flying toward Gbest. (b) The Xi flying toward Gpers,i.
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3.3.3.2 Imbalance between exploration and exploitation search 

In GPSO and GPSO-w algorithms, the balance between global search, i.e., 

Exploration, and local search, i.e., Exploitation, is maintained when solving high-

dimensions complex problems [111]. In case of the GPSO algorithm, the m particles 

have weak local search ability (Exploitation). Also, the m particles are affected by the 

Gbest particle. Furthermore, the m particles need to accelerate the convergence speed to 

achieve better balance, as shown in Paper E. In case of the GPSO-w algorithm, the 

inertia weight w is used to improve the balance between Exploration and Exploitation.

However, the GPSO-w algorithm is more prone to encounter premature convergence 

when solving the ED problem of large-scale PGSs with practical power constraints as 

shown in Papers F and H.

In both GPSO and GPSO-w algorithms, if the Gbest falls into a local optimum, then it 

would mislead the other particles in a swarm to move towards that point. This means 

that other promising search areas might be missed. Also, the m particles in both 

algorithms essentially follow a trajectory defined by Vi (i = 1, 2, …, m) with two guides 

Gpers and Gbest (25) and (31). Such type of search restricts the search domain of ith

particle and may weaken the Exploration ability of the m particles, particularly, at the 

later stage of the search process [112]. Thus, these drawbacks make the performance of 

the GPSO and GPSO-w algorithms inefficient for solving the complex real-world 

problems, e.g., the ED problem of large-scale TGUs with power constraints.   

3.3.4 The proposed orthogonal particle swarm optimization algorithm 

The GPSO and GPSO-w algorithms have several drawbacks as mentioned in 

Section 3.3.3. These demerits make the original PSO variants inefficient to solve the 

complex real-world problems including the practical ED problem. Here, the first novel 

algorithm named orthogonal PSO (OPSO) algorithm is proposed with a new learning 

strategy to improve the performance of GPSO algorithm and to solve the practical ED 

problem of TGUs with several power constraints. The details of the proposed OPSO 

algorithm and explanation of the orthogonal diagonalization process are provided 

below.
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3.3.4.1 Orthogonal diagonalization process 

The proposed OPSO algorithm is based on an orthogonal diagonalization (OD) 

process. In this process, a diagonal matrix, D is obtained by multiplication of three 

matrices (39). Subsequently, it is applied in updating of the velocity and position 

vectors of d best particles in a swarm. The updating is carried out in such way that the 

ith velocity and position vectors are affected by only the diagonal element, dii (i = 1, 2, 

…, d) of matrix D where d is dimension of the search space. This process enhances the 

convergence and provides a better solution as shown in Papers A, B, C, E and F.

The matrix diagonalization is the process of converting a square matrix, B of size 

(d×d), into a diagonal matrix, D of size (d×d), as shown below [122]:

   B = Q D Q-1 (36)

where Q is a matrix of size (d×d) composed of eigenvectors of matrix B and the 

diagonal elements of matrix D comprises the corresponding eigenvalues. The matrix Q

is an invertible because it contains linearly independent vectors. When matrix B is 

symmetric, the (36) may be written as 

B = C D C-1 (37)

in which the columns of matrix C are orthonormal to each other. Therefore (37) can be 

rewritten as 

           D = C-1 B C (38)

Since matrix C is an orthonormal matrix, (38) can be written as 

D = CT B C (39)

Equation (39) is called the OD process. The process of OD is shown in Figure 3.6.

Line #1: Let B be a real symmetric matrix of size (d×d).

Line #2: Apply Gram-Schmidt orthogonalization on matrix B to obtain d orthonormal 
vectors.

Line #3: Construct orthonormal matrix C using these vectors. 

Line #4: Obtain the diagonal matrix D using (39). 

Figure 3.6. The orthogonal diagonalization process. 
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3.3.4.2 OPSO learning algorithm

In this thesis, the proposed OPSO algorithm is used to improve the learning strategy 

of the GPSO algorithm and in the same time to solve the complex problems including 

ED problem. The objective of the OPSO algorithm is to minimize the given d-

dimensional objective function f(x).

The OPSO algorithm provides a new topology structure in a swarm population.

Consider a swarm population with m particles, each particle with a dimension of d (m > 

d). In each iteration, the m particles are divided into two groups based on the OD 

process, as follows, an active group that involves of best personal experiences of d

particles and one passive group which comprises of the personal experiences of 

remaining (m ‒ d) particles. The ideas of the active group particles are honoured by 

updating their respective velocity and position vectors. Whereas, the opinion of the 

passive group particles are ignored because their guidance may be erratic or 

insignificant, and therefore, their velocity and position vectors are not updated. 

However, the contributions of all the m particles in both groups are taken into account 

while determining the best experience of the swarm. In each iteration, the matrix B is

obtained from d best particles of the active group, and then, orthonormal matrix C and 

diagonal matrix D are computed using the OD process (39). The steps included in the 

proposed OPSO algorithm are given below. 

Procedure of the OPSO algorithm

Let f(x) is the objective function to be optimized, and Niter is the number of iterations. 

Initialization: Iteration, t = 0 

Step #1: Randomly initialize the velocity vector Vi(0) and position vector Xi(0) for 
each particle i, (i = 1, 2, ..., m).

Step #2: Evaluate the objective function f(x) by using position vector Xi(0).

Step #3: Determine the personal position vectors Gpers,i(0) by using 
Gpers,i(0) = [gpi,1, gpi,2, …, gpi,d] = Xi(0) (40)

Update: Iteration, t = 1, 2, ..., Niter.

Step #4: Arrange the m personal position vectors Gpers,i in an ascending order based on 
their f(x) values. The corresponding top d particles constitute active group 
particles. 
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Step #5: Construct matrix A of size (m×d) such that each row in this matrix occupies 
one of the m personal position vectors in the same ordered sequence as in
Step 4.

Step #6: Using pseudocode given in Figure 3.7, convert matrix A to a symmetric 
matrix B of size (d×d), such that matrix B is a real symmetric matrix of
dimension (d×d). 

Step #7: Apply the OD process shown in Figure 3.6 on matrix B to obtain a diagonal 
matrix D of size d×d. Let Di (i = 1, 2, ..., d) represent the ith row of matrix D.

Step 8: Update the position and velocity vectors of the d particles of the active group, 
i = 1, 2, .., d, as follows. 
Vi(t) = Vi(t ‒ 1) + c r(t) [Di(t) ‒ Xi(t ‒ 1)] (41)

Xi(t) = Xi(t ‒ 1) + Vi(t) (42)
where c is an acceleration coefficient and is chosen by trial and error method
in the range [2,2.5] and r(t) is a random value within the range of [0,1]. 

Step #9: Determine the Gpers,i(t) from the m particles (i = 1, 2, ..., m), as follows. 
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for i = 1, 2, …, m
Evaluate f(Gpers,i (t))

end i loop 

Step #10: Determine the global best position Gbest(t), as follows. 
Select Gbest(t) corresponding to minimum {f(Gpers,i (t))}, i = 1, 2, …, m.
Evaluate f(x) to determine the global best position, Gbest(t). 
Gbest(t) = min{Gpers,i (t)}     (44)

End of iterations, t = Niter.

Step #11: The Gbest(Niter) as computed in Step 10 provides the optimum solution and
optimum value is f(Gbest(Niter)).

Applications of the OPSO algorithm in solving different complex objective functions 

and more details about it and its performance are available in Papers A, B, C, E and F.

A flowchart of the OPSO algorithm is shown in Figure 3.8.
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Figure 3.8. Flowchart of the OPSO algorithm. 

Procedure for converting a matrix A(m×d) to a symmetric matrix B (d×d).

for i = 1, 2, ..., d
 B(1, i) = A(1, i)

      B(i, 1) = A(1, i) 
end for
for k = 2, 3, ..., d

for i = 2, 3, ..., d
B(k, i) = A(k, i)
B1(k, i) = B(k, i)
B(i, k) = B1(k, i)

end for 
end for

Figure 3.7. Pseudocode for converting matrix A(m×d) to a symmetric matrix B(d×d). 

Start

Select m, d, Niter

t = 0, initialize Vi and Xi, i = 1, 2, ..., m, randomly

Evaluate f(Xi (0))

Obtain Gpers,i(0)

t = t + 1

Construct matrix A

Using OD process: Obtain matrices B, C and D                                 

Update Vi (t) and Xi (t), using (41) and (42), respectively 

Determine Gpers,i (Xi (t)) using (43) 

Determine Gbest (Xi (t)) using (44) 

End

Optimum Solution = Gbest (Niter)

Yes

   Is 
   t = Niter 

   ? 

No
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3.3.5 The proposed multi-gradient particle swarm optimization algorithm 

As discussed in Section 3.3.3, the GPSO and GPSO-w algorithms have several 

drawbacks. These drawbacks make these both algorithms are inefficient for solving the 

complex real-world problems including the ED problem. Here, the second novel 

algorithm named multi-gradient PSO (MG-PSO) algorithm is proposed to improve the 

performance of the GPSO-w algorithm by overcoming the drawbacks. The MG-PSO 

algorithm is used to solve the practical ED problem of TGUs operating with several 

practical power constraints. Here, the details of the second proposed MG-PSO 

algorithm and explanation of its mechanism are provided.

3.3.5.1 Learning strategy

The mechanism of the MG-PSO algorithm depends on the following considerations. 

Let us consider a swarm population with m particles, where m > 1, flying in a d-

dimensional space searching for a global optimum, i.e., optimum solution. Two 

fundamental phases, “Exploration and Exploitation” are applied by the m particles. In 

Exploration phase, a particle is named Explorer. In each episode, the m Explorers use a 

different negative gradient to explore the new neighbourhood in the d-dimensional 

search space. The m Explorers boost the global search ability of the MG-PSO algorithm 

by using several episodes. The m Explorers aim to obtain a new neighbourhood within 

the d-dimensional search space in each episode and to obtain the best neighbourhood 

among episodes.  

In each episode, the m Explorers using a different negative gradient and then they 

obtain best position vector following its neighbourhood in a d-dimensional search 

space. Its neighbourhood is obtained by taking “Floor” and “Ceil” of each element of 

the best position vector. These operations create a new search space, i.e., best 

neighbourhood, within a d-dimensional search space that will be used in the 

Exploitation phase.

In Exploitation phase, a particle is named Exploiter. The m Exploiters use only one 

negative gradient which is less than that of the Exploration phase. The m Exploiters

boost the local search ability of the MG-PSO algorithm. The purpose of this phase is to 
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gain an optimum position by exploiting the Exploiters in the best neighbourhood 

obtained from the Exploration phase.

3.3.5.2 The MG-PSO algorithm 

In the second proposed MG-PSO algorithm, a number of negative gradients, i.e., 

Ngrad, are used by the swarm population while searching for an optimum solution. In 

Exploration phase, Ngrad ‒ 1 negative gradients are used whereas one negative gradient 

is used in Exploitation phase. In each episode, the inertia weight (w) follows one 

negative gradient, as iteration increases.

The number of iterations in MG-PSO algorithm is Niter. The number of iterations in 

Exploration phase is given by

  Niter,xplore = γ × Niter                                                                  (45)

where γ is a real and positive number in a range [0,1]. The number of iterations in the 

Exploitation phase is given by:

  Niter,xploit = (1‒γ) × Niter (46)

The initial and final values of the w for kth negative gradient (k = 1, 2, …, Ngrad) are 

denoted by wini,k and wfin,k, respectively. These values are positive and real numbers 

within a range [0,1] and wini,k > wfin,k. The kth negative gradient (k = 1, 2, …, Ngrad ‒ 1) 

in Exploration phase is given by:

xplre,iter

k,inik,fin
k N

ww
grad (47)

In Exploitation phase, the negative gradient is given by: 

xploit,iter

N,iniN,fin
N N

ww
grad gradgrad

grad
(48)

The Ngrad gradients are selected such that (49) is satisfied.  

gradNgradgradgrad 21
(49)

The w for kth negative gradient (k = 1, 2, …, Ngrad) at iteration t is given by:

wk(t) = gradk × t + wini,k (50)
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3.3.5.3 Procedure of MG-PSO algorithm 

Here, the detailed steps explaining the procedure of MG-PSO algorithm are 

provided.

Procedure of the MG-PSO algorithm 

Begin MG-PSO Algorithm 

Let f(x) be the function to be minimized. 

Choose Niter, Ngrad, wini,k, wfin,k, k = 1, 2, …, Ngrad.

Determine Niter,xplore and Niter,xploit using (45) and (46), respectively. 
Initialization: Iteration, t = 0.

Step #1: Obtain Gbest(0) using (21)-(24). 
Step #2: Begin Exploration phase 

for k = 1, 2, ..., Ngrad ‒ 1 (begin of episode k). 
Determine gradk using (47). 

for t = 1, 2, …, Niter,xplore

Determine wk(t) using (50). 
for i = 1, 2, …, m

Update the particle’s velocity and position vectors as follows.
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Evaluate the particle’s performance by substituting (52) in 

f(x). 

Update Gpers,i as follows.
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Obtain ))(( tGf k
i,pers

end i loop

Obtain ))(( tGf k
best as follows.

))(( tGf k
best = min{ ))(( tGf k

i,pers } (54)
Obtain )(tGk

best corresponding to ))(( tGf k
best

end t loop
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Obtain )( xplore,iter
k
best NG and ))(( xplore,iter

k
best NGf

end k loop (end of episode k)

for k = 1, 2, …, Ngrad -1 

Obtain ))(( eiter,xplor
k
best NGf

end k  loop

f(Gbest,xplore) = min{ ))(( eiter,xplor
k
best NGf }                                                            (55)

Obtain BEST(Gbest,xplore) corresponding to f(Gbest,xplore)

Obtain new search space (neighbourhood) by taking “Floor” and “Ceil” of 

each element of BEST(Gbest,xplore)

End Exploration phase 

Begin Exploitation phase 

Use the new search space  
Step #3: Initialization: Iteration, t = 1

for i = 1 , 2, …, m
Vi(1) =  Vi(Niter,xplore) corresponding to BEST(Gbest,xplore)                      (56)
Xi(1) = Xi(Niter,xplore) corresponding to BEST(Gbest,xplore)                      (57)
Gpers,i(1) = Gpers,i(Niter,xplore) corresponding to BEST(Gbest,xplore)           (58)

end i loop 
Gbest,xploit(1) = BEST(Gbest,xplore)                                                                (59)
Determine

gradNgrad using (48) 

Step #4: Update

for t = 2, 3, …, Niter,xploit

Determine wk(t) using (50) 

for i = 1, 2, …, m

Update the particle’s velocity and position vectors as follows.

Vi(t) = )(tw
gradN Vi(t ‒ 1) + c1 r1(t) [Gpers,i(t ‒ 1) ‒ Xi(t ‒1)]

                                               + c2 r2(t) [Gbest,xploit(t ‒ 1) ‒ Xi(t ‒1)]    (60)

Xi(t) =Xi(t ‒ 1) + Vi(t)                                                                 (61)

Evaluate the particle’s performance by substituting (61) in f(x)

Update Gpers,i(t) as follows.
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Obtain f(Gpers,i(t))

end i loop

Obtain f(Gbest,xolit(t)) as follows.
f(Gbest,xolit(t)) = min{ f(Gpers,i(t))}                                                         (63)

Obtain Gbest,xploit(t) corresponding to f(Gbest,xploit(t))

end t loop

Optimum solution = Gbest,xploit(Niter,xploit)

Optimum value = f(Gbest,xploit(Niter,xploit))

End of Exploration phase

End of MG-PSO algorithm

More details about the learning strategy of the MG-PSO algorithm with its 

performance and applications are available in Papers D, G and H. A flowchart of the 

MG-PSO algorithm is shown in Figure 3.9.
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Figure 3.9. Flowchart of the MG-PSO algorithm.
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3.4 Comparison between OPSO and GPSO algorithms 

A comparison between the proposed OPSO and GPSO algorithms in terms of 

several critical parameters is provided in Table 3.1. These parameters are important 

roles in determining the accuracy, consistency and reliability of the OPSO and GPSO 

algorithms in solving complex problems including ED problem.  

Table 3.1. Comparison between the proposed OPSO and GPSO algorithms. 

Parameters OPSO algorithm GPSO algorithm 

Swarm Size m = number of particles 
d = number of dimensions 
m > d, as shown in Paper E.

m = number of particles 
d = number of dimensions 
m > 1, as shown in Paper E.

Neighbourhood
topology structure 

Orthogonal vectors are applied by 
the active group particles through 
using the OD process, as shown in 
Paper E.

The m particles use a fully connected 
network, as shown in Paper F.

Guidance 
Only one guide is used by the OPSO 
algorithm, i.e., Di(t), as shown in 
Papers A, B, C, E and F.

In case of GPSO algorithm, two guides, 
i.e., Gpers,i and Gbest are used, as shown in
Paper E.

Computational 
Complexity 

When m becomes large, this 
increases the computational 
complexity in each iteration. 
Because the OPSO uses three 
matrices in its learning strategy, as 
shown in Papers E and F.       

The GPSO algorithm is simple in 
sturcture. The computational complexity 
is less restrictive than that in the OPSO 
algorithm, as shown in Papers E and F.

Performance 

The OPSO is a high performance in 
solving several unimodal and 
multimodal benchmark functions 
including the ED problem with high 
dimensional search space, as shown 
in Papers E and F.

The performance of GPSO algorithm is 
deteriorated in solving several unimodal 
and multimodal benchmark functions 
including the ED problem with high 
dimensional search space, as shown in 
Papers E and F.

Exploration and 
Exploitation 

Processes 

Due to the use of the OD process, the 
orthogonal vectors of active group 
particles are capable of making a 
balance between local search and 
global search of d best  particles, as 
shown in Papers E and F.   

Due to the conflict between the two 
guides Gpers and Gbest, the GPSO 
algorithm is weak in the exploration
processes, as shown in Papers E and F.

Algorithm 
Execution Time 

The OPSO algorithm consumes 
more execution time than that in the 
GPSO algorithm, as shown in Papers
A, B, C, E and F.   

The GPSO algorithm is fast in 
convergence and consumes short 
execution time, as shown in Papers A, B,
C, E and F.     



Chapter 3: Research Methodology  

59 

3.5 Comparison between MG-PSO and GPSO-w algorithms 

A comparison between the proposed MG-PSO and GPSO-w algorithms in terms of 

several critical parameters is provided in Table 3.2. These parameters are important 

roles in determining the accuracy, consistency and reliability of the OPSO and GPSO-w

algorithms in solving complex problems including ED problem.  

Table 3.2. Comparison between the proposed MG-PSO and GPSO-w algorithms. 

Parameters MG-PSO algorithm GPSO-w algorithm 

Swarm Size 
m = number of particles 
d = number of dimensions 
m > 1, m =~ 20, as shown in Paper G 
and H.

m = number of particles 
d = number of dimensions 
m > 1, as shown in Paper E.

Neighborhood 
Topology 
Structure

the m particles use multiple episodes 
with different negative gradients as 
topology structure, as shown in Papers
G and H.

The m particles use a fully connected 
network, as shown in Paper G and H.

Guidance 

Exploration phase and Exploitation
phase are used as guidance in the MG-
PSO algorithm, as shown in Papers G
and H.

In case of GPSO-w algorithm, two 
guides, i.e., Gpers,i and Gbest are used, as 
shown in Paper G and H.

Computational 
Complexity 

The MG-PSO algorithm gives rise to 
more computations in case of using 
large number of episodes in the 
Exploration phase, as shown in Papers
G and H.

The GPSO algorithm is simple in 
structure. The computational 
complexity is less restrictive than that 
in the MG-PSO algorithm, as shown in 
as shown in Papers G and H.   

Performance 

The MG-PSO algorithm is a high 
performance in solving several 
unimodal and multimodal benchmark 
functions including the ED problem 
with high dimensional search space, as 
shown in Papers G and H.

The performance of GPSO-w algorithm 
is deteriorated in solving several 
unimodal and multimodal benchmark 
functions including the ED problem 
with high dimensional search space, as 
shown in Papers E and F.

Exploration and 
Exploitation 

Processes 

The combination between Exploration
phase and Exploitation phase provides a 
balance in the exploration and 
exploitation processes, as shown in 
Paper G. 

Due to the conflict between the two 
guides Gpers and Gbest, the GPSO-w
algorithm is weak in the exploration 
processes, as shown in Papers G and H.

Algorithm 
Execution Time 

The MG-PSO algorithm consumes more 
execution time than that in the GPSO-w
algorithm, as shown in Papers G and H. 

The GPSO-w algorithm is fast in 
convergence and consumes short 
execution time, as shown in Papers G
and H.
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3.6 Comparison between OPSO and MG-PSO algorithms 

A comparison between the two proposed algorithms OPSO and MG-PSO in terms of 

several critical parameters is provided in Table 3.3. Both algorithms have been 

successfully applied in solving several complex benchmark functions including ED 

problem of large-scale TGUs as shown in the Papers A-H, several merits and demerits 

between OPSO and MG-PASO algorithms are presented in Table 3.3.

Table 3.3. Comparison between the two proposed OPSO and MG-PSO algorithms.

Parameters OPSO algorithm MG-PSO algorithm 

Swarm Size 
m = number of particles. 
d = number of dimensions. 
m > d, as shown in Paper E.   

m = number of particles. 
d = number of dimensions. 
m > 1, m =~ 20, as shown in Paper G 
and H.

Neighborhood 
Topology 
Structure

Orthogonal vectors are applied by the 
active group particles through using 
the OD process, as shown in Paper E.

the m particles use multiple episodes 
with different negative gradients as 
topology structure, as shown in Papers G
and H.

Guidance 
Only one guide is used by the OPSO 
algorithm, i.e., Di(t), as shown in 
Papers A, B, C, E and F.

Exploration phase and Exploitation
phase are used as guidance in the MG-
PSO algorithm, as shown in Papers G
and H.

Computational 
Complexity 

When m becomes large, this increases 
the computational complexity in each 
iteration. Because the OPSO uses 
three matrices in its structure, as 
shown in Papers E and F.       

The MG-PSO algorithm gives rise to 
more computations in case of using large 
number of episodes in the Exploration
phase, as shown in Papers G and H.   

Performance 

The OPSO is a high performance in 
solving several unimodal and 
multimodal benchmark functions 
including the ED problem with high 
dimensional search space, as shown in 
Papers E and F.

The MG-PSO algorithm is a high 
performance in solving several unimodal 
and multimodal benchmark functions 
including ED problem with high 
dimensional search space, as shown in 
Papers G and H.

Exploration and 
Exploitation 

Processes 

Due to the use of the OD process, the 
orthogonal vectors of active group 
particles are capable of making a 
balance between local search and 
global search of d best  particles, as 
shown in Papers E and F.

The combination between Exploration
phase and Exploitation phase provides a 
balance in the exploration and 
exploitation processes, as shown in 
Papers G and H.

Algorithm 
Execution Time 

The OPSO algorithm consumes more 
execution time than that in the MG-
PSO algorithm, as shown in Paper G 
and H.

The MG-PSO algorithm consumes less 
execution time than that in the OPSO 
algorithm, as shown in Papers G and H. 
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3.7 Chapter summary  

In this Chapter, the research methodology based on the research design of this thesis 

was demonstrated. In the research design, the question #1 that mentioned in Section 1.4 

has been investigated. In addition, the question #2 has been investigated using two 

proposed algorithms, i.e., orthogonal PSO (OPSO) and multi-gradient PSO (MG-PSO) 

algorithms. The original PSO variants, i.e., global PSO (GPSO) and global PSO with 

inertia weight (GPSO-w) were also studied. Performance comparison among these 

algorithms in terms of several critical parameters was also carried out.  
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Chapter 4: Summary of Papers 

4.1 Chapter overview 

In this Chapter, a brief summary of each of the eight Papers is presented. The 

purpose of this Chapter is to give sufficient details of each associated Paper appended in 

this thesis, the Papers A-H. At the end, a summary of this Chapter is provided. The 

sequence of the Papers A-H has been organized based on their date of publication.

4.2 Summary of Papers A-H 

Here, a summary of the eight appended Papers A-H is provided. The salient features 

and important results are highlighted.  

4.2.1 Summary of Paper A 

L. T. Al-Bahrani and J. C. Patra, “Orthogonal PSO algorithm for solving ramp rate 

constraints and prohibited operating zones in smart grid applications,” in Proceedings of 

IEEE International Joint Conference on Neural Networks (IJCNN), Killarney, Ireland, 

2015, pp. 1-7. 

 In Paper A, few operating power constraints are examined, e.g., generation limits, 

ramp rate limits (RRLs), prohibited operating zones (POZs) and power balance. When 

these power constraints are imposed, the fuel cost function becomes non-convex and 

non-smooth. In such a case, the ED problem becomes a multimodal problem.  

In Paper A, a novel algorithm called orthogonal particle swarm optimization (OPSO) 

algorithm was proposed in 2015 to solve such a complex problem. The OPSO algorithm 

depends on the formation of orthogonal particle vectors that are found in the           

d-dimensional searching search. The d best particles construct a new guide and fly more 

steadily toward the optimum solution. This is accomplished by determining the 

promising movements of the d best particles in subsequent iterations based on 

orthogonality. Due to the use of orthogonal vectors in updating the velocity and position 
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vectors, the OPSO algorithm provides substantial improvement in performance over 

PSO algorithm (the PSO algorithm in Paper A is GPSO algorithm).

Let us consider a 2-dimensional function given by f(x, y) = x2+y2+3. The objective is 

to find values x and y, so that the value of the f(x, y) is minimized. With a range of         

[-100, 100] for x and y, the f(x, y) is plotted in Figure 4.1. Note that the function f(x, y) is 

minimized to 3 when x = 0 and y = 0. Both the OPSO and PSO algorithms have ten 

particles (m =10) in the swarm and use ten iterations (Niter = 10). Figure 4.2 shows that 

the best particle in PSO algorithm moves step forward and step backward between 3rd 

iteration (-44.3, 31.6) and 4th iteration (16, -10.2) causing oscillations. Whereas, in the 

OPSO algorithm, the best particle moves steadily from the initial position to the 

solution in the 10th iteration.

Figure 4.1.  Plot of 2-dimentional function f(x,y).  

Figure 4.2.  Movement of the best particle in PSO and OPSO algorithms at different 
iterations.
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The OPSO and PSO algorithms are evaluated and tested using small PGS, i.e., an 

IEEE bus with 6 TGUs with generation limits, RRLs, POZs power constraints. The 

performance comparison results shown in Paper A between the OPSO algorithm and 

several other optimization techniques reveal that OPSO provides better performance in 

solving the ED problem of small-scale PGS in terms of several performance measures, 

e.g., minimum, maximum and mean costs and standard deviation. In addition, the 

OPSO algorithm is capable of solving the inequality power constraints and satisfying 

the equality power constraint. The results shown in Paper A indicate that the OPSO

algorithm is a promising tool for solving non-convex, multimodal fuel cost function for 

the small-scale PGS.     

4.2.2 Summary of Paper B 

L. T. Al-Bahrani and J. C. Patra, “Orthogonal PSO algorithm for economic dispatch 

of power under power grid constraints,” in Proceedings of IEEE International 

Conference on Systems, Man, and Cybernetics (SMC), Hong Kong, 2015, pp. 14-19. 

In Paper B, the OPSO algorithm is proposed for ED of the generated power in 

medium-scale PGS (15 TGUs). Here, the equality and inequality power constraints and 

the power balance response against the mismatch between load demand and total power 

outputs of TGUs involve non-linear characteristics and non-smooth cost functions. The 

OPSO algorithm uses orthogonal vectors (OVs) for the d best particles in a d-

dimensional search space. The OVs are generated and updated in each iteration. They 

are used to guide the d best particles to fly in one direction toward a global minimum. 

Also, instead of creating and updating two guides in PSO (the PSO algorithm in Paper

B is GPSO algorithm), the d best particles update their position and its velocity 

according to OVs. This means that only one guide is used to update the velocity and 

position vectors. Thus, the OPSO algorithm has succeeded in eliminating the oscillation 

phenomenon occurring in the PSO algorithm.  

Figure 4.3 shows the convergence characteristics of OPSO and PSO algorithms of 

medium-scale PGS (15 TGUs). In Figure 4.3(A), the OPSO algorithm is better 

convergence to reach optimum solution. The OPSO algorithm settled at about 370 

iterations. Whereas, the PSO algorithm settled after 580 iterations. Figure 4.3(B) shows
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the distribution of total cost of OPSO and PSO algorithms over 100 runs for 15 TGUs, 

showing that the OPSO algorithm has a small deviation compared to the PSO algorithm. 

This indicates that the performance of the PSO algorithm is improved by the 

orthogonality.

Figure 4.3. Convergence characteristics of OPSO and PSO algorithms of medium-scale 
PGS (15 TGUs).

The OPSO and PSO algorithms are evaluated using medium-scale PGS (IEEE 15 

TGUs). In this PGS, PD is 2,630 MW and the PL is taken into account. In addition, there 

are 4 TGUs that have 11 prohibited zones. The generation limits and RRLs of 15 TGUs 

are also considered. Thus, more dimensions and power constraints are imposed on fuel 

cost function.

The performance of the OPSO algorithm is also compared with several other 

optimization techniques including PSO variants. These results reveal that OPSO 

algorithm provides better performance in solving the fuel cost function in terms 

minimum, maximum and mean costs and standard deviation. In addition, the OPSO 

algorithm is able to solve the equality and inequality power constraints and able to 

avoid all POZs. Furthermore, the OPSO algorithm is able to reduce the PL. Moreover, 

the OPSO algorithm succeeded to improve the learning strategy of the PSO algorithm, 

in terms of consistency, robustness and convergence. 

4.2.3 Summary of paper C 

L. T. Al-Bahrani, J. C. Patra, and R. Kowalczyk, “Orthogonal PSO algorithm for 

optimal dispatch of power of large-scale thermal generating units in smart power grid 
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under power grid constraints,” in Proceedings of IEEE International Joint Conference 

on Neural Networks (IJCNN), Vancouver, Canada, 2016, pp. 660-667. 

 In Paper C, the OPSO algorithm is proposed for the ED of large-scale TGUs in 

smart power gird (SPG). Practically, the characteristics of TGUs are non-linear and the 

generation system becomes more and more complex when these large-scale TGUs are 

subjected to RRL and POZ constraints.  In such case, the cost function becomes non-

smooth, non-convex and discontinuous. Moreover, in large-scale TGUs, the high 

dimensions used in the ED problem become a big challenge in order to find a global 

minimum and to avoid being trapped into local minima. In this Paper, the proposed 

OPSO algorithm has the ability to solve such complex ED problem with equality and 

inequality power constraints and considering PL, RRLs and POZs.

The OPSO algorithm applies the OD process and orthogonality to the d best particles 

in the swarm. It makes d best particles (out of total m particles, m > d) that have the 

possible solutions by constructing OVs in the d-dimensional search space. These OVs 

are generated and updated in each iteration and are utilized to guide the d best particles 

to fly in one direction toward a global minimum. The remaining (m ‒ d) particles are not 

updated. This leads the search process primarily to concentrate on using best d best 

particles in a swarm.  

The OPSO algorithm is evaluated and tested on the Taiwan power system. It is 

complex power system and consists of 40 mixed-generating units, e.g., coal-fired, gas-

fired, diesel generating units and nuclear generating units. The load demand PD is 8,550 

MW. There are total 46 POZs in 25 TGUs. The transmission network loss PL is taken 

into account. In addition, the generation limits and RRLs of 40 TGUs are also 

considered. Thus, more dimensions and power constraints are imposed on the fuel cost 

function.

The performance of the OPSO algorithm is compared with several other optimization 

techniques including original PSO (the PSO algorithm in Paper C is GPSO algorithm). 

The results in Paper C shows that the OPSO algorithm is achieving the best minimum, 

maximum and mean costs and the lowest standard deviation while comparing it with the 

PSO algorithm and other optimization techniques. In addition, the OPSO algorithm 
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solves the inequality constraints in terms of generating limits, RRLs and POZs and 

avoids the POZs. Thus, the optimization power generation schedule fits to PD =8,550 

MW while satisfying all power constraints. In addition, the OPSO algorithm achieves 

on the lowest value of transmission network loss PL compared to the other competitive 

algorithms. This means that the equality power balance constraint has been satisfied by 

the OPSO algorithm. Whereas, the PSO algorithm is unable to solve the equality power 

constraint of Taiwan power system. Thus, the OPSO algorithm significantly improves 

the PSO algorithm in terms of high solution quality, robustness and convergence rate. 

Figure 4.4 shows the convergence characteristics of OPSO and PSO algorithms. 

Figure 4.4(A) shows essential average of the mean cost over 25 independent runs. The 

OPSO algorithm has better convergence characteristics than the PSO algorithm.     

Figure 4.4(B) shows the distribution of minimum costs over 25 independent runs. It 

shows that OPSO algorithm is more stable than the PSO algorithm in getting the 

optimum solution.  

Figure 4.4. Convergence characteristics of OPSO and original PSO algorithms of 
Taipower system. 

4.2.4 Summary of Paper D 

L. T. Al-Bahrani, J. C. Patra, and R. Kowalczyk, “Multi-gradient PSO Algorithm for 

economic dispatch of thermal generating units in smart Grid,” in Proceedings of IEEE 

PES Innovative Smart Grid Technologies 2016 Asian Conference (ISGT’2016 Asia), 

Melbourne, Australia, 2016, pp. 258-263.
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 In paper D, another novel algorithm called multi-gradient particle swarm 

optimization (MG-PSO) is proposed for solving non-convex and non-smooth ED of 

TGUs with several operating power constraints, e.g., RRLs and POZs. In MG-PSO 

algorithm, different negative gradients are used. These negative gradients are used as 

guides for the m particles in the search for a global optimum. The key of the MG-PSO 

algorithm is the diversity in using negative gradients. Due to this diversity, the m

particles cover a large search space area, as much as possible. The velocity vectors of 

the m particles are significantly affected by only one negative gradient named, the best 

negative gradient among all used negative gradients. This makes the m particles adjust 

their positions and improve their direction according to that the best negative gradient. 

The performance of the MG-PSO algorithm has been verified on a small-scale PGS 

(6 TGUs) and a medium-scale PGS (15 TGUs). The proposed MG-PSO algorithm 

provides good quality and promising results in solving the ED problem. The MG-PSO 

algorithm gives better results in terms of fitness values, e.g., minimum, maximum and 

mean costs and has lowest standard deviation while comparing with PSO (the PSO 

algorithm in Paper D is GPSO algorithm) algorithm and other optimization techniques 

for both PGSs.

In terms of inequality and quality power constraints, the MG-PSO algorithm is able 

to solve the inequality constraints imposed on small-scale and medium-scale PGSs by 

avoiding the 12 POZs of 6 TGUs and 11 POZs of 15 TGUs. The MG-PSO algorithm 

operates within the RRLs of each TGU and it is able to solve the PL for both PGSs. In 

addition, the MG-PSO algorithm has zero mismatch condition in solving power balance 

constraint for the 6 and 15 TGUs.  

The MG-PSO algorithm significantly improves the PSO algorithm in terms of high 

solution quality, robustness and convergence rate for small-scale and medium-scale 

PGSs. Figure 4.5 shows the convergence characteristics of MG-PSO and PSO 

algorithms for small-scale PGS. Figure 4.5(A) shows average of the mean cost over 25 

independent runs. The MG-PSO algorithm has better convergence characteristics than 

the PSO algorithm. Figure 4.5(B) shows the distribution of minimum costs over 25 

independent runs. It can be seen that the MG-PSO algorithm is more stable in achieving 

the optimum solution than the PSO algorithm in solving the ED of small-scale PGS.  
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The convergence characteristics of MG-PSO and PSO algorithms are shown in    

Figure 4.6. Figure 4.6(A) shows average of the mean cost over 25 independent runs. 

The MG-PSO algorithm is better than the PSO algorithm in terms of convergence rate. 

The distribution of minimum costs over 25 independent runs shown in Figure 4.6(B). It

can be seen that the MG-PSO algorithm is more stable in achieving the optimum 

solution than the PSO algorithm in solving the ED of medium-scale PGS.  

Figure 4.5. Convergence characteristics of MG-PSO and PSO algorithms for
small-scale PGS (6 TGUs).  

Figure 4.6. Convergence characteristics of MG-PSO and PSO algorithms for
medium-scale PGS (15 TGUs).  
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4.2.5 Summary of Paper E 

L. T. Al-Bahrani and J. C. Patra, “A novel Orthogonal PSO algorithm based on 

orthogonal diagonalization”, Swarm and Evolutionary Computation, vol. xxx, pp. 1-23, 

2017. In press. 

  In Paper E, more details and mathematical justification of the OPSO algorithm 

are investigated. One of the prominent demerits of the GPSO algorithm is zigzagging 

of the direction of search that leads to premature convergence by falling into a local 

minimum. In this paper, the OPSO algorithm is proposed not only to overcome the 

associated problems in the GPSO algorithm but also achieves better performance.

The OPSO algorithm consists of a swarm with m particles that looks for the global 

optimum solution in a d-dimensional search space with m > d. In OPSO algorithm, the 

m particles in a swarm are divided into two groups: one active group of best personal 

experience of d particles and another passive group of personal experience of remaining 

(m ‒ d) particles. The aim of constructing two groups is to enhance the diversity of the 

particles in a swarm. The d active group particles in each iteration undergo an OD 

process. They are updated in such way that their position vectors are orthogonally 

diagonalized. The passive group particles are not updated as their contribution in 

finding correct direction is not significant.  

The ideas of the active group particles are honoured by updating their respective 

velocity and position vectors. Whereas, the ideas of the passive group particles are 

ignored because their guidance may be insignificant or erratic, and thus, their velocity 

and position vectors are not updated. However, the contributions of the swarm in both 

groups are considered while determining the best experience. In OPSO algorithm, the 

particles are updated using only one guide, thus avoiding the conflict between the two 

guides that happens in the GPSO algorithm and leads the best d particles towards the 

optimum solution.  

In Paper E, the mechanism of OPSO algorithm is explained through an example of a 

2-dimensional shifted function, f(x,y) = (x ‒ 2)2 + (y + 3)2 + 9, plotted in Figure 4.7.

From visual inspection it can be seen that the x and y are shifted from the origin by 
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(2.0,-3.0). The optimum solution of the given function equals to 9 at (x,y) = (2.0,-3.0). 

The purpose of the OPSO algorithm is to find the values x and y such that the f(x,y) is 

minimized.  

The OPSO algorithm was carried out with 6 particles (m = 6), d = 2 and Niter = 200, 

where d is number of dimensions and Niter is number of iterations. The values of 

position vectors (Xi, i = 1, 2, ..., 6), personal vectors (Gpers,i, i = 1, 2, ..., 6) and the 

diagonal vectors (Di, i = 1, 2) for different iterations are shown in Figure 4.8. In each

iteration, the six particles are divided into one active group of two best particles and a 

passive group of four particles. According to the OD process, Gpers,1 and Gpers,2 are 

assigned to active group and (Gpers,3, ..., Gpers,6) are assigned to passive group. In each 

iteration, the velocity and position vectors of only the active group are updated. As seen 

from Figure 4.8, as iteration increases, the OD process causes [X]active_group = 

[D]active_group, and causing X to be a diagonal matrix. At the end of iteration, the best 

Gpers gives the optimum solution, yielding Gbest = (2.0, -3.0). 

In order to have a geometric interpretation of the OPSO algorithm, the movement of 

six position vectors and the two orthogonal vectors are shown in Figure 4.9. Here, X1

and X2 denote the position vectors of the active group and D1 and D2 denote the 2 

orthogonal vectors. It can be seen that during early iterations, the position vectors X1 and

X2 move from random positions toward the orthogonal vectors D1 and D2. Finally, as the 

algorithm iterates further, the X1 and X2 coincide with D1 and D2.

Figure 4.7. The landscape of f(x,y). The minimum value of the function f(x,y) is 9.0 at 
x = 2.0 and y = -3.0.
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Figure 4.8. Numerical example showing convergence of the OPSO algorithm. 
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Thirty benchmark functions taken from the Congress on evolutionary computation 

CEC 2005 [123] CEC 2008 [124] and CEC 2013 [125] are used in Paper E. All the 

thirty benchmark functions are minimization tasks and are divided into three groups 

based on their significant physical properties and shapes. The first group involves nine 

unimodal benchmark functions. The second group includes eleven multimodal 

benchmark functions and the third group includes ten shifted, rotated and shifted rotated 

functions.

t = 1  t = 80

t = 140   t = 200 

t = 200 (Magnified) 

Figure 4.9. Movement of six position vectors (X1, X2, …, X6) and two diagonal vectors,
D1 and D2 in a 2-dimensional search space (m = 6, d = 2). The active group consists of
X1 and X2. At t = 200, X1 and X2 coincide with D1 and D2.
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In order to measure the accuracy, consistency and robustness of OPSO and GPSO 

algorithms, they were evaluated using the thirty benchmark functions given in Paper E.

In terms of convergence characteristics, the OPSO algorithm achieves much better 

convergence than GPSO algorithm in all thirty benchmark functions. In addition, in 

terms of fitness values, i.e., best fitness value (BFV), worst fitness value (WFV), mean 

fitness value (MFV) and standard deviation (σ), in GPSO algorithm, the three fitness 

values BFV, WFV and MFV differ substantially from their optimum values for all the 

thirty benchmark functions. Whereas, in OPSO algorithm, the three fitness values are 

the same or very close to their optimum values for all the thirty benchmark functions. 

The σ remains 0 or close to 0 in OPSO algorithm, indicating high consistency and 

reliability. The results shown in Paper E give evidence that the OPSO algorithm is more 

accurate, stable and robust compared to the GPSO algorithm. 

In Paper E, the sensitivity analysis of the proposed OPSO algorithm with variation of 

swarm size m is also studied. Nine selected benchmark functions with d = 30 

dimensions are tested. With the swarm population, m = 32, it has 30 particles in active 

group and 2 particles in the passive group. The performance of OPSO algorithm 

improves substantially compared to m = 30 (i.e., the number of particles in the passive 

group equals to zero). Based on the observations in Paper E, as a thumb rule, one may 

select the swarm population size between 10-30% more than the dimension of the 

search space. 

In addition, by taking thirty unimodal, multimodal, shifted, rotated, and shifted 

rotated benchmark functions of dimension 30 and 100, it is shown that the OPSO 

algorithm outperforms the GPSO algorithm and several recently reported ECTs in terms 

of convergence, accuracy, consistency and reliability.      

4.2.6 Summary of Paper F 

L. T. Al-Bahrani and J. C. Patra, “Orthogonal PSO algorithm for economic dispatch of 

thermal generating units under various power constraints in smart power grid,” Applied 

Soft Computing, vol. 58, pp. 401-426, 2017. 

In Paper F, the OPSO algorithm is proposed to solve the ED problem of small, 

medium and large-scale PGSs with several practical TGUs and PGS constraints and to 
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improve the performance by overcoming the drawback of GPSO algorithm. In addition, 

the OPSO algorithm is also applied to solve shifted and rotated unimodal and 

multimodal benchmark functions with 30 dimensions taken form CEC 2015.  

In Paper F, different power constraints imposed on the fuel cost function are power 

balance, PL, mismatch in PL (PL,mismatch), generation limits, RRLs, POZs, and feasible 

operation zones (FOZs). To explain a set of inequality constraints imposed on the TGU, 

this paper provides an illustrative example to show the lower and upper generation 

limits and FOZs generated due to presence RRLs and POZs of a TGU. The 

specifications of TGU2 taken from [11] are given below.

P2
0 = 170 MW; P2,min = 50 MW; P2,max = 200 MW; UR2 = 50 MW; DR2 = 90 MW. The 

TGU2 has two POZs are: POZ1 = [90,110] and POZ2 = [140,160]. 

From (16) in Paper F, the new lower and upper limits of TGU2 based on RRLs are: 

      P2,low =  80 MW and P2,high =  200 MW, 

and there are three FOZs are:

FOZ1: 80 ≤ P2 ≤ 90 

    FOZ2: 110 ≤ P2 ≤ 140 

    FOZ3: 160 ≤ P2 ≤ 200 

Figure 4.9 shows that TGU2 has minimum and maximum operation limits (OL) given 

by 50 MW and 200 MW, respectively. However, due to presence OF up-ramp and 

down-ramp limits, the TGU2 operates in a new lower and higher OLs given by P2,low = 

80 MM and P2,high = 200 MW. Also, the three FOZs are given by: FOZ1 = [80,90] MW, 

FOZ2 = [110,160] MW and FOZ3 = [160,200] MW shown in white color, and two POZs 

are given by: POZ1 = [90,110] MW and POZ2 = [140,160] MW shown in dark color in 

Figure 4.9. The intermittent zone ([50,80] MW) is out of OL of the TGU2.

Figure 4.10. Lower and upper generation limits, POZs and FOZs for TGU2.
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To study the accuracy, stability and robustness of OPSO and GPSO algorithms for 

the ED problem, several performance measures are considered in this paper. The OPSO 

and GPSO algorithms are evaluated using a small-scale (6 TGUs), a medium-scale (15 

TGUs) and a large-scale (40 TGUs) PGS.

In small-scale PGS (6 TGUs), the generation limits, power balance, PL, PL,mismatch,

generation limits, RRLs, POZs, and FOZs are considered. The performance of the 

OPSO algorithm is compared with GPSO algorithm and several other competitive 

algorithms reported. In terms of fitness values, the performance of OPSO algorithm is 

compared with 21 ECTs and GPSO algorithm. The OPSO algorithm provides best result 

in terms of lowest mean fuel cost and lowest σ over 100 independent runs. This 

indicates that the OPSO algorithm provides stable and accurate solution.  

In terms of range (R), the OPSO algorithm provides the second best result among 22 

competitive algorithms. In term of AET, the OPSO achieves the third best in terms of 

AET. Thus, the overall performance of the OPSO algorithm is far superior than the 

other 22 ECTs. In terms of convergence characteristics, the OPSO shows faster in 

convergence compared to the GPSO algorithm. This indicates that OPSO algorithm is 

more consistent and stable than GPSO algorithm. In terms of inequality and equality 

constraints, the OPSO and GPSO algorithms avoid the 12 POZs of 6 TGUs and are 

within RRLs and generation limits of each TGU. This indicates that both algorithms are 

able to satisfy the inequality constraints of small PGS. In addition, The OPSO algorithm 

provides zero mismatch, i.e., PL,mismatch = 0, indicating that the power balance constraint 

is satisfied.

In the medium-scale PGS (15 TGUs), the generation limits, power balance, PL,

PL,mismatch, generation limits, RRLs, POZs, and FOZs, are considered. The performance 

of OPSO algorithm is compared with GPSO algorithm and other existing 17 ECTs. The 

OPSO algorithm achieves the best results in terms of mean fuel cost, σ and R. These 

results indicate that the OPSO algorithm provides consistent, stable and optimum 

results.

However, in term of AET, OPSO is the second best; the GPSO algorithm being the 

best among the 19 ECTs. In terms of convergence characteristics, the OPSO algorithm 
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is more consistent, stable and reliable than the GPSO algorithm. In terms of inequality 

and equality constraints, both the OPSO and GPSO algorithms are able to avoid the 

eleven POZs of four TGUs and are within generation limits and RRL constraints, thus 

both algorithms are able to satisfy the inequality constraints. In addition, the OPSO 

satisfies the zero mismatch condition, i.e., PL,mismatch = 0, thus satisfying of the power 

balance constraint for the medium-scale PGS. 

The third PGS is a large-scale and taken from Taipower system [11], it consists of 40 

TGUs with PD = 8,550 MW. It contains 46 POZs distributed among 25 TGUs and the 

RRLs are imposed on all the 40 TGUs as shown in Figure 4.10. The B-loss coefficients 

are considered and they are generated randomly as is done in [126]. Unfortunately, this 

PGS is tested by only a few authors under RRLs, POZs and PL constraints. This may be 

due to unavailability of B-loss coefficients or due to its high dimensions with a large 

number of power constraints. The generation limits, power balance, PL, PL,mismatch,

generation limits, RRLs, POZs and FOZs are considered. The performance of the OPSO 

algorithm is compared with GPSO algorithm and several other competitive algorithms. 

The OPSO algorithm provides the best result in terms of mean fuel cost and σ over 100 

independent runs. This means that the OPSO algorithm provides the most optimum and 

consistent results. The range R of OPSO algorithm is the lowest among the 15 ECTs, 

thus indicating that OPSO algorithm gives solution with the lowest dispersion. The AET 

of OPSO (69 sec), due to its computational complexity, is found to be higher than the 

GPSO (47 sec). These results indicate that among the 15 ECTs, the OPSO algorithm is 

the most robust, stable, and is able to provide most optimum solution.  

In terms of the convergence characteristics, the GPSO algorithm is unable to solve 

the ED problem with such a high dimension and under such large number of constraints. 

Whereas, the OPSO algorithm is capable of providing consistent and reliable optimum 

solution and gives high accuracy in solving such this complex problem. In terms of 

inequality and quality constraints, the GPSO algorithm violates RRLs.  This means that 

GPSO algorithm fails in solving 40 TGUs power system indicating that GPSO 

algorithm is unable to solve large-scale ED problem. Whereas, the OPSO algorithm is 

able to avoid the 46 POZs of 25 TGUs and remain within RRLs. In addition, the power 

balance constraint is achieved by the OPSO algorithm and the PL,mismatch is more close to 

0.0 than the other competitive algorithms.  
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The ED of power with various power constraints makes the objective function, i.e., 

cost function becomes multimodal function and it has local optima. In order to provide a 

fair comparison and demonstrate the goodness of the proposed OPSO algorithm, ten 

selected shifted and rotated functions from CEC benchmark functions 2015 [127] are 

considered in Paper F.

The performance of the OPSO algorithm is compared with GPSO algorithm and 

several other competitive algorithms in terms of several performance measures. In terms 

of fitness values, i.e., BFV, WFV and MFV, in OPSO algorithm, these values are the 

same to their optimum values for all the ten functions. Whereas, in case of the GPSO 

algorithm, the BFV, WFV and MFV differ substantially from their optimum values. In 

terms of σ, it remains close to 0.0 in OPSO algorithm, indicating high consistency and 

reliability. Thus, the OPSO algorithm is more accurate, stable and robust compared to 

the GPSO algorithm. In terms of the AET, the OPSO algorithm reaches “Threshold 

Error” within a specific AET. However, GPSO algorithm cannot reach “Threshold 

Error”, indicating that GPSO is unable to solve these ten shifted and rotated CEC 2015 

benchmark functions.  

In addition, the OPSO algorithm is compared with several existing ECTs with 

extensive simulation studies. The proposed OPSO algorithm has shown evidence of 

superior performance compared to several existing ECTs in providing reliable, 

consistent and optimum solution. The OPSO algorithm is also found to be statistically 

significant against several ECTs including top-ranked CEC 2015 algorithms.  

Thus, the OPSO algorithm is able to achieve superior performance in terms of 

convergence, consistency and accuracy compared to GPSO algorithm and several 

competitive ECTs.  

4.2.7 Summary of Paper G 

L. T. Al-Bahrani and J. C. Patra, “Multi-gradient PSO algorithm for optimization of 

multimodal, discontinuous and non-convex fuel cost function of thermal generating 

units under various power constraints in smart power grid”, Energy, vol. 147, pp. 1070-

1091, 2018. 
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In Paper G, the MG-PSO algorithm is proposed to solve the challenging of the ED 

problem with non-linear, multimodal and discontinuous fuel cost function. In MG-PSO 

algorithm, two phases, called Exploration and Exploitation, are used. In the Exploration

phase, the m particles are called Explorers and undergo multiple episodes. The m

Explorers use a different negative gradient to explore new neighbourhood in each 

episode. Whereas, in the Exploitation phase, the m particles are named Exploiters. The 

m Exploiters use only one negative gradient that is less than that of the Exploration

phase, to exploit a best neighborhood. This diversity in negative gradients provides a 

balance between global search and local search.  

In Paper G, the MG-PSO algorithm is applied to solve the ED problem of four PGSs, 

considering more power constraints including valve-point loading (VPL) effects. In 

addition, the mathematical analysis and theoretical justification of MG-PSO algorithm 

is provided.

The PGS-1 is a medium-scale system and consists of 13 TGUs. Here, the VPL 

effects and power generation limits are considered. However, the RRLs, POZs and PL

are not considered. The performance of the MG-PSO algorithm is compared with 

GPSO-w algorithm and several other competitive algorithms. The performance of the 

proposed MG-PSO algorithm is compared with other 9 existing ECTs. The MG-PSO 

algorithm provides the best result in terms of mean fuel cost over 25 independent runs. 

However, it is the second best algorithm in terms of σ. This indicates that the MG-PSO 

algorithm provides most optimum and consistent results. In addition, the range R of 

MG-PSO algorithm is the second best, thus indicating that MG-PSO algorithm provides 

solution with low dispersion. These results indicate that among the 9 ECTs, the MG-

PSO algorithm is stable, robust and is able to provide optimum solution. In terms of 

convergence characteristics, The MG-PSO algorithm settles at about 150 iterations and 

achieves mean fuel cost of about $17,956/h. However, the GPSO-w algorithm takes 

more than 500 iterations to converge, and settles with a non-optimum mean fuel cost of

about $18,326/h. Thus, the MG-PSO algorithm is capable of providing consistent and 

reliable solution.

The PGS-2 is also a medium-scale PGS with 15 TGUs. It has 11 POZs in 4 TGUs. 

The generation limits and RRLs are applied to each TGU. In addition, power balance, 
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the PL, PL,mismatch, generation limits, RRLs, POZs, and FOZs are considered. The 

performance of the MG-PSO algorithm is compared with GPSO-w algorithm and 

several other 19 ECTs competitive algorithms in terms of several performance 

measures. The MG-PSO algorithm achieves the best positions in terms of σ and R and 

the second best position result in terms of mean fuel cost. However, in terms of AET, 

the MG-PSO algorithm is the fourth best. In terms of inequality and equality 

constraints, both the MG-PSO and GPSO-w algorithms are able to avoid the 11 POZs 

imposed to 4 TGUs and are remain within RRLs imposed on each TGU. In addition, the 

MG-PSO algorithm is able to satisfy the zero mismatch condition, i.e., PL,mismatch = 0, 

thus satisfying the power balance constraint. These results indicate that the MG-PSO 

algorithm provides consistent, stable and robust performance. 

The PGS-3 is a large-scale PGS taken from Taipower system [11]. It consists of 40 

TGUs with 46 POZs distributed among 25 TGUs. The generation limits and RRLs are 

imposed on all the 40 TGUs. In addition, the power balance, PL, PL,mismatch, POZs, and 

FOZs, are considered. The performance of MG-PSO algorithm is compared with 

GPSO-w and other 15 existing ECTs. The MG-PSO provides the best result in terms of 

mean fuel and σ over 25 independent runs. This indicates that the MG-PSO algorithm 

provides the most optimum and consistent results. In addition, the range R of MG-PSO 

algorithm is the lowest among the 16 ECTs, thus indicating that MG-PSO algorithm 

provides solution with lowest dispersion. In terms of AET, the MG-PSO algorithm is 

the third best. The GPSO-w algorithm is not able to provide an accurate solution.  

In terms of inequality and equality constraints, the GPSO-w algorithm violates the 

RRLs of three TGUs. This means that GPSO-w algorithm fails in solving PGS-3. 

However, the MG-PSO algorithm avoids all the 46 POZs of 25 TGUs and remains 

within RRLs. In addition, the MG-PSO algorithm is able to satisfy the zero mismatch 

condition, i.e., PL,mismatch = 0, thus satisfying the power balance constraint. These results 

indicate that among the 16 ECTs, the MG-PSO algorithm is the most stable, robust and 

is able to provide most optimum solution. 

The PGS-4 is a very large-scale PGS taken from Korean PGS [12]. It is a complex 

system with 140 TGUs each having generation limits and RRLs. In addition, the cost 

functions of 12 TGUs have VPL effects and 4 TGUs have 11 POZs. The performance 
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of MG-PSO algorithm is compared with two other algorithms as well as GPSO-w. The 

MG-PSO algorithm is efficient in obtaining the best result in terms of mean fuel cost 

over 25 independent runs. In addition, in terms of σ, the performance of the MG-PSO 

algorithm is the second best. This shows that the MG-PSO algorithm provides optimum 

and consistent results. Also, the range R of MG-PSO algorithm is the second lowest 

among the 4 ECTs, thus indicating that it provides solution with low dispersion. In 

terms of AET, the MG-PSO algorithm shows the second best performance. 

In terms of inequality constraints, it is seen that the GPSO-w algorithm violets RRLs 

in 11 POZs. This indicates that GPSO-w algorithm is unable to solve ED problem of 

very large-scale TGUs. Whereas, the MG-PSO algorithm avoids all the 11 POZs 

imposed on 4 TGUs and remains working within the RRLs of each TGU and overcomes 

the VPL effects imposed on 12 TGUs. These results indicate that among the 4 ECTs, 

the MG-PSO algorithm is stable and robust and is able to provide optimum solution.   

Table 4.1 shows the comparison in terms of AET between the two proposed 

algorithms, OPSO and MG-PSO algorithms, for solving the ED problem of medium-

scale and large-scale PGSs. We have seen that both the proposed OPSO and MG-PSO 

algorithms achieve superior results for the ED problem in terms of several performance 

measures compared with the PSO variants and several competitive algorithms. However 

when solving large-scale TGUs, e.g., 40 TGUs, the OPSO algorithm requires more time 

than MG-PSO algorithm to obtain the global optimum because of the condition of m > 

d. However, this demerit is not prominent when solving small-scale and medium-scale

PGSs.

Table 4.1. Comparison of the AET between OPSO and MG-PSO algorithms for 
medium and large PGSs. 

Sl.
No. PGS 

OPSO MG-PSO

d m Mean
Cost ($/h)

σ
($/h) 

AET 
(sec) d m Mean

Cost ($/h) 
σ

($/h) 
AET
(sec)

1 Medium-scale 
 (15 TGUs) 15 18 32,666.92 0.1394 4.37 15 20 32,677.96 0.0348 9.20 

2 Large-scale 
 (40 TGUs) 40 45 127,349.83 302.35 69.32 40 20 126,625.02 20.27 29.38
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In Paper G, statistical tests were also carried out to demonstrate the effectiveness 

of the proposed MG-PSO algorithm. The MG-PSO algorithm has proved to be a 

powerful and highly effective algorithm that is capable of solving multimodal,

discontinuous and non-convex functions.

4.2.8 Summary of Paper H 

L. T. Al-Bahrani and J. C. Patra, “Multi-gradient PSO algorithm with enhanced 

exploration and exploitation,” Applied Soft Computing. Under review. 

In Paper H, the impact of the VPL effects on the fuel cost function is demonstrated. 

Let us consider two TGUs, TGU1 and TGU2, with a set of parameters as shown in 

Table 4.2 [44]. The TGU1 and TGU2 are steam powered turbo generators with multiple 

valves. Practically, the valves of steam-turbine control the steam entering through 

separate nozzle groups. Each nozzle group provides best efficiency when it is operating 

at maximum active output power. Thus, when increasing the active output power, the 

valves of seam-turbine are opened and closed in sequence in order to achieve high 

efficiency for a given output power. Then, it causes ripple-like effects and subsequently 

the characteristics of the fuel cost function become non-linear.  

Figure 4.10 shows the total fuel cost of TGU1 and TGU2 under VPL effects. Multiple 

local minima are caused by the sinusoidal function imposed on the fuel cost of each 

TGU. Thus, the MG-PSO algorithm is proposed to solve such a complex problem. 

Table 4.2. Parameters of TGU1 and TGU2.

TGUj
aj

$/h
bj

$/MWh
cj

$/MW2h
ej

$/h
fj

(MW-1)
Pj,min

(MW) 

1 958.29 21.60 0.00043 450 0.041 150 

2 1,313.60 21.05 0.00063 600 0.036 135 
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In addition, the MG-PSO algorithm is used to solve ten selected shifted and rotated 

unimodal and multimodal benchmark functions with dimensions of 30 and 100 taken 

from CEC 2015. The mechanism of the MG-PSO algorithm depends on two phases 

called Exploration and Exploitation. In the Exploration phase, the m particles are named 

Explorers and undergo multiple episodes. The Explorers use a different negative 

gradient in each episode to explore new neighbourhood whereas in the Exploitation

phase, the m particles are named Exploiters and they use one negative gradient that is 

less than that of the Exploration phase, to exploit a best neighborhood. This diversity in 

negative gradients gives a balance between global search and local search of the 

Explorers and Exploiters.

Performance of the proposed MG-PSO and GPSO-w algorithms are obtained in 

terms of fitness values, convergence rate, accuracy, consistency, robustness and 

reliability. Ten shifted and rotated unimodal and multimodal benchmark functions are 

considered. Each benchmark function is tested with d = 30 and d = 100 dimensions. The 

comparison is achieved between the MG-PSO and GPSO-w algorithms in terms of 

BFV, WFV, MFV, σ and AET.

In case of GPSO-w algorithm, the BFV, WFV and MFV differ substantially from 

their optimum values for all the ten functions with d = 30 and d = 100. However, in 

MG-PSO algorithm, the three fitness values are the same as their optimum values for all 

the ten benchmark functions. In terms of the σ, it remains close to 0.0 in MG-PSO 

algorithm, indicating its high consistency and reliability. In terms of the AET, the 

Figure 4.11. Total fuel cost function of TGU1 and TGU2 under VPL effects.
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MG-PSO algorithm reaches “Accepted Error” within a specific AET. However, the 

GPSO-w algorithm could not reach “Accepted Error”, indicating that GPSO-w is unable 

to solve these ten shifted and rotated benchmark functions. Whereas, MG-PSO 

algorithm successfully achieves the optimum solution for all the ten benchmark 

functions with d = 30 and d = 100. These results prove that the MG-PSO algorithm is 

more accurate, stable and robust compared to the GPSO-w algorithm. 

The MG-PSO algorithm is also applied to solve the ED of South Korea power 

generating system with 140 TGUs [12]. Superior performance by the MG-PSO 

algorithm over the GPSO-w algorithm and several existing optimization techniques has 

been shown in terms of fitness value, convergence rate, and consistency. In addition, by 

using unpaired t-test, the statistical significance of the MG-PSO algorithm is found out 

against several contending algorithms including top-ranked CEC 2015 algorithms.  

4.3 Chapter summary  

This Chapter provides an executive summary of each of the eight Papers. 

Contributions of these eight Papers were investigated in this Chapter. The salient 

features and important results of each of the eight Papers were highlighted.  



Chapter 5: Discussion and Future Directions 

85 

Chapter 5: Discussions and Future Directions

5.1 Chapter overview 

This thesis ends with a critical discussion, linking the characteristics of evaluating 

the proposed two novel algorithms, orthogonal PSO (OPSO) and multi-gradient PSO 

(MG-PSO) algorithms. The two algorithms have been applied to solve the ED problem 

of small-scale to large-scale TGU power generating systems and a set of benchmark 

functions taken from the Congress of evolutionary computation 2015 (CEC 2015).  In 

Section 5.2, discussion on the main investigations is presented. Then, addressing the 

answer of the research questions is discussed in Section 5.3. After that, outcomes of this 

study are presented in Section 5.4. Significant contribution to knowledge from this 

study is given in Section 5.5. Subsequently, limitations and recommendations for future 

study are provided in Section 5.6. Then, the conclusion is presented in Section 5.7.

Finally, Chapter summary is given in Section 5.8.

5.2 Main investigations

The economic dispatch (ED) of active output power of large-scale TGU power 

generating systems with various practical power constraints is a challenge in operation 

and management of the power generating systems. The aims of this thesis have been 

achieved by completing the eight Papers to address the following points. 

The first point of investigation is the current issues faced by Iraq NDC to solve the 

complex ED problem as reported in Section 1.3. 

The second point investigated is the review of the existing literature for solving non-

convex ED problem of large-scale TGUs with different power constraints. The 

comprehensive literature review reveals that the ECTs are continuously being developed 

and improved year by year and being compared with other optimization techniques to 

deal with even larger PGSs with an increasing number of practical operating power 

constraints.
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The third point of investigation is identifying the gap in this field of research. 

Recently, a large number of ECT-based algorithms have been proposed and applied for 

the optimization of non-convex and non-smooth ED problem. However, the issue of 

scalability has not been addressed sufficiently. In other words, the number of ECTs 

techniques which can be applied to large-scale ED problem with or more than 40 

TGUs is small.

The next point of investigation was to address the potential difficulties of the ED 

problem. These have been thoroughly analysed in the Papers A-H that are the backbone 

of this thesis. Especially, analysis of the active output power of each TGU with different 

operating power constraints was emphasized. Two novel algorithms, OPSO and       

MG-PSO, are proposed and their performance was evaluated.    

The performance of the proposed OPSO and MG-PSO algorithms is assessed on 

small-scale to large-scale ED problems with several operating power constraints. The 

power constraints are generation limits, VPL effects, POZs, FOZs, RRLs, PL, PL,mismatch,

and power balance. It is shown that the OPSO and MG-PSO algorithms are robust, 

efficient, and have a high performance when applied to complex, large-scale practical 

ED problems. 

5.3 Addressing the answer to the research questions

The importance of the ED problem as a highly complex optimization problem in 

operation and management of TGUs power generating system was investigated through 

the answer to question #1. One can see the significance of solving ED problem from the 

results shown in Papers F and G in testing four small-scale to large-scale PGSs (PGS-1, 

PGS-2, PGS-3 and PGS-4) in terms of minimum, maximum and mean fuel costs. The 

significance has been demonstrated by optimally allocating the required load demand 

among the online TGUs such that the operating fuel cost is minimized. Thus, this study 

gives an approach to determine the most efficient, low-cost, stable and reliable 

operation of the PGSs.

The answer to question #2 has been investigated by proposing two novel algorithms, 

OPSO and MG-PSO algorithms, for solving the ED problem of large-scale TGUs power 
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generating system with several operating power constraints. The PSO variants, GPSO 

and GPSO-w algorithms, mentioned in this study are unable to solve such a complex 

problems, because of loss of balance between global search and local search. In 

addition, the performance of GPSO and GPSO-w algorithms deteriorates for high-

dimensional optimization problems, especially in presence of non-linear operating 

constraints. Both the OPSO and MG-PSO algorithms were proposed in this thesis to 

alleviate the shortcomings in GPSO and GPSO-w algorithms and for solving the 

unimodal and multimodal complex problems including the ED problem, as shown in 

Papers A-H.

In addition, several operating power constraints, e.g., generation limits, RRLs, POZs, 

power balance, FOZs, PL and PL,mismatch, are taken into account in computing the fuel 

cost function. All these power constraints were solved through a set of equality and 

inequality constraints imposed on fuel cost function for the ED problem of small-scale 

to large-scale PGSs. Formulation the non-convex fuel cost function with VPL effects 

was also achieved. The mathematical analysis and theoretical justification for the ED 

problem were reported in Papers A-H.

A set of unimodal, multimodal, shifted, rotated and shifted and rotated benchmark 

functions taken from the Congress of evolutionary computation 2015 (CEC 2015) were 

addressed with 30 and 100 dimensions. In addition, using unpaired t-test, the statistical 

significance of the OPSO and MG-PSO algorithms have been found against several 

contending algorithms including top-ranked CEC 2015 algorithms.   

The OPSO algorithm was found to be superior than several contending of ECTs in 

solving large-scale TGUs in terms of minimum, maximum and mean fuel costs. 

However, the OPSO algorithm consumes excessive execution time because it uses the 

OD process in d best particles. Therefore, the number of particles is about 10-30% more 

than the dimension of search space. This leads to more execution time in each 

iteration. Therefore, the MG-PSO algorithm was proposed to overcome this demerit of 

the OPSO algorithm.
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5.4 Outcomes of this study

This study is focused on applying the OPSO and MG-PSO algorithms to solve ED 

problem. In addition, these two algorithms were successfully applied to solve a set of 

selected complex unimodal and multimodal benchmark functions taken from the CEC 

2015. The main outcomes of this study are summarized below.  

5.4.1 Orthogonal PSO algorithm  

The OPSO algorithm is applied for solving the ED problem of small-scale to large-

scale TGU power systems with various practical power constraints. In small-scale PGS 

(6 TGUs), the OPSO algorithm provides the best results in terms of mean cost value 

(Fmean) and has lowest standard deviation (σ) compared with 21 ECTs as well as the 

GPSO algorithm, as shown in Table 3 (Paper F). In terms of inequality and equality 

operating power constraints, both the OPSO and GPSO algorithms are able to avoid the 

12 POZs in 6 TGUs and are within RRLs, as shown in Paper F. In terms of power 

balance constraint, the OPSO algorithm provides zero mismatch, i.e., PL,mismatch = 0, 

indicating that the power balance constraint is satisfied. 

For a medium-scale PGS (15 TGUs), the OPSO algorithm provides the best results in 

terms of Fmean and σ among 19 existing ECTs. In terms of average execution time 

(AET), the OPSO is the second best among the 19 ECTs. In terms of the convergence 

characteristics, the OPSO algorithm is more consistent, stable and reliable than the 

GPSO algorithm, as shown in Figures 13 and 14 (Paper F). In terms of inequality power 

constraints, the OPSO and GPSO algorithms are able to avoid the 11 POZs in 4 TGUs 

and are within RRL power constraints, as shown in Table 9 (Paper F). Thus, both 

algorithms are able to satisfy the inequality constraints of medium-scale PGS. In terms 

of the power balance constraints, the OPSO algorithm satisfies the zero mismatch 

condition, i.e., PL,mismatch = 0.

For a large-scale PGS (Taiwan PGS with 40 TGUs), the OPSO algorithm provides 

the best result in terms of Fmean and σ, as shown in Table 12 (Paper F). The AET of the 

OPSO algorithm is 69 sec. Due to its computational complexity, it is found to be higher 

than the GPSO (47 sec). In terms of convergence characteristics, the GPSO algorithm is 
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unable to solve the ED problem with such a high dimension (40 TGUs) with such a 

large number of constraints. In terms of inequality power constraints, the GPSO 

algorithm violates the RRLs, as shown in Table 13 (Paper F). However, the OPSO 

algorithm avoids the 46 POZs in 25 TGUs and remains within RRLs. The GPSO is out 

of comparison in terms of power balance constraint, because it failed in solving large-

scale PGS. However, the OPSO algorithm satisfies the zero mismatch condition, i.e., 

PL,mismatch = 0.

The proposed OPSO algorithm is also applied on a set of unimodal, multimodal, 

shifted, rotated, and shifted and rotated benchmark functions with dimensions of 30 and 

100, as shown in Papers E and F. Performance comparison between the OPSO and 

GPSO algorithms in terms of best fitness value (BFV), worst fitness value (WFV), 

mean fitness value (MFV), mean fitness error value (MFEV), σ and AET are provided 

in Table 16 (Paper F) and Table 4 (Paper E).

In GPSO algorithm, the three fitness values BFV, WFV and MFV differ substantially 

from their optimum values. However, in OPSO algorithm, the three fitness values are 

the same to their optimum values. The MFEV of GPSO algorithm is so far from 

“Threshold Error” However, in the OPSO algorithm, the MFEV is smaller than 

“Threshold Error”. In terms of the σ, the OPSO algorithm remains close to 0.0. In terms 

of the AET, the OPSO algorithm reaches “Threshold Error” within a specific AET. 

However, the GPSO algorithm cannot reach “Threshold Error”, which indicating that 

the GPSO is unable to solve unimodal, multimodal, shifted, rotated, and shifted and 

rotated benchmark functions complex benchmark functions with 30 and 100 

dimensions.  

In addition, the performance of the proposed OPSO algorithm is compared with few 

ECTs recently reported by other authors as shown in Papers E and F including the three 

top-ranked algorithms in the CEC 2015. Superior performance of the proposed OPSO 

algorithm has been shown compared to several existing ECTs in providing reliable, 

consistent and optimum solution for CEC 2015 benchmark functions. In addition, The

OPSO algorithm was found to be statistically significant against several ECTs including 

top-ranked CEC 2015 algorithms.   
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5.4.2 Multi-gradient PSO algorithm  

The MG-PSO algorithm are applied for solving the ED problem of small-scale to 

large-scale TGU power generating systems with various practical power constraints. In 

small-scale PGS (6 TGUs), the MG-PSO algorithm provides the best results in terms of 

minimum, maximum and mean cost and has lowest standard deviation (σ) compared 

with 14 ECTs as shown in Table I (Paper D). In terms of inequality and equality 

operating power constraints, both the MG-PSO and GPSO algorithms are able to avoid 

the 12 POZs in 6 TGUs and are within RRLs, as shown in Paper D. In terms of power 

balance constraint, it can be seen that the MG-PSO algorithm provides zero mismatch, 

i.e., PL,mismatch = 0, indicating that the power balance constraint is satisfied.

For a medium-scale PGS (13 TGUs), the effects of VPL and generation limits in 

each of the 13 TGUs are taken into account. Table 4 in Paper G shows, the MG-PSO 

algorithm provides the best result in terms of Fmean. However, it is the second best in 

terms of σ. In terms of the convergence characteristics, the MG-PSO algorithm is 

capable of providing consistent and reliable solution. However, the GPSO-w algorithm 

was rather far from optimum solution due to VPL effects, as shown in Figures 5 and 6

(Paper G).

For another medium-scale PGS (15 TGUs), the PL, RRLs, POZs, generation limits 

are taken into account for solving the non-convex ED problem. The results in Table 9

(Paper G) show that the MG-PSO algorithm achieves the best positions in terms of σ

and the second best position result in terms of Fmean. The best Fmean is achieved by the 

OPSO algorithm. However, in terms of AET, the MG-PSO algorithm was the fourth 

best (9.2088 sec). However, the OPSO algorithm is faster in convergence (4.377 sec) 

and is better performance than the MG-PSO algorithm in solving the ED of 15 TGUs. 

In terms of inequality power constraints, the MG-PSO, OPSO and GPSO-w algorithms 

are able to avoid the 11 POZs in 4 TGUs and are within RRL power constraints, as 

shown in Table 10 (Paper G). Thus, the MG-PSO, OPSO and GPSO algorithms are able 

to satisfy the inequality constraints of medium-scale power system (15 TGUs). In terms 

of power balance constraints, the MG-PSO and OPSO algorithms satisfy the zero 

mismatch condition, i.e., PL,mismatch = 0, as shown in Table 11 (Paper G).
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For large-scale PGS (Taiwan PGS with 40 TGUs), the generation limits, RRLs, PL,

PL,mismatch, power balance, and POZs are taken into account. The MG-PSO algorithm 

provides the best result in terms of Fmean and σ as shown in Table 14 (Paper G). This 

indicates that the MG-PSO algorithm provides the most optimum and consistent results. 

In terms of AET, the MG-PSO is faster in convergence (29.38 sec) that the OPSO 

algorithm (69.32 sec). However, the GPSO-w algorithm is unable to provide an accurate 

solution. The GPSO-w algorithm was unable to solve the ED problem with such a high 

dimensional search space and under large number of power constraints, shown in Table

14 (Paper G).

In terms of inequality constraints, the GPSO-w algorithm failed in solving 40 TGUs 

system. It is unable to solve large-scale ED problem. However, the MG-PSO algorithm 

is able to avoid all the 46 POZs in 25 TGUs and remains within RRLs. In addition, the 

power balance constraint is solved by the MG-PSO algorithm, it is more close to 0.0 

than the OPSO algorithm, as shown in Table 16 (Paper G). However, the GPSO-w is 

out of the comparison, because it failed in solving the ED of Taiwan PGS. 

For a very large-scale PGS, it is South Korea PGS with 140 TGUs. Each TGU has 

RRLs and the fuel cost functions of 12 TGUs have VPL effects and 4 TGUs have 11 

POZs. The GPSO-w was unable to solve the 140 TGUs power system with such a high 

dimension (d = 140) and under such a large number of power constraints, as shown in 

Table 18 (Paper G). Early convergence of the GPSO-w algorithm indicates that it has 

trapped into one local minimum. This indicates that the GPSO-w algorithm is unable to 

solve the ED problem. However, the MG-PSO algorithm is efficient in obtaining the 

best result in terms of Fmean. In addition, in terms of σ, the performance of the MG-PSO 

algorithm is the second best. Thus, the MG-PSO algorithm is stable and robust and is 

able to provide optimum solution of such a complex PGS.  

In terms of inequality power constraints, the GPSO-w algorithm violates the RRLs in 

11 TGUs, as shown in Table 19 (Paper G). The GPSO-w algorithm failed in solving the 

ED of 140 TGUs. Whereas, the MG-PSO algorithm avoids the 11 POZs in 4 TGUs and 

remains within the RRLs. In addition, the MG-PSO algorithm is able to solve the non-

convex fuel cost function due to the effects of VPL in 12 TGUs.
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The MG-PSO algorithm is also applied on ten selected shifted and rotated 

benchmark functions with dimensions of 30 and 100 taken from CEC 2015.

Performance comparison between the MG-PSO and GPSO-w algorithms in terms of 

BFV, WFV, MFV, MFEV, σ and AET are shown in Tables 5 and 6 (Paper H). In case 

of GPSO-w algorithm, the BFV, WFV and MFV differ substantially from their

optimum values for all the ten functions with d = 30 and d = 100. However, in MG-PSO 

algorithm, the BFV, WFV and MFV are the same as their optimum values for all the ten 

functions. The MFEV of GPSO-w algorithm is far from the “Accepted Error”. Whereas, 

in MG-PSO algorithm, the MFEV is smaller than “Accepted Error”, the MFEV = 0.0 

for all the ten functions. In terms of the σ, the MG-PSO algorithm remains close to 0.0.

In terms of the AET, the MG-PSO algorithm reaches “Accepted Error” within a specific 

AET. However, the GPSO-w algorithm is unable to reach “Accepted Error”. Thus, the

GPSO-w is unable to solve the selected ten shifted and rotated with 30 and

100 dimensions.

Based on the sensitivity analysis of the MG-PSO algorithm against a swarm 

population size, the appropriate value of m is 20 is selected in solving different 

objective functions. This means that the MG-PSO algorithm is less affected by  

swarm population size, as shown Papers G and H. In contrast, the OPSO algorithm is 

largely affected by increasing the dimension of the problems.

Statistical tests are carried out to demonstrate the effectiveness of the proposed 

MG-PSO algorithm. Thus, it has proved to be a powerful and highly effective algorithm 

that is capable of solving multimodal, discontinuous and non-convex functions.  

5.5 Significant contribution to knowledge 

The eight Papers, Papers A-H appended in Appendix-1 represent original and 

distinguished contribution to knowledge in the field of operation and management of 

the power generating systems. These eight papers have focused on the development of 

two novel algorithms, i.e., OPSO and MG-PSO algorithms, to solve unimodal and 

multimodal problems including the ED problem. Developing new computation 

techniques such as OPSO and MG-PSO algorithms for solving the ED problem is 

necessary with the rapid technological evolution in smart power grid. This study will 
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help the electrical engineers in the dispatch center to manage and govern the electrical 

energy to the consumer.           

5.6 Limitations and recommendations for future study

5.6.1 Limitations 

An important limitation is due the security reasons, the Iraq PGS data is not 

available. Therefore, technical data of other power systems that are similar to Iraq PGS, 

e.g., Taiwan [11] and South Korea [12] power systems, as well as small and medium 

power systems were considered in this study.   

Another important limitation that was being faced in this study is that, obtaining the 

complete technical data for a real-world PGS with its practical power constraints are 

difficult. For example, in Taiwan power system, the B-loss coefficients are not 

available. Therefore, they are generated randomly as is done in [126].

Finally, another important limitation that was being faced in this study is that, the 

number of other ECTs applied to large-scale real-world ED problems remains low. This 

means that the performance comparison of the proposed OPSO and MG-PSO 

algorithms is restricted by a limited number of competitive ECTs.     

5.6.2 Recommendations 

In this study, the OPSO and MG-PSO algorithms have been proved to be highly 

effective optimization techniques to solve the non-convex ED problem. Hence, the 

recommendation of this study is to apply these two novel algorithms, i.e., OPSO and 

MG-PSO algorithms, in solving the ED problem of Iraq PGS.        

In a smart power gird environment, the dispatch of active output power of different 

energy resources at minimum operational cost has been a significant part of research. 

Recently, with increasing interests in renewable energy resources, the SPG comprises 

different types of power stations, e.g., solar, wind, thermal, geothermal, gas, hydro, 

nuclear power stations. In addition, a large number of the power constraints are 
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imposed. Thus, finding an optimum solution to such a SPG has become an essential 

issue. The future work need to be directed towards identifying such a real-world 

problem which can be solved using the two novel algorithms, i.e. OPSO and MG-PSO 

algorithms.        

5.7 Conclusion

Economic dispatch (ED) is one of the most essential and challenging task in a PGS. 

It is a highly complex optimization problem in operation and management of the power 

generating systems. The significance of the ED problem has been investigated this 

thesis.

Two novel algorithms, i.e., orthogonal PSO (OPSO) and multi-gradient PSO (MG-

PSO) algorithms have been proposed to solve such a complex problem. With extensive 

simulation studies, performance of both the algorithms was compared with PSO 

variants and several existing competitive algorithms. Their superior performances are 

demonstrated in terms of mean, maximum and minimum costs, convergence rate, 

accuracy and consistency when solving small-scale to large-scale power systems. In 

addition, the OPSO and MG-PSO algorithms were applied to a set of complex unimodal 

and multimodal benchmark functions with 30 and 100 dimensions. Both algorithms 

outperformed several existing ECTs including top-ranked CEC 2015 algorithms.  

The sensitivity analysis and statistical tests were carried out to demonstrate the 

effectiveness of the OPSO and MG-PSO algorithms. Thus, the both algorithms proved 

to be powerful and highly effective algorithms that are capable of solving several 

complex unimodal and multimodal functions including the ED problem. 
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Abstract—We propose an enhanced Particle Swarm Optimization 
(PSO) algorithm named Orthogonal PSO (OPSO) algorithm, for 
Economic Dispatch (ED) of the generated power in a smart grid 
environment. The equality and inequality constraints, and power 
balance response against mismatch between load demand and 
total power outputs of generating units involve nonlinear 
characteristics and non-smooth cost functions. The proposed 
OPSO algorithm has the ability to solve such complex problems 
of power systems including ED. The OPSO algorithm applies 
Orthogonal Vectors (OVs) in the d-dimensional search space. The 
d particles that have possible solutions move in the d-dimensional 
search space to form OVs. These OVs are generated and updated 
in each iteration and they used to guide those particles to fly in 
one direction toward global minimum. The OPSO algorithm is 
evaluated and tested through 15 generating units and its 
performance is compared with several other optimization 
methods. We found that OPSO algorithm provides better results 
in solving the total cost, and power constraints. Furthermore, the 
OPSO algorithm is succeeded to improve the PSO algorithm in 
terms of high solution quality, robustness and convergence. 

Keywords-economic dispatch; linearity; orthogonality; particle 
swarm optimization; power system constraints.   

 

dimensionality

�y

m

2015 IEEE International Conference on Systems, Man, and Cybernetics

BAppendix-1



d

A. Cost 

j
j

tcos PFF
genN

�
=

=

F Pj j
Pj j

Ngen 

jjjjjj PcPba)P(F ++=

aj, bj,  cj j
 

B.  Constraints of the Power System Under Test 

Constraint  Power Balance Constraint  

PD
PL

LD

N

j
j PPP

gen

+=�
=

PL
B

PL

BBPPBPP j

N

j
jkjk

N

j

N

k
jL

gengen gen

++= �� �
== =

j  k Ngen
Bjk, Bj , B  

B

Constraint  Generation Limits  
 

max,jjmin,j PPP << j Ngen

min,jP max,jP

Constraint #  Ramp Rate Limits  

jjj URPP ≤−

jjj DRPP ≤−

jP URj 
j DRj 
j

( ){ } ( ){ }jjmax,jjjjmin,j URP,PminPDRP,Pmax +≤≤−

( ){ }jjmin,jlow,j DRP,PmaxP −=

( ){ }jjmax,jhigh,j URP,PminP +=

low,jP high,jP

j

UR DR

Constraint  Prohibited Operating Zones:

 

BAppendix-1



Pj  
j Ngen

j

      l
,jjmin,j PPP ≤≤  

  l
k,jj

u
k,j PPP ≤≤−  ,   k =  Npz, j

     max,jj
u

N,j PPP
j,pz

≤≤        

l
,jP u

k,jP k  
j j,pzN

j

,PPP l
,jjlow,j ≤≤

   l
k,jj

u
k,j PPP ≤≤− ,   k = 2, 3 ..., Npz, j  

  high,jj
u

N,j PPP
j,pz

≤≤  

A. The PSO Algorithm 
m 

d
Nparticle m

d d

Xi Vi i
i m

    Xi xi, xi, xi,d

    Vi vi, vi, vi,d

i
pers,iH

   Hi,pers hpi, hpi, hpi,d

i i-1, i, i+1
i

   Hi,neigh hni, hni, hni,d

Vi Xi

pers,iH neigh,iH

     Vi  = Vi + c1 r i Hi,pers – Xi  + c2 r i Hi,neigh – Xi

     Xi  = Xi Vi

c c

r i r i 
m

B. The Proposed OPSO 

d-

m � d i
Xi Vi

Step 1: i i m

Xbest m
m

Step 2: m d
m

d d 

for

end for 
for

for

end for 
end for  

BAppendix-1



Step 3:
d d

Step 4: d d
 

        = 

Dk k
Step 5: d 

m d
Step

  Vk = Vk + c rk Dk – Xk      

  Xk = Xk Vk

c rk
k d

Xbest
Step

Dk

C. A Simple Example 

f x y x2+y2 x y
f x y

x y
f x y 

 

-100
-50

0
50

100

-100

-50

0

50

100
0

0.5

1

1.5

2

2.5

x 10
4

x

Origin

f(x,y) = x2 + y2+3.0

y

f(
x,

y)

f x, y

-100 -80 -60 -40 -20 0 20 40 60 80 100
-100

-50

0

50

100

x

y

Initial Position P = (10, 50)

P

(16, -10.2)

(-44.3, 31.6)

(Global Minimum) = 0

 PSO

-100 -80 -60 -40 -20 0 20 40 60 80 100
-100

-50

0

50

100

x

y

Initial Position P = (10, 50)

(Global Minimum) = 0

P

 OPSO

A. The Power System Specification 

B

BAppendix-1



Bjk, Bj , B  

 

B. Experimental Results 

� 

� 

 

c1 c2 Nparticle d
Nrun Niter 

�

�. 

�

�) 

 

 

0 100 200 300 400 500 600 700 800 900 1000
3.265

3.27

3.275

3.28

3.285
x 10

4

No. of Iteration

T
ot

al
 c

os
t $

/h

           A. Convergence characteristics of OPSO and PSO Algorithms

 

OPSO

PSO

0 10 20 30 40 50 60 70 80 90 100
3.265

3.27

3.275

3.28
x 10

4

No. of runs

T
ot

al
 c

os
t $

/h

B. Instance of initialization of swarm

 

OPSO

PSO

Pj j

Nrun Niter Nparticle  
j

 

PL � 

Unit Pj
0 PjminPjmax ai bi ci URj DRj Prohibited

Zones 

Algorithm Min. Cost Max. Cost Mean Cost � 

AIS     [11] 58.12 

RDPSO[20] 32652.33 32959.79 32744.58 

Algorithm Min. Cost Max. Cost Mean Cost � 

Generator Power MW 

BAppendix-1



Nrun Niter 
Nparticle 

�, 

PL 

PD PL

 

 

d d

Hi,pers
Hi,neigh d

Dk 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 et al.

 

 

Algorithm Mean Cost PL � 

BAppendix-1



Published in:              Conference on Neural Network (IJCNN) 2015

Date of Conference: 

Date Added to IEEE Xplore: 

Electronic ISBN:

USB ISBN:

Print on Demand(PoD) ISBN:

Electronic ISSN:

INSPEC Accession Number:    

DOI: 10.1109/IJCNN.2016.7727263

Publisher:

Conference Location:

Appendix-1



Abstract—We propose a novel approach called, an 
orthogonal particle swarm optimization (OPSO) algorithm, for 
economic dispatch (ED) of thermal generating units (TGUs) in 
smart electric power gird (SEPG) environment. The 
characteristics of TGUs are nonlinear and the generation 
system becomes more and more complicated when these TGUs 
are subjected to ramp rate constraints and prohibited 
operating zones. In such case, the cost functions become non-
smooth and non-convex due to the discontinuities in the cost 
curves. Moreover, for large-scale TGUs, the high dimensions 
used in ED problem become a big challenge to find global 
minimum and to avoid falling into local minima. The proposed 
OPSO algorithm has the ability to solve such complex 
problems including ED. The OPSO algorithm applies an 
orthogonal diagonalization process. It makes d particles (out of 
total m particles, m  d) that have the possible solutions by 
constructing orthogonal vectors in the d-dimensional search 
space. These orthogonal vectors are generated and updated in 
each iteration and are utilized to guide the d particles to fly in 
one direction toward global minimum. The OPSO algorithm is 
evaluated and tested through 40 TGUs and its performance is 
compared with several other optimization methods. We found 
that the OPSO algorithm provides better results in term of cost 
under power grid constraints. Furthermore, we have shown 
that the OPSO algorithm significantly improves the PSO 
algorithm in terms of high solution quality, robustness and 
convergence. 

Keywords—Orthogonal particle swarm optimization, 
orthogonal diagonalization process, economic dispatch, ramp 
rate limits, prohibited operating zones, thermal generating units.   

 

arti�cial 
fire�y 

660

978-1-5090-0620-5/16/$31.00 c©2016 IEEE

Appendix-1



m
d m d

d
m

d
m d

d

 

A. Objective Cost Function 

j
j

jtcos PFF
genN

=
=

F Pj j  Pj
 

j Ngen 

 

jjjjjj PcPba)P(F ++=

aj, bj,  cj j

B. Power Constraints in  

Constraint  Power Balance Constraint

LD

N

j
j PPP

gen
+=

=

PD
PL PL

PL

BBPPBPP j

N

j
jkjk

N

j

N

k
jL

gengen gen
++=

== =

j  k Ngen
Bjk, Bj , B  

B

Constraint Generation Limits
 
    Pj,min Pj  Pj,max j Ngen        

Pj,min Pj max

Constraint Ramp Rate Limits

 

jjj URPP ≤−      
 

jjj DRPP ≤−

jP URj 
j DRj 

j

2016 International Joint Conference on Neural Networks (IJCNN) 661

Appendix-1



( ){ } ( ){ }jjmax,jjjjmin,j URP,PminPDRP,Pmax +≤≤−

( ){ }jjmin,jlow,j DRP,PmaxP −=

( ){ }jjmax,jhigh,j URP,PminP +=

low,jP high,jP
j

Constraint  Porhibited Operating Zones 

j

l
,jjmin,j PPP ≤≤  

 l
k,jj

u
k,j PPP ≤≤−      k =  Npz, j

max,jj
u

N,j PPP
j,pz

≤≤

l
k,jP u

k,jP k  
j j,pzN

j

,PPP l
,jjlow,j ≤≤

 l
k,jj

u
k,j PPP ≤≤−     k = 2, 3 ..., Npz, j  

high,jj
u

N,j PPP
j,pz

≤≤

 

A. The  Algorithm 

Step 1: m
Nparticle m d

m 
f x

Step 2 i i m
d Vi d

Xi

    Vi vi vi vid   

  Xi xi xi xid        

Step 3: i
f x Xi

Step 4:  Gi,pers  
Gi,pers i

f x
i Gi,pers

  Gi,pers gpi,  gpi,  …  gpi,d

Step 5: Gbest
Gbest

Gbest
m

Gbest

   Gbest gb gb gb,d

Step 6: Niter
t t  Niter

  Vi t Vi t c r i Gi,pers t Xi t 
    + c r i  Gbest t Xi t  

  Xi t Xi t Vi t

c  c
r i r i 

Step 7: i
f x Xi t

Step 8: Gi,pers Gbest

−≤

−>−
=

tGftX(fiftX

tGftXfiftG
tG

pers,iii

pers,iipers,i

pers,i

  Gbest t min Gi,pers t

662 2016 International Joint Conference on Neural Networks (IJCNN)

Appendix-1



Step 9: 
f x  Gbest t

B. The Proposed Algorithm 

d-

m m d i
Xi Vi

Step 1:

Xbest m
m

Step 2: A m d
m

A
B B

d d 

Step 3: B C
d d

Step 4: 

  If matrix B is a real, symmetric matrix of dimension 
d×d, then matrix B is diagonalizable

 Matrix B is orthogonally diagonalizable if there exists 
an orthonormal matrix C such that D is orthogonal 
diagonal symmetric matrix.

Step 5: D
d×d

   D =CBCT

Di i D, i d

Step 6:
d

Step

        Vi t Vi t c ri Di t Xi t 

   Xi t Xi t Vi t

c 
ri

i d t t
Niter Niter 

Di Vi d

d

Niter Xbest
Step

Gi,pers Gbest  

for i d
B i A i
B A i

end for 
for k d

for i d
B k i A k i
B k i B k i
B i k B k i

end for 
    end for

A B

2016 International Joint Conference on Neural Networks (IJCNN) 663

Appendix-1



C. A Simple Example 

f x y x2+y2 f x y
x y f x y

x y
x 

y 

 Niter 
 c c c 

 

 
 

 

A. The Power System Specification 

B-
B-

B- Bjk
Bj B  

 

Unit Pj0 
MW

Pj,min
MW

Pj,max
MW

ai 
$/h  

bi 
$/MWh 

ci 
$/MW2h 

URj 
MW 

DRj 
MW

POZs 
MW 

-100 -80 -60 -40 -20 0 20 40 60 80 100
-100

-80
-60
-40
-20

0
20
40
60
80

100

x

y

Initial Position P = (10, 50)

P

(16, -10.2)

(-44.3, 31.6)

(Global Minimum) = (0,0)

 PSO

-100 -80 -60 -40 -20 0 20 40 60 80 100
-100

-80
-60
-40
-20

0
20
40
60
80

100

x

y

Initial Position P = (10, 50)

(Global Minimum) = (0,0)

P

 OPSO

-100
-50

0
50

100

-100

-50

0

50

100
0

0.5

1

1.5

2

2.5

x 10
4

x

Origin

f(x,y) = x2 + y2+3.0

y

f(
x,

y)

f x, y

664 2016 International Joint Conference on Neural Networks (IJCNN)

Appendix-1



B. Experimental Results 
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Multi-Gradient PSO Algorithm for Economic 
Dispatch of Thermal Generating Units in Smart Grid 

Abstract—We propose a novel algorithm called, multi-gradient 
particle swarm optimization (MG-PSO), for solving economic 
dispatch (ED) problem of thermal generating units (TGUs) under 
smart power grid constraints. The curve of cost function of TGUs 
becomes non-convex when these are subjected to ramp rate limits 
and prohibited operating zones. The proposed MG-PSO 
algorithm is able to solve such complex problem. In MG-PSO 
algorithm, different negative gradients are used. These negative 
gradients are used as guides for m particles in the search of 
global minima. The diversity in negative gradients is a key of the 
MG-PSO algorithm. Due to this diversity, the m particles cover 
largest search area as much as possible. The velocity vectors of 
the m particles are significantly affected by only one negative 
gradient called, the best negative gradient among all used 
negative gradients. This makes the m particles adjust their 
positions and improve their direction according to the best 
negative gradient. The performance of the MG-PSO algorithm 
has been verified on 6 and 15 TGUs test systems. The proposed 
MG-PSO algorithm gives good quality and promising results in 
solving the ED problem. In addition, the MG-PSO algorithm 
produces better results in terms of fitness values when compared 
with PSO algorithm and other optimization techniques.  

Keywords—Multi-gradient PSO algorithm, thermal generating 
units, smart power grid, power constraints, economic dispatch. 

I. INTRODUCTION

Solving the economic dispatch (ED) problem helps in 
making significant savings in smart power grid (SPG). The 
aim of ED is to minimize the total generation cost of on-line 
thermal generating units (TGUs), while satisfying SPG 
constraints. The practical formulation of ED problem involves 
a non-convex cost function due to the ramp rate limits (RRLs) 
and prohibited operating zones (POZs). These power 
constraints result in the cost curve of TGU with discontinuities 
and high order nonlinearities. Therefore, the exact formation 
of the cost function under SPG constraints gives correct details 
about the production cost and scheduling TGUs to meet the 
load demand.  

In order to treat a non-convex problem with the cost function 
of TGU, a wide variety of the evolutionary computation 
techniques (ECTs) based on random search have been 
proposed over the last few decades. Some of ECTs include 
genetic algorithm (GA) [1], evolutionary algorithm (EA) [2], 
particle swarm optimization (PSO) algorithm [3], [4], ant 
colony search (ACS) algorithm [5], artificial immune system 
(AIS) [6], honey bee colony (HBC) algorithm [7], and firefly

algorithm (FA) [8]. These techniques impose a few or no 
restrictions on the shape of a cost function. However, they are 
often prone to get trapped into local optima when applied to 
multiple prohibited zones.   

To enhance the global search ability to solve ED problem 
under multiple power constraints, several ECTs have been 
developed in the last decade including PSO based algorithms. 
For example, orthogonal PSO (OPSO) algorithm has been 
proposed to solve ED problem under different power 
constraints [9], [10]. A fully decentralized approach (DE) uses 
three stages, one to achieve consensus among agents and the 
second and third stages are used for solving ED problem [11]. 
The chaotic PSO (CPSO) method combines PSO with an 
adaptive inertia weight factor and chaotic local search to solve 
ED problem [12]. The anti-predatory PSO (APSO) applies 
anti-predatory behavior, which guides the swarm to escape 
from the predators [13]. The hybrid PSO wavelet mutation 
(HPSOWM) uses the wavelet-theory-based mutation to 
enhance PSO algorithm in exploration and searching for a 
better solution [14]. However, hybrid methods are often time-
consuming due to the complex algorithm structure and finding 
an appropriate integration of hybrid algorithm is difficult. The 
random drift PSO (RDPSO) is inspired by a free electron 
model in the metal conductors placed in an external electric 
field [15]. The RDPSO uses a set of evolution equations to 
enhance the PSO global search ability. The simulated 
annealing PSO (SA-PSO) algorithm uses probabilistic 
jumping to prevent obtaining infeasible solution [16]. A 
mixed-integer quadratically constrained quadratic 
programming (MIQCQP) uses a bi-level branch and bound 
method to solve ED problem [17]. The modified PSO (MPSO) 
has been used for a nonconvex ED problem [18].  

Some improved PSO variants in the literature (e.g., CPSO 
[12] and MPSO [18]) use another approach, called the inertia 
weight factor and time-varying inertia weight factors, 
respectively, as a controller on the velocity vector of each 
particle. The objective of both factors is the control on the 
impact of the previous velocity of the m particles on the 
current iteration. Therefore, different equations have been 
used to describe the weight factor. In this paper, we propose a 
novel algorithm called multi-gradient PSO (MG-PSO) to solve 
ED problem, considering the generation limits, RRLs, the 
POZs and transmission network loss (PL) in SPG environment.  

The MG-PSO algorithm uses several negative gradients. The 
particle’s velocity is clearly affected according to best 
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negative gradient among all used negative gradients. We have 
shown that MG-PSO algorithm is able to solve ED problem 
under TGU constraints quite effectively.   

The rest of this paper is organized as follows. We present the 
problem formulation in Section II. An explanation of 
MG-PSO algorithm is provided in Section III. In Section IV, 
we present the application of MG-PSO algorithm to ED 
problem. Finally, the conclusion of this study is given in 
Section V.  

II. PROBLEM FORMULATION 

Here, we explain the cost function and the power constraints 
imposed on SPG involved in this study. 
A. Objective Cost Function 

The objective of an ED problem is to find the optimal 
allocation of output real power of on-line TGUs over a period 
of time in order to minimize the total generation cost while 
satisfying the equality and inequality power constraints [15]. 
The cost function can be stated mathematically as 

  Minimize  )(
1

j
j

tcos PFF
genN

                                (1) 

where F(Pj) is the cost function of jth TGU in $/h, Pj is the 
output real power of jth TGU in MW, and Ngen is the number 
of on-line TGUs. The cost function of each TGU is related to 
the output real power delivered into SPG and specified by a 
quadratic function [13] as follows: 

2
jjjjjj PcPba)P(F  (2) 

where aj, bj, and cj are the cost coefficients of jth TGU. 
B. Power Constraints in SPG

Different power constraints imposed on TGUs in SPG used 
in the literature are explained below.
1) Power Balance Constraint: The equality constraint of the
power balance can be stated as the total power generation
equals to the load demand (PD) in MW plus the transmission 
network loss (PL) in MW. This is expressed by 

0
1

LD

N

j
j PPP

gen
 (3) 

The PL is a function of the output real power of TGU and is 
given by [19] 

kjk

N

j

N

k
jL PBPP

gen gen

1 1
  (4) 

where Bjk, are known as the loss coefficients or  B-coefficients.
2) Generation Limits: The generation limits of each TGU is
given by 

        Pj,min < Pj < Pj,max         j = 1, 2, ..., Ngen           (5)      
This requires that the power generation of each TGU remains 
between its minimum Pj,min and its maximum Pj,max limits. 
3) Ramp Rate Limits Constraint: The operating range of all
on-line TGUs is restricted by their ramp rate limits (RRLs) 
due to the physical limitation of TGUs [13]. In addition, TGUs 
cannot change their output power immediately. A change in 
TGU output power from one specific interval to the next 
cannot exceed a specified limit, as follows: 

If  power generation increases, then 

jjj URPP 0 (6) 

If  power generation decreases, then 

jjj DRPP0  (7) 

where 0
jP  is the TGU output power at the previous interval 

and Pj is the TGU output power at current interval. The URj
and DRj are the up-ramp and down-ramp limits of unit j,
respectively, in MW/h. By substituting (6) and (7) in (5), we 
obtain

jjmax,jjjjmin,j URP,PminPDRP,Pmax 00  (8) 
Let us assume that, 

jjmin,jlow,j DRP,PmaxP 0 , and    (9) 

jjmax,jhigh,j URP,PminP 0  (10) 

where Pj,low and Pj,high are the new lower and higher limits of 
unit j, respectively.  
4) Prohibited Operating Zone Constraint: The physical
limitations due to the steam valve operation or vibration in a 
shaft bearing of TGU may result in the generation units 
operating within prohibited zones (POZs) [16]. Due to 
presence of POZs, discontinuities are produced in the cost 
curve corresponding to POZs. In this case, it is difficult to 
determine the shape of the cost curve under POZs through 
actual performance testing. Therefore, the best solution is, the 
TGU that contains POZs avoids these prohibited zones. By 
using (5) mentioned in constraint number 2, the feasible 
operating zones of the jth TGU are given by 

l
,jjmin,j PPP 1

l
k,jj

u
k,j PPP 1      k = 2, 3, ..., Npz, j (11) 

max,jj
u

N,j PPP
j,pz

where l
k,jP and u

k,jP are the lower and upper bound of the kth
POZs of the jth unit, and Npz,j is the number of prohibited 
zones of the jth unit. Incorporating these power constraints in  
(8), (9) and (10), we get the final set of constraints as follows:  

,PPP l
,jjlow,j 1

l
k,jj

u
k,j PPP 1     k = 2, 3, ..., Npz, j,  (12)

high,jj
u

N,j PPP
j,pz

III. MULTI-GRADIENT PSO ALGORITHM

Here we briefly introduce the PSO algorithm and explain 
the proposed MG-PSO algorithm. 
A. The PSO Algorithm 

The PSO algorithm is a global optimization technique. The 
population (swarm) is distributed randomly and using iterative 
approach to reach global optimum. The particles inside swarm 
refer to the possible solutions in multi-dimensional search 
space. The PSO algorithm depends on; firstly, each particle 
flying in the search area adjusts its flying trajectory according 
to two guides, its personal experience and its neighborhood’s 
best experience. Secondly, when seeking a global solution, 
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each particle learns from its own historical experience and its 
neighborhood’s historical experience. In such a case, a particle 
while choosing the neighborhood’s best experience uses the 
best experience of the whole swarm as its neighbor’s best 
experience. This PSO algorithm is named, global PSO [3], [4], 
because the position of each particle is affected by the best-fit 
particle in the entire swarm. The following steps explain the 
learning strategy of the PSO algorithm mentioned and 
described in [4] that is the original PSO.  
Step 1: Let us consider a swarm population with m particles 
(Nparticle = m) searching for a solution in d-dimensional space, 
where m > 1. The objective of the PSO algorithm is to 
minimize an objective function F(Pj). 
Step 2: Each particle i (i = 1, 2, ..., m) in the swarm has one  
d-dimensional velocity vector Vi and one d-dimensional 
position vector Xi  are given by  

 Vi = [vi1, vi2, …, vid]    (13) 
 Xi = [xi1, xi2, …, xid] (14) 

Step 3: For each particle i, evaluate the objective function 
F(Pj) using the position vector Xi.
Step 4: The Gi,pers is a personal position vector of particle i that 
is obtained by evaluating the objective function F(Pj). The 
Gi,pers is given by 

   Gi,pers = [gpi,1, gpi,2, …, gpi,d]      (15) 

Step 5: Determine the global best position vector, Gbest. The 
Gbest is a best particle’s position vector among all personal 
positions vectors of whole swarm. The Gbest is obtained by a 
solution that corresponds to lowest value of the m evaluated 
objective functions. The Gbest is given by 

 Gbest = [gb,1, gb,2, …, gb,d]   (16) 

Step 6: Consider the total number of iterations, Niter. In 
iteration t, t = 1, 2, ..., Niter, a particle’s velocity and position 
vectors are updated as follows: 

 Vi (t) = Vi (t ‒ 1) + c1 r1i (Gi,pers (t ‒ 1) ‒ Xi (t ‒ 1)) 
 + c2 r2i (Gbest (t ‒ 1) ‒ Xi (t ‒ 1))     (17)                                               

  Xi (t) = Xi (t ‒ 1) + Vi (t)   (18) 

where c1 and c2 are coefficients whose values are chosen 
experimentally from [0, 2.5]. The r1i and r2i are two randomly 
generated values within the range [0, 1].  

Step 7: Each particle i is evaluated using the objective 
function f(x) and using the position vector Xi (t) (18).  

Step 8: In every iteration, the Gi,pers and Gbest are updated 
according to (19) and (20).  

))1(())()(

))1(())(()1(
)(

tGftX(fiftX

tGftXfiftG
tG

pers,iii

pers,iipers,i

pers,i      (19) 

    Gbest (t) = min{Gi,pers (t)}      (20) 

Step 9: Finally, at the end of iteration, the optimal solution of 
F(Pj) is given by the global best position vector, Gbest (t) (20).  

B. The Proposed MG-PSO Algorithm
We propose an algorithm, called the multi-gradient PSO 

(MG-PSO). The mechanism of MG-PSO algorithm depends 
on the following considerations.  

Consider m particles descend at a particular negative 
gradient at a position X after they were flying in the space in 
searching for food. However, the food may be few or not 
found in position X. Therefore, they decide to change their 
direction to another gradient that has a steeper negative 
straight line within another position (e.g., position Y). The 
position Y may better than the position X. Then, after several 
times of different negative gradients, the m particles obtain a 
best position that corresponds a best negative gradient among 
all used negative gradients. This diversity in gradients 
(multiple gradients) generates steeper and less steep slopes. In 
such a case, the m particles have gained ability to coverage 
larger search space area. Subsequently, the m particles are 
guaranteed find the food.  

Let us consider gradi, i = 1, 2, ..., Ngrad  are negative 
gradients. In each gradi we introduce two variables, the first 
variable called, time and denoted by (t). The t represents the 
iteration (t = 1, 2, ..., Niter). The second variable called velocity 
decay factor (vdf). The vdf decreases progressively with 
increase in t. The change in t is Δt and the change in vdf is 
Δvdf. The negative gradients gradi are given by  

t
ivdfgradi
)( i = 1, 2, ..., Ngrad (21)

where Ngrad is number of negative gradients. The vdf at t, is 
given by  

)()-(1)(
iter

final
iter

initial N
tvdfN

tvdftvdf (22) 

where vdfinitial and vdffinal are real and positive numbers within 
a range [0, 1] and vdfinitial > vdffinal.

The following steps explain the learning strategy of 
MG-PSO algorithm.  
Steps 1-5: Same as PSO algorithm as in Section IIIA. 
Step 6:   
For i = 1, 2, ..., Ngrad

Choose a set of vdfinitial and vdffinal for each gradient gradi, i = 
1, 2, …, Ngrad.
Choose number of iterations Niter, t = 1, 2, …, Niter.
Determine gradi, i = 1, 2, …, Ngrad, using (21).
For each iteration, update the particle’s velocity and position 
vectors as follows: 
Vi (t) = vdf(t) Vi (t ‒ 1) + c1 r1i (Gi,pers (t ‒ 1) ‒ Xi (t ‒ 1))  

 + c2 r2i (Gbest (t ‒ 1) ‒ Xi (t ‒ 1))      (23) 
    Xi (t) = Xi (t ‒ 1) + Vi (t)    (24) 

where c1 and c2 are coefficients whose values are chosen by 
trail and error method from [0, 2.5]. However, the best values 
of c1 and c2 depend mainly on the experimental test. The r1i
and r2i are two randomly generated values with range [0, 1]. 
Evaluate the particle’s performance by substituting (24) in the 
objective function F(Pj). 
Determine Gi,pers (t), Gbest (t) using (19) and (20), respectively. 
End For
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Repeat for all negative gradients.  
End For
Step 7: Select the negative gradient with the chosen vdfinitial
and vdffinal that gives the best fitness value.  

It may be seen from (17) and (23) that the basic difference 
between PSO and MG-PSO algorithms lies on the update 
procedure of Vi. In PSO algorithm while updating, the 
previous value of Vi is added with the guidance obtained from 
its own personal experience and the global experience. 
Whereas, in the case of MG-PSO algorithm, the vdf of the best 
negative gradient is multiplied with the previous value of Vi
while adding with the personal experience and the global 
experience. The multiplication of vdf to the velocity 
diminishes the contribution of previous velocity while 
updating and thus improves the performance of PSO 
algorithm. The vdf is introduced in the MG-PSO algorithm in 
order to better control the m particles’ ability to exploration 
and exploitation.   

IV. APPLICATION OF MG-PSO ALGORITHM TO ED PROBLEM

Here we describe the simulation results carried out on two 
power systems with several SPG constraints. 

A. Test Case 1: Power system with 6 TGUs (PS-1) 
1) Details of PS-1

The  PS-1 consists of 6 TGUs, 26 buses and 46 transmission 
lines [15]. This system is a small-scale with six dimensions for 
its ED problem. There are 12 POZs of 6 TGUs, which yield 13 
inequality constraints according to (12). The data of PS-1, 
TGU capacity and coefficients, RRLs and POZs of TGU and 
B-coefficients were listed in [15]. At steady-state operation, 
the maximum load demand is 1,263 MW. The computations 
are achieved with 100 MVA base capacity. 

2) Comparison in terms of fitness values
In [15], the 10 ECTs (e.g., GA, DEA, ACSA, AIS, HBC, 

FA, CPSO, APSO, HPSOWM and RDPSO) that have been 
tested on PS-1 are listed in Table I. In addition, the fitness 
values of [11], [16] and [17] are also presented in Table I. In 
addition to our proposed MG-PSO algorithm to solve ED 
problem under SPG constraints, we tested PS-1 by PSO 
algorithm. Therefore, the total ECTs that have been tested by 
PS-1 are 15. 

The PS-1 is a small-scale and it is easy for MG-PSO 
algorithm to obtain the global optimum. Thus, we select only 
two negative gradients Ngrad = 2 with a set of initial and final 
of vdf that corresponds to gradi, i = 1, 2. The set parameters of 
MG-PSO algorithm are ([grad1 = -0.09, vdfinitial = 1, vdffinal =
0.1], [grad2 = -0.07, vdfinitial = 1, vdffinal = 0.3]. The other 
parameters were used out on the same with PSO algorithm, c1
= c2 = 2, Nparticle = 20,   d = 6, Nrun = 25, and Niter = 3,000 in 
each independent run. The results in Table I show that the 
MG-PSO algorithm provides the best result in terms of the 
minimum, maximum and mean costs and has lowest standard 
deviation (σ) when compared with PSO algorithm and other 
ECTs. This gives evidence that the MG-PSO algorithm is 
more stable and robust.  

3) Convergence characteristics of MG-PSO and PSO
algorithms

Figure 1 shows the convergence characteristics of  
MG-PSO and PSO algorithms. Fig. 1 (a) shows average of the 
mean cost over 25 independent runs. The MG-PSO algorithm 
has better convergence properties than the PSO algorithm. 
Fig. 1 (b) shows the distribution of minimum costs over 25 
independent runs. It shows that MG-PSO algorithm is more 
stable than the PSO algorithm in obtaining the global solution. 

4) Comparison in terms of inequality and equality constraints
Table II lists the solution vector, Pj  (j = 1, 2, ..., 6) 

corresponding to the best solution for MG-PSO and PSO  
algorithms. Both MG-PSO and PSO algorithms were able to 
solve the 13 power inequality constraints (12), also both 
algorithms avoid the 12 POZs of 6 TGUs. In addition, the 
MG-PSO and PSO algorithm operate within RRLs of each 
TGU.

TABLE I. COST PERFORMANCE OF THE FIFTEEN ECTS FOR PS-1 

Algorithm Min.Cost ($/h) Max. Cost ($/h) Mean Cost ($/h) σ
DE    [11] 15,449.58 15,449.65 15,449.61 NA
GA      [15] 15,445.59 15,491.47 15,465.17 9.73
DEA       [15] 15,444.94 15,472.06 15,450.13 6.98
ACSA    [15] 15,445.30 15,511.52 15,459.51 12.02
AIS     [15] 15,446.32 15,481.27 15,456.66 7.39
HBC      [15] 15,444.58 14,482.39 15,457.94 8.48
FA       [15] 15,445.94 15,501.39 15,461.30 9.33
CPSO     [15] 15,442.98 15,466.39 15,449.12 5.8
APSO        [15] 15,445.51 15,538.60 15,473.31 12.90
HPSOWM   [15] 15,442.82 15,502.63 15,455.62 15.88
RDPSO     [15] 15,442.75 15,455.29 15,445.02 2.28
SA-PSO       [16] 15,447.00 15,455.00 15,447.00 2.52
MIQCQP     [17] 15,443.07 NA NA NA
PSO 15,447.09 15,449.60 15,447.65 0.56
MG-PSO 15,442.65 15,442.65 15,442.65 0.00
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Fig. 1. Convergence characteristics of MG-PSO and PSO algorithms for PS-1. 
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Table III shows the comparison in terms of power balance 
constraint among MG-PSO algorithm and several ECTs. The 
load demand PD is 1,263 MW. Total output power generated 
as shown in Table II and the PL is computed using (4) and then 
these values are substituted in (3) to determine any mismatch 
from zero. The results presented in Table III show that 
MG-PSO and MIQCQP [17] algorithms have satisfied zero 
mismatch in solving power balance constraint. However, other 
ECTs listed in Table III, DE [11] and DRPSO [15], SA-PSO 
[16] and PSO techniques have obtained on mismatch closer to 
zero.

B. Test Case 2: Power system with 15 TGUs PS-2 

1) Details of PS-2

The PS-2 is a medium-scale power system with 15 TGUs 
whose characteristics and the data are taken from [20]. The 
maximum load demand of the PS-2 at steady–state operation 
is 2,630 MW. The dimension of this ED problem is d =15. The 
PS-2 has a total of 11 POZs of 4 TGUs. Thus, there are 12 
inequality power constraints (12) for this ED problem. 
Compared to PS-1, the ED problem of this system is relatively 
harder to be optimized. 

2) Comparison in terms of fitness values

Eight ECTs as well as our proposed MG-PSO and PSO 
algorithms are listed in Table IV. These 10 optimization 
techniques are tested on PS-2. We choose 3 negative gradients 
Ngrad = 3 with a set of initial and final of vdf that corresponds 
to gradi, i =1, 2, 3. The set parameters of the MG-PSO 
algorithm are ([grad1 = -0.09, vdfinitial = 1, vdffinal = 0.1], [grad2
= -0.07, vdfinitial = 1, vdffinal = 0.3], [grad3 = -0.05, vdfinitial = 1,
vdffinal = 0.5]), respectively. The other parameters of MG-PSO 
and PSO algorithms are same as in Section IVA2.  

The results presented in Table IV show that the MG-PSO 
algorithm achieves the best result in terms of the  minimum, 
maximum and mean cost and has lowest σ = 0.15 compared 
with PSO algorithm and other eight ECTs. This indicates that 
the MG-PSO algorithm is more stable and robust. NA 
represents that the results are not available in corresponding 
reference.  

3) Convergence characteristics of MG-PSO and PSO
algorithms

The convergence characteristics of MG-PSO and PSO 
algorithms are shown in Fig. 2. Figure 2 (a) shows average of 
the mean cost over 25 independent runs. The MG-PSO 
algorithm is better than PSO algorithm in terms of 
convergence properties.  

The distribution of minimum costs over 25 independent runs 
shown in Fig. 2 (b) shows that MG-PSO algorithm is more 
stable in obtaining the optimum solution than the PSO 
algorithm. 

4) Comparison in terms of inequality and equality constraints

Table V presents the best solution vector Pj (j = 1, 2, ..., 15) 
obtained by MG-PSO and PSO algorithms for PS-2. Both 
MG-PSO and PSO algorithms solve the 12 power inequality 
constraints in (12) by avoiding the 11 POZs of 4 TGUs. In 
addition, MG-PSO and PSO algorithms work within RRLs of 
15 TGUs.  

TABLE III. POWER BALANCE CONSTRAINT RESULTS 
OF SIX ECTS FOR PS-1 

Algorithm Total Pj (MW) PD (MW) PL (MW) Mismatch (MW) 
DE            [11] 1,275.9300 1,263 12.9500 -0.0200 
DRPSO    [15] 1,275.3565 1,263 12.3598  -0.0033 
SA-PSO    [16] 1,275.7000 1,263 12.7330 -0.0330 
MIQCQP [17] 1,275.4400 1,263 12.4400 0.0000 
PSO  1,275.3999 1,263 12.4000 -0.0001 
MG-PSO 1,275.4157 1,263 12.4157 0.0000 

TABLE II. OPTIMIZED POWER DISPATCH BY EACH TGU USING MG-PSO AND 
PSO ALGORITHMS FOR PS-1 

Algorithm Optimum output power (MW) Total Output 
Power (MW)P1 P2 P3 P4 P5 P6

PSO 441.95 169.39 258.53 138.46 161.00 106.04 1,275.3999 
MG-PSO 447.06 173.18 262.92 139.05 165.57 86.61 1,275.4157 

TABLE IV. COST PERFORMANCE OF THE TEN ECTS FOR PS-2 

Algorithm Min. Cost ($/h) Max. Cost ($/h) Mean Cost ($/h) σ
OPSO     [10] 32,669.00 32,699.00 32,688.00 7.21
ACSA     [15] 32,863.17 33,256.28 33,120.02 86.16
AIS      [15] 32,895.91 33,132.01 33,017.65 58.12
HBC       [15] 32,789.23 33,301.49 33,030.86 69.79
FA       [15] 32,898.01 33,310.72 33,116.90 96.38
RDPSO  [15] 32,652.33 32,959.79 32,744.58 82.47
DEA       [15] 32,718.82 33,213.31 32,966.43 110.32
SA-PSO [16] 32,708.00 32,789.00 32,732.00 NA
PSO 32,885.20 33,386.20 33,075.12 110.76
MG-PSO 32,668.69 32,669.32 32,668.98 0.15
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Fig. 2. Convergence characteristics of MG-PSO and PSO algorithms for PS-2. 
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Table VI shows the comparison among MG-PSO, OPSO 
[10], DRPSO [15], SA-PSO [16] and PSO optimization 
techniques in terms of power balance constraint. The load 
demand PD in this case, 2,630 MW. The PL of MG-PSO and 
PSO algorithms are computed by (4). The power balance 
results of both algorithms are obtained by (3). The power 
balance results shown in Table VI appear that MG-PSO and 
OPSO [10] algorithms have satisfied zero mismatch within 
four places after decimal point. However, other ECTs, RDPSO 
[15], SA-PSO [16] and PSO algorithm obtained on mismatch 
are -0.0046, -0.0080, and 0.0304, respectively.   

The proposed MG-PSO algorithm overcomed all problems 
that made PSO algorithm inefficient to get acceptable results. 
In addition, the MG-PSO algorithm appeared superior in 
solving the economic dispatch problem under SPG constraints 
of small- and medium-scale power systems in SPG compared 
with other ECTs mentioned in the literature.  

V. CONCLUSION

In this paper, the multi-gradient PSO algorithm has been 
proposed. It has been able to effectively solve 6- and 15-
thermal generating unit (TGU) of economic dispatch (ED) of 
power considering the multiple smart power grid (SPG) 
constraints.

We have shown that the MG-PSO algorithm was able to 
solve the equality and inequality constraints including the 
transmission network loss of two power systems, and avoiding 
all prohibited operating zones and operating within ramp rate 
limits. 

It is evident from the minimum power dispatch results that 
the MG-PSO algorithm has a better performance in terms of 
the minimum, maximum and mean costs compared to several 
competitive algorithms including PSO algorithm.  

The MG-PSO algorithm also showed better stability and 
robustness.  
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TABLE VI. POWER BALANCE CONSTRAINT RESULTS 
OF FIVE ECTS FOR PS-2. 

Algorithm Total Pj (MW) PD (MW) PL (MW) Mismatch (MW)
OPSO    [10] 2,652.7600 2,630 22.7600 0.0000 
RDPSO  [15] 2,655.3650 2,630 25.3696 -0.0046 
SA-PSO [16] 2,660.9000 2,630 30.9080 -0.0080 
PSO 2,656.2771 2,630 26.2467 0.0304
MG-PSO 2,657.2606 2,630 27.2606 0.0000 

TABLE V. OPTIMIZED POWER DISPATCH BY EACH TGU USING MG-PSO
AND PSO ALGORITHMS FOR PS-2 

Optimum output power (MW) 
Gen. # P1 P2 P3 P4 P5

PSO 455.0000 364.1374 129.2110 129.3094 168.8872 
MG-PSO 455.0000 380.0000 129.9551 129.9649 170.0000 

Gen. # P6 P7 P8 P9 P10

PSO 456.8272 426.5248 63.8214 107.4216 51.4106 
MG-PSO 457.3041 430.0000 71.6674 58.3692 160.00 

Gen. # P11 P12 P13 P14 P15

PSO 68.9185 78.2871 79.1707 30.8404 46.5101 
MG-PSO 80.0000 80.0000 25.0000 15.0000 15.0000 

Total output power: MG-PSO = 2,657.2606 MW, PSO = 2,656.2771 MW
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A B S T R A C T

One of the major drawbacks of the global particle swarm optimization (GPSO) algorithm is zigzagging of the
direction of search that leads to premature convergence by falling into local minima. In this paper, a new
algorithm named orthogonal PSO (OPSO) algorithm is proposed that not only alleviates the associated
problems in GPSO algorithm but also achieves better performance. In OPSO algorithm, the m particles of the
swarm are divided into two groups: one active group of best personal experience of d particles and a passive
group of personal experience of remaining (m ‒ d) particles. The purpose of creating two groups is to enhance
the diversity in the swarm's population. In each iteration, the d active group particles undergo an orthogonal
diagonalization process and are updated in such way that their position vectors are orthogonally diagonalized.
The passive group particles are not updated as their contribution in finding correct direction is not significant.
In the proposed algorithm, the particles are updated using only one guide, thus avoiding the conflict between
the two guides that occurs in the GPSO algorithm. We tested the OPSO algorithm with thirty unimodal and
multimodal high-dimensional benchmark functions and compared its performance with GPSO and several
competing evolutionary techniques. With extensive simulated experiments, we have shown superiority of
the proposed algorithm in terms of convergence, accuracy, consistency, robustness and reliability over other
algorithms. The proposed algorithm is found to be successful in achieving optimal solution in all the thirty
benchmark functions.

1. Introduction

In the recent years, several evolutionary computation techniques
(ECTs) have been proposed to solve complex optimization problems.
Particle swarm optimization (PSO) algorithm is one of the ECTs that
was proposed by observing social behaviours among animal herding,
fishes, birds and even humans. The PSO algorithm is a population based
technique that emulates such behaviours. The individual members
of the swarm are called “particles”. Each particle moves with an
adaptable velocity within a multi-dimensional search space and
keeps the best position it ever encountered in its memory. In 1995,
Kennedy and Eberhart proposed two variants of the PSO algorithm,
named global PSO (GPSO) and local PSO (LPSO) algorithms based
on neighborhood topology of the particles [1,2]. In GPSO algorithm,
each particle's neighborhood includes all social neighbors in the swarm.
In other words, the topology of the particles in the swarm represents
to a fully connected network in which the particles are attracted to
the best solution found by any member of the swarm. In contrast, in
LPSO algorithm, a particle uses the best historical experience of the
particle in its neighborhood that is defined by a topological structure,

e.g., the ring structure, the von Neumann structure, or the pyramid
structure [3,4].

In GPSO and LPSO algorithms, the particles of the swarm are
initialized randomly and then they search for global optimum by
updating their position and velocity in each iteration. Each particle uses
its personal experience and its neighborhood's best experience as two
guides through a linear summation. They have been empirically
demonstrated to perform well in many continuous domain optimization
problems. In addition, both have a few adjustable parameters and easy
to implement [4]. The GPSO algorithm is faster in convergence than
LPSO algorithm. Whereas, the LPSO algorithm has lower susceptibility
of the solution to be trapped into local minima. However, the main
drawback of GPSO and LPSO algorithms is falling into local minima
while solving complex problems with nonlinear multi-dimensional
objective functions [5].

The reasons for poor performance of the PSO algorithm can
be summarized as follows. Firstly, the learning mechanism of PSO
algorithm depends on the fact that each particle in the swarm adjusts its
search trajectory according to its personal experience and its neighbor's
experiences. Therefore, each particle in a swarm obtains two possible
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solutions, one from its personal experience and the other from its
neighborhood's experience and then sums them together. The problem
here is not only existence of the summation, but also to maintain a
coherent decision between these two guides. The two guides may have
a large difference or may even have opposite directions at the early
stage of search that may lead the particles to pull to a local trapping and
may lead to early premature convergence or remain in opposite di-
rections until final search stage. Thus, the particles might be still
remaining far away from the global optimum. In addition, these two
guides and their linear summation may cause a phenomenon called
“oscillation” or “zigzagging” [6]. This phenomenon becomes more
prominent with high-dimensional search space.

Only a few parameters have been used in PSO algorithm to give a
potential advantage and to enhance their performance. Among user pa-
rameters of PSO algorithm, several strategies of inertia weight, e.g.,
constant inertia weight [7], time-varying inertia weight [8,9], and
adaptive inertia weight [10–12] have been proposed. However, when the
problem, i.e., objective function has multiple local minima and has a
high-dimensional search space, the PSO algorithm with these few pa-
rameters becomes inefficient [6].

In order to improve the performance of PSO algorithm, several ECTs
have been proposed by different researchers. These ECTs are based on
different swarm topologies and mechanisms for updating velocity and
position vectors. Some of the ECTs based on swarm topologies are given
here. For example, fully informed PSO (FIPSO) algorithm [4] uses the

neighbors in the swarm to influence on the particle's velocity under
different topologies (e.g., ring, four clusters, pyramid, and square to-
pologies) and then the information of the entire neighborhood is used to
guide the particles for finding the best solution. The comprehensive
learning PSO (CLPSO) algorithm tries to encourage the particle to learn
from different topologies on different dimensions to maintain diversity of
the swarm to discourage premature convergence [13]. A self-organizing
hierarchical PSO with time-varying acceleration coefficients (HPSO-T-
VAC) algorithm [14] improves the performance of PSO algorithm. The
aging leader challenger PSO (ALC-PSO) algorithm uses the leader of a
swarm with a growing age and a lifespan to allow the other particles to
challenge the leadership when the leader becomes aged [15]. The
extraordinariness PSO (EPSO) uses the movement of the particles called
extraordinary motion as a topology [16]. The cellular learning automata
bare bones PSO technique uses probability distributions, e.g., Gaussian
distribution as a topology [17]. The binary PSO (BPSO) algorithm uses a
transfer function to map a continuous search space to a discrete search
space by dividing the transfer functions into two families, i.e., S-shaped
and V-shaped [18].

Some of the ECTs are based on the trade-off between exploration
and exploitation. For example, mixed swarm cooperative PSO (MCPSO)
algorithm is used to efficiently handle the trade-off between the global
and local search in PSO algorithm by dividing the particles into two
groups, one for exploration and the other for exploitation [19]. The
heterogeneous comprehensive learning PSO (HCLPSO) algorithm is
used to enhance exploration and exploitation of the particles by using
comprehensive learning (CL) strategy [20]. The stability-based adap-
tive inertia weight (SAIW) algorithm uses an adaptive approach to
determine the inertia weight for each particle based on its performance
and distance from its best position to satisfy the stability of a swarm
[21]. A pattern search PSO (pkPSO-G) algorithm makes the particles
explore and exploit the promising global areas and solutions with
clustering on the Euclidean spatial neighborhood structure [22]. The
crisscross search particle swarm optimization (CSPSO) uses two search
operators, i.e., horizontal crossover and vertical crossover and these
two operators are used for global convergence and swarm stability [23].
The multiple learning PSO with space transformation perturbation
(MLPSO-STP) allows each particle to learn from the average informa-
tion on the personal historical best experience of all particles and from
the information on best positions that are randomly chosen according to
personal experience specification [24].

In the multi-function GPSO algorithm, its learning mechanism is
based on the effect of population density on the search ability of PSO
algorithm which is saturated when the population density exceeds a
certain limit [25]. The two-swarm cooperative PSO algorithm uses two
swarms, i.e., a master and a slave, for accelerating the convergence and
for keeping swarm's diversity invariant [26]. The competitive and
cooperative PSO with information sharing mechanism (CCPSO-ISM)
algorithm allows each particle to share its best search information
by using the ISM, so that all other particles in the swarm can take
advantage of the shared information [27]. A directionally driven
self-regulating PSO algorithm uses two strategies for the swarm; a
directional update strategy and a rotational invariant strategy [28]. In
the learning mechanism of a dynamic tournament topology PSO
(DTT-PSO) algorithm, each particle is guided by several better solu-
tions, chosen stochastically from the swarm [29]. An improved velocity

Fig. 1. Flowchart of the GPSO algorithm.

Fig. 2. The orthogonal diagonalization process.
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bounded Boolean PSO algorithm uses a minimum velocity parameter
that makes it more effective in solving feature selection problem [30].
The termite spatial correlation PSO algorithm modifies the velocity
equation in the PSO algorithm based on a termite motion mechanism
and using the mutation strategy to avoid stagnation for the particles in
the swarm [31]. A territorial PSO (TPSO) algorithm uses a collision
operator and adaptively varying (territories) to prevent the particles
from premature convergence and encourage them to explore new
neighbourhoods based on a hybrid self-social metric that leads to
improvement in exploration capability [32]. A competitive swarm
optimizer (CSO) algorithm was proposed for large-scale optimization
[33]. Here, a pairwise competition strategy is used in which the loser
particle updates its own position by learning from the winner. The
CCPSO2 algorithm [34] has been proposed for large-scale optimization
problems in which Cauchy and Gaussian distribution are used to update
the positions of the particles. In Ref. [35], the PSO algorithm was

improved by social learning PSO (SL-PSO) algorithm. Here, each par-
ticle learns from any one of the better particles in the current swarm. In
addition, a dimension-dependent parameter control method was used
to mitigate the burden of parameter settings.

Fig. 4. Flowchart of the OPSO algorithm.

Fig. 5. The landscape of f (x,y). The minimum value of the function is 9.0 at x ¼ 2.0
and y ¼ �3.0.

Fig. 6. Numerical example showing convergence of the OPSO algorithm.

Fig. 3. Pseudocode for converting matrix A to a symmetric matrix B.
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Some other ECTs are based on hybrid systems. For example, the multi-
swarm PSO (MsPSO) algorithm develops its searching strategy by using
new parameters that are created by Takagi-Sugeno fuzzy system [36]. A
dynamic feed-forward neural network is used for predictive control in
which adaptive parameters are adjusted using Gaussian PSO algorithm
[37]. The fuzzy PSO with cross-mutated (FPSOCM) algorithm uses fuzzy
logic system that is based the knowledge of swarm behaviour to

determine the inertia weight of PSO algorithm and the cross-mutation
operator [38]. However, in such hybrid systems an appropriate integra-
tion between different systems may be hard to determine under complex
problems.

Another group of ECTs are based on orthogonal experimental design
(OED). These are, for example, two orthogonal learning PSO (OLPSO)
algorithms, one for local (OLPSO-L) and another for global (OLPSO-G)

Fig. 7. Movement of six position vectors (X1, X2, …, X6) in a 2-dimensional search space (m ¼ 6, d ¼ 2), and two diagonal vectors, D1 and D2. The active group consists of X1 and X2. At
t ¼ 200, X1 and X2 coincide with D1 and D2.
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optimization [39], orthogonal global-best-guided artificial bee colony
(OGABC) algorithm [40], and an orthogonal genetic algorithm with
quantization (OGAQ) [41]. The OED works on a predefined table of an
orthogonal array ofN factors withQ levels per factor. It allows the inputs to
interact among themselves such that the output process can be optimized.
Then, a set of possible solutions is obtained to achieve global optimum.
However, the drawbacks of the OED-based algorithms are: firstly, it holds
only when no or weak interaction among the factors exists; secondly, the
table that contains variable designs is complicated; and thirdly, the
orthogonality may not be possible to achieve in complex problems.

Some other ECTs based on different architecture are also available in
the literature. They include differential evolution using neighborhood-
based mutation (DEGL/SAW) algorithm [42], modified Gaussian
bare-bones differential evolution (MGBDE) algorithm [43], estimation of
distribution algorithmwith local (EDAL) search [44], Latin squares based
on evolutionary algorithm (LEA) [45], biogeography-based optimization
(BBO) [46], and p-best adaptive fast evolutionary programming (p-best
AFEP) [47].

In this paper, we propose a novel algorithm named orthogonal PSO
(OPSO) algorithm with a new learning mechanism to improve
the performance by overcoming the drawbacks of GPSO algorithm. The
OPSO algorithm consists of a swarm with m particles that looks for
the global optimal solution in a d-dimensional search space (m> d). The
swarm population is divided into two groups: an active group of best
personal experience of d particles and a passive group of personal
experience of remaining (m ‒ d) particles. The purpose of creating two

groups is to enhance the diversity in the swarm's population. The
position vectors associated with the m particles undergo an orthogonal
diagonalization (OD) process in which the d orthogonal guidance
vectors in the active group are obtained. In each iteration, using only
one guide, the velocity and position vectors of only the active group
particles are updated and the remaining (m ‒ d) particles are left un-
changed. This avoids the conflicting situation of the GPSO algorithm
and leads the best d particles towards the optimal solution in a multi-
dimensional search space. We applied the OPSO algorithm to several
unimodal and multimodal benchmark functions and have shown that
the OPSO algorithm is able to achieve superior performance in terms of
convergence, consistency and accuracy compared to GPSO and several
competitive ECTs. In our recent works, the effectiveness of the proposed
OPSO algorithm has been shown for optimal power dispatch in smart
power grid applications [48–50]. Our proposed OPSO algorithm is
completely different from Ref. [39–41]. In OPSO algorithm, the posi-
tion vectors are orthogonalized that gives rise to faster convergence and
better solution. Whereases, in Ref. [39–41], the algorithm is based on
OED in which the updating of the velocity and position vectors are done
by using a predefined orthogonal array.

The rest of the paper is organized as follows. We briefly explain the
learning strategy of the GPSO algorithm in Section 2. Details of our
proposed OPSO algorithm are provided in Section 3. In Section 4, we
present performance comparison between OPSO and GPSO algorithms by
taking thirty unimodal, multimodal, shifted, rotated and shifted rotated
benchmark functions. Performance comparison between the OPSO

Fig. 8. Movement of personal position vectors of six particles Gpers,i, i ¼ 1, 2,…, 6. The active group of particles corresponds to Gpers,1 and Gpers,2. The Gbest corresponds to Gpers,1. At t ¼ 200,
the Gbest coincides with global position (2,�3).
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Table 1
Thirty benchmark objective functions used in the study.

f Name Function Search
Space

Optimum
(x)

Minimum
f(x)

Accept
Value

f1 Sphere
[39]

f1 ðxÞ ¼ Pd
i¼1x

2
i

[-100,100]30 [0]30 0.0 1 � 10�6

f2 Elliptic
[40] f2ðxÞ ¼ Pd

i¼1½ð106Þ�

�
i�1
d�1

�
x2i

[-100,100]30 [0]30 0.0 1 � 10�8

f3 Sum Squares
[40]

f3 ðxÞ ¼ Pd
i¼1ix

2
i

[-10,10]30 [0]30 0.0 1 � 10�8

f4 Sum Powers
[40]

f4 ðxÞ ¼ Pd
i¼1jxijðiþ1Þ [-1,1]30 [0]30 0.0 1 � 10�8

f5 Schwefel's
P2.22 [40] f5 ðxÞ ¼ Pd

i¼1jxij þ
Yd
i¼1

jxij
[-100,100]30 [0]30 0.0 1 � 10�8

f6 Step
[40]

f6 ðxÞ ¼ Pd
i¼1ðbxi þ 0:5cÞ2 [-100,100]30 �1

2 � x < 1
2

0.0 1 � 10�8

f7 Quadric
[37]

f7 ðxÞ ¼ Pd
i¼1ð

Pi
j¼1xjÞ2 [-100,100]30 [0]30 0.0 1 � 10�6

f8 Noise
[40]

f8 ðxÞ ¼ Pd
i¼1iðxiÞ4 þ random½0; 1Þ [-1.28,1.28]30 [0]30 0.0 1 � 10�2

f9 Hyper
Ellipsoid
[37]

f9 ðxÞ ¼ Pd
i¼1

Pi
j¼1ðxjÞ2 [-100,100]30 [0]30 0.0 1 � 10�8

f10 Rosenbrock
[40]

f10 ðxÞ ¼ Pd�1
i¼1 ½100ðxiþ1 � x2i Þ2 þ ðxi � 1Þ2� [-10, 10]30 [1]30 0.0 1 � 102

f11 Griewank
[39] f11 ðxÞ ¼ 1

4000

Pd
i¼1x

2
i �

Yd
i¼1

cos
�
xiffiffi
i

p
�
þ 1

[-600,600]30 [0]30 0.0 1 � 10�8

f12 Levy
[39]

f12 ðxÞ ¼ sin2ðπω1Þ þ
Xd�1

i¼1
ðwi � 1Þ2½1þ 10 sin2ðπwi þ 1Þ�

þ ðwd � 1Þ2½1þ sin2ð2πωdÞ�;wi ¼ 1þ xi � 1
4

[-10, 10]30 [0]30 0.0 1 � 10�8

f13 Himmelblau
[40]

f13 ðxÞ ¼ 1
d

Pd
i¼1ðx4i � 16xi þ 5xiÞ [-5, 5]100 NA �78.3323 �78.0

f14 Alpine
[40]

f14 ðxÞ ¼ Pd
i¼1jxi sinðxiÞ þ 0:1xi j [-10, 10]30 [0]30 0.0 1 � 10�8

f15 Weierstrass
[40]

f15ðxÞ ¼
Pd

i¼1½
Pkmax

k¼1a
k cosð2πbkðxi þ 0:5ÞÞ � d

Pkmax
k¼1a

k cosðπbkÞ�
a ¼ 0.5, b ¼ 3, kmax ¼ 20

[-0.5, 0.5]30 [0]30 0.0 1 � 10�8

f16 NCRastrigin
[40] f16 ðxÞ ¼ ½y2i � 10 cosð2πyiÞ þ 10�yi ¼

8>><
>>:

xi jxij < 1
2

roundð2xiÞ
2

jxij � 1
2

9>>=
>>;

[-5.12,5.12]30 [0]30 0.0 1 � 10�8

f17 Michalewics
[40] f17 ðxÞ ¼ �Pd

i¼1sinðxiÞsin20
�

ix2i
π

�
[0, π]100 NA �99.2784 �95.0

f18 Schwefel
[40]

f18 ðxÞ ¼ 418:9829d�Pd
i¼1xisinð

ffiffiffiffiffiffiffijxij
p Þ [-500,500]30 [420.9687]30 0.0 2 � 1003

f19 Rastrigin
[40]

f19 ðxÞ ¼ 10dþPd
i¼1½x2i � 10 cosð2πxiÞ� [-5.12,5.12]30 [0]30 0.0 1 � 10�8

f20 Ackley
[40] f20 ðxÞ ¼ � a exp

0
@� b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
d

Xd

i¼1
x2i

r 1
A

� exp
1
d

Xd

i¼1
cosðcxiÞ

!
þ aþ expð1Þ; a ¼ 20; b ¼ 0:2; c ¼ 2π

[-32, 32]30 [0]30 0.0 1 � 10�8

f21 Shifted
Sphere
[55]

f21ðxÞ ¼
Pd

i¼1Z
2
i � 450;

Z ¼ x ‒ O, x ¼ [x1, x2, …, xd], O ¼ [o1, o2, …, od]

[-100,100]30 O ‒450 ‒350

f22 Shifted
Schwefel
problem 1.2
[55]

f22ðxÞ ¼
Pd

i¼1
Pi

j¼1ðZjÞ2 � 450;
Z ¼ x ‒ O, x ¼ [x1, x2, …, xd], O ¼ [o1, o2, …, od]

[-100,100]30 O ‒450 ‒350

f23 Shifted
Rosenbrock
[55]

f23ðxÞ ¼
Pd�1

i¼1 ½100ðZiþ1 � Z2
i Þ2 þ ðZi � 1Þ2� þ 390;

Z ¼ x ‒ O þ1, x ¼ [x1, x2, …, xd], O ¼ [o1, o2, …, od]

[-100,100]30 O 390 490

f24 Shifted
Rastrigin
[55]

f24ðxÞ ¼ 10dþPd
i¼1½x2i � 10 cosð2πxiÞ� � 330;

Z ¼ x ‒ O, x ¼ [x1, x2, …, xd], O ¼ [o1, o2, …, od]

[-5,5]30 O ‒330 �230

f25 Shifted
Ackley
[55]

f25ðxÞ ¼ � a exp

0
@� b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
d

Xd

i¼1
Z2
i

r 1
A

� exp
1
d

Xd

i¼1
cosðcZiÞ

!
þ aþ expð1Þ � 140; a ¼ 20; b ¼ 0:2; c ¼ 2π

Z ¼ x ‒ O, x ¼ [x1, x2, …, xd], O ¼ [o1, o2, …, od]

[-32,32]30 O ‒140 �135

f26 Shifted
Griewank
[55]

f26 ðxÞ ¼ 1
4000

Pd
i¼1Z

2
i �

Yd
i¼1

cos
�
Ziffiffi
i

p
�
þ 1� 180

Z ¼ x ‒ O, x ¼ [x1, x2, …, xd], O ¼ [o1, o2, …, od]

[-600,600]30 O ‒180 �170

(continued on next page)
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algorithm and several ECTs reported by other authors is provided in
Section 5. Finally, conclusion of this study is given in Section 6.

2. The GPSO algorithm

Consider the GPSO algorithm given in Refs. [1] and [2] as a
fundamental technique of PSO algorithm. The learning mechanism of
GPSO algorithm depends on the distribution of the particles (possible
solutions) in the swarm and their updating procedure. Firstly, each
particle flying in a d-dimensional search area adjusts its flying trajec-
tory according to two guides; its personal experience (Gpers,i) and its
neighborhood's best experience (Gbest). Secondly, when seeking the
global optimum, each particle learns from its own historical experience
and its neighborhood's historical experience. In such a case, a particle
while choosing the neighborhood's best experience uses the best
experience of the whole swarm as its neighbor's best experience. Since
the position of each particle is affected by the best-fit particle in the
entire swarm, this technique is named as global PSO [1]- [2].
The following steps explain the mechanism of the GPSO algorithm.

Let us consider a swarm population withm particles searching for an
optimal solution in a d-dimensional search space. Each particle i (i ¼ 1,
2, …, m) has one d-dimensional velocity vector Vi and one d-dimen-
sional position vector Xi. The objective of the GPSO algorithm is to
minimize the given objective function f(x).

Initialization: Iteration, t ¼ 0.

Step 1: For each particle, i (i ¼ 1, 2, …, m), the velocity and position
vectors are randomly initialized and are denoted by

Við0Þ ¼ ½vi1; vi2;…; vid � (1)

Xið0Þ ¼ ½xi1; xi2;…; xid � (2)

Step 2: For each particle i, evaluate the objective function f(x) using
the position vector Xi (0).
Step 3: Initialize the personal position vector of particle i, Gpers,i (0) as
follows:

Gpers;ið0Þ ¼ Xið0Þ (3)

Step 4: Determine the global best position vector, Gbest (0). It is the
best position vector among

All personal positions vectors of the swarm. The Gbest (0) is given by

Gbestð0Þ ¼
�
gb;1; gb;2;…; gb;d

�
(4)

Update: Iteration, t ¼ 1, 2, …, Niter, the total number of
iterations ¼ Niter.

Step 5: In iteration t, the particle's velocity and position vectors are
updated as follows:

ViðtÞ ¼ Viðt � 1Þ þ c1r1ðtÞ
�
Gpers;iðt � 1Þ � Xiðt � 1Þ�

þ c2r2ðtÞðGbestðt � 1Þ � Xiðt � 1ÞÞ (5)

XiðtÞ ¼ Xiðt � 1Þ þ ViðtÞ (6)

where c1 and c2 are two positive coefficients, called acceleration con-
stants, which are commonly set to 2.0 as default values [7]. The r1(t) and
r2(t) are two randomly generated values with uniform distribution in the
range of [0,1] [51].

Step 6: For each particle i, the f(x) is evaluated using the position
vector Xi (t).
Step 7: The Gpers,i and Gbest are updated as follows:

Gpers;iðtÞ ¼
	
XiðtÞ if f ðXiðtÞÞ � f

�
Gpers;iðt � 1Þ�

Gpers;iðt � 1Þ Otherwise
(7)

Evaluate f (Gpers,i (t)), i ¼ 1, 2, …, m.
Select Gbest(t) corresponding to minimum {f (Gpers,i (t))}
Evaluate f(x) to determine the global best position, Gbest(t)

GbestðtÞ ¼ min


Gpers;iðtÞ

�
(8)

Step 8: End of iterations, t ¼ Niter.

The global best position vector Gbest (Niter) becomes the global optimal
solution and the f (Gbest (Niter)) gives the optimal value of the objective
function.

A flowchart of the GPSO algorithm is shown in Fig. 1.

3. The OPSO algorithm

Here, the details of the proposed OPSO algorithm and explanation of
the OD process are provided.

Table 1 (continued )

f Name Function Search
Space

Optimum
(x)

Minimum
f(x)

Accept
Value

f27 Rotated
Rosenbrock
[56]

f27ðxÞ ¼
Pd�1

i¼1 ½100ðZiþ1 � Z2
i Þ2 þ ðZi � 1Þ2� � 900;

Z ¼ M
�

2:048�ðx�OÞ
100

�
þ 1, x ¼ [x1, x2, …, xd],

O ¼ [o1, o2, …, od]

[-100,100]30 O ‒900 �800

f28 Shifted
Rotated
High
Conditioned
Elliptic
[53]

f28ðxÞ ¼ Pd
i¼1½ð106Þ�

�
i�1
d�1

�
x2i � 450;

Z ¼ (x ‒ O) � M, x ¼ [x1, x2, …, xd], O ¼ [o1, o2, …, od]

[-100,100]30 O ‒450 ‒350

f29 Shifted
Rotated
Rastrigin
[53]

f29 ðxÞ ¼ 10dþPd
i¼1½Z2

i � 10 cosð2πZiÞ�;
Z ¼ (x ‒ O) � M, x ¼ [x1, x2, …, xd], O ¼ [o1, o2, …, od]

[-5,5]30 O �330 �300

f30 Shifted
Rotated
Griewank
[53]

f26 ðxÞ ¼ 1
4000

Pd
i¼1Z

2
i �

Yd
i¼1

cos
�
Ziffiffi
i

p
�
þ 1� 180

Z ¼ (x ‒ O) � M, x ¼ [x1, x2, …, xd], O ¼ [o1, o2, …, od]

[-600,600]30 O ‒180 �180
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3.1. Orthogonal diagonalization process

The OPSO algorithm is based on OD process. This process basically
converts multiplication of three matrices to obtain a diagonal matrix, D,
which is used in updating of the velocity and position vectors of the
swarm particles. The updating is carried out in such way that the ith
velocity and position vectors are affected by only the diagonal element,
dii of matrix D. This process enhances the convergence and provides a
better solution as shown in Observation 4 below.

The matrix diagonalization is the process of converting a square
matrix, B of size (d�d), into a diagonal matrix, D of size (d�d), as shown
below [52].

B ¼ QDQ�1 (9)

where Q is a matrix of size (d�d) composed of eigenvectors of B and the
diagonal elements of D contains the corresponding eigenvalues. The Q is
an invertible matrix because it contains linearly independent vectors.
When B is symmetric, the (9) may be written as

B ¼ CDC�1 (10)

in which the columns of matrix C are orthonormal to each other. The (10)
can be rewritten as

D ¼ C�1BC (11)

Since matrix C is an orthonormal matrix, the (11) can be written as

D ¼ CTBC (12)

Equation (12) is called the OD process. The process of OD is shown in
Fig. 2.

3.2. OPSO learning algorithm

In this paper, the OPSO) algorithm is proposed to improve the
learning strategy of the GPSO algorithm. The objective of the OPSO
algorithm is to minimize the given d-dimensional objective function
f(x). The OPSO algorithm provides a new topology in the swarm
population. Consider a swarm population with m particles, each with
a dimension of d (m > d). In each iteration, the m particles are divid-
ed into two groups based on OD process as follows: an active group
that consists of best personal experiences of d particles and one passi-
ve group which consists of the personal experiences of remaining
(m ‒ d) particles. The opinions of the active group particles are
honoured by updating their respective velocity and position vectors.
Whereas, the opinions of the passive group particles are ignored
because their guidance may be insignificant or erratic, and therefore,
their velocity and position vectors are not updated. However, the
contributions of all the m particles in both groups are considered while
determining the best experience. In each iteration, the OD process (12)
is applied to obtain the matrix B from d best particles of the active group
and thereafter, orthonormal matrix C and diagonal matrix D are
computed. The steps involved in OPSO algorithm are given below. Let
f(x) be the objective function to be optimized and Niter be the number of
iterations.

Initialization: Iteration, t ¼ 0.

Step 1: For each particle i, (i ¼ 1, 2, …, m), randomly initialize the
velocity Vi(0) and position Xi (0) vectors.
Step 2: Evaluate the objective function f(x) using position vector Xi
(0).
Step 3: Determine the personal position vectors, Gpers,i (0) using (3).

Update, Update: Iteration, t ¼ 1, 2, …, Niter.

Step 4: Arrange them personal position vectors in an ascending order
based on their f(x) values. The corresponding top d particles consti-
tute the active group particles.
Step 5: Construct matrix A of size (m� d) such that each row occupies
one of the m personal position vectors in the same ordered sequence
as in step 4.
Step 6: Using pseudocode given in Fig. 3, convert matrix A to a
symmetric matrix B of size (d � d), such that B is a real symmetric
matrix of dimension (d � d).
Step 7: Apply the OD process shown in Fig. 2 on matrix B to obtain a
diagonal matrix D of size d � d. Let Di denote the ith row of matrix D,
where i ¼ 1, 2, …, d.
Step 8: Update the position and velocity vectors of the d particles of
the active group, i ¼ 1, 2, …, d, as follows.

ViðtÞ ¼ Viðt � 1Þ þ crðtÞ½DiðtÞ � Xiðt � 1Þ� (13)

XiðtÞ ¼ Xiðt � 1Þ þ ViðtÞ (14)

where c is an acceleration coefficient and is chosen by trial and errormethod
in the range [2,2.5] and r(t) is a random value within the range [0,1].

Step 9: Determine the Gpers,i(t) from them particles (i¼ 1, 2,…,m), as
follows.

Gpers;iðtÞ ¼
	
XiðtÞ if f ðXiðtÞÞ � f ðGiðt � 1ÞÞ
Gpers;iðt � 1Þ Otherwise

(15)

Evaluate f (Gpers,i (t)), i ¼ 1, 2, …, m.

Step 10: Determine the global best position Gbest(t), as follows.

Select Gbest(t) corresponding to minimum {f (Gpers,i (t))}, i ¼ 1, 2, …,
m.

Evaluate f(x) to determine the global best position, Gbest(t)

GbestðtÞ ¼ min


Gpers;iðtÞ

�
(16)

Step 11: End of iterations, t ¼ Niter.

The Gbest (Niter) as computed in step 10 provides the optimal solution.
A flowchart of the OPSO algorithm is shown in Fig. 4.

Observation 1. One of the important observations of the OPSO algo-
rithm is as follows. Sine matrix D is a diagonal matrix, its d rows or
d columns are orthogonal vectors. These d vectors are used to diminish
the contribution of Xi(t‒1) while updating Vi(t), for i ¼ 1, 2, …, d. As
t→∞, assume that the algorithm has converged. In such case, (14) can be
written as:

lim
t→∞

XiðtÞ ¼ Xiðt � 1Þ (17)

This implies that lim
t→∞

Vi(t) ¼ 0. Therefore, (13) can be written as:

lim
t→∞

ViðtÞ ¼ Viðt � 1Þ ¼ 0 (18)

This implies that

lim
t→∞

crðtÞ½DiðtÞ � Xiðt � 1Þ� ¼ 0 (19)

Since c r(t) is constant,

lim
t→∞

Xiðt � 1Þ ¼ DiðtÞ (20)

From (20) it is evident that lim
t→∞

Xi(t) becomes diagonal and equals to

Di when iteration becomes large and the algorithm has converged.
Considering the d position vectors, (20) can be written in matrix form

as:
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½XðtÞ�active group ¼ ½DðtÞ�active group (21)

This means that at t→∞, the d position vectors of the active group
particles are equal to the d orthogonal vectors of the matrix D. Thus, the
OPSO algorithm reaches convergence and leads to optimal solution.

Observation 2. In case of GPSO algorithm (5), two guides, Gpers,i and
Gbest, are used to update the velocity vector Vi(t). These two guides may
conflict each other which leads to zigzag behaviour of the algorithm,
that in turn causes trapping into local minima. Whereas, in the OPSO
algorithm, since only one guide, Di(t) is used while updating of the
velocity vector (13), the zigzagging behaviour is eliminated.

Observation 3. Due to orthogonalization of the position vectors, as
iteration progresses, once the optimal solution is achieved, the solution
remains the same in the subsequent iterations until the end of total number
of iterations. This fact provides consistency to the proposed algorithm.

Observation 4. From (13), the velocity vector of each particle of active
group at ith iteration can be rewritten as follows.

V1ðtÞ ¼ V1ðt � 1Þ þ crðtÞ½D1ðtÞ � X1ðt � 1Þ�
V2ðtÞ ¼ V2ðt � 1Þ þ crðtÞ½D2ðtÞ � X2ðt � 1Þ�
⋮ ⋮ ⋮ ⋮

VdðtÞ ¼ Vdðt � 1Þ þ crðtÞ½DdðtÞ � Xdðt � 1Þ�
(22)

where

D1ðtÞ ¼ ½d11; 0; 0; ⋯; 0�
D2ðtÞ ¼ ½0; d22; 0; ⋯; 0�
⋮ ⋮ ⋮ ⋮ ⋮
DdðtÞ ¼ ½0; 0; 0; ddd �

(23)

It can be seen from (22) and (23) that the position vector Xi, i ¼ 1, 2,
…, d, of active group is affected only by the corresponding orthogonal
vector Di, i¼ 1, 2,…, d. Thus, while updating, each Vi is perturbed only in
the ith dimension of the d-dimensional search space. Due to this, the
OPSO algorithm gives faster convergence and better solution.

Observation 5. As seen from the sensitivity analysis (Section 4.3),
whenm≫ d, the algorithm gives rise to more computations, but does not
provides any better solution. Whereas, when m ¼ d, there is no existence
of passive group and therefore we do not see any advantages of diversity
and the solution may not yield the best. Considering these two extremes,
a reasonable value of m is about 10–30% more than d.

An Illustrative Example: In order to explain the mechanism of OPSO
algorithm, Fig. 5 illustrates an example of a 2-dimensional shifted func-
tion, f (x,y) ¼ (x ‒ 2)2 þ (y þ 3)2 þ 9. From visual inspection, it can be
seen that the x and y are shifted from the origin (0,0) by (2.0,-3.0). The
optimum solution of the given function equals to 9.0 at (x,y)¼ (2.0,-3.0).
The aim of the algorithm is to find the values x and y such that the f (x,y)
is minimized.

The OPSO algorithm program was implemented using MATLAB
software in a personal computer with Intel (R) core (TM) 2 Duo CPU
T6570 @ 2.1 GHz, 4 GB RAM and 64-bit Windows 7 operating system.
The OPSO algorithm was executed withm¼ 6, d¼ 2 and Niter¼ 200. The
values of position vectors (Xi, i ¼ 1, 2, …, 6), the diagonal vectors (Di,
i¼ 1, 2) and personal vectors (Gpers,i, i¼ 1, 2,…, 6) for different iterations
are shown in Fig. 6. In each iteration, the six particles are divided into
one active group of two best particles and a passive group of four parti-
cles. According to the OD process, Gpers,1 and Gpers,2 are assigned as active
group and (Gpers,3, …, Gpers,6) are assigned as passive group. In each
iteration, the velocity and position vectors of only the active group are
updated. As seen from Fig. 6, as iteration increases, the OD process causes
[X]active_group ¼ [D]active_group, thus satisfying (21) and causing X to be a
diagonal matrix. At the end of iteration, the best Gpers, provides the
optimal solution, yielding Gbest ¼ (2.0,-3.0).

In order to have geometric interpretation of the learning strategy of
the OPSO algorithm, the movement of six position vectors and the two
orthogonal vectors are shown in Fig. 7. Here, X1 and X2 represent the
position vectors of the active group and D1 and D2 represent the two

orthogonal vectors. It can be seen that during early iterations, the posi-
tion vectors X1 and X2 move from random positions toward the orthog-
onal vectors D1 and D2. Finally, as the algorithm iterates further, the X1
and X2 coincide with D1 and D2.

In Fig. 8, the movement of personal vectors, Gpers,i (i ¼ 1, 2, …, 6) of
the six particles (i¼ 1 and 2 correspond to the active group) with increase
in iteration is shown. Here, Gbest corresponds to Gpers,1. It can be seen that
the Gbest moves from some random position to the optimal solution (2,-3)
as the algorithm converges when iteration becomes large.

4. Experimental results and performance comparison

Here, we describe thirty benchmark functions and investigate per-
formance of the OPSO and GPSO algorithms and a few competitive ECTs.

4.1. Benchmark functions

Thirty benchmark functions listed in Table 1 are used in this study.
These benchmark functions are widely used in performance comparison
of global optimization algorithms. All the thirty benchmark functions are
minimization tasks and are divided into three groups based on their
significant physical properties and shapes.

The first group involves nine unimodal benchmark functions f1 ‒ f9
[39,40]. There is only one mode (global optimum) in its geometric dis-
tribution. The global optimum solution Gbest is at the center of the search
space. Therefore, the convergence rate of the search algorithm is
important in finding global optimum. The nine unimodal benchmark
functions are f1 (Sphere), f2 (Elliptic), f3 (Sum Squares), f4 (Sum Powers),
f5 (Schwefel's P.2.22), f6 (Step a non-continuous), f7 (Quadric), f8 (Noise),
and f9 (Rotated Hyper Ellipsoid).

The second group includes eleven multimodal benchmark
functions f10 ‒ f20. Finding Gbest is more challenging since these are
more difficult to optimize because of the number of local minima.
In multimodal functions, the number of local minima increases as
the problem dimension increases [6], [39]. Therefore, the search
algorithm should be able to obtain a good solution and not be trapped
in a local minimum. The eleven multimodal functions are f10
(Rosenbrock), f11 (Griewank), f12 (Levy), f13 (Himmelblau), f14
(Apline), f15 (Weierstrass), f16 Non-continuous Rastrigin (NCRastrigin),
f17 (Michalewics), f18 (Schwefel), f19 (Rastrigin), and f20 (Ackley). The
function f10 is unimodal in 2- or 3-dimensional search space. However,
it may have local minima under high-dimensional cases (30-dimension)
[6] [14], [44].

The optimum solution, x is at the origin of the search domain in the
first and second groups, except f10. Some algorithms simply converge to
the center of the search domain that happens to be the optimum (x).
Hence, these benchmark functions are not enough to test effectiveness of
an optimization algorithm. Therefore, to avoid this drawback, a third
group with ten benchmark functions [53–56] are used and are shown in
Table 1.

The third group includes ten shifted, rotated and shifted rotated
functions. In the shifted functions, the global optimum solution x
as shown in Table 1 is not lying at the center of the search domain.
The optimum solution x is shifted to a new position vector [53–55],
i.e., shifted global optimum, O ¼ [o1, o2, …, od], where d is dimension
of the benchmark function. In the rotated functions, the rotation
does not affect the shape of the function but increases the function
complexity in finding global optimum. An orthogonal (rotation)
matrix M is applied to obtain the rotation [56]. The matrix M is
generated from a standard normally distributed entries using
Gram-Schmidt orthogonalization process. In the shifted rotated
functions, in addition to the shift in function's coordinates, the
optimum x is rotated based on M. The third group is taken from the
CEC 2005 [53,54], CEC 2008 [55] and CEC 2013 [56] special session on
real parameter optimization. The ten benchmark functions are: f21
(Shifted Sphere), f22 (Shifted Schwefel's Problem 1.2), f23 (Shifted
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Rosenbrock), f24 (Shifted Rastrigin), f25 (Shifted Ackley), f26 (Shifted
Griewank), f27 (Rotated Rosenbrock), f28 (Shifted rotated high
coordinated Elliptic), f29 (Shifted rotated Rastrigin), and f30 (Shifted
rotated Griewank).

The range and dimension of the search space of each benchmark
function is given in column 4 of Table 1. All the functions are tested with
30-dimension, except f13 and f17 which are tested with 100-dimension.
The “optimum x ¼ Gbest” is available in column 5, and minimum value
of each function, “minimum f(x) ¼ f (Gbest)” is given in column 6. The
column 7 is “Accept Value”, i.e., the accepted value of each function f(x)
under test. If the optimized value found by OPSO or GPSO algorithm falls
between the “Accept Value” and “minimum f(x)”, the solution of that
function is judged to be successful, in other words, the algorithm passes
the test. The symbol "NA" given in Table 1 denotes that the results are not
available in the corresponding reference.

4.2. Performance measures and experimental setup

In order to evaluate performance of an algorithm in terms of
accuracy, consistency and reliability, several performance measures are
defined. Let m be the number of particles in the swarm, and d be the
dimension of the search space. An algorithm is executed Niter iterations
over Nrun runs.

1. Number of Function Evaluations (NFE): The NFE is used as a measure
of computational complexity of an algorithm. The NFE is the number
of times the objective function f(x) is evaluated in one run of the
algorithm and is given by

NFE ¼ m� Niter (24)

2. Best Fitness Value (BFV): The BFV is defined as the minimum
optimized f(x) value obtained from Nrun independent runs.

3. Worst Fitness Value (WFV): The WFV is defined as the maximum
optimized f(x) value obtained from Nrun independent runs.

4. Mean Fitness Value (MFV): The MFV is defined as the average of the
Nrun BFVs.

5. Standard deviation (σ): The σ is the standard deviation of the Nrun
BFVs.

6. Success Rate (SR): At the end of one run, an algorithm is successful
if the obtained optimized f(x) value falls between the “Accept
Value” and “Minimum f(x)”. The SR is used as a measure of
reliability of an algorithm [6] [39],- [40]. The SR in percentage is
given by

SR ¼ Number of successful runs
Nrun

� 100 (25)

7. Reliability Rate (RR): The RR of an algorithm over all the thirty
benchmark functions is defined as

RR ¼ 1
30

X30
i¼1

SRi (26)

where SRi is the success rate of the benchmark function fi(x), i ¼ 1, 2,…,
30.

8. Average execution time (AET): It is the execution time of an algorithm
until it reaches to “Accept Value”, averaged over Nrun independent
runs.

In order to measure the accuracy, consistency and robustnessTa
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Fig. 9. Comparison of convergence characteristics between OPSO and GPSO algorithms for f1 ‒ f9.
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Fig. 10. Comparison of convergence characteristics between OPSO and GPSO algorithms for f10 ‒ f20.
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Fig. 11. Comparison of convergence characteristics between OPSO and GPSO algorithms for f21 ‒ f30.
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Table 4
Performance comparison between GPSO and OPSO algorithm on thirty benchmark functions.

f Minimum
f(x)

Accept
Value

Fitness GPSO OPSO

f1 0.0 1 � 10�06 BFV 1.2486 � 1003 0.0
WFV 4.1798 � 1003 0.0
MFV 2.4550 � 1003 0.0
σ 5.7333 � 1002 0.0
AET (sec) – 15.5355

f2 0.0 1 � 10�08 BFV 2.0131 � 1007 0.0
WFV 6.9372 � 1007 0.0
MFV 3.5123 � 1007 0.0
σ 1.1286 � 1007 0.0
AET (sec) – 24.7634

f3 0.0 1 � 10�08 BFV 1.8157 � 1002 0.0
WFV 6.8391 � 1002 0.0
MFV 4.0027 � 1002 0.0
σ 1.0706 � 1002 0.0
AET (sec) – 16.3259

f4 0.0 1 � 10�08 BFV 2.3191 � 10�06 0.0
WFV 3.9232 � 10�04 0.0
MFV 8.6259 � 10�05 0.0
σ 1.0228 � 10�04 0.0
AET (sec) – 15.6650

f5 0.0 1 � 10�08 BFV 1.8218 � 1001 0.0
WFV 3.3622 � 1001 9.8813£10�324

MFV 2.5419 � 1001 0.0
σ 3.5500 � 100 0.0
AET (sec) – 17.7892

f6 0.0 1 � 10�08 BFV 2.4679 � 1003 0.0
WFV 3.6900 � 1003 0.0
MFV 2.4679 � 1003 0.0
σ 5.7707 � 1002 0.0
AET (sec) – 14.0659

f7 0.0 1 � 10�06 BFV 1.9811 � 1004 0.0
WFV 5.2134 � 1004 0.0
MFV 3.2116 � 1004 0.0
σ 9.4586 � 1003 0.0
AET (sec) – 26.2586

f8 0.0 1 � 10�02 BFV 1.0849 � 10�02 0.0
WFV 5.6201 � 10�01 0.0
MFV 1.2788 � 10�01 0.0
σ 1.2006 � 10�01 0.0
AET (sec) – 8.9479

f9 0.0 1 � 10�08 BFV 7.8459 � 1003 0.0
WFV 2.2750 � 1004 0.0
MFV 1.5896 � 1004 0.0
σ 3.8854 � 1003 0.0
AET (sec) – 25.8315

f10 0.0 1 � 1002 BFV 6.8740 � 1003 5.7699£10�05

WFV 1.1945 � 1004 5.1926£100

MFV 9.8909 � 1003 3.1611£10�01

σ 1.3836 � 1003 1.0618£100

AET (sec) – 11.4709
f11 0.0 1 � 10�08 BFV 7.2437 � 100 0.0

WFV 3.0307 � 1001 0.0
MFV 1.7175 � 1001 0.0
σ 6.3452 � 100 0.0
AET (sec) – 21.8874

f12 0.0 1 � 10�08 BFV 4.7802 � 100 1.4998£10�32

WFV 1.3640 � 101 1.4998£10�32

MFV 8.3570 � 100 1.4998£10�32

σ 2.8145 � 100 8.3800£10�48

AET (sec) – 44.7980
f13 �7.833223

� 1001
�7.8 � 1001 BFV �5.4403 � 1001 ¡7.83323£1001

WFV �4.3101 � 1001 ¡7.83323£1001

MFV �4.8420 � 1001 ¡7.83323£1001

σ 3.2065 � 100 1.3605£10�14

AET (sec) – 23.8133
f14 0.0 1 � 10�08 BFV 1.3035 � 1001 0.0

WFV 1.8438 � 1001 1.3101£10�14

MFV 1.5513 � 1001 2.8333£10�15

σ 1.5921 � 100 3.7142£10�15

21.4088
f15 0.0 1 � 10�08 BFV 4.1622 � 10�02 0.0

WFV 7.4146 � 10�02 3.0038£10�312

MFV 5.4681 � 10�02 1.2027£10�313

σ 9.5018 � 10�03 0.0

(continued on next page)
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Table 4 (continued )

f Minimum
f(x)

Accept
Value

Fitness GPSO OPSO

AET (sec) – 18.9627
f16 0.0 1 � 10�08 BFV 8.9136 � 10�10 0.0

WFV 5.8023 � 10�07 0.0
MFV 1.1718 � 10�07 0.0
σ 1.4790 � 10�07 0.0
AET (sec) – 33.7595

f17 �9.92784
� 1001

�9.5 � 1001 BFV �2.9595 � 1001 ¡9.85149£1001

WFV �2.4683 � 1001 ¡9.72067£1001

MFV �2.6475 � 1001 ¡9.80995£1001

σ 1.2014 � 10�01 3.8892£10�01

AET (sec) – 41.2021
f18 0.0 2 � 1003 BFV 9.4000 � 1003 3.8183£10�04

WFV 1.0081 � 1004 1.1844£1002

MFV 9.5014 � 1003 1.4213£1001

σ 3.4563 � 1009 3.9282£1001

AET (sec) – 32.5160
f19 0.0 1 � 10�08 BFV 2.0729 � 1002 0.0

WFV 2.6763 � 1002 0.0
MFV 2.4074 � 1002 0.0
σ 1.3470 � 100 0.0
AET (sec) – 30.6209

f20 0.0 1 � 10�08 BFV 8.4121 � 100 4.4409£10�15

WFV 1.4451 � 1001 7.9936£10�15

MFV 1.0876 � 1001 6.5725£10�15

σ 1.4402 � 100 1.7764£10�15

AET (sec) – 28.3525
f21 ‒450 ‒350 BFV 1.3606 � 1003 ¡4.5000£1002

WFV 6.3523 � 1003 ¡4.5000£1002

MFV 3.4897 � 1003 ¡4.5000£1002

σ 1.1566 � 1003 1.5825£10�13

AET (sec) – 8.9907
f22 ‒450 ‒350 BFV 3.3409 � 1004 ¡4.5000£1002

WFV 9.2368 � 1004 ¡4.5000£1002

MFV 5.3040 � 1004 ¡4.5000£1002

σ 1.5313 � 1004 1.4950£10�13

AET (sec) – 17.2141
f23 390 490 BFV 2.8616 � 1007 3.9000£1002

WFV 3.0831 � 1008 3.9018£1002

MFV 1.2195 � 1008 3.9009£1002

σ 7.3326 � 1007 1.1040£100

AET (sec) – 12.3678
f24 ‒330 �230 BFV 1.5114 � 1003 �3.3000£1002

WFV 5.6216 � 1003 �3.3000£1002

MFV 3.1415 � 1003 �3.3000£1002

σ 1.0315 � 1003 4.3415£10¡14

AET (sec) – 28.1717
f25 ‒140 �135 BFV �1.3118 � 1002 ¡1.4000£1002

WFV �1.2755 � 1002 ¡1.4000£1002

MFV �1.2935 � 1002 ¡1.4000£1002

σ 8.7805 � 10�01 4.7488£10�14

AET (sec) – 8.9032
f26 ‒180 �170 BFV �1.5831 � 1002 ¡1.8000 £1002

WFV �1.1322 � 1002 ¡1.7995£1002

MFV �1.3991 � 1002 ¡1.7999£1002

σ 1.0342 � 1001 1.2766£10�02

AET (sec) – 9.8174
f27 ‒900 �800 BFV �7.3860 � 1002 ¡9.0000£1002

WFV �4.8226 � 1002 ¡9.0000£1002

MFV �6.2256 � 1002 ¡9.0000£1002

σ 7.6227 � 1001 1.6450£10�04

AET (sec) – 2.1427
f28 ‒450 ‒350 BFV 1.3391 � 1007 ¡4.5000£1002

WFV 9.7058 � 1007 ¡4.5000£1002

MFV 4.9441 � 1007 ¡4.5000£1002

σ 1.9915 � 1007 4.7488£10�13

AET (sec) – 9.9062
f29 �330 �300 BFV �2.6583 � 1002 ¡3.3000£1002

WFV �1.0334 � 1002 ¡3.3075£1002

MFV �1.9788 � 1002 ¡3.3026£1002

σ 3.8162 � 1001 2.1549£1000

AET (sec) – 26.2184
f30 ‒180 �180 BFV �1.7848 � 1002 ¡1.8000£1002

WFV �1.7555 � 1002 ¡1.8000£1002

MFV �1.7675 � 1002 ¡1.8000£1002

σ 6.9078 � 1002 2.5945£10�14

AET (sec) – 26.6115
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Fig. 12. The BFVs obtained at different runs by the OPSO and GPSO algorithms for f10 ‒ f14, f16, f25, f27 and f29.
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of each algorithm, the OPSO and GPSO algorithms were evaluated
using the thirty unimodal and multimodal functions given in Table 1.
Both OPSO and GPSO algorithms are run with maximum
NFE ¼ 200,000. The acceleration coefficients values of c1 and c2
in GPSO and c in OPSO algorithm are set at 2.0 and 2.05, respectively,
using trial and error method. The parameters r(t), r1(t)and r2(t) are
chosen randomly. Since m > d in the OPSO algorithm, the number
of particles (m) in OPSO algorithm is different from GPSO algorithm.
The shifted global optimum vector O is randomly distributed in
the range [-80,80]d for all functions except f24 and f29 in which the
range is [-4,4]d. The orthogonal (rotation) matrix M is generated using
Gram-Schmidt orthogonalization process. NFE is taken as 200,000. The
value of Niter is obtained from (24), once NFE and m are selected. The
values of m and Niter used in OPSO and GPSO algorithms are given in
Table 2.

4.3. Sensitivity analysis of swarm size on OPSO algorithm

In order to study the sensitivity analysis of the proposed OPSO

algorithm with variation of swarm size m, nine 30-dimensional
benchmarks functions, f2, f3, f12, f20, f21, f23, f27, f29 and f30 are tested
with Niter ¼ 5000 and Nrun ¼ 25. In addition, the AET is obtained with
t¼ 5000 over 25 independent runs. Table 3 shows sensitivity analysis of
the OPSO algorithm with variation of swarm size m, in terms of BFV,
WFV, MFV and AET. When the swarm population, m ¼ 32, it has 30
particles in active group and 2 particles in the passive group. It can be
seen that with m ¼ 32, the performance of OPSO algorithm improves
substantially compared to m ¼ 30 (i.e., the number of particles in the
passive group equals to zero). Therefore, m ¼ 32 has been selected for
the set of 9 unimodal (f1-f9) and 11 multimodal (f10-f20) benchmark
functions, as shown in Table 2. However, in case of shifted, rotated and
shifted rotated benchmark functions, the performance of OPSO
algorithm substantially improves as m increases from 32 to 40. There-
fore, as shown in Table 2, for the ten such functions (f21-f30),m¼ 40 has
been selected which makes the number of passive group particles to be
10. Based on these observations, as a thumb rule, are may select the
swarm population size between 10 and 30% more than the dimension
of the search space.

Table 5
Performance comparison between OPSO algorithm and 15 ECTs using 4 unimodal functions with d ¼ 30.

ECTs Performance
measure

f1 f5 f6 f8

OPSO
(proposed)

MFV 0.0 0.0 0.0 0.0
σ 0.0 0.0 0.0 0.0
NFE 6.00 � 1004 6.60 � 1004 5.83 � 1004 4.04 � 1004

AET (sec) 15.5355 17.7892 14.0659 8.9479
FIPSO
[4]

MFV 2.42 � 10�13 2.76 � 10�08 0.0 4.24 � 10�03

σ 1.73 � 10�13 9.04 � 10�09 0.0 1.28 � 10�04

NFE 1.18 � 1005 1.65 � 1005 – 9.10 � 1004

CLPSO
[13]

MFV 4.46 � 10�14 2.51 � 10�08 0.0 5.85 � 10�03

σ 1.73 � 10�14 5.84 � 100 0.0 1.11 � 10�03

NFE 1.39 � 1005 1.72 � 1005 – 1.33 � 1005

HPSO-TVAC
[14]

MFV 2.83 � 10�33 9.03 � 10�20 0.0 9.82 � 10�02

σ 3.19 � 10�33 9.58 � 10�20 0.0 3.26 � 10�02

NFE 6.39 � 1004 7.89 � 1004 – –

ALC-PSO
[15]

MFV 1.66 � 10�161 1.61 � 10�90 0.0 –

σ 8.20 � 10�161 4.14 � 10�90 0.0 –

NFE 7.49 � 1004 8.18 � 1004 1.31 � 1004 –

EPSO
[16]

MFV 1.662 � 10�74 1.90 � 10�47 0.0 2.58 � 10�04

σ 2.76 � 10�74 2.15 � 10�47 0.0 1.87 � 10�04

SAIW
[20]

MFV 3.83 � 10�147
– 1.40 � 100 –

σ 7.85 � 10�147
– 1.34 � 100 –

PkPSO-G
[22]

MFV 1.27 � 10�34 5.02 � 10�20 0.0 5.13 � 10�02

σ 2.61 � 10�34 6.91 � 10�20 0.0 2.84 � 10�02

NFE 1.40 � 1005 – – –

MLPSO-STP
[24]

MFV 2.37 � 10�15 7.94 � 10�84 0.0 2.97 � 10�04

σ 0.0 2.67 � 10�83 0.0 9.68 � 10�05

NFE 9.11 � 1004 9.51 � 1004 7.51 � 1004 7.94 � 1004

CCPSO-ISM
[27]

MFV 3.03 � 10�52
– 0 6.71 � 10�03

σ 9.55 � 10�52
– 0 1.71 � 10�03

NFE 3.502 � 1003 – 2.023 � 1004 133,985
AET (sec) 0.27 – 0.23 1.12

FPSOCM
[38]

MFV 2.882 � 10�05 1.92 � 10�06 1.60 � 10�01 4.35 � 10�03

σ 3.108 � 10�05 2.48 � 10�06 4.22 � 10�01 8.48 � 10�04

AET (sec) 9.140 8.759 6.560 9.344
OLPSO-G
[39]

MFV 4.12 � 10�54 9.85 � 10�30 0.0 1.16 � 10�02

σ 6.34 � 10�54 1.01 � 10�29 0.0 4.10 � 10�03

NFE 8.92 � 1004 1.01 � 1005 – 1.50 � 1005

OLPSO-L
[39]

MFV 1.11 � 10�38 7.67 � 10�22 0.0 1.64 � 10�02

σ 1.28 � 10�38 5.63 � 10�22 0.0 3.25 � 10�03

NFE 9.83 � 1004 1.14 � 1005 – 1.86 � 1005

OGABC
[40]

MFV 4.69 � 10�38 5.33 � 10�20 0.0 5.09 � 10�03

σ 5.27 � 10�38 3.13 � 10�20 0.0 2.07 � 10�03

NFE 2.91£1004 4.64 � 1004 1.02£1004 –

DEGL/SAW
[42]

MFV 8.74 � 10�37 4.93 � 10�36 9.56 � 10�48 1.05 � 10�07

σ 3.82 � 10�35 3.92 � 10�34 2.73 � 10�45 2.33 � 10�06

NFE 3.88 � 1004 4.45£1004 4.63 � 1004 2.71£1004

MGBDE
[43]

MFV 8.79 � 10�68 8.50 � 10�41 0.0 2.14 � 10�03

σ 5.21 � 10�69 3.38 � 10�41 0.0 1.08 � 10�03

Minimum f(x) 0.0 0.0 0.0 0.0
Accept Value f(x) 1.00 � 10�06 1.00 � 10�08 1.00 � 10�08 1.00 � 10�02
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4.4. Convergence characteristics

Fig. 9 shows the convergence characteristics of OPSO and GPSO
algorithms for the nine unimodal functions f1 – f9. The comparison is
obtained in terms of fitness value (FV) averaged over Nrun times at each
NFE. It can be seen that, in case of OPSO algorithm the FV reduces to a
small value (~10�300 or lower) as NFE reaches about 1.5 � 1005.
Whereas, in case of GPSO algorithm, the FV fails to converge and
remains above the “Accept Value”, which is indicating failure of the
algorithm. The convergence characteristics of the eleven multimodal
benchmark functions f10 – f20 shown in Fig. 10, indicate successful
convergence of the OPSO algorithm and failure of the GPSO algorithm.
Fig. 11 shows convergence characteristics of the ten shifted, rotated and
shifted rotated benchmark functions f21 – f30. It can be seen that the
OPSO algorithm achieves much better convergence than GPSO algo-
rithm in all the ten benchmark functions.

4.5. Comparison in terms of fitness values

Performance comparison between OPSO and GPSO algorithms in
terms of BFV,WFV,MFV and σ are shown in Table 4. It can be seen that in
case of GPSO algorithm, the three fitness values BFV, WFV and MFV
differ substantially from their optimal values for all the thirty benchmark
functions. Whereas, in OPSO algorithm, the three fitness values are the
same or very close to their optimum values for all the thirty functions.
The standard deviation σ remains 0 or close to 0 in OPSO algorithm,
indicating high consistency and reliability. In terms of average execution
time AET, the OPSO algorithm reaches the “Accept Value” within a
specific AET as shown in Table 4. However, GPSO algorithm can not
reach the “Accept Value”, therefore, it is out of the comparison. The re-
sults shown in Table 4 give evidence that the OPSO algorithm is more
accurate, stable and robust compared to the GPSO algorithm.

In order to highlight the superior performance of the OPSO algorithm

Table 6
Performance comparison between OPSO algorithm and other 16 ECTs on 7 multimodal functions with d ¼ 30.

ECTs Performance
measure

f10 f11 f15 f16 f18 f19 f20

OPSO
(proposed)

MFV 3.16 � 10�01 0.0 1.20£10�313 0.0 1.42 � 1001 0.0 6.57 � 10�15

σ 1.06 � 1000 0.0 0.0 0.0 3.92 � 1001 0.0 1.77 � 10�15

NFE 5.03 � 1004 6.70 � 1004 6.54 � 1004 3.81£1004 3.97£1004 1.16 � 1005 7.57 � 1004

AET (sec) 11.4709 21.8874 18.9627 33.7595 32.5160 30.6209 28.3525
FIPSO
[4]

MFV 2.51 � 1001 9.01 � 10�12
– 7.01 � 1001 9.93 � 1002 6.51 � 1001 2.33 � 10�07

σ 5.10 � 10�01 1.84 � 10�11
– 1.47 � 1001 5.09 � 1002 1.33 � 1001 7.19 � 10�08

NFE 4.84 � 1004 1.33 � 1005 – – 1.33 � 1005 7.94 � 1004 1.83 � 1005

CLPSO
[13]

MFV 2.10 � 1001 3.14 � 10�01 3.45 � 10�07 4.36 � 10�1 1.27 � 10�1 4.85 � 10�1 0.0
σ 2.98 � 100 4.64 � 10�01 1.94 � 10�07 2.44 � 10�1 8.79 � 10�1 3.63 � 10�1 0.0
NFE 1.08 � 1005 1.67 � 1005 – – 6.54 � 1004 4.40 � 1004 1.90 � 1005

HPSO-TVAC
[14]

MFV 2.39 � 1001 9.75 � 10�03
– 1.03 � 1001 1.59 � 1003 9.43 � 100 7.29 � 10�14

σ 2.65 � 1001 8.33 � 10�03
– 8.24 � 100 3.26 � 1002 3.48 � 100 3.00 � 10�14

NFE 5.06 � 1004 6.69 � 1004 – – 5.66 � 1004 6.09£1003 1.02 � 1005

ALC-PSO
[15]

MFV 7.61 � 100 1.22 � 10�02
– 1.25 � 10�11 2.10 � 1001 2.52 � 10�14 1.14 � 10�14

σ 6.65 � 100 0.0 – 6.75 � 10�11 5.41 � 1001 1.37 � 10�14 2.94 � 10�15

NFE 6.04 � 1004 1.01£1004 – 5.89 � 1004 4.66 � 1004 7.42 � 1004 5.89£1004

MCPSO
[16]

MFV 6.12 � 100 1.91 � 10�14
– – 1.32 � 10�03 7.08 � 10�06 6.38 � 10�12

σ 1.09 � 1001 3.26 � 10�14
– – 2.16 � 10�03 3.46 � 10�05 5.09 � 10�11

SAIW
[21]

MFV 9.88 � 100 22.0 � 10�04
– 31.8 � 100 �6.37 � 1003 29.84 � 100 22.71 � 100

σ 19.96 � 100 47.0 � 10�04
– 10.30 � 100 0.74 � 1003 10.54 � 100 3.74 � 10�15

pkPSO-G
[22]

MFV 8.14 � 1001 1.19 � 10�01
– 1.65 � 1001 �1.10 � 1004 0.0 4.09 � 10�14

σ 4.82 � 1001 1.37 � 10�01
– 2.46 � 1001 138.96 0.0 9.23 � 10�14

NFE 1.40 � 1005 – – – 1.58 � 1005 1.45 � 1005

MLPSO-STP
[24]

MFV 2.52 � 1001 5.75 � 10�04 0.0 9.60 � 10�01
– 0.0 4.03 � 10�15

σ 1.84 � 10�01 2.21 � 10�03 0.0 3.14 � 100 – 0.0 1.23 � 10�15

NFE 39.0 � 1004 9.30 � 1004 8.80 � 1004 8.90 � 1004 – 7.50 � 1004 8.38 � 1004

CCPSO-ISM
[27]

MFV 7£10�02 6.84 � 10�14
– – – 0 1.40 � 10�14

σ 19 � 10�02 1.69 � 10�13
– – – 0 1.60 � 10�14

NFE 3.22£1004 4.06 � 1004 – – – 1.78 � 1004 4.89 � 1004

AET (sec) 0.27 0.49 – – – 0.22 0.56
MsPSO
[36]

MFV 2.89 � 1001 0.0 – – 8.63 � 10�53 0.0 8.88 � 10�16

σ 1.44 � 10�02 0.0 – – 2.65 � 10�52 0.0 2.01 � 10�32

Gaussian PSO
[37]

MFV 4.25 � 100 7.42 � 10�04 5.41 � 10�03 5.00 � 100 3.91 � 1002 1.74 � 1000 4.18 � 10�05

σ 7.60 � 10�01 1.50 � 10�03 6.3 � 10�03 4.1 � 10�04 8.9 � 10�06 2.00 � 10�02 2.50 � 10�05

NFE 1.26 � 1005 1.37 � 1005 – – 1.11 � 1005 7.52 � 1004 1.52 � 1005

FPSOCM
[38]

MFV 6.09 � 10�01 2.23 � 10�04
– – – 8.26 � 1000 9.01 � 10�04

σ 1.85 � 10�01 2.84 � 10�05
– – – 2.78 � 1000 6.95 � 10�04

AET (sec) 8.070 7.875 – – – 7.641 13.703
OLPSO-G
[39]

MFV 2.15 � 1001 4.83 � 10�03
– – 3.84 � 1002 1.07 � 100 2.15 � 1001

σ 2.99 � 1001 8.63 � 10�03
– – 2.17 � 1002 9.92 � 10�1 2.99 � 1001

NFE 7.87 � 1004 9.33 � 1004 – – 4.05 � 1004 3.77 � 1004 7.87 � 1004

OLPSO-L
[39]

MFV 1.26 � 1001 0.0 – – 3.82 � 10�04 0.0 4.14 � 10�15

σ 1.40 � 100 0.0 – – 0.0 0.0 0.0
NFE 9.22 � 1004 10.72 � 1004 – – 5.14 � 1004 4.36 � 1004 12.65 � 1004

OGABC
[40]

MFV 1.10 � 100 0.0 0.0 1.18 � 10�09 0.0 0.0 1.93 � 10�14

σ 1.74 � 100 0.0 0.0 5.30 � 10�09 0.0 0.0 4.07 � 10�15

NFE 3.61 � 1004 3.50 � 1004 5.44£1004 4.10 � 1004 4.30 � 1004 3.94 � 1004 5.89 � 1004

MGBDE
[43]

MFV 1.69 � 100 0.0 – – �1.30 � 10�02 3.98 � 100 7.69 � 10�15

σ 2.24 � 100 0.0 – – 1.09 � 10�12 2.98 � 100 0.0
NFE 3.92 � 1004 3.64 � 1004 – – 6.80 � 1004 2.78 � 1004 7.46 � 1004

Minimum f(x) 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Accept Value f(x) 1.00 � 1002 1.00 � 10�08 1.00 � 10�08 1.00 � 10�08 2.00 � 1003 1.00 � 10�08 1.00 � 10�08
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over the GPSO algorithm, in Fig. 12, we provide the BFVs obtained in
different runs for nine selected benchmark functions. The BFVs obtained
by GPSO algorithm are unacceptable as these are much above the
respective “Accept Value”. In contrast, the OPSO algorithm was suc-
cessful as the BFVs in these nine functions remain much below the
respective “Accept Values”. Similar observations were also made for the
remaining functions.

4.6. Success rate and reliability rate

The performance comparison between the OPSO and the GPSO al-
gorithms is carried out with Nrun ¼ 25 (independent runs) in terms of SR
and RR. The GPSO algorithm fails in all the benchmark functions except
in f16 in which it was successful only four times out of twenty five runs.
However, the OPSO algorithm was successful in all the thirty benchmark

functions giving rise to an SR of 100%. The RR of GPSO and OPSO al-
gorithms are thus found to be 0.53% and 100%, respectively.

5. Comparison between the proposed OPSO algorithm and other
ECTs

Here, we evaluate performance of the proposed OPSO algorithm by
comparing it with few ECTs recently reported by other authors [4]
[13–16], [18–24] [27], [29], [32–47]. The comparison includes four
unimodal functions, f1, f5, f6 and f8, nine multimodal functions f10, f11,
f13 and f15 – f20, ten shifted, rotated and shifted-rotated benchmark
functions, f21 – f30.

5.1. Unimodal functions: d ¼ 30

Performance comparison between the proposed OPSO algorithm
and recently reported fifteen other ECTs for four unimodal functions f1,
f5, f6 and f8 is shown in Table 5. Three performance measures MFV, σ
and NFE are used for this comparison. In terms of MFV and σ, the
proposed OPSO algorithm provides superior performance compared to
the other ECTs. In terms of NFE, it is slightly inferior to [40] and [42].
In terms of AET the OPSO algorithm is slower than CCPSO-ISM
algorithm [27] on functions f1, f6 and f8.

5.2. Multimodal functions d ¼ 30

Seven multimodal functions with 30-dimension are considered. The
global minimum is more difficult to achieve in these multimodal
functions. The performance comparison between the OPSO algorithm
and 16 ECTs for 30-dimensional multimodal functions, f10, f11, f15, f16
and f18 – f20 are shown in Table 6. The OPSO algorithm shows superior
performance compared with other ECTs in terms of MFV and σ in case of
f11, f15, f16 and f19. It also shows better performance in terms of NFE
in case of f16 and f18. In terms of other performance measures,

Table 7
Performance comparison between OPSO algorithm and 4 ECTs on 2 multimodal functions
with d ¼ 100.

ECTs Performance
measure

f13 f17

OPSO
(proposed)

MFV ¡7.833233£1001 ¡9.809959£1001

σ 1.36£10�14 3.88£10�01

NFE 4.69 � 1004 1.03 � 1005

OGABC
[40]

MFV �7.833230 � 1001 �9.51915 � 1001

σ 8.60 � 10�11 6.15 � 10�01

NFE 2.52£1004 9.41£1004

OGAQ
[41]

MFV �7.83 � 1001 �9.283 � 1001

NFE 1.34 � 1005 1.34 � 1005

EDAL
[44]

MFV �7.83 � 1001 �9.43757 � 1001

NFE 1.14 � 1005 1.14 � 1005

LEA
[45]

MFV �7.831 � 1001 �9.301 � 1001

NFE 1.30 � 1005 1.30 � 1005

Minimum f(x) �7.833223 � 1001 �9.92784 � 1001

Accept Value f(x) �7.80 � 1001 9.50 � 1001

Table 8
Performance comparison between OPSO algorithm and other 9 ECTs on 6 shifted functions with d ¼ 30.

ECTs Performance
measure

f21 f22 f23 f24 f25 f26

OPSO
(proposed)

MFV ¡4.50£1002 ¡4.50£1002 3.90£1002 ¡3.30£1002 ¡1.40£1002 ¡1.80£1002

σ 1.58£10�13 1.49£10�13 1.10£1000 4.34£10�14 4.74£10�14 1.27£10�12

NFE 1.88£1004 2.34£1004 2.99£1004 1.49£1004 1.84£1004 1.42£1004

AET (sec) 8.9907 17.2141 12.3678 28.1717 8.9032 9.8174
BPSO
[18]

MFV �4.33 � 1002 �4.29 � 1002 4.01 � 1002 �3.09 � 1002 - -
σ 3.98 � 1001 4.40 � 1001 1.16 � 1001 4.3 � 10�03 - -

MCPSO
[19]

MFV 2.55 � 1003 3.63 � 1001 4.35 � 1007 6.87 � 1002 7.11 � 1000 1.79 � 1001

σ 3.43 � 1002 1.97 � 1000 6.945 � 1006 2.03 � 1001 1.00 � 1001 1.66 � 1001

NFE 5 � 1004 5 � 1004 5 � 1004 5 � 1004 5 � 1004 5 � 1004

HCLPSO
[20]

MFV - 1.70 � 10�06 2.39 � 1000 - - -
σ - 1.71 � 10�06 4.27 � 1000 - - -

CSPSO
[23]

MFV - 2.52 � 10�26 3.99 � 1000 - - -
σ - 8.49 � 10�12 2.74 � 1000 - - -
NFE - 1.00 � 1005 - - -

DTT-PSO
[29]

MFV - - 6.48 � 1001 1.11 � 1002 - -
σ - - 7.28 � 1001 1.65 � 1001 - -
NFE - - 1.60 � 1005 1.60 � 1005 - -

TPSO
[32]

MFV 4.47 � 1001 2.67 � 1002 1.30 � 1005 4.26 � 1001 - -
σ 1.41 � 1002 1.49 � 1002 4.08 � 1005 9.48 � 1000 - -
NFE 5.00 � 1004 5.00 � 1004 5.00 � 1004 5.00 � 1004 - -

FPSOCM
[38]

MFV 1.038 � 10�05 1.99 � 10�01 1.65 � 10�01 5.58 � 1001 - -
σ 2.50 � 10�05 1.24 � 10�01 3.29 � 10�01 4.0 � 1001 - -
AET (sec) 24.46 43.52 12.672 40.045 - -

BBO
[46]

MFV 1.7 � 1000 0.8 � 1000 1.1 � 1000 12.4 � 1000 5.1 � 1000 –

p-best AFEP
[47]

MFV 3.01 � 10�08 4.056 � 10�04 2.08 � 1002 9.99 � 10�01 2.04 � 1001 –

σ 1.62 � 10�08 2.91 � 10�03 1.67 � 1003 2.62 � 10�01 1.02 � 1001 –

NFE 3.00 � 1005 3.00 � 1005 3.00 � 1005 3.00 � 1005 3.00 � 1005 –

Minimum f(x) �4.50 � 1002 �4.50 � 1002 3.90 � 1002 �3.30 � 1002 �1.40 � 1002 �1.80 � 1002

Accept Value f(x) �3.50 � 1002 �3.50 � 1002 4.90 � 1002 �2.30 � 1002 �1.35 � 1002 �1.70 � 1002
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performance of the OPSO algorithm is comparable to other ECTs, in
case of other functions.

5.3. Multimodal functions d ¼ 100

Out of thirty functions considered in this study, f13 and f17 are two
multimodal functions with dimension of 100. These two functions are
more complicated, have several local minima and their number change
dramatically with increase in dimension [40]. In Table 7, performance
comparison between OPSO algorithm and other four available ECTs
is provided. The proposed OPSO algorithm performs better than the
other four ECTs in terms of MFV and σ for both functions. However, its
performance in terms of NFE is slightly inferior to other ECTs.

5.4. Shifted, rotated and shifted rotated functions d ¼ 30

Ten shifted, rotated and shifted rotated benchmark functions with
30-dimension are considered. The global minimum is more difficult to
achieve in these functions, because, the solution vector is shifted from
the origin by the vector O, rotated by matrixM or shifted and rotated by
O and M. The performance comparison between the OPSO algorithm
and 9 ECTs for 30-dimensional shifted functions, f21 – f26 are shown in
Table 8. The OPSO algorithm shows superior performance compared
with other 9 ECTs in terms of four fitness values, MFV, σ, NFE and AET.
The performance of the OPSO algorithm is the best among the 9 ECTs.

Table 9 shows the comparison between OPSO algorithm and 7 other
ECTs for 4 rotated and shifted rotated functions f27 – f30. The OPSO
algorithm is found to perform the best in terms of MFV, σ and NFE for
these four functions.

5.5. Shifted functions d ¼ 100

Six shifted benchmark functions, i.e., f21 – f26 with d ¼ 100 are
selected from CEC 2008 [55]. The performance comparison between
the OPSO algorithm and three ECTs (CSO [33], CCPSO2 [34] and
SL-PSO [35]) is shown in Table 10. As recommended in Ref. [52], the
comparison has been implemented with d ¼ 100 and Nrun ¼ 25. For
each independent run, the NFE ¼ d � 5000 ¼ 500,000. The other
parameters used in OPSO algorithm were m ¼ 110, Niter ¼ 4545 based
on (24) and c ¼ 2.05. It can be seen that for f23 and f24, the OPSO
algorithm outperforms the other three ECTs in terms of MFV and σ.
For f21 and f25, the OPSO algorithm shares the three ECTs with similar
results in terms of MFV and σ. In case of f22, performance of the OPSO
algorithm is similar to that of the SL-PSO algorithm. Finally, for f26, the
OPSO algorithm performs similar to other three ECTs in terms of MFV.
However, in terms of σ, its performance is better than CCPSO2 only.

From the above observations, it is evident that the proposed OPSO
algorithm gives better performance compared to that of recently reported
ECTs for solving unimodal, multimodal and functions in terms of
convergence, accuracy, stability and reliability.

Table 9
Performance comparison between OPSO algorithm and other 7 ECTs on 4 rotated and shifted rotated functions with d ¼ 30.

ECTs Performance
measure

f27 f28 f29 f30

OPSO
(proposed)

MFV ¡90.0£1002 ¡4.50£1002 ¡3.29£1002 ¡1.80£1002

σ 1.64£10�14 4.73£10�13 2.15 � 1000 2.59£10�14

NFE 5.20£1002 3.20 � 1004 1.90 � 1004 3.20 � 1004

AET (sec) 2.1427 9.9062 26.2184 26.6115
BPSO
[18]

MFV - �4.37 � 1002 �3.09 � 1002 �1.59 � 1002

σ - 236 � 1001 4.1 � 10�03 3.30 � 1001

HCLPSO
[20]

MFV - 2.61 � 1005 5.60 � 1001 2.00 � 10�02

σ - 6.42 � 1005 1.29 � 1001 2.00 � 10�02

CSPSO
[23]

MFV - 3.64 � 1004 - -
σ - 3.22 � 1004 - -
NFE - - - -

DTT-PSO
[29]

MFV - - 8.47 � 1001 1.10 � 10�02

σ - - 1.30 � 1001 4.85 � 10�03

NFE - - 1.60 � 1005 1.60 � 1005

TPSO
[32]

MFV - 5.23 � 1006 5.78 � 1001 1.40 � 1001

σ - 1.85 � 1006 2.21 � 1001 1.79 � 1001

NFE - 5.001004 5.001004 5.001004

BBO
[46]

MFV - 0.3 � 1000 - 9.9 � 1000

p-best AFEP
[47]

MFV - 5.07 � 1005 3.28 � 1001 2.34 � 10�03

σ - 1.36 � 1005 2.00 � 1001 5.34 � 10�04

NFE - 3.00 � 1005 3.00 � 1005 3.00 � 1005

Minimum f(x) �9.00 � 1002 �4.50 � 1002 �3.30 � 1002 �1.80 � 1002

Accept Value f(x) �8.00 � 1002 �3.50 � 1002 �3.00 � 1002 �1.80 � 1002

Table 10
Performance comparison between OPSO algorithm and other 3 ECTs on 6 shifted functions with d ¼ 100.

ECTs Performance
measure

f21 f22 f23 f24 f25 f26

OPSO
(proposed)

MFV �4.50£1002 �4.50£1002 3.90£1002 �3.30£1002 ¡1.40£1002 �1.80£1002

σ 3.33 � 10�13 4.11£10�13 6.60£1001 2.41£10�13 8.03 � 10�14 2.84 � 10�14

CSO
[33]

MFV �4.50£1002 ¡4.16 � 1002 7.80 � 1002 ¡2.74 � 1002 1.39 � 1002 �1.80£1002

σ 1.10£10�28 5.38 � 1000 5.53 � 1002 7.48 � 1000 1.52 � 10�01 0.0
CCPSO2
[34]

MFV �4.50£1002 ¡4.43 � 1002 8.13 � 1002 ¡3.29 � 1002 �1.40£1002 �1.80£1002

σ 3.23 � 10�14 7.83 � 1000 8.65 � 1002 1.99 � 10�01 3.06 � 10�14 4.88 � 10�03

SL-PSO
[35]

MFV �4.50£1002 �4.50£1002 9.64 � 1002 2.55 � 1002 �1.40£1002 �1.80£1002

σ 3.50 � 10�28 4.97 � 10�06 1.76 � 1002 1.21 � 1001 �1.40£10¡15 0.0
Minimum f(x) ¡4.50 � 1002 ¡4.50 � 1002 3.90 � 1002 ¡3.30 � 1002 ¡1.40 � 1002 ¡1.80 � 1002

Maximum NFE 500,000
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6. Conclusion

A novel orthogonal PSO (OPSO) algorithm was proposed whose
performance is found to be superior than the GPSO algorithm. While
searching for optimal solution in a d-dimensional space, the OPSO al-
gorithm withm particles (m> d) divides the swarm population into two
groups. The first group, named active group, consists of d particles that
have the best personal experiences. The remaining (m ‒ d) particles
constitute the passive group. The two groups introduce diversity in
swarm population. Using an orthogonal diagonalization process the
position vectors of only the active group are updated. When the
convergence is attained, the d position vectors constitute a diagonal
(orthogonal) matrix. Due to the improvement of the updating proced-
ure, the OPSO algorithm avoids the zigzagging phenomenon of GPSO
algorithm. From the sensitivity analysis, we infer that, the swarm
population size need to be selected at about 10–30% higher than the
search dimension, d. By taking thirty unimodal, multimodal, shifted,
rotated, and shifted rotated benchmark functions of dimension 30 and
100, we have shown that the OPSO algorithm outperforms the GPSO
algorithm and several recently reported ECTs in terms of convergence,
accuracy, consistency and reliability.
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a b s t r a c t

Particle swarm optimization (PSO) algorithm has been successfully applied to solve various optimization

problems in science and engineering. One such popular one is called global PSO (GPSO) algorithm. One

of major drawback of GPSO algorithm is the phenomenon of “zigzagging”, that leads to premature con-

vergence by falling into local minima. In addition, the performance of GPSO algorithm deteriorates for

high-dimensional problems, especially in presence of nonlinear constraints. In this paper we propose a

novel algorithm called, orthogonal PSO (OPSO) that alleviates the shortcomings of the GPSO algorithm.

In OPSO algorithm, the m particles of the swarm are divided into two groups: active group and passive

group. The d particles of the active group undergo an orthogonal diagonalization process and are updated

in such way that their position vectors become orthogonally diagonalized. In the OPSO algorithm, the

particles are updated using only one guide, thus avoiding the conflict between the two guides that occurs

in the GPSO algorithm. We applied the OPSO algorithm for solving economic dispatch (ED) problem by

taking three power systems under several power constraints imposed by thermal generating units (TGUs)

and smart power grid (SPG), for example, ramp rate limits, and prohibited operating zones. In addition,

the OPSO algorithm is also applied for ten selected shifted and rotated CEC 2015 benchmark functions.

With extensive simulation studies, we have shown superior performance of OPSO algorithm over GPSO

algorithm and several existing evolutional computation techniques in terms of several performance mea-

sures, e.g., minimum cost, convergence rate, consistency, and stability. In addition, using unpaired t-Test,

we have shown the statistical significance of the OPSO algorithm against several contending algorithms

including top-ranked CEC 2015 algorithms.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Economic dispatch (ED) of power is one of the fundamental

problems in smart power grid (SPG) operations. Its objective is to

allocate the load demand among committed thermal generating

units (TGUs) in most economical manner, while satisfying various

practical power constraints imposed by the TGUs and SPG. In order

to make SPG more efficient, flexible, adaptive and reliable, these

constraints need to be integrated with smart meters and sensors,

advanced communication technology and high-performance com-

puting machines [1]. Therefore, there is a need to develop new

computational techniques to solve ED problem that is compatible

with rapid technological evolution in SPG.

Traditionally, the cost function of a TGU is approximately rep-

resented by a quadratic or a piecewise quadratic function [2,3].

∗ Corresponding author.

E-mail addresses: lalbahrani@swin.edu.au (L.T. Al Bahrani), JPatra@swin.edu.au

(J.C. Patra).

However, due to several power constraints, e.g., ramp rate limits

(RRLs) and prohibited operating zones (POZs), the cost function

of an on-line TGU becomes non-convex and non-smooth with

multiple modes, i.e., multimodal objective function. Because, the

operating range of on-line TGUs is restricted by their RRLs and

discontinuities in the cost curve due to their POZs.

In the past decades, many optimization techniques including

traditional methods have been adopted in order to find the opti-

mum power dispatch and the rate of optimum product for each

on-line TGU. Some of the traditional methods include linear pro-

gramming [4], quadratic programming [5], Lagrange relaxation [6],

Lambda iterative method [7], and dynamic programming [8]. These

methods offer certain advantages, for example, they only need

to run once and do not have any problem specific parameters to

specify. However, the traditional methods are able to solve the

ED problem only when the cost function is piecewise linear and

monotonically increasing.

To overcome the above mentioned deficiencies, several evo-

lutionary computation techniques (ECTs) have been proposed to

tackle the non-convex ED problems. Some of the popular ECTs

http://dx.doi.org/10.1016/j.asoc.2017.04.059

1568-4946/© 2017 Elsevier B.V. All rights reserved.
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include genetic algorithm (GA) [9], simulated annealing [10],

artificial immune system (AIS) [11], artificial bee colony [12],

evolutionary programming [13], differential evolution (DE) [14],

harmony search [15]. Another popular ECT is the particle swarm

optimization (PSO) algorithm proposed by Kennedy and Eberhart

[16,17]. The PSO algorithm can be divided into types, one for local

PSO (LPSO) and the other for global PSO (GPSO) which is more pop-

ular. Some of the advantages of application of GPSO algorithm in

solving ED problem are: firstly, it imposes a few or no restrictions

on the shape of the cost function; secondly, it has a few parameters

and is easy to execute. However, the GPSO algorithm is suitable only

for solving optimization problems that have a continuous domain

and it is prone to get trapped into local minima when applied to

multimodal functions.

The GPSO algorithm mimics the behaviour of swarm population

of some animal species, such as, birds or fish flocking. The GPSO

algorithm operates by initializing the particles (with possible solu-

tions) of the swarm randomly and searching for global optima by

updating the position and the velocity of each particle iteratively.

While updating, each particle in a swarm uses its own personal

experience and the best experience of the swarm as two guides

through linear summation. Thus, a particle that has best experi-

ence among the personal experiences of all particles is considered

to be a best solution. The reasons for poor performance of the GPSO

algorithm can be summarized as follows. Firstly, the learning strat-

egy of the GPSO algorithm depends on the fact that each particle

in a swarm adjusts its search trajectory according to its own per-

sonal experience and its neighbors’ experiences. Therefore, each

particle in a swarm obtains two possible solutions, one from its

personal experience and the other from its neighborhood’s experi-

ence and then sums them together. The problem here is not only

existence of the summation, but also the presence of two guides.

These two guides may have a large difference or may even be oppo-

site directions at the early search step, which may lead the particles

to pull to local minima trapping and may lead to early convergence.

Often, they remain in opposite directions until final search stage.

Secondly, these two guides and their linear summation may cause

a phenomenon called “Oscillation or zigzagging” [18–20]. This phe-

nomenon becomes more prominent with high dimensional search

space in which the particles remain in a confused state and are

unable to control their search trajectories.

Several ECTs have been proposed in recent years to boost the

global search ability for solving different types and forms of uni-

modal and multimodal objective functions. Some of these ECTs

have been focused on solving non-convex multimodal cost function

and improving the performance of the GPSO and LPSO algorithms

in order to obtain a global optimum and to prevent the falling into

local minima. For example, self-organizing hierarchical PSO (SOH-

PSO) algorithm [3], modified PSO algorithm [21], PSO with modified

stochastic acceleration factors (PSO-MSAF) [22], an improved PSO

algorithm [23], hybrid gradient PSO (HGPSO) [24], hybrid PSO

with mutation (HPSOM) algorithm [24], hybrid PSO with wavelet

mutation (HPSOWM) algorithm [24], random drift PSO (RDPSO)

[25], simulated annealing PSO (SA-PSO) algorithm [26], new PSO

local random search (NPSO-LRS) algorithm [27], anti-predatory

PSO (APSO) [28], chaotic PSO (CPSO) algorithm [29], and quantum

mechanism PSO (QMPSO) algorithm [30] have been proposed. In

[25], eleven ECTs, i.e., GA, DE, ant colony search algorithm (ACSA),

bee colony optimization (BCO), AIS, firefly algorithm (FA), APSO,

HGPSO, HPSOM, HPSOWM, RDPSO have been applied to the ED

problem with three different power systems.

Other ECTs have been applied on solving other types of uni-

modal and multimodal objective functions, i.e., shifted and rotated

CEC 2015 benchmark objective functions [31,32]. For example, local

Lipschits underestimate differential evolution (LLUDE) [33], strat-

egy adaptation differential evolution (SaDE) [33], JADE: adaptive

differential evolution [33], composite differential evolution (CoDE)

[33], self-adaptive binary variant differential evolution (SbaDE)

[34], directionally driven self-regulating PSO (DD-SRPSO) [35],

extraordinariness PSO (EPSO) [36], shrinking hypersphere PSO with

gravitational search algorithm (SHPSO-GSA) [37] have been pro-

posed.

In order to make a fair comparison, some other ECTs are

also used in the literature. They include fully decentralized

approach (FDA) [38], biogeography-based optimization (BBO) algo-

rithm [39], genetic algorithm with API (GA-API) algorithm [40],

mixed-integer quadratically constrained quadratic programming

(MIQCQP) [41], enhanced gradient simplified swarm optimization

algorithm (EGSSOA) [42], Lambda logic (�-logic) [43], self-tuning

hybrid differential evolution [44], two-phase neural network [45],

synergic predator-prey optimization (SPPO) algorithm [46], and

chaotic teaching-learning-based optimization algorithm [47], self

optimization based adaptive DE with linear population, L-SHADE

and eigenvector-based crossover and successful-parent-selecting,

SPS-l-SHADE-EIG [48], DE with success-based parameter adap-

tion (DEsPA) algorithm [49], mean-variance mapping optimization

(MVMO) algorithm [50,51], and tuned covariance matrix evolution

strategy (TunedCMAES) [52].

In this paper, we propose a novel algorithm called orthogo-

nal PSO (OPSO) algorithm with a new learning strategy to solve

non-convex ED problem for TGUs under several practical TGUs and

power grid constraints and to improve the performance by over-

coming the drawbacks of GPSO algorithm. The OPSO algorithm

consists of a swarm with m particles that looks for optimal solution

in a d-dimensional search space (m ≥ d). The swarm population is

divided into two groups: an active group of best personal experi-

ence of d particles and another passive group of personal experience

of remaining (m – d) particles. The position vectors associated with

the m particles undergo an orthogonal diagonalization (OD) process

in which the d orthogonal guidance vectors in the active group are

obtained. In each iteration, using only one guide, the velocity and

position vectors of only the active group particles and the remaining

(m – d) particles are left unchanged. This avoids the conflicting sit-

uation of the GPSO algorithm and leads the best d particles towards

the optimal solution in multi-dimensional search space. We applied

the OPSO algorithm to small, medium and large TGUs power system

and ten selected shifted and rotated CEC 2015 benchmark func-

tions. We have shown that the OPSO algorithm is able to achieve

superior performance in terms of convergence, stability and accu-

racy compared to GPSO algorithm and several competitive ECTs.

In the recent works, the effectiveness of the proposed OPSO algo-

rithm has been shown for finding optimum power dispatch in smart

power grid applications [53–55].

Recently, the ECTs in [18–20] have been proposed under the

name, “orthogonal”, i.e., orthogonal learning PSO (OLPSO) algo-

rithms, one for local and the other for global optimization [18],

orthogonal global-best-guided artificial bee colony algorithm [19],

and orthogonal genetic algorithm with quantization [20]. They are

using a different approach called, orthogonal experimental design

(OED). The OED allows the inputs interact among them such that the

output process can be optimized. The OED works on a predefined

table of an orthogonal array of N factors with Q levels per factor. The

OED is applied to obtain a set of possible solutions to achieve the

optimal solution. However, the drawbacks through applying OED

are: firstly, it holds only when no or weak interaction among the

factors exists; secondly, the table that contains variable designs is

complicated; thirdly, the orthogonality may not be possible achieve

in the complex problems.

The rest of the paper is organized as follows. Section 2 describes

the non-convex ED problem under various power constraints.

Explanation of the learning strategy of the GPSO algorithm is pre-

sented in Section 3. Details of the proposed OPSO algorithm are
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provided in Section 4. In Section 5, the application of the OPSO

algorithm to ED problem for three power systems is presented. In

Section 6, the application of the OPSO algorithm to ten selected CEC

2015 benchmark functions is presented. Finally, conclusion of this

study is given in Section 7.

2. Problem formulation

Here, we explain the cost function and various practical power

constraints involved in this study.

2.1. Cost objective function

The main purpose of ED problem is to estimate the optimum

arrangement of on-line TGUs generation in order to minimize the

entire generation fuel cost subjected to the on-line TGUs and power

grid constraints. The fuel cost function of each on-line TGU is char-

acterized by quadratic function [25] and given by:

F(Pj) = aj + bjPj + cjP
2
j (1)

where F(Pj) is the fuel cost function of jth TGU in ($/h), Pj is the

output active power of jth TGU in (MW), aj , bj , and cj are fuel cost

coefficients of jth TGU. The total fuel cost of the on-line TGUs is

given by

MinimizeFcos t =
Ngen∑
j=1

F(Pj) (2)

where Ngen is the number of committed on-line TGUs. Fcost is the

function to be minimized.

2.2. Power constraints

Different practical power constraints imposed on on-line TGUs

and by SPG used in the literature are explained below.

2.2.1. Power balance constraint

The total output power of committed on-line TGUs should be

able to satisfy load demand and transmission network loss. The

power balance constraint is given as

Ngen∑
j=1

Pj = PD + PL (3)

where PD is load demand in (MW) and PL is transmission network

loss in (MW).

2.2.2. Transmission network loss

The transmission network loss PL is a critical constraint of the ED

problem. Not only is it desired that the power loss incurred in the

system be minimized along with the total fuel cost, but the system

must also generate enough power to satisfy the load demand as

well as to compensate for the PL. The PL is given by [38,56]:

PL =
Ngen∑
j=1

Ngen∑
k=1

PjBjkPk (4)

where Bjk, are known as the loss coefficients or B-coefficients

[56,57].

2.2.3. Transmission network loss mismatch

The total power generated is obtained using (3). From (3), the

PL is obtained and let’s call PL1 as follows

PL1 =
Ngen∑
j=1

Pj − PD (5)

Besides, the PL is also computed using (4) and let’s denote this

time by PL2 as follows:

PL2 =
Ngen∑
j=1

Ngen∑
k=1

PjBjkPk (6)

Then, the difference between two, PL2 and PL1, is called trans-

mission network loss mismatch (PL,mismatch) as follows:

PL,mismatch = PL2 − PL1 (7)

The significance of the PL,mismatch can be expressed as follows:

• The effectiveness and the accuracy of the algorithm in computing

optimal Pj can be determined.
• One can determine whether or not the power balance constraint

(3) is satisfied.

When PL,mismatch = 0, then PL2 = PL1. In such case, the (5) can be

written as

PL2 =
Ngen∑
j=1

Pj − PD (8)

Subsequently, the (3) is satisfied.

2.2.4. Generation limits

Each TGU has a specified range within which its operation is

stable. Therefore, it is desired that the TGUs be run within this range

in order to maintain system stability

The generation limits of the jth TGU is given by

Pj,min ≤ Pj ≤ Pj,max j = 1, 2, . . .,Ngen (9)

In other words, the power generation of each TGU must remain

between its minimum Pj,min and its maximum Pj,max limits.

2.2.5. Ramp rate limits

The operating range of all on-line TGUs is restricted by their

ramp rate limits RRLs due to the physical limitation of TGUs [58,59].

For any sudden change in the load demand, TGUs increase or

decrease their generation in order to satisfy the power balance con-

straint (3). However, the TGUs can change their generation only at

a certain rate determined by the up-ramping and down-ramping

rate. If a TGU is operating at a specific point, then its point of oper-

ation can be changed only up to a certain rate determined by the

ramp rate. Therefore, a change in TGU output power from one spe-

cific interval to the next cannot exceed a specified limit.

If power generation need to increase, then per unit time rate of

increase Pj − Pj
0 must satisfy

Pj − Pj
0 ≤ URj (10)

If power generation need to decrease, then per unit time rate of

decrease Pj
0 − Pj must satisfy

Pj
0 − Pj ≤ DRj (11)

where Pj
0 is the TGU output active power at the previous time inter-

val and Pj is the TGU output power at current time interval. The URj
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Fig. 1. Lower and upper generation limits, POZs and FOZs for TGU2.

and DRj are the up-ramp and down-ramp limits of TGU j, respec-

tively, in (MW/h). By substituting (10) and (11) in (9), the (12) is

obtained.

max{Pj,min, (Pj
0 − DRj)} ≤ Pj ≤ min{Pj,max, (Pj

0 + URj)} (12)

Let us assume that,

Pj,low = max{Pj,min, (Pj
0 − DRj)}, and (13)

Pj,high = min{Pj,max, (Pj
0 + URj)} (14)

where Pj,low and Pj,high are the new lower and higher limits of unit

j, respectively.

2.2.6. Prohibited operating zones

The physical limitations due to the steam valve operation or

vibration in a shaft bearing of TGU may result in the generation

units operating within prohibited operating zones (POZs) [60]. The

POZs make the cost function discontinuous in nature. In such case,

it is difficult to determine the shape of the cost curve under POZs

through actual performance testing. In addition, if the TGU operates

within the POZs range in the SPG then it may lead to loss of stability.

Therefore, these regions are usually avoided during generation. By

using (9) mentioned in constraint 2.2.4, the feasible operating zones

FOZs of the jth TGU are given by

Pj,min ≤ Pj ≤ Pl
j,1

Pu
j,k−1

≤ Pj ≤ Pl
j,k, k = 2, 3, ..., Nj,PZ

Pu
j,Nj,PZ

≤ Pj ≤ Pj,max (15)

wherePl
j,k

and Pu
j,k

are the lower and upper bound of the kth POZs of

the jth unit, and Nj,PZ is number of POZs of the jth TGU. Incorpo-

rating these power constraints in (12)–(15), we get the final set of

inequality power constraints imposed on TGU in SPG are as follows:

Pj,low ≤ Pj ≤ Pl
j,1

Pu
j,k−1

≤ Pj ≤ Pl
j,k, k = 2, 3, ..., NjPZ

Pu
j,Nj,PZ

≤ Pj ≤ Pj,high (16)

2.2.6.1. Observation. Eq. (16) gives the final set of the inequality

power constraints imposed on jth TGU in terms of new lower and

upper generation limits with RRLs and FOZs. In addition, the (16)

avoids all POZS imposed on jth TGU. Thus, all TGUs will have oper-

ation limits (OLs) satisfying all power constraints.

2.2.6.2. An illustrative example. In order to illustrate new lower and

upper generation limits and FOZs generated due to presence RRLs

and POZs of jth TGU, an example of specifications of TGU2 per one

hour generation is given below [25]:

P2
0 = 170 MW; P2,min = 50 MW; P2,max = 200 MW; UR2 = 50 MW;

DR2 = 90 MW. The TGU2 has two POZs are: POZ1 = [90,110] and

POZ2 = [140,160].

From (16), the new lower and upper limits of TGU2 based on

RRLs are:

P2,low = 80 MW and P2,high = 200 MW,

and there are three FOZs are:

FOZ1: 80 ≤ P2 ≤ 90

FOZ2: 110 ≤ P2 ≤ 140

FOZ3: 160 ≤ P2 ≤ 200

Fig. 1 shows that TGU2 has minimum and maximum OLs given

by 50 MW and 200 MW, respectively. However, due to presence

RRLs (up-ramp and down-ramp limits) power constraint, TGU2

operates within new lower and higher OLs given by P2,low = 80 MM

and P2,high = 200 MW. In addition, three FOZs are: FOZ1 = [80,90]

MW, FOZ2 = [110,160] MW, FOZ3 = [160,200] MW in white color,

and two POZs are: POZ1 = [90,110] MW, POZ2 = [140,160] MW in

dark color are shown in Fig. 1. The intermittent zone ([50,80] MW)

is out of OL of the TGU2.

3. The GPSO algorithm

The mechanism of GPSO algorithm depends on distribution of

the particles (possible solutions) in a swarm. Firstly, each particle

flying in the multi-dimensional search area adjusts its flying trajec-

tory according to two guides, its personal experience (Gpers,i) and

its neighborhood’s best experience (Gbest). Secondly, when seek-

ing a global solution, each particle learns from its own historical

experience and its neighborhood’s historical experience. In such

a case, a particle while choosing the neighborhood’s best experi-

ence uses the best experience of the whole swarm as its neighbor’s

best experience. Since the position of each particle is affected by

the best-fit particle in the entire swarm, this technique is named,

global PSO [16,17,61–64]. Only a few parameters have been used in

GPSO algorithm later to give potential advantage and to enhance its

performance. Among user parameters of GPSO algorithm, several

strategies of inertia weight have been used. For example, constant

inertia weight [61], time-varying inertia weight [62] and constric-

tion factor for balancing global and local searches [63]. However,

when the cost function is within high-dimensional search space and

restricted by many POZs, this makes the cost function has multiple

local minima. Then, finding global optimum becomes more difficult

with these few parameters, because these few parameters become

an ineffective. Therefore, the original GPSO algorithm is considered

as a fundamental technique of PSO algorithm. The following steps

explain the mechanism of the GPSO algorithm.

Let us consider a swarm population with m particles search-

ing for a solution in d-dimensional search space, where m > 1. The

objective of the GPSO algorithm is to minimize the given objective

function f(x). Each particle i (i = 1, 2, . . ., m) is associated with two

d-dimensional vectors; a velocity vector Vi and a position vector Xi.

Initialization: Iteration, t = 0.

Step 1: Initialize the velocity and position vectors randomly for

particle i, (i = 1, 2, . . ., m).

Vi(0) = [vi1,vi2, . . .,vid] (17)
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Xi(0) = [xi1,xi2, . . .,xid] (18)

Step 2: For each particle i, evaluate the objective function f(x)

using the position vector Xi (0).

Step 3: Initialize the personal position vector of particle i,

Gpers,i(0) as follows:

Gpers,i(0) = [gpi,1,gpi,2,. . .,gpi,d] = Xi(0) (19)

Step 4: Determine the global best position vector, Gbest(0). It is

the best position vector among all personal positions vectors in the

swarm. The Gbest(0) is given by

Gbest(0) = [gb,1,gb,2, . . .,gb,d] (20)

Update: Iteration, t = 1, 2, . . ., Niter , where Niter is the total num-

ber of iterations.

Step 5: In iteration t, the particle’s velocity and position vectors

are updated as follows:

Vi(t) = Vi(t − 1) + c1r1(t)(Gpers,i(t − 1) − Xi(t − 1))

+ c2r2(t)(Gbest(t − 1) − Xi(t − 1)) (21)

Xi(t) = Xi(t − 1) + Vi(t) (22)

where c1 and c2 are two positive acceleration coefficients whose

values are chosen by using trail and error. The range of c1 and c2

are of [2.00,2.25]. They are adapting controlled based on the evo-

lutionary states [64–66]. However, in most cases, c1 = c2 = 2.00. The

r1(t) and r2(t) are two randomly generated values within the range

(0,1).

Step 6: Each particle i, the objective function f(x) is evaluated

using the position vector Xi (t).

Step 7: The Gpers,i and Gbest are updated as follows:

Gpers,i(t) =
{

Xi(t) iff (Xi(t)) ≤ f (Gpers,i(t − 1))

Gpers,i(t − 1) Otherwise

}
(23)

Gbest(t) = min{Gpers,i(t)} (24)

End of iteration, t = Niter

Step 8: The global best position vector Gbest(t) becomes the

optimal solution and the f(Gbest(t)) gives the optimal value of the

objective function. A flowchart of the GPSO algorithm is shown in

Fig. 2.

4. The OPSO algorithm

Here, the details of the proposed OPSO algorithm and explana-

tion of the diagonalization process are provided.

4.1. Orthogonal diagonalization process

The matrix diagonalization is the process of converting a square

matrix, B of size (d × d), into a diagonal matrix, D of size (d × d), as

shown below [67].

B = QDQ−1 (25)

where Q is a matrix of size (d × d) composed of eigenvectors of B

and the diagonal elements of D contains the corresponding eigen-

values. The Q is an invertible matrix because it contains linearly

independent vectors. When B is symmetric, the (25) may be written

as

B = CDC−1 (26)

in which the columns of matrix C are orthonormal to each other.

The (26) can be rewritten as

D = C−1BC (27)

Nparticle m d Niter

t  
Vi Xi

f Xi

Gpers,i Gbest

Vi t Xi t

t t

f Xi t

   t Niter 

Gpers,i t Gbest t

Gbest Niter

Fig. 2. Flowchart of the GPSO algorithm.

Since matrix C is an orthonormal matrix, the (27) can be written

as

D = CTBC (28)

Eq. (28) is called orthogonal diagonalization (OD). The process

of OD is shown in Fig. 3.

4.2. OPSO learning algorithm

In this paper, an orthogonal PSO (OPSO) algorithm is proposed

to improve the performance of the GPSO algorithm. The objective of

the OPSO algorithm is to minimize the given d-dimensional objec-

tive function f(x). Consider a swarm population with m particles,

each with a dimension of d (d ≤ m). The OPSO algorithm provides

a new topology to the swarm population. In each iteration, the

swarm population of m particles are divided into two groups: an

active group that consists of best personal experience of d particles

and one passive group which consists of the personal experience of

rest (m − d) particles. The opinion of the active group particles are

honoured by updating their respective velocity and position vec-

tors. The opinion of the passive group particles are ignored because

their guidance may be erratic, and therefore, their velocity and posi-

tion vectors are not updated. In each iteration, the OD process (28)

is applied. The matrix B is obtained from the d best particles of

the active group and thereafter, orthonormal matrix C and diago-

nal matrix D are computed using (28). The steps involved in OPSO

algorithm are given below.

Let a d-dimensional objective function f(x) need to be optimized.

Initialization: Iteration, t = 0.

Step 1: Randomly initialize the velocity Vi(0) and position Xi(0)

vectors for particle i, (i = 1, 2, . . ., m).

Step 2: Determine the personal position vectors, Gpers,i(0) using

(19).

Step 3: Evaluate the objective function f(x) using position vector

Xi(0).
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B d d. 
B d

C
D

Fig. 3. The orthogonal diagonalization process.

A m d B d d

for i  d
B i  A  i

      B i   A  i
end  for
for k  d

for i  d
B k  i A k  i
B k  i  B k  i
B i  k B k  i

end for 
end for 

Fig. 4. Pseudocode for converting matrix A to a symmetric matrix B.

OD process:
In iteration t, t = 1, 2, . . ., Niter , where Niter is the total number of

iterations.

Step 4: Arrange the m personal position vectors in an ascending

order based on their f(x) values.

Step 5: Construct matrix A of size (m × d) such that each row

occupies one of the m personal position vectors in the same ordered

sequence as in step 4.

Step 6: Using pseudocode given in Fig. 4, convert matrix A to a

symmetric matrix B of size (d × d), such that B is a real symmetric

matrix of dimension (d × d).

Step 7: Apply the OD process shown in Fig. 3 on matrix B to

obtain the diagonal matrix D. Let Di denote the ith row of matrix D,

where i = 1, 2, . . ., d.

Update:

Step 8: Update the position and velocity vectors of the active

group particles, i = 1, 2, ., d, as follows.

Vi(t) = Vi(t − 1) + cr(t)[Di(t) − Xi(t − 1)] (29)

Xi(t) = Xi(t − 1) + Vi(t) (30)

where c is an acceleration coefficient and is chosen by trial and error

in the range [2.00,2.25] and r(t) is a random number within range

(0,1).

Step 9: Determine the Gpers,i(t), i = 1, 2, . . ., m, as follows.

Gpers,i (t) =
{

Xi (t) if f (Xi (t)) ≤ f
(

Gpers,i(t − 1)
)

Gpers,i (t − 1) Otherwise

}
(31)

Step 10: Determine the global best position, Gbest (t).

Gbest(t) = min{Gpers,i(t)},i = 1, 2, . . .,m (32)

End of iteration, t = Niter

Step 11: The Gbest(Niter) as computed in step 10 provides the

optimal solution. A flowchart of the OPSO algorithm is shown in

Fig. 5.

4.2.1. Observation 1

One of the important observation of the OPSO algorithm is as

follows. Sine D is a diagonal matrix, the d rows or columns of matrix

D are orthogonal vectors. These d vectors are used to diminish the

contribution of Xi(t − 1) while updating Vi(t), i = 1, 2, . . ., d. As t →∞,

Nparticle m d Niter

t
Vi Xi

f Xi 

Gpers,i 

t t

A

Vi t Xi t

B C D

Gpers,i Xi t

Gbest Xi t

Gbest Niter

   t Niter 

Fig. 5. Flowchart of the OPSO algorithm.

assume that the algorithm has converged. In such case, (30) can be

written as:

lim
t→∞

Xi (t) = Xi (t − 1) (33)

This implies that lim
t→∞

Vi(t) = 0. Then, (29) can be written as:

lim
t→∞

Vi (t) = Vi (t − 1) = 0 (34)

which implies that

lim
t→∞

c r (t) [Di (t) − Xi (t − 1)] = 0 (35)

Since c r(t) is constant,

lim
t→∞

Xi (t − 1) = Di (t) (36)

From (36) it is evident that lim
t→∞

Xi(t) becomes diagonal and

equals to Di when iteration becomes large and the algorithm has

converged.
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Fig. 6. Fitness landscape of f(x,y). The minimum value of the function is 9.0 at x = 2.0

and y = –3.0.

Considering the d positions vectors, (36) can be written in matrix

form as:

[X(t)]active group = [D(t)]active group (37)

This means, at t →∞, the d position vectors of the active group

particles are equal to the d orthogonal vectors in matrix D. Thus, the

OPSO algorithm reaches convergence and leads to optimal solution.

4.2.2. Observation 2

In case of GPSO algorithm (21), two guides, Gpers,i and Gbest , are

used to update the velocity vector Vi(t). These two guides may con-

flict each other which leads to zigzag behaviour of the algorithm,

that in turn causes trapping into a local minima. Whereas, in case

of OPSO algorithm (29), as only one guide, Di(t) is used in updating

of the velocity vector, Vi(t), such situation is eliminated.

4.2.3. Observation 3

Due to the orthogonalization of the position vectors, as itera-

tion progresses, once the optimal solution is achieved, the solution

remains the same in the subsequent iterations until the end of

the total number of iterations. This fact provides stability to the

proposed algorithm.

4.2.4. Observation 4

From (29), the velocity vector of each particle of active group

can be rewritten as follows.

V1(t) = V1(t − 1) + cr(t)[D1(t) − X1(t − 1)]

V2(t) = V2(t − 1) + cr(t)[D2(t) − X2(t − 1)]

...

Vd(t) =
...

Vd(t − 1) +
...

cr(t)[Dd(t) −
...

Xd(t − 1)]

(38)

where

D1(t) = [d11, 0, 0, · · ·, 0]

D2(t) = [0, d22, 0, · · ·, 0]

...
...

...
...

...

Dd(t) = [0, 0, 0, ddd]

(39)

It can be seen by cooperation (38) and (39), the position vector

Xi, i = 1, 2, . . ., d, of active group is affected by only one orthogonal

vector Di, i = 1, 2, . . ., d. Thus, while updating, each Vi, i = 1, 2, . . ., d, is

Fig. 7. A numerical example showing convergence of the OPSO algorithm.

perturbed only by dii in the d-dimensional search space. Due to this,

the OPSO algorithm gives faster convergence and better solution.

4.2.5. Observation 5

When m = d, there is no existence of passive group and therefore

we do not see any advantages of diversity and the solution may

not yield the best. When m � d, it gives rise to more computation,

but does not provides any better solution, as seen from sensitivity

analysis (Section 6.6). Considering these two extremes a reasonable

value of m is could be about 10% more than d.

4.2.6. An illustrative example

In order to explain the mechanism of OPSO algorithm, Fig. 6

illustrates an example of a 2-dimensional shifted function, f(x,y)

= (x − 2)2 + (y + 3)2 + 9. From visual inspection, it can be seen that the

x and y are shifted from the origin [0,0] by [2.0,–3.0]. The optimum

solution of the given function equals to 9.0 at [x,y] = [2.0,−3.0]. The

aim of the algorithm is to find the values x and y such that the f(x,y)

is minimized.

The OPSO algorithm program is implemented using MATLAB

software in a personal computer with the following specifications:

Intel (R) core (TM) 2 Duo CPU T6570 @ 2.1 GHz. RAM of 4GB and

Appendix-1



408 L.T. Al Bahrani, J.C. Patra / Applied Soft Computing 58 (2017) 401–426

Fig. 8. Movement of positions Xi , i = 1, 2, . . .,6 of six particles based on orthogonal vectors D1 and D2, two active group particles (1 and 2) and four passive group particles

(3–6) searching for global solution [2.0,–3.0].

Windows 7, 64-bit operating system. The OPSO algorithm is exe-

cuted with m = 6 for Niter = 200. The values of position vectors (Xi,

i = 1, 2, . . ., 6), the diagonal vectors (Di, i = 1, 2) and personal vectors

(Gpers,i, i = 1, 2, . . ., 6) at iteration t = 1, 80, 140 and 200 are shown in

Fig. 7. The six particles are divided into an active group of two best

particles and a passive group of remaining four particles. Accord-

Appendix-1



L.T. Al Bahrani, J.C. Patra / Applied Soft Computing 58 (2017) 401–426 409

Fig. 9. Movement of the personal position vectors of six particles Gpers,i , i = 1, 2, . . ., 6 and global best position vector Gbest, two active group particles (1 and 2) and four

passive group particles (3, 4, 5 and 6) searching for global solution [2.0, −3.0].

ing to the OD process, Gpers,1 and Gpers,2 are assigned to the active

group and (Gpers,3, . . ., Gpers,6) are assigned to the passive group. In

each iteration, the velocity and position vectors of only the active

group are updated. As seen from Fig. 7, as iteration reaches 200, the

OD process causes [X]active group = [D]active group, satisfying (37) and

causing X to be a diagonal matrix. At the end of iteration, the best

Gpers, provides the optimal solution i.e., Gbest = [2.0, −3.0].

Fig. 8 geometrically explain the movement of the six particles

of the swarm as iteration progress from 1 to 200. At first itera-

tion, the Xi vectors are at random positions in search space range

of ± 100. The vectors D1 and D2 are orthogonal to each other. As

the iteration increases, the active group position vectors (X1 and

X2) moves towards the orthogonal vectors (D1 and D2) and at the

end of iteration, X1 = D1 and X2 = D2. This can be seen from bottom

subfigure of Fig. 8 which is the magnified view at t = 200. This signi-

fies achievements of orthogonalization of the active group position

vectors. Fig. 9 shows the movement of the personal position vectors

of six particles Gpers,i, i = 1, 2, . . ., 6 and global best position vector

Gbest , two active group particles (1 and 2) and four passive group

particles (3–6) searching for global solution [2.0, −3.0]. The best

personal vector, i.e., Gbest of active group gives the optimal solution

as shown in Fig. 9.

5. Application of OPSO algorithm to ED problem

Here we describe the simulation results carried out on three

power systems with several TGUs and SPG constraints.

5.1. Performance measures

To study the accuracy, stability and robustness of different algo-

rithms, several fitness values as explained below are considered.

Every algorithm is executed over Nrun runs each with Niter itera-

tions.

1 Minimum fuel cost (Fmin): Defined as the minimum of the opti-

mized Fcost values obtained from Nrun independent runs.

2 Maximum fuel cost (Fmax): Defined as the maximum of the opti-

mized Fcost values obtained from Nrun independent runs.

3 Mean fuel cost (Fmean): Defined as the average of the optimized

Fcost values obtained from Nrun independent runs.

4 Standard deviation (�): The � is the standard deviation of the

optimized Fcost values obtained from Nrun independent runs.

5 Range (R): The range (R) is defined as the difference between Fmax

and Fmin.
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Table 1
Specifications and power constraints for PS-1.

TGU Pj
0 (MW) Pj,min (MW) Pj,max (MW) ai ($) bi ($/MW) ci ($/MW2) URj (MW/h) DRj (MW/h) POZs (MW)

1 440 100 500 240 7.0 0.0070 80 120 [210,240] [350,380]

2 170 50 200 200 10.0 0.0095 50 90 [90,110] [140,160]

3 200 80 300 220 8.5 0.0090 65 100 [150,170] [210,240]

4 150 50 150 200 11.0 0.0090 50 90 [80,90] [110,120]

5 190 50 220 220 10.5 0.0080 50 90 [90,110] [140,150]

6 110 50 120 190 12.0 0.0075 50 90 [75,85] [100,105]

Table 2
B-loss coefficients of 6 TGUs of PS-1.

Bjk 1 2 3 4 5 6

Bjk=1 × 10−06 MW−1 1 17 12 7 −1 −5 −2

2 12 14 9 1 −6 −1

3 7 9 31 0 −10 −6

4 −1 1 0 24 −6 −8

5 −5 −6 −10 −6 129 −2

6 −2 −1 −6 −8 −2 150

Fig. 10. Single line diagram of PS-1.

6 Average execution time (AET): It is the time consumed by an algo-

rithm after convergence, averaged over Nrun independent runs.

5.2. Test case 1: power system-1 (PS-1)

The PS-1, as shown in Fig. 10, is a small-scale power system with

six TGUs (Ngen = 6) and 26 buses [25]. At steady state normal oper-

ation, the maximum load demand is given as PD = 1263 MW. The

specifications of PS-1, i.e., initial output power, generation limits,

cost coefficients, RRLs and 12 POZs are given in Table 1 and the

B-loss coefficients are given in Table 2.

5.2.1. Comparison in terms of fitness values

In [25], the authors have shown the superior performance of

their proposed RDPSO algorithm over other 10 ECTs for the ED prob-

lem using PS-1. In addition, PS-1 was also used by other researchers

for performance comparison, e.g., the SOH-PSO [3], SA-PSO [26],

NPSO-LRS [27], CPSO [29], QMPSO [30], FDA [38], GA-API [40],

MIQCQP [41], �-logic [43], SPPO [46]. We compared the perfor-

mance of our proposed OPSO algorithm with these 21 ECTs and

GPSO algorithm. The comparison results of fitness values are shown

in Table 3. The parameters used OPSO and GPSO algorithms are:

m = 10, Nrun = 100, Niter = 1000, c1 = c2 = c = 2.05. Here, “NA” stands

for not available. One can observe the following from this Table.

Firstly, the OPSO algorithm provides best result in terms of lowest

Fmean and lowest �. This shows that the OPSO algorithm provides

stable and accurate solution. Secondly, in terms of range, R, OPSO

provides the second best result, i.e., R = $0.3276/h (the best is from

GA-API algorithm [40], R = $0.0300/h). This indicates that OPSO

algorithm has second lowest dispersion of optimum Fcost . However,

the Fmin and Fmax of OPSO algorithm are much better than Fmin and

Fmax for GA-API algorithm [40]. In term of AET, the MIQCQP [41] is

best one. The GPSO algorithm is second best but it provides worst

results in terms of other performance measures. The OPSO achieves

the third best in terms of AET. Thus, the overall performance of the

OPSO algorithm is far superior than the other 22 ECTs.

5.2.2. Convergence characteristics of OPSO and GPSO algorithms

Fig. 11 shows the convergence characteristics of OPSO and

GPSO algorithms for PS-1. It shows ensemble average Fcost val-

ues obtained from 100 independent runs at each iteration. It

can be seen that OPSO algorithm settles approximately at 40

iterations and achieved Fmean = $15,443.5921/h whereas GPSO

algorithm takes about 190 iterations to converge and achieved

Fmean = $15,460.8461/h. This shows faster convergence of OPSO

algorithm compared with the GPSO algorithm.

Fig. 12 shows the comparison of optimized Fcost at each run

between the OPSO and GPSO algorithms. In case of OPSO algorithm,

the optimized Fcost after each run remains more or less steady at

about $15,443/h, whereas in GPSO algorithm, the optimized Fcost

varies between $15,442.8326/h and $16,103.3400/h. This indicates

that OPSO algorithm is more consistent and stable than GPSO algo-

rithm.

5.2.3. Comparison in terms of inequality constraint

Table 4 lists the solution vector, Pj (j = 1, 2, . . ., 6) correspond-

ing to the best solution for OPSO and GPSO algorithms. The results

in Table 4 observe that OPSO and GPSO algorithms avoid the 12

POZs of 6 TGUs and are within RRLs (16). This indicates that both

algorithms are able to satisfy the inequality constraints of PS-1.

Appendix-1



L.T. Al Bahrani, J.C. Patra / Applied Soft Computing 58 (2017) 401–426 411

Table 3
Comparison of cost performance between OPSO and other 22 ECTs for PS-1.

Sl.No. Algorithm Fmin ($/h) Fmax ($/h) Fmean ($/h) � ($/h) R ($/h) AET (sec)

1 SOH-PSO [3] 15,446.0200 15,609.6400 15,497.3500 NA 136.6200 8.8620

2 GA [25] 15,445.5961 15,491.4797 15,465.1757 9.7336 45.8836 NA

3 DE [25] 15,444.9466 15,472.0651 15,450.1339 6.9854 27.1185 NA

4 ACSA [25] 15,445.3052 15,511.5269 15,459.5170 12.0247 66.2217 NA

5 AIS [25] 15,446.3283 15,481.2766 15,456.6660 7.3954 34.9483 NA

6 FA [25] 15,445.9448 15,501.3958 15,461.3003 9.3385 55.4510 NA

7 BCO [25] 15,444.5837 15,482.3963 15,457.9441 8.4816 37.8126 NA

8 APSO [25] 15,445.5109 15,538.6016 15,473.3164 12.9048 93.0907 NA

9 HGPSO [25] 15,447.1055 15,497.0335 15,462.6151 10.6456 49.9280 NA

10 HPSOM [25] 15,443.6281 15,479.8640 15,449.2603 6.2745 36.2359 NA

11 HPSOWM [25] 15,442.8205 15,502.6333 15,455.6220 15.8867 59.8128 NA

12 RDPSO [25] 15,442.7575 15,455.2936 15,445.0245 2.2828 12.5361 NA

13 SA-PSO [26] 15,447.0000 15,455.0000 15,447.0000 2.5280 8.0000 7.5800

14 NPSO-LRS [27] 15,450.0000 15,452.0000 15,450.5000 NA 2.0000 NA

15 CPSO [29] 15,446.0000 15,490.0000 15,449.0000 NA 44.0000 8.1300

16 QMPSO [30] 15,457.3380 15,489.9270 15,472.1840 4.5270 32.5890 7.1000

17 FDA [38] 15,449.5826 15,449.6508 15,449.6171 NA 0.0682 3.6340

18 GA-API [40] 15,449.7800 15,449.8100 15,449.8500 NA 0.0300 NA

19 MIQCQP [41] 15,443.0700 NA NA NA NA 0.4500
20 �-logic [43] 15,449.7960 NA NA NA NA NA

21 SPPO [46] 15,450. 0000 NA NA NA NA NA

22 GPSO 15,442.8334 16,103.3400 15,458.4000 69.6797 660.5074 2.5211

23 OPSO 15,442.8720 15,443.1996 15,443.9754 0.2116 0.3276 2.6334

Bold values signifies the best results in the respective category.

Table 4
Optimized output power for each TGU obtained by OPSO and GPSO algorithms for PS-1.

Algorithm Optimum output power (MW) Total output power (MW)

P1 P2 P3 P4 P5 P6

GPSO 450.5975 172.5329 261.3800 140.0706 164.4095 86.3979 1,275.3884

OPSO 450.0003 174.1009 261.9800 140.0674 162.3809 86.8386 1,275.3681

Bold values signifies the best results in the respective category.

Fig. 11. Convergence characteristics of OPSO and GPSO algorithms for PS-1.

5.2.4. Comparison in terms of power balance constraint

Table 5 shows the results of power balance constraint based

on PL,mismatch for 11 ECTs. The load demand of PS-1 is given as

PD = 1263 MW. Using the total optimum output power generated

(from Table 4) and Eqs. (5)–(7), PL1, PL2 and PL,mismatch are computed

and the results presented in Table 5. It can be seen that OPSO as well

as SOH-PSO [3], GA-API [40], MIQCQP [41], �-logic [43] and SPPO

[46] algorithms provide zero mismatch, i.e., PL,mismatch = 0, indicat-

ing that the power balance constraint, that is Eq. (3) is satisfied.

Fig. 12. Comparison of optimized cost per run between OPSO and GPSO algorithms

for PS-1.

5.3. Test case 2: power system-2 (PS-2)

The PS-2 is a medium-scale power system [29] with 15 TGUs

(Ngen = 15) whose generation specifications and B-loss coefficients

are shown in Tables 6 and 7, respectively. The maximum load

demand at steady state normal operation is given as PD = 2630 MW.

The PS-2 has 11 POZs in 4 TGUs (2, 5, 6 and 12) and RRLs for each

TGU.
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Table 5
Comparison of power balance constraint among 11 ECTs for PS-1.

Sl. No. Algorithm Total Pj (MW) PD (MW) PL1 (MW) PL2 (MW) PL,mismatch (MW)

1 SOH-PSO [3] 1,275.5500 1263 12.5500 12.5500 0.0000
2 DRPSO [25] 1,275.3565 1263 12.3565 12.3598 0.0033

3 NPSO-LRS [27] 1,275.9400 1263 12.9400 12.9361 0.0039

4 CPSO [29] 1,276.0000 1263 13.0000 12.9582 −0.0418

5 QMPSO [30] 1,275.3159 1263 12.3159 12.4058 0.0899

6 GA-API [40] 1,276.1300 1263 13.1300 13.1300 0.0000
7 MIQCQP [41] 1,275.4400 1263 12.4400 12.4400 0.0000
8 �-logic [43] 1,275.9500 1263 12.9500 12.9500 0.0000
9 SPPO [46] 1,275.9700 1263 12.9700 12.9700 0.0000
10 GPSO 1,275.3884 1263 12.3884 12.3883 −0.0001

11 OPSO 1,275.3681 1263 12.3681 12.3681 0.0000

Bold values signifies the best results in the respective category.

Table 6
Specifications and power constraints for PS-2.

TGU Pj
0 (MW) Pj,min (MW) Pj,max (MW) ai ($) bi ($/MW) ci ($/MW2) URj (MW/h) DRj (MW/h) POZs (MW)

1 400 150 455 671 10.1 0.000299 80 120 –

2 300 150 455 574 10.2 0.000183 80 120 [185,225] [305,335,450,450]

3 105 20 130 374 8.8 0.001126 130 130 –

4 100 20 130 374 8.8 0.001126 100 130 –

5 90 150 470 461 10.4 0.000205 80 120 [180,200] [305,335] 390,420]

6 400 135 460 630 10.1 0.000301 80 120 [230,225] [365,395] [430,455]

7 350 135 465 548 9.8 0.000364 80 120 –

8 95 60 300 227 11.2 0.000338 65 100 –

9 105 25 162 173 11.2 0.000807 60 100 –

10 110 25 160 175 10.7 0.001203 60 100 –

11 60 20 80 186 10.2 0.003586 80 80 –

12 40 20 80 230 9.9 0.005513 80 80 [30,40] [55,65]

13 30 25 85 225 13.1 0.000371 80 80 –

14 30 15 55 309 12.1 0.001929 55 55 –

15 20 15 55 323 12.4 0.004447 55 55 –

Table 7
B-loss coefficients of 15 TGUs of PS-2.

Bjk(×10−6
MW

−1
) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 14 12 7 −1 −3 −1 −1 −1 −3 5 −3 −2 4 3 −1

2 12 15 13 0 −5 −2 0 1 −2 −4 −4 −0 4 10 −2

3 7 13 76 −1 −13 −9 −1 0 −8 −12 −17 −0 −26 111 −28

4 −1 0 −1 34 −7 −4 11 50 29 32 −11 −0 1 1 −26

5 −3 5 −13 −7 90 14 −3 −12 −10 −13 7 −2 −2 −24 −3

6 −1 −2 −9 −4 14 16 −0 −6 −5 −8 11 −1 −2 −17 3

7 −1 0 −1 11 −3 −0 15 17 15 9 −5 7 −0 −2 −8

8 −1 1 0 50 −12 −6 17 168 82 79 −23 −36 1 5 −78

9 −3 −2 −8 29 −10 −5 15 82 129 116 −21 −25 7 −12 −72

10 −5 −4 −12 32 −13 −8 9 79 116 200 −27 −34 9 −11 −88

11 −3 −4 −17 −11 7 11 −5 −23 −21 −27 140 1 4 −38 168

12 −2 −0 −0 −0 −2 −1 7 −36 −25 −34 1 54 −1 −4 28

13 4 4 −26 1 −2 −2 −0 1 7 9 4 −1 103 −101 28

14 3 10 111 1 −24 −17 −2 5 −12 −11 −38 −4 −101 578 −94

15 −1 −2 −28 −26 −3 3 −8 −78 −72 −88 168 28 28 −94 1283

5.3.1. Comparison in terms of fitness values

In [25], the RDPSO algorithm was tested with PS-2 and its supe-

rior performance compared to other 10 ECTs has been shown. In

addition, the PSO-MSAF [22], SA-PSO [26], CPSO [29], EGSSOA [42],

�-logic [43], SPPO [46] algorithms have also been tested with PS-

2. Here we compare performance of OPSO algorithm with GPSO

and other existing 17 ECTs. The set of parameters used in GPSO

and OPSO algorithms are: m = 18, d = 15, Nrun = 100, Niter = 1000 and

c = c1 = c2 = 2.05. Comparison of fitness values between OPSO algo-

rithm and other 18 existing ECTs are listed in Table 8. It can be

seen that, the OPSO algorithm provides the best results in terms

of Fmean, � and R. These results indicate that the OPSO algorithm

provides consistent, stable and optimal results. However, in term

of AET, OPSO is the second best; the GPSO algorithm being the best

among the 19 ECTs.

5.3.2. Convergence characteristics of OPSO and GPSO algorithms

Fig. 13 shows the convergence characteristics of OPSO

and GPSO algorithms for PS-2. It shows ensemble average

Fcost values at each iteration obtained from 100 indepen-

dent runs. It can be seen that OPSO algorithm settles at

about 60 iterations to achieve Fmean = $32,670/h whereas GPSO

algorithm takes about 150 iterations to settle and achieved

Fmean = $33,185/h.

Fig. 14 shows the distribution of optimized Fcost at each run. It

shows that the optimized Fcost of OPSO remains steady at about

$32,669/h, whereas in GPSO algorithm, the optimized Fcost varies

over a wide range from $32,892/h and $33,851/h. This indicates

that OPSO algorithm is more consistent, stable and reliable than

the GPSO algorithm.
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Table 8
Comparison of cost performance between OPSO and other 18 ECTs for PS-2.

Sl. No. Algorithm Min. Cost ($/h) Max. Cost ($/h) Mean Cost ($/h) � ($/h) R ($/h) AET (sec)

1 PSO-MSAF [22] 32,713.0900 32,798.2500 32,759.6400 NA 85.1600 19.1500

2 GA [25] 32,939.5208 33,231.6216 33,106.0019 100.1279 292.1008 NA

3 DE [25] 32,818.5792 33,116.9340 32,990.8673 61.5145 298.3548 NA

4 ACSA [25] 32,785.6031 33,185.2761 33,051.7711 77.8005 399.6730 NA

5 AIS [25] 32,895.9173 33,132.0191 33,017.6537 58.1230 236.1018 NA

6 FA [25] 32,901.6610 33,197.2718 33,081.0107 91.0111 295.6108 NA

7 BCO [25] 32,989.2341 33,301.4940 33,113.0149 69.7986 312.2599 NA

8 APSO [25] 32,687.9840 33,359.6609 32,948.0533 92.0040 671.6769 NA

9 HGPSO [25] 32,864.0501 33,280.2655 33,034.1894 63.9932 416.2154 NA

10 HPSOM [25] 32,697.2458 33,015.7284 32,819.5931 83.0907 318.4826 NA

11 HPSOWM [25] 32,696.9585 33,034.3413 32,805.7185 87.8689 337.3828 NA

12 RDPSO [25] 32,666.1818 32,934.3089 32,739.7165 56.7070 268.1271 NA

13 SA-PSO [26] 32,708.0000 32,789.0000 32,732.0000 18.0250 81.0000 12.7900

14 CPSO [29] 32,834.0000 33,318.0000 33,021.0000 NA 484.0000 13.1300

15 EGSSOA [42] NA NA 32,680.1038 NA NA NA

16 �-logic [43] 32,713.9510 NA NA NA NA NA

17 SPPO [46] 32,713.2100 NA NA NA NA NA

18 GPSO 32,891.8329 33,850.9528 33,137.5549 197.3331 959.1199 3.5901
19 OPSO 32,668.4863 32,669.3005 32,668.9205 0.1394 0.8142 4.3777

Bold values signifies the best results in the respective category.

Fig. 13. Convergence characteristics of OPSO and GPSO algorithms for PS-2.

5.3.3. Comparison in terms of inequality constraint

Table 9 presents the solution vector, Pj (j = 1, 2, . . ., 15) corre-

sponding to the best solution for OPSO and GPSO algorithms. It can

be seen that both the OPSO and GPSO algorithms are able to avoid

the 11 POZs of 4 TGUs and are within RRL constraints, thus both

algorithms are able to satisfy the inequality constraints of PS-2.

5.3.4. Comparison in terms of power balance constraint

Table 10 shows results of power balance constraints for the

OPSO and other 8 ECTs. The load demand of PS-2 is given as

PD = 2630 MW. Using the optimum output power generated given

in Table 9 and Eqs. (5)–(7), PL1, PL2 and PL,mismatch, were deter-

mined. It can be seen that the OPSO algorithm as well as PSO-MSAF

[22], EGSSOA [42] and �-logic [43] algorithm are satisfying the zero

mismatch condition, i.e., PL,mismatch = 0, thus satisfying (3).

5.4. Test case 3: power system-3 (PS-3)

The PS-3 is a large-scale power system taken from Taipower

system [9], [25]. It consists of 40 mixed-generating units, coal-

fired, gas-fired, gas-turbines with complex cycle, diesel generating

Fig. 14. Comparison of optimized cost per run between OPSO and GPSO algorithms

for PS-2.

Table 9
Optimized output power for each TGU obtained by OPSO and GPSO algorithms for

PS-2.

Optimum output power (MW)

TGU GPSO OPSO

1 455.0000 455.0000

2 377.1693 380.0000

3 125.8555 130.0000

4 113.9563 129.9696

5 161.2816 170.0000

6 458.6809 457.3942

7 418.2693 430.0000

8 152.0496 71.6613

9 78.3982 58.2340

10 71.8736 160.0000

11 60.5822 80.0000

12 65.7008 80.0000

13 34.3022 25.0000

14 50.5299 15.0000

15 36.3461 15.0000

Total output power (MW) 2659. 9955 2,657.2591

Bold values signifies the best results in the respective category.
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Table 10
Comparison of power balance constraint among 9 ECTs for PS-2.

Sl. No. Algorithm Total Pj MW PD MW PL1 MW PL2 MW PL,mismatch MW

1 PSO-MSAF [22] 2,660.4900 2630 30.4900 30.4900 0.0000
2 DRPSO [25] 2,655.3650 2630 25.3650 25.3696 0.0460

3 SA-PSO [26] 2,660.9000 2630 30.9000 30.9080 0.0080

4 CPSO [29] 2,662.1000 2630 32.1000 32.1303 0.0303

5 EGSSOA [42] 2,657.0120 2630 27.0120 27.0120 0.0000
6 �-logic [43] 2,659.9491 2630 29.9491 29.9491 0.0000
7 SPPO [46] 2,660.0000 2630 30.0000 31.4300 1.4300

8 GPSO 2,659.9955 2630 29.9950 29.9971 0.0016

9 OPSO 2,657.2591 2630 27.2591 27.2591 0.0000

Bold values signifies the best results in the respective category.

Table 11
Specifications and power constraints for PS-3.

TGU Pj
0 (MW) Pj,min (MW) Pj,max (MW) ai ($/h) bi ($/MWh) ci ($/MW2h) URj (MW/h) DRj (MW/h) POZs (MW)

1 50 40 80 170.77 8.336 0.03073 35 60 –

2 60 60 120 309.54 7.0706 0.02028 40 70 [80,85]

3 150 80 190 369.03 8.1817 0.00942 50 90 [82,88]

4 24 24 42 135.48 6.9467 0.08482 42 42 –

5 42 26 42 135.19 6.5595 0.09693 42 42 –

6 75 68 140 222.33 8.0543 0.01142 40 75 –

7 100 110 300 287.71 8.0323 0.00357 65 100 [155,162] [221,235]

8 152 135 300 391.98 6.9990 0.00492 65 100 –

9 200 135 300 455.76 6.6020 0.00573 65 100 [235,246]

10 100 130 300 722.82 12.908 0.00605 65 100 [200,211]

11 300 94 375 635.20 12.986 0.00515 55 95 [213,220]

12 300 94 375 654.69 12.796 0.00569 55 95 [213,220]

13 150 125 500 913.40 12.501 0.00421 80 120 [201,211] [290,310] [413,425]

14 200 125 500 1760.4 8.8412 0.00752 80 120 [205,217,306,318,409,420]

15 190 125 500 1728.3 9.1575 0.00708 80 120 [214,230] [277,290] [402,412]

16 190 125 500 1728.3 9.1575 0.00708 80 120 [214,230] [277,290] [402,412]

17 190 125 500 1728.3 9.1575 0.00708 80 120 [214,230] [277,290] [402,412]

18 400 220 500 647.85 7.9691 0.00313 70 110 [307,321] [407,421]

19 400 220 500 649.69 7.9550 0.00313 70 110 [301,310] [421,431]

20 398 242 500 647.83 7.9691 0.00313 70 110 [340,351] [421,431]

21 398 242 500 647.81 7.9691 0.00313 70 110 [340,351] [421,431]

22 390 254 550 785.96 6.6313 0.00298 70 110 [306,320] [440,445]

23 390 254 550 785.96 6.6313 0.00298 70 110 [306,320] [440,445]

24 390 254 550 794.53 6.6311 0.00284 70 110 [370,390] [495,502]

25 390 254 550 794.53 6.6311 0.00284 70 110 [370,390] [495,502]

26 390 254 550 801.32 7.1032 0.00277 70 110 [380,410] [501,520]

27 390 254 550 801.32 7.1032 0.00277 70 110 [380,410] [501,520]

28 20 10 150 1055.1 3.3353 0.52124 90 150 [102,113]

29 20 10 150 1055.1 3.3353 0.52124 90 150 [102,113]

30 30 10 150 1055.1 3.3353 0.52124 90 150 [102,113]

31 30 20 70 1207.8 13.052 0.25098 70 70 –

32 40 20 70 810.79 21.887 0.16766 70 70 –

33 40 20 70 1247.7 10.244 0.2635 70 70 –

34 25 20 70 1219.2 8.3707 0.30575 70 70 –

35 25 18 60 641.43 26.258 0.18362 60 60 –

36 20 18 60 1112.8 9.6956 0.32563 60 60 –

37 20 20 60 1044.4 7.1633 0.33722 60 60 –

38 25 25 60 832.24 16.339 0.23915 60 60 –

39 25 25 60 832.24 16.339 0.23915 60 60 –

40 25 25 60 1035.2 16.339 0.23915 60 60 –

units and nuclear generating units. The maximum load demand at

steady state normal operation is given as PD = 8550 MW. The PS-

3 contains 46 POZs distributed among 25 TGUs and are shown in

Table 11. The RRLs are imposed on all the 40 TGUs. The B-loss coef-

ficients are considered and they are generated randomly as is done

in [43]. The B-loss coefficients matrix of dimension 40 × 40 is listed

in Appendix. Unfortunately, the PS-3 is tested by only a few authors

under RRLs, POZs and PL constraint. This may be due to unavailabil-

ity of B-loss coefficients or due to its high dimension with a large

number of power constraints.

5.4.1. Comparison in terms of fitness values

In [25], PS-3 has been tested with 11 ECTs and superior perfor-

mance of RDPSO algorithm over other 10 ECTs has been shown.

However, the 46 POZs, RRLs of each TGU and the PL constraint

have not been considered. Therefore, these results are less con-

strained. Considering all the POZs, RRLs and PL constraint, the PS-3

has been tested by MIQCQP [41], �-logic [43], the proposed OPSO

and GPSO algorithms. Thus, the performance of OPSO algorithm

and other existing 14 ECTs are compared. The set parameters used

in GPSO and OPSO algorithms are: m = 45, Nrun = 100, Niter = 10,000,

d = 40, and c = c1 = c2 = 2.05. The fitness values of the 15 ECTs are

listed in Table 12. It can be seen that the OPSO algorithm provides

the best result in terms of Fmean and � over 100 independent runs.

This indicated that the OPSO algorithm provides the most optimal

and consistent results. In addition, the range R of OPSO algorithm

is the lowest among the 15 ECTs, thus indicating that OPSO algo-

rithm provides solution with the lowest dispersion. Since the AET

values are not available for other ECTs, between OPSO and GPSO

algorithms, the AET of OPSO (69 s), due to its computational com-
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Table 12
Comparison of cost performance between OPSO and other 14 ECTs for PS-3.

Sl. No. Algorithm Min.Cost ($/h) Max. Cost ($/h) Mean Cost ($/h) � ($/h) R ($/h) AET (sec)

Without POZs, RRLs and PL

1 GA [25] 133,435.6906 136,274.9726 135,012.4985 729.3536 2,839.2820 NA

2 DE [25] 129,915.5635 137,042.9461 130,600.2269 1,335.4343 7,127.3826 NA

3 ACSA [25] 131,167.3417 134,923.6245 132,844.7110 741.0843 3,756.2828 NA

4 AIS [25] 130,133.9214 132,703.1884 131,482.2767 561.7950 2,569.2670 NA

5 FA [25] 130,948.8466 134,997.9243 133,511.4572 747.3692 4,049.0777 NA

6 BCO [25] 130,337.7290 132,999.8803 131,733.9439 589.8034 2,662.1513 NA

7 APSO [25] 130,861.5242 134,044.6303 132,587.8486 675.0344 3,183.1061 NA

8 HGPSO [25] 132,072.2495 135,528.3862 134,012.5706 684.4951 3,456.1367 NA

9 HPSOM [25] 129,177.4413 131,281.3077 130,234.1694 529.5827 2,103.8664 NA

10 HPSOWM [25] 129,717.3557 132,303.5999 130,858.6741 591.7691 2,586.2442 NA

11 RDPSO [25] 128,864.4525 131,129.0861 129,482.0970 568.9333 2.264.6336 NA

With POZs, RRLs and PL

12 MIQCQP [41] 128,395.2900 NA NA NA NA 13.34
13 �-logic [43] 129,777.5300 NA NA NA NA NA

14 GPSO 139,051.1893 515,712.5007 398,122.4784 95,189.4180 376,661.3114 47.32

15 OPSO 126,489.6228 127,916.1972 127,349.8324 302.3502 1,426.5744 69.32

Bold values signifies the best results in the respective category.

Fig. 15. Convergence characteristics of OPSO and GPSO algorithms for PS-3.

plexity, is found to be higher than the GPSO (47 s). These results

indicate that among the 15 ECTs, the OPSO algorithm is the most

stable, robust and is able to provide most optimal solution.

5.4.2. Convergence characteristics of OPSO and GPSO algorithms

Fig. 15 shows the convergence characteristics of OPSO and GPSO

algorithms for PS-3. Note that Fig. 14 is drawn with Niter = 2000, to

give a better visualization. However, the OPSO and GPSO algorithms

run with Niter = 10,000. It shows ensemble average Fcost values at

each iteration obtained from 100 independent runs. It can be seen

that OPSO algorithm settles at about 1600 iterations and achieves

Fmean of about $127,997/h. Whereas, the GPSO algorithm takes

about 1000 iterations to converge, but settles at a local minimum

with a non-optimal Fmean of about $398,709/h. This indicates that

the GPSO algorithm is unable to solve ED problem with such a high

dimension and under such large number of power constraints. In

contrast, the OPSO algorithm gives high accuracy in solving such

this complex problem.

Fig. 16 shows the variation of optimized Fcost over 100 indepen-

dent runs achieved by the OPSO and GPSO algorithms. It shows

that the optimized Fcost of OPSO varies between $126,489.6/h

and $127,916.2/h, whereas in GPSO algorithm, it varies between

$139,051.2/h and $515,712.5/h. This indicates that OPSO algorithm

Fig. 16. Comparison of optimized cost per run between OPSO and GPSO algorithms

for PS-3.

is capable of providing consistent and reliable optimal solution.

Whereas, the GPSO algorithm is unable to provide optimal solution

due to the high complexity of the problem.

5.4.3. Comparison in terms of inequality constraint

Table 13 presents solution vector, Pj (j = 1, 2, . . ., 40) corre-

sponding to the best solution obtained from the OPSO and GPSO

algorithms. In case of GPSO algorithm, the TGU4 violates RRLs

(red color). The TGU4 must operate within P4,low = 24 MW and

P4,high = 42 MW (16). This means that GPSO algorithm fails in solving

PS-3 indicating that GPSO algorithm is unable to solve large scale

ED problem. Whereas, the OPSO algorithm avoids the 46 POZs of

25 TGUs and is within RRLs.

5.4.4. Comparison in terms of power balance constraint

Since all the data for other existing ECTs are not available for

PS-3, we compare the performance between OPSO algorithm and

�-logic [43]. The GPSO is out of comparison, because it failed in solv-

ing PS-3. The load demand of PS-3 is given as PD = 8550 MW. Using

the total optimum output power generated (Table 13) and Eqs.

(5)–(7), PL1, PL2 and PL,mismatch, are determined and are presented

in Table 14. It can be seen that PL,mismatch of OPSO algorithm is more
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Table 13
Optimized output power for each TGU obtained by OPSO and GPSO algorithms for

PS-3.

close to 0.0 than �-logic [43], which indicates better performance

of OPSO algorithm.

6. Application of OPSO algorithm to CEC 2015 benchmark
functions

Economic dispatch of power under various power constraints

makes the objective function, i.e., cost function becomes multi-

modal function and it has multiple local optimums as discussed in

Section 1. In order to provide a fair comparison and demonstrate the

goodness of the proposed OPSO algorithm, ten selected shifted and

rotated functions from CEC benchmark functions 2015 are added.

Here we describe these functions and investigate performance of

the GPSO and OPSO algorithms along with a few competitive ECTs.

6.1. Benchmark functions

Ten benchmark functions listed in Table 15 are used in this

study. These benchmark functions are taken from the congress

on evolutionary computation (CEC) 2015 and are used in perfor-

mance comparison of global optimization algorithms [31,32]. All

ten benchmark functions are minimization tasks. In addition, these

are shifted and rotated functions, the global optimum solution x as

shown in Table 15 is not located in the center of the search domain.

The optimum solution x is shifted to a new position vector, i.e.,

shifted global optimum, Oji = [oj1, oj2,. ., ojd], where j = 1, 2, . . ., 10

and i = 1, 2, . . ., d. the d is the dimension of the each benchmark

function. As well as, all functions are rotated by rotation matrix,

Mj , j = 1, 2, . . ., 10. The rotation does not affect the shape of the

function but increases the function complexity in finding global

optimum. The M is d × d matrix. It is applied to obtain the rotation

and is generated from standard normally distributed entries using

Gram-Schmidt orthnormalization process [31,32].

The ten benchmark functions are divided into two groups based

on their significant physical properties. The first group involves

three unimodal benchmark functions f1–f3 [31,32]. These are f1
(Shifted and Rotated High Conditioned Elliptic), f2 (Shifted and

Rotated Cigar) and f3 (Shifted and Rotated Discus). The second

group includes seven multimodal benchmark functions f4–f10.

Finding global optimum solution Gbest is more interesting since

these benchmark functions are more difficult to optimize because

of the number of local minima as well as they are shifted and

rotated. In multimodal functions, the number of local minima

increases as the problem dimension increases [6,43]. Therefore,

the search algorithm should be able to obtain a good solution

and not become trapped in a local minimum. The seven multi-

modal functions are f4 (Shifted and Rotated Ackley), f5 (Shifted

and Rotated Weierstrass), f6 (Shifted and Rotated Rastrigin), f7
(Shifted and Rotated Katsuura), f8 (Shifted and Rotated Happy-

Cat), f9 (Shifted and Rotated HGBat) and f10 (Shifted and Rotated

Expanded Griewank plus Rosenbrock).

Table 15 shows the details of the ten selected CEC 2015 bench-

mark functions. The name and mathematical description of f1–f10

are shown in columns 2 and 3, respectively. The “Threshold Error”

value of each function is available in column 4. The “optimum x”

in column 5 and the minimum value of each function, “minimum

f(x)” is in column 6. The solution of each function is judged success-

ful, when the algorithm reaches to a value smaller than “Threshold

Error”. In other words, the algorithm passes the test.

6.2. Performance measures and experimental setup

To study the accuracy, stability and reliability of different

algorithms, nine performance measures as explained below are

considered. Let m be the number of particles in the swarm. Each

algorithm is run over Nrun times for Niter iterations.

1. Number of Function Evaluations (NFE): The NFE is used as a

measure of computational complexity of the algorithms. The NFE is

the number of times the objective function f(x) is evaluated in one

run of the algorithm and is given by

NFE = m × Niter (40)

Table 14
Comparison of power balance constraint between 2 ECTs for PS-3.

Algorithm Total Pj MW PD MW PL1 MW PL2 MW PL ,mismatch MW

�-logic [43] 8,637.3300 8550 87.3300 87.4037 0.0737

OPSO 8,588.0734 8550 38.0734 38.1121 0.0387

Bold values signifies the best results in the respective category.
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Table 15
Ten benchmark objective functions used in the study.

f Name Function Threshold Error Optimum (x) Minimum fi(x)

f1 Shifted and Rotated

High

f1(x) =
d∑

i=1

(
106

)( i−1
d−1

)

Z2
1,i

+ F1,

Z1 = M1 × (x − O1i), x = [x1, x2, . . ., xd], O1i = [o11, o12, . . ., o1d]

0.001 O1i F1 = 100

f2 Shifted and Rotated f2(x) = Z2
2,1 + 106

d∑
i=2

Z2
2,i + F2,

Z2 = M2 × (x − O2i), x = [x1, x2, . . ., xd], O2i = [o21, o22, . . ., o2d]

0.001 O2i F2 = 200

f3 Shifted and Rotated f3(x) = 106Z2
3,1 +

d∑
i=2

Z2
3,i

+ F3,

Z3 = M3 × (x − O3i), x = [x1, x2, . . ., xd], O3i = [o31, o32, . . ., o3d]

0.001 O3i F3 = 200

f4 Shifted and Rotated
f4(x) = −a exp (−b

√√√√ 1

d

d∑
i=1

Z2
4,i ) − exp (

1

d

d∑
i=1

cos(cZ4,i))+

a + exp ( 1 ) + F4, a = 20, b = 0.2, c = 2�
Z4 = M4 × (x − O4i), x = [x1, x2, . . ., xd], O4i = [o41, o42, . . ., o4d]

0.001 O4i F4 = 300

f5 Shifted and Rotated f5(x) =
d∑

i=1

[
kmax∑
k=1

ak cos (2�bk(Z5,i + 0.5))-d

kmax∑
k=1

ak cos (�bk)

]
+ F5

a = 0.5, b = 3, kmax = 20,Z5 = M5 ×
(

0.5×(x−O5i )

100

)
, x = [x1, x2, . . ., xd]

O5i = [o51, o52, . . ., o5d]

0.001 O5i F5 = 300

f6 Shifted and Rotated f6(x) = 10 d +
d∑

i=1

[Z2
6,i

− 10 cos (2�Z6,i)] + F6,

Z6 = M6 ×
(

5.12×(x−O6i )

100

)
, x = [x1, x2, . . ., xd], O6i = [o61, o62, . . ., o6d]

0.001 O6i F6 = 400

f7 Shifted and Rotated f7(x) = 10

d2

d∏
i=1

[
1 + i

32∑
i=1

|2i × Z7,i − round(2i × Z7,i)|
2i

] 10

d1.2

− 10

d2
+ F7

Z7 = M7 ×
(

5×(x−O7i )

100

)
, x = [x1, x2, . . ., xd], O7i = [o71, o72, . . ., o7d]

0.001 O7i F7 = 500

f8 Shifted and Rotated f8(x) =

[
d∑

i=1

Z2
8,i

− d

] 1
4

+ (

0.5

d∑
i=1

Z2
8,i

+
d∑

i=1

Z8,i)

d
) + 0.5 + F8,

Z8 = M8 ×
(

5×(x−O8i )

100

)
, x = [x1, x2, . . ., xd], O8i = [o81, o82, . . ., o8d]

0.001 O8i F8 = 600

f9 Shifted and Rotated f9(x) =

[
(

d∑
Z2

9,i

i=1

)

2

−

(
d∑

i=1

Z9,i

)2] 1
2

+

⎛
⎜⎜⎜⎜⎝

0.5

d∑
i=1

Z2
9,i

+
d∑

i=1

Z9,i

d

⎞
⎟⎟⎟⎟⎠ + 0.5 + F9,

Z9 = M9 ×
(

5×(x−O9i)
100

)
, x = [x1, x2, . . ., xd], O9i = [o91, o92, . . ., o9d]

0.001 O9i F9 = 700

f10 Shifted and Rotated fg (x) = 1

4000

d∑
i=1

Z2
10,i −

d∏
i=1

cos (
Z10,i√

i
) + 1

fr (x) =
d−1∑
i=1

[ 100 (Z10,i+1 − Z2
10,i

)
2 + (Z10,i − 1)

2
]

f10(x) = fg (fr (Z10,1, Z10,2) + fg (fr (Z10,2, Z10,3) + · · ·+
fg (fr (Z10,d−1, Z10,d) + fg (fr (Z10,d, Z10,1) + F10

Z10 = M10 ×
(

5×(x−O10i )

100

)
+ 1, x = [x1, x2, . . ., xd],

O10i = [o101, o102, . . ., o10d]

0.001 O10i F10 = 800

2. Best Fitness Value (BFV): The BFV is defined as the minimum

optimized f(x) value obtained from Nrun independent runs.

3. Worst Fitness Value (WFV): The WFV is defined as the maxi-

mum optimized f(x) value obtained from Nrun independent runs.

4. Mean Fitness Value (MFV): The MFV is defined as the average

of the Nrun BFVs.

5. Minimum Function Error Value (MFEV): The MFEV is defined

as the difference between minimum f(x), i.e., column 6 in Table 15

and MFV. The MFEV is given by

MFEV = |minimum f (x) − MFV| (41)

6. Standard deviation (�): The � is the standard deviation of the

Nrun BFVs.

7. Success Rate (SR): An algorithm is successful if the MFEV of

each function falls below the “Threshold Error”. The SR is used as a
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Fig. 18. The FEVs obtained at different runs at each NFE by the GPSO and OPSO algorithms for f1, f7–f8 and f10.

measure of reliability of the algorithm [31,32]. The SR in percentage

is given by

SR = Number of successful runs

Nrun
× 100 (42)

8. Reliability Rate (RR): The RR of an algorithm over all the ten

benchmark functions is defined

RR = 1

10

10∑
i=1

SRi (43)

where SRi is the success rate of the benchmark function fi(x), i = 1,

2, . . ., 10.

9. Average execution time (AET): It is the time consumed by an

algorithm until it reaches to MFEV, averaged over Nrun independent

runs.

In order to measure the accuracy, stability and robustness of

each algorithm, the GPSO and OPSO algorithms were evaluated

using the ten unimodal and multimodal functions given in Table 15.

Each function is tested with 30-dimension, d = 30. Based on the sug-

gestion by the CEC 2015 [32], the optimization task has been carried

out for Nrun = 20 independent runs. The GPSO and OPSO algorithms

are terminated when reaching the MFEV of each is smaller than

1.00 × 10−03. The Nparticle in the OPSO and GPSO algorithm for f1, f2,

. . ., f10 is, m = 40. The OPSO algorithm requires to be m ≥ d. How-

ever this condition is not imposed in GPSO algorithm. The number

of iterations Niter is obtained from (40) once maximum NFE and

m is decided. Thus, Niter = 3750. Both GPSO and OPSO algorithms

are run with maximum NFE = 150,000. The acceleration coefficients

values of c1 and c2 in GPSO and c in OPSO algorithm are set at 2.00

and 2.05, respectively, using trial and error method. The parame-

ters r(t), r1(t)and r2(t) are chosen randomly. In addition, the shifted

global optimum vector Oji for each function is randomly distributed

in [−80,80]30. In addition, an orthogonal (rotation) matrix Mj of

each function is generated using Gram-Schmidt orthnormalization

process.

6.3. Comparison in terms of fitness values

Performance comparison between GPSO and OPSO algorithms

in terms of BFV, WFV, MFV, MFEV, � and AET are shown in Table 16.

It can be seen that in case of GPSO algorithm, the three fitness values

BFV, WFV and MFV differ substantially from their optimal values

for the ten functions. Whereas, in OPSO algorithm, the three fitness

values are the same to their optimum values for all the ten func-

tions. The MFEV of GPSO algorithm is so far from “Threshold Error”

in f1–f10. However, in OPSO algorithm, the MFEV is smaller than

“Threshold Error”. It is achieved MFEV = 0.0 for the f1–f10. In terms of

the standard deviation �, it remains close to 0.0 in OPSO algorithm,

indicating high stability and reliability of the OPSO algorithm. The

results shown in Table 16, thus proves that OPSO algorithm is more

accurate, stable and robust compared to the GPSO algorithm. In

terms of the AET, the OPSO algorithm reaches “Threshold Error”

within a specific AET as shown in Table 16. However, GPSO algo-

rithm can’t reach “Threshold Error”, Which indicating that GPSO is

unable to solve these ten shifted and rotated CEC 2015 benchmark

functions under 30-dimension.

6.4. Success rate and reliability rate

The performance comparison between the GPSO and the OPSO

algorithms with Nrun = 20 (independent runs) in terms of SR and

RR. The GPSO algorithm fails in ten CEC 2015 benchmark functions.
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Table 17
Sensitivity analysis for the OPSO algorithm with increasing swarm’s size with d = 30.

f Minimum f(x) Fitness m = 33 AET (sec) m = 40 AET (sec) m = 50 AET (sec) m = 80 AET (sec) m = 100 AET (sec)

f1 100 BFV 100.00 127.44 100.00 188.

67

100.00 313.28 100.00 390.09 100.00 430.70

WFV 100.00 100.00 100.00 100.00 100.00

MFV 100.00 100.00 100.00 100.00 100.00

f7 500 BFV 500.00 55.26 500.00 124.57 500.00 182.50 500.00 232.89 500.00 282.63

WFV 500.00 500.00 500.00 500.00 500.00

MFV 500.00 500.00 500.00 500.00 500.00

f8 600 BFV 600.00 65.22 600.00 131.45 600.00 183.07 600.00 246.92 600.00 317.89

WFV 600.00 600.00 600.00 600.00 600.00

MFV 600.00 600.00 600.00 600.00 600.00

f10 800 BFV 800.00 74.13 800.00 106.63 800.00 191.14 800.00 234.64 800.00 294.27

WFV 800.00 800.00 800.00 800.00 800.00

MFV 800.00 800.00 800.00 800.00 800.00

Table 18
Performance comparison between OPSO algorithm and four ECTs using four CEC 2015-LBP [31] benchmark functions with d = 30.

ECTs Performance measure f1 f2 f4 f6

OPSO (proposed) MFEV 0.00 0.00 0.00 0.00
� 5.94 × 10−50 3.32 × 10−54 6.11 × 10−44 3.73 × 10−44

LLUDE [33] MFEV 5.93 × 10−01 2.84 × 10−14 2.03 × 1001 2.59 × 1001

� 2.47 × 10−01 2.69 × 10−14 2.33 × 10−02 3.28 × 1000

SaDE [33] MFEV 1.78 × 1003 2.38 × 10−11 2.05 × 1001 3.46 × 1001

� 1.43 × 1003 7.22 × 10−11 5.99 × 10−02 6.44 × 1000

JADE [33] MFEV 6.23 × 1000 3.41 × 10−14 2.03 × 1001 2.61 × 1001

� 1.55 × 1001 1.17 × 10−14 2.86 × 10−02 3.39 × 1000

CoDE [33] MFEV 1.58 × 1004 6.02 × 10−13 2.00 × 1001 2.97 × 1001

� 1.16 × 1004 9.88 × 10−13 9.98 × 10−02 1.08 × 1001

SPS-l-SHADE-EIG

[48] Rank #1 CEC 2015-LBP [31]

MFEV 0.00 0.00 2.00 × 1001 1.03 × 1001

� 0.00 0.00 7.29 × 10−05 1.41 × 1001

DEsPA

[49] Rank #2 CEC 2015-LBP [31]

MFEV 0.00 0.00 2.01 × 1001 9.71 × 1000

� 0.00 0.00 4.36 × 10−02 3.02 × 1000

MVMO

[50] Rank #3 CEC 2015-LBP [31]

MFEV 0.00 0.00 2.00 × 1001 9.54 × 1000

� 0.00 0.00 5.42 × 10−04 3.53 × 1000

Max.NFE 3.00 × 1005 3.00 × 1005 3.00 × 1005 3.00 × 1005

Bold values signifies the best results in the respective category.

However, the OPSO algorithm was successful in all these functions

giving rise to SR of 100%. The RR of GPSO and OPSO algorithms are

thus found to be 0.0% and 100%, respectively.

6.5. Convergence characteristics

Fig. 17 shows the convergence characteristics of GPSO and OPSO

algorithms for ten shifted and rotated CEC 2015 benchmark func-

tions f1–f10. The comparison is obtained in terms of fitness value

(FV) averaged over Nrun times at each NFE. It can be seen that, in

case of OPSO algorithm the FV reduces to minimum value of f(x)) as

NFE less than 4.0 × 1004 except f1. Whereas, in case of GPSO algo-

rithm, the FV fails to converge and remains above the “Threshold

Error”, which is indicating failure of the algorithm.

In order to highlight the superior performance of the OPSO

algorithm over the GPSO algorithm, in Fig. 18 we provide the func-

tion error value (FEV) averaged over Nrun times at each NFE for

the four selected CEC 2015 benchmark functions, f1, f7–f8 and f10.

The FEVs obtained by GPSO algorithm are much above “Threshold

Error”. In contrast, the OPSO algorithm was successful as the FEVs

in these four benchmark functions remain below the “Threshold

Error”. Similar observations were made for the remaining bench-

mark functions.

The above mentioned observations provide the evidence of

superior performance of the OPSO algorithm in terms of three fit-

ness values, �, convergence, SR and RR.

6.6. Sensitivity analysis of the OPSO algorithm against swarm’s

size

In order to study the sensitivity analysis of the proposed OPSO

algorithm against the changing in the swarm population, m, four

benchmarks functions f1, f7–f8 and f10 are selected with a fixed

number of iteration, i.e., Niter = 1000. The test is carried out with

Nrun = 20. In addition, the AET is obtained at t = 3750 over 20 runs.

Table 17 shows sensitivity analysis of the OPSO algorithm under

effect of changing swarm’s size m, from 40 to 100, on the perfor-

mance of OPSO algorithm in terms of BFV, WFV, MFV and AET for

f1, f7–f8 and f10. We can see from Table 17 that the AET increases

as m increases. This gives rise to more computation. In addition, it

does not yield any tangible change or better solution in BFV, WFV

and MFV. This result leads to that when m � d, it gives rise to more

computation, but does not provides any better solution. Consider-

ing these two extremes a reasonable value of m is could be about

10% more than d.

6.7. Comparison between the proposed OPSO algorithm and other

ECTs

Here, we verify the performance of the proposed OPSO algo-

rithm by comparing it with few ECTs recently reported by other

authors [33–37,48–52].

6.7.1. Shifted and rotated benchmark functions f1, f2, f4 and f6
The three top-ranked algorithms in the CEC 2015 [31] learn-

ing based papers (LBP) are SPS-l-SHADE-EIG [48], DEsPA [49], and

MVMO [50], in which the four shifted and rotated benchmark

functions f1, f2, f4 and f6 are considered. Here, we compare the per-

formance of the OPSO algorithm against the above three top-ranked

algorithms and a few competitive algorithms from [33] for the four

functions.

The comparison has been achieved with Nrun = 20 and for each

run the maximum NFE = 10,000 × d, i.e., 10,000 × 30 = 300,000, as

given in [33]. The criterion used in this comparison depends on

the values of maximum NFE and MFEV (41). When the algorithm
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Table 19
Performance comparison between OPSO algorithm and four ECTs using six CEC 2015-EOP [32] benchmark functions with d = 30.

ECTs Performance measure f3 f5 f7 f8 f9 f10

OPSO (proposed) MFEV 6.81 × 10−02 1.37 × 1000 6.40 × 10−01 1.49 × 10−02 1.54 × 10−02 1.29 × 1000

� 2.96 × 10−02 3.35 × 10−01 4.00 × 10−01 5.97 × 10−03 7.45 × 10−03 6.74 × 10−02

AET (sec) 2.32 × 1000 1.98 × 1001 4.51 × 1000 1.47 × 1000 1.43 × 1000 1.60 × 1000

SbaDE [34] MFEV 2.54 × 1009 2.00 × 1001 4.33 × 1002 4.56 × 1004 7.52 × 1001 2.39 × 1007

� 5.00 × 1009 2.04 × 1002 9.46 × 1001 4.07 × 1004 4.15 × 1003 5.43 × 1007

AET (sec) 1.76 × 1001 1.65 × 1001 1.68 × 1001 1.71 × 1001 1.78 × 1001 1.72 × 1001

DD-SRPSO [35] MFEV 2.59 × 1004 2.24 × 1001 2.71 × 1000 5.61 × 10−01 5.43 × 10−01 3.32 × 1002

� 1.05 × 1004 2.12 × 000 7.58 × 10−01 1.00 × 10−01 2.03 × 10−01 2.12 × 1002

AET (sec) – – – – – –

EPSO [36] MFEV 6.37 × 1004 3.38 × 1002 5.04 × 1002 6.02 × 1002 7.21 × 1002 1.27 × 1005

� – – – – – –

AET (sec) – – – – – –

SHPSO-GSA [37] MFEV 6.96 × 10−01 1.80 × 1001 1.06 × 1000 5.26 × 10−01 1.36 × 10−01 2.78 × 1000

� 2.11 × 1001 9.03 × 10−01 5.55 × 10−01 4.62 × 10−01 3.11 × 10−01 1.04 × 10−04

AET (sec) – – – – – –

MVMO

[51] Rank #1 CEC 2015-EOP

[32]

MFEV 6.93 × 10−03 3.79 × 1001 1.67 × 1001 5.20 × 10−01 4.39 × 10−01 4.03 × 1002

� 3.24 × 10−04 3.85 × 100 5.04 × 10−01 1.32 × 10−01 9.93 × 10−02 2.63 × 1002

AET (sec) – – – – – –

TunedCMAES

[52] Rank #2 CEC 2015-EOP

[32]

MFEV 1.17 × 1005 3.21 × 1002 5.05 × 1002 6.00 × 1002 7.00 × 1002 8.22 × 1002

� 2.19 × 1004 5.06 × 100 5.91 × 10−01 2.35 × 10−01 2.86 × 10−01 1.09 × 10−01

AET (sec) – – – – – –

Max.NFE 1.50 × 1003 1.50 × 1003 1.50 × 1003 1.50 × 1003 1.50 × 1003 1.50 × 1003

Bold values signifies the best results in the respective category.

Table 20
Statistical results of unpaired t-Test of OPSO algorithm against seven ECTs for CEC 2015-LBP [31].

Competitive Algorithms

Sl. No. f Statistical

Results

LLUDE [33] SaDE [33] JADE [33] CoDE [33] SPS-l-SHADE-EIG

[48]

Rank #1

CEC 2015-LBP

[31]

DEsPA

[49] Rank #2

CEC 2015-

LBP [31]

MVMO [50]

Rank #3

CEC 2015-LPB

[31]

1 f1 t-value −∞ −∞ −1.53 × 1016 −∞ 0.0 0.0 0.0

p-value 0 0 7.99 × 10−297 0 5.00 × 10−01 5.00 × 10−01 5.00 × 10−01

2 f2 t-value 0.0 0.0 0.0 0.0 0.0 0.0 0.0

p-value 5.00 × 10−01 5.00 × 10−01 5.00 × 10−01 5.00 × 10−01 5.00 × 10−01 5.00 × 10−01 5.00 × 10−01

3 f4 t-value −2.49 × 1016 −2.00 × 1016 −2.49 × 1016 −2.47 × 1016 −2.47 × 1016 −2.47 × 1016 −2.47 × 1016

p-value 7.50 × 10−301 4.74 × 10−299 7.50 × 10−301 9.05 × 10−301 9.05 × 10−301 9.05 × 10−301 9.05 × 10−301

4 f6 t-value −1.06 × 1016 −2.12 × 1016 −1.08 × 1016 −∞ −2.53 × 1016 −1.19 × 1016 −1.17 × 1016

p-value 8.51 × 10−294 1.56 × 10−299 7.35 × 10−294 0 5.67 × 10−301 9.13 × 10−295 1.28 × 10−294

t = negative t < 0 3 3 3 3 2 2 2

t = positive t = ≥ 0 1 1 1 1 2 2 2

General Merit Over Contender 2 2 2 2 0 0 0

Bold values signifies the best results in the respective category.

Table 21
Statistical results of unpaired t-Test OPSO algorithm against six ECTs for CEC 2015-EOP [32].

Competitive Algorithms

Sl. No. f Statistical

Results

SbaDE [34] DD-SRPSO [35] EPSO [36] SHPSO-GSA [37] MVMO

[51] Rank #1

CEC 2015-EOP

[32]

Tuned CMAES

[52] Rank #2

CEC 2015-EOP

[32]

1 f3 t-value −3.80 × 1011 −3.88 × 1006 −9.54 × 1006 −9.41 × 1001 1.33 × 1000 −1.75 × 1007

p-value 2.37 × 10−209 1.63 × 10−114 6.14 × 10−122 7.89 × 10−27 9.80 × 10−02 5.90 × 10−127

2 f5 t-value −2.49 × 1002 −2.81 × 1002 −4.49 × 1003 −2.22 × 1002 −4.87 × 1002 −4.27 × 1003

p-value 7.69 × 10−35 7.69 × 10−36 1.00 × 10−58 6.66 × 10−34 2.13 × 10−40 2.69 × 10−58

3 f7 t-value −6.49 × 1004 −3.96 × 1002 −7.55 × 1004 −1.48 × 1002 −2.49 × 1003 −7.56 × 1004

p-value 9.44 × 10−81 1.12 × 10−38 5.27 × 10−82 1.35 × 10−30 7.39 × 10−54 5.07 × 10−82

4 f8 t-value −3.40 × 1007 −4.09 × 1002 −4.50 × 1005 −3.82 × 1002 −3.78 × 1002 −4.48 × 1005

p-value 1.93 × 10−132 6.07 × 10−39 9.85 × 10−97 2.13 × 10−38 2.67 × 10−38 1.05 × 10−96

5 f9 t-value −4.07 × 1004 −2.85 × 1002 −3.90 × 1005 −1.01 × 1001 −2.29 × 1002 −3.79 × 1005

p-value 6.56 × 10−77 5.50 × 10−36 1.45 × 10−95 8.08 × 10−24 3.56 × 10−34 2.55 × 10−95

6 f10 t-value −1.59 × 1009 −2.21 × 1004 −8.48 × 1006 −1.77 × 1002 −2.69 × 1004 −5.49 × 1004

p-value 3.46 × 10−164 6.77 × 10−72 5.71 × 10−121 4.79 × 10−32 1.70 × 10−73 2.22 × 10−79

t = negative t < 0 6 6 6 6 5 6

t = positive t = ≥ 0 0 0 0 0 1 0

General Merit Over Contender 6 6 6 6 4 6

Bold values signifies the best results in the respective category.
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reaches NFE = 300,000, the MFEV is recorded as a better result. The

algorithm obtains a best result when the MFEV is 0.0 or close to 0.0.

Table 18 presents the results of the MFEV and the corresponding

� obtained by the eight ECTs. We can find that the OPSO algorithm is

significantly superior to LLUDE, SaDE, JADE and CoDE [33] in solving

f1, f2, f4 and f6. While comparing with CEC 2015-LBP [31] algorithms,

performance of the OPSO algorithm found similar to that of the

three top-ranked algorithms for the functions f1 and f2. However,

the OPSO algorithm outperforms the three top-ranked algorithms

for the function f4 and f6.

6.7.2. Shifted and rotated benchmark functions f3, f5, f7–f10

The benchmark functions in CEC 2015 expensive optimization

papers (EOP) [32] are highly competitive and require efficient opti-

mization algorithms to provide fast solutions with a high accuracy.

The two top-ranked algorithms are MVMO [51] and TunedCMAES

[52], in which the six shifted and rotated benchmark functions f3,

f5, f7–f10 are considered.

Here, we compare the performance of the OPSO algorithm with

that of the above two top-ranked algorithms and few other compet-

itive algorithms from [34–37]. The comparison has been achieved

with Nrun = 20 and for each run the exact maximum NFE = 1500 as

given in [32]. The dimension of each tested function is d = 30. The 50

particles have been used in the DD-SRPSO [35] and SHPSO-GSA [37]

algorithms, whereas 60 particles are used for the EPSO [36] algo-

rithm. In this experiment, The OPSO algorithm uses 50 particles.

Thus, the Niter = 30 based on (40).

Table 19 shows the MFEV, the corresponding � and AET of the

seven ECTs. Among the seven ECTs, the OPSO algorithm achieves

the best MFEV performance for the five functions, f5, f7–f10, whereas

the MVMO [51] gives the best MFEV performance for the function

f3. In terms of �, the performance of the OPSO algorithm is the best

in case of the four functions f5, f7–f9 and is the second best for the

functions, f3 and f10. Thus, the performance of the OPSO algorithm

found to be superior to the two CEC 2015-EOP [32] algorithms. In

terms of AET, the OPSO algorithm performance is better than SabDE

[34] algorithm for all the functions except f5.

6.8. Statistical significance of the proposed OPSO algorithm

In order to determine the statistical significance of the proposed

OPSO algorithm, we carried out three sets of unpaired one-tailed t-

Test [68] with a significance level of � = 0.05. The results of the t-Test

for CEC 2015-LBP [31] are shown in Table 20. Here, we provide the

statistical results of the comparison between OPSO algorithm and

seven competitive algorithms for f1, f2, f4 and f6. The comparison is

made with a degree of freedom equals to 19. The OPSO algorithm

is considered to be statistically significant against the contender

algorithm when t-value < 0 and p-value less than 0.05. The gen-

eral merit over contender is shown in the last row of Table 20. It

is calculated as the difference between the number of times the

OPSO algorithm is found to be statistically significant and statisti-

cally not significant among four tested functions. It can be seen that

out of the seven algorithms, the OPSO algorithm is statistically sig-

nificant against four algorithms, i.e., LLUDE, SaDE, JADE, and CoDE

[33]. However, against the three top-ranked algorithms CEC 2015-

LBP [31], SPS-l-SHADE-EIG [48], DEsPA [49], and MVMO [50], the

OPSO algorithm is statistically significant for f4 and f6, whereas it is

statistically not significant for f1 and f2.

Table 21 shows the statistical results of the comparison between

OPSO algorithm and six competitive algorithms for the six func-

tions, f3, f5, f7–f10. The comparison is made with a degree of freedom

equals to 19. The general merit over contender is shown in the

last row of Table 21. It can be seen that the OPSO algorithm is

statistically significant against all the six algorithms. Ta
b
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Table 22 shows the t-Test results for the three power systems,

PS-1–PS-3. The one-tailed unpaired with � = 0.05 with a degree of

freedom of 99 is performed against twenty four competitive algo-

rithms. As seen from the data in the last column, the proposed OPSO

algorithm is found to be statistically significant against the first

thirteen competitive algorithms for three power systems.

Since the data are not available for PS-1, PS-2, or PS-3 for eleven

algorithms with Sl.No. 14–24, the t-Test is carried out against one or

two power systems. Again, from the data in the last column, one can

observe that the OPSO algorithm is statistically significant against

the eleven contending algorithms. These results give enough evi-

dence that the proposed OPSO algorithm is statistically significant

against the twenty four contending algorithms.

7. Conclusion

A novel optimization algorithm named orthogonal PSO algo-

rithm is proposed to alleviate the problems associated with the

global PSO algorithm. An orthogonal diagonalization process is

carried out in the OPSO algorithm which aims to diagonalize the

position vectors of the active group particles. In contrast to two

guides as used in GPSO algorithm, the OPSO algorithm uses only

one guide while updating of the position and velocity vectors. The

OPSO algorithm is applied for solving economic dispatch prob-

lem of thermal generating units (TGUs) under various practical

power constraints imposed by the smart grid and power systems.

The OPSO algorithm is tested with three practical power systems

and ten selected CEC 2015 benchmark functions of increasing

complexity and its superiority over GPSO algorithm and several

existing ECTs has been shown with extensive simulation studies.

The proposed OPSO algorithm has shown evidence of superior per-

formance compared to several existing ECTs in providing reliable,

consistent and optimal solution for the economic dispatch prob-

lem and shifted rotated CEC 2015 benchmark functions. The OPSO

algorithm is found to be statistically significant against several ECTs

including top-ranked CEC 2015 algorithms.
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a b s t r a c t

Optimization of fuel cost function of large-scale thermal generating units under several constraints in
smart power grid is a challenging problem. Because of these constraints, the fuel cost function becomes
multimodal, discontinuous and non-convex. Although the global particle swarm optimization with
inertia weight (GPSO-w) algorithm is a popular optimization technique, it is not capable of solving such
complex problems satisfactory. In this paper, a novel multi-gradient PSO (MG-PSO) algorithm is proposed
to solve such a challenging problem. In MG-PSO algorithm, two phases, called Exploration phase and
Exploitation phase, are used. In the Exploration phase, the m particles are called Explorers and undergo
multiple episodes. In each episode, the Explorers use a different negative gradient to explore new
neighbourhood whereas in the Exploitation phase, the m particles are called Exploiters and they use one
negative gradient that is less than that of the Exploration phase, to exploit a best neighborhood. This
diversity in negative gradients provides a balance between global search and local search. The effec-
tiveness of the MG-PSO algorithm is demonstrated using four (medium and large) power generation
systems. Superior performance of the MG-PSO algorithm over several PSO variants in terms of several
performance measures has been shown.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Economic dispatch (ED) problem is one of the fundamental is-
sues in power generation systems (PGSs) of smart power grid (SPG).
Its objective is to allocate the load demand among the committed
thermal generating units (TGUs) in the most economical manner,
while satisfying all operational and physical power constraints, e.g.,
ramp rate limits, prohibited operating zones and valve-point
loading effects. Under these constraints, the fuel cost function be-
comes discontinuous and non-convex with multiple local minima
[1].

Evolutionary computation techniques (ECTs), e.g., population-
based algorithms, have been proposed and developed by several

researches to solve real-world complex optimization problems
including ED problem. In ECTs, finding the optimum solution of a
problem is based on two phases, namely Exploration and Exploita-
tion phases. In the Exploration phase, a global search exploring all
over the search space as much as possible is carried out to find
promising neighbourhood(s). Whereas, in the Exploitation phase, a
local search exploiting the best neighbourhood to fine-tune the
search space is carried out to obtain the optimum solution. The best
performance of an ECT is achieved when an appropriate balance
between these two phases is maintained [2]. Focusing more on
Explorationwill lead to excessive search time because of wastage of
time in searching over inferior neighbourhoods, whereas focusing
more on Exploitation will cause loss of diversity, thereby possibly
getting stuck into a local optimum.

One of such popular ECTs called the global particle swarm
optimization (GPSO) algorithm has been proposed to boost the
global search and local search abilities and to make a good balance
between the Exploration and Exploitation, for solving ED problem

* Corresponding author. Swinburne University of Technology, Melbourne,
Australia.

E-mail addresses: lalbahrani@swin.edu.au (L.T. Al-Bahrani), JPatra@swin.edu.au
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https://doi.org/10.1016/j.energy.2017.12.052
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[3,4]. It is easy to implement and has performed well on many
optimization problems. The GPSO algorithm has the ability to
quickly converge to the optimum solution [5]. However, in this
algorithm, all of its particles share the swarm's best experience, i.e.,
global best and this may lead the particles to cluster around the
global best. If the global best is located near a local minimum,
escaping from it becomes hard, because loss of balance between
local search guide (personal experience of each particle) and global
search guide (global best) [6e8]. Thus, the GPSO algorithm suffers
diversity loss near a local minimum.

The GPSOwith inertia weight (GPSO-w) was proposed in Ref. [9]
to improve the performance of GPSO algorithm by controlling the
convergence tendency of the particles with a negative gradient of
the inertia weight,w. However, when the fuel cost function is high-
dimensional, e.g., 40 TGUs or more, and restricted by many power
constraints, it may have several local minima. In such case, finding a
global optimal with w becomes hard, because of loss of balance
between local search guide and global search guide still remains.

Recently, some of the notable ECTs that have been applied to
solve ED problem under several power constraints imposed on TGU
and PGS are orthogonal PSO (OPSO) algorithm [10], PSO with
modified stochastic acceleration factors (PSO-MSAF) [11], chaotic
sequence and crossover PSO (CCPSO) algorithm [12], hybrid PSO
with mutation (HPSOM) algorithm [13], hybrid PSO with wavelet
mutation (HPSOWM) algorithm [13], improved random drift PSO
(IRDPSO) algorithm [14], self-tuning IRDPSO (ST-IRDPSO) algorithm
[14], simulated annealing PSO (SA-PSO) algorithm [15], anti-
predatory PSO (APSO) [16], and Chaotic PSO (CPSO) algorithm
[17]. In Ref. [18], performance of the RDPSO algorithm was
compared with ten ECTs, i.e., genetic algorithm (GA), differential
evolution (DE), ant colony search algorithm (ACSA), bee colony
optimization (BCO), artificial immune system (AIS), firefly algo-
rithm (FA), and APSO, hybrid gradient PSO (HGPSO), HPSOM and
HPSOWM algorithms.

Some other groups of ECTs are also used to compare with GPSO
algorithm and its variants by several researchers [19e28] to solve
ED problem of small, medium and large PGSs. They are mixed-
integer quadratically constrained quadratic programming
(MIQCQP) [19], Lambda logic (l-logic) [20], synergic predator-prey
optimization (SPPO) algorithm [21], modified symbiotic organisms
search (MSOS) algorithm [22], fuzzy adaptive chaotic ant swarm
optimization with sequential quadratic programming (FCASO-SQP)
algorithm [23], chaotic bat algorithm (CBA) [24], greedy random-
ized adaptive search procedure (GRASP) algorithm [25], crisscross
optimization algorithm [26], q-modified bat algorithm (q-MBA)
[27], and root tree optimization (RTO) algorithm [28].

In the recent years, the gradient method is integrated and
combined with few optimization techniques to create hybrid
optimization techniques. This combination is used to achieve faster
convergence without getting trapped into local minima. The
gradient method helps particles to move faster toward optimum
solution, whereas the optimization algorithm controls the move-
ment of the particles from falling into local minimum. Some of the
recently proposed such techniques are HGPSO algorithm [29],
enhanced gradient simplified swarm optimization algorithm
(EGSSOA) [30], and gradient-based Jaya algorithm [31]. Whereas, in
the proposed MG-PSO algorithm, multiple negative gradients are
used by m particles while searching for a global optimum. In
addition, multiple gradients help to prevent the global best particle
to fall in a local minimum.

InMG-PSO algorithm two phases are used, i.e., Exploration phase
and Exploitation phase. In Exploration phase, a particle is called an
Explorer. The Explorers operate in several episodes. In each episode,
the Explorers use a different negative gradient to explore a new
neighbourhood. Explorers enhance global search ability of the MG-

PSO algorithm. At the end of Exploration phase, the Explorers pro-
vide a search boundary which becomes the new search space in the
Exploitation phase. In the Exploitation phase, a particle is called an
Exploiter. Exploiters use one negative gradient which is less than
that of the Exploration phase to exploit the best neighborhood. The
small negative gradient leads to small incremental change in the
velocity and position vectors during updating process. This helps
the particles to move steadily towards optimal solutions. Thus,
Exploiters enhance local search ability of MG-PSO algorithm. This
diversity in negative gradients helps the best particle from falling
into a local minimum. The combination of two phases provides a
balance between Exploration and Exploitation in search space.

In a recent work, the effectiveness of the proposed MG-PSO
algorithm has been shown in solving ED problem of small and
medium PGSs under a few power constraints in SPG applications
[32]. Whereas, in the current study, the MG-PSO algorithm is
applied to solve ED problem of four (medium and large) PGSs,
considering more constraints including valve-point loading effects.
In addition, the mathematical analysis and theoretical justification
of MG-PSO algorithm is provided. With extensive simulated ex-
periments, superior performance of the MG-PSO algorithm has
been shown in terms of convergence, consistency and accuracy
compared to GPSO-w algorithm and several competitive ECTs.

The rest of the paper is organized as follows. Section 2 describes
the ED problem under various power constraints. Explanation of
the GPSO-w algorithm is presented in Section 3. Details of the
proposedMG-PSO algorithm are provided in Section 4. In Section 5,
application of the MG-PSO algorithm to ED problem in four PGSs is
presented. Finally, conclusion of this study is provided in Section 6.

2. Problem formulation

Here, we explain the fuel cost function and various practical
power constraints involved in this study.

2.1. Fuel cost function

The aim of ED problem is to guess the optimum arrangement of
power generation of online TGUs in order to minimize the entire
generation fuel cost subjected to the online TGUs and PGS con-
straints in SPG. Considering Ngen committed online TGUs, the fuel
cost function of jth online TGU F(Pj), j¼ 1, 2, …, Ngen, in ($/h) is
characterized by a quadratic function given by Ref. [33]:

F
�
Pj
� ¼ aj þ bjPj þ cjP

2
j (1)

where Pj is the output active power in (MW) at a current time in-
terval, and aj, bj, and cj are fuel cost coefficients. Under valve-point
loading (VPL) effects, sinusoidal functions are added to the
quadratic fuel cost function (1) [34]. This makes the fuel cost
function non-smooth with multiple modes as follows:

F
�
Pj
� ¼ aj þ bjPj þ cjP

2
j þ

��� ej � sin

fj �

�
Pj;min � Pj

�� ��� (2)

where ej and fj are the coefficients reflecting VPL effects and Pj,min is
the minimum output active power of jth TGU. The symbol jj cor-
responds to absolute value. The total fuel cost, Fcost, considering all
online TGUs is given by:

Fcost ¼
XNgen

j¼1

F
�
Pj
�

(3)

Here, Fcost is the function that needs to be minimized.

L.T. Al-Bahrani, J. Chandra Patra / Energy 147 (2018) 1070e1091 1071

Appendix-1



2.2. Power constraints

Different practical power constraints imposed on the online
TGUs and by PGS in SPG used in literature are stated below:

2.2.1. Power balance constraint
The total output active power of the committed online TGUs

should be able to satisfy load demand and transmission network
loss. The power balance constraint is given as:

Ptotal¼ PDþ PL (4)

where Ptotal¼
PNgen

j¼1 Pj; PD is load demand in (MW) and PL is trans-

mission network loss in (MW).

2.2.2. Transmission network loss
The transmission network loss PL is a critical constraint of the ED

problem. Not only is it desired that the power loss incurred in the
system be minimized along with the total fuel cost, but also the
power generation system must generate enough power to satisfy
the PD as well as to compensate for the PL. The PL is given by:

PL ¼
XNgen

j¼1

XNgen

k¼1

PjBjkPk (5)

where Bjk are known as the loss coefficients or B-coefficients [34].

2.2.3. Transmission network loss mismatch
The PL obtained from (4) is denoted by PL1 and is given by:

PL1¼ Ptotal ‒ PD (6)

Let PL2 be the transmission network loss obtained from (5). The
transmission network loss mismatch, PL,mismatch is given by:

PL,mismatch¼ PL2 ‒ PL1 (7)

When PL,mismatch¼ 0, it implies that optimum Ptotal is found and
the power balance constraint (4) is achieved.

2.2.4. Generation limits
Each TGU has a specified range within which its operation is

stable. Therefore, it is desired that all the TGUs be run within their
operation range in order to maintain system stability. The genera-
tion limits of the jth TGU is given by:

Pj;min � Pj � Pj;max j ¼ 1;2;…;Ngen (8)

2.2.5. Ramp rate limits
The operating range of on-line TGU is restricted by its ramp rate

limits (RRLs) due to its physical limitations [35,36]. For any sudden
change in the PD, TGU increase or decrease its generation in order to
satisfy system stability. However, the TGU can change its generation
only at a certain rate determined by its up-ramp and down-ramp
rate. If a TGU is operating at a specific point, then its point of
operation can be changed only up to a certain rate determined by
the ramp rate. Therefore, a change in TGU output active power from
one specific interval to the next cannot exceed a specified limit.

If power generation need to increase, then per unit time rate of
increase Pj ‒ Pj

0 must satisfy:

Pj � P0j � URj (9)

If power generation need to decrease, then per unit time rate of
decrease Pj

0 ‒ Pj must satisfy:

P0j � Pj � DRj (10)

where Pj
0 is the TGU output active power at the previous time in-

terval. The URj and DRj are the up-ramp and down-ramp limits of
TGU j in (MW/h), respectively. By substituting (9) and (10) in (8), we
obtain the following constraints.

max
n
Pj;min;


P0j � DRj

�o
� Pj � min

n
Pj;max;


P0j � URj

�o
(11)

where

Pj;low ¼ max
n
Pj;min;


P0j � DRj

�o
; (12)

Pj;high ¼ min
n
Pj;max;


P0j þ URj

�o
; and (13)

Pj,low and Pj,high are the new lower and higher limits of jth TGU,
respectively.

2.2.6. Prohibited operating zones
The physical limitations due to the steam valve operation or

vibration in shaft bearing of TGUmay result in the generation units
operating within prohibited operating zones (POZs) [37]. The POZs
make the fuel cost function discontinuous in nature. In such case, it
is difficult to determine the shape of the cost curve under POZs
through actual performance testing. In addition, if the TGU operates
within the POZ range then it may lead to loss of the stability.
Therefore, in this study, these regions are usually avoided during
generation. By using (8), the feasible operating zones (FOZs) of the
jth TGU are given by:

Pj;min � Pj � Plj;1

Puj;k�1 � Pj � Plj;k k ¼ 2;3;…;Nj;PZ

Puj;Nj;PZ
� Pj � Pj;max

(14)

where Plj;kand Puj;k are the lower and upper bound of the kth POZs of

the jth TGU, and Nj,PZ is number of POZs of the jth TGU. Incorpo-
rating these power constraints in (11)e(14), we get the final set of
inequality power constraints imposed on TGU as given below.

Pj;low � Pj � Plj;1;

Puj;k�1 � Pj � Plj;k k ¼ 2;3;…;Nj;PZ

Puj;Nj;PZ
� Pj � Pj;high

(15)

Equation (15) gives the final set of the inequality power con-
straints imposed on jth TGU in terms of new lower and upper
generation limits with RRLs and FOZs and avoiding all POZS. Thus,
all TGUs will have a set of operation limits that satisfies all the
power constraints.

3. The GPSO-w algorithm

The optimization mechanism in a global particle swarm opti-
mization with inertia weight, GPSO-w algorithm depends on the
distribution of m particles in the swarm [9]. It is represented by a
fully connected network, in which each particle has access to the
information of the swarm population. Firstly, each particle flying in

L.T. Al-Bahrani, J. Chandra Patra / Energy 147 (2018) 1070e10911072

Appendix-1



the multi-dimensional search space adjusts its flying trajectory
based on two guides, its personal experience, Gpers,i and its neigh-
borhood's best experience, Gbest. Secondly, when seeking an opti-
mum, i.e., global solution, each particle learns from its own
historical experience and its neighborhood's historical experience.
In such a case, a particle while choosing the neighborhood's best
experience uses the best experience of the whole swarm as its
neighbor's best experience. Therefore, the GPSO algorithm is
named as global PSO, because the position of each particle is
affected by the best-fit particle in the entire swarm. The following
steps explain the mechanism of the GPSO-w algorithm.

Let us consider a swarm population with m particles (m> 1)
searching for optimal solution (minimum) of an objective function
f(x) in a d-dimensional search space. Let total number of iterations
is Niter. The objective is to minimize the given f(x). A particle, i (i¼ 1,
2, …, m), has one d-dimensional velocity vector Vi and one d-
dimensional position vector Xi and are denoted by

Vi¼ [vi1, vi2, …, vid] (16)

Xi¼ [xi1, xi2, …, xid] (17)

Step 1: Initialization: Iteration, t¼ 0.
for i¼ 1, 2, …, m
The Vi and Xi of ith particle are randomly initialized within a
defined range of the search space and are denoted by Vi(0)
and Xi(0), respectively.
Initialize the personal position vector of particle i, i¼ 1, 2, …,
m, Gpers,i(0) as follows:

Gpers,i(0)¼ Xi(0) (18)

Evaluate the f(x) using Xi(0).
Determine the global best position vector, Gbest(0). It is the
best position vector among all the m personal position vec-
tors. The Gbest(0) is denoted by

Gbest(0)¼ [gb,1, gb,2, …, gb,d] (19)

end i loop

Step 2: Update:
for t¼ 1, 2, …, Niter

for i¼ 1, 2, …, m
Determine inertia weight, w(t) as given below [38].

wðtÞ ¼ � 0:5
Niter

t þ 0:9 (20)

Update Vi and Xi as follows:

ViðtÞ ¼ wðtÞ Viðt � 1Þ þ c1r1ðtÞ
�
Gpers;iðt � 1Þ � Xiðt � 1Þ�

þ c2r2ðtÞ½Gbestðt � 1Þ � Xiðt � 1Þ� (21)

XiðtÞ ¼ Xiðt � 1Þ þ ViðtÞ (22)

where c1 and c2 are positive coefficients, called accelera-
tion constants which are commonly set to 2.0 [9]. The r1(t)

and r2(t) are two randomly generated values with a uni-
form distribution in the range of [0,1].
Evaluate f(x) for particle i using Xi (t).
Update Gpers,i(t) as follows:

Gpers;iðtÞ ¼
8<
:

XiðtÞ if f ðXiðtÞÞ � f
�
Gpers;iðt � 1Þ�

Gpers;iðt � 1Þ Otherwise

(23)

end i loop
Obtain f(Gbest(t)) as follows:
f(Gbest(t))¼min{f(Gpers,i (t))}, i¼ 1, 2, …, m
Obtain Gbest(t) corresponding to f(Gbest(t))
end t loop

Step 3: End of iteration: t¼Niter

Optimum solution¼Gbest(Niter) and optimum
value¼ f(Gbest(Niter)) (24)

4. Learning strategy and MG-PSO algorithm

Here, the details of the proposed MG-PSO algorithm and
explanation of its learning strategy are provided.

4.1. Learning strategy

The learning strategy of MG-PSO algorithm depends on the
following considerations. Consider a swarm population with m
particles (m> 1) flying in a d-dimensional space searching for a
solution, i.e., global optimum. Two fundamental phases, “Explora-
tion and Exploitation” are used by the m particles. In Exploration
phase, a particle is called Explorer. In each episode, the Explorers, i.e.,
m particles, use different negative gradient to explore new neigh-
bourhood in a d-dimensional search space. Explorers enhance a
global search ability of MG-PSO algorithm. The purpose of Explorers
is

� To obtain new neighbourhoods within a d-dimensional search
space.

� To obtain best neighborhood within a d-dimensional search
space

In each episode, the Explorers obtain best position vector
following its neighbourhood. Its neighborhood is obtained by tak-
ing “Floor” and “Ceil” of each element of the best position vector.
These operations create a new neighborhood within d-dimensional
search space that will be used in the Exploitation phase.

In Exploitation phase, a particle is called an Exploiter. The Ex-
ploiters, i.e., m particles, use one negative gradient which is less
than that of the Exploration phase. The Exploiters enhance the local
search ability of MG-PSO algorithm. The purpose of this phase is to
obtain an optimal position by exploiting the Exploiters in the best
neighborhood obtained from the Exploration phase.

4.2. The MG-PSO algorithm

In MG-PSO algorithm, Ngrad number of negative gradients is
used while the swarm population searches for an optimal solution.
In Exploration phase, Ngrad ‒ 1 negative gradients are used and one
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negative gradient is used in Exploitation phase. In each episode, the
inertia weight follows one negative gradient.

Let Niter be number of iterations in MG-PSO algorithm. The
number of iterations in Exploration phase is given by

Niter,xplore¼ g�Niter (25)

where g is a real and positive number in a range [0,1]. The number
of iteration in Exploration phase is given by:

Niter,xploit¼ (1‒g)�Niter (26)

The initial and final values of the inertia weight for kth negative
gradient (k¼ 1, 2, …, Ngrad) are denoted by wini,k and wfin,k,
respectively. These values are real and positive numbers within a
range [0,1] and wini,k>wfin,k. The kth negative gradient (k¼ 1, 2, …,
Ngrad ‒ 1) in Exploration phase is given by:

gradk ¼
wfin;k �wini;k

Niter;xplre
(27)

In Exploitation phase, the negative gradient is given by:

gradNgrad
¼

wfin;Ngrad
�wini;Ngrad

Niter;xploit
(28)

The Ngrad gradients are selected such that (29) is satisfied.

jgrad1j> jgrad2j/>
��� gradNgrad

��� (29)

The inertia weight for kth negative gradient (k¼ 1, 2,…, Ngrad) at
iteration t is given by:

wk(t)¼ gradk� t þ wini,k (30)

The flowchart of the MG-PSO algorithm is shown in Fig. 1 and
the detailed steps explaining the MG-PSO algorithm are given in
Appendix.

4.3. An illustrative example

In order to explain the mechanism of MG-PSO algorithm, an
example of a 2-dimensional shifted function, f(x,y) ¼ (x ‒

2)2þ (yþ 3)2þ 9 is illustrated. It can be seen that x and y are shifted
from the origin (0,0) by (2,‒3). The optimum solution of the given
function equals to 9 at x¼ 2 and y¼�3. The aim of the MG-PSO
algorithm is to find the values x and y for which the f(x,y) is mini-
mized. The MG-PSO algorithm was implemented using MATLAB in
a personal computer with Intel (R) core (TM) 2 Duo CPU T6570 @
2.1 GHz. RAM of 4GB and Windows 7, 64-bit operating system.

The MG-PSO algorithm was executed with m¼ 6, Niter¼ 60,
g¼ 0.4, Ngrad¼ 4. Niter,xplore¼ 24 and Niter,xploit¼ 36. The wini,k and
wfin,k are chosen within a range of [0,1] and are shown in Table 1.
Selection of gradk (k¼ 1, 2, …, Ngrad) was done by trial and error
method. The results of the Exploration phase with three episodes
(k¼ 1, 2 and 3) are shown in Table 1. At the end of episodes,
f(Gbest,xplore) is found as 9.0566 that is corresponding to episode #1.
The BEST(Gbest,xplore) corresponding to episode #1 is found as
(2.1625,-2.8262). The range of new search space (neighborhood) is
obtained by taking “Floor” and “Ceil” of 2.1625, i.e. [2,3], and “Floor”
and “Ceil” of �2.8262, i.e., [-3,-2]. Thus, the new search space is
given by a range of x as [2,3] and a range of y as [-3,-2].

In Exploitation phase, the Exploiters navigate in the newly found
search space, i.e. [2,3], [-3,-2], using one negative gradient (k¼ 4)
that is less than that of Exploration phase. As shown in Table 1, at the
end, the Exploiters obtain the optimum value Gbest,x-

ploit(36))¼ 9.0000 and Gbest,xploit(36) ¼ (2.0,-3.0) give the optimum
value of f(x,y) and the optimum solution of (x,y) as 9.0 and optimum
solution as (x,y) ¼ (2.0, �3.0).

The movement of best particle Gk
bestðtÞ for three episodes, k¼ 1,

2 and 3 over 24 iterations are shown in Fig. 2(a), (b) and (c),
respectively. The Gk

bestðtÞ follows its gradk in each episode.
This diversity in negative gradients makes the MG-PSO algo-

rithm to obtain different solutions, i.e., G1
bestðtÞ, G2

bestðtÞ and G3
bestðtÞ

which are close to optimum solution. This means that the global
best particle prevents the swarm from falling into a local minimum.

Fig. 2(d), (e) and (f) illustrate variation of inertia weight with
iteration for the episodes 1, 2 and 3, respectively. It can be seen that
the inertia weights follow different negative gradients. The
convergence characteristics, i.e., variation f ðGk

bestðtÞÞ with iteration
are also shown in this figure. At the end of iteration the optimum
values obtained from the three episodes are given by 9.0566,
11.3179 and 10.6136. The corresponding optimum solutions for the
three episodes are given by (2.1625,-2.8262), (3.4993,-2.7352) and
(1.3299,-1.9208), respectively (as shown in Fig. 2(a), (b) and (c) and
Table 1).

Fig. 3(a) shows movement of the best particle Gbest,xploit(t) in
Exploitation phase within the new search space range of x and y as
[2,3] and [-3,-2], respectively. The variation of f(Gbest,xploit) and
inertia weight w4 over 36 iterations are shown in Fig. 3(b). The
Gbest,xploit gives the optimum solution (x,y) ¼ (2.0,-3.0) and opti-
mum value of f(x,y)¼ 9.0.

4.4. Observations

Some of the important observations of the MG-PSO algorithm
are as follows:

4.4.1. Observation 1
Due to use of a different negative gradient in each episode, in

Exploration phase, the Explorers have ability to find a new neigh-
bourhood within a d-dimensional search space. The global best
particle is able to prevent the swarm from falling into a local
minimum. In addition, the diversity in negative gradients enhances
the local search ability of the Exploiters to obtain optimum solution,
as shown in Figs. 2 and 3.

4.4.2. Observation 2
In case of GPSO-w algorithm (21), two guides, Gpers,i and Gbest,

are used to update the velocity vector Vi(t). This leads to loss of
balance between global search and local search. However, in case of
MG-PSO algorithm two phases are used. In the Exploration phase,
using several episodes (each one with different gradient) a new
search space (new neighborhood) is obtained. This search space is
used in Exploitation phase to achieve the optimum solution. In this
way a balance is maintained between the global and local search
spaces.

4.4.3. Observation 3
The wNgrad

ðtÞ that follows negative gradient, gradNgrad
in the

Exploitation phase (Appendix) is used to diminish the contribution
of Xi(t ‒ 1) while updating Vi(t), i¼ 1, 2,…,m. As t/∞, assume that
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Fig. 1. Flowchart of MG-PSO algorithm.
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Table 1
Set of parameters and performance of MG-PSO algorithm with d¼ 2, m¼ 6, Niter¼ 60.

Set of parameters Exploration phase Exploitation phase

k¼ 1 k¼ 2 k¼ 3 k¼ 4

wini,k 1.0 0.90 0.80 0.50
wfin,k 0.1 0.15 0.20 0.35
gradk �0.0375 ¡0.0313 ¡0.0250 ¡0.0042

Gk
best

(2.1625, -2.8262) (3.4993, �2.7352 (1.3299, �1.9208) (2.0000,-3.0000)

f ðGk
bestÞ 9.0566 11.3179 10.6136 9.0000

The bold numbers indicate the best solution of ith particle in a swarm during Exploration and Exploitation phases.

Fig. 2. Movement of best particle in Exploration phase over 24 iterations based on three different negative gradients in three episodes, (a), (b) and (c): movement of Gk
best over 24

iterations, (d), (e) and (f): the change of f ðGk
bestðtÞÞ and wk(t) with iteration t.
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the algorithm has converged. In such case,

lim
t/∞

Xiðt � 1Þ ¼ Gpers;iðt � 1Þ

lim
t/∞

Xiðt � 1Þ ¼ Gbest;xploitðt � 1Þ
(31)

Then, Equation (A-4) becomes

lim
t/∞

ViðtÞ ¼ wNgrad
ðtÞ Viðt � 1Þ ¼ 0 (32)

which implies that

lim
t/∞

XiðtÞ ¼ Xiðt � 1Þ (33)

Thus,

lim
t/∞

XiðtÞ ¼ lim
t/∞

Gpers;iðtÞ ¼ lim
t/∞

Gbest;xploitðtÞ (34)

Thus, when iteration becomes large and the algorithm has
converged, all the position vectors Xi and personal vectors Gpers,i,
i¼ 1, 2, …, m, move towards the best position vector, Gbest,xploit.
Fig. 4 shows performance of MG-PSO algorithm in the Exploitation
phase at different iterations. At t¼ 36, as the algorithm converges, it

Fig. 3. Movement of the best particle in Exploitation phase with one negative gradient, (a): movement of Gbest over 36 iterations, (b): the change of f(Gbest,xploit(t)) and w4(t) with
iteration t.

Fig. 4. Performance of MG-PSO algorithm in Exploitation phase showing movement of Xi, Gpers,i, (i¼ 1, 2, …, 6) and Gbest,xploit over 36 iterations to obtain a solution of (2.0,-3.0).
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can be seen that Xi, Gpers,i (i¼ 1, 2, …, 6) and Gbest,xploit, all converge
to the optimum solution (2.00,-3.00).

5. Application of MG-PSO algorithm to ED problem

Here we illustrate the simulation results carried out on four
PGSs with several TGUs and SPG constraints.

5.1. Performance measures

To study the accuracy, consistency and robustness of different
algorithms in solving ED problem, several fitness values as illus-
trated below are considered. Every algorithm is executed over Nrun

runs each with Niter iterations.

1. Ensemble average cost (Fcost): At each iteration, it is the average
cost value obtained from Nrun independent runs.

2. Minimum fuel cost (Fmin): Defined as the minimum of the
optimized Fcost values obtained from Nrun independent runs.

3. Maximum fuel cost (Fmax): Defined as the maximum of the
optimized Fcost values obtained from Nrun independent runs.

4. Mean fuel cost (Fmean): Defined as the average of the optimized
Fcost values obtained from Nrun independent runs.

5. Standard deviation (s): The s is the standard deviation of the
optimized Fcost values obtained from Nrun independent runs.

6. Range (R): The range (R) is defined as the difference between
Fmax and Fmin.

7. Average execution time (AET): It is the time consumed by an
algorithm after convergence, averaged over Nrun independent
runs.

5.2. Test case 1: power generation system-1 (PGS-1)

The PGS-1 is a medium-scale PGS [25], and consists of 13 TGUs.

Table 2
Specifications and power constraints for PGS-1.

TGUj aj ($/h) bj ($/MWh) cj ($/MW2h) ej ($/h) fj (rad/MW) Pj,min (MW) Pj,max (MW)

1 0.00028 8.10 550 300 0.035 0 680
2 0.00056 8.10 309 200 0.042 0 360
3 0.00056 8.10 307 200 0.042 0 360
4 0.00324 7.74 240 150 0.063 60 180
5 0.00324 7.74 240 150 0.063 60 180
6 0.00324 7.74 240 150 0.063 60 180
7 0.00324 7.74 240 150 0.063 60 180
8 0.00324 7.74 240 150 0.063 60 180
9 0.00324 7.74 240 150 0.063 60 180
10 0.00284 8.60 126 100 0.084 40 120
11 0.00284 8.60 126 100 0.084 40 120
12 0.00284 8.60 126 100 0.084 55 120
13 0.00284 8.60 126 100 0.084 55 120

Table 3
Set of parameters used in MG-PSO and GPSO-w algorithms for PGS-1.

Set of parameters MG-PSO GPSO-w

Exploration phase Exploitation phase

k¼ 1 k¼ 2

g 0.30 0.3 e

c1, c2 2.05 2.05 2.00
Niter 150 350 500
wini,k 0.90 0.45 0.90
wfin,k 0.10 0.20 0.40
gradk �5.33� 10�03 7.14� 10�04 �1.00� 10�03

Table 4
Comparison of cost performance between MG-PSO algorithm and other 8 ECTs for PGS-1.

Sl.No. Algorithm Min. Cost Fmin ($/h) Max. Cost Fmax ($/h) Mean Cost Fmean ($/h) s ($/h) R ($/h) AET (sec)

1 IRDPSO [14] 17,965.8480 NA 17,972.8090 0.8326 NA 2.26
2 ST-IRDPSO [14] 17,963.8300 NA 17,966.5700 3.3070 NA 2.28
3 MSOS [22] 17,963.8292 17,963.8292 17,963.8292 6.8� 10�12 0.0 0.81
4 FCASO-SQP [23] 17,964.0800 NA 18,001.9600 NA NA 19.62
5 CBA [24] 17,963.8300 17,995.2256 17,965.4889 6.8730 31.3956 0.97
6 C-GRASP-SaDE [25] 17,960.3930 17,968.8680 17,966.1060 2.7010 8.4750 NA
7 RTO [28] 17,969.8024 18,204.6303 18,056.9358 NA 234.8279 NA
8 GPSO-w 18,047.1192 18,531.1387 18,326.4056 145.2735 484.0195 11.95
9 MG-PSO 17,955.8802 17,956.2793 17,955.9948 0.1085 0.3991 17.36

The bold numbers indicate the best solution found by corresponding algorithm.

Fig. 5. Convergence characteristics of MG-PSO and GPSO-w algorithms for PGS-1.
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The maximum load demand at normal operation steady state is
given as PD¼ 1800MW. Here, the VPL effects and power generation
limits are taken into account. However, the RRLs, POZs and PL are

not considered. The specification of PGS-1 is shown in Table 2 [25].

5.2.1. Comparison in terms of fitness values
Recently, the PGS-1 has been tested by several ECTs. In Ref. [14],

PGS-1 has been tested by 2 ECTs, i.e., IRDPSO and ST-IRDPSO. It has
also been tested by MSOS [22], FCASO-SQP [23], CBA [24], contin-
uous GRASP with self-adaptive differential evolution (C-GRASP-
SaDE) [25] and RTO [28]. Here, we compare the performance of the
proposed MG-PSO algorithm with other 8 existing ECTs. The set of
parameters used in MG-PSO and GPSO-w algorithms are shown in
Table 3. In addition, both are runwithm¼ 20, d¼ 13 and Nrun¼ 25.
In MG-PSO algorithm, two negative gradients are selected
(Ngrad¼ 2), by using trial and error method, one for Exploration
phase and another for Exploitation phase as shown in Table 3.

The fitness values of MG-PSO algorithm and other 8 ECTs are
listed in Table 4. It can be seen that MG-PSO algorithm provides
the best result in terms of Fmean over 25 independent runs.
However, it is the second best in terms of s. This indicates that the
MG-PSO algorithm provides most optimum and consistent results.
In addition, the range R of MG-PSO algorithm is close to the best
one MSOS [22], thus indicating that MG-PSO algorithm provides
solution with low dispersion. In terms of AET, the MG-PSO algo-
rithm is the fifth best. These results indicate that among the 9
ECTs, the MG-PSO algorithm is stable, robust and is able to provide
optimum solution.

5.2.2. Convergence characteristics of MG-PSO and GPSO-w
algorithms

Fig. 5 shows the convergence characteristics of MG-PSO and
GPSO-w algorithms for PGS-1. It shows ensemble average Fcost
values at each iteration obtained from 25 independent runs. It can
be seen that MG-PSO algorithm settles at about 150 iterations and
achieves Fmean of about $17,956/h. Whereas, the GPSO-w algorithm
takes more than 500 iterations to converge, and settles at a local
minimum with a non-optimum Fmean of about $18,326/h. This in-
dicates that MG-PSO algorithm gives higher accuracy in solving this
PGS, compared to GPSO-w algorithm.

Fig. 6 shows the variation of optimized Fcost over 25 independent
runs achieved by the MG-PSO and GPSO-w algorithms. It shows
that the optimized Fcost of MG-PSO algorithm varies between
$17,955.88/h and $17,956.27/h whereas, in GPSO-w algorithm, it
varies between $18,047.11/h and $18,531.13/h. This indicates that
MG-PSO algorithm is capable of providing consistent and reliable
solution. Whereas, the GPSO-w algorithm is rather far from opti-
mum solution due to VPL effects.

Fig. 6. Comparison of optimized cost per run between MG-PSO and GPSO-w algo-
rithms for PGS-1.

Table 5
Optimized output power in (MW) for each TGU obtained by MG-PSO and GPSO-w
algorithms for PGS-1.

TGUj Pj (MW)

GPSO-w MG-PSO

1 449.7956 628.3002
2 149.5601 149.5959
3 224.7231 222.5866
4 109.8681 109.7003
5 110.1797 60.0017
6 160.0134 109.9501
7 109.8367 109.9506
8 60.0840 109.9501
9 160.1193 109.9506
10 77.4152 40.0028
11 40.2176 40.0013
12 92.4584 55.0071
13 55.7288 55.0025
Total output power (MW) 1800 1800

Table 6
Specifications and power constraints for PGS-2.

TGU Pj
0 (MW) Pj,min (MW) Pj,max (MW) ai ($/h) bi ($/MW) ci ($/MW2) URj (MW/h) DRj (MW/h) POZs (MW)

1 400 150 455 671 10.10 0.000299 80 120 NC
2 300 150 455 574 10.20 0.000183 80 120 [185,225][305,335][420,450]
3 105 20 130 374 8.80 0.001126 130 130 NC
4 100 20 130 374 8.80 0.001126 130 130 NC
5 90 150 470 461 10.40 0.000205 80 120 [180,200][305,335][390,420]
6 400 135 460 630 10.10 0.000301 80 120 [230,255][365,395][430,455]
7 350 135 465 548 9.80 0.000364 80 120 NC
8 95 60 300 227 11.20 0.000338 65 100 NC
9 105 25 162 173 11.20 0.000807 60 100 NC
10 110 25 160 175 10.70 0.001203 60 100 NC
11 60 20 80 186 10.20 0.003586 80 80 NC
12 40 20 80 230 9.90 0.005513 80 80 [30,40][55,65]
13 30 25 85 225 13.10 0.000371 80 80 NC
14 30 15 55 309 12.10 0.001929 55 55 NC
15 20 15 55 323 12.40 0.004447 55 55 NC

NC: No constraints.
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5.2.3. Comparison in terms of inequality constraints
Table 5 presents the solution vector, Pj (j¼ 1, 2, …, 13) corre-

sponding to the best solution of MG-PSO and GPSO-w algorithms.
Note that the PD¼ 1800MW. It can be seen that both the MG-PSO
and GPSO-w algorithms are working within generation limits (8)
and satisfying power balance constraint.

5.3. Test case 2: power generation system-2 (PGS-2)

The PGS-2 is a medium-scale PGS [18] with 15 TGUs (Ngen¼ 15).
The TGU specification and B-loss coefficients are shown in Table 6

and Table 7, respectively. Maximum load demand at normal oper-
ation is given as PD¼ 2630MW. As seen from Table 6, the PGS-2 has

Table 7
B-loss coefficients of 15 TGUs of PGS-2.

Bjk 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 14 12 7 �1 �3 �1 �1 �1 �3 5 �3 �2 4 3 �1
2 12 15 13 0 �5 �2 0 1 �2 �4 �4 �0 4 10 �2
3 7 13 76 �1 �13 �9 �1 0 �8 �12 �17 �0 �26 111 �28
4 �1 0 �1 34 �7 �4 11 50 29 32 �11 �0 1 1 �26
5 �3 5 �13 �7 90 14 �3 �12 �10 �13 7 �2 �2 �24 �3
6 �1 �2 �9 �4 14 16 �0 �6 �5 �8 11 �1 �2 �17 3
7 �1 0 �1 11 �3 �0 15 17 15 9 �5 7 �0 �2 �8
8 �1 1 0 50 �12 �6 17 168 82 79 �23 �36 1 5 �78
9 �3 �2 �8 29 �10 �5 15 82 129 116 �21 �25 7 �12 �72
10 �5 �4 �12 32 �13 �8 9 79 116 200 �27 �34 9 �11 �88
11 �3 �4 �17 �11 7 11 �5 �23 �21 �27 140 1 4 �38 168
12 �2 �0 �0 �0 �2 �1 7 �36 �25 �34 1 54 �1 �4 28
13 4 4 �26 1 �2 �2 �0 1 7 9 4 �1 103 �101 28
14 3 10 111 1 �24 �17 �2 5 �12 �11 �38 �4 �101 578 �94
15 �1 �2 �28 �26 �3 3 �8 �78 �72 �88 168 28 28 �94 1283

Bjk¼ 1� 0�06MW�1.

Table 8
Set of parameters used in MG-PSO and GPSO-w algorithms for PGS-2.

Set of parameters MG-PSO GPSO-w

Exploration phase Exploitation phase

k¼ 1 k¼ 2

g 0.40 0.40 e

c1, c2 2.05 2.05 2.00
Niter 400 600 1000
wini,k 1.00 0.50 0.90
wfin,k 0.10 0.10 0.40
gradk �2.25� 10�03 6.67� 10�04 �5.00� 10�04

Table 9
Comparison of cost performance between MG-PSO algorithm and other 20 ECTs for PGS-2.

Sl.No. Algorithm Min. Cost ($/h) Max. Cost ($/h) Mean Cost ($/h) s ($/h) R ($/h) AET (sec)

1 OPSO [10] 32,668.4863 32,669.3005 32,668.9205 0.1394 0.8142 4.3777
2 PSO-MSAF [11] 32,713.0900 32,798.2500 32,759.6400 NA 85.1600 19.1500
3 SA-PSO [15] 32,708.0000 32,789.0000 32,732.0000 18.0250 81.0000 12.7900
4 CPSO [17] 32,834.0000 33,318.0000 33,021.0000 NA 484.0000 13.1300
5 GA [18] 32,939.5208 33,231.6216 33,106.0019 100.1279 292.1008 NA
6 DE [18] 32,818.5792 33,116.9340 32,990.8673 61.5145 298.3548 NA
7 ACSA [18] 32,785.6031 33,185.2761 33,051.7711 77.8005 399.6730 NA
8 AIS [18] 32,895.9173 33,132.0191 33,017.6537 58.1230 236.1018 NA
9 FA [18] 32,901.6610 33,197.2718 33,081.0107 91.0111 295.6108 NA
10 BCO [18] 32,989.2341 33,301.4940 33,113.0149 69.7986 312.2599 NA
11 APSO [18] 32,687.9840 33,359.6609 32,948.0533 92.0040 671.6769 NA
12 HGPSO [18] 32,864.0501 33,280.2655 33,034.1894 63.9932 416.2154 NA
13 HPSOM [18] 32,697.2458 33,015.7284 32,819.5931 83.0907 318.4826 NA
14 HPSOWM [18] 32,696.9585 33,034.3413 32,805.7185 87.8689 337.3828 NA
15 RDPSO [18] 32,666.1818 32,934.3089 32,739.7165 56.7070 268.1271 NA
16 l-logic [20] 32,713.9510 NA NA NA NA NA
17 SPPO [21] 32,713.2100 NA NA NA NA NA
18 q-MBA [27] 32,680.5956 32,693.2640 32,687.3305 NA 12.6684 0.0983
19 EGSSOA [30] NA NA 32,680.1038 NA NA NA
20 GPSO-w 33,118.2274 33,429.7840 33,246.5605 72.0523 311.5566 7.2378
21 MG-PSO 32,677.9098 32,678.0217 32,677.9666 0.0348 0.1119 9.2084

The bold numbers indicate the best solution found by corresponding algorithm.

Fig. 7. Convergence characteristics of MG-PSO and GPSO-w algorithms for PGS-2.
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11 POZs in 4 TGUs and RRLs are applied in each TGU.

5.3.1. Comparison in terms of fitness values
In Ref. [18], the RDPSO algorithm was tested on PGS-2 and its

performance was compared to other 10 ECTs. In addition, the OPSO
[10], PSO-MSAF [11], SA-PSO [15], CPSO [17], l-logic [20], SPPO [21],
q-MBA [27] and EGSSOA [30] algorithms have also been tested with
PGS-2. Here, the performance of MG-PSO with GPSO-w algorithms
and other existing 19 ECTs are compared. The set of parameters
used in MG-PSO and GPSO-w algorithms are shown in Table 8. In
addition, both are runwithm¼ 20, d¼ 15 andNrun¼ 25. InMG-PSO
algorithm, two negative gradients are selected (Ngrad¼ 2), by using
trial and error method, one for Exploration phase and another one
for Exploitation phase as shown in Table 8.

The Comparison of fitness values between MG-PSO algorithm
and other 20 existing ECTs are listed in Table 9. It can be seen that,
the MG-PSO algorithm achieves the best positions in terms of s and
R and the second best position result in terms of Fmean. The best
Fmean is achieved by OPSO algorithm [10]. However, in terms of AET,
the MG-PSO algorithm is the fourth best. The NA denotes that the
value was not available in corresponding paper. The bold values
indicate the best solution found by corresponding algorithm. These
results indicate that the MG-PSO algorithm provides consistent,
stable and robust performance.

5.3.2. Convergence characteristics of MG-PSO and GPSO-w
algorithms

Fig. 7 shows convergence characteristics of MG-PSO and GPSO-
w algorithms for PGS-2. It shows ensemble average Fcost values at
each iteration obtained from 25 independent runs. It can be seen
that MG-PSO algorithm settles at about 450 iterations to achieve
Fmean¼ $32,678/h whereas GPSO-w algorithm takes about 800 it-
erations to settle and achieved Fmean¼ $33,000/h.

Fig. 8 shows the distribution of optimized Fcost at each run. It
shows that the optimized Fcost of MG-PSO algorithm remains steady
at about $32,677/h, whereas in GPSO-w algorithm, the optimized
Fcost varies over a wide range from $33,118/h to $33,429/h. This
indicates that MG-PSO algorithm is more consistent, stable and
reliable than the GPSO-w algorithm.

5.3.3. Comparison in terms of inequality constraints
Table 10 presents the solution vector, Pj (j¼ 1, 2, …, 15) corre-

sponding to the best solution for MG-PSO and GPSO-w algorithms.
It can be seen that both the MG-PSO and GPSO-w algorithms are
able to avoid the 11 POZs imposed on 4 TGUs and are remainwithin
RRLs constraints imposed on each TGU. Thus, both algorithms are
able to satisfy the power constraints (15). Note that the
PD¼ 2630MW for PGS-2.

5.3.4. Comparison in terms of power balance constraint
Table 11 shows results of power balance constraint for the MG-

PSO algorithm and other 9 ECTs. The load demand of PGS-2 is given
by PD¼ 2630MW. Using the optimum output power generated as

Fig. 8. Comparison of optimized cost per run between MG-PSO and GPSO-w algo-
rithms for PGS-2.

Table 10
Optimized output power in (MW) for each TGU obtained by MG-PSO and GPSO-w
algorithms for PGS-2.

TGUj Pj(MW)

GPSO-w MG-PSO

1 455.0000 455.0000
2 303.3837 380.0000
3 128.0633 129.9965
4 129.6879 130.0000
5 169.8932 170.0000
6 363.6612 459.8764
7 429.8892 430.0000
8 148.3850 60.0045
9 161.6133 50.0179
10 135.3756 160.0000
11 79.7284 80.0000
12 20.0354 80.0000
13 32.9961 25.0000
14 54.6227 31.9996
15 54.6609 15.0000
Total output power (MW) 2666.9959 2656.8949

Table 11
Comparison of power balance constraint among 10 ECTs for PGS-2.

Sl. No. Algorithm Total Pj (MW) PD (MW) PL1 (MW) PL2 (MW) PL,mismatch (MW)

1 OPSO [10] 2657.2591 2630 27.2591 27.2591 0.0000
2 PSO-MSAF [11] 2660.4900 2630 30.4900 30.4900 0.0000
3 SA-PSO [15] 2660.9000 2630 30.9000 30.9080 0.0080
4 CPSO [17] 2662.1000 2630 32.1000 32.1303 0.0303
5 RDPSO [18] 2655.3650 2630 25.3650 25.3696 0.0460
6 l-logic [20] 2659.9491 2630 29.9491 29.9491 0.0000
7 SPPO [21] 2660.0000 2630 30.0000 31.4300 1.4300
8 EGSSOA [30] 2657.0120 2630 27.0120 27.0120 0.0000
9 GPSO-w 2666.9959 2630 36.9959 36.9956 0.0003
10 MG-PSO 2656.8949 2630 26.8949 26.8949 0.0000

The bold numbers indicate the best solution found by corresponding algorithm.
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shown in Table 10 and Equations (5)e(7), PL1, PL2 and PL,mismatch,
were determined. It can be seen that the proposed MG-PSO algo-
rithm as well as OPSO [10], PSO-MSAF [11], l-logic [20] and EGSSOA
[30] algorithms are able to satisfy the zero mismatch condition, i.e.,
PL,mismatch¼ 0, thus satisfying (4).

5.4. Test case 3: power generation system-3 (PGS-3)

The PGS-3 is a large-scale PGS taken from Taipower system [39].
The PGS-3 consists of 40 mixed-generating units, coal-fired, gas-

fired, gas-turbines with complex cycle, diesel generating units and
nuclear generating units. The maximum load demand at normal
and steady-state operations and is given as PD¼ 8550MW. The
PGS-3 contains 46 POZs distributed among 25-TGU and are shown
in Table 12. The RRLs are imposed on all the 40 TGUs. The B-loss
coefficients matrix of dimension 40� 40 is taken from Ref. [10].
Unfortunately, the PGS-3 is tested by only a few authors with RRLs,
POZs and PL constraint. This may be due to unavailability of B-loss
coefficients or due to its high dimension with a large number of
power constraints.

Table 12
Specifications and power constraints for PGS-3.

TGUj Pj
0 (MW) Pj,min (MW) Pj,max (MW) ai ($/h) bi ($/MWh) ci ($/MW2h) URj (MW/h) DRj (MW/h) POZs (MW)

1 50 40 80 170.77 8.3360 0.03073 35 60 NC
2 60 60 120 309.54 7.0706 0.02028 40 70 NC
3 150 80 190 369.03 8.1817 0.00942 50 90 [82,88]
4 24 24 42 135.48 6.9467 0.08482 42 42 NC
5 42 26 42 135.19 6.5595 0.09693 42 42 NC
6 75 68 140 222.33 8.0543 0.01142 40 75 NC
7 100 110 300 287.71 8.0323 0.00357 65 100 [155,162][221,235]
8 152 135 300 391.98 6.9990 0.00492 65 100 NC
9 200 135 300 455.76 6.6020 0.00573 65 100 [235,246]
10 100 130 300 722.82 12.9080 0.00605 65 100 [200,211]
11 300 94 375 635.20 12.9860 0.00515 55 95 [213,220]
12 300 94 375 654.69 12.7960 0.00569 55 95 [213,220]
13 150 125 500 913.40 12.5010 0.00421 80 120 [201,211][290,310][413,425]
14 200 125 500 1760.4 8.8412 0.00752 80 120 [205,217][306,318][409,420]
15 190 125 500 1728.3 9.1575 0.00708 80 120 [214,230][277,290][402,412]
16 190 125 500 1728.3 9.1575 0.00708 80 120 [214,230][277,290][402,412]
17 190 125 500 1728.3 9.1575 0.00708 80 120 [214,230][277,290][402,412]
18 400 220 500 647.85 7.9691 0.00313 70 110 [307,321][407,421]
19 400 220 500 649.69 7.9550 0.00313 70 110 [301,310][421,431]
20 398 242 500 647.83 7.9691 0.00313 70 110 [340,351][421,431]
21 398 242 500 647.81 7.9691 0.00313 70 110 [340,351][421,431]
22 390 254 550 785.96 6.6313 0.00298 70 110 [306,320][440,445]
23 390 254 550 785.96 6.6313 0.00298 70 110 [306,320][440,445]
24 390 254 550 794.53 6.6311 0.00284 70 110 [370,390][495,502]
25 390 254 550 794.53 6.6311 0.00284 70 110 [370,390][495,502]
26 390 254 550 801.32 7.1032 0.00277 70 110 [380,410][501,520]
27 390 254 550 801.32 7.1032 0.00277 70 110 [380,410][501,520]
28 20 10 150 1055.10 3.3353 0.52124 90 150 [102,113]
29 20 10 150 1055.10 3.3353 0.52124 90 150 [102,113]
30 30 10 150 1055.10 3.3353 0.52124 90 150 [102,113]
31 30 20 70 1207.80 13.0520 0.25098 70 70 NC
32 40 20 70 810.79 21.887 0.16766 70 70 NC
33 40 20 70 1247.70 10.2440 0.26350 70 70 NC
34 25 20 70 1219.20 8.3707 0.30575 70 70 NC
35 25 18 60 641.43 26.2580 0.18362 60 60 NC
36 20 18 60 1112.80 9.6956 0.32563 60 60 NC
37 20 20 60 1044.40 7.1633 0.33722 60 60 NC
38 25 25 60 832.24 16.3390 0.23915 60 60 NC
39 25 25 60 832.24 16.3390 0.23915 60 60 NC
40 25 25 60 1035.2 16.3390 0.23915 60 60 NC

NC: No constraints.

Table 13
Set of parameters used in MG-PSO and GPSO-w algorithms for PGS-3.

Set of parameters MG-PSO GPSO-w

Exploration phase Exploitation phase

k¼ 1 k¼ 2 k¼ 3

g 0.30 0.30 0.30 e

c1, c2 2.05 2.05 2.05 2.00
Niter 300 300 700 1000
wini,k 1.00 0.80 0.40 0.90
wfin,k 0.20 0.20 0.15 0.40
gradk �2.67� 10�03 �2.00� 10�03 �3.57� 10�04 �5.00� 10�04
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5.4.1. Comparison in terms of fitness values
In Ref. [18], PGS-3 has been tested with 11 ECTs and superior

performance of RDPSO algorithm over other 10 ECTs has been
shown. However, the 46 POZs of 25-TGU, RRLs of each TGU and the
PL constraint have not been considered. Therefore, these results are
less constrained. Considering all the POZs, RRLs and PL, the PGS-3
has been tested by OPSO [10], MIQCQP [19], l-logic [20], the pro-
posedMG-PSO and GPSO-w algorithms. Thus, here, we are compare
the performance of MG-PSO algorithm and other 15 existing ECTs.
The set of parameters used in MG-PSO and GPSO-w algorithms are
shown in Table 13. In addition, both are runwithm¼ 20, d¼ 40 and
Nrun¼ 25. In MG-PSO algorithm, three negative gradients were
selected (Ngrad¼ 3) by trial and error method, two for Exploration
phase and another one for Exploitation phase as shown in Table 13.

The fitness values of the 16 ECTs are listed in Table 14. It can be
seen that theMG-PSO algorithm provides the best result in terms of
Fmean and s over 25 independent runs. This indicates that the MG-
PSO algorithm provides the most optimum and consistent results.
In addition, the range R of MG-PSO algorithm is the lowest among
the 16 ECTs, thus indicating that MG-PSO algorithm provides

solution with lowest dispersion. In terms of AET, the MG-PSO al-
gorithm is the third best. The GPSO-w algorithm is not able to
provide an accurate solution. These results indicate that among the
16 ECTs, theMG-PSO algorithm is themost stable, robust and is able
to provide most optimum solution.

5.4.2. Convergence characteristics of MG-PSO and GPSO-w
algorithms

Fig. 9 shows convergence characteristics of MG-PSO and GPSO-
w algorithms for PGS-3. It shows ensemble average Fcost values at
each iteration obtained from 25 independent runs. It can be seen
that MG-PSO algorithm settles at about 300 iterations and achieves
Fmean of about $126,850/h. Whereas, the GPSO-w algorithm takes
about 320 iterations to converge, and settles at a local minimum
with a non-optimal Fmean of about $396,798/h, which is not
acceptable solution. This indicates that the GPSO-w algorithm is
unable to solve ED problem with such a high dimensional search
space and under large number of power constraints. In contrast, the
MG-PSO algorithm gives high accuracy in solving this complex

Fig. 9. Convergence characteristics of MG-PSO and GPSO-w algorithms for PGS-3.
Fig. 10. Comparison of optimized cost per run between MG-PSO and GPSO-w algo-
rithms for PGS-3.

Table 14
Comparison of cost performance between MG-PSO and other 15 ECTs for PGS-3.

Sl. No. Algorithm Min.Cost Fmin ($/h) Max. Cost Fmax ($/h) Mean Cost Fmean ($/h) s ($/h) R ($/h) AET (sec)

Without POZs, RRLs and PL

1 GA [18] 133,435.6906 136,274.9726 135,012.4985 729.3536 2839.2820 NA
2 DE [18] 129,915.5635 137,042.9461 130,600.2269 1335.4343 7127.3826 NA
3 ACSA [18] 131,167.3417 134,923.6245 132,844.7110 741.0843 3756.2828 NA
4 AIS [18] 130,133.9214 132,703.1884 131,482.2767 561.7950 2569.2670 NA
5 FA [18] 130,948.8466 134,997.9243 133,511.4572 747.3692 4049.0777 NA
6 BCO [18] 130,337.7290 132,999.8803 131,733.9439 589.8034 2662.1513 NA
7 APSO [18] 130,861.5242 134,044.6303 132,587.8486 675.0344 3183.1061 NA
8 HGPSO [18] 132,072.2495 135,528.3862 134,012.5706 684.4951 3456.1367 NA
9 HPSOM [18] 129,177.4413 131,281.3077 130,234.1694 529.5827 2103.8664 NA
10 HPSOWM [18] 129,717.3557 132,303.5999 130,858.6741 591.7691 2586.2442 NA
11 RDPSO [18] 128,864.4525 131,129.0861 129,482.0970 568.9333 2264.6336 NA
With POZs, RRLs and PL

12 OPSO [10] 126,489.6228 127,916.1972 127,349.8324 302.3502 1426.5744 69.32
13 MIQCQP [19] 128,395.2900 NA NA NA NA 13.34
14 l-logic [20] 129,777.5300 NA NA NA NA NA
15 GPSO-w 136,185.0955 564,890.7051 396,596.5735 155,100.0223 424,705.6096 18.60
16 MG-PSO 126,561.5538 126,683.8917 126,625.0260 20.2709 145.2457 29.38

The bold numbers indicate the best solution found by corresponding algorithm.
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problem.
Fig. 10 shows the variation of optimized Fcost over 25 indepen-

dent runs achieved by the MG-PSO and GPSO-w algorithms. It
shows that the optimized Fcost of MG-PSO algorithm varies between
$126,561.5538/h to $126,683.8917/h, whereas in GPSO-w algo-
rithm, it varies between $136,185.0955/h to $564,890.7051/h. This
indicates that MG-PSO algorithm is capable of providing consistent
and reliable optimal solution. Whereas, the GPSO-w algorithm is
unable to provide optimal solution due to high complexity of the
problem.

5.4.3. Comparison in terms of inequality constraints
Table 15 presents the solution vector, Pj (j¼ 1, 2, …, 40) corre-

sponding to the best solution obtained from MG-PSO and GPSO-w
algorithms. Note that the load demand, PD¼ 8850MW. In case of
GPSO-w algorithm, based on (15), the TGU4, TGU5 and TGU6 violate
RRLs (red color). The TGU4, TGU5 and TGU6 must operate within
P4,low¼ 24MW to P4,high¼ 42MW, P5,low¼ 26MW to
P5,high¼ 42MW, P6,low¼ 68MW to P6,high¼ 115MW, respectively.
This means that GPSO-w algorithm fails in solving PGS-3 indicating
that it is unable to solve large-scale ED problem. Whereas, the MG-
PSO algorithm avoids all the 46 POZs of 25 TGUs and remains
within RRLs.

5.4.4. Comparison in terms of power balance constraint
Since all the data for other existing ECTs are not available for

PGS-3, we compare the performance between MG-PSO algorithm
and OPSO [10], l-logic [20]. The GPSO-w is out of comparison,
because it failed in solving PGS-3. The load demand of PGS-3 is
given as PD¼ 8550MW. Using the total optimum output power
generated (Table 15) and Equations (5)e(7), PL1, PL2 and PL,mismatch,
were determined and are presented in Table 16. It can be seen that
PL,mismatch of MG-PSO algorithm is more close to 0.0 than OPSO [10]
and l-logic [20], which indicates better performance of MG-PSO
algorithm.

5.5. Test case 4: power generation system-4 (PGS-4)

The PGS-4 is a very large-scale PGS taken from Korean PGS [25].
It is a complex with 140 TGUs each having RRLs. In addition, the
cost functions of 12 TGUs have VPL effects and 4 TGUs have 11 POZs.
The maximum load demand under steady-state and normal oper-
ations is 49,342MW. The PL of this PGS is neglected. The PGS-4 data
are available in Ref. [25].

5.5.1. Comparison in terms of fitness values
The PGS-4 has already been tested with 2 existing ECTs, i.e.,

CCPSO [12] and C-GRASP-SaDE [25]. Here, the performance of MG-
PSO algorithm is comparedwith these two algorithms and GPSO-w.
The set of parameters used in MG-PSO and GPSO-w algorithms are
shown in Table 17. In addition, both are run with m¼ 20, d¼ 140
and Nrun¼ 25. In MG-PSO algorithm, four negative gradients were
selected (Ngrad¼ 4) by trial and error method, three for Exploration
phase and another one for Exploitation phase as shown in Table 17.

The fitness values of the 4 ECTs are listed in Table 18. It can be
seen that in GPSO-w, Fmean¼ $2,529,855.79/h and s¼ $358,126.35/

Table 15
Optimized output power in (MW) for each TGU obtained by MG-PSO and GPSO-w
algorithms for PGS-3.

Table 16
Comparison of power balance constraint among 3 ECTs for PGS-3.

Algorithm Total Pj (MW) PD (MW) PL1 (MW) PL2 (MW) PL,mismatch (MW)

OPSO [10] 8588.0734 8550 38.0734 38.1121 0.0387
l-logic [20] 8637.3300 8550 87.3300 87.4037 0.0737
MG-PSO 8588.1223 8550 38.1223 38.1227 0.0004

The bold number indicates the best solution found by corresponding algorithm.
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h. These results indicate that GPSO-w is unable to solve PGS-4.
Whereas, the MG-PSO algorithm is efficient in obtaining the best
result in terms of Fmean over 25 independent runs. In addition, in
terms of s, the performance of the MG-PSO algorithm is the second
best. This shows that theMG-PSO algorithm provides optimum and
consistent results. In addition, the range R of MG-PSO algorithm is
the second lowest among the 4 ECTs, thus indicating that it pro-
vides solution with low dispersion. In terms of AET, the MG-PSO
algorithm shows the second best performance. These results indi-
cate that among the 4 ECTs, the MG-PSO algorithm is stable and
robust and is able to provide optimum solution.

5.5.2. Convergence characteristics of MG-PSO and GPSO-w
algorithms

Fig. 11 shows the convergence characteristics of MG-PSO and
GPSO-w algorithms for PGS-4. It shows ensemble average Fcost
values at each iteration obtained from 25 independent runs. It can
be seen that MG-PSO algorithm settles at about 1300 iterations and

achieves Fmean of about $1,656,700/h. Whereas, the GPSO-w algo-
rithm settles at a non-optimal Fmean of about $2,529,855.79/h since
the beginning of its learning. Early convergence of the GPSO-w al-
gorithm indicates that it has trapped into a local minimum of at
about $2,529,855.79/h. This indicates that the GPSO-w algorithm is
unable to solve ED problem with such a high dimension (d¼ 140)
and under such a large number of power constraints. Whereas, it is
clear that for this complex PGS, the MG-PSO algorithm efficiently
converges to the vicinity of the optimum solution with different
power constraints imposed by SPG.

Fig. 12 shows the variation of optimized Fcost over 25 indepen-
dent runs achieved by the MG-PSO and GPSO-w algorithms. It
shows that the optimized Fcost of MG-PSO algorithm varies between
$1,656,515/h and $1,656,917/h, whereas in GPSO-w algorithm, it
varies between $1,933,419.88/h and $3,366,473.62/h. This indicates
that MG-PSO algorithm is capable of providing consistent and
reliable optimal solution. Whereas, the GPSO-w algorithm is unable

Table 18
Comparison of cost performance between MG-PSO algorithm and other 3 ECTs for PGS-4.

Sl.No. Algorithm Min. Cost Fmin ($/h) Max. Cost Fmax ($/h) Mean Cost Fmean ($/h) s ($/h) R ($/h) AET (sec)

1 CCPSO [12] 1,657,962.7300 1,657,962.7300 1,657,962.7300 0.00 0.00 150.00
2 C-GRASP-SaDE [25] 1,657,962.7268 1,658,583.5267 1,658,006.2712 NA 620.79 NA
3 GPSO-w 1,933,419.8873 3,366,473.6288 2,529,855.7978 358,126.35 1,433,053.74 31.29
4 MG-PSO 1,656,515.4715 1,656,917.3113 1,656,667.4650 8.01 401.83 48.37

The bold numbers indicate the best solution found by corresponding algorithm.

Fig. 11. Convergence characteristics of MG-PSO and GPSO-w algorithms for PGS-4. Fig. 12. Convergence characteristics of MG-PSO and GPSO-w algorithms for PGS-4.

Table 17
Set of parameters used in MG-PSO and GPSO-w algorithms for PGS-4.

Set of parameters MG-PSO GPSO-w

Exploration phase Exploitation phase

k¼ 1 k¼ 2 k¼ 3 k¼ 4

g 0.40 0.40 0.40 0.40 e

c1, c2 2.05 2.05 2.05 2.05 2.00
Niter 1200 1200 1200 1800 3000
wini,k 0.80 0.80 0.80 0.35 0.90
wfin,k 0.10 0.20 0.30 0.20 0.40
gradk �5.83� 10�4 �5.00� 10�4 �4.16� 10�4 �8.33� 10�5 �1.67� 10�04
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Table 19
Optimized output power in (MW) for each TGU obtained by GPSO-w and MG-PSO algorithms for PGS-4.
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to provide optimal solution due to the high complexity of the
problem.

5.5.3. Comparison in terms of inequality constraints
Table 19 presents solution vector, Pj (j¼ 1, 2, …, 140) corre-

sponding to the best solution obtained from MG-PSO and GPSO-w
algorithms. Note that PD¼ 49,342MW. In case of GPSO-w algo-
rithm, 11 TGUs violate RRLs, as shown in red color. Table 20 shows
the details of the 11 TGUs for which GPSO-w algorithm failed to
satisfy RRLs. These 11 TGUs must operate within the range of RRLs
based on (15). In addition, TGU #136 violates POZ [50e74] MW
based on (15), as shown in blue color in Table 19. This means that
GPSO-w algorithm fails to solve PGS-4. This indicates that GPSO-w
algorithm is unable to solve ED problem of very large-scale TGUs
under different power constraints. Whereas, theMG-PSO algorithm
avoids the 11 POZs imposed on 4 TGUs and working within RRLs of
each TGU and solving non-smooth cost function due to VPL effects
imposed on 12 TGUs.

5.6. Statistical significance of the proposed MG-PSO algorithm

In order to determine the statistical significance of the proposed
MG-PSO algorithm, three sets of unpaired one-tailed t-Test are
carried out [40] with a significance level of a¼ 0.05. The MG-PSO
algorithm is considered to be statistically significant against the

contender algorithm when t-value < 0 and p-value less than 0.05.
The general merit over contender is shown in the last row of
Table 21.

Table 21 shows the t-Test results for the four PGSs, PGS-1, PGS-2,
PGS-3 and PGS-4. The one-tailed unpaired (a¼ 0.05 with a degree
of freedom of 24) is performed against 29 competitive algorithms.
As seen from the data in the last column in Table 21, the proposed
MG-PSO algorithm is found to be statistically significant against the
GPSO-w algorithm for four PGSs.

Since data are not available for the 28 algorithms corresponding
to the four PGSs with Sl.No., 2 to 29, the t-Test was carried out
against one or two PGSs. Again, from the data in the last column,
one can see that the MG-PSO algorithm is statistically significant
against the 28 contending algorithms and neutral with the OPSO
algorithm [10]. These results give enough evidence that the pro-
posed MG-PSO algorithm is statistically significant against all the
29 contending algorithms.

6. Conclusion

A novel algorithm called multi-gradient PSO (MG-PSO) algo-
rithm is proposed and applied to optimize total fuel cost of four
medium and large PGSs under several practical constraints. In MG-
PSO algorithm, several negative gradients are used by m particles
while searching for a global optimum in two phases called

Table 20
List of 11 TGUs that violate RRLs based on output active power Pj obtained by GPSO-w for PGS-4.

TGUj 92 93 94 103 104 105 106 107 109 110 111

Pj,low (MW) 539.4 511.5 795.0 844.0 875.0 816.5 820.9 813.7 799.5 795.0 810.0
Pj,high (MW) 575.4 547.5 836.8 934.0 935.0 876.5 880.9 873.7 871.7 864.8 882.0
Pj (MW) 516.7 509.8 983.9 976.1 984.6 1014.3 906.0 938.4 879.0 919.5 969.3
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Exploration and Exploitation. The combination of two phases pro-
vides a balance between global and local search spaces. With
extensive simulation studies, performance of the MG-PSO algo-
rithm was compared with GPSO-w algorithm and several existing
competitive algorithms and its superiority is demonstrated in
terms of mean cost, convergence rate and consistency. In case of
PGS-1, the proposed MG-PSO algorithm provides the best mean
cost when compared to eight competitive ECTs. In PGS-2, it pro-
vides the second best mean cost results when compared with
twenty other ECTs. The best mean cost is achieved by our earlier
proposed OPSO algorithm. In case of two large PGSs with more
constraints, the proposed algorithm achieves the best mean cost
when comparedwith several ECTs. In addition, statistical tests were
carried out to demonstrate the effectiveness of the proposed al-
gorithm. Thus, the MG-PSO algorithm has proved to be a powerful
and highly effective algorithm that is capable of solving multi-
modal, discontinuous and non-convex functions.

Appendix

Begin MG-PSO Algorithm
Choose Niter, Ngrad, wini,k, wfin,k, k¼ 1, 2, …, Ngrad

Determine Niter,xplore and Niter,xploit using (25) and (26),
respectively.

Step 1: Initialization: Iteration, t¼ 0
Obtain Gbest(0) using (16)e(19)

Step 2: Begin Exploration phase
for k¼ 1, 2, …, Ngrad ‒ 1
begin of episode k
Determine gradk using (27)

for t¼ 1, 2, …, Niter,xplore

Determine wk(t) using (30)
for i¼ 1, 2, …, m
Update the particle's velocity and position vectors as
follows

Vk
i ðtÞ ¼ wkðtÞ Vk

i ðt � 1Þ þ c1 r1ðtÞ
h
Gk
pers;iðt � 1Þ � Xk

i ðt � 1Þ
i

þ c2 r2ðtÞ
h
Gk
bestðt � 1Þ � Xk

i ðt � 1Þ
i

(A-1)

Xk
i ðtÞ ¼ Xk

i ðt � 1Þ þ Vk
i ðtÞ (A-2)

Evaluate the particle's performance by substituting (A-
2) in f(x)
Update Gpers,i as follows

Gk
pers;iðtÞ ¼

8><
>:

Xk
i ðtÞ if f


Xk
i ðtÞ

�
� f


Gk
pers;iðt � 1Þ

�
Gk
pers;iðt � 1Þ Otherwise

(A-3)

end i loop
Obtain f ðGk

bestðtÞÞ
f ðGk

bestðtÞÞ ¼min{f ðGk
pers;iðtÞÞ}, i¼ 1, 2, …, m

Obtain Gk
bestðtÞ corresponding to f ðGk

bestðtÞÞ
end t loop

Obtain Gk
bestðNiter;xploreÞ and f ðGk

bestðNiter;xploreÞÞ
end of episode k
end k loop
Obtain minimum f(Gbest,xplore(Niter,xplore)) by
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f ðGbest; xploreÞ ¼
minff ðGk

bestðNiter;xploreÞÞg; k ¼ 1;2;…Ngrad � 1
Obtain BEST(Gbest,xplore) corresponding to f(Gbest,xplore)
Obtain new search space (neighborhood) by taking “Floor”
and “Ceil” of each element of BEST(Gbest,xplore)

End Exploration phase
Begin Exploitation phase
Step 3: Initialization: Iteration, t¼ 1

for i¼ 1, 2, …, m
Vi(1)¼ Vi(Niter,xplore) corresponding to BEST(Gbest,xplore)
Xi(1)¼Xi(Niter,xplore) corresponding to BEST(Gbest,xplore)
Gpers,i(1)¼Gpers,i(Niter,xplore) corresponding to
BEST(Gbest,xplore)
Gbest,xploit(1)¼ BEST(Gbest,xplore)
end i loop
Determine gradNgrad

using (28)
Step 4: Update

for t¼ 2, 3, …, Niter,xploit
Determine wk(t) using (30)

for i¼ 1, 2, …, m
Update the particle's velocity and position vectors as
follows:

ViðtÞ ¼ wNgrad
ðtÞ Viðt � 1Þ þ c1r1ðtÞ

�
Gpers;iðt � 1Þ � Xiðt � 1Þ�

þ c2r2ðtÞ
h
Gbest;xploitðt � 1Þ � Xiðt � 1Þ

i
(A-4)

XiðtÞ ¼ Xiðt � 1Þ þ ViðtÞ (A-5)

Evaluate the particle's performance by substituting (A-5)
in f(x)
Update Gpers,i(t) as follows

Gpers;iðtÞ ¼
8<
:

XiðtÞ if f ðXiðtÞÞ � f
�
Gpers;iðt � 1Þ�

Gpers;iðt � 1Þ Otherwise

(A-6)

end i loop
Obtain f(Gbest,xploit(t))
f(Gbest,xolit(t))¼min{ f(Gpers,i(t)) }, i¼ 1, 2, …, m
Obtain Gbest,xploit(t) corresponding to f(Gbest,xploit(t))
end t loop
Optimum solution¼Gbest,xploit(Niter,xploit)
Optimum value¼ f(Gbest,xploit(Niter,xploit))

End of Exploitation phase
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Abstract

Over the last two decades a large number of optimization techniques have been 

proposed for solving complex unimodal and multimodal problems. One popular 

population-based optimization technique is global particle swarm optimization with 

inertia weight (GPSO-w) algorithm. In this paper, a novel multi-gradient PSO (MG-

PSO) algorithm is proposed to solve such complex problems. In MG-PSO algorithm, 

two phases called Exploration phase and Exploitation phase are used. In the Exploration

phase, the m particles are called Explorers and undergo multiple episodes. In each 

episode, the Explorers use a different negative gradient to explore new neighbourhood 

whereas in the Exploitation phase, the m particles are called Exploiters and they use one 

negative gradient that is less than that of the Exploration phase, to exploit a best 

neighborhood. This diversity in negative gradients provides a balance between global 

search and local search of the Explorers and Exploiters. The effectiveness of the      

MG-PSO algorithm is verified using ten selected shifted and rotated benchmark 

functions with dimensions of 30 and 100 taken from congress on evolutionary 

computation (CEC) 2015. In addition, the MG-PSO algorithm is evaluated using a real-

world problem (case study), i.e., economic dispatch of South Korea power generating 

system. Superior performance of the MG-PSO algorithm has been shown over the 

GPSO-w algorithm and several existing optimization techniques in terms of several 

performance measures, e.g., fitness value, convergence rate, and consistency. In 

addition, by using unpaired t-test, the statistical significance of the MG-PSO algorithm 

has been shown against several contending algorithms including top-ranked CEC 2015 

algorithms.   

Keywords: Multi-gradient particle swarm optimization; exploration and exploitation 

phases; unimodal and multimodal benchmark functions, economic dispatch problem.  
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1 Introduction  

Many optimization problems are generally classified into two groups, unimodal and 

multimodal problems. Some of the proposed evolutionary computation techniques 

(ECTs), i.e., population-based techniques to solve such problems are particle swarm 

optimization (PSO) [1-4] algorithm, genetic algorithm [5-7], and differential evolution 

(DE) [8-10]. In ECTs, finding the optimum solution of an objective function is based on 

two phases, namely Exploration phase and Exploitation phase. In the Exploration

phase, global search particles, i.e., individuals, exploring all over the search space as 

much as possible is carried out to find promising new neighbourhoods. Whereas, in the 

Exploitation phase, local search particles exploiting the best neighbourhood to fine-tune

the search space is carried out to obtain the optimum solution. The best performance of 

an ECT is achieved when an appropriate balance between these two phases is 

maintained [11-12]. Focusing more on Exploration will lead to excessive search time 

because of wastage of time in searching over inferior neighbourhoods, whereas focusing 

more on Exploitation will cause loss of diversity, thereby possibly getting stuck into a 

local minimum.  

One of such popular ECTs named global PSO with inertia weight (GPSO-w)

algorithm has been proposed [13], for solving unimodal and multimodal functions. The 

negative gradient of inertia weight, w, in GPSO algorithm is used to boost the global 

search and local search abilities and to make a balance between the Exploration and 

Exploitation phases [14]. Thus, the w helps the particles to control the convergence 

tendency and to quickly convergence to optimum solution.  

In unimodal optimization problems, there is only one global minimum. Movement of 

the particles in the direction of negative of the gradient leads to the global minimum. 

Since an objective function decreases by the largest amount possible in the direction of 

the negative gradient, movement of the particles in this direction will cause a greater 

decrease of the function. Therefore, the GPSO-w algorithm has performed well on 

smooth and convex unimodal problems. However, under high-dimensional complex 

unimodal problems, e.g., shifted and rotated benchmark functions taken from the 

congress on evolutionary computation (CEC) 2015 [15-16], the GPSO-w algorithm may 

suffer from the curse of dimensionality and overcoming the premature convergence 

remains a challenge, in spite of  existence of negative gradient of w. 
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In multimodal problems, which have multiple local minima, all of its particles in 

GPSO-w algorithm share the swarm’s best experience, i.e., global best and this may 

lead the particles to cluster around the global best. If the global best is located near a 

local minimum, then escaping from it becomes hard, because of loss of balance between 

the local search guide (personal experience of each particle) and the global search guide 

(global best) [17-20]. Thus, the GPSO-w algorithm suffers diversity loss near a local 

minimum. 

Recently, some of the notable ECTs that have been used to improve the GPSO-w

algorithm through enhancing their Exploration and Exploitation processes are as 

follows. In [21], a shrinking hypersphere PSO with gravitational search algorithm 

(SHPSO-GSA) using a gravitational search to enhance the performance of PSO 

algorithm was proposed. A directionally driven self-regulating PSO (DD-SRPSO) [22]

applies cooperation between two strategies: directional update and rotational invariant. 

In [23], extraordinariness PSO (EPSO) algorithm considering an extraordinary motion 

of the particles was proposed. Based on this motion, the particles can move toward a 

global optimum which can be global best, local bests, or even the worst individual. In 

[24-25], orthogonal PSO (OPSO) algorithm divides the particles into an active group 

and another passive group, and uses an orthogonal diagonalization process. Here, the 

orthogonality is used in active group particles to enhance global and local search 

processes to achieve optimum solution.  

Some other categories of ECTs that have been applied to solve complex unimodal 

and multimodal problems are self-optimization based adaptive DE with linear 

population (L-SHADE) and eigenvector-based crossover and successful-parent-

selecting (SPS-L-SHADE-EIG) [26], DE with success-based parameter adaption 

(DEsPA) algorithm [27], mean-variance mapping optimization (MVMO) algorithm    

[28-29], tuned covariance matrix evolution strategy (TunedCMAES) [30], local 

Lipschits underestimate DE (LLUDE) [31], strategy adaptation DE (SaDE) [31], JADE 

adaptive DE [31], composite DE (CoDE) [30], and self-adaptive binary variant DE 

(SabDE) [32], chaotic sequence and crossover PSO (CCPSO) algorithm [33],

continuous greedy randomized adaptive search procedure (C-GRASP) with self-

adaptive DE (C-GRASP-SaDE) algorithm [34], and C-GRASP with modified DE       

(C-GRASP-MDE) algorithm [34].
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The gradient method is one of the classical methods. It is used to solve linear and 

unimodal problems. In general, the classical methods including gradient method have 

major disadvantages like they are inefficient to solve unimodal problems with high-

dimensional search space, they suffer from the “curse of dimensionality”, they are 

inefficient to solve multimodal problems, e.g., non-convex, non-smooth, and 

discontinuous problems, they are sensitive to an initial starting point, they requires a 

monotonically increasing objective function, and they are often trap into local minima. 

However, in the recent years, the gradient method is successfully integrated and 

combined with few optimization techniques to create hybrid optimization techniques. 

This combination is used to achieve faster convergence without getting trapped into 

local minima. The gradient method helps particles to move faster toward optimum 

solution, whereas the optimization algorithm controls the movement of the particles 

from falling into a local minimum. Some of the recently proposed such techniques are 

hybrid gradient algorithm [35], enhanced gradient simplified swarm optimization 

algorithm [36], and gradient-based Jaya algorithm [37].

In this paper, a novel algorithm called multi-gradient PSO (MG-PSO) algorithm is 

proposed in which multiple negative gradients are used by m particles while searching 

for optimum solution. The multiple negative gradients help to prevent the global best 

particle to fall in a local minimum. In MG-PSO algorithm two phases are used, i.e., 

Exploration phase and Exploitation phase. In Exploration phase, a particle is called an 

Explorer. The Explorers operate in several episodes. In each episode, the Explorers use 

a different negative gradient to explore a new neighbourhood. Explorers enhance global 

search ability of the MG-PSO algorithm. At the end of Exploration phase, the Explorers

provide a search boundary which becomes the new search space in the Exploitation

phase. In the Exploitation phase, a particle is called an Exploiter. Exploiters use one 

negative gradient which is less than that of the Exploration phase to exploit the best 

neighborhood. The small negative gradient leads to small incremental change in the 

velocity and position vectors during updating process. This helps the particles to move 

steadily towards optimum solution. Thus, Exploiters enhance local search ability of 

MG-PSO algorithm. This diversity in negative gradients helps the best particle from 

falling into a local minimum. The combination of two phases provides a balance 

between Exploration and Exploitation in search space. In addition, the combination of 
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two phases is successfully applied to overcome the disadvantages of the gradient 

methods.  

In a recent work, the effectiveness of the proposed MG-PSO algorithm has been 

shown in solving real-world non-convex problem, i.e., economic dispatch (ED) of 

small, medium and large power generating systems (PGSs) under several power 

constraints in smart power grid applications [36-37]. Whereas, in the current study, the 

MG-PSO algorithm is applied to solve different complex problems with 30 and 100 

dimensions, i.e., CEC 2015 shifted and rotated unimodal and multimodal benchmark 

functions as well as solving ED problem of the South Korea PGS (case study). 

Furthermore, the mathematical analysis and theoretical justification of MG-PSO 

algorithm is provided. With extensive simulated experiments, superior performance of 

the MG-PSO algorithm has been shown in terms of several performance measures, e.g., 

fitness values, convergence rate and consistency, compared to GPSO-w algorithm and 

several competitive ECTs. In addition, with unpaired t-test, the statistical significance of 

MG-PSO algorithm has been shown, over several competing algorithms including top-

ranked CEC 2015 algorithms.  

The rest of the paper is organized as follows. Explanation of the GPSO-w algorithm 

is presented in Section 2. Details of the proposed MG-PSO algorithm are provided in      

Section 3. In Section 4, application of the MG-PSO algorithm to CEC 2015 benchmark 

functions is presented. In Section 5, solving ED problem of the South Korea PGS is 

presented. Finally, conclusion of this study is provided in Section 6.

2 The GPSO-w algorithm  

The optimization mechanism of the GPSO-w algorithm depends on the distribution 

of the particles in a swarm [13]. It is indicated by a fully connected network, in which 

each particle has access to the information of the swarm population, as follows. Firstly, 

each particle flying in the multi-dimensional search space adjusts its flying trajectory 

according to two guides, its personal experience, Gpers,i and its neighborhood’s best 

experience, Gbest. Secondly, when seeking an optimum solution (global solution), each 

particle learns from its own historical experience and its neighborhood’s historical 

experience. In such a case, a particle while choosing the neighborhood’s best experience 

uses the best experience of the whole swarm as its neighbor’s best experience. 

Therefore, the GPSO algorithm is named as global PSO, because the position of each 
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particle is affected by the best-fit particle in the entire swarm. The following steps 

explain the mechanism of the GPSO-w algorithm.

Consider a swarm population with m particles (m > 1) searching for optimum 

solution (minimum) of an objective function f(x) in a d-dimensional search space. Let 

the total number of iterations is Niter. The objective is to minimize the given f(x). A 

particle, i (i = 1, 2, ..., m), has one d-dimensional velocity vector Vi and one d-

dimensional position vector Xi and these are denoted by 

Vi = [vi1, vi2, …, vid]                                                                   (1) 

                                                   Xi = [xi1, xi2, …, xid]                                                                   (2)

Step 1: Initialization: Iteration, t = 0.

for i = 1, 2, …, m

Initialize the Vi and Xi randomly within a defined range of d-dimensional search space and 

denote these by Vi(0) and Xi(0), respectively.  

Initialize the personal position vector of particle i, Gpers,i(0), as follows: 

Gpers,i(0) = Xi(0)                                                                                                                       (3) 

Evaluate the f(x) using Xi(0).

end i loop                                                                                                     

Determine the global best position vector, Gbest(0). It is the best position vector among all the 

m personal position vectors. The Gbest(0) is denoted by 

Gbest(0) = [gb,1, gb,2, …, gb,d]                                                                                                    (4) 

Step 2: Update:

for t = 1, 2, …, Niter

for i = 1, 2, …, m

Determine inertia weight, w(t) [40], as given below: 

9050)( .tN
.tw
iter

                                                                                                           (5) 

Update Vi and Xi as follows: 

Vi(t) = w(t) Vi(t ‒ 1) + c1 r1(t) [Gpers,i(t ‒ 1) ‒ Xi(t ‒ 1)] + c2 r2(t) [Gbest(t ‒ 1) ‒ Xi(t ‒ 1)]  (6)

Xi(t) = Xi(t ‒ 1) + Vi(t)                                                                                                        (7) 

where c1 and c2 are positive coefficients, called acceleration constants which are 

commonly set to 2.0 [40]. The r1(t) and r2(t) are two randomly generated values with a 

uniform distribution in the range of [0,1].  

Evaluate f(x) for particle i using Xi (t).

Update Gpers,i(t), as follows: 



Appendix-1                                                                                                                                         Paper H 

OtherwisetG

tGftXfiftX
tG

i,pers

i,persii

i,pers
)1(

))1(())(()(
)(                                                       (8) 

end i loop 

Obtain f(Gbest(t)) as follows:

for i = 1, 2, …, m {obtain f(Gpers,i (t))}

f(Gbest(t)) = min{f(Gpers,i (t))

Obtain Gbest(t) corresponding to f(Gbest(t)) 

end t loop

Step 3: End of iteration: t = Niter

Optimum solution = Gbest(Niter) and optimum value = f(Gbest(Niter))                                       (9) 

3 Learning strategy and MG-PSO algorithm 

Here, the details of the proposed MG-PSO algorithm and explanation of its learning 

strategy are provided.

3.1 Learning strategy

The learning strategy of MG-PSO algorithm depends on the following 

considerations. Consider a swarm population with m particles, whereas m > 1, flying in 

a d-dimensional space searching for an optimum solution, i.e., global optimum. Two 

fundamental phases, “Exploration and Exploitation” are used by the m particles. In 

Exploration phase, a particle is called Explorer. In each episode, the Explorers use a 

different negative gradient to explore new neighbourhood in a d-dimensional search 

space. The Explorers enhance a global search ability of MG-PSO algorithm using 

several episodes. The purpose of Explorers is to obtain a new neighbourhood within the 

d-dimensional search space in each episode, and to obtain the best neighborhood among 

episodes.

In each episode using a different negative gradient, the Explorers obtain best position 

vector following its neighbourhood in the d-dimensional search space. Its neighborhood 

is obtained by taking “Floor” and “Ceil” of each element of the best position vector. 

These operations create a new search space (best neighborhood) within the d-

dimensional search space that will be used in the Exploitation phase. In Exploitation

phase, a particle is called an Exploiter. The Exploiters use one negative gradient which 

is less than that of the Exploration phase. The Exploiters enhance the local search 
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ability of MG-PSO algorithm. The purpose of this phase is to obtain an optimum 

position by exploiting the Exploiters in the best neighborhood obtained from the 

Exploration phase.

3.2 The MG-PSO algorithm 

In MG-PSO algorithm, number of negative gradients (Ngrad) are used while the 

swarm population searches for an optimum solution. In Exploration phase, Ngrad ‒ 1 

negative gradients are used and one negative gradient is used in Exploitation phase. In 

each episode, the inertia weight follows one negative gradient.  

Let Niter be number of iterations in MG-PSO algorithm. The number of iterations in 

Exploration phase is given by
                                              Niter,xplore = γ × Niter                                                                   (10) 

where γ is a real and positive number in a range [0,1]. The number of iterations in 

Exploration phase is given by:
                                                      Niter,xploit = (1‒γ) × Niter                                                     (11) 

The initial and final values of the inertia weight for kth negative gradient (k = 1, 2, …, 

Ngrad) are denoted by wini,k and wfin,k, respectively. These values are real and positive 

numbers within a range [0,1] and wini,k > wfin,k. The kth negative gradient (k = 1, 2, …, 

Ngrad ‒ 1) in Exploration phase is given by:

                                                              
xplre,iter

k,inik,fin
k N

ww
grad                                               (12) 

In Exploitation phase, the negative gradient is given by: 

                                                
xploit,iter

N,iniN,fin
N N

ww
grad gradgrad

grad
                                               (13) 

The Ngrad gradients are selected such that (14) is satisfied.  

gradNgradgradgrad 21
                                           (14) 

The inertia weight for kth negative gradient (k = 1, 2, …, Ngrad) at iteration t is given by:

wk(t) = gradk × t + wini,k (15)

The flowchart of the MG-PSO algorithm is shown in Fig. 1. The detailed steps 

explaining pseudocode of the MG-PSO algorithm are given in Appendix.
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                               Fig. 1. Flowchart of the MG-PSO algorithm. 

3.3 An Illustrative Example:

In order to explain the mechanism of MG-PSO algorithm, an example of a           

2-dimensional shifted function, f(x,y) = (x ‒ 2)2 + (y + 3)2 + 9 is illustrated in Fig. 2. It 

can be seen that x and y are shifted from the origin (0,0) by (2,-3). The optimum 

solution of the given function equals to 9 at x = 2 and y = -3. The purpose of the MG-

PSO algorithm is to find the solutions x and y for which the f(x,y) is minimized. The 
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MG-PSO algorithm was implemented using MATLAB in a personal computer with 

Intel (R) core (TM) 2 Duo CPU T6570 @ 2.1 GHz. RAM of 4GB and Windows 7,     

64-bit operating system.  

The MG-PSO algorithm was executed with m = 6, Niter = 60, γ = 0.4, Ngrad = 4,       

Niter,xplore = 24 and Niter,xploit = 36. The wini,k and wfin,k are chosen within a range of [0,1] 

and are shown in Table 1. Selection of gradk (k = 1, 2, …, Ngrad) was done by trial and 

error method. The results of the Exploration phase with three episodes (k = 1, 2 and 3) 

are shown in Table 1. At the end of episodes, f(Gbest,xplore) is found as 9.0566 that is 

corresponding to episode 1. The BEST(Gbest,xplore) corresponding to episode 1 is found as 

(2.1625,-2.8262). The range of new search space (best neighborhood) is obtained by 

taking “Floor” and “Ceil” of 2.1625, i.e., [2,3] and “Floor” and “Ceil” of -2.8262, i.e.,   

[-3,-2]. Thus, the new search space is given by a range of x as [2,3] and a range of y as

[-3,-2].

In Exploitation phase, the Exploiters navigate in the newly found search space, i.e.,     

[2,3] [-3,-2], using one negative gradient ( k = 4) that is less than that of Exploration

phase. As shown in Table 1, at the end, the Exploiters obtain the optimum value 

Gbest,xploit(36)) = 9.0000 and Gbest,xploit(36) = (2.0,-3.0) give the optimum value of f(x,y)

and the optimum solution of (x,y) as 9.0 and optimum solution as (x,y) = (2.0, -3.0).

The dynamics of the MG-PSO algorithm in Exploration phase in three episodes are 

shown in Fig. 3. Figs. 3(a), (b) and (c) illustrate variation of inertia weight with iteration 

for the episodes 1, 2 and 3, respectively. It can be seen that the inertia weights follow 

different negative gradients. The convergence characteristics, i.e., variation ))(( tGf k
best

with iteration are also shown in this figure. At the end of iteration the optimum values 

obtained from the three episodes are given by 9.0566, 11.3179 and 10.6136. As shown 

in Figs. 3(d), (e) and (f) and Table 1, the corresponding optimum solutions for the three 

episodes are given by (2.1625,-2.8262), (3.4993,-2.7352) and (1.3299,-1.9208), 

respectively. 

The movement of best particle )(tGk
best for three episodes, k = 1, 2 and 3 over 24 

iterations are shown in Figs. 3(d), (e) and (f), respectively. The )(tGk
best follows its gradk

in each episode. This diversity in negative gradients makes the MG-PSO algorithm to 

obtain different solutions, i.e., )(1 tGbest , )(2 tGbest and )(3 tGbest which are close to optimum 
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solution. This means that the global best particle prevents the swarm from falling into a 

local minimum.  

  The dynamics of the MG-PSO algorithm in Exploitation phase is shown in Fig. 4.

The variation of f(Gbest,xploit) and inertia weight w4 over 36 iterations are shown in Fig.

4(a). Fig. 4(b) shows movement of the best particle Gbest,xploit(t) in Exploitation phase

within the new search space range of x and y as [2,3] and [-3,-2], respectively. The 

Gbest,xploit gives the optimum solution (x,y) = (2.0,-3.0) and optimum value of f(x,y) = 

9.0000.

Table 1
Set of parameters and performance of the MG-PSO algorithm with d = 2, m = 6, Niter = 60  

Set of  
parameters 

Exploration phase Exploitation phase 
k = 1 k = 2 k = 3 k = 4

wini,k 1.0 0.90 0.80 0.50 
wfin,k 0.1 0.15 0.20 0.35 
gradk -0.0375 -0.0313 -0.0250 -0.0042 

k
bestG (2.1625, -2.8262) (3.4993, -2.7352 (1.3299, -1.9208) (2.0000,-3.0000) 

)( k
bestGf 9.0566 11.3179 10.6136 9.0000 

                              The bold numbers indicate the best solution of the ith particle in a swarm during Exploration
                              and Exploitation phases. 

Fig. 2. Two-dimensional shifted function with minimum f(x,y) = 9.0 at x = 2.0 and y = -3.0. 
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(a) (d) 

(b) (e)

(c) (f) 

Fig. 3. Movement of the best particle in Exploration phase based on three different negative gradients. (a), (b)
and (c): the change of ))(( tGf k

best and wk(t), k =1, 2, 3, with iteration t ; (d), (e) and (f): movement of k
bestG  in 

three episodes.  
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(a)                                           (b) 

Fig. 4. Movement of the best particle in Exploitation phase with one negative gradient. (a): the change of 
f(Gbest,xploit(t)) and w4(t) with iteration t; (b): movement of Gbest over 36 iterations. 

3.4 Observations: 

Some of the important observations of the MG-PSO algorithm are detailed, as 

follows:

3.4.1 Observation 1 

Because of using a different negative gradient in each episode, in Exploration phase, 

the Explorers have ability to find a new neighbourhood within a d-dimensional search 

space.  The global best particle is able to prevent the swarm from falling into a local 

minimum. In addition, the diversity in negative gradients enhances the local search 

ability of the Exploiters to obtain optimum solution. In addition, the combination of two 

phases is successfully applied to overcome the disadvantages of the gradient methods, 

as shown in Figs. 3 and 4.

3.4.2 Observation 2

In case of GPSO-w algorithm (6), two guides, Gpers,i and Gbest, are used to update the 

velocity vector Vi(t). The continuous conflict between them until end of the iteration 

leads to loss of balance between global search and local search. However, in case of 

MG-PSO algorithm two phases are used. In the Exploration phase, using several 

episodes (each one with a different negative gradient) a new search space (new 

neighborhood) is obtained. This search space is used in Exploitation phase to achieve 

the optimum solution. In this way a balance is maintained between the global and local 

search spaces.     
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3.4.3 Observation 3

The )(tw
gradN that follows negative gradient,

gradNgrad in the Exploitation phase is used 

to diminish the contribution of Xi(t ‒ 1) while updating Vi(t), i = 1, 2, ..., m. As t→∞,

assume that the algorithm has converged. In such case,  

                                                Xi(t ‒ 1) = Gpers,i(t ‒ 1)       
                                                           
                                              Xi(t ‒ 1) = Gbest,xploit(t ‒ 1)                                                      (16) 

Then, Equation (A-10) becomes 

                                               Vi(t) = )(tw
gradN Vi(t ‒ 1) = 0                                                 (17)

which implies that 

                                                              Xi(t) = Xi(t ‒ 1) (18) 
Thus,

                                      Xi(t) = Gpers,i(t) = Gbest,xploit(t) (19)

Thus, when iteration becomes large and the algorithm has converged, all the position 

vectors Xi and personal vectors Gpers,i , i = 1, 2, …, m, move towards the best position 

vector, Gbest,xploit. Fig. 5 shows performance of MG-PSO algorithm in the Exploitation

phase at different iterations. At t = 36, as the algorithm converges, it can be seen that Xi,

Gpers,i (i = 1, 2, …, 6) and Gbest,xploit, all converge to the optimum solution (2.00,-3.00). 
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Fig. 5. Performance of the MG-PSO algorithm in Exploitation phase showing movement of Xi, Gpers,i , (i = 
1, 2, ..., 6) and Gbest,xploit at different iterations to achieve a solution of (2.0,-3.0).  

4 Application of MG-PSO algorithm to unimodal and multimodal CEC 2015 

benchmark functions 

Here, the simulation results carried out on ten selected benchmark functions that are 

taken from CEC 2015 [15-16]. Here we describe these benchmark functions and 

investigate performance of MG-PSO and GPSO-w algorithms along with a several 

competitive ECTs.  

4.1 Benchmark functions 

Ten benchmark functions listed in Table 2 are selected and used in this study. These 

benchmark functions are taken from the congress on evolutionary computation, CEC 

2015, and are widely used in performance comparison of global optimization algorithms 

[15-16]. All the ten benchmark functions are minimization tasks. In addition, these are 

shifted and rotated unimodal and multimodal benchmark functions, and the global 
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optimum solution x as shown in Table 2 is not located at the center of the search space. 

The optimum solution x is shifted to a new position vector, i.e., shifted global optimum, 

O = [oi1, oi2, . . ., oid], i = 1, 2, ..., 10, where d is the dimension of each benchmark 

function. In addition, all benchmark functions are rotated by a rotation matrix of size d

× d, Mi, i =1, 2, ..., 10. The rotation does not affect the shape of the objective function 

but increases the objective function complexity in finding global optimum. The Mi is 

applied to obtain the rotation and is generated from standard normally distributed 

entries using Gram-Schmidt orthnormalization process [15-16].

The ten benchmark functions are divided into two groups based on their significant 

physical properties. The first group involves three unimodal benchmark functions (f1-f3)

and the second group consists of seven multimodal functions (f4-f10).

In Table 2, the name and mathematical expression of (f1-f10) are shown in columns 2 

and 3, respectively. The “Accepted Error” value of each function is available in column 

4. The “optimum x” and the minimum value of each objective function, “minimum f(x)”

are shown in column 5 and column 6, respectively. The solution of each function is 

judged successful, when the algorithm reaches to a value smaller than the “Accepted 

Error”, in other words, the algorithm passes the test.  
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Table 2 
Ten benchmark functions selected from CEC 2015 used in this study 

f Name Objective function Accepted 
Error

Optimum
(x)

Minimum
fi(x)

f1
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,FZxf i,
d
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d
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4.2 Performance measures and experimental setup 

To study the fitness values, convergence rate, accuracy, consistency, robustness and 

reliability of different algorithms [41-44], eight performance measures as explained 

below are considered. Let m be the number of particles inside a swarm. Each algorithm 

is run over Nrun times with Niter iterations.

1. Number of function evaluations (NFE): It is used as a measure of computational 

complexity of the algorithms. The NFE is the number of times the objective function 

f(x) is evaluated in one run of the algorithm and is given by 
                                                          NFE = m × Niter                                                                 (20) 

2. Fitness value (FV): It is defined as the average value obtained from Nrun times at each 

NFE. 

3. Best fitness value (BFV): It is defined as the minimum optimized f(x) value obtained 

from Nrun independent runs.

4. Worst fitness value (WFV): It is defined as the maximum optimized f(x) value 

obtained from Nrun independent runs. 

5. Mean fitness value (MFV): It is defined as the average of the Nrun BFVs. 

6. Minimum function error value (MFEV): It is defined as the difference between 

minimum f(x), i.e., column 6 in Table 2 and MFV. The MFEV is given by 

                                    MFEV= MFV)(minimum xf                                                  (21) 

7. Standard deviation (σ): The σ is the standard deviation of the Nrun BFVs.

8. Success rate (SR): An algorithm is successful if the MFEV of each function falls 

below the “Accepted Error”. The SR is used as a measure of reliability of the 

algorithm. The SR in percentage is given by 

                     100runssuccessfulofNumberSR
runN

                                               (22) 

9. Reliability rate (RR): The RR of an algorithm over all the ten benchmark functions is 

defined

                                           
10

1
SR10

1RR
i

i                                                              (23) 

where SRi is the success rate of the benchmark function fi(x), i = 1, 2, ..., 10. 
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10. Average execution time (AET): It is the time consumed by an algorithm until it 

reaches to MFEV, averaged over Nrun independent runs.

In order to measure the fitness values, convergence rate, accuracy, consistency, 

robustness and reliability of each algorithm, the proposed MG-PSO and GPSO-w

algorithms were evaluated using the ten shifted and rotated unimodal and multimodal 

benchmark functions given in Table 2. Each benchmark function is tested with d = 30 

and d = 100 dimensions where d is dimension of the f(x). Based on the suggestion by 

the CEC 2015 [16], the optimization task has been carried out for Nrun = 20 independent 

runs. The GPSO-w and MG-PSO algorithms are terminated when reaching the MFEV 

of each is smaller than 1.00×10-03. The number of particles is selected as 20, in both 

MG-PSO and GPSO-w algorithms. The MG-PSO and GPSO-w algorithms run with 

maximum NFE = 100,000. Thus, from (20), Niter = 5,000. The acceleration coefficients 

of c1 and c2 in GPSO-w and c in MG-PSO algorithms were set at 2.00 and 2.05, 

respectively, using trial and error method. The parameters r(t), r1(t) and r2(t) are 

generated randomly within a range of [0,1]. In MG-PSO algorithm, in case of ten 

benchmark functions (f1-f10) with d = 30, two negative gradients were selected (Ngrad = 

2) by trial and error method, one for Exploration phase and another one for Exploitation 

phase. Whereas, in case of f1-f10 with d = 100, three negative gradients were selected 

(Ngrad = 3) by trial and error method, two for Exploration phase and another one for 

Exploitation phase.

Besides, the shifted global optimum vector, Oi (i =1, 2, …, 10), for each function is 

randomly distributed in [-80,80]d and an orthogonal (rotation) matrix Mi (i =1, 2, …, 10) 

of each function is generated using Gram-Schmidt orthnormalization process. Another 

set of parameters used in MG-PSO and GPSO-w algorithms are shown in Tables 3 and 

4.
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Table 3
Set of parameters of the MG-PSO and GPSO-w algorithms used for ten benchmark functions          

(CEC 2015) with d = 30 

f Algorithm 
Set of parameters 

γ Niter wini,k wfin,k gradk

f1
MG-PSO 

Exploration phase k =1 0.30 1,500 1.00 0.10 -6.00×10-04

Exploitation phase k = 2 0.70 3,500 0.50 0.25 -7.14×10-05

GPSO-w - 5,000 0.90 0.40 -1.00×10-04

f2
MG-PSO 

Exploration phase k =1 0.30 1,500 1.00 0.20 -5.33×10-04

Exploitation phase k = 2 0.70 3,500 0.40 0.15 -7.14×10-05

GPSO-w - 5,000 0.90 0.40 -1.00×10-04

f3
MG-PSO 

Exploration phase k =1 0.30 1,500 0.95 0.15 -5.33×10-04

Exploitation phase k = 2 0.70 3,500 0.45 0.25 -5.71×10-05

GPSO-w - 5,000 0.90 0.40 -1.00×10-04

f4
MG-PSO 

Exploration phase k =1 0.40 2,000 1.00 0.10 -4.50×10-04

Exploitation phase k = 2 0.60 3,000 0.50 0.30 -6.66×10-05

GPSO-w - 5,000 0.90 0.40 -1.00×10-04

f5
MG-PSO 

Exploration phase k =1 0.30 1,500 0.90 0.10 -5.33×10-04

Exploitation phase k = 2 0.70 3,500 0.40 0.15 -7.14×10-05

GPSO-w - 5,000 0.90 0.40 -1.00×10-04

f6
MG-PSO 

Exploration phase k =1 0.40 2,000 0.90 0.10 -4.00×10-04

Exploitation phase k = 2 0.60 3,000 0.35 0.10 -8.33×10-05

GPSO-w - 5,000 0.90 0.40 -1.00×10-04

f7
MG-PSO 

Exploration phase k =1 0.40 2,000 0.95 0.45 -2.50×10-04

Exploitation phase k = 2 0.60 3,000 0.45 0.25 -6.66×10-05

GPSO-w - 5,000 0.90 0.40 -1.00×10-04

f8
MG-PSO 

Exploration phase k =1 0.40 2,000 1.00 0.10 -4.50×10-04

Exploitation phase k = 2 0.60 3,000 0.40 0.25 -5.00×10-05

GPSO-w - 5,000 0.90 0.40 -1.00×10-04

f9
MG-PSO 

Exploration phase k =1 0.40 2,000 0.90 0.20 -3.50×10-04

Exploitation phase k = 2 0.60 3,000 0.40 0.15 -8.33×10-05

GPSO-w - 5,000 0.90 0.40 -1.00×10-04

f10
MG-PSO 

Exploration phase k =1 0.30 1,500 0.90 0.25 -4.33×10-04

Exploitation phase k = 2 0.70 3,500 0.55 0.35 -5.71×10-05

GPSO-w - 5,000 0.90 0.40 -1.00×10-04
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Table 4
Set of parameters of the MG-PSO and GPSO-w algorithms used for ten benchmark functions         

(CEC 2015) with d = 100 

f Algorithm 
Set of parameters 

γ Niter wini,k wfin,k gradk

f1
MG-PSO 

Exploration phase 
k = 1 0.65 3,250 0.95 0.10 -2.61×10-04

k = 2 0.65 3,250 0.85 0.15 -2.15×10-04

Exploitation phase  k = 3 0.35 1,750 0.30 0.15 -8.57×10-05

GPSO-w - 5,000 0.90 0.40 -1.00×10-04

f2
MG-PSO 

Exploration phase 
k = 1 0.70 3,500 1.00 0.15 -2.43×10-04

k = 2 0.70 3,500 0.95 0.25 -2.00×10-04

Exploitation phase  k = 3 0.30 1500 0.40 0.10 -1.66×10-04

GPSO-w - 5,000 0.90 0.40 -1.00×10-04

f3
MG-PSO 

Exploration phase 
k = 1 0.50 2,500 0.90 0.10 -3.20×10-04

k = 2 0.50 2,500 0.80 0.15 -2.60×10-04

Exploitation phase  k = 3 0.50 2,500 0.45 0.15 -1.20×10-04

GPSO-w - 5,000 0.90 0.40 -1.00×10-04

f4
MG-PSO 

Exploration phase 
k = 1 0.60 3,000 0.90 0.15 -2.50×10-04

k = 2 0.60 3,000 0.85 0.10 -2.16×10-04

Exploitation phase  k = 3 0.40 2,000 0.50 0.30 -1.00×10-04

GPSO-w - 5,000 0.90 0.40 -1.00×10-04

f5
MG-PSO 

Exploration phase  
k = 1 0.50 2,500 0.80 0.10 -3.20×10-04

k = 2 0.50 2,500 0.75 0.10 -3.00×10-04

Exploitation phase  k = 3 0.50 2,500 0.50 0.25 -2.00×10-04

GPSO-w - 5,000 0.90 0.40 -1.00×10-04

f6
MG-PSO 

Exploration phase  
k = 1 0.55 2,750 1.00 0.15 -3.09×10-04

k = 2 0.55 2,750 0.95 0.15 -2.91×10-04

Exploitation phase  k = 3 0.45 2,250 0.50 0.35 -6.66×10-05

GPSO-w - 5,000 0.90 0.40 -1.00×10-04

f7
MG-PSO 

Exploration phase  
k = 1 0.50 2,500 0.95 0.15 -3.20×10-04

k = 2 0.50 2,500 0.85 0.15 -2.80×10-04

Exploitation phase  k = 3 0.50 2,500 0.45 0.25 -8.00×10-05

GPSO-w - 5,000 0.90 0.40 -1.00×10-04

f8
MG-PSO 

Exploration phase  
k = 1 0.50 2,500 0.95 0.10 -3.40×10-04

k = 2 0.50 2,500 0.75 0.10 -2.60×10-04

Exploitation phase  k = 3 0.50 2,500 0.50 0.25 -1.00×10-04

GPSO-w - 5,000 0.90 0.40 -1.00×10-04

f9
MG-PSO 

Exploration phase 
k = 1 0.50 2,500 0.95 0.20 -3.00×10-04

k = 2 0.50 2,500 0.92 0.22 -2.80×10-04

Exploitation phase  k = 3 0.50 2,500 0.60 0.25 -1.40×10-04

GPSO-w - 5,000 0.90 0.40 -1.00×10-04

f10
MG-PSO 

Exploration phase  
k = 1 0.50 2,500 0.90 0.10 -3.20×10-04

k = 2 0.50 2,500 0.85 0.15 -2.6×10-04

Exploitation phase  k = 3 0.50 2,500 0.55 0.35 8.00×10-05

GPSO-w - 5,000 0.90 0.40 -1.00×10-04
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4.3 Performance comparison between MG-PSO and GPSO-w algorithms 

An extensive performance comparison between MG-PSO and GPSO-w algorithms 

with several performance measures as explained below.     

4.3.1 Fitness values 

Performance comparison between MG-PSO and GPSO-w algorithms in terms of 

BFV, WFV, MFV, MFEV, σ and AET are shown in Tables 5 and 6. One can be seen 

from     Tables 5 and 6 that in case of GPSO-w algorithm, the three fitness values, BFV, 

WFV and MFV differ substantially from their optimum values for all the ten functions 

(f1-f10) with d = 30 and d = 100. Whereas, in MG-PSO algorithm, the three fitness 

values are the same as their optimum values for all the ten functions (f1-f10). The MFEV 

of GPSO-w algorithm is far from the “Accepted Error” in (f1-f10). However, in MG-PSO 

algorithm, the MFEV is smaller than “Accepted Error” as shown in Tables 5 and 6. The 

MFEV = 0.0 for the ten function (f1-f10). In terms of the σ, it remains close to 0.0 in 

MG-PSO algorithm, indicating high consistency and reliability of the MG-PSO 

algorithm. The results shown in Tables 5 and 6, thus proves that MG-PSO algorithm is 

more accurate, stable and robust compared to the GPSO-w algorithm. In terms of the 

AET, the MG-PSO algorithm reaches “Accepted Error” within a specific AET as shown 

in Tables 5 and 6. However, GPSO-w algorithm could not reach “Accepted Error”, 

indicating that GPSO-w is unable to solve these ten shifted and rotated under high-

dimensional search space. Whereas, MG-PSO algorithm successfully achieves the 

optimum solution for all the ten benchmark functions with d = 30 and d = 100.
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Table 5 
Performance comparison between MG-PSO and GPSO-w algorithms on ten benchmark functions (CEC 2015) 

with d = 30 

f Minimum 
f(x)

Accepted 
Error Fitness GPSO-w MG-PSO f Minimum

f(x)
Accepted 

Error Fitness GPSO-w MG-PSO 

f1 100 1×10-03

BFV 1.0100×1002 1.0000×1002

f6 400 1×10-03

BFV 5.4213×1002 4.0000×1002

WFV 1.3660×1008 1.0000×1002 WFV 8.2457×1002 4.0000×1002

MFV 1.0267×1002 1.0000×1002 MFV 6.1298×1002 4.0000×1002

MFEV 2.6700×1000 0.0000 MFEV 2.1298×1002 0.0000
σ 8.8217×1000 0.0000 σ 1.4678×1002 0.0000

AET 
(sec) - 26.2786 AET 

(sec) - 8.9211

f2 200 1×10-03

BFV 2.0030×1002 2.0000×1002

f7 500 1×10-03

BFV 5.5525×1002 5.0000×1002

WFV 2.0032×1002 2.0000×1002 WFV 5.8913×1004 5.0000×1002

MFV 2.0030×1002 2.0000×1002 MFV 7.4021×1003 5.0000×1002

MFEV 3.0000×10-01 0.0000 MFEV 6.9021×1003 0.0000
σ 5.0663×10-03 0.0000 σ 1.7701×1004 0.0000

AET  
(sec) - 36.1856 AET 

(sec) - 16.3386

f3 200 1×10-03

BFV 2.3214×1002 2.0000×1002

f8 600 1×10-03

BFV 6.7597×1002 6.0000×1002

WFV 2.0134×1002 2.0000×1002 WFV 1.5060×1003 6.0000×1002

MFV 2.0754×1002 2.0000×1002 MFV 9.0597×1002 6.0000×1002

MFEV 7.5400×1000 0.0000 MFEV 3.0597×1002 0.0000
σ 6.4387×1000 0.0000 σ 2.6147×1002 0.0000

AET  
(sec) - 27.8475 AET  

(sec) - 13.6193

f4 300 1×10-03

BFV 3.2280×1002 3.0000×1002

f9 700 1×10-03

BFV 1.0023×1003 7.0000×1002

WFV 3.2283×1002 3.0000×1002 WFV 1.2923×1003 7.0000×1002

MFV 3.2289×1002 3.0000×1002 MFV 1.0906×1003 7.0000×1002

MFEV 2.2800×1001 0.0000 MFEV 5.9094×1002 0.0000
σ 6.4987×10-03 5.0797×10-56 σ 3.906×1002 0.0000

AET 
(sec) - 21.9311 AET 

 (sec) - 10.7789

f5 300 1×10-03

BFV 3.8910×1002 3.0000×1002

f10 800 1×10-03

BFV 6.0686×1002 8.0000×1002

WFV 3.9000×1002 3.0000×1002 WFV 1.1069×1003 8.0000×1002

MFV 3.8960×1002 3.0000×1002 MFV 9.0618×1002 8.0000×1002

MFEV 8.9600×1001 0.0000 MFEV 1.0618×1002 0.0000
σ 2.9843×10-01 1.0957×10-61 σ 1.1905×1002 0.0000

AET  
(sec) - 16.1625 AET 

(sec) - 28.7829
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4.3.2 Success rate and reliability rate 

Here, the performance comparison between the MG-PSO and GPSO-w algorithms 

with Nrun = 20 (independent runs) in terms of SR and RR is carried out. The MG-PSO 

algorithm was successful in all the ten functions giving rise to SR of 100%. Whereas, 

the GPSO-w algorithm fails in all the ten CEC 2015 benchmark functions. Thus, RR of 

MG-PSO and GPSO-w algorithms are found to be 100% and 0.0%, respectively. 

4.3.3 Convergence characteristics 

Fig. 6 shows the convergence characteristics of MG-PSO and GPSO-w algorithms 

for ten shifted and rotated CEC 2015 benchmark functions f1 – f10 with d = 30. The 

comparison is obtained in terms of FV averaged over Nrun times at each NFE. It can be 

seen that, in case of MG-PSO algorithm, the FV reduces to minimum value with NFE 

less than 3.0×1004 (i.e., Niter = 1,500) except for f4. Whereas, in case of GPSO-w

Table 6 
Performance comparison between MG-PSO and GPSO-w algorithms on ten benchmark functions (CEC 2015) 

with d =100 

f Minimum
f(x)

Accepted 
Error Fitness GPSO-w MG-PSO f Minimum

f(x)
Accepted 

Error Fitness GPSO-w MG-PSO 

f1 100 1×10-03

BFV 3.5443×1003 1.0000×1002

f6 400 1×10-03

BFV 1.1166×1003 4.0000×1002

WFV 2.9834×1010 1.0000×1002 WFV 2.6532×1006 4.0000×1002

MFV 7.4585×1009 1.0000×1002 MFV 2.8028×1005 4.0000×1002

MFEV 7.4585×1009 0.0000 MFEV 2.7988×1005 0.0000
σ 2.3048×1009 0.0000 σ 8.3621×1005 0.0000

AET 
 (sec)  - 87.5865 AET 

 (sec) - 42.8296

f2 200 1×10-03

BFV 2.8756×1003 2.0000×1002

f7 500 1×10-03

BFV 3.5672×1003 5.0000×1002

WFV 4.7665×1008 2.0000×1002 WFV 1.0134×1006 5.0000×1002

MFV 7.1500×1007 2.0000×1002 MFV 4.5238×1005 5.0000×1002

MFEV 7.1499×1007 0.0000 MFEV 4.5188×1005 0.0000
σ 1.7462×1008 0.0000 σ 5.1634×1005 0.0000

AET 
 (sec) - 126.6174 AET 

 (sec) - 58.6221

f3 200 1×10-03

BFV 4.2260×1003 2.0000×1002

f8 600 1×10-03

BFV 2.0234×1003 6.0000×1002

WFV 6.0347×1008 2.0000×1002 WFV 8.3452×1007 6.0000×1002

MFV 1.8104×1008 2.0000×1002 MFV 4.1727×1007 6.0000×1002

MFEV 1.8104×1008 0.0000 MFEV 4.1726×1007 0.0000
σ 2.8373×1008 0.0000 σ 4.2622×1007 0.0000

AET 
(sec) - 96.0738 AET  

(sec) - 61.2868

f4 300 1×10-03

BFV 8.1423×1004 3.0000×1002

f9 700 1×10-03

BFV 2.1435×1003 7.0000×1002

WFV 4.9753×1007 3.0000×1002 WFV 7.3487×1006 7.0000×1002

MFV 7.7177×1006 3.0000×1002 MFV 2.0057×1006 7.0000×1002

MFEV 7.7174×1006 0.0000 MFEV 2.0050×1006 0.0000
σ 1.8038×1007 8.2341×10-55 σ 3.3489×1006 0.0000

AET 
 (sec) - 76.3164 AET  

(sec) - 55.1879

f5 300 1×10-03

BFV 1.2001×1004 3.0000×1002

f10 800 1×10-03

BFV 1.9087×1003 8.0000×1002

WFV 7.3401×1007 3.0000×1002 WFV 3.6723×1006 8.0000×1002

MFV 1.1600×1007 3.0000×1002 MFV 1.5312×1006 8.0000×1002

MFEV 1.1599×1007 0.0000 MFEV 1.5304×1006 0.0000
σ 2.7494×1007 2.6578×10-59 σ 1.8484×1006 0.0000

AET  
(sec) - 59.4783 AET  

(sec) - 121.7515
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algorithm, the FV fails to converge and remains above the “Accepted Error”, indicating 

failure of the algorithm.  

In order to highlight the superior performance of the MG-PSO algorithm over the     

GPSO-w algorithm, in Fig. 7 the MFEV over Nrun times at each NFE with d = 30 have 

been provided for the four selected CEC 2015 benchmark functions, f1, f7, f8 and f10. The 

MFEVs obtained by GPSO-w algorithm are much above “Accepted Error”. Whereas, 

the MG-PSO algorithm was successful as the MFEVs in these four benchmark 

functions remain below the “Accepted Error”. Similar observations were made for the 

remaining benchmark functions with d = 100.

The above mentioned observations provide the evidence of superior performance of 

the MG-PSO over GPSO-w algorithm in terms of three fitness values, σ, convergence, 

SR, RR and convergence rate.
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Fig. 6. Comparison of convergence characteristics between MG-PSO and GPSO-w algorithms for f1 ‒ f10.
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Fig. 7.  The FEVs averaged over 20 runs at each NFE obtained by MG-PSO and GPSO-w algorithms for           
f1, f7, f8 and f10.

4.4 Sensitivity analysis of MG-PSO algorithm against swarm size  

In order to study the sensitivity analysis of the proposed MG-PSO algorithm against 

change in swarm population m, four benchmarks functions f1, f7, f8 and f10 were selected. 

The test was carried out with Niter = 5,000, Nrun = 20 and d = 30. The set of parameters 

given in Table 3 were used in MG-PSO algorithm.  

Table 7 shows sensitivity analysis of the MG-PSO algorithm with variation of swarm 

population, m, from 5 to 25 in terms of BFV, WFV, MFV and AET for f1, f7, f8 and f10.

When m increases from 5 to 15, the fitness values do not yield optimum solution. 

Whereas, m = 20, the fitness values provide optimum solution. Any further increase of 

m (m = 25), increase the AET without giving any further improvement in performance. 

Therefore, the appropriate value of m = 20 is selected in this study.
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4.5 Performance comparison between MG-PSO algorithm and other ECTs 

Here, we verify the performance of the proposed MG-PSO algorithm by comparing it 

with few ECTs recently reported by other authors [21-24] and [26-32].

4.5.1 Shifted and rotated benchmark functions: f1, f2, f4 and f6 with d = 30

The three top-ranked algorithms in the CEC 2015 [15] learning based papers           

(CEC 2015-LBP) are SPS-L-SHADE-EIG [26], DEsPA [27], and MVMO [28], in 

which the four shifted and rotated benchmark functions, i.e., f1, f2, f4 and f6 with d = 30, 

are considered. The set of parameters given in Table 3 were used in MG-PSO 

algorithm. Here, the performance of the MG-PSO algorithm against the above three top-

ranked algorithms and a few competitive algorithms from [31] as well as OPSO [24] for

the four functions, has been compared.  

The comparison has been achieved with Nrun = 20 and for each run the maximum 

NFE is 10,000×d, i.e., 10,000×30 = 300,000, where d is dimension of f(x). The criterion 

used in this comparison depends on the values of maximum NFE and MFEV (21). 

When the algorithm reaches NFE = 300,000, the MFEV is recorded as a better result.  

The algorithm obtains a best result when the MFEV is 0.0 or close to 0.0.   

Table 8 presents the results of the MFEV and the corresponding σ obtained by MG-

PSO algorithm and eight ECTs. We can see that the MG-PSO algorithm is significantly 

superior to LLUDE, SaDE, JADE and CoDE [31] in solving f1, f2, f4 and f6. While 

comparing with CEC 2015-LBP [15] ranked algorithms, performance of the MG-PSO 

algorithm found similar or better than that of the three top-ranked algorithms for the 

Table 7 
Sensitivity analysis of the MG-PSO algorithm with increase size of swarm  

f Minimum
f(x) Fitness m = 5 AET 

(sec) m = 10 AET 
(sec) m = 15 AET 

(sec) m = 20 AET 
(sec) m = 25 AET 

(sec)

f1 100 
BFV 100.00 

15.83
100.00

18.80
100.00

21.23
100.00

25.34 
100.00 

27.56 WFV 104.75 100.52 100.01 100.00 100.00 
MFV 101.63 100.10 100.00 100.00 100.00 

f7 500 
BFV 500.00 

11.65
500.00

13.03
500.00

14.97
500.00

16.76 
500.00 

18.32 WFV 503.15 500.23 500.03 500.00 500.00 
MFV 501.28 500.10 500.00 500.00 500.00 

f8 600 
BFV 600.00 

12.34
600.00

14.20
600.00

15.76
600.00

17.61 
600.00 

20.54 WFV 601.87 600.01 600.00 600.00 600.00 
MFV 600.09 600.02 600.00 600.00 600.00 

f10 800 
BFV 800.00 

13.45
800.00

18.45
800.00

20.87
800.00

22.56 
800.00 

23.97 WFV 802.32 800.85 800.02 800.00 800.00 
MFV 800.16 800.12 800.00 800.00 800.00 
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four functions. Furthermore, performance of the MG-PSO algorithm is found similar to 

that of OPSO algorithm [24] for the functions f1, f2, f4 and f6.

4.5.2 Shifted and rotated benchmark functions: f1, f2, f4 and f6 with d  = 100

The three top-ranked algorithms in the CEC 2015-LBP [15] are SPS-L-SHADE-EIG 

[26], DEsPA [27], and MVMO [28], in which the four shifted and rotated benchmark 

functions, i.e., f1, f2, f4 and f6, are considered. Here, the performance of the MG-PSO 

algorithm is compared with the above three top-ranked algorithms with d = 100.

The comparison has been achieved with Nrun = 20 and for each run the maximum 

NFE is 300,000. The criterion used in this comparison depends on the values of 

maximum NFE and MFEV (21). When the algorithm reaches NFE = 300,000, the 

MFEV is recorded as a better result. The algorithm obtains a best result when the 

Table 8 
Performance comparison between MG-PSO algorithm and eight ECTs using four CEC 2015-LBP [15]

benchmark functions with d = 30 

Sl.
No. ECTs Performance

 measure f1 f2 f4 f6

1 MG-PSO
(proposed) 

MFEV 0.00 0.00 0.00 0.00 

σ 0.00 0.00 5.07×10-56 3.73×10-44

2 OPSO  
[24]

MFEV 0.00 0.00 0.00 0.00 

σ 5.94×10-50 3.32×10-54 6.11×10-44 3.73×10-44

3

SPS-L-SHADE-EIG 
[26]

Rank #1 CEC 2015-LBP 
[15]

MFEV 0.00 0.00 2.00×1001 1.03×1001

σ 0.00 0.00 7.29×10-05 1.41×1001

4

DEsPA 
[27]

Rank #2 CEC 2015-LBP 
[15]

MFEV 0.00 0.00 2.01×1001 9.71×1000

σ 0.00 0.00 4.36×10-02 3.02×1000

5

MVMO
[28]

Rank #3 CEC 2015-LBP
[15]

MFEV 0.00 0.00 2.00×1001 9.54×1000

σ 0.00 0.00 5.42×10-04 3.53×1000

6 LLUDE 
[31] 

MFEV 5.93×10-01 2.84×10-14 2.03×1001 2.59×1001

σ 2.47×10-01 2.69×10-14 2.33×10-02 3.28×1000

7 SaDE
[31]

MFEV 1.78×1003 2.38×10-11 2.05×1001 3.46×1001

σ 1.43×1003 7.22×10-11 5.99×10-02 6.44×1000

8 JADE
[31]

MFEV 6.23×1000 3.41×10-14 2.03×1001 2.61×1001

σ 1.55×1001 1.17×10-14 2.86×10-02 3.39×1000

9 CoDE
[31] 

MFEV 1.58×1004 6.02×10-13 2.00×1001 2.97×1001

σ 1.16×1004 9.88×10-13 9.98×10-02 1.08×1001

                                 The bold numbers indicate the best solution found by corresponding algorithm 
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MFEV is 0.0 or close to 0.0. The set of parameters given in Table 3 were used in MG-

PSO algorithm.    

Table 9 presents the results of the MFEV and the corresponding σ obtained by MG-

PSO algorithm and three top-ranked algorithms in the CEC 2015-LBP [15]. We can see 

that the MG-PSO algorithm is significantly superior to SPS-L-SHADE-EIG [26],

DEsPA [27] and MVMO [28] in solving f4 and f6. While for f1 and f2, the MG-PSO 

algorithm is found similar or better than that of the three top-ranked algorithms.   

4.5.3 Shifted and rotated benchmark functions: f3, f5, f7 ‒ f10 with d = 30

The benchmark functions in CEC 2015 expensive optimization papers (CEC 2015-

EOP) [16] are highly competitive and require efficient optimization algorithms to 

provide fast solutions with a high accuracy. Six shifted and rotated benchmark functions 

f3, f5, f7 ‒ f10 are considered in the two top-ranked algorithms are MVMO [29] and

TunedCMAES [30].

Here, we compare the performance of the MG-PSO algorithm with that of the above 

two top-ranked algorithms and few other competitive algorithms from [21-23], [32].

The comparison has been done with Nrun = 20 and for each run the exact maximum NFE 

is set at 1,500, as given in [16]. The dimension of each tested function d is 30. In the 

SHPSO-GSA [21] and DD-SRPSO [22] algorithms 50 particles are used whereas 60 

particles are used for the EPSO [23] algorithm. In this experiment, the MG-PSO 

algorithm uses 20 particles and set of parameters were given in Table 3. 

Table 9 
Performance comparison between MG-PSO algorithm and three top-ranked CEC 2015-LBP [15]

benchmark functions with d = 100 

Sl.
No. ECTs Performance

 measure f1 f2 f4 f6

1 MG-PSO
(proposed) 

MFEV 0.00 0.00 0.00 0.00 

σ 0.00 0.00 1.03×10-53 3.73×10-41

2

SPS-L-SHADE-EIG 
[26]

Rank #1 CEC 2015-LBP 
[15]

MFEV 0.00 0.00 2.00×1001 3.80×1001

σ 0.00 0.00 2.25×10-02 1.08×1001

3

DEsPA 
[27]

Rank #2 CEC 2015-LBP 
[15]

MFEV 4.60×1005 3.07×1001 2.03×1001 4.51×1001

σ 1.34×1005 1.30×1002 2.12×10-01 7.08×1000

4

MVMO
[28]

Rank #3 CEC 2015-LBP
[15]

MFEV 0.00 0.00 2.00×1001 1.66×1002

σ 0.00 0.00 6.02×10-07 2.12×1001

                                  The bold numbers indicate the best solution found by corresponding algorithm 
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Table 10 shows the MFEV, the corresponding σ and AET for the eight ECTs. 

Among the eight ECTs, the MG-PSO algorithm achieves the best MFEV performance 

for the five functions, f5, f7-f10, whereas the MVMO [29] gives the best MFEV 

performance for the function f3. In terms of σ, the performance of the MG-PSO 

algorithm is the best in case of the four functions f5, f7-f9 and is the second best for the 

function f3 and f10. Thus, the performance of the MG-PSO algorithm is found to be 

superior to the two CEC 2015-EOP [16] algorithms. In terms of AET, the MG-PSO 

algorithm performance is better than the OPSO [24] and SabDE [32] for all the six 

functions, f3, f5, f7 -f10. The AET information for other algorithms is not available.    
Table 10 

Performance comparison between MG-PSO algorithm and seven ECTs using six CEC 2015-EOP [16]
benchmark functions with d = 30 

Sl.
No. ECTs Performance

 measure f3 f5 f7 f8 f9 f10

1 MG-PSO
(proposed) 

MFEV 1.67×10-02 1.24×10-02 5.00×10-03 1.24×10-05 2.24×10-03 1.12×1000

σ 1.58×10-02 4.22×10-03 2.35×10-03 1.82×10-05 1.83×10-03 1.07×10-02

AET (sec) 1.34×1000 1.23×1000 1.15×1000 1.07×1000 1.03×1000 1.49×1000

2 SHPSO-GSA 
 [21] 

MFEV 6.96×10-01 1.80×1001 1.06×1000 5.26×10-01 1.36×10-01 2.78×1000

σ 2.11×1001 9.03×10-01 5.55×10-01 4.62×10-01 3.11×10-01 1.04×10-04

AET (sec) - - - - - -

3
DD-SRPSO 

[22]

MFEV 2.59×1004 2.24×1001 2.71×1000 5.61×10-01 5.43×10-01 3.32×1002

σ 1.05×1004 2.12×1000 7.58×10-01 1.00×10-01 2.03×10-01 2.12×1002

AET (sec) - - - - - - 

4
EPSO 
[23]

MFEV 6.37×1004 3.38×1002 5.04×1002 6.02×1002 7.21×1002 1.27×1005

σ - - - - - - 

AET (sec) - - - - - - 

5
OPSO 
[24]

MFEV 6.81×10-02 1.37×1000 6.40×10-01 1.49×10-02 1.54×10-02 1.29×1000

σ 2.96×10-02 3.35×10-01 4.00×10-01 5.97×10-03 7.45×10-03 6.74×10-02

AET (sec) 2.32×1000 1.98×1001 4.51×1000 1.47×1000 1.43×1000 1.60×1000

6

MVMO
[29]

Rank #1 CEC 2015-EOP 
[16]

MFEV 6.93×10-03 3.79×1001 1.67×1001 5.20×10-01 4.39×10-01 4.03×1002

σ 3.24×10-04 3.85×100 5.04×10-01 1.32×10-01 9.93×10-02 2.63×1002

AET (sec) - - - - - - 

7

TunedCMAES 
[30]

Rank #2 CEC 2015-EOP 
[16]

MFEV 1.17×1005 3.21×1002 5.05×1002 6.00×1002 7.00×1002 8.22×1002

σ 2.19×1004 5.06×100 5.91×10-01 2.35×10-01 2.86×10-01 1.09×10-01

AET (sec) - - - - - - 

8 SabDE
[32]

MFEV 2.54×1009 2.00×1001 4.33×1002 4.56×1004 7.52×1001 2.39×1007

σ 5.00×1009 2.04×1002 9.46×1001 4.07×1004 4.15×1003 5.43×1007

AET (sec) 1.76×1001 1.65×1001 1.68×1001 1.71×1001 1.78×1001 1.72×1001

The bold numbers indicate the best solution found by corresponding algorithm.
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4.5.4 Shifted and rotated benchmark functions: f3, f5, f7 ‒ f10 with d = 100

The benchmark functions in CEC 2015-EOP [16] are highly competitive and require 

efficient optimization algorithms to provide fast solutions with a high accuracy. Six 

shifted and rotated benchmark functions f3, f5, f7 ‒ f10 are considered.  The test has been 

done with Nrun = 20 and for each run the exact maximum NFE is set at 1,500, as given 

in [16]. The MG-PSO algorithm has been run for f3, f5, f7 ‒ f10 with d = 100. It uses 20 

particles and set of the parameters were given in Table 3. The results are shown in Table 

11. It can be seen that the MG-PSO algorithm perform quite satisfactorily. However, as 

there is no other reported paper, we are unable to compare with other algorithms.      

4.6 Statistical significance of the MG-PSO algorithm for CEC 2015 benchmark 

functions

In order to determine the statistical significance of the proposed MG-PSO algorithm, 

we carried out two sets of unpaired one-tailed t-test [45] with a significance level of α = 

0.05. The results of the t-Test for CEC 2015-LBP [15] are shown in Table 12. Here, the 

statistical results of the comparison between MG-PSO algorithm and eight competitive 

algorithms for f1, f2, f4 and f6 are provided. The comparison is made with a degree of 

freedom equals to 19. The MG-PSO algorithm is considered to be statistically 

significant against the contender algorithm when t-value < 0 and p-value less than 0.05.

The general merit over contender is shown in the last row of Table 12. It is calculated as 

the difference between the number of times the MG-PSO algorithm is found to be 

statistically significant and statistically not significant among four tested functions. It 

can be seen that out of the eight algorithms, the MG-PSO algorithm is statistically 

significant against four algorithms, i.e., LLUDE, SaDE, JADE and CoDE [31].

However, against the three top-ranked algorithms CEC 2015-LBP [16], SPS-L-

SHADE-EIG [26], DEsPA [27] and MVMO [28], the MG-PSO algorithm is statistically 

significant for f4 and f6, whereas it is statistically not significant for f1 and f2. In addition, 

Table 11 
Performance of the MG-PSO algorithm for six CEC 2015-EOP [16] benchmark functions with d = 100

Sl.
No. ECTs Performance

 measure f3 f5 f7 f8 f9 f10

1 MG-PSO
(proposed) 

MFEV 3.85×10-02 2.79×10-02 7.34×10-03 2.48×10-05 3.36×10-03 2.31×1000

σ 1.69×10-02 5.45×10-03 4.43×10-03 2.78×10-05 3.43×10-03 2.06×10-02

AET (sec) 4.48×1000 5.36×1000 4.67×1000 4.34×1000 4.23×1000 5.01×1000
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the MG-PSO algorithm is statistically not significant against the OPSO algorithm [24]

for f1, f2, f4 and f6.

Table 13 shows the statistical results of the comparison between MG-PSO algorithm 

and seven competitive algorithms for the six functions f3, f5, f7 ‒ f10 CEC 2015-EOP. The 

comparison is made with a degree of freedom equals to 19. The general merit over 

contender is shown in the last row of Table 13. It can be seen that the MG-PSO 

algorithm is statistically significant against all the seven algorithms. Note that, numbers 

in bold signatures that MG-PSO algorithm is statistically significant with respect to the 

corresponding algorithms.     
Table 12 

Statistical results of unpaired t-test of MG-PSO algorithm against eight ECTs for CEC 2015-LBP [15]

Sl. 
No. f Statistical 

Results

 Competitive Algorithms 

OPSO 
[24]

SPS-L-
SHADE-EIG

[26]
Rank #1 

CEC 2015- 
LBP [15]

DEsPA 
[27]

Rank #2 
CEC 2015-
LBP [15]

MVMO       
[28]

Rank #3 
CEC 2015- 
LBP [15]

JADE   
[31]

CoDE
[31]

LLUDE  
[31]

SaDE    
[31]

1 f1

t-value 0.0 0.0 0.0 0.0 -1.53×
1016 -∞ -∞ -∞

p-value 5.00×
10-01

5.00×
10-01

5.00×
10-01

5.00×
10-01

7.99×
10-297 0.0 0.0 0.0 

2 f2

t-value 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

p-value 5.00×
10-01

5.00×
10-01

5.00×
10-01

5.00×
10-01

5.00×
10-01

5.00×
10-01

5.00×
10-01

5.00×
10-01

3 f4

t-value 0.0 -∞ -2.47×
1016 -∞ -2.49×

1016
-2.47×
1016

-2.49×
1016

-2.00×
1016

p-value 5.00×
10-01 0.0 9.05×

10-301 0.0 7.50×
10-301

9.05×
10-301

7.50×
10-301

4.74×
10-299

4 f6

t-value 0.0 -2.53×
1016

-1.19×
1016

-1.17×
1016

-1.08×
1016 -∞ -1.06×

1016
-2.12×
1016

p-value 5.00×
10-01

5.67×
10-301

9.13×
10-295

1.28×
10-294

7.35×
10-294 0.0 8.51×

10-294
1.56×
10-299

      t = negative 
      t < 0 0 2 2 2 3 3 3 3 

      t = positive 
      t = ≥ 0 4 2 2 2 1 1 1 1 

General Merit Over 
Contender 4 0 0 0 2 2 2 2 

          Numbers in bold signatures, that MG-PSO algorithm is statistically significant with respect to the corresponding algorithm. 
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5 Case study: Solving economic dispatch problem of South Korea PGS 

The economic dispatch of active power of online thermal generating units (TGUs), 

also termed as ED problem, performs an important part in economic operation of PGS. 

It is considered as a non-linear constrained optimization problem. The problem becomes 

multimodal, i.e., non-convex, non-smooth and discontinuous, when the TGUs are 

subjected to valve-point loading (VPL) effects and a set of prohibited operating zones 

(POZs) operating power constraints.

In this section, we study the ED problem of large-scale TGUs for South Korea PGS 

under four practical operating power constraints, i.e., VPL effects, generation limits, 

Table 13 
Statistical results of unpaired t-test MG-PSO algorithm against seven ECTs for CEC 2015-EOP [16] 

Sl. 
No. f Statistical

Results

 Competitive Algorithms 

SHPSO-GSA  
[21]

DD-SRPSO   
[22]

EPSO       
[23]

OPSO 
[24]

MVMO 
[29]

Rank #1 
 CEC 2015-EOP 

[16]

TunedCMAES
[30]

Rank #2  
CEC 2015-EOP

[16]

SabDE   
[32]

1 f3

t-value -9.41×
1001

-3.88×
1006

-9.54×
1006

-9.89×
1003

9.15×
1000

-1.75×
1007

-3.80×
1011

p-value 7.89×
10-27

1.63×
10-114

6.14×
10-122

3.10×
10-65

2.15×
10-08

5.90×
10-127

2.37×
10-209

2 f5

t-value -∞ -1.37×
1016 -∞ -∞ -2.32×

1016 -∞ -∞

p-value 0.0 6.05×
10-296 0.0 0.0 2.77×

10--300 0.0 0.0 

3 f7

t-value -∞ -2.06×
1016 -∞ -2.51×

1016
-2.04×
1016 -∞ -∞

p-value 0.0 2.14×
10-301 0.0 6.34×

10-301
3.06×
10-299 0.0 0.0 

4 f8

t-value -2.06×
1016 -∞ -∞ -3.74×

1016
-1.02×
1016 -∞ -∞

p-value 2.63×
10-299 0.0 0.0 3.24×

10-304
1.71×
10-293 0.0 0.0 

5 f9

t-value -1.06×
1016

-2.13×
1016 -∞ -3.86×

1016
-3.44×
1016 -∞ -2.30×

1016

p-value 7.29×
10-294

1.44×
10-299 0.0 1.73×

10-304
1.56×
10-303 0.0 3.22×

10-300

6 f10

t-value -1.36×
1016 -∞ -∞ -1.26×

1016 -∞ -∞ -∞

p-value 6.94×
10-296 0.0 0.0 2.86×

10-295 0.0 0.0 0.0 

      t = negative 
      t < 0 6 6 6 6 5 6 5 

      t = positive 
      t = ≥ 0 0 0 0 0 1 0 0 

General Merit  
Over Contender 6 6 6 6 4 6 6 

Numbers in bold signatures, that MG-PSO algorithm is statistically significant with respect to the corresponding algorithm.
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ramp rate limits (RRLs) and a set of POZs. The objective function of ED problem is the 

fuel cost.  Explanation of the fuel cost function and its four operating practical power 

constraints, i.e., VPL effects, generation limits, ramp rate limits (RRLs) and a set of 

POZs are considered, as follow:

5.1 Fuel cost function (objective function) 

The aim of ED problem is to guess the optimum arrangement of power generation of 

all online TGUs in order to minimize the entire generation fuel cost objective function 

subjected to the online TGUs. In general, the fuel cost function of each on-line TGU is 

characterized by a quadratic function given by [46]:

                                            2)( jjjjjj PcPbaPF                                                            (24) 

where F(Pj) is the fuel cost function of jth TGU in ($/h), Pj is the output active power in 

(MW) at current time interval, and aj, bj, and cj are fuel cost coefficients.

5.2 Operating power constraints imposed by thermal generating units 

Here, four practical operating power constraints imposed on the online TGUs are 

considered.

5.2.1 Valve-point loading effects

Under valve-point loading effects, sinusoidal functions are added to the quadratic 

cost function (1) [34]. This makes the cost function, non-smooth and non-convex with 

multiple modes, as follows:  

                                jmin,jjjjjjjjj PPfsinePcPbaPF 2)(                                     (25) 

where ej and fj are the coefficients reflecting VPL effects and Pj,min is the minimum 

output active power of jth TGU. The symbol ││ corresponds to absolute value. The 

total fuel cost function considering all on-line TGUs is given by: 

                                                                )(
1 jjtcos PFF

genN

                                                           (26) 

where Ngen is the number of scheduled online TGUs and Fcost is the total fuel cost 

function to be minimized. 

An illustrative example: To explain the impact of VPL effects on the fuel cost function, 

let us suppose two TGUs, TGU1 and TGU2, with a set of parameters as shown in Table 
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14 [47]. The TGU1 and TGU2 are steam powered turbo generators with multiple valves. 

Practically, the valves of steam-turbine control the steam entering through separate 

nozzle groups. Each nozzle group provides best efficiency when its operating at 

maximum output. Thus, when increasing the output power, the valves of seam-turbine 

are opened and closed in sequence in order to achieve a highest possible efficiency for a 

given output power. Subsequently, causing ripple-like effects and then the fuel cost 

function becomes non-linearity of higher order. Fig. 8 shows the total fuel cost of TGU1

and TGU2 under VPL effects. It can be concluded that multiple local minima are caused 

by the sinusoidal functions (25).

5.2.2 Generation limits

Each online TGU has a specified range within which its operation is stable. 

Therefore, it is desired that the TGUs be run within this range in order to maintain 

system stability. Normally, the generation limits of the jth TGU is given by 

                                              Pj,min ≤ Pj ≤ Pj,max         j = 1, 2, ..., Ngen                                    (27) 

Fig. 8. Total fuel cost function of TGU1 and TGU2 under VPL effects.  
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Table 14 
Parameters of TGU1 and TGU2

TGUj
aj

 ($/h)
bj

($/MWh)
cj

($/MW2h)
ej

($/h)
fj

(MW-1)
Pj,min

(MW)
1 958.29 21.60 0.00043 450 0.041 150
2 1,313.60 21.05 0.00063 600 0.036 135
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5.2.3 Ramp rate limits

The operating range of online TGU is restricted by its ramp rate limits, RRLs, due to 

its physical limitations [48-49]. For any sudden change in the PD, TGU increase or 

decrease its power generation in order to satisfy system stability. However, the TGU 

can change its power generation only at a certain rate determined by its up-ramp and 

down-ramp rate. If a TGU is operating at a specific point, then its point of operation can 

be changed only up to a certain rate determined by the ramp rate. Therefore, a change in 

TGU output active power from one specific interval to the next cannot exceed a 

specified limit.  

If power generation need to increase, then per unit time rate of increase Pj ‒ Pj
0  must 

satisfy:

                                                                     Pj ‒ Pj
0 ≤ URj                                                         (28)   

If power generation need to decrease, then per unit time rate of decrease Pj
0 ‒ Pj must 

satisfy:
                                                                     Pj

0 ‒ Pj ≤ DRj                                                         (29)  

where Pj
0 is the TGU output active power at the previous time interval. The URj and 

DRj are the up-ramp and down-ramp limits of TGU j in (MW/h), respectively.  

By substituting (28) and (29) in (27), we obtain the following constraints. 
                                max{Pj,min, (Pj

0 ‒ DRj)} ≤ Pj ≤ min{Pj,max, (Pj
0 + URj)}                               (30)                    

where

                                             Pj,low = max{Pj,min, (Pj
0 ‒ DRj)},                                                (31) 

                                Pj,high = min{Pj,max, (Pj
0 + URj)} , and                                                    (32) 

Pj,low and Pj,high are the new lower and higher limits of jth TGU, respectively.  

5.2.4 A set of prohibited operating zones 

The physical limitations due to the steam valve operation or vibration in shaft 

bearing of TGU may result in the generation units operating within prohibited operating 

zones [49]. The POZs make the fuel cost function discontinuous in nature. In such case, 

it is difficult to determine the shape of the cost curve of the fuel cost function under a 

set of POZs through actual performance testing. In addition, if the TGU operates within 

the POZ range then it may lead to loss of the stability. Therefore, these regions are 
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usually avoided during generation. By using (27), the feasible operating zones (FOZs) 

of the jth TGU are given by: 

                                                                   
l
,jjmin,j PPP 1

                                              l
k,jj

u
k,j PPP 1      k = 2, 3, ..., N j,PZ                                                           (33)                 

                                                          max,jj
u
N,j PPP

PZ,j

where l
k,jP and u

k,jP are the lower and upper bound of the kth POZs of the jth TGU, and 

Nj,PZ  is number of  POZs of the jth TGU. Incorporating these power constraints in (30)-

(33), we get the final set of inequality power constraints imposed on TGU as given 

below.

                                                                   ,PPP l
,jjlow,j 1

                                                        l
k,jj

u
k,j PPP 1     k = 2, 3, ..., Nj,PZ                                   (34)

                                                                 high,jj
u
N,j PPP

PZ,j

Equation (34) gives the final set of the operating power constraints imposed on jth TGU 

in terms of new lower and upper generation power limits with RRLs and FOZs and 

avoiding all POZS. Thus, all online TGUs will have a set of operation limits (OLs) that 

satisfies all the operating power constraints.

An illustrative example: In order to illustrate new lower and upper generation limits and 

FOZs obtained due to presence RRLs and POZs of jth TGU, an example of 

specifications of TGU2 per one-hour generation is given below [46]:

P2
0= 170 MW; P2,min = 50 MW; P2,max = 200 MW; UR2 = 50 MW; DR2 = 90 MW. The 

TGU2 has two POZs: POZ1 = [90,110] and POZ2 = [140,160]. 

From (34), the new lower and upper limits of TGU2 based on RRLs are: 

      P2,low =  80 MW and P2,high =  200 MW, 

and the three FOZs are:     

FOZ1: 80 ≤ P2 ≤ 90 

    FOZ2: 110 ≤ P2 ≤ 140 

    FOZ3: 160 ≤ P2 ≤ 200 
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Fig. 9 shows that TGU2 has minimum and maximum OLs given by 50 MW and 200 

MW, respectively. However, due to presence of RRL power constraint, TGU2 operates 

within new lower and higher OLs given by P2,low = 80 MM and P2,high = 200 MW. In 

addition, three FOZs: FOZ1 = [80,90] MW, FOZ2 = [110,160] MW and FOZ3 = 

[160,200] MW, and two POZs: POZ1 = [90,110] MW and POZ2 = [140,160] MW in 

dark color are shown in Fig. 9. The intermittent zone ([50,80] MW) is out of OL of the 

TGU2.

5.3 Performance measures

To study the accuracy, consistency and robustness of different algorithms in solving 

ED problem of South Korea PGS, several fitness values as illustrated below are 

considered. Every algorithm is executed over Nrun runs each with Niter iterations.

1. Ensemble average cost (Fcost): At each iteration, it is the average cost value obtained 

from Nrun independent runs. 

2. Minimum fuel cost (Fmin): Defined as the minimum of the optimized Fcost values 

obtained from Nrun independent runs. 

3. Maximum fuel cost (Fmax): Defined as the maximum of the optimized Fcost values 

obtained from Nrun independent runs. 

4. Mean fuel cost (Fmean): Defined as the average of the optimized Fcost values obtained 

from Nrun independent runs. 

5. Standard deviation (σ): The σ is the standard deviation of the optimized Fcost values 

obtained from Nrun independent runs. 

6. Range (R): The range (R) is defined as the difference between Fmax and Fmin.

7. Average execution time (AET): It is the time consumed by an algorithm after 

convergence, averaged over Nrun independent runs. 

Fig. 9. Lower and upper generation limits, POZs and FOZs for TGU2.
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5.4 Test case study: South Korea power generation system  

The South Korea power generation system is a very large-scale PGS [34]. It consists 

of gas, stream, diesel, and nuclear power stations. The South Korea PGS is a complex 

with 140 TGUs each having generation limits and RRLs. In addition, the cost fuel 

functions of 12 TGUs have VPL effects and 4 TGUs have 11 POZs. The maximum load 

demand under steady-state and normal operations is 49,342 MW. The South Korea PGS 

data are available in [34].

5.4.1 Comparison in terms of fitness values

The The South Korea PGS has been tested with three existing ECTs, i.e., CCPSO 

[33], C-GRASP-SaDE [34], and C-GRASP-MDE [34]. Here, the performance of MG-

PSO algorithm is compared with these three algorithms as well as GPSO-w. The set of 

parameters used in MG-PSO and GPSO-w algorithms are shown in Table 15. In 

addition, both are run with m = 20, d = 140 and Nrun = 25. In MG-PSO algorithm, four 

negative gradients were selected (Ngrad = 4)  by trial and error method,  three  for  

Exploration phase and  another one for Exploitation phase as shown in Table 15.

The fitness values of the five ECTs are listed in Table 16. It can be seen that in 

GPSO-w, Fmean = $2,529,855.79/h and σ = $358,126.35/h. These results indicate that 

GPSO-w is unable to solve South Korea PGS. Whereas, the MG-PSO algorithm is 

efficient in obtaining the best result in terms of Fmean over 25 independent runs. In 

addition, in terms of σ, the performance of the MG-PSO algorithm is the second best. 

This shows that the MG-PSO algorithm provides optimum and consistent results. In 

addition, the range R of MG-PSO algorithm is the second lowest among the five ECTs, 

thus indicating that it provides solution with low dispersion. In terms of AET, the MG-

PSO algorithm shows the second best performance. These results indicate that among 

the five ECTs, the MG-PSO algorithm is stable and robust and is able to provide 

optimum solution.  
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5.4.2 Convergence characteristics of MG-PSO and GPSO-w algorithms 

Fig. 10 shows the convergence characteristics of MG-PSO and GPSO-w algorithms 

for South Korea PGS. It shows ensemble average Fcost values at each iteration obtained 

from 25 independent runs. It can be seen that MG-PSO algorithm settles at about 1,300 

iterations and achieves Fmean of about $1,656,700/h. Whereas, the GPSO-w algorithm 

settles at a non-optimum Fmean of about $2,529,855.79/h since the beginning of its 

learning. Early convergence of the GPSO-w algorithm indicates that it has trapped into 

a local minimum of at about $2,529,855.79/h. This indicates that the GPSO-w algorithm 

is unable to solve ED problem of South Korea PGS with such a high dimension (d = 

140) and under such a large number of operating power constraints. Whereas, it is clear 

that for this complex PGS, the MG-PSO algorithm efficiently converges to the vicinity 

of the optimum solution with four operating power constraints imposed by online 

TGUs.

Fig. 11 shows the variation of optimized Fcost over 25 independent runs achieved by 

the MG-PSO and GPSO-w algorithms. It shows that the optimized Fcost of MG-PSO 

algorithm varies between $1,656,515/h and $1,656,917/h, whereas in GPSO-w

algorithm, it varies between $1,933,419.88/h and $3,366,473.62/h. This indicates that 

MG-PSO algorithm is capable of providing consistent and reliable optimum solution. 

Table 16 
Comparison of cost performance between MG-PSO algorithm and other 3 ECTs for South Korea PGS 

Sl.No. Algorithm Min. Cost 
Fmin ($/h) 

Max. Cost 
Fmax ($/h) 

Mean Cost 
Fmean ($/h) 

σ
($/h)

R
($/h)

AET 
(sec) 

1 CCPSO                 [33] 1,657,962.7300 1,657,962.7300 1,657,962.7300 0.00 0.00 150.00
2 C-GRASP-SaDE  [34] 1,657,962.7268 1,658,583.5267 1,658,006.2712 NA 620.79 NA
3 C-GRASP-MDE  [34] 1,666,667.7400 1,897,207.1500 1,,685,973.32 NA 230,539.41 NA
4 GPSO-w 1,933,419.8873 3,366,473.6288 2,529,855.7978 358,126.35 1,433,053.74 31.29
5 MG-PSO 1,656,515.4715 1,656,917.3113 1,656,667.4650 8.01 401.83 48.37

          The bold numbers indicate the best solution found by corresponding algorithm.

Table 15 
Set of parameters used in MG-PSO and GPSO-w algorithms for South Korea PGS  

Set of  
parameters 

MG-PSO 
GPSO-wExploration phase Exploitation phase

k = 1 k = 2 k = 3 k = 4
γ 0.40 0.40 0.40 0.40 - 
c1, c2 2.05 2.05 2.05 2.05 2.00 
Niter 1,200 1,200 1,200 1,800 3000 
wini,k 0.80 0.80 0.80 0.35 0.90 
wfin,k 0.10 0.20 0.30 0.20 0.40 
gradk -5.83×10-4 -5.00×10-4 -4.16×10-4 -8.33×10-5 -1.67×10-04
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Whereas, the GPSO-w algorithm is unable to provide optimum solution due to the high 

complexity of the problem.  

5.4.3 Comparison in terms of four operating power constraints 

Tables 17 presents a solution vector Pj (j = 1, 2, ..., 140) corresponding to the best 

solution obtained from MG-PSO and GPSO-w algorithms. Four practical operating 

power constraints imposed on 140 TGUs in South Korea PGS, i.e., VPL effects, RRLs, 

generation limits and a set of POZs, are considered. In case of GPSO-w algorithm, it is 

unable to solve non-smooth, non-convex cost function due to VPL effects, as shown 

from the values of fuel cost (minimum, maximum and mean) in Table 16. In addition, 

11 TGUs violate RRLs and generation limits, as shown in red color in Table 17. The 

Fig. 11. Convergence characteristics of MG-PSO and GPSO-w algorithms for South Korea PGS. 
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details of the 11 TGUs for which GPSO-w algorithm failed to satisfy RRLs and 

generation limits are shown in Table 18. These 11 TGUs must operate within the range 

of RRLs and generation limits, based on (34).  

In addition, TGU #136 violates POZ [50-74] MW, based on (34), as shown in blue 

color in Table 17. This means that GPSO-w algorithm fails to solve ED problem for 

South Korea PGS and is unable to solve the four operating power constraints imposed 

on a large-scale TGUs. However, the MG-PSO algorithm avoids the 11 POZs imposed 

on 4 TGUs and working within RRLs and generation limits of each TGU and solving 

non-smooth cost function due to VPL effects imposed on 12 TGUs. 
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Table 17 
Optimized output active power in (MW) for each TGU obtained by GPSO-w and MG-PSO algorithms for 

South Korea PGS 
GPSO-w MG-PSO 

TGUj Pj TGUj Pj TGUj Pj TGUj Pj TGUj Pj TGUj Pj TGUj Pj TGUj Pj

1 119.0 39 611.1 77 513.1 115 368.2 1 118.9029 39 773.9550 77 389.9391 115 244.0759

2 150.8 40 707.6 78 336.4 116 286.4 2 163.9317 40 768.9389 78 330.8755 116 244.3029

3 167.7 41 4.7 79 196.7 117 348.2 3 189.8356 41 3.5417 79 530.7148 117 244.0177

4 137.8 42 12.1 80 272.4 118 160.9 4 189.8119 42 3.1421 80 530.9548 118 95.1031

5 183.4 43 170.4 81 525.4 119 119.8 5 189.8391 43 249.7563 81 541.6917 119 95.2248

6 129.3 44 185.4 82 90.8 120 189.3 6 189.9790 44 249.7986 82 56.1218 120 116.1326

7 320.7 45 222.9 83 156.1 121 300.7 7 489.9250 45 249.9315 83 115.4416 121 175.2108

8 285.0 46 197.2 84 236.1 122 11.0 8 489.9932 46 249.7574 84 115.3084 122 2.0596 

9 392.6 47 178.2 85 241.9 123 17.6 9 495.8361 47 249.9664 85 115.4370 123 4.1350 

10 266.4 48 191.0 86 239.3 124 63.7 10 495.9449 48 249.8982 86 207.4802 124 15.1293

11 441.0 49 224.3 87 211.7 125 16.2 11 495.8284 49 249.8841 87 207.0506 125 9.3245 

12 329.6 50 234.8 88 295.0 126 20.6 12 495.8931 50 249.8927 88 175.2168 126 12.3679

13 351.5 51 365.2 89 193.6 127 13.3 13 505.9485 51 165.0090 89 175.2709 127 10.0243

14 467.3 52 484.4 90 239.3 128 230.0 14 508.9545 52 165.0718 90 175.3078 128 112.1335

15 424.4 53 383.5 91 324.6 129 19.0 15 505.9317 53 165.2701 91 175.3082 129 4.0748 

16 377.6 54 457.9 92 516.7 130 34.9 16 504.8797 54 165.3485 92 575.3236 130 5.3571 

17 309.7 55 269.9 93 509.8 131 6.2 17 505.9219 55 180.0918 93 547.2814 131 5.3220 

18 360.9 56 380.7 94 983.9 132 86.9 18 505.9252 56 180.2213 94 836.2569 132 50.0785

19 369.5 57 278.5 95 813.1 133 6.8 19 504.9787 57 103.0974 95 837.2834 133 5.1698 

20 348.6 58 521.0 96 634.2 134 71.9 20 504.8703 58 198.6536 96 681.8989 134 42.1825

21 263.6 59 230.9 97 712.4 135 65.6 21 504.9936 59 311.8011 97 719.9877 135 42.3435

22 352.5 60 216.3 98 683.5 136 51.2 22 504.9871 60 311.6648 98 717.6493 136 41.2530

23 470.7 61 425.2 99 705.5 137 23.1 23 504.8732 61 163.7961 99 719.6865 137 17.2795

24 272.5 62 298.6 100 891.5 138 17.8 24 504.8014 62 95.8232 100 963.8141 138 7.0127 

25 505.1 63 478.2 101 945.7 139 7.6 25 536.8458 63 510.9918 101 957.9583 139 7.0810 

26 507.6 64 470.4 102 862.4 140 34.6 26 536.9566 64 510.9026 102 946.5203 140 26.1599

27 481.4 65 205.1 103 976.1 

FAIL

27 548.9488 65 489.6328 103 933.7727 

SUCCESS

28 420.2 66 458.6 104 984.6 28 548.9923 66 252.6819 104 934.8718 

29 324.9 67 413.8 105 1,014.3 29 500.9955 67 489.7562 105 876.4437 

30 463.6 68 293.6 106 906.0 30 498.9895 68 489.6741 106 880.1277 

31 430.2 69 175.3 107 938.4 31 505.9392 69 130.8168 107 873.4553 

32 285.0 70 297.0 108 874.2 32 505.8717 70 296.6273 108 877.2801 

33 473.8 71 337.9 109 879.0 33 505.9013 71 142.7573 109 871.2103 

34 455.5 72 411.5 110 919.5 34 505.8016 72 367.6518 110 864.6802 

35 461.1 73 345.3 111 969.3 35 499.9410 73 195.6819 111 882.3793 

36 293.9 74 473.3 112 165.3 36 499.8281 74 219.6960 112 94.3471 

37 164.8 75 483.2 113 193.4 37 240.9999 75 217.8117 113 94.2248 

38 216.7 76 523.9 114 113.6 38 240.9666 76 267.8831 114 94.2292 
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5.5 Statistical significance of the MG-PSO algorithm for South Korea PGS  

Here, the statistical significance of the proposed MG-PSO algorithm has been 

determined, one set of unpaired one-tailed t-Test is carried out [45] with a significance 

level of α = 0.05. The MG-PSO algorithm is considered to be statistically significant 

against the contender algorithm when t-value < 0 and p-value less than 0.05. The 

general merit over contender is shown in the last row of Table 19. 

Table 19 shows the t-Test results for South Korea PGS. The one-tailed unpaired           

(α = 0.05 with a degree of freedom of 24) is performed against four competitive 

algorithms. As seen from the data in the last column in Table 19, the proposed MG-PSO 

algorithm is found to be statistically significant against the GPSO-w algorithm for South 

Korea PGS. One can see from the statistical data in the last column of Table 19 that the 

MG-PSO algorithm is statistically significant against the four contending algorithms for 

solving ED problem of the South Korea PGS. These results give enough evidence that 

the proposed MG-PSO algorithm is statistically significant against all four contending 

algorithms. 
Table 19 

Statistical results of unpaired t-Test of MG-PSO algorithm against four ECTs for South Korea PGS 

Sl. 
No.

Competitive  
Algorithms 

South Korea PGS t =  
negative

t < 0 

t =  
positive

t ≥ 0 
General Merit Over Contender

t-value p-value

1 GPSO-w -4.02
×1004

1.84
×10-95 1 0 1

2 CCPSO 
[33]

-5.96
×1001

1.34
×10-27 1 0 1

3 C-GRASP-SaDE
[34]

-6.16
×1001

6.04
×10-28 1 0 1

4 C-GRASP-MDE 
[34]

-6.05
×1001

6.13
×10-28 1 0 1

                       Numbers in bold signatures, that MG-PSO algorithm is statistically significant with respect to the corre sponding
                       algorithm. 

Table 18 
List of 11 TGUs that violate RRLs and generation limits based on output active power Pj obtained 

by GPSO-w for South Korea PGS 

TGUj  92 93 94 103 104 105 106 107 109 110 111 

Pj,low (MW) 539.4 511.5 795.0 844.0 875.0 816.5 820.9 813.7 799.5 795.0 810.0

Pj,high (MW) 575.4 547.5 836.8 934.0 935.0 876.5 880.9 873.7 871.7 864.8 882.0

Pj         (MW) 516.7 509.8 983.9 976.1 984.6 1,014.3 906.0 938.4 879.0 919.5 969.3
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6 Conclusion

An algorithm called multi-gradient PSO (MG-PSO) algorithm is proposed and 

applied to optimize unimodal and multimodal problems. In MG-PSO algorithm, several 

negative gradients are used by m particles while searching for an optimum solution in 

two phases called Exploration and Exploitation. The combination of two phases 

provides a balance between global and local search spaces. Thus, this combination is 

successfully applied to overcome the disadvantages of the gradient methods. With 

extensive simulation studies, performance of the MG-PSO algorithm was compared 

with GPSO-w algorithm and several existing competitive algorithms and its superiority 

is demonstrated in terms of several performance measures. The MG-PSO algorithm was 

applied to ten selected unimodal and multimodal benchmark functions (CEC 2015) with 

d = 30 and d = 100 as well as to South Korea power generating system (case study). The 

proposed MG-PSO algorithm outperformed several existing ECTs including top-ranked 

CEC 2015 algorithms. In addition, the sensitivity analysis and statistical tests were 

carried out to demonstrate the effectiveness of the proposed algorithm. Thus, the MG-

PSO algorithm proved to be a powerful and highly effective algorithm that is capable of 

solving complex unimodal and multimodal functions.           
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Appendix 

Here, pseudocode of the MG-PSO algorithm is provided.  

Begin MG-PSO Algorithm 

     Let f(x) be the function to be minimized. 

Choose Niter, Ngrad, wini,k, wfin,k, k = 1, 2, …, Ngrad

Determine Niter,xplore and Niter,xploit using (10) and (11), respectively. 

Step 1: Initialization: Iteration, t = 0

Obtain Gbest(0) using (1)-(4) 

Step 2: Begin Exploration phase 

for k = 1, 2, ..., Ngrad ‒ 1 

begin of episode k

Determine gradk using (12)

for t = 1, 2, …, Niter,xplore

Determine wk(t) using (15)

for i = 1, 2, …, m

Update the particle’s velocity and position vectors as follows     

)]1()1()[()]1()1()[()1()()( 2211 tXtGtrctXtGtrctVtwtV k
i

k
best

k
i

k
i,pers

k
ik

k
i         (A-1)        

)()1()( tVtXtX k
i

k
i

k
i                                                                                                        (A-2) 

Evaluate the particle’s performance by substituting (A-2) in f(x)

Update Gpers,i as follows

OtherwisetG

tGftXfiftX
tG

k
i,pers

k
i,pers

k
i

k
i

k
i,pers

)1(

))1(())(()(
)(                                         (A-3)

end i loop

for i = 1, 2, ..., m

Obtain ))(( tGf k
i,pers

end loop i

))(( tGf k
best = min{ ))(( tGf k

i,pers }                                                                                                 (A-4)  

Obtain )(tGk
best corresponding to ))(( tGf k

best

end t loop

Obtain )( xplore,iter
k
best NG and ))(( xplore,iter

k
best NGf                                                                          

end of episode k                                                                                                 

end k loop 

for k = 1, 2, …, Ngrad -1 

Obtain ))(( eiter,xplor
k
best NGf

end k  loop                      
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f(Gbest,xplore) = min{ ))(( eiter,xplor
k
best NGf }                                                                                                  

(A-5) 

Obtain BEST(Gbest,xplore) corresponding to f(Gbest,xplore)

Obtain new search space (neighbourhood) by taking “Floor” and “Ceil” of each element of 

BEST(Gbest,xplore)                                                         

End Exploration phase 

Begin Exploitation phase 

Use the new search space 

Step 3: Initialization: Iteration, t = 1

for i = 1 , 2, …, m

Vi(1) =  Vi(Niter,xplore) corresponding to BEST(Gbest,xplore)                                                                   (A-6) 

Xi(1) =  Xi(Niter,xplore) corresponding to BEST(Gbest,xplore)                                                                   (A-7)          

Gpers,i(1) = Gpers,i(Niter,xplore) corresponding to BEST(Gbest,xplore)                                                         (A-8) 

end i loop 

Gbest,xploit(1) = BEST(Gbest,xplore)                                                                                                          (A-9) 

Determine
gradNgrad using (13) 

Step 4: Update

for t = 2, 3, …, Niter,xploit

Determine wk(t) using (15) 

for i = 1, 2, …, m

Update the particle’s velocity and position vectors as follows:

Vi(t) = )(tw
gradN Vi(t ‒ 1) + c1 r1(t) [Gpers,i(t ‒ 1) ‒ Xi(t ‒1)]  

                                         + c2 r2(t) [Gbest,xploit(t ‒ 1) ‒ Xi(t ‒1)]                                                  (A-10)

Xi(t) =Xi(t ‒ 1) + Vi(t)                                                                                                                 (A-11)

Evaluate the particle’s performance by substituting (A-11) in f(x)

Update Gpers,i(t) as follows

OtherwisetG

tGftXfiftX
tG

i,pers

i,persii

i,pers
)1(

))1(())(()(
)(                                                           (A-12)

end i loop

for i = 1, 2, ..., m

Obtain f(Gpers,i(t))

end loop i

f(Gbest,xolit(t)) = min{ f(Gpers,i(t))}                                                                                                      (A-13) 

Obtain Gbest,xploit(t) corresponding to f(Gbest,xploit(t))                                                            

end t loop

Optimum solution = Gbest,xploit(Niter,xploit)

Optimum value = f(Gbest,xploit(Niter,xploit))                                                                      

End of Exploitation phase 
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