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Abstract

The economic dispatch (ED) of generation is one of the most critical optimization
problems in operation and management of power systems. The current Iraq power
generating system (PGS) is suffering from several concurrent challenges. One of these
challenges is ED of the power of large-scale thermal generating units (TGUs) with

various power constraints, which made it non-economic.

The ED allows PGS analysts to schedule the committed online TGUs so as to meet
the required load demand at a minimum operating cost while satisfying all online TGU
and PGS inequality and equality constraints, such as ramp-rate limits, prohibited
operating zones and valve-point loading effects. Practically, with these constraints, the
fuel cost function of ED problem becomes multimodal and non-convex with highly

non-linear characteristics.

Several evolutionary computation techniques (ECTs) sought to address such a
complex problem. One popular type of ECT is the global particle swarm optimization
(GPSO) algorithm, however, it is not capable of solving such a complex problem

satisfactory.

This thesis introduces eight papers to address and solve the complex ED problem by
proposing two novel algorithms called orthogonal PSO (OPSO) and multi-gradient PSO
(MG-PSO) algorithms. In the OPSO algorithm, the m particles in a swarm are divided
into two groups. The first group is an active group of best personal experience of d
particles. The second group is a passive group of personal experience of remaining (m —
d) particles. The target of creating two groups is to boost the diversity of the swarm’s
population. The d active group particles in each iteration undergo an orthogonal
diagonalization process and are updated in such way that their position vectors are
orthogonally diagonalized. Whereas, the passive group particles are not updated, as their
contribution in obtaining correct direction is not significant. The particles in OPSO
algorithm are updated using only one guide, thus avoiding the conflict between the two

guides that occurs in the GPSO algorithm.
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In the MG-PSO algorithm, multiple negative gradients are used in two phases
(Exploration phase and Exploitation phase) by the m particles while searching for an
optimum solution. In Exploration phase, a particle is called an Explorer. The
m Explorers operate in several episodes. In each episode, the m Explorers use a
different negative gradient to explore a new neighbourhood. The m Explorers enhance
global search ability of the MG-PSO algorithm. In the Exploitation phase, a particle is
called an Exploiter. The m Exploiters use only one negative gradient which is less than
that of the Exploration phase to exploit the best neighbourhood. Thus, the m Exploiters
enhance local search ability of the MG-PSO algorithm. This diversity in negative
gradients helps the best particle to avoid from falling into a local minimum. The
combination of two phases supplies a balance between Exploration and Exploitation in
a search space, thus avoiding the loss of balance between the two guides that occurs in

the GPSO algorithm.

The effectiveness of the OPSO and MG-PSO algorithms are verified using small,
medium and large PGSs with several power constraints as well as a set of unimodal and
multimodal benchmark functions with dimensions of 30 and 100 taken from the
Congress on evolutionary computation 2015 (CEC 2015). Superior performance of the
proposed OPSO and MG-PSO algorithms over the GPSO algorithm and several existing
optimization techniques with several performance measures are shown in Papers A-H.
In addition, by using an unpaired t-test, the statistical significance of the proposed
OPSO and MG-PSO algorithms has been shown against several contending algorithms
including top-ranked CEC 2015 algorithms.
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Chapter 1: Introduction

Chapter 1: Introduction

1.1 Chapter overview

In this Chapter, an introduction of this study is addressed as follows. The background
is given in Section 1.2. The current issues in economic dispatch problem are presented
in Section 1.3. In section 1.4, motivation and research questions are presented.
Limitations of data availability are addressed in Section 1.5. List of the author’s
publications as part of thesis is presented in Section 1.6. Contribution of this thesis is
presented in Section 1.7. In Section 1.8, outline of this thesis is presented. Finally,

Chapter summary is presented in Section 1.9.

1.2 Background

I was sponsored by the government of Iraq to study the problems and issues in Iraq
power generating system (PGS). The current Iraq PGS is mainly divided into five
operating regions based on the operation and control, as shown in a single line diagram
in Figure 1.1. The five operating regions namely are North, Diyala and Anbar, Baghdad,
Middle and South regions [1]. Each operating region has several power stations, and
each power station consists of a number of power generating units (PGUs). These five
regions are operated, controlled and managed as a unified and interconnected PGS by
the national dispatch centre (NDC). Besides, there is a local dispatch centre in each
operating region associated directly with the NDC. The PGS is connected directly to a
large power grid of 132 kV ultra-high voltage network through substations, and then the
electrical power is transmitted by different types of the transmission networks to the
consumer. The consumer in this thesis represents residential, commercial and industrial

electrical loads.

Since Iraq has abundant fossil fuels (oil and natural gas reserves), the PGS largely
depends on fossil fuels powered by a large-scale of thermal generating units (TGUs) to
generate electricity. The statistical data issued by the NDC by the ministry of electricity
has shown that total number of PGUs is 371-unit [2].
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Figure 1.1. A single line diagram of Iraq power generating system.

These PGUs are classified as 342 TGUs (31 steam units, 194 gas units, 22 mobile

diesel units and 95 fixed diesel units) and 29 hydropower generating units. Accordingly,

91.5% of the generated electricity comes from the TGUs.

Economic Dispatch (ED) of power (also termed as ED problem) is a fundamental

tool in the PGS which plays a critical role in operation, planning and control of every

power system. The primary purpose of ED investigation recognizes the optimum
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schedule of active output power of all committed PGUs to minimize the total fuel cost,
while satisfying the power constraints imposed by PGSs [3]. Practically, the TGUs have
several operating power constraints and limitations, e.g., power balance, transmission
network loss (P;), generation limits, ramp-rate limits (RRLs), prohibited operating

zones (POZs), feasible operating zones (FOZs), and valve-point loading (VPL) effects
[4].

The power balance constraint is an equality constraint and must be satisfied such that
the total generated active output power equals to the sum of the load demand (Pp) and
P;. Furthermore, the online TGU uses RRLs that are an inequality power constraint
which represent the rate at which the active output power level of a given TGU can be
modified to satisfy the power balance. In such a case, the active output power cannot be
adjusted instantaneously. Their corresponding RRLs restrict the operating range of all

online TGUs.

Another inequality power constraint is POZs which stems from physical limitations
of a TGU, e.g., the amplification of vibrations in a shaft bearing at specific operating
regions. Because of the POZs, the TGU may not be able to work in specific operating
zones. For instance, mechanical vibrations could cause cumulative metal fatigue in
steam-turbine blades and lead to the premature turbine blade failure. The POZs create
gaps in the fuel cost curve and thus introduce discontinuity in the fuel cost function [5].

Therefore, each TGU must be operated within the FOZs avoiding any existing POZ.

Another operating power constraint is VPL effects. These effects become prominent
in the fuel cost function in the following case. Practically, a steam-turbine of the TGU
has multiple valves that are used to control its active power outputs. When steam valves
start to open and close simultaneously, this causes ripple-like effects. These ripples add
to the fuel cost function. In such a case, the cost fuel function comprises non-linearity of
a higher order [6]. The definitions of these power constraints are available in

Papers A-H.

In this study, the ED of the power of online TGUs with various equality and

inequality operating power constraints are addressed.
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1.3 Current issues in economic dispatch problem

The current Iraq PGS is suffering from several concurrent challenges. One of these
challenges is the ED of the power of large-scale TGUs with various practical operating

power constraints.

A symposium was held in May 2013 in Baghdad under the sponsorship of ministry
of higher education and scientific research and ministry of electricity, to evaluate the
reality of the electricity sector. The team leader of the NDC emphasized as follows.
“Operation and management of large-scale TGUs to govern electrical energy to the
consumer are big challenges for us. We are spending billions of dollars in each year to
generate electricity. We need new algorithms for solving the ED problem that are
effective and compatible with modern technologies. We see that the current
computational techniques used by the NDC, e.g., traditional methods and some other
optimization techniques, are inefficient. Therefore, the NDC today can no longer solely

rely on the current traditional means of Iraqi power generating system planning.”

Besides the problem stated above, several other technical issues are summarized as

follows.

1.3.1 Low operational effeciency

There exists a large gap between maximum actual generating power and installed
generating capacity of the online TGUs. The Iraq PGS consists of 342 TGUs with total
installed generating capacity (nameplate rating) equals to 24,646 MW. However, the
maximum actual generating power by all TGUs is only about 8,746 MW, in the best

cases [2].

Table 1.1 shows the operation of online TGUs during the period 2013-2016. One can
see that despite an increase in maximum actual generating power from 2013 to 2016,
the gap is still large. For example, in 2015, the total number of online TGUs was
265-TGU. The maximum actual generating power attained was about 7,551 MW
against installed generating capacity of 20,903 MW. Here, the gap is 63.87%. However,

in 2016, the maximum actual generating power has increased up to 8,746 MW with
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installed generating capacity of 20,087 MW. Here, the gap is 56.45%. It can be seen that
the gap is reduced by 7.42% in 2016, but the gap still remains large.

Figure 1.2 gives more details about the gap between the installed generating capacity
and maximum actual generating power of online TGUs of three types of the power
stations, i.e., steam, gas and diesel power stations during the period 2013-2016. The gap
must be within an acceptable range of 10-20% for such types of power stations. The
main reason of this gap is estimating of the ED of active output power of large-scale
TGUs is not optimum because of the current inefficient optimization techniques. This

large gap causes low operational efficiency and thus, the PGS becomes non-economic.

Table 1.1. Installed generating capacity and maximum actual generating power of
online TGUs during 2013-2016.

Year Number of online TGUs Installed Maximum actual Gap
(out of 342 TGUs) generating capacity (MW) | generating power (MW) | (%)
2016 243 20,087 8,746 56.45
2015 265 20,903 7,551 63.87
2014 268 18,487 7,401 59.96
2013 277 17,272 6,126 64.53
2013 2014 =installed genearing
i capacity
g 9,768 5 m Actual generating
2 g 10,067  power
=1 2
iz z
gc E
z s
< <
Steam Gas Diesel
2015 2016
12,532

Active output power
Active output power

Steam Gas Diesel Steam Gas Diesel

Figure 1.2. Installed generating capacity and maximum actual generating power of
steam, gas and diesel power stations of Iraq PGS.
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1.3.2 Unplanned increase of load demand

The load demand Pp has increased drastically due to a growing economy and a surge
in consumer usages of the electrical appliances and electronic devices during the recent
ten years. In addition, Iraqi government subsidizes the tariff of electricity. Despite the
increase of supply electricity in the past two years (2015 and 2016), as shown in

Figure 1.2, the current PGS is still unable to meet the Pp growth projections.

According to the statistical data of the NDC, the maximum generating power of the
current PGS (TGUs, hydropower PGUs and the imported power from neighbouring
countries) is at about 10,630 MW of the power currently required, i.e., maximum Pp =~
17,000-18,000 MW, during Summer season [2]. This means that 37.47% to 40.90% of
the load demand is not satisfied during Summer season. Therefore, the programmed
load shedding has been used to prevent any possible shutdown. Furthermore, the
unplanned Pp growth and improper system maintenance have led to cluster high loads

(consumer) in the centre region.

1.3.3 Practical operating power constraints

Several practical operating power constraints need to be considered. Firstly, the
inequality power constraints imposed on online TGUs are given by generation limits,
RRLs ramp rate POZs, FOZs, VPL effects. Secondly, the equality power constraints
imposed by the power grid are the P;, mismatch in Py (P mismarcn) @and power balance.
Under these practical operating power constraints, the objective function, i.e., fuel cost
function, becomes non-convex, non-smooth and discontinuous. When the PGS consists
of a large number of TGUs and it is with these power constraints, the optimization of

such a complex problem becomes very hard.

1.3.4 High level of expenses in term of fuel cost

The total fuel cost of electricity production, in fossil fuel thermal power plants,
becomes very high due to the usage of large-scale TGUs. For example, the MWh
production in 2016 using thermal power plants only was 76,613,972 MWh with an
average cost of $100.00/MWh [2]. This cost is high compared with the average cost of 1
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MWh production in other PGSs in the Middle East. For example, in UAE, the average
cost is approximately $70.00/MWh [7].

1.3.5 High level of emissions

Due to the usage of large-scale TGUs based on fossil fuel, they release a significant
amount of the harmful pollutants, such as, carbon oxide (CO,), sulfur dioxide (SO;) and
nitrogen oxides (NOy) that cause significant and long term damages to the environment.
For example, the study in [8] has shown that the average of CO, emission from online
TGUs in Iraq was at about 1,190 g/kWh in 2015. Whereas, the standard and acceptable
level of CO, emission by online TGUs is at about 453 g/kWh [9]. Therefore, the
optimum dispatch of power from these online TGUs is required to reduce the amount of

harmful pollutants.

1.3.6 Use of large number of TGUs

One of the important issues in PGS operation is finding an optimum solution to the
practical ED problem. Efficient scheduling of the committed online TGUs results in
significant cost savings. This scheduling becomes complicated when more and more
TGUs need to be introduced into the PGS to meet the Pp while reducing the total fuel
cost. Besides, optimum scheduling of all online TGUs while considering the practical

operating power constraints further complicates the ED problem.

1.4 Motivation and research questions

The current issues discussed and reported in Section 1.3 give us the evidence and
motivation in the re-considering reality of optimization of the ED problem in the current
Iraq PGS. The issues associated with the explanations in Section 1.3 can be eliminated

by finding an appropriate answer to the following questions:
Question #1: Is the ED problem of large-scale TGUs in a power generating system with
several power constraints a critical issue?

Question #2: What is the most effective technique/algorithm to solve such a complex ED

problem?
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The answer to the above questions leads to analysis and formulation of the practical
ED problem of large-scale TGUs under several practical operating power constraints
and then finding novel algorithm(s) to solve such a complex problem. The answer to

these questions is provided in this thesis.

1.5 Limitations of data availability

The NDC is facing a significant challenge in operation and management of
large-scale TGUs with practical operating power constraints, since there is no use of an
appropriate optimization methodology which would allow solving such a complex
problem. However, due to recent developments in communication technologies and
high-performance computing machines [10], the need to design or develop new
optimization computational techniques for the ED problem in the PGSs becomes

imperative.

An important limitation that is being faced in this study is that, I am not authorized to
use data of the Iraq PGS, for security reasons. Therefore, due to availability of the
technical data of other power systems that are similar to Iraq PGS, two real power
systems, e.g., Taiwan [11] and South Korea [12] power systems are considered in this
thesis. They are complex and each one is a large-scale TGU power system. In addition,
small-scale and medium-scale power systems are also considered in this study, in order

to evaluate the performance of the proposed algorithms.
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1.6 List of the author’s publications as part of thesis

The following eight Papers appended in Appendix-1 are carefully selected out of ten

Papers and considered as main part of this thesis. The Papers A-D have been published

in top-tier peer-reviewed international conferences. The Paper C was awarded a

certificate of merit by the IEEE Victorian Section, Australia. The Papers E-G have been

published in reputed peer-reviewed international journals, whereas, Paper H is under

review in an international journal.

Paper A.

Paper B.

Paper C.

Paper D.

Paper E.

Paper F.

Paper G.

Paper H.

L. T. Al-Bahrani and J. C. Patra, “Orthogonal PSO algorithm for solving
ramp rate constraints and prohibited operating zones in smart grid

applications,” in Proceedings of IEEE International Joint Conference on
Neural Networks (IJCNN), Killarney, Ireland, 2015, pp. 1-7.

L. T. Al-Bahrani and J. C. Patra, “Orthogonal PSO algorithm for economic
dispatch of power under power grid constraints,” in Proceedings of IEEE

International Conference on Systems, Man, and Cybernetics (SMC), Hong
Kong, 2015, pp. 14-19.

L. T. Al-Bahrani, J. C. Patra, and R. Kowalczyk, “Orthogonal PSO
algorithm for optimal dispatch of power of large-scale thermal generating
units in smart power grid under power grid constraints,” in Proceedings of
IEEE International Joint Conference on Neural Networks (IJCNN),
Vancouver, Canada, 2016, pp. 660-667.

L. T. Al-Bahrani, J. C. Patra, and R. Kowalczyk, “Multi-gradient PSO
Algorithm for economic dispatch of thermal generating units in smart Grid,”
in Proceedings of IEEE PES Innovative Smart Grid Technologies 2016
Asian Conference (ISGT’2016 Asia), Melbourne, Australia, 2016, pp. 258-
263.

L. T. Al-Bahrani and J. C. Patra, “A novel Orthogonal PSO algorithm
based on orthogonal diagonalization,” Swarm and Evolutionary
Computation, vol. xxx, pp. 1-23, 2017. In press.

L. T. Al-Bahrani and J. C. Patra, “Orthogonal PSO algorithm for economic
dispatch of thermal generating units under various power constraints in
smart power grid,” Applied Soft Computing, vol. 58, pp. 401-426, 2017.

L. T. Al-Bahrani and J. C. Patra, “Multi-gradient PSO algorithm for
optimization of multimodal, discontinuous and non-convex fuel cost
function of thermal generating units under various power constraints
in smart power grid,” Energy, vol. 147, pp. 1070-1091, 2018.

L. T. Al-Bahrani and J. C. Patra, “Multi-gradient PSO algorithm with
enhanced exploration and exploitation,” Applied Soft Computing. Under
review.
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1.7 Contribution

As discussed in Sections 1.3 to 1.5, there is needed to develop powerful and
effective optimization techniques to solve the ED problem for large-scale PGS with
TGUs and power grid constraints. This thesis introduces two novel algorithms as

stated below.

1.7.1 Orthogonal PSO

A novel orthogonal particle swarm optimization (OPSO) algorithm is proposed and
applied to solve several complex unimodal and multimodal functions including ED
problem. The m particles inside a swarm, i.e., possible solutions, are divided into two
groups. An active group of best d particles and another is a passive group of (m — d)
particles. The target of forming these two groups is to boost the diversity of the m
particles inside the swarm. In every iteration, the active group particles subject to an
orthogonal diagonalization process and are updated in which that their position vectors
are orthogonally diagonalized. However, the passive group particles are not updated as

their contribution in finding the correct direction is not important.

1.7.2 Multi-gradient PSO

Another novel multi-gradient particle swarm optimization (MG-PSO) algorithm is
proposed and applied to solve several complex unimodal and multimodal functions
including the ED problem and to reduce execution time that is an issue in the OPSO
algorithm when solving high-dimension functions. Two phases used in the MG-PSO
algorithm are called Exploration phase and Exploitation phase. The m particles in the
Exploration phase are named Explorers. They undergo multiple episodes. In each
episode, the m Explorers use a different negative gradient to explore a new
neighbourhood. The m particles in the Exploitation phase are named Exploiters. They
use only one negative gradient that is less than that of the Exploration phase, to exploit
the best neighbourhood. This diversity in negative gradients gives a balance between

global search and local search of the m particles.

Explanation of the learning strategy of the both OPSO and MG-PSO algorithms are

presented in Papers A-H in Appendix-1. Furthermore, performance analysis of the two

10
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algorithms is carried out by considering the generation limits, VPL effects, P;,
Py mismarcn, power balance, RRLs, and POZs as additional power constraints in solving
the ED problem. In such cases, the fuel cost function is restricted by these power

constraints and becomes non-linear, non-convex, multimodal and discontinuous.

The contribution of this research work stems from proposing two new algorithms
which resulted in the eight high quality research articles. The salient features of the four
international journal papers and four peer-reviewed international conference papers are
given in Table 1.2. Here, in this study, the proposed OPSO and MG-PSO algorithms are

used to solve the complex ED problem of small-scale to large-scale PGS.

Table 1.2. Contributions of the eight Papers, Paper A to Paper H, in this thesis.

Paper

D Abbreviated Contribution

e Analysis and formulation the ED problem of small-scale PGS (6-TGU).

e A novel algorithm called orthogonal particle swarm optimization
(OPSO) algorithm was proposed.

e The OPSO algorithm was evaluated and tested using 6 TGUs with
RRLs and POZs constraints.

e The OPSO algorithm was compared with several PSO variants and

IEEE-IJCNN 2015 several other optimization methods.

e Superior performance of the OPSO algorithm compared to several
competing algorithms has been shown in terms of minimum, maximum
and mean costs as well as standard deviation.

e The OPSO algorithm was succeeded to improve the global PSO
(GPSO) algorithm in terms of convergence rate, consistency and
robustness.

Paper

e Analysis and formulation the ED problem of medium-scale PGS
(15-TGU).

e The OPSO algorithm was proposed to solve the ED problem of]
15 TGUs.

e The OPSO algorithm was evaluated and tested using 15 TGUs with
several equality and inequality constraints.

e The OPSO algorithm was compared with several PSO variants and

IEEE-SMC 2015 several other optimization methods.

e The OPSO algorithm has provided better results in solving the total fuel
cost of 15 TGUs and their power constraints.

e Superior performance of the OPSO algorithm compared to several
competing algorithms has been shown in terms of minimum, maximum
and mean costs as well as standard deviation.

e The OPSO algorithm was succeeded to improve the GPSO algorithm in
terms of convergence rate, consistency and robustness.

Paper

e Analysis and formulation the ED problem of large-scale Taiwan PGS
(40-TGU).

e The OPSO algorithm was proposed to solve the ED problem of Taiwan

Paper PGS.

C IEEE-IICRNN 2016 e The OPSO algorithm was evaluated and tested using Taiwan PGS with
several equality and inequality constraints.

e The OPSO algorithm was compared with several PSO variants and
several other optimization methods.

11
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The OPSO algorithm has provided better results compared to several
competing algorithms in solving the total fuel cost of 40 TGUs with
their power constraints.

The OPSO algorithm was succeeded to improve the GPSO algorithm in
terms of convergence rate, consistency and robustness.

Paper

IEEE (ISGT-Asia)
2016

Analysis and formulation the ED problem of small-scale (6-TGU) and
medium-scale (15-TGU) PGSs.

A novel algorithm called multi-gradient PSO (MG-PSO) algorithm was
proposed.

The MG-PSO algorithm was evaluated and tested using 6 and 15 TGUs.
The MG-PSO algorithm has provided better results compared to several
competing algorithms in solving the total fuel cost of 6 and 15 TGUs
and their power constraints.

The MG-PSO algorithm was succeeded to improve the GPSO algorithm
in terms of convergence rate, consistency and robustness.

Paper

Swarm and
Evolutionary
Computation 2017

The OPSO algorithm was proposed to improve the performance by
overcoming the demerits of GPSO algorithm.

The OPSO algorithm was evaluated and tested using 30 unimodal and
multimodal benchmark functions.

Superior performance of the OPSO algorithm compared with GPSO
algorithm and several other optimization techniques has been shown in
terms of convergence rate, accuracy, consistency, robustness and
reliability.

The OPSO algorithm was found to be successful in achieving an
optimum solution in all the 30 benchmark functions.

Paper

Applied Soft
Computing 2017

The OPSO algorithm was proposed to solve the ED problem by taking
three (small, medium and large) PGSs with several power constraints.
Mathematical analysis and theoretical justification of the OPSO
algorithm was provided.

The OPSO algorithm was also applied for ten shifted and rotated
benchmark functions.

Superior performance of the OPSO algorithm over the GPSO algorithm
and several existing optimization techniques has been shown in terms of
several performance measures.

Statistical significance of the OPSO algorithm has been shown using
unpaired t-test against several contending algorithms including top-
ranked CEC 2015 algorithms.

The OPSO algorithm has proved to be a robust and highly efficient
algorithm which is capable of solving unimodal and multimodal
functions including non-convex ED problem.

Paper

Energy 2018

The MG-PSO algorithm was proposed to solve the fuel cost function of]
medium-scale and large-scale PGSs with several power constraints.
Mathematical analysis and theoretical justification of the MG-PSO
algorithm was provided.

The effectiveness of the MG-PSO algorithm was demonstrated using
four real medium-scale and large-scale PGSs.

Superior performance of the MG-PSO algorithm has been shown over
several PSO variants and several existing optimization techniques in
terms of several performance measures.

The statistical t-test was carried out to demonstrate the effectiveness of|
the MG-PSO algorithm.

The MG-PSO algorithm has proved to be a robust and highly efficient
algorithm which is capable of solving non-convex and multimodal ED
problem.

Paper

Applied Soft
Computing 2018

e The MG-PSO algorithm was proposed to solve unimodal and

e Mathematical analysis and theoretical justification of the MG-PSO

multimodal complex problems.

12
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algorithm was provided.

o The effectiveness of the MG-PSO algorithm was verified using ten
selected shifted and rotated benchmark functions with dimensions of 30
and 100.

e Superior performance of the MG-PSO algorithm has been shown over
several PSO variants and several existing optimization techniques in
terms of several performance measures.

e Statistical significance of the MG-PSO algorithm has been shown using
unpaired t-test against several contending algorithms including top-
ranked CEC 2015 algorithms.

1.8 Outline of the thesis

This thesis is based on a combination of eight Papers and is integrated with five
Chapters including the Introduction Chapter. The outline of rest of the Chapters

presented in this thesis is organized as follows.

Chapter 2 provides the literature review for this thesis. In this Chapter, the
investigations and research outcomes reported by other researchers are provided. Firstly,
an overview of this Chapter is presented. Then, a brief explanation of the ED problem is
given. After that, a review of the popular optimization techniques used for solving the
ED problem with several TGU and PGS operating power constraints is presented. The
classical optimization techniques, intelligent optimization techniques, i.e., evolutionary
computation techniques (ECTs) and hybrid optimization techniques are addressed in
this Chapter. Following that, several other improved ECTs are presented for solving
such a complex problem. After that, several optimization techniques for ED problem of
large-scale TGUs are discussed. Subsequently, some important observations are
concluded from this literature review are presented in this Chapter. Finally, a summary

of this Chapter is presented.

Chapter 3 provides the research methodology used in this study. An overview of this
Chapter is presented. Then, research design of this thesis is given in this Chapter.
Following this, introduction to optimization is presented. After that, a summary of the
methods (algorithms developed) used in this study is presented. Thereafter, a
comparison between the proposed OPSO and MG-PSO algorithms and original PSO

variants in terms of several critical parameters is presented. Then, a comparison

13
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between the two proposed algorithms OPSO and MG-PSO algorithm, is provided.
Finally, summary of this Chapter is presented.

Chapter 4 provides a summary of each Paper of the eight Papers is concisely provided.
The contribution and the research methodology in each Paper are also presented.

Finally, a summary of this Chapter is provided.

Chapter S provides a discussion of this study. Firstly, main investigations of this study
are presented. Then, the answer of the research questions is provided. After that,
outcomes of this study are discussed. Then, the significant contribution of this study to
the knowledge is presented. Subsequently, limitations and recommendations future

study are given. Finally, conclusion of this study is presented in this chapter.

Appendices: The eight Papers, Paper A to Paper H are attached in Appendix-1. The
signed authorship indication form of each Paper is given in Appendix-2. Publisher

permission for each published Paper is presented in the Appendix-3.

1.9 Chapter summary

One of the biggest challenges that is being faced by the PGS in Iraq is the ED of
power of large-scale TGUs and solving practical operating power constraints. Because
of use of inefficient optimization techniques to solve such a complex problem, billions
of dollars are being wasted each year for the PGS. In addition, non-optimum scheduling
of large-scale TGUs causes the PGS to be non-economic, unstable and unreliable. In
order to solve the complex ED problem, two novel algorithms, i.e., OPSO and
MG-PSO algorithms are proposed. In addition, this Chapter provided the details of

contribution of each Paper of the eight Papers and the outline of this thesis.
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Chapter 2: Literature Review

2.1 Chapter overview

The methodologies proposed by other researchers and related literature on economic
dispatch (ED) problem are addressed in this Chapter. Chapter 2 aims to establish a
framework of the research topic through a comprehensive review of a large number of
the recent studies reported by other researchers, to address the economic dispatch (ED)
problem. Section 2.2 briefly describes the ED problem. Several optimization techniques
have been applied to solve the ED problem in the recent years. In general, these can be
classified into three main categories: classical optimization techniques, evolutionary
computation techniques (ECTs) and hybrid optimization techniques. Details of each
category and their merits and demerits are presented in Sections 2.3, 2.4 and 2.5.
Section 2.6 describes several studies that have been used to improve the performance of
the ECTs to solve the ED problem of large-scale TGUs with several power constraints.
In addition, some other optimization techniques using different methodologies are
presented in Section 2.7. Some important observations are presented in Section 2.8.

Finally, a summary of this Chapter is provided in Section 2.9.

2.2 Economic dispatch problem

Solving ED problem of the online TGUs with different operating power constraints
is an essential part in operation and management of the PGSs. It aims to determine and
assign the active output power of each online TGU for a given time interval to meet a
specific load demand, Pp with minimum operating fuel cost subject to required equality
and inequality power constraints. The theoretical justification and analysis of the ED
problem, as well as mathematical formulation of the fuel cost function and its

constraints, are available in the eight Papers appended in Appendix-1.

Ideally, the fuel cost of a TGU is characterised by a convex and smooth function
[13]-[14]. The fuel cost function of each TGU is related to the active output power
quadratically. Thus, it can be expressed by a quadratic function for solving of the ED
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problem. However, in practice, with large-scale TGUs operating under VPL effects and
several other power constraints, e.g., RRLs, and POZs, the fuel cost function becomes
non-convex, non-smooth and discontinuous with non-linear characteristics. In such the
case, the cost function of the ED problem is represented by a multimodal objective

function.

Many optimization techniques have been proposed to solve the ED problem. In
general, the optimization techniques used for the ED problem can be classified into
three main categories. They are classical optimization techniques, evolutionary

computation techniques and hybrid optimization techniques.

2.3 Classical optimization techniques

The classical optimization techniques are beneficial to obtain the optimum solution
of the problems that involve continuous and differentiable objective function. Such kind
of optimization techniques can achieve the maximum or minimum solution for the
unconstrained and constrained continuous objective function. The objective function
and its constraints of these techniques are used to guide the optimization process [15].
This means that they require complete information of the objective function and its
dependence on the nature of each variable of the objective function. The classical
optimization techniques are widely used to solve power system operation problems
including ED problem. Some of the favourite classical optimization techniques used in

solving the ED problem are described below.

2.3.1 Linear programming

The linear programming (LP) method is widely used in science and engineering. It
is being applied to problems of power systems, such as reactive power calculations,
power flow and ED of active output power of PGSs [16]. The LP method is also
successfully applied to economic growth prediction, design of diets, conservation of
resources, transportation systems [17]. The LP method used for optimizing a linear
objective function, is a maximization or minimization problem, subject to a number of
linear constraints [18]-[19]. Thus, the objective function and its constraints have linear

characteristics.
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A maximization or minimization task is applied when solving the objective

function. The structure of this method depends on the linear equation characteristics as

follows.
Objective function flx)=c x, +---+c¢,x,
Subject to a,,x, +ta, ,x, =b, (1)
ans]xl + .+an3dxd zbﬂ
where ¢;, a;jand b; (i=1,2,...,n)and (j = 1, 2, ..., d) are real numbers, which form the

input to the objective function. The f(x) to be minimized or maximized is the objective
function and together with its constraints named the LP method [20]. The d is the
dimension of f{x). Each constraint can be interpreted as a half-space dividing the d-
dimensional search space in two, and the intersection of all the half-spaces is named the
feasible region, which is the set of all points satisfying all the constraints as shown in
Figure 2.1. If the feasible region is empty or the solution vector x (x = xj, x2, ..., Xz)
outside the feasible region, the LP method itself is infeasible as shown in Figure 2.1(a).
If the solution vector x inside the feasible region then the LP method is feasible as
shown in Figure 2.1(b). The solution may be bounded in the direction of the f(x). In
such the case, the solution vector x lies within the boundary of a search space, as shown
in Figure 2.1(c). The solution may be bounded and valid within an intersection of two
lines, in this case, there is a unique solution as shown in Figure 2.1(d). The solution is
not always unique in LP method and the constraints can cause any possible solutions to

be invalid.

The LP method is simple in implementation. It is most suitable for solving the
problems that have linear characteristics. In addition, the convergence characteristics of
this method are fast [21]-[22]. However, when the fuel cost function of the ED problem
1S non-convex, non-smooth and discontinuous with non-linear characteristics, the LP
method may be unable to solve such a complex problem. In addition, the LP method is
inaccurate to evaluate the equality and inequality power constraints, such as P; and
POZs constraints [15]. Furthermore, the LP method is inefficient to handle the problems

that have high-dimensions because of the curse of dimensionality [23].
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Figure 2.1. Possible solutions in linear programming method.

2.3.2 Mixed integer programming

The mixed integer programming (MIP) method is widely used in the field of
optimization in power systems and communications. For example, unit commitment of
TGU power systems and power flow analysis [24]-[25]. The MIP method is an
optimization method where some or all the variables are restricted by integer values at

the optimum solution [26]-[27]. The MIP method is formed as follows.

Objective function Ax)=x" Ox +4¢" x

Subject to Aey x = bey (linear equality constraints) (2)
Ax<b (linear inequality constraints)
x"Q; x + g’ x<b; (quadratic constraints)

[<x<u (bound constraints),

where x, ¢, ¢g;, [, and u are vectors of d dimension. The number of equality and
inequality constraints is denoted by M. Some or all of the solution vector values, x, are
integer. The 4 and 4., are (M*d) matrices, Q and Q; are (dxd) matrices and the b.,, b

and b; are vectors of equality, inequality and quadratic constraints, respectively.

Use of integer values expands the scope of useful optimization problems.
However, the integer values make an optimization problem to be non-convex [27]-[28],
and thus far more difficult to solve under high-dimensional search space optimization
problems due to the complex combination of the integer variables. Also, many

combinations of specific integer values for the variables must be tested, and each
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combination requires the solution of the optimization problem where the number of
combinations may rise exponentially with the size of the optimization problem [29].
Furthermore, in most the real-world problems including ED problem, the optimum
solution may be shifted or/and rotated at the origin. In such the case, tuning the integer
values of the variables becomes hard. Moreover, the curve of the fuel cost function has
some discontinuities due to the POZs imposed on several TGUs. The fuel cost function
in such case becomes discontinuous and multimodal. Thus, solving such a complex

problem by the MIP method may be very hard.

2.3.3 Sequential quadratic programming

Sequential quadratic programming (SQP) [30] is widely used in solving the practical
optimization problems, e.g., image and signal processing, data analysis, reactive power
optimization and ED problem [31]. The SQP is used for handling the non-linear
objective function and its equality and inequality constraints. The SQP method closely
simulates Newton’s method for constrained optimization just as is done for the
unconstrained optimization problems [32]. The non-linear optimization problem with
both equality and inequality constraints can be written as a quadratic function. The
quadratic function is then solved at each iteration. In each iteration, the Lagrangian
function is used to update the objective function and its constraints. Then, the quasi-
Newton approach is applied to generate a quadratic programming sub-problem whose
solution is used to form a search direction as guide for a search procedure [33]. The

procedure of the SQP method can be described as follows.

Objective function f(x) = Ax"Vf(x) + % AxTL Ax

3)
Subject to h(x)+Vh(x)'Vx=0,i=1,2,..., k

g(x)+Vg(x)'Vx<0,i=1,2,...,k+1,

where k is the number of constraints, x is a position vector, Ax is a change in x in each
iteration, Vf(x) is a gradient of x, and L is Lagrangian function. The 4; and g; are equality
and inequality constraints, respectively. In each iteration, the SQP method approximates
the f(x) to a quadratic form and linearizes the constraints. The quadratic function is then
solved to get Ax. The value of x is updated with Ax. Again, the f(x) is approximated by a

quadratic function, and its constraints are linearized with the new value of x. This

19



Chapter 2: Literature Review

procedure is repeated in each iteration until there is no further improvement in the
objective function. In this method, a region around x has to be evaluated by Ax where a

quadratic approximation of the function holds. The region is adjusted so that f{x + Ax) <
Sx).

The SQP method is widely used for the ED problem. Because, it can handle
quadratic fuel cost function with non-linear characteristics [34]. However, as the fuel
cost function to be minimized is multimodal and discontinuous due to presence of the
POZs, the SQP method violates the POZs during the search process on a global
optimum. In addition, the SQP method incorporates several derivatives, which may be
evaluated in advance of iterating to a solution. Thus the SQP becomes quite slow for

large-scale TGUs.

The details of some popular classical optimization techniques reported above reveal
they are not effective in solving the ED problem for a large-scale highly constrained,
non-linear, non-convex, and discontinuous optimization problem with multiple local
optima. In general, many studies reveal that the classical optimization techniques are
inefficient to solve such a complex problem [15], [23], [35]-[36] due to their major

drawbacks as summarized in Table 2.1.

Table 2.1. Disadvantages of the classical optimization techniques

1. The convergence characteristics are sensitive to the initial values of vector x.
The objective function needs to be monotonically increasing in nature.
These techniques are primarily affected by the shape of the objective function.

These techniques are trapped into local minima under high-dimensions with several constraints.

A

These techniques are inefficient for handling the ED problem with a discontinuous search space.

2.4 Intelligent techniques: evolutionary computation techniques

Evolutionary computation techniques (ECTs) are a population-based optimization
process. They are random search techniques inspired by the natural selection and
survival of the fittest in the biological world [37]. The algorithm in these techniques
comprises searching a population of candidate solutions. Each iterative step of an

algorithm requires a competitive selection that eliminates poor candidate solutions. The
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candidate solutions with high fitness are recombined with other candidate solutions by
swapping individuals of the approximate solution with those of the others. Some
categories of the ECTs such as genetic algorithm (GA) and differential evolution (DE)
use mutations in their learning strategies [35]-[38]. Mutations are applied to candidate
solutions by making a small change to a single individual of the solution vector
containing the decision variables. Recombination and mutation are used to yield new
candidate solutions that are biased towards regions of the search space where good

solutions have already been seen.

Some other categories of the ECTs that involve colonies of bees and ants, fish
schools, birds flock, animal herds are called swarm intelligence [39]. The swarm
intelligence mimics natural and artificial systems composed of many individuals that
coordinate using decentralised control and self-organisation [40]. Here, the algorithm
focuses on the collective behaviours that result from the local interactions of the
individuals or candidate solutions with each other and with the environment where
these individuals stay. The fundamental feature of the swarm intelligence is its ability
to act in a coordinated way without the presence of an external controller or a
coordinator. In spite of the lack of individuals in charge of the swarm or group, the
swarm as a whole does show intelligent behaviour. This is the result of interactions of

spatially located neighbouring individuals using guide rules.

The ECTs have been used successfully in many different fields of science and
engineering including the ED problem. In the recent years, the ECTs have been widely
used for solving real-world ED problem. Many researches have confirmed that the
ECTs are suitable for solving the non-convex ED problem [41]-[75]. A brief
description of several different types of the notable original ECTs for solving the ED

problem is given below.

2.4.1 Genetic algorithm

Genetic algorithm (GA) is a search method used to find a possible best solution for
an optimization problem. The GA belongs to the ECTs that inspired by evolutionary
biology [41]. There are three key genetic operators of the GA, selection, crossover and

mutation. The selection operator (reproduction) provides a driving force for the test
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system to evolve toward the desired states. The selection operator is essentially used
for the intensive exploitation. The crossover operator (recombination) is mainly used
for mixing within a sub-space. The crossover operator helps the individuals to exploit
and enhance the algorithm convergence. Then, the mutation operator provides a main
mechanism for a global search process, and it can be generalized as a randomization

technique.

The GA generates the solutions of an optimization problem using the three operators
(selection, crossover and mutation) with ith individual or candidate solution (i = 1, 2,
..., m) in a population (X). The X is denoted by a binary string of zeros (0s) and ones
(1s) or sometimes using other forms of encodings as mentioned in [42]. The search
process or the evolution process in GA starts from a population of individuals generated
randomly within a d-dimensional search space and continues for iterations
(generations). In each iteration, the fitness of each individual (candidate solution) is
evaluated, and multiple individuals are randomly selected from the current population
according to their fitness. Then, these are modified by the crossover and mutation
operators to form a new population, which is then used in the next iteration of the

evolution.

The fitness function f;, i = 1, 2, ..., m, is defined to evaluate the fitness of ith
individual and it is associated with the objective function of the problem. The fitness
value of an individual should be positive. For a minimization task, when the objective
function value becomes small, its fitness value is large. The fitness value of the
individual is used to determine the probability (p,) with which the individual is selected
into the new population. This GA procedure is known as roulette wheel selection [42].
Some other alternatives of selection operators are also used, such as tournament
selection. Subsequently, the search process terminates when either a maximum number
of iterations have been achieved or when a satisfactory fitness level has been reached.

The procedure of the GA is described in the following steps.

Procedure of GA [43]

Step #1: Encode the m individuals of the population (p) for the problem, generate
the initial population p(0).
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Step #2: Evaluate the fitness of each individual Xi(¢),i=1,2, ..., m,in p(¢),t=1, 2, ...,
Niter, by fi = fitness (X(7)).

Step #3: If the termination condition is achived, then the algorithm terminates,
otherwise, determine the selection probability (p,) of each individual by

pm=mi,i=1,2,..,m 4)
&

Step #4: Using roulette wheel selection method, select multiple individuals from p(7)
with the above probability distribution to form a population as follows.

PO ={X (), i=1,2,...,m)} (5)

Step #5: Perform crossover operator on population p(l)(t+1) to form a population
(2
p(t+1).

Step #6: Mutate a single element (called a gene) of an individual with probability p,. ,
to form a population p®(#+1).

Step #7: Sett= t+1, p(+1) = p®(#+1) and return to Step #2.

In practice, the GA may often converge well and in many cases the global
optimality can be achieved. The selection or survival of the fittest provides a good
mechanism to select the best solution. This means that the individuals are able to
enhance the convergence of the algorithm. However, when solving a complex problem
such as the ED problem of large-scale TGUs with several power constraints, e.g., 40
TGUs or more, the mutation in GA may make the individuals far away from the
global optimum while at the same time slowing down the convergence. Thus, the GA

may fall into local minima for a such complex problem [13], [44].

2.4.2 Differential evolution

Differential evolution (DE) algorithm belongs to the class of ECTs. The DE
algorithm was developed by R. Storn and K. Price in 1996 and 1997 [45]-[46]. It is a
technique of mathematical optimization of multi-dimensional problems to find the
global minimum (solution). It is fairly fast and reasonably robust. The DE algorithm is
a population-based stochastic function minimizer and has become one of the most
popular techniques used by the researchers [36]-[47] for solving the real-world
problems including the ED problem. The DE can be explained as follows [48]-[49].

The learning strategy of DE algorithm depends on creating trial parameter vectors by
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adding the differential weight between two population vectors X, and X, to a third one
X, that makes the structure completely self-organizing. The solution vectors X, i = 1,
2,..., m, are used for the next iteration (#+1) to optimize the objective function f{x).

The mutation in the DE algorithm [48] are written by
Xi=X+FX,—-X,), i=12,...,m (6)

where F is the differential weight and control parameter used to control the size of the
disturbance in the mutation operator during the search process and to improve the
convergence of the algorithm. The value of F is chosen using trial and error method
within the range of [0,2] [48]. The X,, X, and X, are three position vectors and they are
generated by the random permutation. In addition, the DE has a crossover operator C,
that is controlled by a crossover probability C, € [0,1]. The actual crossover operator
can be executed using binomial or exponential functions [49]. For the minimization
task, the minimum objective value can be expressed by

U+l if fUGE+D) < (X)),

X+ =
D {Xi(t) otherwise. (7)

One big challenge in the DE algorithm is that the search process is impaired during
the search of the optimum solution due to the fast descending diversity of the m
individuals. In addition, because of the diversity of the individuals descends faster
during the search process, the DE is fast in convergence. Thus, the m individuals leads

to a higher probability of reaching a local minimum [36], [50].

2.4.3 Particle swarm optimization

Particle swarm optimization (PSO) algorithm is another important algorithm
developed by Kennedy and Eberhart in 1995 [51]. It was motivated by social behaviours
of some animals such as birds flock or fish schooling. The PSO algorithm is a population-
based search optimization algorithm with an initial population of random solutions.
The possible solutions are usually called particles [51]. These particles fly in a
d-dimensional search space by following their own experiences and the current
optimum particles. The search for an optimum solution is obtained by updating the

particles in each iteration.
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The PSO algorithm begins with an initial population of random solutions. It
searches for an optimum solution by updating the particles by changing the position of
each particle in each iteration. It uses a velocity vector based on the social behaviour
of the particles inside a swarm to update the current position of each particle flying in
a d-dimensional search space. Each particle in a swarm adjusts its search direction
using its personal experience, Gpersi» I = 1, 2, ..., m, and the best experience, Gpes Of
the whole swarm through linear summation [52]. The velocity and position vectors of

the ith particle, V; and )X;, respectively, are updated as follows.

Vi(tr1) = Vit) + c1 11 [Gpers i(t) = XdO)] + €2 72 [Gpest () — Xi(D)] )
Xi(t+1) = Xi(0) + Vi(t+1),

where 7 and r, are two random vectors with a range of [0,1]. The parameters c;and ¢, are

acceleration constants, which is typically taken as, ¢; = ¢, = 2.0 [53].

We can see from (8) that the new position X;(z+1) is generated by a pattern-search
mutation, whereas selection is implicitly made by using the current global best solution,
Ghes: found so far, as well as using the personal solution of ith particles, Gyersi, i =1, 2,
..., m. However, the role of individual best is not entirely clear, though the current global
best seems very important for selection, as is shown in the accelerated PSO algorithm in
[51] and [54]. Therefore, the PSO algorithm consists of mainly mutation and selection,
but there is no crossover. This means that the PSO algorithm can have high mobility in

particles with a high degree of an exploration.

The PSO algorithm has been successfully applied in different applications in science
and engineering, such as optimum power flow, reactive power calculation, image
processing and solving the ED problem [55]-[56]. It is now one of the most widely used
algorithms in the optimization [4], [57]-[58]. The PSO algorithm is easy to implement and
is fast in convergence. Besides, it has a few parameters to adjust. However, the use of
Gpes: In PSO algorithm seems strongly selective. Its advantage is that it helps to speed up
the convergence by drawing the optimum solution toward the current best G5, however,

it may lead to premature convergence by falling into a local minimum.
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2.4.4 Ant and bee algorithms

Ant colony optimization (ACO) algorithm was developed by M. Dorigo [59]-[60]. It
mimics the foraging behaviour of ants. The ACO algorithm uses pheromone as a
chemical messenger and the pheromone concentration as an indicator of the quality
solutions to a problem of interest. The candidate solutions are related to the pheromone
concentration, which leading the individuals to routes and paths marked by the higher
pheromone concentrations as better solutions. The ants are able to find shortest routes
through marking their paths based on their behaviour with the pheromone
concentration in finding an optimum solution. The shortest path is the route with the
most pheromone concentration marks which the ants will use to carry their food back

home.

In ACO algorithm, the random route generation is primarily mutation. Subsequently,
pheromone-based selection gives a mechanism for selecting shorter routes. No explicit
crossover operator available in ACO algorithm. However, the mutation operator is not as
simple an action as flipping digits in the GA. The new solutions are essentially generated
by fitness-proportional mutation [61]. The probability, p, of ants in a grid problem at a

particular node i to choose the route or path from node i to node j is given by

agp
_ ¢id;

Prij = 4 "
> ojd]

i,j=1

)

where a > 0 and > 0 are the influence parameters, ¢;; 1s the pheromone concentration on
the route or path between the node i and the node j , and dj; is the desirability of the same
route. The selection is related to some a priori knowledge about the route or path, such as

the distance s;;1s often used so that dj; o« 1/s;; [54].

Recent studies have shown that the ACO algorithm is highly effective in solving
several real-world problems including the ED problem [61-63]. However, theoretical
analysis of the ACO algorithm is difficult, sequences of random decisions are not
independent, and probability distribution changes by iteration search are experimental
instead of theoretical. In addition, although the execution time to reach convergence is
uncertain, however, the convergence is guaranteed [63]. Besides, under high-

dimensional multimodal ED problem, drawing the routes by the ants through the
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search process for the optimum solution becomes complex. In such the case, the ants

are easy to fall into a local minimum [39].

In the bee colony optimization (BCO) algorithm, the bees in the colony are divided

into three groups. They are the employed bees or forager bees, onlooker bees or observer

bees, and scouts [64]-[65]. The employed bees and scout bees are initialized randomly

and both are mainly used in mutation process. Selection operator is related to the honey or

objective function. In the BCO algorithm, no explicit crossover operator is carried out.

The detailed procedure of the BCO algorithm is given by the following steps:

Procedure of BCO algorithm

Step #1:

Step #2:

Step #3:

Step #4:

Step #5:

Step #6:

Step #7:

Step #8:

Initialize the population of solutions Xj, i = 1, 2, ..., Npees, Where Npee 1S
number of onlooker bees and equals to the number of employed bees, j =1,
2, ..., d, where d is dimension of the problem.

Evaluate the populationatz=10.

Produce new solutions Xj(z+1), for the employed bees by using (10) and
evaluate them.

Xi(t+1) = Xi(0) +o;; (Xi(1) — Xig(1)) (10)

where k € {1,2,..., Npees} and j € {1,2,...,d} are randomly chosen indexes.
The ¢;; is a random number with a rage of [-1,1].

Apply the greedy selection process [66].

Calculate the probability values for the solutions Xj(z+1) by using (11)

/i
pr,i - Npees (11)

2 i

i=1
where f; is the fitness value of the solution i which is proportional to the
nectar amount of the food source.

Produce the new solutions Xj(#+1) for the onlookers from the solutions Xj(?)
selected depending on p, ; and evaluate them.

Apply the greedy selection process [66].

Determine the abandoned solution for the scout, if exists, and replace it with a

new randomly produced solution Xj(¢) using (12)
)(i: )(j,min+ rand (0,1) (AX;max_AX;mm) (12)

where Xj i, and Xj 4, are the limits for the abandonment.
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Step #9: Memorize the best solution achieved so far.
Step #10: ¢ =¢ +1

Step #11: Go to Step #3 until ¢ =N, where Ny, is total number of iterations or
sometimes called total number of cycles [67]-[68].

Both the ACO and BCO algorithms use only mutation and fitness-related selection
operators, and they can have good global search ability to explore the search space
relatively effectively. However, the convergence may be slow because they lack
crossover operator. In addition, the local search ability of the individuals is comparatively
low [69]. This may explain that the ACO and BCO algorithms can perform well for some
optimization problems with low dimensional search space. However, when solving a
complex problem, such as the ED problem with a high-dimensional search space, obtaing

of the global optimum using the ACO or BCO algorithms may become hard.

2.4.5 Cuckoo search algorithm

Cuckoo search (CS) algorithm was developed in 2009 [70]. It is a nature-inspired
algorithm. The CS algorithm is based on the brood parasitism of some cuckoo species. It
is enhanced by the so-called Lévy flights rather than by simple isotropic random walks
[71]. The recent studies show that the CS is potentially more efficient than the PSO
algorithm and GA [72-74]. The CS algorithm uses a balanced combination of a local
random walk and the global explorative random walk, controlled by a switching

parameter p, . The local random walk can be expressed by

X)) = X)) + o s @ H(p, — &) @ (X[1) ~Xu(0)), (13)

where Xj(#) and Xi(f) are position vectors with different solutions selected randomly by
random permutation, H is a Heaviside function, ¢ is a random number drawn from a

uniform distribution, and s is the step size. The symbol & denotes the entry-wise product.

On the other hand, the global random walk is accomplished by using Lévy flights [71],
as flows.
Xi(t+1)=X{(t) + o L(s, M), (14)

where,
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AT()sin (Th2) 1

T S1+k 2

L(s,\) = (s <s50<0) (15)

where, the step size scaling factor o > 0, which should be related to the scales of the

problem of interest.

The CS algorithm has some drawbacks: it may be particular for a specific class of the
optimization problems but may not be effective in other real-world problems, such as the
ED problem with high-dimensional search space because it may get stuck into a local

optimum [75].

2.4.6 Bat algorithm

The bat algorithm (BA) was developed in 2010 [76]. It is inspired by the echolocation
behaviour of bats. The BA uses frequency tuning to obtain the global optimum. Each bat
is associated with a velocity vector V{(#) and a position vector X,(¢), at iteration ¢ , in a d-
dimensional search space. Among all the bats in a swarm, there exists a current best

solution denoted by Xp.s. The X(¢) and V() are updating as follows.

Rl’ = le’n + (Rmax - Rmin) ,B (16)
Vi(ttl) = Vi(t) + (Xit) — Xpest) R (17)
Xt+1) = Vi(t+1) + X(0) (18)

where R,,;, and R, are range of the search space of a problem, and f € [0,1] is a random
vector drawn from a uniform distribution. The loudness and pulse emission rates are
regulated as follows.

A(t+1) = a A (19)

rtr]) = ri(0) (1 — exp(=y 1), (20)

where 0 < a <1 andy > 0 are constants.

In the BA, the frequency tuning essentially acts as mutation operator, whereas
selection operator pressure is relatively constant via the use of the current best solution
Xpes: found so far. There is no explicit crossover operator. However, mutation operator
varies due to the variations in loudness and pulse emission. The BA is simple, flexible

and easy to implement. A wide range of problems including highly non-linear problems
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have been solved efficiently [77]. Also, the variations in loudness and pulse emission

rates provide a mechanism for automatic control and auto-zooming ability so that

exploitation becomes intensive as the search approaches the global optimality. In

addition, the BA is fast in convergence. However, no mathematical analysis is used to

link the parameters with convergence rates in this algorithm.

The studies carried out by a large number of other researchers in this Section reveal

that the original ECTs have several merits and demerits for solving the complex high-

dimensional search space problems, such as the ED problem. These merits and demerits

are summarized in Tables 2.2 and 2.3, respectively.

Table 2.2. Merits of the ECTs.

The ECTs have the adaptability to change and ability to generate good enough solutions quickly.
These are not affected by the shape of the objective function.

The ECTs use information of the objective function directly through the search processes.

The ECTs can deal with non-smooth, non-continuous, and non-differentiable objective function.

The ECTs use stochastic transition rules, rather than deterministic rules, to select the population
(individuals) in each iteration.

The ECTs can search a complicated and uncertain search space to find a global optimum.
The ECTs can deal with complex problems that cannot be solved by the classical optimization techniques.

The ECTs are easy to apply due to their simple mathematical structure and easy to combine with
other techniques to create hybrid systems adding the strengths of every other technique.

Table 2.3. Demerits of the ECTs.

. The ECTs may reach premature convergence and non-optimum local solution when solving the

objective function with non-linear and discontinuous characteristics.

The ECTs may have weakness in either exploration or exploitation of the individuals during the
search process.

The ECTs may lose the balance between global search and local search during the search process
when solving the complex problems with high-dimensional search space.

2.5 Hybrid optimization techniques

The hybrid optimization technique is an integration of two or more optimization

methods to provide complementary learning, searching and reasoning methods to

combine domain knowledge and empirical data to develop flexible computing tools

and then solving the real-world complex problems [78]. The aim of this integration is to
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overcome the limitations of the individual optimization techniques, e.g., classical
optimization techniques and original ECTs through hybridization. The ECTs are robust
and powerful global optimization techniques for solving many real-world problems.
However, they are sometimes poor in terms of the convergence performance. Besides,
most the original ECTs lack the balance between local search and global search during
the search for a global optimum. Therefore, the hybrid algorithms are designed to yield
better performance than the individual algorithms. Most studies achieved in the recent
years show that hybrid optimization techniques include one or two original ECTs in
their learning strategies [79]-[78]. Some of the major hybrid algorithms used in solving

the ED problem are given below.

2.5.1 Hybridization between GA and another ECT

The GA is used with different types of ECTs for solving several practical problems
including the ED problem. Some of these GA-based hybrid algorithms are a hybrid GA
and bacterial foraging approach [79]. The original bacterial foraging (BF) algorithm
suffers from poor convergence characteristics when solving the ED problem with a
number of power constraints, e.g., VPL effects, RRLs and P;. To overcome this
drawback, integration between the GA and BF algorithm is made to obtain a hybrid GA
with BF (HGBF) algorithm. In a combination of GA and SQP method [80], the GA is
used as main optimizer and the SQP method is combined to fine tune in the solution of
the GA run. In addition, non-uniform mutation operator and simplex crossover operator
are achieved through this hybridization. The GA is combined with an immune algorithm
to produce a hybrid algorithm, is called hybrid immune-genetic algorithm (HIGA) [81].
The HIGA algorithm is used to solve multimodal and non-convex ED problem. These
algorithms are successfully used in solving the ED problem, however, they are applied

only for small-scale and medium-scale PGSs.

2.5.2 Hybridization between DE and another ECT

The DE has been combined with other types of ECTs for solving ED problem of
large-scale TGUs under several non-linear power constraints. The DE algorithm is
combined with greedy randomized adaptive search procedure (GRASP) to produce DE-
GRASP algorithm [12]. This algorithm is used to improve the global searching
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capability and to prevent from falling into local minima. The DE-GRASP algorithm is
evaluated using medium-scale to large-scale PGSs. A combination of the DE algorithm
and harmony search (HS) algorithm is made to create a hybrid algorithm and is called
DHS algorithm [82]. Here, in order to enhance the exploitation ability of harmony
search, the pitch adjustment operation is operated with the different mutation
operations. In addition, to enhance the exploration ability of evolution search, both the
memory consideration and the pitch adjustment are made. This hybrid algorithm is
evaluated using small to large PGSs. Another hybrid algorithm is called DE-PSO-DE
(DPD) is built by paralleling the DE algorithm and the PSO algorithm [83]. Here, the
population is divided into three groups. The DE algorithm enhances the inferior and
superior groups, whereas the PSO algorithm is used to enhance the mid-group. This
combination improves the solution quality of each individual algorithm. However, such

a hybrid algorithm consumes long execution time due to more computational processes.

2.5.3 Hybridization between PSO and another ECT

The PSO algorithm has been combined with some other types of the ECTs. In the
fuzzy based hybrid PSO-DE (FBHPSO-DE) algorithm [3], the combination of the DE
and PSO algorithms is made to enhance the ability of the population in local search and
global search processes. A fuzzy decision making strategy is applied to find and sort the
Pareto-optimal solutions. The FBHPSO-DE algorithm is evaluated using small-scale to
large-scale PGSs to solve the ED problem with different power constraints. The PSO
algorithm is modified using gravitational search algorithm (GSA) to construct a hybrid
algorithm called PSOGSA [84]. Here, the local search ability of the PSO algorithm is
improved by using the GSA. In addition, a fuzzy logic is used to control the ability to
search for the global optimum and to increase the performance of the PSOGSA. This
algorithm is evaluated using small-scale to large-scale PGSs. The co-swarm shrinking
hypersphere PSO (CSHPSO) algorithm is obtained by hybridizing the shrinking
hypersphere PSO algorithm with the DE algorithm [85]. Here, the swarm is divided into
two sub swarms in such a way that the first swarm uses the SHPSO algorithm, whereas
the second swarm uses the DE algorithm. Thus, this procedure enhances the exploration

and exploitation process to obtain a global optimum.
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Table 2.4 gives a summary of some hybrid algorithms used in the recent years to

solve the non-convex and non-smooth ED problem of large-scale TGUs. We can see

from Table 2.4 that these hybrid algorithms are successfully used in solving the ED

problem of large-scale TGUs but with only a few power constraints. This means that

addition of more constraints requires more time for the algorithm to find a global

optimum. In addition, these algorithms are found to generate a high-quality solution,

robustness and consistency for such a complex problem.

In addition to these merits of the hybrid optimization techniques in improving

performance and solution of the original ECTs, they have several critical demerits as

shown in Table 2.5.

Table 2.4. Some of the hybrid algorithms used in the recent years for solving the ED

problem.
|l PGS Fucl Power constraints
No. Aleorithm e f# of Pp cost liIr?qu{ts Gelt;lrerfiattslon L misﬁLatch bl;(l);ecre POZs e}/fle);s
TGUs | (MW)
Fuzzy based hybrid PSO-DE 40 (10,500 | ¥ [ - - V- - VA
1 (FBHPS?'DE) 20170 160 |a3200 | V| - - N - A R
DE with greedy randomized 40 [10,500 [ vV | - N - - - - N
2 | adaptive seaﬁ:lzi](DE—GRAS) 2017 140 |49342 | N | J ) i i N J
3 DE-P so[gs (DPD) 2016 40 (10,500 | v | - \ - - - - N
PSO with gravitational search
4 algorithm (PSOGSA) 2015| 40 (10,500 | v | - v - - - - N
[84]
Co-swarm shrinking
5 | hypersphere PSO CSHPSO [2014| 40 10,500 | | - v - - - - N
[85]
DE with harmony search
6 (DHS) 2013 40 (10,500 | v | - S - - - - N
[82]

The symbol (\/) represents that the corresponding constraint has been considered. The symbol (-)
represents that the corresponding constraint has not been considered.

Table 2.5. Demerits of the hybrid optimization techniques.

S I NS I S ]

. The hybrid optimization techniques are often consume a long execution time because of the structure

of these techniques is complicated. During this time of the search process, the algorithm may fall into
a local optimum.

. The parallelization between two algorithms is a key of these techniques.
. The appropriate integration of the combined algorithms may be difficult to achieve.
. Choosing suitable parameters values is difficult.

. The hybrid optimization techniques suffer from slow convergence to an optimum value and require a

large number of iterations in high-dimensional search space problems.

. The balance between exploration and exploitation processes of the combined algorithms is hard to

obtain.

33




Chapter 2: Literature Review

2.6 Enhanced evolutionary computation techniques

In spite of the advantages of the original ECTs to solve the ED problem, they are
often prone to get trapped into local optima due to the loss of balance between global
search and local search of the individuals in large-scale TGUs with several non-linear
operating power constraints [13], [44]. To enhance the global search and local search
performance of the original ECTs to solve such a complex problem, many improved
variants have been developed in the recent years. Among them, extensive studies have
been made on the improved PSOs [11], [55], [57] [86]-[88], [91], [94] and DEs [89]-
[90], [92]-[93], because of their popularity. These are summarized in Table 2.6.

Table 2.6 summarizes some of the improved PSO and DE algorithms used in the
recent years to solve the non-convex and non-smooth ED problem. These algorithms
improve the performance of the PSO and DE algorithms in terms of the high-quality
solution, convergence rate, robustness and consistency. Also, they successfully applied
to solve the ED problem of large-scale PGSs. However, they address few numbers of
power constraints. For example, in Table 2.6, there is no algorithm solves the P, and
Py mismaen constraints and satisfies the equality constraint due to the power balance of
large-scale TGUs. This is due to that the data of these practical power systems may be
not available or due to the complexity of these power systems. The optimization

techniques mentioned in Table 2.6 are arranged based on date of the publication.

Table 2.6. Some of the improved PSO and DE algorithms used in the recent years for

solving the ED problem.
o PGS Pl Power constraints
’ Algorithm Year RR [Generation Power VPL
No. # of Pp (MW) Costlimits|  timits  |LH|FEmimach patance| P02 effects
TGUs
Dynamic PSO with escaping
1 prey (DPSOEP) 2017| 40 | 10,500 | N | Y - - - - \
[87]
Improved random drift PSO 40 [ 10500 | V| N - - - N A
2 (IRDPSO) 2017 140 49,342 N } ) ) ) ) N
[57]
Synergic predator-prey
3 optimization (SPPO) (2016 140 | 49,342 | + | Y - - - \ -
[88]
Colonial competitive DE 40 10,500 | - - - N
4 (CCDE) 2016|140 49342 | N | A y - - - Y \
[89]
. 00 | Not gl N A .
Evolutionary DE (E-DE) available
5 2016
[90] Not
150 . V| - - - - - - -
available
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¢ | Modified PSO (MPSO) |, .| 40 | 10,500 V| W N - - - - -
[91] 140 | 49342 | N | 3 - - N

7 Random drlf[tl}i?O (RDPSO) 2014| 40 8.550 N ) ) ) i i i i

g Improved DE (IDE) 2014 40 10,500 | - - - - - - v
[92] 140 | 49342 | N | N - - - SR

9 Sh“fﬂe‘[i(gf SDE) 013 40 [10500 | V| - - N - I N

jo|  Theta P?g%](e‘l)so) 2013 40 (10500 | V| - NV (S N

Iteration PSO with time
varying acceleration

i coefficients (IPSO-TVAC) 2012) 40110500 VI v - B B - -
[94]

|o| Improved PSO (IPSO) [, . I 40 10,500 e - - - - - N
[55] 140 [49,342 VA N - - v

The symbol (V) represents that the corresponding constraint has been considered. The symbol (-)
represents that the corresponding constraint has not been considered.

2.7 Other optimization techniques used for the ED problem

Despite the success of the ECTs in solving the non-convex, non-smooth ED problem
of large-scale TGUs with several operating power constraints, some other types of the
optimization techniques use different learning strategies to address such a complex
problem. List of some notable such optimization techniques are shown in Table 2.7. The
optimization techniques mentioned in Table 2.7 are arranged based on date of the

publication.

Table 2.7 summarizes some other optimization techniques used in the recent years to
solve non-convex and non-smooth ED problem of large-scale TGUs. In addition,
Table 2.7 indicates the current research trends of using different methodologies to solve
such a complex problem. One can see that, despite these techniques reported in Table
2.7 were solved the ED problem of large-scale PGSs, they did not solve for all equality
and inequality operating power constraints imposed by the TGUs and PGS. For
example, the non-convex and non-smooth fuel cost function was evaluated by TPMIP
algorithm [95] under RRLs, generation limits, P;, P, mismatch, power balance, POZs
and VPL effects. However, the equality constraints, i.e., Pz mismarch, and power balance,

are not taking into consideration.
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Table 2.7. Some notable optimization techniques used in the recent years for solving the

ED problem.
L . PGS Fucl : Power constraints
No. Algorithm Year Zof Py |cost|RRLs Gelr}er?attlon A chl)wer POZs }/fPL
TGUs | (MW) imits alance effects
Parallel hurricane
optimization algorithm
1 (PHOA) 2018| 40 4242 | N | - - V|- - - -
[96]
Oppositional grey wolf 40 10,500 | Vv | - - - - - - N
2 | optimization (OGWO) |2017| 140 10,500 | - - - - - - N
[97] 160 43200 ] V| - - - - - - |
Lighting flash algorithm 40 10800 | V| - = = . . = v
3 (LFA) 2017 80 21,600 | ¥ = - = = = = v
[98] 160 [43,200] V| - - N - R
320 [172,800] N | - - N - R
Parallel augmented
Lagrangian relaxation
4 (PALR) 2017| 323 N[ A Y - - - - }
[991
Hybrid grey wolf optimizer 40 10,500 | - N N - - - N
> (H[(I}SX]O ) 2016) gy 21,000 | V | - Y V|- - - Y
Modified symbiotic 40 10500 | V| - v v - . Y Y
6 | organisms search (MSOS) (2016 80 21,000 | ¥ = v Y - - v v
[101] 160 [31,500 [ V| - v V- - - v
360 | 42,000 | V| - N N - - B N
40 10,800 V| - - N - N
Crisscross optimization 80 21,600 | v - - - - - - N
7 (CSO) 2016 160 43,200 | - - - - - - N
[102] 320 [ 86,400 | V| - - S - - - J
640 [172,800 v [ - - - - - - N
Modified social spider 40 10,500 | v | - - - - - - N
8 algorithm (MSSA) (2016 80 21,000 | V| - - - - - - N
[103] 140 [49342 | N | - - - - - N
Tournament-based 40 21,000 | v - - - - - - N
9 | harmony search (THS) |2016 30 21,000 | ) ) ) i i i J
[104]
Theta-modified bat
10|  algorithm (6-MBA)  |2016| 40 | 21,000 | v | - - - - - \ \
[105]
Chaotic bat algorithm 40 10,500 | ¥V | - - - - - - N
11 (CBA) 2016
(77] 160 | 43,200 | V| - - - - - - N
Flower pollination
12 algorithm (FPA) 2016 40 10,500 | - - - - - - N
[106]
Two-phase mixed integer jg 10.500 | ¥ | - = - - . - v
13| programming (TPMIP) |2016| o | 7.000 V| V V|- - S Y
93] 140 (49302 | N [ N V[ - - VA
Opposition-based greedy 40 10,500 | v | - - - - - - N
heuristic search (OGHS) 52 7200 | V| - N - - - - N
14 [107] 2016 52 10,800 | vV | - N - - - - N
140 | 49342 | V| - - - - - Y Y
Oppositional invasive 40 10,500 | - - N - - - N
|5 | weed algorithm (OIWO) |0\ | 40 [10.500 | N | - - - - - - N
(108] 110 [15000 [ V| - - N - - N
140 [49342 | V| - - - - - \ N
Fully decentralized
16 approach (FDA) 2015 40 10,500 | - - - - - - \
[109]
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Mixed integer quadratic 40 7,000 | \ N N - - N

17 programr{r;l;]g](MIQP) 2014 40 10,500 | ) ) . ) ) ) N

The symbol (V) represents that the corresponding constraint has been considered. The symbol (-)
represents that the corresponding constraint has not been considered.

2.8 Some important observations
Several observations have been made based on the review of the current literature, as

stated below.

2.8.1 Observation #1

The first research question that has been mentioned in Section 1.4 is “Is ED problem
of large-scale TGUs in a power generating system with several power constraints a

critical issue?”

To answer this question, the discussion of the current issues of the ED problem in
Section 1.3 and outcomes of the literature review in this Chapter reveal that the ED
problem is in deed a critical issue. The ED problem becomes significant, especially in a
large-scale power system, when there is a need of optimal scheduling of TGU outputs
with various power constraints with respect to the predicted load demand, Pp. In order
to economize the operating fuel cost, optimal dispatch of power generation from all the
online TGUs while satisfying highly nonlinear power constraints to satisfy the power
demand is in deed a critical issue. This issue need to be addressed so as to make the

PGS economical, stable and reliable.

2.8.2 Observation #2

The comprehensive literature review reveals that the ECTs are continuously
being developed and improved year by year as shown in Tables 2.4 and 2.6, to deal
with ever larger PGSs with an increasing number of the power constraints. Thus,
the need to design a new approach or develop new optimization techniques instead of

the inefficient current optimization methods becomes imperative.

2.8.3 Observation #3

Although a large number of the ECTs-based algorithms have been proposed and
applied for optimization of the non-convex and non-smooth fuel cost function, the issue

of scalability has not been addressed sufficiently as shown in Tables 2.4 and 2.6. In

37



Chapter 2: Literature Review

other words, the number of ECTs which can actually be applied for the ED problem of
large-scale TGUs with several power constraints remains low. Thus, this is a gap in this

field.

2.8.4 Observation #4

This comprehensive literature review reveals that the PSO algorithm is widely used
in this field compared with the other ECTs as shown in Tables 2.4 and 2.6. Besides,
several studies in this literature review confirm that the performance of the original PSO
algorithm were clearly improved by several newly proposed PSO-based algorithms

[11], [55], [57], [86]-[88], [91], [94].

2.9 Chapter summary

The literature review presented in this Chapter provided a comprehensive study of
the optimization techniques used in the recent years to solve an important real-world
problem in operation and management of large-scale TGUs to govern electrical energy
to the consumer, i.e., the ED problem. Different categories of the optimization
techniques were used for such a complex problem. Among them, the ECTs are widely
used and updated year by year. However, the number of ECTs which can actually be
applied for the ED problem of large-scale TGUs with several power constraints remains

low and this is a gap in this field.

The PSO algorithm is one popular type of the ECTs and has been widely used for the
ED problem. However, the recent studies reported in literature review confirm that the
original PSO algorithm is inefficient to solve the ED problem of large-scale TGUs with

several power constraints.

The comprehensive study in this literature review tells us that the ED problem is a
critical issue and the need to design new approaches to solve such a complex problem is

necessary.
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Chapter 3: Research Methodology

3.1 Chapter overview

This Chapter provides the research methodology-based on the research design to
develop new algorithms and to answer the research questions outlined in Section 1.4.
Summary of the research design is provided in Section 3.2. Then, algorithms developed
are explained in Section 3.3. Following that, the comparison between the proposed
algorithms and original PSO variants in terms of several critical parameters is presented

in Sections 3.4 to 3.6. Finally, a summary of this Chapter is presented in Section 3.7.

3.2 Research design

In order to address the two research questions underpinning this thesis, the procedure
in Figure 3.1 shows the research design carried out in this thesis. The research design

provides the methodology of this thesis.

The first research question that mentioned in Section 1.4 was investigated in Section

2.8.1.

To investigate the second research question that mentioned in Section 1.4 is “What is

the most effective technique/algorithm to solve such a complex ED problem?”

First of all, an overview of the learning strategy of global particle swarm
optimization (GPSO) algorithm and critical drawbacks that make it unable to solve such
a complex problem is presented. Then, the proposed orthogonal PSO (OPSO) and
multi-gradient (MG-PSO) algorithms based on the research design plan shown in
Figure 3.1 are explained. The details of OPSO and MG-PSO algorithms and their
applications are available in the eight Papers appended in Appendix-1.

39



Chapter 3: Research Methodology

Intelligent system design, operation and management to govern electrical energy to the consumer

v
v v

Question #1 Question #2
Is ED problem of large-scale TGUs in a What is the most effective
power generating system with several technique/algorithm to  solve
power constraints a critical issue? such a complex ED problem?
The answer of Question #1 is ¢ ¢

available in Section 2.8.1.

Orthogonal OPSO Multi-gradient PSO
(OPSO) algorithm (MG-PSO) algorithm

v -

Evaluate the OPSO and MG-PSO algorithms using a set
of benchmark functions taken from the Congress of
evolutionary computation 2015 (CEC 2015).

v

Apply the OPSO and MG-PSO algorithms to the

ED problem.
!
v - v v v v -
Paper Paper Paper Paper Paper Paper Paper Paper
A B C D E F G H

v v 3 v v : v .

Eight Papers are associated together to provide the answer of Question #2.
The eight Papers are appended in Appendix-1.

Figure 3.1. Research design of this thesis.

3.3 Algorithms developed

Here, one version of the original PSO variants used in this thesis is the GPSO
algorithm. Demerits that make the GPSO algorithm unable to solve the practical ED
problem of large-scale TGUs are discussed. In addition, two proposed novel algorithms,
i.e., orthogonal PSO and multi-gradient PSO algorithms used in this thesis are

investigated and their performances are evaluated.

3.3.1 Global particle swarm optimization

As discussed in Section 2.4.3, the original PSO algorithm [51] is a population-
based optimization technique. It emulates behaviours of some animals such as flock of
birds or schools of fish. The population is called a swarm, and the individuals or

possible solutions are called particles. The original PSO algorithm operates on a
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randomly created swarm of particles in a multi-dimensional search space. It searches
for an optimum solution by updating the velocity and position of the particles
according to a guiding rule. Each particle learns from its personal experience and its
neighbourhood’s experience. That is, each particle flying in the space, searches for an
optimum solution by adjusting its flying trajectory according to its own experience
and its neighbourhood’s experience. Depending on the selection of neighbourhood
formation, the original PSO algorithm is classified into two versions: global PSO
(GPSO) algorithm, and local PSO (LPSO) algorithm. Without loss the generality, this
thesis studies performance of the GPSO algorithm. The merits and demerits of GPSO

algorithm compared to LPSO algorithm are stated as follows.

i. The GPSO algorithm is simple in structure and easy to implement compared to

LPSO algorithm [111].
ii. The GPSO algorithm has faster convergence rate that the LPSO algorithm [111].
iii. The particles in GPSO algorithm are prone to fall into local minima [112].

iv. The GPSO algorithm uses only one neighbourhood topology structure (fully
connected network) for the particles inside a swarm. Whereas, in the LPSO
algorithm, different neighbourhood topologies are used for the particles, e.g., ring

structure, pyramid structure, and Neumann structure [113-115].

The learning strategy of GPSO algorithm is explained as follows. This algorithm
depends on the distribution of the particles in a swarm, i.e., neighbourhood topology
structure of the m particles, as shown in Figure 3.2. One can see from Figure 3.2 that the
m particles are neighbours of each other. Also, they are attracted to the best particle in a

swarm to form a fully connected network.

Vi
Xm

Vi

Vs
Xs
gp5

V2
X2
&p2

Vy V3
X4 X3
8p4 8p3

Figure 3.2. Graphical representation of the neighborhood topology (fully connected
network) for the m particles of GPSO algorithm.

41



Chapter 3: Research Methodology

The learning strategy of GPSO algorithm is as follows. Firstly, Each particle i (i = 1,
2, ..., m) in a swarm flying in a d-dimensional search space adjusts its flying path based
on two guides, its own experience, G, and its neighbourhood’s best experience,
Gpesr- Secondly, when pursuing a global optimum, each particle learns from its own
historical experience and its neighbourhood’s historical experience. Then, a particle
while choosing the neighbourhood’s best experience uses the best experience of the
whole swarm (m particles) as its neighbour’s best experience. Since the position of each
particle in a swarm is affected by the best-fit particle. Thus, this version is named,
global PSO [51]. The following steps explain the learning strategy of the GPSO

algorithm.

Procedure of the GPSO algorithm

Let us consider the m particles (m > 1) in a swarm refer to a swarm population. They
are searching for a global optimum, i.e., minimum solution, of an objective function f{x)
in a d-dimensional search space. Total number of iterations is denoted by Ny, The
purpose is to minimize the given objective function f(x). Each particle, i (i =1, 2, ..., m),
has one d-dimensional velocity vector V; and one d-dimensional position vector X; and

are denoted by

Vi=[vit, vizy -+, Vid] (21)
)(l' = [xl'la Xi2y - ':xid] (22)

Step #1: Initialization: Iteration, = 0.
fori=1,2,....m
Initialize V; and X; randomly with a defined range of d-dimensional search
space and denote these by V;(0) and X;(0), respectively.

Initialize the personal position vector (Gper) of particle 7, i = 1, 2, ..., m,
Ghers,i(0) as follows.
Gpers,i(o) = [gpi,la 8pi2s +-s gpi,d] = AXVI(O) (23)
Evaluate the f(x) using X;(0).

end 7 loop

Determine the global best position vector Gp.s(0). It is the best position vector
among all the m personal position vectors inside a swarm. The Gpe(0) is
denoted by:

Gresi(0) = (25,15 252> s G (24)
Step #2 Update
fort=1,2, ..., Nier
fori=1,2,....m
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Update V; and X; as follows.
Vilt) = Vit = 1) + c1 ri(0) [Gpersi(t = 1) = Xi(t = 1)]

+ eara(t) [Gpest — 1) = Xi(t = 1)] (25)
Xi() =Xi(t—1) + V(1) (26)
where c¢; and ¢, are real and positive coefficients, called acceleration

constants which are commonly set to 2.0 [51]. The r(¢) and r»(¢) are
two randomly generated values with a uniform distribution in the

range of [0,1].
Evaluate f(x) for particle i using X; (¢).
Update Gpers,i(?) as follows.
X0 if J(XO)S (G et = 1))
Gpers,i(t) =
Gt =1) Otherwise
Obtain f{Gpers,i(t))
end i loop
Obtain f{Gpes(?)) as follows.
S(Gresi(t))= min {f(Gpers,i(t))}
Obtain Gpeg(t) corresponding to f{Gpesd(t))
end 7 loop

Step #3: End of iteration: ¢ = N,
Optimum solution = Gpes(Nier) and optimum value = f{ Gpesd Niser))

A flowchart of the GPSO algorithm is shown in Figure 3.3.

[ Select m, d, Ny, ]

’t = 0; Initialize V; and X; randomly ‘

| Compute Gje(0) using (21)-(24) |
»l
1

| Update (1), X{1), Gyars (1) using (25)-27) |

| Obtain f{Gpey(1)) using (28) |

‘Obtain Ges(t) corresponding to f{Gpes(t)) ‘

No

Yes

Optimum solution (x) = Gpes(Nizer)
Optimum value (x) = AGpes(Nier))

End
Figure 3.3. Flowchart of the GPSO algorithm.
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3.3.2 Global particle swarm optimization with inertia weight

One significant operator used in the GPSO algorithm is the inertia weight (w) [116].
The w uses to accelerate the convergence speed of ith particle i =1, 2, ..., m) ina
swarm to achieve better convergence through a balance between global search and
local search particles. It is suggested that the value of w to change from 0.9 at the

beginning search to 0.4 at the end of the search [117-119].

It has been shown that the GPSO-w algorithm has performed well on smooth and
convex unimodal problems [4], [78], [120]-[121]. However, under high-dimensional
complex unimodal and multimodal problems, the GPSO-w algorithm may suffer from
the curse of dimensionality and may not perform well [112]. The following steps

explain the learning strategy of the GPSO-w algorithm.

Procedure of the GPSO-w algorithm

In GPSO-w algorithm, the m particles (m > 1) are searching for a global minimum,
i.e., searching for an optimum solution of an objective function f{x) in a d-dimensional
space. The objective is to minimize the given f(x). Each particle i (i = 1, 2, ..., m), has
one d-dimensional velocity vector V; and one d-dimensional position vector X; , as given

by (21) and (22).

Step #1:Same as Step #1 in Procedure of the GPSO algorithm.

Step #2: Update
forr= 1,2, ---,]viter
fori=1,2,....,m

Determine inertia weight, w(?) as given below.

m{t):—](\’,-S £40.9 (30)

iter
Update V; and X; as follows.
Vi(t) = w(0) Vi(t = 1) + c1r1(8) [ Gpers,(t — 1) = Xi(t — 1)]
+ c2r2(8) [Gres(t — 1) = Xt — 1)] (31
Xi(t) = Xi(t = 1) + V(1) (32)
Evaluate f{x) for particle i using X; (¢).
Update Gpers,i(?) as follows.
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Xi(®) if fXO)S (Gt =1))
Gpers,l' (t) = .
Gt =1) Otherwise
Obtain f{ Gpers, (1))
end i loop

Obtain f{Gpes(?)) as follows.

S Gpesd))= min{f(Gpers, (1))}

Obtain Gpe(?) corresponding to f{ Gpest))
end ¢ loop

Step #3: End of iteration: ¢ = V.,
Optimum solution = Gpes((Nirer) and optimum value = f{ Gpes(Nirer))

A flowchart of the GPSO-w algorithm is shown in Figure 3.4.

[ Select m, d, Ni, ]

‘t = 0; Initialize V; and X; randomly ‘

| Compute Gpe(0) using (21)-(24) |

| Determine w(f) using (30) ‘

| Update Vi(1), Xi(2), Gpers (1) using (31)-33) |

| Obtain f{Gex(?)) using (34) |

‘Obtain Gesi(1) corresponding to A Gpes (1)) \

No

Yes

Optimum solution (x) = Gpes(Nizer)
Optimum value f(x) = AGpes(Niter))

End

Figure 3.4. Flowchart of the GPSO-w algorithm.
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3.3.3 Demerits of the PSO variants

The PSO variants, ie., GPSO and GPSO-w algorithms achive satisfactory
performance in some optimization problems [4], [78], [120]-[121]. However, they are
inefficient in solving complex real-world practical ED problem of large-scale TGUs
with practical operating power constraints as shown in Papers A-H (Appendix-1). The
main reasons that make the performance of the original PSO variants unsatisfactory are

explained below.

3.3.3.1 Oscillation or zigzagging phenomenon

In both GPSO and GPSO-w algorithms, the ith particle (i = 1, 2, ..., m) updates its
flying velocity V; and position X; according to its personal position Ger,; and its
neighbourhood best position Gys. Thus, search direction of the ith particle is updated
based on these two guides G and Gpey through a simple way, i.e., through a linear
summation. This strategy can cause a phenomenon called “oscillation or zigzagging”

[111]. The “oscillation or zigzagging” phenomenon is likely to be caused by the

movement of Gy and Gpey through a linear summation, as shown in (25) and (31).

To explain this phenomenon, let us consider that ith X; position vector, is lying
between G and Gpes, as shown in Figure 3.5. At first, when | Gpersi - Xi | < | Ghpest -
X; | , as shown in Figure 3.6(a), the X; will move towards G,y because of its larger pull.
Whereas, whenl Gpersi - Xi | > | Gpest - Xi | , as shown in Figure 3.6(b), the distance
between G, and X; will increase and then the X; flying toward G,e,i. Subsequently,
the oscillation or zigzagging would occur. This phenomenon causes inefficiency to the

search ability of the m particles and delays in convergence.

Gbest
Gpers, i

I

| Gpers,i - )(1 Gbest - )(1 N |
7 Gpem,i - )(z ‘ Gbes - )(1

Gbest

(a) (b)

Figure 3.5. Oscillation phenomenon in both GPSO and GPSO-w algorithms. (a) The X;
flying toward Gy, (b) The X; flying toward Gpers ;.
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3.3.3.2 Imbalance between exploration and exploitation search

In GPSO and GPSO-w algorithms, the balance between global search, i.e.,
Exploration, and local search, i.e., Exploitation, is maintained when solving high-
dimensions complex problems [111]. In case of the GPSO algorithm, the m particles
have weak local search ability (Exploitation). Also, the m particles are affected by the
Giest particle. Furthermore, the m particles need to accelerate the convergence speed to
achieve better balance, as shown in Paper E. In case of the GPSO-w algorithm, the
inertia weight w is used to improve the balance between Exploration and Exploitation.
However, the GPSO-w algorithm is more prone to encounter premature convergence
when solving the ED problem of large-scale PGSs with practical power constraints as

shown in Papers F and H.

In both GPSO and GPSO-w algorithms, if the Gy, falls into a local optimum, then it
would mislead the other particles in a swarm to move towards that point. This means
that other promising search areas might be missed. Also, the m particles in both
algorithms essentially follow a trajectory defined by V; (i =1, 2, ..., m) with two guides
Gpers and Gpey (25) and (31). Such type of search restricts the search domain of ith
particle and may weaken the Exploration ability of the m particles, particularly, at the
later stage of the search process [112]. Thus, these drawbacks make the performance of
the GPSO and GPSO-w algorithms inefficient for solving the complex real-world

problems, e.g., the ED problem of large-scale TGUs with power constraints.

3.3.4 The proposed orthogonal particle swarm optimization algorithm

The GPSO and GPSO-w algorithms have several drawbacks as mentioned in
Section 3.3.3. These demerits make the original PSO variants inefficient to solve the
complex real-world problems including the practical ED problem. Here, the first novel
algorithm named orthogonal PSO (OPSO) algorithm is proposed with a new learning
strategy to improve the performance of GPSO algorithm and to solve the practical ED
problem of TGUs with several power constraints. The details of the proposed OPSO
algorithm and explanation of the orthogonal diagonalization process are provided

below.
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3.3.4.1 Orthogonal diagonalization process

The proposed OPSO algorithm is based on an orthogonal diagonalization (OD)
process. In this process, a diagonal matrix, D is obtained by multiplication of three
matrices (39). Subsequently, it is applied in updating of the velocity and position
vectors of d best particles in a swarm. The updating is carried out in such way that the
ith velocity and position vectors are affected by only the diagonal element, d;; (i = 1, 2,
..., d) of matrix D where d is dimension of the search space. This process enhances the

convergence and provides a better solution as shown in Papers A, B, C, E and F.

The matrix diagonalization is the process of converting a square matrix, B of size

(dxd), into a diagonal matrix, D of size (d xXd), as shown below [122]:

B=0DQ" (36)

where O is a matrix of size (dxd) composed of eigenvectors of matrix B and the
diagonal elements of matrix D comprises the corresponding eigenvalues. The matrix O
is an invertible because it contains linearly independent vectors. When matrix B is

symmetric, the (36) may be written as
B=CDC' (37)

in which the columns of matrix C are orthonormal to each other. Therefore (37) can be
rewritten as

D=C'BC (38)
Since matrix C is an orthonormal matrix, (38) can be written as
D=C'BC 39)

Equation (39) is called the OD process. The process of OD is shown in Figure 3.6.

Line #1: Let B be a real symmetric matrix of size (dxd).

Line #2:  Apply Gram-Schmidt orthogonalization on matrix B to obtain d orthonormal
vectors.

Line #3:  Construct orthonormal matrix C using these vectors.

Line #4: Obtain the diagonal matrix D using (39).

Figure 3.6. The orthogonal diagonalization process.
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3.3.4.2 OPSO learning algorithm

In this thesis, the proposed OPSO algorithm is used to improve the learning strategy
of the GPSO algorithm and in the same time to solve the complex problems including
ED problem. The objective of the OPSO algorithm is to minimize the given d-

dimensional objective function f{x).

The OPSO algorithm provides a new topology structure in a swarm population.
Consider a swarm population with m particles, each particle with a dimension of d (m >
d). In each iteration, the m particles are divided into two groups based on the OD
process, as follows, an active group that involves of best personal experiences of d
particles and one passive group which comprises of the personal experiences of
remaining (m — d) particles. The ideas of the active group particles are honoured by
updating their respective velocity and position vectors. Whereas, the opinion of the
passive group particles are ignored because their guidance may be erratic or
insignificant, and therefore, their velocity and position vectors are not updated.
However, the contributions of all the m particles in both groups are taken into account
while determining the best experience of the swarm. In each iteration, the matrix B is
obtained from d best particles of the active group, and then, orthonormal matrix C and
diagonal matrix D are computed using the OD process (39). The steps included in the
proposed OPSO algorithm are given below.

Procedure of the OPSO algorithm

Let f(x) is the objective function to be optimized, and N, is the number of iterations.

Initialization: Iteration, 7= 0

Step #1: Randomly initialize the velocity vector V;(0) and position vector Xi(0) for
each particle 7, (i = 1, 2, ..., m).

Step #2: Evaluate the objective function f{x) by using position vector X;j(0).

Step #3: Determine the personal position vectors Ge,(0) by using
Gpers,i(o) = [gpi,la gpi,Za ey gpi,d] = AX;(O) (40)

Update: Iteration, ¢t =1, 2, ..., Nitr.

Step #4: Arrange the m personal position vectors G, ;in an ascending order based on
their f(x) values. The corresponding top d particles constitute active group
particles.
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Step #5:

Step #6:

Step #7:

Step 8:

Step #9:

Step #10:

Step #11:

Construct matrix 4 of size (mxd) such that each row in this matrix occupies
one of the m personal position vectors in the same ordered sequence as in
Step 4.

Using pseudocode given in Figure 3.7, convert matrix 4 to a symmetric
matrix B of size (dxd), such that matrix B is a real symmetric matrix of
dimension (dxd).

Apply the OD process shown in Figure 3.6 on matrix B to obtain a diagonal
matrix D of size dxd. Let D;(i = 1, 2, ..., d) represent the ith row of matrix D.

Update the position and velocity vectors of the d particles of the active group,
i=1,2,..,d, as follows.

Vi(ty=Vi(t = 1) + ¢ r() [Dt) — Xi(t = 1)] (41)
Xi(0) =Xt = 1) + Vi(0) (42)

where c is an acceleration coefficient and is chosen by trial and error method
in the range [2,2.5] and 7() is a random value within the range of [0,1].

Determine the Gy (f) from the m particles (i = 1, 2, ..., m), as follows.

Xi(0) if f(XO)</(Ge-1)

Gpers,i(t) = (43)
G e (t =1)  Otherwise

fori=1,2,...,m

Evaluate f{Gpersi (1))

end 7 loop

Determine the global best position Gpe(?), as follows.

Select Gpeg(?) corresponding to minimum {f{ Gpers,i (¢))},i=1,2, ..., m.

Evaluate f{x) to determine the global best position, Gpes(?).

Gbest(t) = min{Gpers,i (t)} (44)

End of iterations, 1 = Nj,,.

The Gpesd(Nier) as computed in Step 10 provides the optimum solution and
optimum value 18 A Gpesd(Niter)).

Applications of the OPSO algorithm in solving different complex objective functions

and more

details about it and its performance are available in Papers A, B, C, E and F.

A flowchart of the OPSO algorithm is shown in Figure 3.8.

50



Chapter 3: Research Methodology

Procedure for converting a matrix A(mxd) to a symmetric matrix B (dxd).

fori=1,2, ..,d
B(1,1)=A(1, i)
B(i, 1)=A4(,1)

end for
fork=2,3,..,d
fori=2,3,..,d

B(k, i) =A(k, i)
Bl1(k, i) = B(k, i)
B(i, k) = B1(k, i)
end for
end for

Figure 3.7. Pseudocode for converting matrix A(mx*d) to a symmetric matrix B(dxd).

[ Select m, d, Ny, }

v

t =0, initialize V; and X;, i = 1, 2, ..., m, randomly

| Evaluate AX;(0)) |

’ Obtain Gpers,i(o) ‘

| Construct matrix 4 |

‘ Using OD process: Obtain matrices B, C and D ‘

‘ Update V;(¢) and X; (¢), using (41) and (42), respectively‘

| Determine G, (X; (1)) using (43) |

| Determine Gy, (X; (1)) using (44) |

Optimum Solution = Gy, (Nyzer)

End

Figure 3.8. Flowchart of the OPSO algorithm.
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3.3.5 The proposed multi-gradient particle swarm optimization algorithm

As discussed in Section 3.3.3, the GPSO and GPSO-w algorithms have several
drawbacks. These drawbacks make these both algorithms are inefficient for solving the
complex real-world problems including the ED problem. Here, the second novel
algorithm named multi-gradient PSO (MG-PSO) algorithm is proposed to improve the
performance of the GPSO-w algorithm by overcoming the drawbacks. The MG-PSO
algorithm is used to solve the practical ED problem of TGUs operating with several
practical power constraints. Here, the details of the second proposed MG-PSO

algorithm and explanation of its mechanism are provided.

3.3.5.1 Learning strategy

The mechanism of the MG-PSO algorithm depends on the following considerations.
Let us consider a swarm population with m particles, where m > 1, flying in a d-
dimensional space searching for a global optimum, i.e., optimum solution. Two
fundamental phases, “Exploration and Exploitation” are applied by the m particles. In
Exploration phase, a particle is named Explorer. In each episode, the m Explorers use a
different negative gradient to explore the new neighbourhood in the d-dimensional
search space. The m Explorers boost the global search ability of the MG-PSO algorithm
by using several episodes. The m Explorers aim to obtain a new neighbourhood within
the d-dimensional search space in each episode and to obtain the best neighbourhood

among episodes.

In each episode, the m Explorers using a different negative gradient and then they
obtain best position vector following its neighbourhood in a d-dimensional search
space. Its neighbourhood is obtained by taking “Floor” and “Ceil” of each element of
the best position vector. These operations create a new search space, i.e., best
neighbourhood, within a d-dimensional search space that will be used in the

Exploitation phase.

In Exploitation phase, a particle is named Exploiter. The m Exploiters use only one
negative gradient which is less than that of the Exploration phase. The m Exploiters

boost the local search ability of the MG-PSO algorithm. The purpose of this phase is to
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gain an optimum position by exploiting the Exploiters in the best neighbourhood

obtained from the Exploration phase.

3.3.5.2 The MG-PSO algorithm

In the second proposed MG-PSO algorithm, a number of negative gradients, i.e.,
Nygrag, are used by the swarm population while searching for an optimum solution. In
Exploration phase, Ng.— 1 negative gradients are used whereas one negative gradient
is used in Exploitation phase. In each episode, the inertia weight (w) follows one

negative gradient, as iteration increases.

The number of iterations in MG-PSO algorithm is V.. The number of iterations in
Exploration phase is given by

Niterpiore =¥ X Niter (45)
where v is a real and positive number in a range [0,1]. The number of iterations in the
Exploitation phase is given by:

Niterxpioir= (1Y) X Nier (46)

The initial and final values of the w for kth negative gradient (k = 1, 2, ..., Nguq) are
denoted by wj,;x and wp,, respectively. These values are positive and real numbers
within a range [0,1] and winix > Wpni. The kth negative gradient (k=1, 2, ..., Ngag — 1)
in Exploration phase is given by:

Whink — W

ini,k
2 (47

iter,xplre

grad, =
In Exploitation phase, the negative gradient is given by:

_ fin, Ngrad mnt, Ngmd
grad Nerad = N (48)

iter,xploit

The Ngqq gradients are selected such that (49) is satisfied.

grad, ‘ > ‘ grad, ‘> ‘ grangmd (49)
The w for kth negative gradient (k= 1, 2, ..., Ng.q) at iteration ¢ is given by:
wi(f) = grady * t + Winik (50)
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3.3.5.3 Procedure of MG-PSO algorithm

Here, the detailed steps explaining the procedure of MG-PSO algorithm are
provided.

Procedure of the MG-PSO algorithm

Begin MG-PSO Algorithm

Let f{x) be the function to be minimized.
Choose Niser, Ngrads Winiks Winks k=1,2, ..., Ngraa.
Determine Nizer. xpiore A0 Nizer, xpioic Using (45) and (46), respectively.
Initialization: Iteration, t = 0.
Step #1:  Obtain Gps(0) using (21)-(24).
Step #2:  Begin Exploration phase
for k=1, 2, ..., Ngraa — 1 (begin of episode k).
Determine gradj using (47).
fort=1,2, ..., Nierxpiore
Determine wy(¢) using (50).
fori=1,2,....m
Update the particle’s velocity and position vectors as follows.

VEO) = w0 VEE =) + ¢ O[Gh,,. ¢ =) — XF(e = 1)]
OG- xhe-n) OV

Xi(0)= X[t -)+V@) (52)
Evaluate the particle’s performance by substituting (52) in
Jx).

Update Gers,i as follows.

X{() if XS f(Grep it =1)

Gﬁers,i(t) = (53)

Ghers i1 =1) Otherwise

Obtail'l f (Glgers,i (t))
end i loop

Obtain f(Gf, (1)) as follows.

e.

f(Glfest(t)) = ml”l { f(Gﬁelyz(t)) } (54)
Obtain G}, (¢) corresponding to f(Gf,.(¢))

[

end 7 loop
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Step #3:

Step #4:

Obtain G (Nier,piore) a0 [ (Goesl(Niger spiore))
end k loop (end of episode k)
fork=1,2, ..., Ngaa-1
Obtain [ (Gyey(Niersptore))
end & loop
AGestapiore) = Min{ f(Ghog(Nierspiore)) }

Obtain BEST(Ghresi,xpiore) corresponding to f Gressxpiore)

(35)

Obtain new search space (neighbourhood) by taking “Floor” and “Ceil” of

each element of BEST(Gpestxpiore)
End Exploration phase

Begin Exploitation phase
Use the new search space
Initialization: Iteration, t = 1

fori=1,2,....m

end i loop

Vi(1) = Vi(Niter,xpiore) corresponding to BEST( Gpesi,xpiore) (56)
)(1(1) = AXVi(Mter,xplore) COI“I’eSPOHdng to BEST(Gbest,xplore) (57)
Gpers,i(l) = Gpers,i(lviter,xplore) Corresponding to BESTI (Gbest,xplore) (58)
Gbest,xploit( 1) = BES T ( Gbest,xplore) (5 9)

Determine grangmd using (48)

Update
for ¢ = 25 3> [EXT) ]viteraxploit
Determine wy() using (50)

fori=1,2,....,m

Update the particle’s velocity and position vectors as follows.
Vi(t) = Wy, Vit — 1) + c1 () [Gpers,i(t — 1) — Xi(t —1)]

+ c2r2(2) [Gpestxpioit — 1) = Xi(t =1)]  (60)
Xi(t) =Xi(1 = 1) + V(1) (61)
Evaluate the particle’s performance by substituting (61) in f{x)
Update Gper,i(?) as follows.
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X if f(X@) =[Gt =)
Gpers,z’(t) = (62)
Gt 1) Otherwise

Obtain f{Gpers, (1))

end i loop
Obtainf(Gbest,xolit(t)) as follows.
f(Gbest,xolit(t)) = min {f(Gpers,i(t))} (63)

Obtain Gpess xpioid(t) corresponding to f{ Gpes xpioidt))
end ¢ loop
Optimum solution = Gpestpioid Niter, xploir)
Optimum value = f{ Gpest, xpioid Niter,xpioit))
End of Exploration phase
End of MG-PSO algorithm

More details about the learning strategy of the MG-PSO algorithm with its
performance and applications are available in Papers D, G and H. A flowchart of the

MG-PSO algorithm is shown in Figure 3.9.
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{ Select m, Nier, Ng”’d ]

fork=1,2, ..., Ngraa {
select Wiy ko Whin k)

v

Determine Niter,xplnre and ]viter,xploit USing
(45) and (46), respectively

v

[t = (0, initialize V; and X; randomly J

v

[Cmnpute Ges(0) using (21)-(24)]
v

{ Start of Exploration phase ]

Episode, k=1

'Y
[ Determine grad,, using (47) ]
»|

[ Determine wy(?) using (50) ]

[ Update V/(0), X, G, (1)) using (51)-(53) }

v

(Obtain (G, (1)) using (54) |

€.

{ Obtain G} (f) corresponding to £(G},,(£)) }

No

Yes

[ Start of Exploitation phase ]

[ Use the new search space ]

v

t=1
Obtain Vi(1), X(1), Gpeps, (1) using (56)-(58)
Obtain Gpeg;pioi(1) using (59)

[ Determine gmngmd using (48) }

la

~

{ Determine wy(?) using (30), for k = Ng,.q ]

[ Update V(0), Xi0), Gpers (1) using (60)-(62) |

[ Obtain G}])(e.vt(]viter,xplnrf) and f (Gl/:est(]viter,xplre)) ]

{ Obtain f(Gbest,xplore) using (55) J
v

[ Obtain BESTI (Gbe.xz,xplore) corresponding tof(Gbest,xplore) J

v

Obtain the new search space (best neighbourhood)

[ End of Exploration phase ]

v

(Obtain (G o) using (63) |

v

‘ Obtain Gpeg ypioidt) corresponding to ‘
f(Gbest,xplDit(t))

Yes

Optlmllm solution (X) = Gbe.vt,xploit(zviter,xploit)
Optlmum Valuef(X) =f(Gbext,xploit(]viter,xploit))

v

[ End of Exploitation phase J

End

Figure 3.9. Flowchart of the MG-PSO algorithm.
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3.4 Comparison between OPSO and GPSO algorithms

A comparison between the proposed OPSO and GPSO algorithms in terms of

several critical parameters is provided in Table 3.1. These parameters are important

roles in determining the accuracy, consistency and reliability of the OPSO and GPSO

algorithms in solving complex problems including ED problem.

Table 3.1. Comparison between the proposed OPSO and GPSO algorithms.

Parameters OPSO algorithm GPSO algorithm
Swarm Size m = number of particles m = number of particles
W d = number of dimensions d = number of dimensions
m > d, as shown in Paper E. m > 1, as shown in Paper E.
Orthogonal vectors are applied by|The m particles use a fully connected
Neighbourhood |the active group particles through |network, as shown in Paper F.

topology structure

using the OD process, as shown in
Paper E.

Guidance

Only one guide is used by the OPSO
algorithm, i.e., D,(f), as shown in
Papers A, B, C, E and F.

In case of GPSO algorithm, two guides,
i.e., Gpersiand Gy are used, as shown in
Paper E.

Computational
Complexity

When
increases

m becomes large, this
the computational
complexity in each iteration.
Because the OPSO wuses three
matrices in its learning strategy, as

shown in Papers E and F.

The GPSO algorithm is simple in
sturcture. The computational complexity
is less restrictive than that in the OPSO
algorithm, as shown in Papers E and F.

Performance

The OPSO is a high performance in
solving several unimodal and
multimodal benchmark functions
including the ED problem with high
dimensional search space, as shown
in Papers E and F.

The performance of GPSO algorithm is
deteriorated in solving several unimodal
and multimodal benchmark functions
including the ED problem with high
dimensional search space, as shown in
Papers E and F.

Exploration and

Due to the use of the OD process, the
orthogonal vectors of active group

Due to the conflict between the two
guides Gpes and  Gpey, the GPSO

Exploitation particles are capable of making a|algorithm is weak in the exploration

Processes balance between local search and|processes, as shown in Papers E and F.
global search of d best particles, as
shown in Papers E and F.

Algorithm The OPSO algorithm consumes|The GPSO algorithm is fast in
more execution time than that in the|convergence and consumes short

Execution Time

GPSO algorithm, as shown in Papers
A,B,C,EandF.

execution time, as shown in Papers A, B,
C,EandF.
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3.5 Comparison between MG-PSO and GPSO-w algorithms

A comparison between the proposed MG-PSO and GPSO-w algorithms in terms of

several critical parameters is provided in Table 3.2. These parameters are important

roles in determining the accuracy, consistency and reliability of the OPSO and GPSO-w

algorithms in solving complex problems including ED problem.

Table 3.2. Comparison between the proposed MG-PSO and GPSO-w algorithms.

Parameters MG-PSO algorithm GPSO-w algorithm
m = number of particles m = number of particles
Swarm Size d = number of dimensions d = number of dimensions
m > 1, m =~ 20, as shown in Paper G|m > 1, as shown in Paper E.
and H.

Neighborhood |the m particles use multiple episodes|The m particles use a fully connected
Topology with different negative gradients as|network, as shown in Paper G and H.
Structure topology structure, as shown in Papers

G and H.
Exploration phase and Exploitation|In case of GPSO-w algorithm, two
Guidance phase are used as guidance in the MG- | guides, i.e., Gpers; and Gy are used, as
PSO algorithm, as shown in Papers G |shown in Paper G and H.
and H.
. The MG-PSO algorithm gives rise to|The GPSO algorithm is simple in

Computational . . . .

Complexity more computations in case of using | structure. The . cgmputatlonal
large number of episodes in the|complexity is less restrictive than that
Exploration phase, as shown in Papers |in the MG-PSO algorithm, as shown in
G and H. as shown in Papers G and H.
The MG-PSO algorithm is a high|The performance of GPSO-w algorithm
performance in  solving  several|is deteriorated in solving several

Performance |unimodal and multimodal benchmark |unimodal and multimodal benchmark

functions including the ED problem
with high dimensional search space, as
shown in Papers G and H.

functions including the ED problem
with high dimensional search space, as
shown in Papers E and F.

Exploration and

The combination between Exploration
phase and Exploitation phase provides a

Due to the conflict between the two
guides Gpers and Gpey, the GPSO-w

Exploitation |balance in the exploration and|algorithm is weak in the exploration
Processes exploitation processes, as shown in|processes, as shown in Papers G and H.
Paper G.
. The MG-PSO algorithm consumes more | The GPSO-w algorithm is fast in
Algorithm

Execution Time

execution time than that in the GPSO-w
algorithm, as shown in Papers G and H.

convergence and consumes short
execution time, as shown in Papers G
and H.
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3.6 Comparison between OPSO and MG-PSO algorithms

A comparison between the two proposed algorithms OPSO and MG-PSO in terms of

several critical parameters is provided in Table 3.3. Both algorithms have been

successfully applied in solving several complex benchmark functions including ED

problem of large-scale TGUs as shown in the Papers A-H, several merits and demerits

between OPSO and MG-PASO algorithms are presented in Table 3.3.

Table 3.3. Comparison between the two proposed OPSO and MG-PSO algorithms.

Parameters OPSO algorithm MG-PSO algorithm
m = number of particles. m = number of particles.
Swarm Size | d = number of dimensions. d = number of dimensions.
m > d, as shown in Paper E. m > 1, m =~ 20, as shown in Paper G
and H.

Neighborhood |Orthogonal vectors are applied by the|the m particles use multiple episodes
Topology active group particles through using|with different negative gradients as
Structure the OD process, as shown in Paper E. |topology structure, as shown in Papers G

and H.
Only one guide is used by the OPSO | Exploration phase and Exploitation
Guidance algorithm, i.e., Di(f), as shown in|phase are used as guidance in the MG-
Papers A, B, C, E and F. PSO algorithm, as shown in Papers G
and H.
When m becomes large, this increases | The MG-PSO algorithm gives rise to

Computational |the computational complexity in each | more computations in case of using large
Complexity |iteration. Because the OPSO wuses| number of episodes in the Exploration

three matrices in its structure, as|phase, as shown in Papers G and H.
shown in Papers E and F.

The OPSO is a high performance in|The MG-PSO algorithm is a high
solving  several unimodal and|performance in solving several unimodal

Performance |multimodal benchmark  functions|and multimodal benchmark functions

including the ED problem with high
dimensional search space, as shown in
Papers E and F.

including ED problem with high
dimensional search space, as shown in
Papers G and H.

Exploration and

Due to the use of the OD process, the
orthogonal vectors of active group

The combination between Exploration
phase and Exploitation phase provides a

Exploitation |particles are capable of making a|balance in the exploration and
Processes balance between local search and |exploitation processes, as shown in
global search of d best particles, as|Papers G and H.
shown in Papers E and F.
. The OPSO algorithm consumes more | The MG-PSO algorithm consumes less
Algorithm

Execution Time

execution time than that in the MG-
PSO algorithm, as shown in Paper G
and H.

execution time than that in the OPSO
algorithm, as shown in Papers G and H.
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3.7 Chapter summary

In this Chapter, the research methodology based on the research design of this thesis
was demonstrated. In the research design, the question #1 that mentioned in Section 1.4
has been investigated. In addition, the question #2 has been investigated using two
proposed algorithms, i.e., orthogonal PSO (OPSO) and multi-gradient PSO (MG-PSO)
algorithms. The original PSO variants, i.e., global PSO (GPSO) and global PSO with
inertia weight (GPSO-w) were also studied. Performance comparison among these

algorithms in terms of several critical parameters was also carried out.
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Chapter 4: Summary of Papers

4.1 Chapter overview

In this Chapter, a brief summary of each of the eight Papers is presented. The
purpose of this Chapter is to give sufficient details of each associated Paper appended in
this thesis, the Papers A-H. At the end, a summary of this Chapter is provided. The

sequence of the Papers A-H has been organized based on their date of publication.

4.2 Summary of Papers A-H

Here, a summary of the eight appended Papers A-H is provided. The salient features
and important results are highlighted.

4.2.1 Summary of Paper A

L. T. Al-Bahrani and J. C. Patra, “Orthogonal PSO algorithm for solving ramp rate
constraints and prohibited operating zones in smart grid applications,” in Proceedings of
IEEE International Joint Conference on Neural Networks (IJCNN), Killarney, Ireland,
2015, pp. 1-7.

In Paper A, few operating power constraints are examined, €.g., generation limits,
ramp rate limits (RRLs), prohibited operating zones (POZs) and power balance. When
these power constraints are imposed, the fuel cost function becomes non-convex and

non-smooth. In such a case, the ED problem becomes a multimodal problem.

In Paper A, a novel algorithm called orthogonal particle swarm optimization (OPSO)
algorithm was proposed in 2015 to solve such a complex problem. The OPSO algorithm
depends on the formation of orthogonal particle vectors that are found in the
d-dimensional searching search. The d best particles construct a new guide and fly more
steadily toward the optimum solution. This is accomplished by determining the
promising movements of the d best particles in subsequent iterations based on

orthogonality. Due to the use of orthogonal vectors in updating the velocity and position
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vectors, the OPSO algorithm provides substantial improvement in performance over

PSO algorithm (the PSO algorithm in Paper A is GPSO algorithm).

Let us consider a 2-dimensional function given by f(x, y) = x*+*+3. The objective is
to find values x and y, so that the value of the f(x, y) is minimized. With a range of
[-100, 100] for x and y, the f(x, y) is plotted in Figure 4.1. Note that the function f{x, y) is
minimized to 3 when x = 0 and y = 0. Both the OPSO and PSO algorithms have ten
particles (m =10) in the swarm and use ten iterations (N, = 10). Figure 4.2 shows that
the best particle in PSO algorithm moves step forward and step backward between 3rd
iteration (-44.3, 31.6) and 4th iteration (16, -10.2) causing oscillations. Whereas, in the
OPSO algorithm, the best particle moves steadily from the initial position to the

solution in the 10th iteration.

flxy) =% + y*+3.0

-100  -100

Figure 4.1. Plot of 2-dimentional function f{(x,y).
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iterations.
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The OPSO and PSO algorithms are evaluated and tested using small PGS, i.e., an
IEEE bus with 6 TGUs with generation limits, RRLs, POZs power constraints. The
performance comparison results shown in Paper A between the OPSO algorithm and
several other optimization techniques reveal that OPSO provides better performance in
solving the ED problem of small-scale PGS in terms of several performance measures,
e.g., minimum, maximum and mean costs and standard deviation. In addition, the
OPSO algorithm is capable of solving the inequality power constraints and satisfying
the equality power constraint. The results shown in Paper A indicate that the OPSO
algorithm is a promising tool for solving non-convex, multimodal fuel cost function for

the small-scale PGS.

4.2.2 Summary of Paper B

L. T. Al-Bahrani and J. C. Patra, “Orthogonal PSO algorithm for economic dispatch
of power under power grid constraints,” in Proceedings of IEEE International

Conference on Systems, Man, and Cybernetics (SMC), Hong Kong, 2015, pp. 14-19.

In Paper B, the OPSO algorithm is proposed for ED of the generated power in
medium-scale PGS (15 TGUs). Here, the equality and inequality power constraints and
the power balance response against the mismatch between load demand and total power
outputs of TGUs involve non-linear characteristics and non-smooth cost functions. The
OPSO algorithm uses orthogonal vectors (OVs) for the d best particles in a d-
dimensional search space. The OVs are generated and updated in each iteration. They
are used to guide the d best particles to fly in one direction toward a global minimum.
Also, instead of creating and updating two guides in PSO (the PSO algorithm in Paper
B is GPSO algorithm), the d best particles update their position and its velocity
according to OVs. This means that only one guide is used to update the velocity and
position vectors. Thus, the OPSO algorithm has succeeded in eliminating the oscillation

phenomenon occurring in the PSO algorithm.

Figure 4.3 shows the convergence characteristics of OPSO and PSO algorithms of
medium-scale PGS (15 TGUs). In Figure 4.3(A), the OPSO algorithm is better
convergence to reach optimum solution. The OPSO algorithm settled at about 370

iterations. Whereas, the PSO algorithm settled after 580 iterations. Figure 4.3(B) shows
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the distribution of total cost of OPSO and PSO algorithms over 100 runs for 15 TGUs,
showing that the OPSO algorithm has a small deviation compared to the PSO algorithm.
This indicates that the performance of the PSO algorithm is improved by the

orthogonality.
x 10* A. Convergence characteristics of OPSO and PSO Algorithms
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Figure 4.3. Convergence characteristics of OPSO and PSO algorithms of medium-scale
PGS (15 TGUs).

The OPSO and PSO algorithms are evaluated using medium-scale PGS (IEEE 15
TGUs). In this PGS, Pp is 2,630 MW and the P, is taken into account. In addition, there
are 4 TGUs that have 11 prohibited zones. The generation limits and RRLs of 15 TGUs
are also considered. Thus, more dimensions and power constraints are imposed on fuel

cost function.

The performance of the OPSO algorithm is also compared with several other
optimization techniques including PSO variants. These results reveal that OPSO
algorithm provides better performance in solving the fuel cost function in terms
minimum, maximum and mean costs and standard deviation. In addition, the OPSO
algorithm is able to solve the equality and inequality power constraints and able to
avoid all POZs. Furthermore, the OPSO algorithm is able to reduce the P;. Moreover,
the OPSO algorithm succeeded to improve the learning strategy of the PSO algorithm,

in terms of consistency, robustness and convergence.

4.2.3 Summary of paper C

L. T. Al-Bahrani, J. C. Patra, and R. Kowalczyk, “Orthogonal PSO algorithm for

optimal dispatch of power of large-scale thermal generating units in smart power grid
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under power grid constraints,” in Proceedings of IEEE International Joint Conference

on Neural Networks (IJCNN), Vancouver, Canada, 2016, pp. 660-667.

In Paper C, the OPSO algorithm is proposed for the ED of large-scale TGUs in
smart power gird (SPG). Practically, the characteristics of TGUs are non-linear and the
generation system becomes more and more complex when these large-scale TGUs are
subjected to RRL and POZ constraints. In such case, the cost function becomes non-
smooth, non-convex and discontinuous. Moreover, in large-scale TGUs, the high
dimensions used in the ED problem become a big challenge in order to find a global
minimum and to avoid being trapped into local minima. In this Paper, the proposed
OPSO algorithm has the ability to solve such complex ED problem with equality and

inequality power constraints and considering P, RRLs and POZs.

The OPSO algorithm applies the OD process and orthogonality to the d best particles
in the swarm. It makes d best particles (out of total m particles, m > d) that have the
possible solutions by constructing OVs in the d-dimensional search space. These OVs
are generated and updated in each iteration and are utilized to guide the d best particles
to fly in one direction toward a global minimum. The remaining (m — d) particles are not
updated. This leads the search process primarily to concentrate on using best d best

particles in a swarm.

The OPSO algorithm is evaluated and tested on the Taiwan power system. It is
complex power system and consists of 40 mixed-generating units, e.g., coal-fired, gas-
fired, diesel generating units and nuclear generating units. The load demand Pp is 8,550
MW. There are total 46 POZs in 25 TGUs. The transmission network loss Py is taken
into account. In addition, the generation limits and RRLs of 40 TGUs are also
considered. Thus, more dimensions and power constraints are imposed on the fuel cost

function.

The performance of the OPSO algorithm is compared with several other optimization
techniques including original PSO (the PSO algorithm in Paper C is GPSO algorithm).
The results in Paper C shows that the OPSO algorithm is achieving the best minimum,
maximum and mean costs and the lowest standard deviation while comparing it with the

PSO algorithm and other optimization techniques. In addition, the OPSO algorithm
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solves the inequality constraints in terms of generating limits, RRLs and POZs and
avoids the POZs. Thus, the optimization power generation schedule fits to Pp =8,550
MW while satisfying all power constraints. In addition, the OPSO algorithm achieves
on the lowest value of transmission network loss P, compared to the other competitive
algorithms. This means that the equality power balance constraint has been satisfied by
the OPSO algorithm. Whereas, the PSO algorithm is unable to solve the equality power
constraint of Taiwan power system. Thus, the OPSO algorithm significantly improves

the PSO algorithm in terms of high solution quality, robustness and convergence rate.

Figure 4.4 shows the convergence characteristics of OPSO and PSO algorithms.
Figure 4.4(A) shows essential average of the mean cost over 25 independent runs. The
OPSO algorithm has better convergence characteristics than the PSO algorithm.
Figure 4.4(B) shows the distribution of minimum costs over 25 independent runs. It
shows that OPSO algorithm is more stable than the PSO algorithm in getting the

optimum solution.

x 10°A. Convergence characteristics of OPSO and PSO Algorithms
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Figure 4.4. Convergence characteristics of OPSO and original PSO algorithms of
Taipower system.

4.2.4 Summary of Paper D

L. T. Al-Bahrani, J. C. Patra, and R. Kowalczyk, “Multi-gradient PSO Algorithm for
economic dispatch of thermal generating units in smart Grid,” in Proceedings of IEEE
PES Innovative Smart Grid Technologies 2016 Asian Conference (ISGT’2016 Asia),
Melbourne, Australia, 2016, pp. 258-263.
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In paper D, another novel algorithm called multi-gradient particle swarm
optimization (MG-PSO) is proposed for solving non-convex and non-smooth ED of
TGUs with several operating power constraints, e.g., RRLs and POZs. In MG-PSO
algorithm, different negative gradients are used. These negative gradients are used as
guides for the m particles in the search for a global optimum. The key of the MG-PSO
algorithm 1is the diversity in using negative gradients. Due to this diversity, the m
particles cover a large search space area, as much as possible. The velocity vectors of
the m particles are significantly affected by only one negative gradient named, the best
negative gradient among all used negative gradients. This makes the m particles adjust

their positions and improve their direction according to that the best negative gradient.

The performance of the MG-PSO algorithm has been verified on a small-scale PGS
(6 TGUs) and a medium-scale PGS (15 TGUs). The proposed MG-PSO algorithm
provides good quality and promising results in solving the ED problem. The MG-PSO
algorithm gives better results in terms of fitness values, e.g., minimum, maximum and
mean costs and has lowest standard deviation while comparing with PSO (the PSO
algorithm in Paper D is GPSO algorithm) algorithm and other optimization techniques

for both PGSs.

In terms of inequality and quality power constraints, the MG-PSO algorithm is able
to solve the inequality constraints imposed on small-scale and medium-scale PGSs by
avoiding the 12 POZs of 6 TGUs and 11 POZs of 15 TGUs. The MG-PSO algorithm
operates within the RRLs of each TGU and it is able to solve the P; for both PGSs. In
addition, the MG-PSO algorithm has zero mismatch condition in solving power balance

constraint for the 6 and 15 TGUs.

The MG-PSO algorithm significantly improves the PSO algorithm in terms of high
solution quality, robustness and convergence rate for small-scale and medium-scale
PGSs. Figure 4.5 shows the convergence characteristics of MG-PSO and PSO
algorithms for small-scale PGS. Figure 4.5(A) shows average of the mean cost over 25
independent runs. The MG-PSO algorithm has better convergence characteristics than
the PSO algorithm. Figure 4.5(B) shows the distribution of minimum costs over 25
independent runs. It can be seen that the MG-PSO algorithm is more stable in achieving

the optimum solution than the PSO algorithm in solving the ED of small-scale PGS.
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The convergence characteristics of MG-PSO and PSO algorithms are shown in
Figure 4.6. Figure 4.6(A) shows average of the mean cost over 25 independent runs.
The MG-PSO algorithm is better than the PSO algorithm in terms of convergence rate.
The distribution of minimum costs over 25 independent runs shown in Figure 4.6(B). It
can be seen that the MG-PSO algorithm is more stable in achieving the optimum

solution than the PSO algorithm in solving the ED of medium-scale PGS.
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4.2.5 Summary of Paper E

L. T. Al-Bahrani and J. C. Patra, “A novel Orthogonal PSO algorithm based on
orthogonal diagonalization”, Swarm and Evolutionary Computation, vol. xxx, pp. 1-23,

2017. In press.

In Paper E, more details and mathematical justification of the OPSO algorithm
are investigated. One of the prominent demerits of the GPSO algorithm is zigzagging
of the direction of search that leads to premature convergence by falling into a local
minimum. In this paper, the OPSO algorithm is proposed not only to overcome the

associated problems in the GPSO algorithm but also achieves better performance.

The OPSO algorithm consists of a swarm with m particles that looks for the global
optimum solution in a d-dimensional search space with m > d. In OPSO algorithm, the
m particles in a swarm are divided into two groups: one active group of best personal
experience of d particles and another passive group of personal experience of remaining
(m — d) particles. The aim of constructing two groups is to enhance the diversity of the
particles in a swarm. The d active group particles in each iteration undergo an OD
process. They are updated in such way that their position vectors are orthogonally
diagonalized. The passive group particles are not updated as their contribution in

finding correct direction is not significant.

The ideas of the active group particles are honoured by updating their respective
velocity and position vectors. Whereas, the ideas of the passive group particles are
ignored because their guidance may be insignificant or erratic, and thus, their velocity
and position vectors are not updated. However, the contributions of the swarm in both
groups are considered while determining the best experience. In OPSO algorithm, the
particles are updated using only one guide, thus avoiding the conflict between the two
guides that happens in the GPSO algorithm and leads the best d particles towards the

optimum solution.

In Paper E, the mechanism of OPSO algorithm is explained through an example of a
2-dimensional shifted function, f{x,y) = (x — 2)* + (y + 3)? + 9, plotted in Figure 4.7.

From visual inspection it can be seen that the x and y are shifted from the origin by

70



Chapter 4: Summary of Papers

(2.0,-3.0). The optimum solution of the given function equals to 9 at (x,y) = (2.0,-3.0).
The purpose of the OPSO algorithm is to find the values x and y such that the f{x,y) is
minimized.

f(xy) = (x-2)° + (y+3)*+9.0
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Figure 4.7. The landscape of f{x,y). The minimum value of the function f{x,y) is 9.0 at
x=2.0and y =-3.0.

The OPSO algorithm was carried out with 6 particles (m = 6), d = 2 and Ny, = 200,
where d is number of dimensions and N, is number of iterations. The values of
position vectors (X;, i = 1, 2, ..., 6), personal vectors (Gpersi, i = 1, 2, ..., 6) and the
diagonal vectors (D;, i = 1, 2) for different iterations are shown in Figure 4.8. In each
iteration, the six particles are divided into one active group of two best particles and a
passive group of four particles. According to the OD process, Gpers1 and Gpers> are
assigned to active group and (Gpers3, ..., Gpers6) are assigned to passive group. In each
iteration, the velocity and position vectors of only the active group are updated. As seen
from Figure 4.8, as iteration increases, the OD process causes [X]acive group =
[D]active group, and causing X to be a diagonal matrix. At the end of iteration, the best

Ghpers gives the optimum solution, yielding Gy, = (2.0, -3.0).

In order to have a geometric interpretation of the OPSO algorithm, the movement of
six position vectors and the two orthogonal vectors are shown in Figure 4.9. Here, X
and X; denote the position vectors of the active group and D; and D, denote the 2
orthogonal vectors. It can be seen that during early iterations, the position vectors X; and
X, move from random positions toward the orthogonal vectors D; and D». Finally, as the

algorithm iterates further, the X, and X; coincide with D; and D;.
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Figure 4.8. Numerical example showing convergence of the OPSO algorithm.
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Figure 4.9. Movement of six position vectors (X, X2, ..
Xi and X5. At r =200, X; and X, coincide with D; and D,.

D) and D, in a 2-dimensional search space (m

Thirty benchmark functions taken from the Congress on evolutionary computation

CEC 2005 [123] CEC 2008 [124] and CEC 2013 [125] are used in Paper E. All the

The second group includes eleven multimodal

benchmark functions and the third group includes ten shifted, rotated and shifted rotated

thirty benchmark functions are minimization tasks and are divided into three groups
based on their significant physical properties and shapes. The first group involves nine

unimodal benchmark functions.

functions.
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In order to measure the accuracy, consistency and robustness of OPSO and GPSO
algorithms, they were evaluated using the thirty benchmark functions given in Paper E.
In terms of convergence characteristics, the OPSO algorithm achieves much better
convergence than GPSO algorithm in all thirty benchmark functions. In addition, in
terms of fitness values, i.e., best fitness value (BFV), worst fitness value (WFV), mean
fitness value (MFV) and standard deviation (o), in GPSO algorithm, the three fitness
values BFV, WFV and MFV differ substantially from their optimum values for all the
thirty benchmark functions. Whereas, in OPSO algorithm, the three fitness values are
the same or very close to their optimum values for all the thirty benchmark functions.
The o remains 0 or close to 0 in OPSO algorithm, indicating high consistency and
reliability. The results shown in Paper E give evidence that the OPSO algorithm is more

accurate, stable and robust compared to the GPSO algorithm.

In Paper E, the sensitivity analysis of the proposed OPSO algorithm with variation of
swarm size m is also studied. Nine selected benchmark functions with d = 30
dimensions are tested. With the swarm population, m = 32, it has 30 particles in active
group and 2 particles in the passive group. The performance of OPSO algorithm
improves substantially compared to m = 30 (i.e., the number of particles in the passive
group equals to zero). Based on the observations in Paper E, as a thumb rule, one may
select the swarm population size between 10-30% more than the dimension of the

search space.

In addition, by taking thirty unimodal, multimodal, shifted, rotated, and shifted
rotated benchmark functions of dimension 30 and 100, it is shown that the OPSO
algorithm outperforms the GPSO algorithm and several recently reported ECTs in terms

of convergence, accuracy, consistency and reliability.

4.2.6 Summary of Paper F

L. T. Al-Bahrani and J. C. Patra, “Orthogonal PSO algorithm for economic dispatch of
thermal generating units under various power constraints in smart power grid,” Applied

Soft Computing, vol. 58, pp. 401-426, 2017.

In Paper F, the OPSO algorithm is proposed to solve the ED problem of small,

medium and large-scale PGSs with several practical TGUs and PGS constraints and to
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improve the performance by overcoming the drawback of GPSO algorithm. In addition,
the OPSO algorithm is also applied to solve shifted and rotated unimodal and

multimodal benchmark functions with 30 dimensions taken form CEC 2015.

In Paper F, different power constraints imposed on the fuel cost function are power
balance, P;, mismatch in Py (Prmismatcn), generation limits, RRLs, POZs, and feasible
operation zones (FOZs). To explain a set of inequality constraints imposed on the TGU,
this paper provides an illustrative example to show the lower and upper generation
limits and FOZs generated due to presence RRLs and POZs of a TGU. The

specifications of TGU, taken from [11] are given below.

P’ =170 MW; P in = 50 MW; P53 ax = 200 MW; UR, = 50 MW; DR, = 90 MW. The
TGU; has two POZs are: POZ; = [90,110] and POZ, = [140,160].

From (16) in Paper F, the new lower and upper limits of TGU, based on RRLs are:
PZ,Iow = 80 MW and ngh,'g;, = 200 MW,

and there are three FOZs are:

FOZ,;: 80<P,<90
FOZ,: 110<P, <140
FOZ;: 160 <P, <200

Figure 4.9 shows that TGU; has minimum and maximum operation limits (OL) given
by 50 MW and 200 MW, respectively. However, due to presence OF up-ramp and
down-ramp limits, the TGU, operates in a new lower and higher OLs given by P2, =
80 MM and P 4;gr = 200 MW. Also, the three FOZs are given by: FOZ; = [80,90] MW,
FOZ, =[110,160] MW and FOZ; = [160,200] MW shown in white color, and two POZs
are given by: POZ; = [90,110] MW and POZ, = [140,160] MW shown in dark color in
Figure 4.9. The intermittent zone ([50,80] MW) is out of OL of the TGU,.

1?’. min 13 I

.....

/ u I u 0
2 ) ’l ’l r 2
‘[:‘ 1 [2.1 12.3 13‘2 12 Iz.fu‘a.'!'r = R max

Out of OL FOZ 4

50 80 90 110 140 160 170 200
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Figure 4.10. Lower and upper generation limits, POZs and FOZs for TGU,.

75



Chapter 4: Summary of Papers

To study the accuracy, stability and robustness of OPSO and GPSO algorithms for
the ED problem, several performance measures are considered in this paper. The OPSO
and GPSO algorithms are evaluated using a small-scale (6 TGUs), a medium-scale (15

TGUs) and a large-scale (40 TGUs) PGS.

In small-scale PGS (6 TGUs), the generation limits, power balance, P;, P mismatchs
generation limits, RRLs, POZs, and FOZs are considered. The performance of the
OPSO algorithm is compared with GPSO algorithm and several other competitive
algorithms reported. In terms of fitness values, the performance of OPSO algorithm is
compared with 21 ECTs and GPSO algorithm. The OPSO algorithm provides best result
in terms of lowest mean fuel cost and lowest ¢ over 100 independent runs. This

indicates that the OPSO algorithm provides stable and accurate solution.

In terms of range (R), the OPSO algorithm provides the second best result among 22
competitive algorithms. In term of AET, the OPSO achieves the third best in terms of
AET. Thus, the overall performance of the OPSO algorithm is far superior than the
other 22 ECTs. In terms of convergence characteristics, the OPSO shows faster in
convergence compared to the GPSO algorithm. This indicates that OPSO algorithm is
more consistent and stable than GPSO algorithm. In terms of inequality and equality
constraints, the OPSO and GPSO algorithms avoid the 12 POZs of 6 TGUs and are
within RRLs and generation limits of each TGU. This indicates that both algorithms are
able to satisfy the inequality constraints of small PGS. In addition, The OPSO algorithm
provides zero mismatch, i.e., Pr mismaicn = 0, indicating that the power balance constraint

is satisfied.

In the medium-scale PGS (15 TGUs), the generation limits, power balance, P,
P mismarcn, generation limits, RRLs, POZs, and FOZs, are considered. The performance
of OPSO algorithm is compared with GPSO algorithm and other existing 17 ECTs. The
OPSO algorithm achieves the best results in terms of mean fuel cost, ¢ and R. These
results indicate that the OPSO algorithm provides consistent, stable and optimum

results.

However, in term of AET, OPSO is the second best; the GPSO algorithm being the

best among the 19 ECTs. In terms of convergence characteristics, the OPSO algorithm
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is more consistent, stable and reliable than the GPSO algorithm. In terms of inequality
and equality constraints, both the OPSO and GPSO algorithms are able to avoid the
eleven POZs of four TGUs and are within generation limits and RRL constraints, thus
both algorithms are able to satisfy the inequality constraints. In addition, the OPSO
satisfies the zero mismatch condition, i.e., Py mismarcn = 0, thus satisfying of the power

balance constraint for the medium-scale PGS.

The third PGS is a large-scale and taken from Taipower system [11], it consists of 40
TGUs with Pp = 8,550 MW. It contains 46 POZs distributed among 25 TGUs and the
RRLs are imposed on all the 40 TGUs as shown in Figure 4.10. The B-loss coefficients
are considered and they are generated randomly as is done in [126]. Unfortunately, this
PGS is tested by only a few authors under RRLs, POZs and P; constraints. This may be
due to unavailability of B-loss coefficients or due to its high dimensions with a large
number of power constraints. The generation limits, power balance, Pz, Pr mismatchs
generation limits, RRLs, POZs and FOZs are considered. The performance of the OPSO
algorithm is compared with GPSO algorithm and several other competitive algorithms.
The OPSO algorithm provides the best result in terms of mean fuel cost and o over 100
independent runs. This means that the OPSO algorithm provides the most optimum and
consistent results. The range R of OPSO algorithm is the lowest among the 15 ECTs,
thus indicating that OPSO algorithm gives solution with the lowest dispersion. The AET
of OPSO (69 sec), due to its computational complexity, is found to be higher than the
GPSO (47 sec). These results indicate that among the 15 ECTs, the OPSO algorithm is

the most robust, stable, and is able to provide most optimum solution.

In terms of the convergence characteristics, the GPSO algorithm is unable to solve
the ED problem with such a high dimension and under such large number of constraints.
Whereas, the OPSO algorithm is capable of providing consistent and reliable optimum
solution and gives high accuracy in solving such this complex problem. In terms of
inequality and quality constraints, the GPSO algorithm violates RRLs. This means that
GPSO algorithm fails in solving 40 TGUs power system indicating that GPSO
algorithm is unable to solve large-scale ED problem. Whereas, the OPSO algorithm is
able to avoid the 46 POZs of 25 TGUs and remain within RRLs. In addition, the power
balance constraint is achieved by the OPSO algorithm and the Pz smarcin 1S more close to

0.0 than the other competitive algorithms.
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The ED of power with various power constraints makes the objective function, i.e.,
cost function becomes multimodal function and it has local optima. In order to provide a
fair comparison and demonstrate the goodness of the proposed OPSO algorithm, ten
selected shifted and rotated functions from CEC benchmark functions 2015 [127] are

considered in Paper F.

The performance of the OPSO algorithm is compared with GPSO algorithm and
several other competitive algorithms in terms of several performance measures. In terms
of fitness values, i.e., BFV, WFV and MFV, in OPSO algorithm, these values are the
same to their optimum values for all the ten functions. Whereas, in case of the GPSO
algorithm, the BFV, WFV and MFV differ substantially from their optimum values. In
terms of o, it remains close to 0.0 in OPSO algorithm, indicating high consistency and
reliability. Thus, the OPSO algorithm is more accurate, stable and robust compared to
the GPSO algorithm. In terms of the AET, the OPSO algorithm reaches “Threshold
Error” within a specific AET. However, GPSO algorithm cannot reach “Threshold
Error”, indicating that GPSO is unable to solve these ten shifted and rotated CEC 2015

benchmark functions.

In addition, the OPSO algorithm is compared with several existing ECTs with
extensive simulation studies. The proposed OPSO algorithm has shown evidence of
superior performance compared to several existing ECTs in providing reliable,
consistent and optimum solution. The OPSO algorithm is also found to be statistically

significant against several ECTs including top-ranked CEC 2015 algorithms.

Thus, the OPSO algorithm is able to achieve superior performance in terms of
convergence, consistency and accuracy compared to GPSO algorithm and several

competitive ECTs.

4.2.7 Summary of Paper G

L. T. Al-Bahrani and J. C. Patra, “Multi-gradient PSO algorithm for optimization of
multimodal, discontinuous and non-convex fuel cost function of thermal generating

units under various power constraints in smart power grid”, Energy, vol. 147, pp. 1070-

1091, 2018.
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In Paper G, the MG-PSO algorithm is proposed to solve the challenging of the ED
problem with non-linear, multimodal and discontinuous fuel cost function. In MG-PSO
algorithm, two phases, called Exploration and Exploitation, are used. In the Exploration
phase, the m particles are called Explorers and undergo multiple episodes. The m
Explorers use a different negative gradient to explore new neighbourhood in each
episode. Whereas, in the Exploitation phase, the m particles are named Exploiters. The
m Exploiters use only one negative gradient that is less than that of the Exploration
phase, to exploit a best neighborhood. This diversity in negative gradients provides a

balance between global search and local search.

In Paper G, the MG-PSO algorithm is applied to solve the ED problem of four PGSs,
considering more power constraints including valve-point loading (VPL) effects. In
addition, the mathematical analysis and theoretical justification of MG-PSO algorithm

1s provided.

The PGS-1 is a medium-scale system and consists of 13 TGUs. Here, the VPL
effects and power generation limits are considered. However, the RRLs, POZs and P,
are not considered. The performance of the MG-PSO algorithm is compared with
GPSO-w algorithm and several other competitive algorithms. The performance of the
proposed MG-PSO algorithm is compared with other 9 existing ECTs. The MG-PSO
algorithm provides the best result in terms of mean fuel cost over 25 independent runs.
However, it is the second best algorithm in terms of 6. This indicates that the MG-PSO
algorithm provides most optimum and consistent results. In addition, the range R of
MG-PSO algorithm is the second best, thus indicating that MG-PSO algorithm provides
solution with low dispersion. These results indicate that among the 9 ECTs, the MG-
PSO algorithm is stable, robust and is able to provide optimum solution. In terms of
convergence characteristics, The MG-PSO algorithm settles at about 150 iterations and
achieves mean fuel cost of about $17,956/h. However, the GPSO-w algorithm takes
more than 500 iterations to converge, and settles with a non-optimum mean fuel cost of
about $18,326/h. Thus, the MG-PSO algorithm is capable of providing consistent and

reliable solution.

The PGS-2 is also a medium-scale PGS with 15 TGUs. It has 11 POZs in 4 TGUs.
The generation limits and RRLs are applied to each TGU. In addition, power balance,
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the Pr, Prmismach, generation limits, RRLs, POZs, and FOZs are considered. The
performance of the MG-PSO algorithm is compared with GPSO-w algorithm and
several other 19 ECTs competitive algorithms in terms of several performance
measures. The MG-PSO algorithm achieves the best positions in terms of ¢ and R and
the second best position result in terms of mean fuel cost. However, in terms of AET,
the MG-PSO algorithm is the fourth best. In terms of inequality and equality
constraints, both the MG-PSO and GPSO-w algorithms are able to avoid the 11 POZs
imposed to 4 TGUs and are remain within RRLs imposed on each TGU. In addition, the
MG-PSO algorithm is able to satisfy the zero mismatch condition, i.e., Pr mismarcn = O,
thus satisfying the power balance constraint. These results indicate that the MG-PSO

algorithm provides consistent, stable and robust performance.

The PGS-3 is a large-scale PGS taken from Taipower system [11]. It consists of 40
TGUs with 46 POZs distributed among 25 TGUs. The generation limits and RRLs are
imposed on all the 40 TGUs. In addition, the power balance, P;, Py mismarcn, POZs, and
FOZs, are considered. The performance of MG-PSO algorithm is compared with
GPSO-w and other 15 existing ECTs. The MG-PSO provides the best result in terms of
mean fuel and o over 25 independent runs. This indicates that the MG-PSO algorithm
provides the most optimum and consistent results. In addition, the range R of MG-PSO
algorithm is the lowest among the 16 ECTs, thus indicating that MG-PSO algorithm
provides solution with lowest dispersion. In terms of AET, the MG-PSO algorithm is

the third best. The GPSO-w algorithm is not able to provide an accurate solution.

In terms of inequality and equality constraints, the GPSO-w algorithm violates the
RRLs of three TGUs. This means that GPSO-w algorithm fails in solving PGS-3.
However, the MG-PSO algorithm avoids all the 46 POZs of 25 TGUs and remains
within RRLs. In addition, the MG-PSO algorithm is able to satisfy the zero mismatch
condition, i.e., Py mismaren = 0, thus satisfying the power balance constraint. These results
indicate that among the 16 ECTs, the MG-PSO algorithm is the most stable, robust and

is able to provide most optimum solution.

The PGS-4 is a very large-scale PGS taken from Korean PGS [12]. It is a complex
system with 140 TGUs each having generation limits and RRLs. In addition, the cost
functions of 12 TGUs have VPL effects and 4 TGUs have 11 POZs. The performance
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of MG-PSO algorithm is compared with two other algorithms as well as GPSO-w. The
MG-PSO algorithm is efficient in obtaining the best result in terms of mean fuel cost
over 25 independent runs. In addition, in terms of &, the performance of the MG-PSO
algorithm is the second best. This shows that the MG-PSO algorithm provides optimum
and consistent results. Also, the range R of MG-PSO algorithm is the second lowest
among the 4 ECTs, thus indicating that it provides solution with low dispersion. In

terms of AET, the MG-PSO algorithm shows the second best performance.

In terms of inequality constraints, it is seen that the GPSO-w algorithm violets RRLs
in 11 POZs. This indicates that GPSO-w algorithm is unable to solve ED problem of
very large-scale TGUs. Whereas, the MG-PSO algorithm avoids all the 11 POZs
imposed on 4 TGUs and remains working within the RRLs of each TGU and overcomes
the VPL effects imposed on 12 TGUs. These results indicate that among the 4 ECTs,

the MG-PSO algorithm is stable and robust and is able to provide optimum solution.

Table 4.1 shows the comparison in terms of AET between the two proposed
algorithms, OPSO and MG-PSO algorithms, for solving the ED problem of medium-
scale and large-scale PGSs. We have seen that both the proposed OPSO and MG-PSO
algorithms achieve superior results for the ED problem in terms of several performance
measures compared with the PSO variants and several competitive algorithms. However
when solving large-scale TGUs, e.g., 40 TGUs, the OPSO algorithm requires more time
than MG-PSO algorithm to obtain the global optimum because of the condition of m >
d. However, this demerit is not prominent when solving small-scale and medium-scale

PGSs.

Table 4.1. Comparison of the AET between OPSO and MG-PSO algorithms for
medium and large PGSs.

OPSO MG-PSO
S1. P
No. GS dlm Mean c AET dlm Mean c AET
Cost ($/h) | ($/h) (sec) Cost ($/h) | ($/h) | (sec)

Medium-scale

1 (15 TGUs) 15]18| 32,666.92 |0.1394| 437 |15|20]| 32,677.96 |0.0348| 9.20
Large-scale

2 (40 TGUS) 40145/127,349.83|302.35| 69.32 |40(20]126,625.02| 20.27 |29.38
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In Paper G, statistical tests were also carried out to demonstrate the effectiveness
of the proposed MG-PSO algorithm. The MG-PSO algorithm has proved to be a
powerful and highly effective algorithm that is capable of solving multimodal,

discontinuous and non-convex functions.

4.2.8 Summary of Paper H

L. T. Al-Bahrani and J. C. Patra, “Multi-gradient PSO algorithm with enhanced

exploration and exploitation,” Applied Soft Computing. Under review.

In Paper H, the impact of the VPL effects on the fuel cost function is demonstrated.
Let us consider two TGUs, TGU; and TGU,, with a set of parameters as shown in
Table 4.2 [44]. The TGU, and TGU, are steam powered turbo generators with multiple
valves. Practically, the valves of steam-turbine control the steam entering through
separate nozzle groups. Each nozzle group provides best efficiency when it is operating
at maximum active output power. Thus, when increasing the active output power, the
valves of seam-turbine are opened and closed in sequence in order to achieve high
efficiency for a given output power. Then, it causes ripple-like effects and subsequently

the characteristics of the fuel cost function become non-linear.

Figure 4.10 shows the total fuel cost of TGU; and TGU, under VPL effects. Multiple
local minima are caused by the sinusoidal function imposed on the fuel cost of each

TGU. Thus, the MG-PSO algorithm is proposed to solve such a complex problem.

Table 4.2. Parameters of TGU; and TGU,.

a b, G ¢ | Ji | Pimin
$h |$/MWh|$/MW?h| $/h |(MW™) | (MW)
1 958.29| 21.60 |0.00043 | 450| 0.041 150

2 1,313.60| 21.05 |0.00063 | 600| 0.036 | 135

TGU;
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Figure 4.11. Total fuel cost function of TGU, and TGU, under VPL effects.

In addition, the MG-PSO algorithm is used to solve ten selected shifted and rotated
unimodal and multimodal benchmark functions with dimensions of 30 and 100 taken
from CEC 2015. The mechanism of the MG-PSO algorithm depends on two phases
called Exploration and Exploitation. In the Exploration phase, the m particles are named
Explorers and undergo multiple episodes. The Explorers use a different negative
gradient in each episode to explore new neighbourhood whereas in the Exploitation
phase, the m particles are named Exploiters and they use one negative gradient that is
less than that of the Exploration phase, to exploit a best neighborhood. This diversity in
negative gradients gives a balance between global search and local search of the

Explorers and Exploiters.

Performance of the proposed MG-PSO and GPSO-w algorithms are obtained in
terms of fitness values, convergence rate, accuracy, consistency, robustness and
reliability. Ten shifted and rotated unimodal and multimodal benchmark functions are
considered. Each benchmark function is tested with d = 30 and d = 100 dimensions. The
comparison is achieved between the MG-PSO and GPSO-w algorithms in terms of

BFV, WFV, MFV, 6 and AET.

In case of GPSO-w algorithm, the BFV, WFV and MFV differ substantially from
their optimum values for all the ten functions with d = 30 and d = 100. However, in
MG-PSO algorithm, the three fitness values are the same as their optimum values for all
the ten benchmark functions. In terms of the o, it remains close to 0.0 in MG-PSO

algorithm, indicating its high consistency and reliability. In terms of the AET, the
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MG-PSO algorithm reaches “Accepted Error” within a specific AET. However, the
GPSO-w algorithm could not reach “Accepted Error”, indicating that GPSO-w is unable
to solve these ten shifted and rotated benchmark functions. Whereas, MG-PSO
algorithm successfully achieves the optimum solution for all the ten benchmark
functions with d = 30 and d = 100. These results prove that the MG-PSO algorithm is

more accurate, stable and robust compared to the GPSO-w algorithm.

The MG-PSO algorithm is also applied to solve the ED of South Korea power
generating system with 140 TGUs [12]. Superior performance by the MG-PSO
algorithm over the GPSO-w algorithm and several existing optimization techniques has
been shown in terms of fitness value, convergence rate, and consistency. In addition, by
using unpaired t-test, the statistical significance of the MG-PSO algorithm is found out

against several contending algorithms including top-ranked CEC 2015 algorithms.

4.3 Chapter summary

This Chapter provides an executive summary of each of the eight Papers.
Contributions of these eight Papers were investigated in this Chapter. The salient

features and important results of each of the eight Papers were highlighted.
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Chapter 5: Discussions and Future Directions

5.1 Chapter overview

This thesis ends with a critical discussion, linking the characteristics of evaluating
the proposed two novel algorithms, orthogonal PSO (OPSO) and multi-gradient PSO
(MG-PSO) algorithms. The two algorithms have been applied to solve the ED problem
of small-scale to large-scale TGU power generating systems and a set of benchmark
functions taken from the Congress of evolutionary computation 2015 (CEC 2015). In
Section 5.2, discussion on the main investigations is presented. Then, addressing the
answer of the research questions is discussed in Section 5.3. After that, outcomes of this
study are presented in Section 5.4. Significant contribution to knowledge from this
study is given in Section 5.5. Subsequently, limitations and recommendations for future
study are provided in Section 5.6. Then, the conclusion is presented in Section 5.7.

Finally, Chapter summary is given in Section 5.8.

5.2 Main investigations

The economic dispatch (ED) of active output power of large-scale TGU power
generating systems with various practical power constraints is a challenge in operation
and management of the power generating systems. The aims of this thesis have been

achieved by completing the eight Papers to address the following points.

The first point of investigation is the current issues faced by Iraq NDC to solve the

complex ED problem as reported in Section 1.3.

The second point investigated is the review of the existing literature for solving non-
convex ED problem of large-scale TGUs with different power constraints. The
comprehensive literature review reveals that the ECTs are continuously being developed
and improved year by year and being compared with other optimization techniques to
deal with even larger PGSs with an increasing number of practical operating power

constraints.
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The third point of investigation is identifying the gap in this field of research.
Recently, a large number of ECT-based algorithms have been proposed and applied for
the optimization of non-convex and non-smooth ED problem. However, the issue of
scalability has not been addressed sufficiently. In other words, the number of ECTs
techniques which can be applied to large-scale ED problem with or more than 40

TGUs is small.

The next point of investigation was to address the potential difficulties of the ED
problem. These have been thoroughly analysed in the Papers A-H that are the backbone
of this thesis. Especially, analysis of the active output power of each TGU with different
operating power constraints was emphasized. Two novel algorithms, OPSO and

MG-PSO, are proposed and their performance was evaluated.

The performance of the proposed OPSO and MG-PSO algorithms is assessed on
small-scale to large-scale ED problems with several operating power constraints. The
power constraints are generation limits, VPL effects, POZs, FOZs, RRLs, Py, P mismatch,
and power balance. It is shown that the OPSO and MG-PSO algorithms are robust,
efficient, and have a high performance when applied to complex, large-scale practical

ED problems.

5.3 Addressing the answer to the research questions

The importance of the ED problem as a highly complex optimization problem in
operation and management of TGUs power generating system was investigated through
the answer to question #1. One can see the significance of solving ED problem from the
results shown in Papers F and G in testing four small-scale to large-scale PGSs (PGS-1,
PGS-2, PGS-3 and PGS-4) in terms of minimum, maximum and mean fuel costs. The
significance has been demonstrated by optimally allocating the required load demand
among the online TGUs such that the operating fuel cost is minimized. Thus, this study
gives an approach to determine the most efficient, low-cost, stable and reliable

operation of the PGSs.

The answer to question #2 has been investigated by proposing two novel algorithms,

OPSO and MG-PSO algorithms, for solving the ED problem of large-scale TGUs power
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generating system with several operating power constraints. The PSO variants, GPSO
and GPSO-w algorithms, mentioned in this study are unable to solve such a complex
problems, because of loss of balance between global search and local search. In
addition, the performance of GPSO and GPSO-w algorithms deteriorates for high-
dimensional optimization problems, especially in presence of non-linear operating
constraints. Both the OPSO and MG-PSO algorithms were proposed in this thesis to
alleviate the shortcomings in GPSO and GPSO-w algorithms and for solving the
unimodal and multimodal complex problems including the ED problem, as shown in

Papers A-H.

In addition, several operating power constraints, e.g., generation limits, RRLs, POZs,
power balance, FOZs, P; and Py mismach, are taken into account in computing the fuel
cost function. All these power constraints were solved through a set of equality and
inequality constraints imposed on fuel cost function for the ED problem of small-scale
to large-scale PGSs. Formulation the non-convex fuel cost function with VPL effects
was also achieved. The mathematical analysis and theoretical justification for the ED

problem were reported in Papers A-H.

A set of unimodal, multimodal, shifted, rotated and shifted and rotated benchmark
functions taken from the Congress of evolutionary computation 2015 (CEC 2015) were
addressed with 30 and 100 dimensions. In addition, using unpaired t-test, the statistical
significance of the OPSO and MG-PSO algorithms have been found against several
contending algorithms including top-ranked CEC 2015 algorithms.

The OPSO algorithm was found to be superior than several contending of ECTs in
solving large-scale TGUs in terms of minimum, maximum and mean fuel costs.
However, the OPSO algorithm consumes excessive execution time because it uses the
OD process in d best particles. Therefore, the number of particles is about 10-30% more
than the dimension of search space. This leads to more execution time in each
iteration. Therefore, the MG-PSO algorithm was proposed to overcome this demerit of

the OPSO algorithm.
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5.4 Outcomes of this study

This study is focused on applying the OPSO and MG-PSO algorithms to solve ED
problem. In addition, these two algorithms were successfully applied to solve a set of
selected complex unimodal and multimodal benchmark functions taken from the CEC

2015. The main outcomes of this study are summarized below.

5.4.1 Orthogonal PSO algorithm

The OPSO algorithm is applied for solving the ED problem of small-scale to large-
scale TGU power systems with various practical power constraints. In small-scale PGS
(6 TGUs), the OPSO algorithm provides the best results in terms of mean cost value
(Fmean) and has lowest standard deviation (o) compared with 21 ECTs as well as the
GPSO algorithm, as shown in Table 3 (Paper F). In terms of inequality and equality
operating power constraints, both the OPSO and GPSO algorithms are able to avoid the
12 POZs in 6 TGUs and are within RRLs, as shown in Paper F. In terms of power
balance constraint, the OPSO algorithm provides zero mismatch, i.e., P mismarcn = 0,

indicating that the power balance constraint is satisfied.

For a medium-scale PGS (15 TGUs), the OPSO algorithm provides the best results in
terms of Fe.n and 6 among 19 existing ECTs. In terms of average execution time
(AET), the OPSO is the second best among the 19 ECTs. In terms of the convergence
characteristics, the OPSO algorithm is more consistent, stable and reliable than the
GPSO algorithm, as shown in Figures 13 and 14 (Paper F). In terms of inequality power
constraints, the OPSO and GPSO algorithms are able to avoid the 11 POZs in 4 TGUs
and are within RRL power constraints, as shown in Table 9 (Paper F). Thus, both
algorithms are able to satisfy the inequality constraints of medium-scale PGS. In terms
of the power balance constraints, the OPSO algorithm satisfies the zero mismatch

condition, i.e., Py mismaich = 0.

For a large-scale PGS (Taiwan PGS with 40 TGUs), the OPSO algorithm provides
the best result in terms of F),.., and o, as shown in Table 12 (Paper F). The AET of the
OPSO algorithm is 69 sec. Due to its computational complexity, it is found to be higher
than the GPSO (47 sec). In terms of convergence characteristics, the GPSO algorithm is
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unable to solve the ED problem with such a high dimension (40 TGUs) with such a
large number of constraints. In terms of inequality power constraints, the GPSO
algorithm violates the RRLs, as shown in Table 13 (Paper F). However, the OPSO
algorithm avoids the 46 POZs in 25 TGUs and remains within RRLs. The GPSO is out
of comparison in terms of power balance constraint, because it failed in solving large-
scale PGS. However, the OPSO algorithm satisfies the zero mismatch condition, i.e.,

PL,mismatch = O

The proposed OPSO algorithm is also applied on a set of unimodal, multimodal,
shifted, rotated, and shifted and rotated benchmark functions with dimensions of 30 and
100, as shown in Papers E and F. Performance comparison between the OPSO and
GPSO algorithms in terms of best fitness value (BFV), worst fitness value (WFV),
mean fitness value (MFV), mean fitness error value (MFEV), ¢ and AET are provided

in Table 16 (Paper F) and Table 4 (Paper E).

In GPSO algorithm, the three fitness values BFV, WFV and MFV differ substantially
from their optimum values. However, in OPSO algorithm, the three fitness values are
the same to their optimum values. The MFEV of GPSO algorithm is so far from
“Threshold Error” However, in the OPSO algorithm, the MFEV is smaller than
“Threshold Error”. In terms of the o, the OPSO algorithm remains close to 0.0. In terms
of the AET, the OPSO algorithm reaches “Threshold Error” within a specific AET.
However, the GPSO algorithm cannot reach “Threshold Error”, which indicating that
the GPSO is unable to solve unimodal, multimodal, shifted, rotated, and shifted and
rotated benchmark functions complex benchmark functions with 30 and 100

dimensions.

In addition, the performance of the proposed OPSO algorithm is compared with few
ECTs recently reported by other authors as shown in Papers E and F including the three
top-ranked algorithms in the CEC 2015. Superior performance of the proposed OPSO
algorithm has been shown compared to several existing ECTs in providing reliable,
consistent and optimum solution for CEC 2015 benchmark functions. In addition, The
OPSO algorithm was found to be statistically significant against several ECTs including

top-ranked CEC 2015 algorithms.
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5.4.2 Multi-gradient PSO algorithm

The MG-PSO algorithm are applied for solving the ED problem of small-scale to
large-scale TGU power generating systems with various practical power constraints. In
small-scale PGS (6 TGUs), the MG-PSO algorithm provides the best results in terms of
minimum, maximum and mean cost and has lowest standard deviation (c) compared
with 14 ECTs as shown in Table I (Paper D). In terms of inequality and equality
operating power constraints, both the MG-PSO and GPSO algorithms are able to avoid
the 12 POZs in 6 TGUs and are within RRLs, as shown in Paper D. In terms of power
balance constraint, it can be seen that the MG-PSO algorithm provides zero mismatch,

1.e., P mismaren = 0, indicating that the power balance constraint is satisfied.

For a medium-scale PGS (13 TGUs), the effects of VPL and generation limits in
each of the 13 TGUs are taken into account. Table 4 in Paper G shows, the MG-PSO
algorithm provides the best result in terms of Fj,..,. However, it is the second best in
terms of o. In terms of the convergence characteristics, the MG-PSO algorithm is
capable of providing consistent and reliable solution. However, the GPSO-w algorithm
was rather far from optimum solution due to VPL effects, as shown in Figures 5 and 6

(Paper G).

For another medium-scale PGS (15 TGUs), the P;, RRLs, POZs, generation limits
are taken into account for solving the non-convex ED problem. The results in Table 9
(Paper G) show that the MG-PSO algorithm achieves the best positions in terms of ¢
and the second best position result in terms of Feq,. The best Fpeq, is achieved by the
OPSO algorithm. However, in terms of AET, the MG-PSO algorithm was the fourth
best (9.2088 sec). However, the OPSO algorithm is faster in convergence (4.377 sec)
and is better performance than the MG-PSO algorithm in solving the ED of 15 TGUs.
In terms of inequality power constraints, the MG-PSO, OPSO and GPSO-w algorithms
are able to avoid the 11 POZs in 4 TGUs and are within RRL power constraints, as
shown in Table 10 (Paper G). Thus, the MG-PSO, OPSO and GPSO algorithms are able
to satisfy the inequality constraints of medium-scale power system (15 TGUs). In terms
of power balance constraints, the MG-PSO and OPSO algorithms satisfy the zero

mismatch condition, i.e., Py mismarcn = 0, as shown in Table 11 (Paper G).
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For large-scale PGS (Taiwan PGS with 40 TGUs), the generation limits, RRLs, P;,
Py mismarcn, power balance, and POZs are taken into account. The MG-PSO algorithm
provides the best result in terms of F).., and ¢ as shown in Table 14 (Paper G). This
indicates that the MG-PSO algorithm provides the most optimum and consistent results.
In terms of AET, the MG-PSO is faster in convergence (29.38 sec) that the OPSO
algorithm (69.32 sec). However, the GPSO-w algorithm is unable to provide an accurate
solution. The GPSO-w algorithm was unable to solve the ED problem with such a high
dimensional search space and under large number of power constraints, shown in Table

14 (Paper G).

In terms of inequality constraints, the GPSO-w algorithm failed in solving 40 TGUs
system. It is unable to solve large-scale ED problem. However, the MG-PSO algorithm
is able to avoid all the 46 POZs in 25 TGUs and remains within RRLs. In addition, the
power balance constraint is solved by the MG-PSO algorithm, it is more close to 0.0
than the OPSO algorithm, as shown in Table 16 (Paper G). However, the GPSO-w is

out of the comparison, because it failed in solving the ED of Taiwan PGS.

For a very large-scale PGS, it is South Korea PGS with 140 TGUs. Each TGU has
RRLs and the fuel cost functions of 12 TGUs have VPL effects and 4 TGUs have 11
POZs. The GPSO-w was unable to solve the 140 TGUs power system with such a high
dimension (d = 140) and under such a large number of power constraints, as shown in
Table 18 (Paper G). Early convergence of the GPSO-w algorithm indicates that it has
trapped into one local minimum. This indicates that the GPSO-w algorithm is unable to
solve the ED problem. However, the MG-PSO algorithm is efficient in obtaining the
best result in terms of Fyeq,. In addition, in terms of o, the performance of the MG-PSO
algorithm is the second best. Thus, the MG-PSO algorithm is stable and robust and is

able to provide optimum solution of such a complex PGS.

In terms of inequality power constraints, the GPSO-w algorithm violates the RRLs in
11 TGUs, as shown in Table 19 (Paper G). The GPSO-w algorithm failed in solving the
ED of 140 TGUs. Whereas, the MG-PSO algorithm avoids the 11 POZs in 4 TGUs and
remains within the RRLs. In addition, the MG-PSO algorithm is able to solve the non-
convex fuel cost function due to the effects of VPL in 12 TGUs.
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The MG-PSO algorithm is also applied on ten selected shifted and rotated
benchmark functions with dimensions of 30 and 100 taken from CEC 2015.
Performance comparison between the MG-PSO and GPSO-w algorithms in terms of
BFV, WFV, MFV, MFEV, ¢ and AET are shown in Tables 5 and 6 (Paper H). In case
of GPSO-w algorithm, the BFV, WFV and MFV differ substantially from their
optimum values for all the ten functions withd = 30 and d = 100. However, in MG-PSO
algorithm, the BFV, WFV and MFV are the same as their optimum values for all the ten
functions. The MFEV of GPSO-w algorithm is far from the “Accepted Error”. Whereas,
in MG-PSO algorithm, the MFEV is smaller than “Accepted Error”, the MFEV = 0.0
for all the ten functions. In terms of the o, the MG-PSO algorithm remains close to 0.0.
In terms of the AET, the MG-PSO algorithm reaches “Accepted Error” within a specific
AET. However, the GPSO-w algorithm is unable to reach “Accepted Error”. Thus, the
GPSO-w is unable to solve the selected ten shifted and rotated with 30 and

100 dimensions.

Based on the sensitivity analysis of the MG-PSO algorithm against a swarm
population size, the appropriate value of m is 20 is selected in solving different
objective functions. This means that the MG-PSO algorithm is less affected by
swarm population size, as shown Papers G and H. In contrast, the OPSO algorithm is

largely affected by increasing the dimension of the problems.

Statistical tests are carried out to demonstrate the effectiveness of the proposed
MG-PSO algorithm. Thus, it has proved to be a powerful and highly effective algorithm

that is capable of solving multimodal, discontinuous and non-convex functions.

5.5 Significant contribution to knowledge

The eight Papers, Papers A-H appended in Appendix-1 represent original and
distinguished contribution to knowledge in the field of operation and management of
the power generating systems. These eight papers have focused on the development of
two novel algorithms, i.e., OPSO and MG-PSO algorithms, to solve unimodal and
multimodal problems including the ED problem. Developing new computation
techniques such as OPSO and MG-PSO algorithms for solving the ED problem is

necessary with the rapid technological evolution in smart power grid. This study will
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help the electrical engineers in the dispatch center to manage and govern the electrical

energy to the consumer.

5.6 Limitations and recommendations for future study

5.6.1 Limitations

An important limitation is due the security reasons, the Iraq PGS data is not
available. Therefore, technical data of other power systems that are similar to Iraq PGS,
e.g., Taiwan [11] and South Korea [12] power systems, as well as small and medium

power systems were considered in this study.

Another important limitation that was being faced in this study is that, obtaining the
complete technical data for a real-world PGS with its practical power constraints are
difficult. For example, in Taiwan power system, the B-loss coefficients are not

available. Therefore, they are generated randomly as is done in [126].

Finally, another important limitation that was being faced in this study is that, the
number of other ECTs applied to large-scale real-world ED problems remains low. This
means that the performance comparison of the proposed OPSO and MG-PSO

algorithms is restricted by a limited number of competitive ECTs.

5.6.2 Recommendations

In this study, the OPSO and MG-PSO algorithms have been proved to be highly
effective optimization techniques to solve the non-convex ED problem. Hence, the

recommendation of this study is to apply these two novel algorithms, i.e., OPSO and

MG-PSO algorithms, in solving the ED problem of Iraq PGS.

In a smart power gird environment, the dispatch of active output power of different
energy resources at minimum operational cost has been a significant part of research.
Recently, with increasing interests in renewable energy resources, the SPG comprises
different types of power stations, e.g., solar, wind, thermal, geothermal, gas, hydro,

nuclear power stations. In addition, a large number of the power constraints are
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imposed. Thus, finding an optimum solution to such a SPG has become an essential
issue. The future work need to be directed towards identifying such a real-world
problem which can be solved using the two novel algorithms, i.e. OPSO and MG-PSO

algorithms.

5.7 Conclusion

Economic dispatch (ED) is one of the most essential and challenging task in a PGS.
It is a highly complex optimization problem in operation and management of the power
generating systems. The significance of the ED problem has been investigated this

thesis.

Two novel algorithms, i.e., orthogonal PSO (OPSO) and multi-gradient PSO (MG-
PSO) algorithms have been proposed to solve such a complex problem. With extensive
simulation studies, performance of both the algorithms was compared with PSO
variants and several existing competitive algorithms. Their superior performances are
demonstrated in terms of mean, maximum and minimum costs, convergence rate,
accuracy and consistency when solving small-scale to large-scale power systems. In
addition, the OPSO and MG-PSO algorithms were applied to a set of complex unimodal
and multimodal benchmark functions with 30 and 100 dimensions. Both algorithms

outperformed several existing ECTs including top-ranked CEC 2015 algorithms.

The sensitivity analysis and statistical tests were carried out to demonstrate the
effectiveness of the OPSO and MG-PSO algorithms. Thus, the both algorithms proved
to be powerful and highly effective algorithms that are capable of solving several

complex unimodal and multimodal functions including the ED problem.
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Smart Grid Applications

Loau Tawfak Al Bahrani
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Abstract— Recently Particle Swarm Optimization (PSO)
algorithms have been used to solve several engineering
optimization problems. In this paper, we propose a novel
Orthogonal PSO Learning Algorithm (OPSOLA) to solve
Economic Dispatch (ED) problems in a Smart Electric Power
Grid (SEPG) application. Thermal power “turbine-generator”
has several nonlinear characteristics, e.g., the ramp-rate limits,
prohibited operating zones and non-smooth cost functions. The
proposed OPSOLA has ability to solve such complex problems
in SEPG. The OPSOLA utilizes a combined method by adding
orthogonality to PSO algorithm. In this combined learning
strategy, the particles move and construct a new exemplar to
guide the particles to fly more steadily toward the optimum
solution. This is accomplished by determining the promising
movements of the candidate particle in subsequent iterations
based on orthogonality. The OPSOLA is evaluated and tested
through a IEEE 6-unit thermal power plant and by comparing
the results with several other optimization methods. We found
that OPSOLA provides better performance in solving the ED
problems in terms of convergence characteristics, quality of
solution and execution time.

Keywords—Computational intelligence method; nonlinear
optimization; economic dispatch; orthogonality; particle swarm
optimization.

I. INTRODUCTION

One of the major operational objectives of a Smart
Electric Power Grid (SEPG) is to provide a continuous
supply of active power to the consumers by maintaining
steady state voltage and frequency. The power supply must
be provided with high reliability and security. Besides, the
adverse environmental impacts are to be maintained at a
minimum level. All of these limitations are to be maintained
at a minimum cost. On the other hand, SEPG is becoming
larger and more complex due to a large demand on energy,
integrations of diverse alternate power sources, e.g., wind
and solar power, and the diversity of the electric appliances
utilized [1]. In addition, the increase in fossil fuel demand in
thermal power plants increases generation costs and
increases CO, emissions into the environment. Therefore,
optimization solution has become more significant in the

978-1-4799-1959-8/15/$31.00 ©2015 IEEE
978-1-4799-1959-8/15/$31.00 (©)2015 IEEE

Jagdish C. Patra

Faculty of Science, Engineering and Technology
Swinburne University of Technology
Melbourne, Australia
E.mail: JPatra@swin.edu.au

operation of the SEPG for economical and environmental
reasons and for saving fuel cost and environment
conservation [2]. This requires analytic methods and
Computational Intelligence Techniques (CITs) to solve
optimization problems that are nonlinear with nonlinear
objective functions and nonlinear equivalence with equality
and inequality constraints. Therefore, Economic Dispatch
(ED) becomes one of the important applications in SEPG
operation.

Traditionally, the ED problem can be solved by many
mathematical methods, including lambda iteration method
[3], the gradient method [4], and dynamical programming
method [5]. However, these numerical methods do not work
effectively for non-smooth and non-convex cost functions
because of high dimensionality and linear characteristics of
these methods.

In order to effectively solve the nonlinear characteristics
of SEPG problems, a wide variety of CITs based on random
search have been employed to solve the ED problems. These
methods include Genetic Algorithms (GA) [6], Differential
Evolution (DE) [7], Evolutionary Programming (EP) [8],
PSO based on the Orthogonal Experimental Design (PSO-
OED) [9], Ant Colony Search (ACSA) algorithm [10],
Artificial Immune Systems (AIS) [11], Honey Bee Colony
(HBC) algorithm [12], Firefly Algorithm (FA) [13], Hybrid
Methods (HM) [14] and Particle Swarm Optimization (PSO)
algorithm [15].

PSO algorithm is a global optimization method
developed by Kennedy and Eberhart [16], [17]. It is a
swarm intelligence algorithm that simulates swarm
behaviors such as birds flocking and fish schooling [18]. It
is a population behavior that depends on iterative learning
algorithm. The learning strategy of PSO depends on: Firstly,
each particle flying in the search space and adapting its
flying trajectory according to its personal best experience
and its neighborhood’s best experience. Secondly, when
looking for a global optimum in the test region, particles in
a PSO fly in the search space according to guiding rules that
make each particle to learn from its own best historical
experience and its neighborhood’s best historical
experience. Therefore, this makes the search space active
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and efficient. A particle while choosing the neighborhood’s
best historical experience, either uses the best historical
experience of the whole swarm as its neighborhood’s best
historical experience or uses the best historical experience
of the particle in its neighborhood which is determined by
some topological structure, e.g., the ring structure and the
pyramid structure [9]. In both cases, the learning strategy of
a particle’s best experience and its neighborhood’s best
experience is obtained through a linear combination.
However, this linear operation will negatively reflect to the
performance of learning strategy of PSO due to oscillation
phenomenon which causes inefficiency to the search ability
of the algorithm and delays in convergence.

Some Evolutionary Algorithms (EAs) attempted to
overcome the drawback of the PSO algorithm by overtaking
the oscillations. One of these methods is PSO-OED [9]. The
PSO-OED uses the effect of several factors simultaneously
and the best combination of factor levels is found by
conducting several tests. However, the main drawback of
OED is that it holds only when no or weak interaction of
factors exists. It means m particles have Linear Combination
Property (LCP) among vectors in order to have optimal
solution. This limitation of OED will make PSO search
effective on “unimodal” or simple problems. On the other
hand, it is very vulnerable on “complex multimodal”
problems [20].

Our proposed OPSOLA differs from PSO-OED in the
application of a new learning strategy. This strategy is based
on formation of orthogonal particle vectors that are found in
the d-dimensional searching area and it does not depend on
LCP. We used the orthogonal property as a guide to improve
the PSO performance by improving particle's position and
velocity. This improvement is due to the fact that the
particle’s movements will be in clear directions, through the
movements of particles in orthogonal displacements from
one level to another level based on the subsequent iterations.
Therefore, the time duration that the particles move toward
the optimal solution becomes shorter by following
orthogonal particles that have best historical experience. We
have applied OPSOLA to solve nonlinear characteristics of
the generator with the power constraints to solve the ED
problem. With extensive experimental results, we have
shown superior performance of OPSOLA compared to
several competing algorithms.

I1. PROBLEM FORMULATION
In this Section we introduce several constraints and
nonlinearities used in the ED problem.

A.  Objective Cost Function

In the ED problem, the optimal solution is to determine
the active output power of each online generator and to
determine the lowest total fuel cost of all generators over a
period of time, while maintaining various nonlinear
constraints [21]. The cost objective function is given by

Ngen
Minimize F,,, = 5 F(P,) )
J=1

where F(P)) is the cost function of the jth generating unit in
($/h), P; is the active output power of the jth generating unit
in (MW), and N, is the number of online generators of the
power system. The cost function of each generating unit is
related to the real power delivered into the system, and its
performace is given by a quadratic function [22]

2
F(P)=a;+b,P +c P, ©))
where @; b; and ¢, are the cost coefficients of jth generating
unit.

B.  Constraints of the Power System in the SEPG

Differnet power system constraints used this work are
explained below.

Constraint # 1: Power Equilibrium Constraint
The constraint for total power balance is expressed by

Ngen
$'p=py+p, 3)

7=

The constraint of the balance equation can be stated as
the total system power generation equals to the load demand
(Pp) in (MW) of the system plus the transmission network
loss (P;) in (MW). P; is expressed of the active output
power of the generators that can be represented using
B-coefficients. P, is usually approximated by Kron's loss
formula [23] which is given by

Ngen Ngen Ngen
b= Z] kZI PBy P+ EI PiBjy+ By 4
J=l k= /=

where j, k =1, 2, ..., Ny, are the indices of the generating
units , and By, Bj, By are known as the loss coefficients or
B-Coefficients [22].

Constraint # 2: Generation Limits
The generation limit is given by

iji’ﬂ<P] <P, max. (j: 1,2, eeey Ngen) (5)

This requires that the power generation of each unit varies
between its minimum F£min and its maximum P max
production limits.

Constraint # 3: Ramp Rate Limits

In real operation, the operating range of all online
generating units is restricted by their ramp rate limits due to
the physical limitation of the generating thermal units [24].
The inequality constraints due to ramp limits are given by

i) If power generation increases, then

0
P,-P) <UR, ©)

ii) If power generation decreases, then

P’ - P <DR, )

i/ ! !
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where PJ0 in (MW) is the previous active output power, R,

in (MW/h) is the up-ramp limit of the jth generator; and DR,
in (MW/h) is the down-ramp limit of the jth generator.

Constraint # 4: Porhibited Operating Zones

Due to the steam valve operations or vibration in a shaft
bearings, the system contains some prohibited operating
zones. Due to these constraints, discontinuities are produced
in cost curves corresponding to the prohibited operating
zones. Therefore, all the online generators in the system
must avoid prohibited operating zones. Consequently,
considering the constraint #2 in (5), the feasible operating
zones of the jth generating thermal units are given by [22]:

P min< P <P
Pl SP <SP, k=23 ., Ny., ®)
By <P <P max
where, P/’ . and P, are the lower and upper bounds of the

kth prohibited zone of the jth generating unit, and N,
is the number of prohibited zones of the jth generating unit.

Furthermore, in addition to the above constraints that
face the power system, combining (6) and (7) with (5)
results in

lenw < Pj < P/hlgh (9)
P = max(P, min, (P’ - DR,)) (10)
P = min(P, max, (P’ + UR))) (1

where P/”w and P/h""h are the new lower and upper limits of

unit j, respectively. Incorporating these constraints we
obtain the final set of constraints as given below:

low /
Pl <p <P,
<P SPL k=23 Ny (12)

u < < high
Py —‘D./—P/

pz.J

II1. ORTHOGONAL PSO LEARNING ALGORITHM

Here we briefly introduce the PSO algorithm and
explain the proposed OPSOLA.

A. The PSO Algorithm

Let us consider a swarm population with m particles
searching for solution in a d-dimensional space. Thus, the
number of particles in the swarm, Ny = m. Each particle
of the swarm has one d-dimensional position vector and one
d-dimensional velocity vector. The position vector
represents a possible solution. The position vector .X; and the

velocity vector ¥, of the ith (i = 1, 2, ..., m) particle are
given by
/Y, = [X,]. XiZa eees x:d] (13)
Va = ["’.a]- Viza wees v.'d] (14)

In addition, each particle i will keep its personal
historical best position vector, H, ,,,, given by
h(hp:‘}'\ 2 [hm.la hp:.l- EEE) hp:.:l] (15)
One of the important frameworks for solving PSO is the
ring structure [9]. The behavior of the neighborhood of a
particle 7 includes i-/, i, and i+/ in a ring structure. The best
position among all the particles in the ith particle's
neighborhood is given by

HUJL‘I;;,JI{: [!?ui,lq hm,ia vrey hrau."} (16)

The vectors V; and X; are initialized randomly. These are
updated in each iteration through the guidance of H, .., and
Hi peign according to (17) and (18).

V; = l’; + Cr ¥y (Hﬁ‘pﬂ'\ *A/;) + Caly ('({:.rrwﬂr 7“}1) (] 7)
Xi =X+, (18)

where ¢, and ¢, are coefficients of particle acceleration,
usually positive values, and are chosen experimentally from
the range [1, 2]. The r;;and ry; are two randomly generated
values within range [0, 1]. In each iteration, considering all
m particles, the best personal position vector and the best
neighbor position vector are recorded. Finally, at the end of
iterations, the optimal solution is given by the best neighbor
position vector.

B. The Proposed OPSOLA

In PSO, each particle updates its velocity and position
vectors according to its personal best position and its
neighborhood’s best position. However, this learning
strategy can cause "Oscillation" phenomenon [9]. The
oscillations occur due to linear combination of the personal
effect and the neighborhood effect. Subsequently, this leads
to slow convergence and non-optimal solution, especially
for problems involving high d-dimensional space. In order
to overcome these limitations, OPSOLA has been
developed.

The OPSOLA differs from the PSO algorithm and PSO-
OED. We incorporate a new strategy called “Orthogonal
Particle Formation” (OPF) in the d-dimensional search
space. In a swarm population with m particles, each particle
i has a position vector .X; and a velocity vector V;, as given in
(13) and (14), respectively. The OPSOLA updates the
position and velocity vectors in each iteration using the
following steps.

Step 1: For each particle, evaluate the cost using the
position vector in the cost function (1). Select the best
particle that has the minimum cost. Let us denote it's
position vector as X, Similarly, obtain the next d-1 best
position vectors.

Step 2: Construct a matrix 4 with mx1 rows and d
columns. The first row of 4 = Xj,. Substitute the velocity
vectors V, (i =1, 2, ..., m) in second to m+1 rows of A
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matrix. Convert the matrix A to matrix B, such that B is a
symmetrical matrix with size dxd, using the pseudcode
given below:
Pseudocode: convert to symmetrical matrix
fori=1:d
B(1,i)=A(1,i)
B(i,1) = A(1,i)

end for
fork=2:d
fori=2:d

B(k,i) = A(k,i)
C(k,i) = B(k,i)
B(i,k) = C(k,i)
end for
end for

Step 3: Convert B to an orthogonal matrix C of
dimension dxd, using Gram—Schmidt orthogonalization
method.

Step 4: Obtain a diagonal matrix D of dimension dxd
using (19) -

D =CBC’ (19)
Let D, denotes the kth row of the matrix D. Now let us
obtain a d number of orthogonal d-dimensional vectors, H,;
as given in (20)

Hy = Dy (20)

Step 5: Update the position and velocity vectors of d
number of particles out of m particles. Thus, the d best
position and velocity vectors as obtained in Step 1 are
updated as follows

Vi=Vi+ cri(Ho—Xy)
Xk =Xk+ Vk

@n
(22)

where ¢ is an acceleration factor and set to 2 and 7, is a
random number within range [0, [Jand k=1,2, ..., d.

At the end of iteration, the position vector Xp. as
computed in Step 1 provides the optimal solution. Instead of
using the neighbor position vector and the personal position
vector as done in PSO algorithm in linear summation (17),
in OPSOLA we update the position and velocity vectors by
constructing a new orthogonal vector H,,. This means that
only one orthogonal vector is used to control movement of
each particle. Thus, the particles move in one direction
based on the orthogonal vector H,.

A flowchart of the OPSOLA with major computational
steps is shown in Fig. 1.

C. A Simple Example

To explain PSO and OPSOLA algorithms, a simple
example is illustrated. Consider a 2-dimentional function
given by £ (x, y) = x’+)’+3. The objective is to find values x
and y so the value of the function f(x, y) is minimized. With
a range of [-100 100], for x and y, the function is plotted in
Fig. 2. Note that the function minimized to =3 when x = 0
and y = 0. Both the PSO and OPSOLA have 10 particles in
the swarm and uses10 iterations. Figure 3 shows that the
PSO algorithm moves forward and backward between 3rd
iteration (-44.3,31.6) and 4th iteration (16, -10.2) causing

)

Swarm size =N, Dimension = d
Iteration = V..

Initialize X;, ¥; randomly

| Evaluate cost function (1) using X; |

Obtain diagonal matrix (19)

| Update d number of velocity 73 (21) and position X; (22)

i

Optimal solution = the best position vector

. 1. Flowchart of the proposed OPSOLA.
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Fig. 3. Movement of one particle with iteration.

oscillations. Whereas, in the OPSOLA algorithm,
particles move steadily from the initial position to

the
the

solution in the 10th iteration.
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IV.APPLICATION OF OPSOLA 1O ED PROBLEM

Here we describe the simulation results carried out on
the 6-unit generator power system with several constraints.

A. The Power System Specification

In order to show performance of the OPSOLA to solve
the ED problem, a practical 6-unit power system was used.
The single line diagram is shown in Fig. 4 [22]. This system
consists of six thermal power units, 26-bus, and 46-
transmission line. The generation parameters are given in
Table 1 [24]. The load demand is 1263 MW. The B-loss
coefficient matrix is listed Table II. By, By, By are taken
into account with calculations. The power system is a small-
scale one and generating units 1, 2, 3, 4, 5 and 6 have a total
of 12 prohibited zones. Thus, there are 13 inequality
constraints as described by (12) for the ED problem.

B.  Experimental Results

Several evolutionary optimization methods that have
been tested on the 6-unit power system by other authors are
listed in Table III. The different methods are: ACSA [10],
BCO [12], FA [13], Random Drift Particle Swarm
Optimization (RDPSO) [22], PSO with inertia weight [23],
Binary-Coded Algorithm GA [24], DE [25], Artificial
Immune System (AIS) [26], Standard PSO (SPSO) with
constriction and inertia weight [27], Hybrid Gradient
Descent PSO (HGPSO) [27], Hybrid PSO with Mutation
(HPSOM) [27], Hybrid PSO with Wavelet Mutation
(HPSOWM) [27], Hopfield Neural Network (NN) [28],
Chaotic PSO (CPSO) [29], and Anti-Predatory PSO (APSO)
[30].

The results in Table III show the minimum, maximum
and mean cost of generation. In addition, the standard
deviation (o) of the mean cost function for each algorithm is
also listed. Two experiments were simulated. First
experiment consists of a swarm with N, = 100,
Npm = 100 and N, = 200. The second experiment consists
of a swarm with N,uice = 20, Nyy = 100 and Ny, = 1000.
For the same category of the evolutionary algorithms, the
best results were achieved by RDPSO algorithm with
minimum, maximum and mean cost, while, CPSO algorithm
provided the best performance in ¢ calculation. Table IV
lists the performance of the proposed OPSOLA in terms of
the minimum, maximum and mean cost of generation. The
results show that OPSOLA provides the best in terms of
minimum, maximum and mean costs among the tested
evolutionary techniques and has the lowest ¢ of the mean
cost function.

Figure 5 shows the convergence characteristics of
OPSOLA on the ED problem of 6-unit power system. The
algorithm was tested using a swarm population with
Npariicte = 20, Ny =10 and 20 and Ny, = 50. We found the
execution time of the OPSOLA for 10 runs and 20 runs as
2.30 and 8.51 seconds, respectively. The OPSOLA settles at
about 20 iterations for both runs. OPSOLA provides a
steady performance without deviation and oscillation.
Figure 5(b) shows the steady state performance of OPSOLA
at different instances of runs showing evidence of stable
and robust optimal solution.

Fig. 4. Single line diagram of IEEE 6-unit thermal power system.

TABLE L. GENERATING UNIT RAMP RATE AND PROHIBITED ZONES

Unid Pj” PminPmax a; | b; c; UR; | DR; [Prohibited
MIMWI MW MW | § [SMWEMW MWAMW/H_Zones
1210, 240]
1 {440 100 | 500 [240| 7.0 |0.0070{ 80 | 120 350, 380]
B o < [90, 110]
2 |170| 50 | 200 {200] 10.0 |0.0095| 50 | 90 [140. 160]
- [150, 170]
3 1200f 80 | 300 [220| 8.5 |0.0090| 65 | 100 [210. 240]
< - - [80,90]
4 1150| 50 | 150 |200] 11.0 |0.0090{ 50 | 90 [110. 120]
< < 190, 110]
5 1190 50 | 220 (220f 10.5 [0.0080{ 50 | 90 (140, 150]
- - [75, 85]
6 |1100] 50 | 120 {190] 12.0 |0.0075| 50 | 90 [100. 105]
TABLE II. B-1L.0SS COEFFICIENTS OF THE 6-UNIT SYSTEM
By 1 2 3 4 5 6
1 0.0017 | 0.0012 | 0.0007 | -0.0001 | -0.0005 | -0.0002
2 0.0012 | 0.0014 | 0.0009 | 0.0001 | -0.0006 | -0.0001
3 0.0007 | 0.0009 | 0.0031 0.0000 | -0.0010 [ -0.0006
4 -0.0001 [ 0.0001 0.0000 | -0.0024 | 0.0006 | -0.0008
5 -0.0005 | -0.0006 | -0.0001 | -0.0006 | 0.0129 | -0.0002
6 -0.0002 | -0.0001 | 0.0006 | -0.0008 | 0.0002 | -0.0150
By, | -0.0004 | -0.0001 | 0.0007 0.0001 0.0002 | -0.0007
Boo 0.0560

Since each particle moves by orthogonal steps in each
iteration, the OPSOLA provides a strong convergence and
steady performance. In order to explain the behavior of
OPSOLA, we divide Figure 5(a) into three regions.
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TABLE III. PERFORMANCE OF DIFFERENT ALGORITHMS

Algorithm Minimum | Maximum | Mean Cost Region #1: The swarm searches in d-dimensional test
Cost ($/h) | Cost ($/h) ($/h) ° space on direction to be used as guidance in order to acquire
NN [28] | 1548590 | 1548590 | 1548590 | 0.00 experience and this occur after several iterations.
Nparicte = 100, Nvun =100, Nior = 200

ACSA [10] | 1544530 15511.52 1545951 12.02 Resion #2: Th f . ..
BCO __ [12] | 1544458 | 1548239 | 1545794 | 848 egion #2: The swarm moves from previous position to
FA [13] | 1544594 | 1550139 | 1546130 933 a new position with high velocity in one direction (swarm
RDPSO [22] | 15442.75 | 1545529 | 15445.02 2.28 moves either forward or backward based on orthogonality).
PSO [23] | 1544477 | 1548397 | 15466.56 | 791
GA [24] | 1544550 | 1549150 | 1546520 | 9.73 Region #3: The swarm particles receive a better guidance
DE [25] 1544494 15472.06 15450.13 6.98

AL [26] | 1544632 | 1548127 15456.66 739 to move directly towards the target with shortest time.

SPSO  [27] | 1544301 15490.26 1545247 9.53

HGPSO [27] | 1544710 | 15497.03 1546261 | 1064 Table V lists the solution vector P, (j = 1, 2, .., 6)
HPSOM [27] | 1544362 | 1549786 | 1544926 | 6.27 corresponding to the best solution of OPSOLA with
"C[‘;SS%WM[;;] gjﬁﬁ; }{igé-gg }gii;% 1?-:3 Nparicte = 20 and Ny, = 50. This solution satisfies the
- [29] - 2. : 2 equality constraint in (3). The load demand P, is 1263 MW.
APSO  [30] 1544451 15538.60 1547331 12.90 .. . . .
; - e — The transmission loss P; is obtained by subtracting P;, from
paricle = 20, Nyun =100, Nirer = 1000
ACSA__ [10] | 1544530 | 1551152 | 1546251 | 1202 the total output. Thus, P, = 8.56 MW. The total output
BCO  [12] | 1544637 | 1550329 | 1546184 [ 11.66 power of 1271.56 MW satisfies the constraint for power
FA [13] | 15447.19 | 15512.00 | 1546632 | 1255 equilibrium and inequality constraints in (5)-(7) and (12).
RDPSO [22] 15442.78 15484.86 15453.72 13.50
g ?\0 [éi]] i;iiz-ﬁ 112233(2)8 }éjgz'gg }3% Table VI shows the performance comparison between
K . J . 5 . .
DE [25] | 1544298 | 1348089 1543525 11374 OPSOLA and the best algo.rlthm from the Table III, i.e., the
AIS_ [26] | 15443.16 | 1548106 | 1545808 | 8.8 RDPSO. The OPSOLA with Nparicie = 20, Ny = 100 and
SPSP 27] | 1544291 | 1559745 1547796 | 33.71 Nier = 1000 was applied to the 6-unit power system.
HGPSO_[27] | 1544540 | 15494.03 1546439 | 11.56 Simulation results demonstrated that OPSOLA was more
HPSOM [27] | 1544317 | 1553317 [ 1546484 f22.84 effective in finding better solutions than that obtained from
HPSOWM[27] | 1544299 | 1359602 1546633 | 27.32 RDPSO. It can be seen that OPSOLA achieved a saving of
CPSO  [29] 15443.12 1546048 15454.17 8.05 . o : .
APSO  [30] | 1544489 1549337 1545940 | 11.03 94.72 $/h, i.e., 0.61% improvement in mean cost over
RDPSO. With respect to the network loss, OPSOLA
TABLEIV.  PERFORMANCE OF THE PROPOSED OPSOLA achieved an improvement of 30.69 percent over RDPSO
- — - algorithm. The standard deviation of the mean cost can be
Algorithm Minimum | Maximum Mean . J .
Cost (S/h) | Cost (S/h) | Cost(s/h) | © considered as a measure of stability of the algorithm. Over
OPSOLA 100 runs, in OPSOLA the o of the mean cost remained zero,
Noaricte =20 15303.00 | 15367.00 15324.00 | 0 where as in RDPSO, ¢ was found to be 13.50. These results
N’“"Splgéfzﬁﬁ’o show that OPSOLA provides a stable and better solution.
Npariicte =20 15306.00 | 15510.00 | 15359.00 |0 ,
Nyn=20, Niey=50 TABLE V. POWER DELIVERED BY EACH GENERATOR

R— Optimum output power (MW) Total Qutput
<16 A. Convergence characteristics of OPSOLA P Pe | P P | Bs | Ps Power (MW)
1 ,r r : 5 : MG OPSOLA [161.19{186.36244.931129.98 |1 58.44 190 66 1271.56
— NN
i PO R T T e e 10
B sl e s e e i T
T r I 1 .
! T DR T T TABLE VL PERFORMANCE COMPARISION BETWEEN TWO
;i ' | Regign ALGORITHMS
_____ B s e R
5 ! | i . Mean 1
B -t Algorithm |0 sy (Mwy | ©

No. of Iteration

OPSOLA 15359.00 | 8.56 0

x10 B. Instance of initialization of swarm
1.5307 T T T T T T T T RDPSO [22]| 15453.72| 1235 [13.50
= I\ I\ \‘ \I \I \I ) \I \I
2]5307' e e e e e
i ) | | i | | | i
s | | i i i i i | ' V. CONCLUSION
al 3306 4 .
b ' ) | | | ' i i In this paper, we proposed a novel orthogonal PSO
e N it s PR Sl it i’ ol A S learning algorithm to solve ED problem. The orthogonality
i ; ; l 1 ; i i i of the particle’s movement is utilized to improve PSO
o2 e s oo w8 % performance. Tt uses as a guide to move the particle vectors
from one level to another towards the solution point. We
Fig. 5. Convergence characteristics of OPSOLA for 6-unit power system. propose an updating strategy in which the particle will only
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move to a new location if it has a better fitness. Moreover,
the OPSOLA has succeeded in achieving better performance
in terms of better convergence characteristic, reduced loss,
short execution time compared to other popular evolutionary
algorithms.

The simulation results with IEEE 6-unit thermal power
system revealed that performance of the OPSOLA is more
stable and consistent, as evident from the system costs
obtained on 10 runs and 20 runs of the algorithm. In
addition, the transmission network loss was reduced by
30.69% due to improvement of active power output. These
facts provide evidence that the proposed OPSOLA is a
promising tool for solving nonlinear, discontinuous and
non-smooth functions.
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Abstract—We propose an enhanced Particle Swarm Optimization
(PSO) algorithm named Orthogonal PSO (OPSO) algorithm, for
Economic Dispatch (ED) of the generated power in a smart grid
environment. The equality and inequality constraints, and power
balance response against mismatch between load demand and
total power outputs of generating units involve nonlinear
characteristics and non-smooth cost functions. The proposed
OPSO algorithm has the ability to solve such complex problems
of power systems including ED. The OPSO algorithm applies
Orthogonal Vectors (OVs) in the d-dimensional search space. The
d particles that have possible solutions move in the d-dimensional
search space to form OVs. These OVs are generated and updated
in each iteration and they used to guide those particles to fly in
one direction toward global minimum. The OPSO algorithm is
evaluated and tested through 15 generating units and its
performance is compared with several other optimization
methods. We found that OPSO algorithm provides better results
in solving the total cost, and power constraints. Furthermore, the
OPSO algorithm is succeeded to improve the PSO algorithm in
terms of high solution quality, robustness and convergence.

Keywords-economic dispatch; linearity; orthogonality; particle
swarm optimization; power system constraints.

I. INTRODUCTION

Several optimization techniques have been used to improve
the effectiveness and efficiency of electric power systems.
Optimization techniques help energy companies that deal with
these issues by enabling them to make better and faster
decisions. Economic Dispatch (ED) is one of the most
important problems for energy companies. For example,
dividing the total load demand among available generators with
as minimum cost as possible gives important tools about the
behaviour of power system during estimated short-term.

Traditionally, the ED problem can be solved by various
mathematical methods, including the lambda-iteration method
[1], the gradient method [2], and the dynamical programming
method [3]. However, these numerical methods do not work
effectively for non-smooth and non-convex functions because
of high “dimensionality”. In order to successfully solve the
nonlinear functions, a wide variety of population-based random
search have been used to solve the ED problems. These
methods include Genetic Algorithm (GA) [4], Particle Swarm
Optimization (PSO) algorithm [5], Differential Evolution (DE)
algorithm [6], [7], Evolutionary Programming (EP) algorithm

978-1-4799-8697-2/15 $31.00 © 2015 IEEE
DOI 10.1109/SMC.2015.16

Jagdish C. Patra

Faculty of Science, Engineering and Technology
Swinburne University of Technology
Melbourne, Australia
E-mail: JPatra@swin.edu.au

[8], Neural Networks (NN) [9], Ant Colony Search (ACS)
algorithm [10], Artificial Immune Systems (AIS) [11], PSO
based on the Orthogonal Experimental Design (OED) [12],
[13], [14], Honey Bee Colony (HBC) algorithm [15], Firefly
Algorithm (FA) [16], to name only a few.

One of those evolutionary algorithms is PSO algorithm. It
is a global optimization method developed by Kennedy and
Eberhart [17], [18]. It is a swarm intelligence algorithm that
simulates the behavior of some animal species, such as birds
flocking and fish schooling [19]. The population strategy
depends on the iterative learning algorithm. The learning
strategy of PSO depends on: Firstly, each particle flying in the
search space and adapting its flying trajectory according to its
personal best experience and its neighborhood’s best
experience. Secondly, when looking for a global optimum in
the test area, particles fly in the search space according to
guiding rules that make each particle learns from its own best
historical experience and its neighborhood’s best historical
experience. A particle while choosing the neighborhood’s best
historical experience, either uses the best historical experience
of the whole swarm as its neighborhood’s best historical
experience or uses the best historical experience of the particle
in its neighborhood which is determined by some topological
structure, e.g., the ring structure [12]. In both cases, the
learning strategy of a particle’s best experience and its
neighborhood’s best experience is obtained through a linear
summation. However, this linearity will negatively reflect on
the performance of the PSO algorithm due to oscillation
phenomenon which causes inefficiency to the search ability of
the algorithm and delays convergence.

Some evolutionary algorithms tried to overcome the
drawback of the PSO algorithm through overtaking the
oscillation caused by the combination of the personal effect and
the neighbourhood effect in the velocity equation. One of these
methods is PSO-OED [13]. OED is orthogonal learning design,
and sometimes called orthogonal design. It is usually used to
study the effect of several factors simultaneously and the best
combination of factor levels can be found in several tests.
However, the main effect of OED holds only when no or weak
interaction of factors exists. It means m particles have “Linear
Combination Property” (LCP) in order to obtain solution.
Sometimes, some particles loss this property, therefore the
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ability to find the solution becomes difficult. This limitation of Neen
OED will make PSO search effective on “unimodal”. On the D Pi=Pp+P, 3)

other hand, it is very vulnerable on “complex multimodal”
problems [14].

In this paper, we propose a novel Orthogonal PSO (OPSO)
algorithm. The proposed OPSO algorithm differes PSO-OED
in several aspects. The OPSO algorithm depends on forming
Orthogonal Vectors (OVs) that are basically found in the
d-dimensional searching area. Subsequently, LCP is constantly
achieved. The OPSO algorithm is a stochastic optimization
technique. The OVs are utilized to improve the PSO
performance through improving the particles (that have the
possible solutions) positions and their velocities. This process
makes those particles have ability to move in clear direction
from one level to another based on the following iteration. In
other word, OPSO algorithm has ability to control on the
particles chaotic sequences through using orthogonality.
Therefore, the process of exploration and exploitation by best
particles to the search on global minimum is clearly advanced.

We applied OPSO algorithm to solve nonlinear
characteristics of the generator and describe the power
constraints of the ED problems. With extensive experimental
results, we have shown the better performance of OPSO
algorithm compared to several competing algorithms in solving
ED problems.

II. PROBLEM FORMULATION

Here, we explain the cost function and the constraints
involved in this study.

A. Cost
For efficient management of the power system, it is
required to achieve optimal combination of output power
generated that minimize the total generation cost while
satisfying the load demand, and practical operation constraints
of generators. The objective function of the cost is given by
Noen
Minimize F,,, = iF(Pj)
j=1
where F(P)) is the cost function of the jth generating unit in
(8/h), P; is the active power output of the jth generating unit in
(MW), and N, is the number of available generators. The
cost function of each generating unit is related to the real
power delivered into the system, and is typically modeled by a
smooth quadratic function [5].

F(Pj)=a;+b;P;+c;P} @
where a;, b;, and c¢; are the cost coefficients of the jth
generating unit.

(0]

B. Constraints of the Power System Under Test
In this work, we consider the following constraints:

Constraint # 1: Power Balance Constraint: The constraint of
power balance can be stated as the total system generation
equals to the total load demand (Pp) in MW plus the
transmission network loss (P;) in MW. This constraint is
expressed by

J=1
P, represents to the losses in terms of the active output power
of the generators that can be represented using B-coefficients.
P, is approximated by Kron's loss formula [5], given by

Nyen Neen Nyon
PL=3 > PByPi+ Y. PiBy+By 4)
J=1 k=1 Jj=1

where j, k = 1, 2, ..., Ng, indicate to the indices of the
generating units, and By, Bj, Bo are known as the loss
coefficients or B-coefficients [20].

Constraint # 2: Generation Limits: The generation limit is
given by
Pjmin < P; <P;

J J.max >

(] = 1, 2, weey Ngen) (5)
which requires that the power generation of each unit remains
within its minimum P;,; and its maximum P; .

production limits, which are directly related to the design of
the generator.

Constraint # 3: Ramp Rate Limits: In the real operating
process of the generating units, the operating range of all units
is restricted by their ramp rate limits. According to [20], the
inequality constraints due to the ramp limits are:

i) If power generation increases

0
Py =Pj <UR; ©)
ii) If power generation decreases
0
P —P; < DR, (7)

0
where P;

in (MW/h) is the up-ramp limit of the jth generator; and DR; in
(MW/h) is the down-ramp limit of the jth generator.
By substituting (6) and (7) in (5), we obtain

in (MW) is the previous active output power, UR;

mwc{Pj,,,,,1 ,(P}) ~DR, )}s P < min{Pjymm. ,(P}) +UR; )} ®)
Let us consider,
Py = max{Pjvmm ,(P}’ - DR, )} and )
P} high = min{Pjymw{ ,(P}’ +UR; )} (10)

where P; 1, and P ;, are the new lower and upper limits of

unit j, respectively. Ramp rate is a function of resource size.
The generators must be able to increase/decrease the power
output at a specific rate per minute. For example, depending
on the generating capacity of generators the UR and DR range
from 25-50 MW, the performance ramp rate will be 2-3
MW/min [21].

Constraint # 4: Prohibited Operating Zones: Due to the
steam valve operation or vibration in a shaft bearing, the
system contains some prohibited operating zones. Due to this,
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constraints and discontinuities are produced in cost curves
corresponding to the prohibited operating zones. Therefore, P;
(j=1,2, ..., Ng) of power system must avoid the prohibited
operating zones. Consequently, considering the constraint #2
in (5), the feasible operating zones of the jth generating unit
are given by [20].

Pjin <P; <P

Jomin =
!
Pl <Py <Pip, k=2,3,..,N,; 11
U
Pijp“ SP; S Pjax

where P}J and P} are the lower and upper bounds of the kth

p,j 18 the

number of prohibited zones of the jth generating unit.
Incorporating these constraints in (8) and (9) and (10), we
obtain the final set of constraints as given below

prohibited zone of the jth generating unit, and N

Pyiow < Pj < Py,
k=23, N,

< Pj < Pj high

u !
Pj,k—l < Pj < Pj’k ,

(12)

P
JNpz

III. ORTHOGONAL PSO LEARNING ALGORITHM

Here, we briefly describe the PSO algorithm and explain
our proposed OPSO algorithm:

A. The PSO Algorithm

Let us consider a swarm with m particles searching for
solution in a d-dimensional search space. Thus, the size of
swarm, N,uiqe = m. Each particle of the swarm has one
d-dimensional position vector and one d-dimensional velocity
vector. A position vector represents a possible solution. The

position vector X; and the velocity vector V; of the ith
(i=1,2, ..., m) particle are given by
Xi= [xi1, Xigs ovs Xia ] (13)
Vi [Vits Vigs -5 Via ] (14)

Each particle i will keep its personal historical best

position vector, H; ,,,, , as it progresses through iterations.

Hi,pem: [hpi,b hpi,Zy cees hpi,d] (15)
One of the important frameworks for solving PSO
algorithm is the ring structure [12]. The behavior of the
neighborhood of a particle i includes i-/, i, and i+/ in a ring
structure. The best position among all the particles in the ith
particle's neighborhood is given by
Hipeigh= [hnits nizs <oos Pnidl (16)
The vectors V; and X; are initialized randomly. These are
updated iteration by iteration through the guidance of
Hij pers and H peigp according to (17) and (18).

Vi = Vit crri(Hipers = X)) + c2r2i (Hpeign — X)) (17)

Xi =X+ (18)
where ¢; and ¢, are coefficients of particle acceleration, usually
positive values, and are chosen experimentally from the range
[1, 2]. The ry;and r; are two randomly generated values within
range [0, 1]. In each iteration, considering all m particles, the
best personal position vector and the best neighbor position
vector are recorded. Finally, at the end of iterations, the
optimal solution is given by the best neighbor position vector.

B.  The Proposed OPSO Algorithm

In PSO algorithm, each particle updates its velocity and
position vectors according to its personal best position and its
neighborhood’s best position. However, this learning strategy
can cause "Oscillation" phenomenon [12]. This oscillation
becomes more prominent with high d-dimensional search
space. The oscillation occurs due to linear combination of the
personal effect and the neighborhood effect. This makes the
particle in a confused state to decide where it goes. So, the
search ability of the PSO algorithm becomes inefficient and
delays the convergence speed. In order to overcome this
limitation, OPSO algorithm is proposed to improve PSO
algorithm.

The OPSO algorithm provides a new topology inside the
swarm called “Orthogonal Particle Formation” (OPF). In a
swarm population with (m > d), each particle i has a position
vector X; and a velocity vector V;, as given in (13) and (14),
respectively. The OPSO algorithm updates the position and
velocity vectors in each iteration using the following steps:

Step 1: For each particle i, (i = 1, 2, ..., m) evaluate the
cost using the position vector in the cost function (1). Select
the particle that has the minimum cost. Let us denote its
position vector as X, Similarly, obtain the next m 1 best
position vectors. Arrange these m best vectors in ascending
order of costs.

Step 2: Construct a matrix A of size mxd such that each
row occupies one of the m best position vectors in the same
ordered sequence. Then, convert the matrix A to matrix B,
such that matrix B is a symmetric matrix with size dxd using
the pseudocode given in Fig. 1.

Procedure: Convert to a symmetric matrix
for i=1:d
B(1,i) = A(1,i)
B(i,1) = A(1,i)
end for
for k=2:d
fori=2:d
B(k,i) = A(k,i)
C(k,i) = B(k,i)
B(i,k) = C(k,i)
end for
end for

Fig. 1. Pseudocode for converting matrix [A] to a symmetric matrix [B].
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Step 3: Convert matrix B to an orthogonal matrix C of
dimension dxd, using Gram—Schmidt orthogonalization
method.

Step 4: Obtain a diagonal matrix D of dimension dxd using
(19)

D =CBC" (19)
Let D denotes the kth row of the matrix D.

Step 5: Update the position and velocity vectors of d
number of particles out of m particles. Thus, the d best
position and velocity vectors as obtained in Step 1 are updated
as follows

Vi= Vi + cri(Dy— X)) (20)

Xk = Xk + Vk (21)
where ¢ is an acceleration factor and set to 2 and 7; is a
random number within range [0, 1]Jand k=1, 2, ..., d.

At the end of iterations, the position vector X, as
computed in Step 1 provides the optimal solution.

Instead of using the neighbor position vector and the
personal position vector as done in PSO algorithm in linear
combination (17), in OPSO algorithm we update the position
and velocity vectors by constructing a new OV, D;. This
means that only one OV is used to control on the movement of
each particle. Thus, the particles move in one direction based
on the OV. A flowchart of the OPSO algorithm with major
computational steps is shown in Fig. 2.

SWarm size = Npgmele
Dimension = d
Tteration = N

For all m particles. initialize position
X (13) and velocity ) (14). randomly.

—_— e

| Evaluate cost funetion (1) using X, |

| Obtain the best d position vectors |

|0btain Diagonal matrix (19) |

Tpdate d number of velocity i (207
nd pozition Xj (21).

ni= ni+l

Optimal solution = the best position vector

Flowchart of the proposed OPSO algorithm.

Fig. 2.

C. A Simple Example

To explain PSO and OPSO algorithms, a simple example
is illustrated. Consider a 2-dimentional function given by
f(x,y) = x"+y’+3. The objective is to find values x and y so the
value of the function f (x, y) is minimized. With a range of
[-100 100], for x and y, the function is plotted in Fig. 3. Note
that the function minimized to f= 3 when x = 0 and y = 0.
Both the PSO and OPSO algorithms have 10 particles in the
swarm and uses 10 iterations. Fig. 4 shows that the PSO
algorithm moves forward and backward between 3rd iteration
(-44.3, 31.6) and 4th iteration (16, -10.2) causing oscillations.
In the OPSO algorithm, the particles move steadily from the
initial position to the solution in the 10th iteration.

(x,y) = x2 + y2+3.0

Fig. 3. Plot of function f'(x, y).
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Fig. 4. Movement of one particle with iteration.

IV. APPLICATION OF OPSO ALGORITHM TO ED PROBLEM

Here we describe the simulation results carried out on the
15-unit generator power system with several constraints.

A.  The Power System Specification

In order to exhibit performance of the OPSO algorithm to
solve optimal dispatch of generation, a practical IEEE 15-unit
power system was used. The generation parameters are given
in Table I [20]. The load demand is 2630 MW. The B-loss
coefficients matrix is not listed because of space limitation,
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however, By, Bj, By are taken into account with calculations.
The power system is a medium-scale one and the generating
units 2, 5, 6, and 12 have a total of 11 prohibited zones. Thus,
there are 12 inequality constraints as described by (12).

TABLE 1. GENERATING UNIT RAMP AND PROHIBITED ZONES

Unid P/ |PminPimax| a;| b; | ¢; | UR; | DR; [Prohibited
MW| MW | MW | $ [$/MW[$/MW MW/hMW/h| Zones
1 [400] 1500 455671 10.1] 299 80 120 -
[185,225]
2 3000 150 455574 10.2] 183 80| 120|[305,335]
[450, 450]
3 J105 200 130374 8.8 1126 130 130 -
4 [100] 200 130374 8.8 1126 100 130 -
[180, 200]
5 90 1500 470461 104 205 80 120[305,335]
[390, 420]
[230, 225]
6 4000 135 460630 10.1 301] 80| 120[[365,395]
[430, 455]
7 13500 135 465548 9.8 364 80 1200 -
8 [ 95 60 300R27 11.2] 33§ 65 100] -
9 [105 23 162173 11.2] 807 60 100 -
101100 23] 160]175 10.7] 1203 60 100[ -
11] 60 20 80186 10.2] 358¢ 80 80 -
[30, 40]
121 400 20 802300 9.9 5513 80 80 55, 65]
13] 300 25| 8sp2s 13.1] 371 80 80 -
141 200 15| 5509 12.0] 1929 55 55 -
15] 200 15| 55323 124 4447 55 55 -

B.  Experimental Results

Six evolutionary computation techniques used for the
15-unit power system by other authors are listed in Table II,
for example, ACSA [10], AIS [11], HBC [15], FA [16],
Random Drift Particle Swarm Optimization (RDPSO) [20],
and the Differential Evolution (DE) [22]. The results in
Table II represent the minimum, maximum and mean cost. In
addition, Standard Deviation ¢ of the minimum cost is also
listed. The best results are for RDPSO algorithm with
minimum, maximum and mean cost. While, AIS algorithm is
the best in o calculation.

TABLE II. RESULTS OF 15-UNIT SYSTEM OVER 100 RUNS
Algorithm | Min. Cost | Max. Cost | Mean Cost

$/h $/h $/h °
ACSA [10] 32863.17 33256.28 33120.02 86.16
AIS  [11] 3289591 33132.01 33017.65 58.12
HBC [15] 32789.23 33301.49 33030.86 69.79
FA  [16] 32898.01 33310.72 33116.90 | 96.38
RDPSO[20] | 32652.33 32959.79 32744.58 | 8247
DE  [22] 32718.82 33213.31 32966.43 | 110.32

In addition to our proposed OPSO algorithm, we tested
15-unit power system by PSO algorithm. The test was carried
out on the same parameters, ¢; = ¢;= 2, Npguicte = 20, d = 15,
Ny, = 100, each independent run has N, = 1000. Table III
lists the statistical results of the total costs and ¢ were obtained
by PSO and OPSO algorithm for the ED problem. The result
shows that OPSO algorithm is the best in mean cost and has
lowest o. This means that PSO algorithm was clearly
improved through orthogonality. Furthermore, the OPSO

algorithm is the best in mean cost and has lowest 6 among
other evolutionary techniques as given in Table II. The OPSO
algorithm has the best performance and robustness (i.e., the
stability in performance in terms of mean cost and o) than its
competitors in 15-unit power system.

TABLE IIL RESULTS OF PSO AND OPSO ALGORITHMS OF 15-UNIT
OVERV 100 RUNS
Algorithm | Min. Cost | Max. Cost | Mean Cost
$/h $/h $/h °
PSO 32675.00 32770.00 32705.00 | 22.36
OPSO 32669.00 32699.00 32688.00 | 7.21

Fig. 5 visualizes the best convergence characteristics of
OPSO and PSO algorithms over 100 runs on the ED problem
of 15-unit power system, showing that the OPSO algorithm
has better convergence properties than the PSO algorithm.

x 10" A. Convergence characteristics of OPSO and PSO Algorithms
3.285
I I I I

$ 328

Total cost

3.265 I I I I I L I L L
o 100 200 300 400 500 600 700 800 900 1000

No. of lteration

x 10 B. Instance of initialization of swarm
3.28
% 3.275
8
o
8 327
e
3.065 I I I I I I I I I
0 10 20 3 40 50 60 70 80 90 100
No. of runs
Fig. 5. Convergence characteristics of OPSO and PSO algorithms of

15-unit power system.

Table 1V lists the solution vector P; (j = 1, 2, ..., 15)
corresponding to the best solution for PSO and OPSO
algorithms applied to the 15-unit power system with
Nyun= 100, Nier = 1000, and Npguicre = 20. In addition, the
inequality constraints (12) have been solved and all jth
generating units have avoided the prohibited operating zones.

TABLE IV. OPTIMIZED POWER DELIVERED BY EACH GENERATOR
USING PSO AND OPSOALGORITHMS
Generator Power MW
Gen. # 1 2 3 4 5
PSO 455.00 | 380.00 129.30 129.20 170.00
OPSO 454.48 380.00 129.30 129.20 150.00
Gen. # 6 7 8 9 10
PSO 428.00 | 430.00 60.00 162.00 156.87
OPSO 428.00 | 430.00 93.25 149.93 107.23
Gen. # 11 12 13 14 15
PSO 20.00 80.00 25.00 15.00 15.00
OPSO 70.87 75.50 25.00 15.00 15.00
Total output power: PSO = 2655.37 MW, OPSO = 2652.76 MW

Table V shows the mean cost, transmission network loss
P, and o for the best three methods tested on the IEEE 15-unit
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power system with N,,,= 100, each run has N, = 1000, and
Npariicie = 20. To study the robustness of the OPSO algorithm
compared with RDPSO and PSO alogarithms as shown in
Table V, the OPSO algorithm has satisfied the lowest value of
o, and it obtained the best mean cost. It is stable in
performance. In addition, by comparing the results of OPSO
algorithm with RDPSO and PSO algorithms, the results show
that the mean cost was reduced by 0.17% (saving $56/h) and
by 0.05% (saving $17/h), respectively. Moreover, P; was
decreased by 11.42% (2.60 MW) and 11.59% (2.64 MW),
respectively. In addition, the equality constraint in (3) has
been satisfied. Total system generation equals to Pp plus P; as
given by:

OPSO algorithm: 2652.76 =2630 +22.76
PSO algorithm: 2655.37 02630 +25.40
TABLE V. COMPARISION AMONG ALGORITHMS RESUTS

. Mean Cost Py
Algorithm S/h MW o
RDPSO [20] 32744.58) 2536  82.47
PSO 32705.00) 25.4 22.36]
OPSO 32688.00) 22.76] 7.21

V. CONCLUSION

In this paper, we proposed a novel orthogonal PSO
algorithm to solve ED problems. The orthogonality was
utilized by the particles that have the possible solutions in the
swarm using d orthogonal vectors (OVs). These OVs help d
particles to improve their directions at each iteration. In
addition, instead of creating and updating the guidance H; s
and f; ..ig; in PSO algorithm, d particles in the swarm updates
its position and its velocity according to OVs. This means that
only one guidance D; has been used in the updated velocity
(20). In this way, these particles fly steadily and clearly to find
the global minimum. Subsequently, the OPSO algorithm has
succeeded in eliminating the generated oscillation by the
particle’s movement forward and backward in PSO algorithm.

The OPSO algorithm has been tested on IEEE 15-unit
power system. The results showed that OPSO algorithm has a
better performance and clear superiority in mean cost and
standard deviation calculations compared with other
competition algorithms. The OPSO algorithm has shown more
stability and robustness. Consequently, the OPSO algorithm
has completely succeeded to improve the performance of the
PSO algorithm.

We have shown that OPSO algorithm has ability to solve
the equality and inequality constraints in the power system and
avoids all prohibited operating zones. Furthermore, the OPSO
algorithm was clearly reduced transmission network loss.
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Abstract—We propose a novel approach called, an
orthogonal particle swarm optimization (OPSO) algorithm, for
economic dispatch (ED) of thermal generating units (TGUs) in
smart electric power gird (SEPG) environment. The
characteristics of TGUs are nonlinear and the generation
system becomes more and more complicated when these TGUs
are subjected to ramp rate constraints and prohibited
operating zones. In such case, the cost functions become non-
smooth and non-convex due to the discontinuities in the cost
curves. Moreover, for large-scale TGUs, the high dimensions
used in ED problem become a big challenge to find global
minimum and to avoid falling into local minima. The proposed
OPSO algorithm has the ability to solve such complex
problems including ED. The OPSO algorithm applies an
orthogonal diagonalization process. It makes d particles (out of
total m particles, m > d) that have the possible solutions by
constructing orthogonal vectors in the d-dimensional search
space. These orthogonal vectors are generated and updated in
each iteration and are utilized to guide the d particles to fly in
one direction toward global minimum. The OPSO algorithm is
evaluated and tested through 40 TGUs and its performance is
compared with several other optimization methods. We found
that the OPSO algorithm provides better results in term of cost
under power grid constraints. Furthermore, we have shown
that the OPSO algorithm significantly improves the PSO
algorithm in terms of high solution quality, robustness and
convergence.

Keywords—Orthogonal  particle  swarm  optimization,
orthogonal diagonalization process, economic dispatch, ramp
rate limits, prohibited operating zones, thermal generating units.

I.  INTRODUCTION

The cost of power generation, particularly in fossil fuel
plants, is very high, and economic dispatch (ED) of power
helps in saving a significant amount of revenue [1].
Therefore, ED is one of the important functions in smart
electric power grid (SEPG) operation and control [2], aims to
minimize total system generation costs and schedule
committed generators to meet the load demand while
satisfying power grid constraints. Traditionally, large-scale

978-1-5090-0620-5/16/$31.00 (©2016 IEEE

ED problem can be solved by many traditional optimization
methods (TOMs), including lambda iteration method [3].
The gradient method [4], and dynamical programming
method [5]. However, these numerical methods do not work
effectively because the cost functions have discontinuities
and higher order nonlinearities which are due to prohibited
operating zones and ramp rate limits of generators [6]. In
addition, high dimensionality associated with the ED
problem. Because of these issues, TOMs fail to model these
discontinuities and usually result in inaccurate dispatches
causing loss of revenue. The ED of power with nonlinearities
translates into a complicated optimization problem with
complex and nonlinear characteristics, and multiple minima.
In order to solve these problems, a wide variety of
evolutionary computation techniques (ECTs) based on
random search have been proposed for large-scale ED
problems in smart electric power grid (SEPG). Some of the
ECTs include genetic algorithm (GA) [7], differential
evolution (DE) algorithm [8], particle swarm optimization
(PSO) algorithm [9][10], ant colony search (ACSA)
algorithm [11], artificial immune systems (AIS) [12], honey
bee colony (HBC) algorithm [13], firefly algorithm (FA)
[14]. These methods impose a few or no restrictions on the
shape of cost functions, however, they are often prone to get
trapped into local optima when applied to large-scale ED
with multiple prohibited operating zones.

To enhance the global search ability of solving large-
scale ED problem, several ECTs have been developed in the
recent years. Among them, extensive researches focus on the
improved PSO algorithms because of its popularity. These
improved ECTs have been proved to be more effective to
solve large-scale ED problem. For example, chaotic PSO
(CPSO) method [15] combines PSO with adaptive inertia
weight factor (AIWF) and chaotic local search (CLS) based
on logistic and tent equations to solve ED problems with
generator constraints. The anti-predatory PSO (APSO) [16]
applies anti-predatory nature, which helps the swarm to
escape from predators. The anti-predatory is modeled and
embedded in the original PSO algorithm to form APSO
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model. The hybrid PSO with wavelet-theory-based mutation
(HPSOWM) operation [17] is used to enhance PSO
algorithm in exploration and searching for a better solution.
Random drift particle swarm optimization (RDPSO) [6] is
inspired by free electron model in metal conductors placed in
an external electric field. RDPSO method uses set of
evolution equations to enhance the PSO global search ability.
However, [6] and [15]-[17] have not used prohibited
operating zones corresponding to each TGU in their
computations so that there are less inequality constraints for
the ED problem.

In order to make a fair comparison, some other ECTs are
used in this paper. They include lambda logic (£-logic) [18]
and a mixed-integer quadratically constrained quadratic
programming (MIQCQP) [19]. These two methods are used
to solve large-scale ED problem. They take into account the
prohibited operating zones and ramp rate limits as well as
transmission network loss.

Recently, orthogonal particle swarm optimization
(OPSO) algorithm was successfully used in solving ED
problem under power grid constraints in SEPG of small and
medium power systems [20][21].

In this paper, we propose a novel algorithm to improve
the performance of PSO algorithm, named orthogonal PSO
(OPSO) to obtain superior global search ability in solving
ED problem. The OPSO algorithm is also applied to solve
equality and inequality constraints, considering the ramp rate
limits and prohibited operating zones and transmission
network loss. The OPSO algorithm consists of 7 particles in
a swarm in d-dimensional search space (m > d). The OPSO
algorithm goes thought an orthogonal diagonalization
process in which we obtain a d number of orthogonal
guidance vectors from m number of current position vectors.
These guidance vectors are used to update the velocity and
position vectors of only d selected particles, whereas, the
remaining (m — d) particles are not updated. This leads the
search process primarily to concentrate on using best d
particles in a swarm. We have shown that the OPSO
algorithm is able to solve large-scale ED problems under
power grid constraints quite effectively.

Rest of the paper is organized as follows. We explain the
problems formulation in Section II. Explanation on our
suggested OPSO algorithm is provided in Section III. In
Section IV, we present the application of OPSO algorithm to
ED problem. Finally, conclusion of this study is given in
Section V.

II. PROBLEM FORMULATION

Here, we explain the cost function and the power
constraints involved in this study.

A. Objective Cost Function

The cost function of ED problem is formulated as
follows. Firstly, determine the real output power of each on-
line TGU. Secondly, determine the lowest total fuel cost of
all generators over a period of time, while maintaining
various nonlinear constraints [19]. The cost objective
function is given by

Ngen
Minimize F,,,, = _il Fy(P) (1)
=
where F(P)) is the cost function of the jth TGU in ($/h), P; is
the real output power of the jth TGU in (MW), and Ny, is
the number of online TGUs of the power system. The cost
function of each TGU is related to the real power delivered
into the system, and its performace is given by a quadratic
function [16]

F(P)=a;+b;P+c,P; ()
where a;, b;, and ¢; are the cost coefficients of jth TGU.

B. Power Constraints in SEPG

Differentt power constraints used in this work are
explained below.

Constraint #1: Power Balance Constraint. The constraint
for total power balance is expressed by

Ngen
Zl P =P+ P 3)
=

The constraint of the balance equation can be stated as
the total system power generation equals to the load demand
(Pp) in (MW) of the system plus the transmission network
loss (Pr) in (MW). Py is a function of real output power. In
addition, Py is usually approximated by Kron's loss formula
[6] which is given by

Ngen Ngcn Ngm
B=3 SPBR+ X PButBy ()
J=b k= J=

where j, k =1, 2, ..., Ng, are the indices of the generating
units , and Bj, Bj, Boo are known as the loss coefficients or
B-coefficients.

Constraint #2: Generation Limits: The generation limit is
given by

Pj,mm < Pj < Pj,max ] = 1, 2, ey Ngen (5)

This requires that the power generation of each unit varies
between its minimum P;.;, and its maximum P; max
generation limits.

Constraint #3: Ramp Rate Limits: In real operation, the
operating range of all on-line TGUs is restricted by their
ramp rate limits due to the physical limitation of TGUs [6].
The inequality constraints due to ramp limits are given by

i) If power generation increases, then
0
Py =Py <UR, (6)

ii) If power generation decreases, then

0
P? - P, <DR, )

where P]Q in (MW) is the previous active output power, UR;

in (MW) is the up-ramp limit of the jth generator; and DR;in
(MW) is the down-ramp limit of the jth generator. By
substituting (6) and (7) in (5), we obtain
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(P~ DR)}< P, < min{P, 0 (PP +UR)}  (®)

Jj.max >

max {P

J.min »

Let us consider,
P

> tow = max{P,u, (P~ DR )}, and

j.min

®

Py = min{ P, (PO +UR )} (10)

J
where Pj ow
unit j, respectively. Ramp rate is a function of resource size.
The generators must be able to increase/decrease the power
output at a specific rate per minute. For example, TGU has
50 MW installed capacity, the specified ramp rate range is 3
MW per minute. Then, the 50 MW TGU has 3 MW per
minute ramp rate [22].

and P, ., are the new lower and higher limits of

Constraint #4: Porhibited Operating Zones (POZs): Due to
steam valve operation or vibration in a shaft bearing of
TGU, the generation system contains some prohibited
operating zones (POZs) [6]. Due to these constraints,
discontinuities are produced in cost curves corresponding to
the POZs. In this case, it is difficult to determine the shape
of the cost curve under POZs through actual performance
testing. Therfore, the best solution for the on-line TGUs in
the power system must avoid POZs. Consequently,
considering the constraint #2 in (5), the feasible operating
zones of the jth generating thermal units are given by

Pj,min < P/ < P/{,]
PSP <Pl k=23, Ny, )
PNy <5 = Piimas

where P]{k and P/“k are the lower and upper bound of the kth
POZs of the jth generating unit, and N . ;is the number of

prohibited zones of the jth generating unit.
Incorporating these constraints in (8), (9) and (10), we
obtain the final set of power constraints as given below

Pj,]aw Pj

7
k-1 S Py S Py

(12)

P{l
JNpz,j

III. ORTHOGONAL PSO LEARNING ALGORITHM

Here we briefly introduce the PSO algorithm and
explain the proposed OPSO algorithm.

A. The PSO Algorithm

The PSO algorithm is a global optimization method. The
particles inside swarm represent to the possible solutions in
the dimensional search space. The population strategy
depends on the iterative learning algorithm. The learning
strategy of PSO algorithm is as follows. Firstly, each
particle flying in the search space adjusts its flying
trajectory according to two guides, its personal experience
and its neighborhood’s best experience. Secondly, when

662

looking for a global optimum, each particle learns from its
own historical experience and its neighborhood’s historical
experience. In this method, a particle while choosing the
neighborhood’s best experience uses the best experience of
the whole swarm as its neighbor’s best experience. This
method is called “global practical swam optimization” [23],
because the position of each particle is influenced by the
best-fit particle in the entire swarm. The following steps
explain the learning strategy of the PSO algorithm.

Step 1: Let us consider a swarm population with m particles
(Npariicte = m) searching for a solution in d-dimensional
space, where m > 1. The objective of the PSO algorithm is
to minimize the objective function f{x).

Step 2: Each particle i (i = 1, 2, ..., m) in the swarm has one
d-dimensional velocity vector V; and one d-dimensional
position vector X; are given by

(13)
14

Step 3: For each particle i, evaluate the objective function
fx) using the position vector X;.

Vi= [Vil, Vizy ooy Vid]

Xi= [xi1, X2, ..y Xid]

Step 4: Determine the personal position vector, Gjpers. The
Gipers 1s a personal position vector of particle i that is
obtained by a solution of the objective function f{x) when
evaluating particle i. The Gjpers is given by

(15)

Step 5: Determine the global best position vector, Gpesr. The
Gies 18 a best particle’s position vector among all personal
positions vectors of whole swarm. The Gy is obtained by a
solution that corresponds to lowest value of the m evaluated
objective functions. The Gy is given by

Gipers= [8pits &pi2s +--» Gpidl

Ghese= (€01, 8b.25 -+ -» bd) (16)
Step 6: Consider the total number of iterations, Nie- In
iteration, #, (1 = 1, 2, ..., Ni), a particle’s velocity and
position vectors are updated as follows

Vi()=Vi(t—1) + c1r1i (Gipers (1 — 1) = X; (1 = 1))

+c2ri (Grest (1= 1) = Xi (1= 1)) (17)

(18)

where ¢; and ¢, are coefficients whose values are chosen
experimentally from [0, 2.5]. The r; and ry are two
randomly generated values with range [0, 1].

X =X-1)+Vi(@®

Step 7: Each particle i is evaluated using the objective
function f(x) and using the position vector X; (7) (18).

Step 8: In every iteration, the Gy and Gy are updated
according to (19) and (20).

G perst =D i J(X(D)> [ (G et = 1))
Xi(0) i (X)) S(G, perst = 1))
Ghest (t) = min{Gi,per: (l)}

Gy pers® = (19)

(20)
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Step 9: Finally, at the end of iterations, the optimal solution
of flx) is given by the global best position vector, Gpes (7)
(20).

B. The Proposed OPSO Algorithm

In PSO algorithm, each particle updates its velocity and
position vectors according to its personal best position and
its neighborhood’s best position. However, this learning
strategy can cause "Oscillation" phenomenon [23]. The
oscillation becomes more salient with high d-dimensional
search space. The oscillation is due to linear combination of
the personal effect and the neighborhood effect.
Subsequently, the particle becomes in a confused state
variable to decide which direction to go. So, the search
ability of the original PSO algorithm becomes inefficient. In
this case, the particles suffer from local optimum trapping
due to premature convergence and insufficient capability to
find extreme points and lack of efficient mechanism to treat
the constraints. In order to overcome this limitation, we
propose OPSO algorithm to improve PSO algorithm.

The OPSO algorithm gives a new topology inside the
swarm called “orthogonal particle formation” (OPF). In a
swarm population with m particles (m > d), each particle i
has a position vector .X; and a velocity vector V;, as given in
(13) and (14), respectively. The OPSO algorithm updates
the position and velocity vectors in each iteration using the
following steps:

Step 1: For each particle, evaluate the cost using the
position vector in the cost function (1). Select the best
particle that has the minimum cost. Let us denote its
position vector as Xy Similarly, obtain the next m—1 best
position vectors. Arrange these m best vectors in ascending
order of costs.

Step 2: Construct a matrix 4 of dimension m*d such that
each row occupies one of the m best position vectors in the
same ordered sequence. Then, convert the matrix 4 to
matrix B, such that matrix B is a symmetric matrix of
dimension d*d using the pseudocode given in Fig. 1.

Procedure: Convert to a symmetric matrix
fori=1:d
B(1,i)=A(1,1)
B(i, 1)=A(1, i)
end for
for k=2:d
fori=2:d
B(k, i)y =A(k, i)
B(k, i) = B(k, i)
B(i, k) = B(k, i)
end for
end for

Fig. 1. Pseudocode for converting matrix 4 to symmetric matrix B

Step 3: Convert matrix B to an orthogonal matrix C of
dimension dxd, using Gram—Schmidt orthogonalization
method [24].

Step 4: Apply orthogonal diagonalization (OD) process [24]
which has the following properties.

1) If matrix B is a real, symmetric matrix of dimension
dxd, then matrix B is diagonalizable.

2) Matrix B is orthogonally diagonalizable if there exists
an orthonormal matrix C such that D is orthogonal
diagonal symmetric matrix.

Step 5: Obtain an orthogonal diagonal matrix D of
dimension d*d using (21)

D =CBC" (21)
Let D; denotes the ith row of the matrix D, (i=1, 2, ..., d).

Step 6: Update the position and velocity vectors of the
selected particles. Thus, the d best position and velocity
vectors as obtained in Step 1 are updated as follows.

Viy=Vit—=1) +eri(Dit— 1) - Xi (1= 1)) (22)

Xi(=Xi(1=1)+Vi(n (23)

where ¢ is an acceleration coefficient which is chosen
experimentally from [0, 2.5], ; is a random number within
range [0, 1],i=1, 2, ..., d, and ¢ is a current iteration, # = 1,
2, ..., Niter, Nirer is number of iterations. Because of using
only one guide D; in the particle’s velocity vector Vi, the d
particles move in one direction in successive iterations
toward the target. This means that OVs are used to control
movement of the d particles that have the possible solutions.
This will avoid the oscillation phenomenon and trapping
into local minima.

At end of Ni.,, the position vector Xj.,, as computed in
Step 1 provides the optimal solution. Instead of using two
guides (Gipers and Gresr) in the PSO algorithm (17), the
OPSO algorithm uses only one guide and has less number of
control parameters. A flowchart of the OPSO algorithm with
major computational steps is shown in Fig. 2.

Start

[ Nyarticte = m. Dimension = d. Iteration = N ]

IRandomiy initialize the m velocity ¥;and position.Y; vectors using (13) and ( l4).|

Evaluate f{x) using X;

—

Obtain d best position vectors including Xs..,
[Update 70 and x; o (22) el (22) ]

| Evaluate the cost function using (23),'

|Oph.mal solution = Best of X; (Nye) |

Fig. 2. Flowchart of OPSO algorithm
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C. A Simple Example

To explain performance of the PSO algorithm and the
proposed OPSO algorithms, a simple example is illustrated.
Let us consider a 2-dimentional function given by
f (x, y) = x’+y*+3. The objective function f (x, y) is to find
values x and y so the value of the f{x, y) is minimized. With
a range of [-100 100], for x and y, the function is plotted in
Fig. 3. Note that the function is minimized to 3 when x = 0
and y = 0. Both the PSO and OPSO algorithms use same
parameters as follow.

1) 10 particles in the swarm and using Ni.-= 10.
2) ci=c2=c=2.0.

Figure 4 shows that the best particle in the original PSO
algorithm moves forward and backward between 3rd
iteration (-44.3,31.6) and 4th iteration (16, -10.2) causing
oscillations. In the OPSO algorithm, the best particle moves
steadily from the initial position to the solution in the 10th
iteration.

(x,y) = X2 + y?+3.0

Sition'P = {10,50) |

Fig. 4. Movement of best particle with iteration.

IV. APPLICATION OF OPSO ALGORITH TO ED PROBLEM

Here we describe the simulation results carried out on a
40 TGUs power system with several constraints.

A. The Power System Specification

In order to show performance of the OPSO algorithm to
solve large-scale ED problem, a realistic power system in
Taiwan, named Taipower system is considered. It is
complex and consists of 40 mixed-generating units, coal-
fired, gas-fired, gas-turbine with complex cycle, diesel
generating units and nuclear generating units [6]. The load
demand of this system is 8,550 MW. There are total 46
prohibited zones for 25 TGUs are shown in Table I. This
means, there are 47 inequality constraints according to (12).
In normal steady-state operation, the B-coefficients with 100
MVA base is considered. The B-coefficients are generated
randomly as is done in [18]. The B-coefficients (Bj) of
dimension 40x40 are listed in Appendix. The Bjoand By are
neglected in our calculation.

TABLE L. TGU CAPACITY WITH COEFFICIENTS AND RAMP RATE LIMITS
AND PROHIBITED ZONES OF TAIPOWER SYSTEM

P/ \Pipin| Piax| @i bi ¢ | UR;|DR; POZs
MW|MW|MW| $/h |$/MWh|$/MW?h| MW |MW MW
1 | 50[ 40[ 80[170.77] 8.336] 0.03073] 35] 60
2 | 60[ 60[ 120[309.54] 7.0706] 0.02028] 40] 70
3 | 150] 80 190[369.03] 8.1817] 0.00942] 50| 90
4 | 24| 24] 42[135.48] 6.9467] 0.08482] 42| 42
5 | 42| 26] 42[135.19] 6.5595] 0.09693] 42| 42
6

=

8

[80,85]
[82,88]

75| 68| 140|222.33| 8.0543| 0.01142| 40| 75
100 110 300{287.71| 8.0323| 0.00357| 65| 100|[155,162][221,235]
152| 135| 300(391.98] 6.9990| 0.00492| 65| 100

9 [ 200] 135] 300455.76] 6.6020] 0.00573] 65| 100 [ 1
10 | 100] 130] 300[722.82] 12.908] 0.00605] 65[ 100 [200211]
11 | 300] 94| 375[635.20[ 12.986] 0.00515] 55] 95 [213,220]
12 [ 300] 94| 375[654.69] 12.796] 0.00569] 55| 95 ]
13| 150[ 125[ 500[913.40| 12.501| 0.00421| 80| 120[[201.211][290,310]
[413,425]
14 [ 200] 125] 500[1760.4| 8.8412] 0.00752] 80| 120[[205.217](306,318]
[409.420]
15 | 190] 125 500[1728.3| 9.1575[ 0.00708| 80| 120([214,230][277,290]
[402,412]
16 | 190| 125] 500[1728.3] 9.1575| 0.00708] 80| 120[[214,230][277,290]
[402.412]
17 | 190] 125 500[1728.3| 9.1575[ 0.00708| 80| 120([214,230][277,290]
[402,412]
1
1
1
1
1
1
1
1
]
]
1
1
1

[213,220

18 | 400| 220| 500(647.85| 7.9691| 0.00313| 70| 110
19 | 400| 220| 500(649.69| 7.9550| 0.00313| 70| 110
20 | 398| 242| 500|647.83| 7.9691| 0.00313| 70| 110
21 | 398| 242| 500/647.81| 7.9691| 0.00313] 70| 110
22 | 390| 254| 550|785.96| 6.6313| 0.00298| 70| 110
23 | 390| 254| 550|785.96| 6.6313| 0.00298| 70| 110
24 | 390| 254| 550|794.53| 6.6311| 0.00284| 70| 110
25 | 390| 254| 550|794.53| 6.6311| 0.00284| 70| 110
26 | 390| 254| 550|801.32| 7.1032| 0.00277| 70| 110
27 | 390| 254| 550(801.32| 7.1032| 0.00277| 70| 110

307.321][407,421
301,310][421 431
340,351][421 431
340,351][421 431
306,320][440,445
306,320][440,445
370,390][495,502
370,390][495,502
380.410][501,520
380,410][501,520

28 | 20| 10| 150/1055.1| 3.3353| 0.52124| 90| 150 [102,113
29 | 20| 10| 150/1055.1| 3.3353| 0.52124| 90| 150 [102,113
30 | 30| 10| 150/1055.1| 3.3353| 0.52124| 90| 150 [102,113

31 30[ 20 70[1207.8| 13.052| 0.25098| 70| 70
32 | 40| 20| 70{810.79| 21.887| 0.16766| 70| 70
33 40| 20| 70{1247.7| 10.244| 0.2635| 70| 70
34 | 25| 20| 70{1219.2| 8.3707| 0.30575| 70| 70
35 25| 18| 60/641.43] 26.258| 0.18362| 60| 60
36 | 20| 18] 60[1112.8] 9.6956| 0.32563| 60| 60
37 20/ 20 60[1044.4| 7.1633| 0.33722| 60| 60
38 | 25| 25| 60]832.24| 16.339| 0.23915| 60| 60
39 | 25| 25| 60(832.24| 16.339| 0.23915| 60| 60
40 | 25| 25| 60|1035.2) 16.339| 0.23915| 60| 60
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B.  Experimental Results
In [6], several optimization methods, for example, GA,
DE, ACSA, AIS, HBC, FA, CPSO, APSO, HPSOWM and
RDPSO have been tested on Taipower system are listed in
Table II. These methods were not taken into account the
POZs corresponding to each TGU in their computations so
that there are less inequality constraints for the ED problem.
In addition, due to lack of B coefficients data of Taipower
system, the P was not considered by these methods in [6].
The two authors [18] and [19] also tested Taipower
system but with the POZs and P, and are listed in Table II.
The results in Table II represent the minimum,
maximum and mean cost. In addition, standard deviation (o)
is also listed. The best result in terms of minimum cost is
from [19] MIQCQP. However, RDPSO algorithm [6] is the
best in terms of mean, maximum costs and 6. NA represents
that the results are not available in corresponding reference.
In addition to our proposed OPSO algorithm to solve ED
problem under power grid constraints, we tested Taipower
system by PSO algorithm. The test was carried out on the
same parameters, ¢; = 2= 2, Nparicte= 100, d = 40, Ny, =25,
and Ni.,= 10,000 in each independent run.

TABLE II. PERFORMANCE OF 12 ECTS METHODS

Algorithm Min.Cost Max. Cost | Mean Cost
(8/h) (S/h) ($/h) °
GA [6] 133,435.69 | 136,274.97 135,012.4 72935
DE [6] 129,915.56 | 137,042.94 130,600.2 | 1335.43
ACSA [6] 131,167.34 | 134,923.62 | 132,844.71 741.08
AIS [6] 130,133,92 | 132,703.18 | 131.482.27 561.79
HBC [6] 130,337.72 | 132,999.88 | 131,733.94 589.80
FA [6] 130,948.84 | 134,997.92 | 133,511.45 747.36
CPSO [6] 129,638.45 | 134,184.26 | 130,812.04 651.06
APSO [6] 130,861.52 | 130,044.63 | 132,587.84 675.03
HPSOWM _[6] 129,717.35 | 132,303.59 | 130,858.67 591.76
RDPSO  [6] 128,864.45 131,129.0 129,482.0 568.93
A-logic [18] | 129,777.53 NA NA NA
MIQCQP [19] | 128,395.29 NA NA NA

The results in Table III shows, OPSO algorithm is the
best in minimum, maximum and mean cost and has lowest ¢
while comparing it with PSO algorithm and other
optimization methods listed in Table II. The OPSO
algorithm gives superior result in minimum cost when
comparing it with MIQCQP method. The minimum cost is
reduced by 1.42%, i.e., a saving of $1,827.23/h. Moreover,
by comparing mean cost of OPSO algorithm with mean cost
computed by RDPSO algorithm, the mean cost is reduced
by 1.85%, i.e., saving of $2,400.4/h. Furthermore, it has the
lowest 6 compared to all other 12 optimization methods as
well as PSO algorithm. This gives evidence that the OPSO
algorithm is more stable and more robustness.

TABLE III. RESULTS OF PSO AND OPSO ALGORITHMS
OF TAIPOWER SYSTEM OVER 25 RUNS

Algorithm | Min. Cost | Max. Cost | Mean Cost
$/h $/h $/h °
PSO 138,298.67 | 468,520.0 327,806.2 | 87,771.26
OPSO 126,567.97 | 127,583.90 | 127,081.60 267.246

Figure 5 shows the convergence characteristics of OPSO
and PSO algorithms. Fig. 5 (a) shows essential average of
the mean cost over 25 independent runs. The OPSO

algorithm has better convergence properties than the PSO
algorithm. Fig. 5 (b) shows the distribution of minimum
costs over 25 independent runs. It shows that OPSO
algorithm is more stable than the PSO algorithm in getting
the optimal solution.

Mean cost $/h

1 T T T T T T

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 100
No. of Iteration

x 10° B. Distribution of Minimum Cost per Run

Minimum cost $h

No. of runs

Fig. 5. Convergence characteristics of OPSO and original PSO algorithms
of Taipower system

The above results provide evidence that the performance
of OPSO algorithm substantially improved over the PSO
algorithm.

The reasons that made PSO algorithm inefficient in
global search ability can be summarized as follow:

1) The original PSO algorithm that was discussed in
Section III, all particles learn from Gipers and Gpey in
updating their velocities and positions. The guide Gjey
moves fast, and this makes original PSO algorithm
inefficient to find new positions.

2) The Gpey restricts whole swarm and leads the swarm to
the permature convergence.

3) The fluctuation between Gjpers and Gper makes the PSO

algorithm lacks synchronization. Then, the Gpey
movement is oscillatory and out of control.
4) Early convergence of PSO algorithm in high-

dimensional objective function (e.g., d = 40) has made
PSO algorithm leading to non-optimal solution.

Table IV lists the solution vector P; (j = 1, 2, ..., 40)
corresponding to the best solution for PSO and OPSO
algorithms applied to the 40 TGUs Taipower system. Note
that the load demand is 8,550 MW. Both PSO and OPSO
algorithms solve the 47 inequality constraints, also both
algorithms avoid the POZs. However, the OPSO algorithm
is able to achieve a better solution, i.e., optimization power
generation schedule that fits to the load demand while
satisfying all constraints.

Table V shows the comparison between OPSO
algorithm and RDPSO [6], A-logic [18] methods, and PSO
algorithm in terms of transmission loss P;. The P, of OPSO
and PSO algorithms are calculated by using (4). The results
shown in Table V reveal that the OPSO algorithm obtains
on lowest value of P, compared among other three
algorithms.
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TABLE IV. OPTIMIZED POWER DELIVERED BY EACH TGU USING PSO

AND OPSO ALGORITHMS
Generator Output Power (MW)

Generator # PSO | OPSO
1 60.00] 79.76
2 96.84| 100.00
3 186.17| 190.00
4 39.67| 40.09
5 28.26| 37.18
6 68.37| 115.00
7 153.29| 153.42
8 203.28| 217.00
9 264.86] 265.00
10 130.40{ 161.97
11 350.78| 349.05
12 354.45| 355.00
13 228.68| 221.63
14 276.34| 280.00
15 266.84| 270.00
16 269.99| 270.00
17 265.85| 270.00
18 469.96| 470.00
19 467.04| 470.00
20 466.63| 468.00
21 439.92| 468.00
22 459.97| 460.00
23 459.82| 460.00
24 407.88| 459.99
25 444.47| 460.00
26 456.58| 460.00
27 452.75| 460.00
28 99.09| 5145
29 75.77| 26.29
30 86.60| 22.23
31 64.37| 61.90
32 63.01] 58.08
33 59.61| 46.12
34 48.55| 41.76
35 57.22| 40.00
36 59.89| 40.00
37 42.91| 40.00
38 55.32f 51.81
39 59.44| 57.42
40 59.11| 40.00
Total Output Real Power| 8,600{8588.15

TABLE V. COMPARISION OF TRANSMISSION NETWORK LOSS RESULTS

Algorithm l\fl)\’N
RDPSO [6] 73.54
A-logic [18] 87.40

PSO 38.20
OPSO 38.18

The equality power constraint in (3) has been satisfied.
Total system power generation equals to Pp plus P; as given
by

The PSO is unable to solve the equality power constraint
given in (3) of Taipower system. However, OPSO algorithm
solves the equality power constraint.

The OPSO algorithm overcomed all problems that made
PSO algorithm inefficient to get acceptable results. In
addition, the OPSO algorithm appeared superior in solving a
large-scale economic dispatch problem under power grid
constraints compared with other ECTs mentioned in
literature.

V. CONCLUSION

In this paper, we proposed a novel approach, called
orthogonal PSO algorithm to solve economic dispatch of
power of a large-scale thermal generating units in smart
electric power grid environment. In the proposed OPSO
algorithm, the orthogonal diagonalization process and
orthogonality are applied to d particles that have the
possible solutions in the swarm. The d orthogonal vectors
are used as to guide d particles to improve their directions in
each iteration.

The OPSO algorithm was tested on the Taipower
system, a large-scale 40-unit power system. The results
showed that OPSO algorithm has a better performance in
terms of the minimum, maximum and mean cost compared
to several competitive algorithms. The OPSO algorithm also
showed better stability and robustness.

We have shown that OPSO algorithm is able to solve the
equality and inequality power constraints imposed on the
Taipower system and also able to avoid all prohibited
operating zones.
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Abstract—We propose a novel algorithm called, multi-gradient
particle swarm optimization (MG-PSO), for solving economic
dispatch (ED) problem of thermal generating units (TGUs) under
smart power grid constraints. The curve of cost function of TGUs
becomes non-convex when these are subjected to ramp rate limits
and prohibited operating zones. The proposed MG-PSO
algorithm is able to solve such complex problem. In MG-PSO
algorithm, different negative gradients are used. These negative
gradients are used as guides for m particles in the search of
global minima. The diversity in negative gradients is a key of the
MG-PSO algorithm. Due to this diversity, the m particles cover
largest search area as much as possible. The velocity vectors of
the m particles are significantly affected by only one negative
gradient called, the best negative gradient among all used
negative gradients. This makes the m particles adjust their
positions and improve their direction according to the best
negative gradient. The performance of the MG-PSO algorithm
has been verified on 6 and 15 TGUs test systems. The proposed
MG-PSO algorithm gives good quality and promising results in
solving the ED problem. In addition, the MG-PSO algorithm
produces better results in terms of fitness values when compared
with PSO algorithm and other optimization techniques.

Keywords—Multi-gradient PSO algorithm, thermal generating
units, smart power grid, power constraints, economic dispatch.

1. INTRODUCTION

Solving the economic dispatch (ED) problem helps in
making significant savings in smart power grid (SPG). The
aim of ED is to minimize the total generation cost of on-line
thermal generating units (TGUs), while satisfying SPG
constraints. The practical formulation of ED problem involves
a non-convex cost function due to the ramp rate limits (RRLs)
and prohibited operating zones (POZs). These power
constraints result in the cost curve of TGU with discontinuities
and high order nonlinearities. Therefore, the exact formation
of the cost function under SPG constraints gives correct details
about the production cost and scheduling TGUs to meet the
load demand.

In order to treat a non-convex problem with the cost function
of TGU, a wide variety of the evolutionary computation
techniques (ECTs) based on random search have been
proposed over the last few decades. Some of ECTs include
genetic algorithm (GA) [1], evolutionary algorithm (EA) [2],
particle swarm optimization (PSO) algorithm [3], [4], ant
colony search (ACS) algorithm [5], artificial immune system
(AIS) [6], honey bee colony (HBC) algorithm [7], and firefly

978-1-5090-4303-3/16/$31.00 ©2016 Crown

algorithm (FA) [8]. These techniques impose a few or no
restrictions on the shape of a cost function. However, they are
often prone to get trapped into local optima when applied to
multiple prohibited zones.

To enhance the global search ability to solve ED problem
under multiple power constraints, several ECTs have been
developed in the last decade including PSO based algorithms.
For example, orthogonal PSO (OPSO) algorithm has been
proposed to solve ED problem under different power
constraints [9], [10]. A fully decentralized approach (DE) uses
three stages, one to achieve consensus among agents and the
second and third stages are used for solving ED problem [11].
The chaotic PSO (CPSO) method combines PSO with an
adaptive inertia weight factor and chaotic local search to solve
ED problem [12]. The anti-predatory PSO (APSO) applies
anti-predatory behavior, which guides the swarm to escape
from the predators [13]. The hybrid PSO wavelet mutation
(HPSOWM) uses the wavelet-theory-based mutation to
enhance PSO algorithm in exploration and searching for a
better solution [14]. However, hybrid methods are often time-
consuming due to the complex algorithm structure and finding
an appropriate integration of hybrid algorithm is difficult. The
random drift PSO (RDPSO) is inspired by a free electron
model in the metal conductors placed in an external electric
field [15]. The RDPSO uses a set of evolution equations to
enhance the PSO global search ability. The simulated
annealing PSO (SA-PSO) algorithm uses probabilistic
jumping to prevent obtaining infeasible solution [16]. A
mixed-integer quadratically constrained quadratic
programming (MIQCQP) uses a bi-level branch and bound
method to solve ED problem [17]. The modified PSO (MPSO)
has been used for a nonconvex ED problem [18].

Some improved PSO variants in the literature (e.g., CPSO
[12] and MPSO [18]) use another approach, called the inertia
weight factor and time-varying inertia weight factors,
respectively, as a controller on the velocity vector of each
particle. The objective of both factors is the control on the
impact of the previous velocity of the m particles on the
current iteration. Therefore, different equations have been
used to describe the weight factor. In this paper, we propose a
novel algorithm called multi-gradient PSO (MG-PSO) to solve
ED problem, considering the generation limits, RRLs, the
POZs and transmission network loss (P.) in SPG environment.

The MG-PSO algorithm uses several negative gradients. The
particle’s velocity is clearly affected according to best
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negative gradient among all used negative gradients. We have
shown that MG-PSO algorithm is able to solve ED problem
under TGU constraints quite effectively.

The rest of this paper is organized as follows. We present the
problem formulation in Section II. An explanation of
MG-PSO algorithm is provided in Section III. In Section IV,
we present the application of MG-PSO algorithm to ED
problem. Finally, the conclusion of this study is given in
Section V.

II. PROBLEM FORMULATION

Here, we explain the cost function and the power constraints
imposed on SPG involved in this study.
A. Objective Cost Function
The objective of an ED problem is to find the optimal
allocation of output real power of on-line TGUs over a period
of time in order to minimize the total generation cost while
satisfying the equality and inequality power constraints [15].
The cost function can be stated mathematically as
N en
Minimize £, = il F(P) )
=
where F(P)) is the cost function of jth TGU in $/h, P; is the
output real power of jth TGU in MW, and N, is the number
of on-line TGUs. The cost function of each TGU is related to
the output real power delivered into SPG and specified by a
quadratic function [13] as follows:

F(P)=a;+b;P;+c;P} @
where a;, b;, and ¢; are the cost coefficients of jth TGU.
B. Power Constraints in SPG

Different power constraints imposed on TGUs in SPG used
in the literature are explained below.

1) Power Balance Constraint. The equality constraint of the
power balance can be stated as the total power generation
equals to the load demand (Pp) in MW plus the transmission
network loss (P,) in MW. This is expressed by

N gen

ZIR/'_PD_PL:O (3)
i=

The P; is a function of the output real power of TGU and is
given by [19]
Ngm Ngyrz
P=2% Y PByh “
j=1 k=1 ’
where Bj,, are known as the loss coefficients or B-coefficients.

2) Generation Limits: The generation limits of each TGU is
given by

Pj,min < I)j < })jmax _/ = 19 2’ sees Ngen (5)

This requires that the power generation of each TGU remains
between its minimum P; ,;, and its maximum P; ., limits.

3) Ramp Rate Limits Constraint: The operating range of all
on-line TGUs is restricted by their ramp rate limits (RRLs)
due to the physical limitation of TGUs [13]. In addition, TGUs
cannot change their output power immediately. A change in
TGU output power from one specific interval to the next
cannot exceed a specified limit, as follows:
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o If power generation increases, then
0
P,—P) <UR, (6)
o If power generation decreases, then
0
Py =P < DR, ™

where P;) is the TGU output power at the previous interval

and P; is the TGU output power at current interval. The UR;
and DR; are the up-ramp and down-ramp limits of unit ,
respectively, in MW/h. By substituting (6) and (7) in (5), we
obtain

max{P,,, (P~ DR )< P, < min{P o (P2 +UR)) (8

Let us assume that,
Py =max{P, (P~ DR )} and )
Pj‘higlx =min {Pj,max ’(Pjo + UR])} (10)

where P;,, and P; ;g are the new lower and higher limits of
unit j, respectively.

4) Prohibited Operating Zone Constraint: The physical
limitations due to the steam valve operation or vibration in a
shaft bearing of TGU may result in the generation units
operating within prohibited zones (POZs) [16]. Due to
presence of POZs, discontinuities are produced in the cost
curve corresponding to POZs. In this case, it is difficult to
determine the shape of the cost curve under POZs through
actual performance testing. Therefore, the best solution is, the
TGU that contains POZs avoids these prohibited zones. By
using (5) mentioned in constraint number 2, the feasible
operating zones of the jth TGU are given by

Pj,m[nSPjSPj(,l
PY <SP <P, k=2,3,.,Ny; an
B;,‘N i < 1)/ < P/’,max

pz.j
where P/’ ¢ and P are the lower and upper bound of the kth

POZs of the jth unit, and N,.; is the number of prohibited
zones of the jth unit. Incorporating these power constraints in
(8), (9) and (10), we get the final set of constraints as follows:

/
Pj,/ow < Pj < Pj,l’

A SPSPl k=23, Ny (12)

U
Ny < B S B pigh

i

III. MULTI-GRADIENT PSO ALGORITHM

Here we briefly introduce the PSO algorithm and explain
the proposed MG-PSO algorithm.

A. The PSO Algorithm

The PSO algorithm is a global optimization technique. The
population (swarm) is distributed randomly and using iterative
approach to reach global optimum. The particles inside swarm
refer to the possible solutions in multi-dimensional search
space. The PSO algorithm depends on; firstly, each particle
flying in the search area adjusts its flying trajectory according
to two guides, its personal experience and its neighborhood’s
best experience. Secondly, when seeking a global solution,
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each particle learns from its own historical experience and its
neighborhood’s historical experience. In such a case, a particle
while choosing the neighborhood’s best experience uses the
best experience of the whole swarm as its neighbor’s best
experience. This PSO algorithm is named, global PSO [3], [4],
because the position of each particle is affected by the best-fit
particle in the entire swarm. The following steps explain the
learning strategy of the PSO algorithm mentioned and
described in [4] that is the original PSO.

Step 1: Let us consider a swarm population with m particles
(Npariicte = m) searching for a solution in d-dimensional space,
where m > 1. The objective of the PSO algorithm is to
minimize an objective function F(P)).

Step 2: Each particle i (i = 1, 2, ..., m) in the swarm has one
d-dimensional velocity vector V; and one d-dimensional
position vector X; are given by

(13)
(14
Step 3: For each particle 7, evaluate the objective function
F(P;) using the position vector JX;.

Step 4: The G; .., is a personal position vector of particle i that

is obtained by evaluating the objective function F(P;). The
Gi,per.v is given by

Vi= [Vit, Vias +vvs Vid]

Xi=[Xi1, Xz, ++s Xid]

(15)

Step 5: Determine the global best position vector, Gpey. The
Gies 1S @ best particle’s position vector among all personal
positions vectors of whole swarm. The Gy, is obtained by a
solution that corresponds to lowest value of the m evaluated
objective functions. The G,y is given by

G[,pem = [gpi,h 8pi2s ++es gpi,d]

(16)
Step 6: Consider the total number of iterations, Nj,. In
iteration ¢, t = 1, 2, ..., Ny, a particle’s velocity and position
vectors are updated as follows:
Vi) =Vit=1) + c1r1i(Gipers (= 1) = X; (= 1))
+ Ca P (Gbe.w(t_ 1) _)([ (l_ 1))
X=X (1- 1)+ V()

Ghest= (80,15 82> > 8b.d]

(17
(18)

where ¢, and ¢, are coefficients whose values are chosen
experimentally from [0, 2.5]. The ry; and r,; are two randomly
generated values within the range [0, 1].

Step 7: Each particle i is evaluated using the objective
function f{x) and using the position vector X; (¢) (18).

Step 8: In every iteration, the G and Gy, are updated
according to (19) and (20).

Gi,pers(t - l) lf f(Xz(t)) >f(Gi,per.&-(t - 1))
Gi. E)‘S(t) =
" X0 if [(XO)< (G, porslt 1))

(19)

Gbes/ (t) = min {G[‘perﬁ (t)} (20)

Step 9: Finally, at the end of iteration, the optimal solution of
F(P)) is given by the global best position vector, Gy (£) (20).
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B. The Proposed MG-PSO Algorithm

We propose an algorithm, called the multi-gradient PSO
(MG-PSO). The mechanism of MG-PSO algorithm depends
on the following considerations.

Consider m particles descend at a particular negative
gradient at a position X after they were flying in the space in
searching for food. However, the food may be few or not
found in position X. Therefore, they decide to change their
direction to another gradient that has a steeper negative
straight line within another position (e.g., position Y). The
position Y may better than the position X. Then, after several
times of different negative gradients, the m particles obtain a
best position that corresponds a best negative gradient among
all used negative gradients. This diversity in gradients
(multiple gradients) generates steeper and less steep slopes. In
such a case, the m particles have gained ability to coverage
larger search space area. Subsequently, the m particles are
guaranteed find the food.

Let us consider grad;, i = 1, 2, ..., Ny are negative
gradients. In each grad; we introduce two variables, the first
variable called, time and denoted by (7). The ¢ represents the
iteration (¢ = 1, 2, ..., N,). The second variable called velocity
decay factor (vdf). The vdf decreases progressively with
increase in ¢. The change in ¢ is Af and the change in vdf is
Avdf. The negative gradients grad; are given by

gradi:% i=1,2, ., Nyt @1)
where N, is number of negative gradients. The vdf at ¢, is
given by
() = vdf ot \ _t
vdf (t) = vdf;,iia % (1 Nim) + vdfﬂ,m, X (Nim)
where vdf,iq and vdf;,, are real and positive numbers within
arange [05 1] and vdﬁm’n’al> Vdf/‘inal-

(22)

The following steps explain the learning strategy of
MG-PSO algorithm.
Steps 1-5: Same as PSO algorithm as in Section I1IA.
Step 6:
Fori=1,2, .., Ny
Choose a set of vdf;, and vdfj,q for each gradient grad;, i =
1,2, ..., Ngua.
Choose number of iterations Ny, t =1, 2, ..., Nie,.
Determine grad;, i=1,2, ..., Ny, using (21).
For each iteration, update the particle’s velocity and position
vectors as follows:

Vi) =vdf(t) Vi(t — 1) + c1 1i(Gjpers (t = 1) = X; (£ = 1))
2721 (Gpest (1= 1) = X; (1= 1))

Xi(=X@t-D+ Vi@

(23)
@4

where ¢ and ¢, are coefficients whose values are chosen by
trail and error method from [0, 2.5]. However, the best values
of ¢; and ¢, depend mainly on the experimental test. The ry;
and ry; are two randomly generated values with range [0, 1].
Evaluate the particle’s performance by substituting (24) in the
objective function F(P;).

Determine G, .., (), Gy (f) using (19) and (20), respectively.
End For
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Repeat for all negative gradients.

End For

Step 7: Select the negative gradient with the chosen vdf,
and vdf},, that gives the best fitness value.

It may be seen from (17) and (23) that the basic difference
between PSO and MG-PSO algorithms lies on the update
procedure of V. In PSO algorithm while updating, the
previous value of V;is added with the guidance obtained from
its own personal experience and the global experience.
Whereas, in the case of MG-PSO algorithm, the vdf of the best
negative gradient is multiplied with the previous value of V;
while adding with the personal experience and the global
experience. The multiplication of vdf to the velocity
diminishes the contribution of previous velocity while
updating and thus improves the performance of PSO
algorithm. The vdf'is introduced in the MG-PSO algorithm in
order to better control the m particles’ ability to exploration
and exploitation.

IV. APPLICATION OF MG-PSO ALGORITHM TO ED PROBLEM

Here we describe the simulation results carried out on two
power systems with several SPG constraints.

A. Test Case 1: Power system with 6 TGUs (PS-1)
1) Details of PS-1

The PS-1 consists of 6 TGUs, 26 buses and 46 transmission
lines [15]. This system is a small-scale with six dimensions for
its ED problem. There are 12 POZs of 6 TGUs, which yield 13
inequality constraints according to (12). The data of PS-1,
TGU capacity and coefficients, RRLs and POZs of TGU and
B-coefficients were listed in [15]. At steady-state operation,
the maximum load demand is 1,263 MW. The computations
are achieved with 100 MV A base capacity.

2) Comparison in terms of fitness values

In [15], the 10 ECTs (e.g., GA, DEA, ACSA, AIS, HBC,
FA, CPSO, APSO, HPSOWM and RDPSO) that have been
tested on PS-1 are listed in Table I. In addition, the fitness
values of [11], [16] and [17] are also presented in Table I. In
addition to our proposed MG-PSO algorithm to solve ED
problem under SPG constraints, we tested PS-1 by PSO
algorithm. Therefore, the total ECTs that have been tested by
PS-1 are 15.

The PS-1 is a small-scale and it is easy for MG-PSO
algorithm to obtain the global optimum. Thus, we select only
two negative gradients Ny, = 2 with a set of initial and final
of vdf'that corresponds to grad,, i = 1, 2. The set parameters of
MG-PSO algorithm are ([grad; = -0.09, vdfiuiia = 1, Vaffna =
0.1], [grad; = -0.07, vdfiuiw = 1, vdfja = 0.3]. The other
parameters were used out on the same with PSO algorithm, ¢,
== 2, Npapicte = 20, d =6, N,y =25, and N, = 3,000 in
each independent run. The results in Table I show that the
MG-PSO algorithm provides the best result in terms of the
minimum, maximum and mean costs and has lowest standard
deviation (o) when compared with PSO algorithm and other
ECTs. This gives evidence that the MG-PSO algorithm is
more stable and robust.
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TABLE I. COST PERFORMANCE OF THE FIFTEEN ECTS FOR PS-1

Algorithm  |Min.Cost ($/h)|[Max. Cost ($/h)|Mean Cost ($/h)| o
DE [11] 15,449.58 15,449.65 15,449.61| NA
GA [15] 15,445.59 15,491.47 15,465.17| 9.73
DEA [15] 15,444.94 15,472.06 15,450.13| 6.98
ACSA [15] 15,445.30 15,511.52 15,459.51{12.02
AIS [15] 15,446.32 15,481.27 15,456.66| 7.39
HBC [15] 15,444.58 14,482.39 15,457.94| 8.48
FA [15] 15,445.94 15,501.39 15,461.30| 9.33
CPSO [15] 15,442.98 15,466.39 15,449.12| 5.8
APSO [15] 15,445.51 15,538.60 15,473.31{12.90
HPSOWM [15] 15,442.82 15,502.63 15,455.62|15.88
RDPSO [15] 15,442.75 15,455.29 15,445.02| 2.28
SA-PSO [16] 15,447.00 15,455.00 15,447.00| 2.52
MIQCQP [17] 15,443.07 NA NA| NA
PSO 15,447.09 15,449.60 15,447.65| 0.56
MG-PSO 15,442.65 15,442.65 15,442.65| 0.00

3) Convergence characteristics of MG-PSO and PSO
algorithms

Figure 1 shows the convergence characteristics of
MG-PSO and PSO algorithms. Fig. 1 (a) shows average of the
mean cost over 25 independent runs. The MG-PSO algorithm
has better convergence properties than the PSO algorithm.
Fig. 1 (b) shows the distribution of minimum costs over 25
independent runs. It shows that MG-PSO algorithm is more
stable than the PSO algorithm in obtaining the global solution.

4) Comparison in terms of inequality and equality constraints

Table II lists the solution vector, P; (j = 1, 2, ..., 6)
corresponding to the best solution for MG-PSO and PSO
algorithms. Both MG-PSO and PSO algorithms were able to
solve the 13 power inequality constraints (12), also both
algorithms avoid the 12 POZs of 6 TGUs. In addition, the
MG-PSO and PSO algorithm operate within RRLs of each
TGU.
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Fig. 1. Convergence characteristics of MG-PSO and PSO algorithms for PS-1.
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TABLE II. OPTIMIZED POWER DISPATCH BY EACH TGU USING MG-PSO AND
PSO ALGORITHMS FOR PS-1

TABLE IV. COST PERFORMANCE OF THE TEN ECTS FOR PS-2

Algorithm |Min. Cost ($/h)|Max. Cost ($/h)|Mean Cost ($/h)| o
Algorithm Optimum output power (MW) Total Output OPSO  [10] 32,669.00 32,699.00 32,688.00] 7.21
P | P | P | Py | Ps | P |Power(MW) ACSA  [15] 32,863.17 33,5628 33,120.02] 86.16
PSO  |441.95(169.39(258.53|138.46|161.00[106.04| 1,275.3999 AIS  [15] 32,895.91 33,132.01 33,017.65| 58.12
MG-PSO [447.06(173.18262.92/139.05(165.57| 86.61 | 1,275.4157 HBC  [15] 32,789.23 33,301.49 33,030.86] 69.79
FA [15] 32,898.01 33,310.72 33,116.90] 96.38
Table III shows the comparison in terms of power balance RDPSO [15] 32,652.33 32,959.79 32,744.58| 82.47
constraint among MG-PSO algorithm and several ECTs. The DEA  [15] 32,718.82 33,213.31 32,966.43|110.32
load demand Pp is 1,263 MW. Total output power generated SA-PSO [16] 32,708.00 32,789.00 32,732.000 NA
as shown in Table II and the P, is computed using (4) and then PSO 32,885.20 33,386.20 33,075.12|110.76
these values are substituted in (3) to determine any mismatch MG-PSO 32,668.69 32,669.32 32,668.98| 0.15

from zero. The results presented in Table III show that
MG-PSO and MIQCQP [17] algorithms have satisfied zero
mismatch in solving power balance constraint. However, other
ECTs listed in Table III, DE [11] and DRPSO [15], SA-PSO
[16] and PSO techniques have obtained on mismatch closer to
zero.

B. Test Case 2: Power system with 15 TGUs PS-2
1) Details of PS-2

The PS-2 is a medium-scale power system with 15 TGUs
whose characteristics and the data are taken from [20]. The
maximum load demand of the PS-2 at steady—state operation
is 2,630 MW. The dimension of this ED problem is d =15. The
PS-2 has a total of 11 POZs of 4 TGUs. Thus, there are 12
inequality power constraints (12) for this ED problem.
Compared to PS-1, the ED problem of this system is relatively
harder to be optimized.

2) Comparison in terms of fitness values

Eight ECTs as well as our proposed MG-PSO and PSO
algorithms are listed in Table IV. These 10 optimization
techniques are tested on PS-2. We choose 3 negative gradients
Ngiaa = 3 with a set of initial and final of vdf'that corresponds
to grad;, i =1, 2, 3. The set parameters of the MG-PSO
algorithm are ([grad; = -0.09, vdfinijar = 1, vdfjnu= 0.1], [grad,
=-0.07, vdfiuitiar = 1, vdffina = 0.3, [grad; = -0.05, vdfiyiia =1,
vdfjia = 0.5]), respectively. The other parameters of MG-PSO
and PSO algorithms are same as in Section IVA2.

The results presented in Table IV show that the MG-PSO
algorithm achieves the best result in terms of the minimum,
maximum and mean cost and has lowest ¢ = 0.15 compared
with PSO algorithm and other eight ECTs. This indicates that
the MG-PSO algorithm is more stable and robust. NA
represents that the results are not available in corresponding
reference.

TABLE III. POWER BALANCE CONSTRAINT RESULTS
OF SIX ECTS FOR PS-1

Algorithm [Total P; (MW)[P, (MW)|P, (MW)[Mismatch (MW)
DE (1| 12759300 | 1,263 |12.9500 -0.0200
DRPSO [15]] 12753565 | 1,263 [12.3598 -0.0033
SA-PSO  [16]] 1,275.7000 | 1263 |12.7330 -0.0330
MIQCQP [17]] 1,275.4400 | 1,263 | 12.4400 0.0000
PSO 12753999 | 1,263 |12.4000 -0.0001
MG-PSO 1,275.4157 | 1,263 |12.4157 0.0000

3) Convergence characteristics
algorithms

of MG-PSO and PSO

The convergence characteristics of MG-PSO and PSO
algorithms are shown in Fig. 2. Figure 2 (a) shows average of
the mean cost over 25 independent runs. The MG-PSO
algorithm is better than PSO algorithm in terms of
convergence properties.

The distribution of minimum costs over 25 independent runs
shown in Fig. 2 (b) shows that MG-PSO algorithm is more
stable in obtaining the optimum solution than the PSO
algorithm.

4) Comparison in terms of inequality and equality constraints

Table V presents the best solution vector P; (j = 1, 2, ..., 15)
obtained by MG-PSO and PSO algorithms for PS-2. Both
MG-PSO and PSO algorithms solve the 12 power inequality
constraints in (12) by avoiding the 11 POZs of 4 TGUs. In
addition, MG-PSO and PSO algorithms work within RRLs of
15 TGUs.
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TABLE V. OPTIMIZED POWER DISPATCH BY EACH TGU USING MG-PSO
AND PSO ALGORITHMS FOR PS-2

Optimum output power (MW)
Gen. # P, P, P; Py Ps
PSO 455.0000 | 364.1374 | 129.2110 | 129.3094 | 168.8872
MG-PSO | 455.0000 | 380.0000 | 129.9551 | 129.9649 | 170.0000
Gen. # Ps P, Py Py Py
PSO 456.8272 | 426.5248 | 63.8214 | 107.4216 | 51.4106
MG-PSO | 457.3041 | 430.0000 | 71.6674 58.3692 160.00
Gen. # P P P Py Pis
PSO 68.9185 78.2871 79.1707 30.8404 | 46.5101
MG-PSO | 80.0000 80.0000 | 25.0000 15.0000 15.0000
Total output power: MG-PSO = 2,657.2606 MW, PSO = 2,656.2771 MW

Table VI shows the comparison among MG-PSO, OPSO
[10], DRPSO [15], SA-PSO [16] and PSO optimization
techniques in terms of power balance constraint. The load
demand Pp in this case, 2,630 MW. The P; of MG-PSO and
PSO algorithms are computed by (4). The power balance
results of both algorithms are obtained by (3). The power
balance results shown in Table VI appear that MG-PSO and
OPSO [10] algorithms have satisfied zero mismatch within
four places after decimal point. However, other ECTs, RDPSO
[15], SA-PSO [16] and PSO algorithm obtained on mismatch
are -0.0046, -0.0080, and 0.0304, respectively.

TABLE VI. POWER BALANCE CONSTRAINT RESULTS
OF FIVE ECTS FOR PS-2.

Algorithm |Total P, (MW)|\Pp, (MW)|P, (MW)Mismatch (MW)
OPSO [10]| 2,652.7600 | 2,630 |22.7600 0.0000
RDPSO [15]] 2,655.3650 | 2,630 |25.3696 -0.0046
SA-PSO [16]| 2,660.9000 | 2,630 |[30.9080 -0.0080
PSO 2,656.2771 2,630 |26.2467 0.0304
MG-PSO 2,657.2606 2,630 |27.2606 0.0000

The proposed MG-PSO algorithm overcomed all problems
that made PSO algorithm inefficient to get acceptable results.
In addition, the MG-PSO algorithm appeared superior in
solving the economic dispatch problem under SPG constraints
of small- and medium-scale power systems in SPG compared
with other ECTs mentioned in the literature.

V. CONCLUSION

In this paper, the multi-gradient PSO algorithm has been
proposed. It has been able to effectively solve 6- and 15-
thermal generating unit (TGU) of economic dispatch (ED) of
power considering the multiple smart power grid (SPG)
constraints.

We have shown that the MG-PSO algorithm was able to
solve the equality and inequality constraints including the
transmission network loss of two power systems, and avoiding
all prohibited operating zones and operating within ramp rate
limits.

It is evident from the minimum power dispatch results that
the MG-PSO algorithm has a better performance in terms of
the minimum, maximum and mean costs compared to several
competitive algorithms including PSO algorithm.

The MG-PSO algorithm also showed better stability and
robustness.
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ARTICLE INFO ABSTRACT

One of the major drawbacks of the global particle swarm optimization (GPSO) algorithm is zigzagging of the
direction of search that leads to premature convergence by falling into local minima. In this paper, a new
algorithm named orthogonal PSO (OPSO) algorithm is proposed that not only alleviates the associated
problems in GPSO algorithm but also achieves better performance. In OPSO algorithm, the m particles of the
swarm are divided into two groups: one active group of best personal experience of d particles and a passive
group of personal experience of remaining (m — d) particles. The purpose of creating two groups is to enhance
the diversity in the swarm's population. In each iteration, the d active group particles undergo an orthogonal
diagonalization process and are updated in such way that their position vectors are orthogonally diagonalized.
The passive group particles are not updated as their contribution in finding correct direction is not significant.
In the proposed algorithm, the particles are updated using only one guide, thus avoiding the conflict between
the two guides that occurs in the GPSO algorithm. We tested the OPSO algorithm with thirty unimodal and
multimodal high-dimensional benchmark functions and compared its performance with GPSO and several
competing evolutionary techniques. With extensive simulated experiments, we have shown superiority of
the proposed algorithm in terms of convergence, accuracy, consistency, robustness and reliability over other
algorithms. The proposed algorithm is found to be successful in achieving optimal solution in all the thirty

Keywords:

Particle swarm optimization
Orthogonal diagonalization
Orthogonal PSO

Active and passive groups

benchmark functions.

1. Introduction

In the recent years, several evolutionary computation techniques
(ECTs) have been proposed to solve complex optimization problems.
Particle swarm optimization (PSO) algorithm is one of the ECTs that
was proposed by observing social behaviours among animal herding,
fishes, birds and even humans. The PSO algorithm is a population based
technique that emulates such behaviours. The individual members
of the swarm are called “particles”. Each particle moves with an
adaptable velocity within a multi-dimensional search space and
keeps the best position it ever encountered in its memory. In 1995,
Kennedy and Eberhart proposed two variants of the PSO algorithm,
named global PSO (GPSO) and local PSO (LPSO) algorithms based
on neighborhood topology of the particles [1,2]. In GPSO algorithm,
each particle's neighborhood includes all social neighbors in the swarm.
In other words, the topology of the particles in the swarm represents
to a fully connected network in which the particles are attracted to
the best solution found by any member of the swarm. In contrast, in
LPSO algorithm, a particle uses the best historical experience of the
particle in its neighborhood that is defined by a topological structure,

* Corresponding author.

e.g., the ring structure, the von Neumann structure, or the pyramid
structure [3,4].

In GPSO and LPSO algorithms, the particles of the swarm are
initialized randomly and then they search for global optimum by
updating their position and velocity in each iteration. Each particle uses
its personal experience and its neighborhood's best experience as two
guides through a linear summation. They have been empirically
demonstrated to perform well in many continuous domain optimization
problems. In addition, both have a few adjustable parameters and easy
to implement [4]. The GPSO algorithm is faster in convergence than
LPSO algorithm. Whereas, the LPSO algorithm has lower susceptibility
of the solution to be trapped into local minima. However, the main
drawback of GPSO and LPSO algorithms is falling into local minima
while solving complex problems with nonlinear multi-dimensional
objective functions [5].

The reasons for poor performance of the PSO algorithm can
be summarized as follows. Firstly, the learning mechanism of PSO
algorithm depends on the fact that each particle in the swarm adjusts its
search trajectory according to its personal experience and its neighbor's
experiences. Therefore, each particle in a swarm obtains two possible
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[ No. of particles = m, Dimension = d, No. of iterations = N, ]

‘ t = 0; initialize V; and X}, randomly ‘

Evaluate f{X,(0))

| Obtain G, (0) and Gy,(0) |
|

[ Update V(f) and X,(7) using (5) and (6) |

Evaluate fAX/(?))

‘Updatc Gpers (1) and Gj,(?) using (7) and (8) ‘

Optimal Solution = Gyes(Nirer) ‘

End

Fig. 1. Flowchart of the GPSO algorithm.

solutions, one from its personal experience and the other from its
neighborhood's experience and then sums them together. The problem
here is not only existence of the summation, but also to maintain a
coherent decision between these two guides. The two guides may have
a large difference or may even have opposite directions at the early
stage of search that may lead the particles to pull to a local trapping and
may lead to early premature convergence or remain in opposite di-
rections until final search stage. Thus, the particles might be still
remaining far away from the global optimum. In addition, these two
guides and their linear summation may cause a phenomenon called
“oscillation” or “zigzagging” [6]. This phenomenon becomes more
prominent with high-dimensional search space.

Only a few parameters have been used in PSO algorithm to give a
potential advantage and to enhance their performance. Among user pa-
rameters of PSO algorithm, several strategies of inertia weight, e.g.,
constant inertia weight [7], time-varying inertia weight [8,9], and
adaptive inertia weight [10-12] have been proposed. However, when the
problem, i.e., objective function has multiple local minima and has a
high-dimensional search space, the PSO algorithm with these few pa-
rameters becomes inefficient [6].

In order to improve the performance of PSO algorithm, several ECTs
have been proposed by different researchers. These ECTs are based on
different swarm topologies and mechanisms for updating velocity and
position vectors. Some of the ECTs based on swarm topologies are given
here. For example, fully informed PSO (FIPSO) algorithm [4] uses the
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neighbors in the swarm to influence on the particle's velocity under
different topologies (e.g., ring, four clusters, pyramid, and square to-
pologies) and then the information of the entire neighborhood is used to
guide the particles for finding the best solution. The comprehensive
learning PSO (CLPSO) algorithm tries to encourage the particle to learn
from different topologies on different dimensions to maintain diversity of
the swarm to discourage premature convergence [13]. A self-organizing
hierarchical PSO with time-varying acceleration coefficients (HPSO-T-
VAC) algorithm [14] improves the performance of PSO algorithm. The
aging leader challenger PSO (ALC-PSO) algorithm uses the leader of a
swarm with a growing age and a lifespan to allow the other particles to
challenge the leadership when the leader becomes aged [15]. The
extraordinariness PSO (EPSO) uses the movement of the particles called
extraordinary motion as a topology [16]. The cellular learning automata
bare bones PSO technique uses probability distributions, e.g., Gaussian
distribution as a topology [17]. The binary PSO (BPSO) algorithm uses a
transfer function to map a continuous search space to a discrete search
space by dividing the transfer functions into two families, i.e., S-shaped
and V-shaped [18].

Some of the ECTs are based on the trade-off between exploration
and exploitation. For example, mixed swarm cooperative PSO (MCPSO)
algorithm is used to efficiently handle the trade-off between the global
and local search in PSO algorithm by dividing the particles into two
groups, one for exploration and the other for exploitation [19]. The
heterogeneous comprehensive learning PSO (HCLPSO) algorithm is
used to enhance exploration and exploitation of the particles by using
comprehensive learning (CL) strategy [20]. The stability-based adap-
tive inertia weight (SAIW) algorithm uses an adaptive approach to
determine the inertia weight for each particle based on its performance
and distance from its best position to satisfy the stability of a swarm
[21]. A pattern search PSO (pkPSO-G) algorithm makes the particles
explore and exploit the promising global areas and solutions with
clustering on the Euclidean spatial neighborhood structure [22]. The
crisscross search particle swarm optimization (CSPSO) uses two search
operators, i.e., horizontal crossover and vertical crossover and these
two operators are used for global convergence and swarm stability [23].
The multiple learning PSO with space transformation perturbation
(MLPSO-STP) allows each particle to learn from the average informa-
tion on the personal historical best experience of all particles and from
the information on best positions that are randomly chosen according to
personal experience specification [24].

In the multi-function GPSO algorithm, its learning mechanism is
based on the effect of population density on the search ability of PSO
algorithm which is saturated when the population density exceeds a
certain limit [25]. The two-swarm cooperative PSO algorithm uses two
swarms, i.e., a master and a slave, for accelerating the convergence and
for keeping swarm's diversity invariant [26]. The competitive and
cooperative PSO with information sharing mechanism (CCPSO-ISM)
algorithm allows each particle to share its best search information
by using the ISM, so that all other particles in the swarm can take
advantage of the shared information [27]. A directionally driven
self-regulating PSO algorithm uses two strategies for the swarm; a
directional update strategy and a rotational invariant strategy [28]. In
the learning mechanism of a dynamic tournament topology PSO
(DTT-PSO) algorithm, each particle is guided by several better solu-
tions, chosen stochastically from the swarm [29]. An improved velocity

L1: Let B be a real symmetric matrix of size dxd.

L2: Apply Gram-Schmidt orthogonalization on matrix B to obtain ¢ orthonormal vectors.
L3: Construct orthonormal matrix C using these vectors.

L4: Obtain the diagonal matrix D using (12).

Fig. 2. The orthogonal diagonalization process.
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Procedure: Convert matrix A( m*d) to
a symmetric matrix B (d*d).
fori=1:d
B(1,i)=A(1, i)
B(i, 1) =A(1, i)

end for
fork=2:d
fori=2:d

B(k, i) = A(k, i)
B1(k, i) = B(k, i)
B(i, k) = B1(k, i)
end for
end for

Fig. 3. Pseudocode for converting matrix A to a symmetric matrix B.

bounded Boolean PSO algorithm uses a minimum velocity parameter
that makes it more effective in solving feature selection problem [30].
The termite spatial correlation PSO algorithm modifies the velocity
equation in the PSO algorithm based on a termite motion mechanism
and using the mutation strategy to avoid stagnation for the particles in
the swarm [31]. A territorial PSO (TPSO) algorithm uses a collision
operator and adaptively varying (territories) to prevent the particles
from premature convergence and encourage them to explore new
neighbourhoods based on a hybrid self-social metric that leads to
improvement in exploration capability [32]. A competitive swarm
optimizer (CSO) algorithm was proposed for large-scale optimization
[33]. Here, a pairwise competition strategy is used in which the loser
particle updates its own position by learning from the winner. The
CCPSO2 algorithm [34] has been proposed for large-scale optimization
problems in which Cauchy and Gaussian distribution are used to update
the positions of the particles. In Ref. [35], the PSO algorithm was

[ No. of particles = m, Dimension = d, No. of iterations = Ny, ]

t = 0, initialize V; and X;, randomly. ‘
Evaluate f{X; (0))
Obtain G (0)

>

Construct matrix 4

‘ OD process; obtain matrices B, C and D ‘

v
Update V; (¢) and X; (¢) using (13) and (14), respectively

| Determine e, (X; (1)) using (15) |
v

[Determine Gy, (X; (1)) using (16)|

Optimal Solution = Gy (Vi) |

End

Fig. 4. Flowchart of the OPSO algorithm.
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Fig. 5. The landscape of f (x,y). The minimum value of the function is 9.0 at x = 2.0
and y = —3.0.

improved by social learning PSO (SL-PSO) algorithm. Here, each par-
ticle learns from any one of the better particles in the current swarm. In
addition, a dimension-dependent parameter control method was used
to mitigate the burden of parameter settings.
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Fig. 6. Numerical example showing convergence of the OPSO algorithm.
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Fig. 7. Movement of six position vectors (X1, X, ..., Xg) in a 2-dimensional search space (m

t = 200, X; and X, coincide with Dy and Ds.

Some other ECTs are based on hybrid systems. For example, the multi-
swarm PSO (MsPSO) algorithm develops its searching strategy by using
new parameters that are created by Takagi-Sugeno fuzzy system [36]. A
dynamic feed-forward neural network is used for predictive control in
which adaptive parameters are adjusted using Gaussian PSO algorithm
[371. The fuzzy PSO with cross-mutated (FPSOCM) algorithm uses fuzzy
logic system that is based the knowledge of swarm behaviour to

X O

=6, d = 2), and two diagonal vectors, D; and D,. The active group consists of X; and X,. At

determine the inertia weight of PSO algorithm and the cross-mutation
operator [38]. However, in such hybrid systems an appropriate integra-
tion between different systems may be hard to determine under complex
problems.

Another group of ECTs are based on orthogonal experimental design
(OED). These are, for example, two orthogonal learning PSO (OLPSO)
algorithms, one for local (OLPSO-L) and another for global (OLPSO-G)
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Fig. 8. Movement of personal position vectors of six particles Gpers,i, i = 1, 2, ..., 6. The active group of particles corresponds to Gpers,1 and Gpers,2. The Gpege corresponds to Gpers,1. At t = 200,

the Gpes coincides with global position (2,—3).

optimization [39], orthogonal global-best-guided artificial bee colony
(OGABC) algorithm [40], and an orthogonal genetic algorithm with
quantization (OGAQ) [41]. The OED works on a predefined table of an
orthogonal array of N factors with Q levels per factor. It allows the inputs to
interact among themselves such that the output process can be optimized.
Then, a set of possible solutions is obtained to achieve global optimum.
However, the drawbacks of the OED-based algorithms are: firstly, it holds
only when no or weak interaction among the factors exists; secondly, the
table that contains variable designs is complicated; and thirdly, the
orthogonality may not be possible to achieve in complex problems.

Some other ECTs based on different architecture are also available in
the literature. They include differential evolution using neighborhood-
based mutation (DEGL/SAW) algorithm [42], modified Gaussian
bare-bones differential evolution (MGBDE) algorithm [43], estimation of
distribution algorithm with local (EDAL) search [44], Latin squares based
on evolutionary algorithm (LEA) [45], biogeography-based optimization
(BBO) [46], and p-best adaptive fast evolutionary programming (p-best
AFEP) [47].

In this paper, we propose a novel algorithm named orthogonal PSO
(OPSO) algorithm with a new learning mechanism to improve
the performance by overcoming the drawbacks of GPSO algorithm. The
OPSO algorithm consists of a swarm with m particles that looks for
the global optimal solution in a d-dimensional search space (m > d). The
swarm population is divided into two groups: an active group of best
personal experience of d particles and a passive group of personal
experience of remaining (m — d) particles. The purpose of creating two

groups is to enhance the diversity in the swarm's population. The
position vectors associated with the m particles undergo an orthogonal
diagonalization (OD) process in which the d orthogonal guidance
vectors in the active group are obtained. In each iteration, using only
one guide, the velocity and position vectors of only the active group
particles are updated and the remaining (m — d) particles are left un-
changed. This avoids the conflicting situation of the GPSO algorithm
and leads the best d particles towards the optimal solution in a multi-
dimensional search space. We applied the OPSO algorithm to several
unimodal and multimodal benchmark functions and have shown that
the OPSO algorithm is able to achieve superior performance in terms of
convergence, consistency and accuracy compared to GPSO and several
competitive ECTs. In our recent works, the effectiveness of the proposed
OPSO algorithm has been shown for optimal power dispatch in smart
power grid applications [48-50]. Our proposed OPSO algorithm is
completely different from Ref. [39-41]. In OPSO algorithm, the posi-
tion vectors are orthogonalized that gives rise to faster convergence and
better solution. Whereases, in Ref. [39-41], the algorithm is based on
OED in which the updating of the velocity and position vectors are done
by using a predefined orthogonal array.

The rest of the paper is organized as follows. We briefly explain the
learning strategy of the GPSO algorithm in Section 2. Details of our
proposed OPSO algorithm are provided in Section 3. In Section 4, we
present performance comparison between OPSO and GPSO algorithms by
taking thirty unimodal, multimodal, shifted, rotated and shifted rotated
benchmark functions. Performance comparison between the OPSO
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Table 1
Thirty benchmark objective functions used in the study.
f Name Function Search Optimum Minimum Accept
Space ) f00) Value
fi Sphere fi () =4 %2 [-100,100]%° [01%° 0.0 1x10°
[39]
f2  Elliptic () [100,100]*° [01* 0.0 1x10°®
a1
1401 fol) =S[00\
fs3 Sum Squares £ (x) = Ef Lix? [-10,10]%° 013 0.0 1x10°8
[40]
fs SumPowers g, (x) = 3¢ x| [-1,11%° [01*° 0.0 1x10°°
[40]
fs  Schwefel's d [-100,100]%° [01>° 0.0 1x10°®
d
p2.22 (401  Js (%) =Skl + [T Ixdl
i=1
fs  Step fo () = X%, (% +0.5))? [-100,1001*° —1<x<i 0.0 1x10°®
[40]
f,  Quadric £ =% (i) [-100,1001%° [01>° 0.0 1x10°
(371
fs  Noise fo () = X4 ,i(x))* + random]0, 1) [-1.28,1.28]>° [01>° 0.0 1x1072
[40]
fo  Hyper fo (%) = 2:1:12;:1(;(])2 [-100,100]%° [01% 0.0 1x107®
Ellipsoid
[37]
fio Rosenbrock  f0 (x) = Y1000y — x2)* + (x; — 1)] [-10, 107*° [ 0.0 1 x 10
[40]
fi1  Griewank d X [-600,600]%° [01%° 0.0 1x1078
[39] fun (X):‘oJWZi’IX?me%ﬁ) +1
i
- 30 30 —8
fie ?;]y fia () = sin® (man) + "¢ (wi — 1)?[1 + 10 sin® (aw; + 1)) [-10, 10] (o] 0.0 1x10
+ (wg = 1?1+ sin (2o00)] wi = 1+ 5 !
fis Himmelblau £ (x) =15 (x# — 16x; + 5x) [-5, 51" NA ~78.3323 ~78.0
[40]
fis Alpine fia () = 34 x sin(x;) + 0.1x;] [-10, 101*° [01*° 0.0 1x107°
[40]
fis Welerstrass  f5(x) = 54| [Skm gk cos(2ab* (x; + 0.5)) — A k"= @ cos(ab*)] [-0.5, 0.5]*° [01*° 0.0 1x10°®
[40] a=0.5,b =3, knax = 20
fis  NCRastrigin x bl < 1 [-5.12,5.12]%° [01* 0.0 1x10°8
[40] 2 ! 12
x) = — 10 cos(2. +10ly; =
fie (x) =y (27y:) lyi round(2x;) 1
f ‘Xx‘ = E
fi7  Michalewics o > [0, x]'%° NA ~99.2784 ~95.0
(401 fir ) = ~fsincasin® (£
fis  Schwefel fis (x) = 418.9829d — YL x;sin(+/[xi]) [-500,500]%° [420.96871%° 0.0 2 x 10%
[40]
fio Rastrigin fio (x) =10d + X%, [x2 — 10 cos(2mx;)] [-5.12,5.12]%° [01>° 0.0 1x10°8
[40]
fao  Ackley — [-32, 32]%° [01%° 0.0 1x10°®
[40] fa0 (x):—aexp(—b,/azl 1xf)
—exp %Z;cos(cx‘)) +a+exp(l),a=20.b=02.c=27
for  Shifted for(x) = L, 22 — 450, [-100,1001*° o —450 -350
Sphere Z=x-0,x=[x1, X3 ..., Xal, O = [01, 0 ..., 04l
[55]
fr2 Shifted fal) = YL, 3L (2))? — 450, [-100,1001* o —450 -350
Schwefel Z=x-0,x=[x3, X2 ..., X4l, 0 = [0g, 02, ..., 0d]
problem 1.2
[55]
f2s Shifted fos(x) = SEL100(Ziq — 22) + (2 — 1)%] + 390, [-100,1001*° o 390 490
‘[{"ST""“’Ck Z=Xx-0+1,x=[x3, Xa, ..., Xal, O = [01, 03, ..., 0a]
55
foq  Shifted foa(x) =10d + 3¢ [x2 — 10 cos(27x;)] — 330, [-5,51%° [ -330 —230
Rastrigin Z=x-0,x= [X1,X3, ..., Xal, 0 = [01, 03, ..., 04
[55]
f2s  Shifted T— [-32,32]%° o -140 -135
Ackley fis(x) = —aexp| —by\/5 Sz
[55]
— exp %Zf ]cos(cZ,»)) +a+exp(l)—140,a=20.b=02.c =27
Z=x-0,x=[x1, X2, ..., Xal, O = [01, 02, ..., 04]
f26  Shifted L d g Z [-600,6001%° o -180 ~170
Griewank fas (%) = q500 i 20 — HCOS (z) +1-180
i=1
1551 Z=x=0,x=[x1, Xz, ..., Xal, 0 = [0, 02, ..., 0a]
(continued on next page)
6
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f Name Function Search Optimum Minimum Accept
Space x) fx) Value
- 30

f2r  Rotated i () = SI[100(Zisy — 22) + (Zi — 1)?] - 900, [-100,100] o -900 ~800
Rosenbrock 2.048% (x_0)
[56] zZ= M<7lf)g" ’) +1,x = [x1, X2, ...r Xdl,

0 = [o01, 02, ..., 0a]

fos  Shifted =) [-100,100]%° (o] —450 —350
Rotated fos(x) =324 [(109)] x2 — 450,
High Z=(x-0)xM,x=[x1,Xz, ..., Xal, 0 = [01, 0, ..., 0d]
Conditioned
Elliptic
[53]

fao  Shifted fao (x) = 10d + Y0, [22 — 10 cos(27Z)], [-5,51% o -330 ~300
Rotated Z=(x=0) x M, x = [x1, X3, ..., Xdl, O = [01, 02, ..., 04l
Rastrigin
[53]

fs0  Shifted u d z [-600,600]%° (o] -180 —180
Rotated fas (%) = s i 2 — HCOS (z) +1-180

- =
Griewank Z=(x-0)xM,x =[x, X2, ..., Xal, O = [01, 02, ..., 04]
[53]
algorithm and several ECTs reported by other authors is provided in
Section 5. Finally, conclusion of this study is given in Section 6. Gres (0) = [80.1, 8525 -+ 8.d] (G

2. The GPSO algorithm

Consider the GPSO algorithm given in Refs. [1] and [2] as a
fundamental technique of PSO algorithm. The learning mechanism of
GPSO algorithm depends on the distribution of the particles (possible
solutions) in the swarm and their updating procedure. Firstly, each
particle flying in a d-dimensional search area adjusts its flying trajec-
tory according to two guides; its personal experience (Gpers) and its
neighborhood's best experience (Gpest). Secondly, when seeking the
global optimum, each particle learns from its own historical experience
and its neighborhood's historical experience. In such a case, a particle
while choosing the neighborhood's best experience uses the best
experience of the whole swarm as its neighbor's best experience. Since
the position of each particle is affected by the best-fit particle in the
entire swarm, this technique is named as global PSO [1]- [2].
The following steps explain the mechanism of the GPSO algorithm.

Let us consider a swarm population with m particles searching for an
optimal solution in a d-dimensional search space. Each particle i (i = 1,
2, ..., m) has one d-dimensional velocity vector V; and one d-dimen-
sional position vector X;. The objective of the GPSO algorithm is to
minimize the given objective function f(x).

Initialization: Iteration, t = 0.

Step 1: For each particle, i (i = 1, 2, ..., m), the velocity and position
vectors are randomly initialized and are denoted by

‘4(0) = [V1|$V12! ~~Vu1] 1

Xi(0) = [xin, X2, - id] 2)

Step 2: For each particle i, evaluate the objective function f(x) using
the position vector X; (0).

Step 3: Initialize the personal position vector of particle i, Gpersi (0) as
follows:

Gpers:(0) = X,(0) ®

Step 4: Determine the global best position vector, Gpes (0). It is the
best position vector among

All personal positions vectors of the swarm. The Gpes (0) is given by

Update: Tteration, t = 1, 2, ..., Ny, the total number of
iterations = Nigr.

Step 5: In iteration t, the particle's velocity and position vectors are
updated as follows:

Vi(t) = Vi(t = 1) + 171 (1) (Gpersi(t = 1) = Xi(r = 1)) )
+ 212 () (Gpe (t — 1) = Xi(r = 1))

Xi(t) = Xi(t — 1) + Vi(1) 6)

where ¢; and ¢y are two positive coefficients, called acceleration con-
stants, which are commonly set to 2.0 as default values [7]. The r1(t) and
ro(t) are two randomly generated values with uniform distribution in the
range of [0,1] [51].

Step 6: For each particle i, the f(x) is evaluated using the position
vector X; (t).
Step 7: The Gpers,i and Gy are updated as follows:

— Xr(t) lff(X,(t)) Sf(clwm-i(t - 1))
Gpersi(1) = {G,)m_,v(t — 1) Otherwise @

Evaluate f (Gpers;i (1)), 1= 1,2, ..., m.
Select Gpeg(t) corresponding to minimum {f (Gpers,i (£))}
Evaluate f(x) to determine the global best position, Gpes(t)

Giest (1) = min{ Gpers (1)} ®)

Step 8: End of iterations, t = Njger.

The global best position vector Gpes: (Njr) becomes the global optimal
solution and the f (Gpest (Nier)) gives the optimal value of the objective
function.

A flowchart of the GPSO algorithm is shown in Fig. 1.

3. The OPSO algorithm

Here, the details of the proposed OPSO algorithm and explanation of
the OD process are provided.
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3.1. Orthogonal diagonalization process

The OPSO algorithm is based on OD process. This process basically
converts multiplication of three matrices to obtain a diagonal matrix, D,
which is used in updating of the velocity and position vectors of the
swarm particles. The updating is carried out in such way that the ith
velocity and position vectors are affected by only the diagonal element,
d;; of matrix D. This process enhances the convergence and provides a
better solution as shown in Observation 4 below.

The matrix diagonalization is the process of converting a square
matrix, B of size (dxd), into a diagonal matrix, D of size (dxd), as shown
below [52].

B=0DQ"! ©)]

where Q is a matrix of size (dxd) composed of eigenvectors of B and the
diagonal elements of D contains the corresponding eigenvalues. The Q is
an invertible matrix because it contains linearly independent vectors.
When B is symmetric, the (9) may be written as

B=CDC™! (10)

in which the columns of matrix C are orthonormal to each other. The (10)
can be rewritten as

D=C"'BC an

Since matrix C is an orthonormal matrix, the (11) can be written as

D = C'BC 12)

Equation (12) is called the OD process. The process of OD is shown in
Fig. 2.

3.2. OPSO learning algorithm

In this paper, the OPSO) algorithm is proposed to improve the
learning strategy of the GPSO algorithm. The objective of the OPSO
algorithm is to minimize the given d-dimensional objective function
f(x). The OPSO algorithm provides a new topology in the swarm
population. Consider a swarm population with m particles, each with
a dimension of d (m > d). In each iteration, the m particles are divid-
ed into two groups based on OD process as follows: an active group
that consists of best personal experiences of d particles and one passi-
ve group which consists of the personal experiences of remaining
(m — d) particles. The opinions of the active group particles are
honoured by updating their respective velocity and position vectors.
Whereas, the opinions of the passive group particles are ignored
because their guidance may be insignificant or erratic, and therefore,
their velocity and position vectors are not updated. However, the
contributions of all the m particles in both groups are considered while
determining the best experience. In each iteration, the OD process (12)
is applied to obtain the matrix B from d best particles of the active group
and thereafter, orthonormal matrix C and diagonal matrix D are
computed. The steps involved in OPSO algorithm are given below. Let
f(x) be the objective function to be optimized and Ny be the number of
iterations.

Initialization: Iteration, t = 0.

Step 1: For each particle i, (i = 1, 2, ..., m), randomly initialize the
velocity V;(0) and position X; (0) vectors.

Step 2: Evaluate the objective function f(x) using position vector X;
(0).

Step 3: Determine the personal position vectors, Gpers; (0) using (3).

Update, Update: Iteration, t = 1, 2, ..., Niter.

Swarm and Evolutionary Computation xxx (2017) 1-23

Step 4: Arrange the m personal position vectors in an ascending order
based on their f(x) values. The corresponding top d particles consti-
tute the active group particles.

Step 5: Construct matrix A of size (m x d) such that each row occupies
one of the m personal position vectors in the same ordered sequence
as in step 4.

Step 6: Using pseudocode given in Fig. 3, convert matrix A to a
symmetric matrix B of size (d x d), such that B is a real symmetric
matrix of dimension (d x d).

Step 7: Apply the OD process shown in Fig. 2 on matrix B to obtain a
diagonal matrix D of size d x d. Let D; denote the ith row of matrix D,
wherei=1,2,...,d

Step 8: Update the position and velocity vectors of the d particles of
the active group, i =1, 2, ..., d, as follows.

Vi(t) = Vit = 1) + er()[Di(1) = Xi(r = 1)) as)
Xi(t> :X,(t71>+v,([) a4

where c is an acceleration coefficient and is chosen by trial and error method
in the range [2,2.5] and r(¢) is a random value within the range [0,1].

Step 9: Determine the Gpers,i(t) from the m particles (i=1, 2, ..., m), as
follows.

_[x@® if f(Xi(1) <f(Gi(t = 1))
Gpersi) = { Giers,i(t — 1) Otherwise 1s)

Evaluate f (Gpersi (), i=1, 2, ..., m.
Step 10: Determine the global best position Gpe(t), as follows.

Select Gpes(t) corresponding to minimum {f (Gpers,i (D)}, i=1, 2, ...,
m.
Evaluate f(x) to determine the global best position, Gpes(t)

Ghest(1) = min{ Gprs (1)} 16)

Step 11: End of iterations, t = Nijte-
The Gpest (Nirer) as computed in step 10 provides the optimal solution.
A flowchart of the OPSO algorithm is shown in Fig. 4.

Observation 1. One of the important observations of the OPSO algo-
rithm is as follows. Sine matrix D is a diagonal matrix, its d rows or
d columns are orthogonal vectors. These d vectors are used to diminish
the contribution of X;(t-1) while updating Vi(t), fori = 1, 2, ..., d. As
t— o0, assume that the algorithm has converged. In such case, (14) can be
written as:

lim Xi(r) = X;(r — 1) a7
This implies that ltlgl0 Vi(t) = 0. Therefore, (13) can be written as:

lim Vi(r) = Vi(r = 1) = 0 18)
This implies that

l/iinoo cr(t)[Di(t) — Xi(t —1)] =0 19
Since ¢ r(t) is constant,

l,ij[,‘oxi(’ —1) = Dy(1) (20)

From (20) it is evident that ltim Xi(t) becomes diagonal and equals to

D; when iteration becomes large and the algorithm has converged.
Considering the d position vectors, (20) can be written in matrix form
as:
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XD acte—gron = (PO ctive_group @D

This means that at t—oo, the d position vectors of the active group
particles are equal to the d orthogonal vectors of the matrix D. Thus, the
OPSO algorithm reaches convergence and leads to optimal solution.

Observation 2. In case of GPSO algorithm (5), two guides, Gpers,; and
Ghest> are used to update the velocity vector Vi(t). These two guides may
conflict each other which leads to zigzag behaviour of the algorithm,
that in turn causes trapping into local minima. Whereas, in the OPSO
algorithm, since only one guide, Di(t) is used while updating of the
velocity vector (13), the zigzagging behaviour is eliminated.

Observation 3. Due to orthogonalization of the position vectors, as
iteration progresses, once the optimal solution is achieved, the solution
remains the same in the subsequent iterations until the end of total number
of iterations. This fact provides consistency to the proposed algorithm.

Observation 4. From (13), the velocity vector of each particle of active
group at ith iteration can be rewritten as follows.

Vi) = Vie—=1) + cr(®)[Di(r) — Xi(t—1)]
B = V=1 + D) — X 1) 2
Vat) = Vali—1) + er)Dalt) — Xult—1)]
D)= [di, 0, 0, - 0
where l?z(f): [0’ d:n‘ 0:’ O] (23)
D)= [0, 0. 0,  dul

It can be seen from (22) and (23) that the position vector X;, i = 1, 2,
..., d, of active group is affected only by the corresponding orthogonal
vector D;, i =1, 2, ..., d. Thus, while updating, each V; is perturbed only in
the ith dimension of the d-dimensional search space. Due to this, the
OPSO algorithm gives faster convergence and better solution.

Observation 5. As seen from the sensitivity analysis (Section 4.3),
when m > d, the algorithm gives rise to more computations, but does not
provides any better solution. Whereas, when m = d, there is no existence
of passive group and therefore we do not see any advantages of diversity
and the solution may not yield the best. Considering these two extremes,
a reasonable value of m is about 10-30% more than d.

An Illustrative Example: In order to explain the mechanism of OPSO
algorithm, Fig. 5 illustrates an example of a 2-dimensional shifted func-
tion, f (x,y) = (x — 2)% + vy + 3)? + 9. From visual inspection, it can be
seen that the x and y are shifted from the origin (0,0) by (2.0,-3.0). The
optimum solution of the given function equals to 9.0 at (x,y) = (2.0,-3.0).
The aim of the algorithm is to find the values x and y such that the f (x,y)
is minimized.

The OPSO algorithm program was implemented using MATLAB
software in a personal computer with Intel (R) core (TM) 2 Duo CPU
T6570 @ 2.1 GHz, 4 GB RAM and 64-bit Windows 7 operating system.
The OPSO algorithm was executed with m = 6, d = 2 and Njt,r = 200. The
values of position vectors (X, i = 1, 2, ..., 6), the diagonal vectors (D;,
i=1, 2) and personal vectors (Gpersi» i = 1, 2, ..., 6) for different iterations
are shown in Fig. 6. In each iteration, the six particles are divided into
one active group of two best particles and a passive group of four parti-
cles. According to the OD process, Gpers,1 and Gpers 2 are assigned as active
group and (Gpers,3, --., Gpers6) are assigned as passive group. In each
iteration, the velocity and position vectors of only the active group are
updated. As seen from Fig. 6, as iteration increases, the OD process causes
[XTactive_group = [Dlactive group, thus satisfying (21) and causing X to be a
diagonal matrix. At the end of iteration, the best Gy, provides the
optimal solution, yielding Gpes = (2.0,-3.0).

In order to have geometric interpretation of the learning strategy of
the OPSO algorithm, the movement of six position vectors and the two
orthogonal vectors are shown in Fig. 7. Here, X; and X, represent the
position vectors of the active group and D; and Dy represent the two
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orthogonal vectors. It can be seen that during early iterations, the posi-
tion vectors X; and X2 move from random positions toward the orthog-
onal vectors D, and D,. Finally, as the algorithm iterates further, the X;
and X, coincide with Dy and D,.

In Fig. 8, the movement of personal vectors, Gpersi (i =1, 2, ..., 6) of
the six particles (i = 1 and 2 correspond to the active group) with increase
in iteration is shown. Here, Gpest corresponds to Gpers,1. It can be seen that
the Gpese moves from some random position to the optimal solution (2,-3)
as the algorithm converges when iteration becomes large.

4. Experimental results and performance comparison

Here, we describe thirty benchmark functions and investigate per-
formance of the OPSO and GPSO algorithms and a few competitive ECTs.

4.1. Benchmark functions

Thirty benchmark functions listed in Table 1 are used in this study.
These benchmark functions are widely used in performance comparison
of global optimization algorithms. All the thirty benchmark functions are
minimization tasks and are divided into three groups based on their
significant physical properties and shapes.

The first group involves nine unimodal benchmark functions f; — fo
[39,40]. There is only one mode (global optimum) in its geometric dis-
tribution. The global optimum solution G, is at the center of the search
space. Therefore, the convergence rate of the search algorithm is
important in finding global optimum. The nine unimodal benchmark
functions are f; (Sphere), f2 (Elliptic), f3 (Sum Squares), f4 (Sum Powers),
f5 (Schwefel's P.2.22), f5 (Step a non-continuous), f7 (Quadric), fg (Noise),
and fo (Rotated Hyper Ellipsoid).

The second group includes eleven multimodal benchmark
functions fi9 — f2o. Finding Gpes: is more challenging since these are
more difficult to optimize because of the number of local minima.
In multimodal functions, the number of local minima increases as
the problem dimension increases [6], [39]. Therefore, the search
algorithm should be able to obtain a good solution and not be trapped
in a local minimum. The eleven multimodal functions are fio
(Rosenbrock), fi; (Griewank), fiz2 (Levy), fiz (Himmelblau), fi4
(Apline), f15 (Weierstrass), f1¢ Non-continuous Rastrigin (NCRastrigin),
f17 Michalewics), fig (Schwefel), f;9 (Rastrigin), and f29 (Ackley). The
function fj¢ is unimodal in 2- or 3-dimensional search space. However,
it may have local minima under high-dimensional cases (30-dimension)
[6] [14], [44].

The optimum solution, x is at the origin of the search domain in the
first and second groups, except f1o. Some algorithms simply converge to
the center of the search domain that happens to be the optimum (x).
Hence, these benchmark functions are not enough to test effectiveness of
an optimization algorithm. Therefore, to avoid this drawback, a third
group with ten benchmark functions [53-56] are used and are shown in
Table 1.

The third group includes ten shifted, rotated and shifted rotated
functions. In the shifted functions, the global optimum solution x
as shown in Table 1 is not lying at the center of the search domain.
The optimum solution x is shifted to a new position vector [53-55],
i.e., shifted global optimum, O = [0, 0y, ..., 04], where d is dimension
of the benchmark function. In the rotated functions, the rotation
does not affect the shape of the function but increases the function
complexity in finding global optimum. An orthogonal (rotation)
matrix M is applied to obtain the rotation [56]. The matrix M is
generated from a standard normally distributed entries using
Gram-Schmidt orthogonalization process. In the shifted rotated
functions, in addition to the shift in function's coordinates, the
optimum x is rotated based on M. The third group is taken from the
CEC 2005 [53,54], CEC 2008 [55] and CEC 2013 [56] special session on
real parameter optimization. The ten benchmark functions are: fa;
(Shifted Sphere), fo2 (Shifted Schwefel's Problem 1.2), fa3 (Shifted
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Table 2

Values of m and Niter used in GPSO and OPSO algorithms.

f1o

fs fo f7 fs

f3 fa

f2

fi

Algorithm

Niter

Niter

Niter

Nier

Niter

m

Niter

m

Niter

Niter

10,000
6250

20

32

10,000
6250

20

32

25,000
6250

8

12,500
6250

16

32

10,000
6250

20

32

10,000
6250

8000 20 10,000 20
32 6250 32

6250

10,000 25 8000 25
32 32

6250

20

GPSO

32

6250

32

OPSO

fiz fiz fia fis f16 fiz fis fio f20

fin

Algorithm

Nier

m

Nicer

m

Niter

m

Nier

Niter

Niter

Nicer

m

Niter

m

Niter

Nicer

8000
6250

32 6250 25 8000 25
6250 32

8000
1818

25
110

10,000
6250

20
32

12,500
6250

16

32

25 8000 16 12,500
32 6250

110

20,000 25 8000
6250

6250

10
32

GPSO

2000 32

32

1818

32

OPSO

foz2 fo3 foa fos f26 for fos fa0 f30

fr

Algorithm

Niter

Niger

Niter

Niger

Niter

Niter

Niger

Niter

Niter

5000 40 5000 40 5000 40 5000 40 5000 40 5000 40 5000 40 5000 40 5000 40 5000
40 40 5000 5000 40 5000 5000 40 40 5000 5000

5000

40

GPSO

5000 40

40

5000

40

40

5000

40

OPSO
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Rosenbrock), f24 (Shifted Rastrigin), f25 (Shifted Ackley), f26 (Shifted
Griewank), f,7 (Rotated Rosenbrock), fzs (Shifted rotated high
coordinated Elliptic), fz9 (Shifted rotated Rastrigin), and f3p (Shifted
rotated Griewank).

The range and dimension of the search space of each benchmark
function is given in column 4 of Table 1. All the functions are tested with
30-dimension, except fi3 and f17 which are tested with 100-dimension.
The “optimum x = Gps” is available in column 5, and minimum value
of each function, “minimum f(x) = f (Gpesp)” is given in column 6. The
column 7 is “Accept Value”, i.e., the accepted value of each function f(x)
under test. If the optimized value found by OPSO or GPSO algorithm falls
between the “Accept Value” and “minimum f(x)”, the solution of that
function is judged to be successful, in other words, the algorithm passes
the test. The symbol "NA" given in Table 1 denotes that the results are not
available in the corresponding reference.

4.2. Performance measures and experimental setup

In order to evaluate performance of an algorithm in terms of
accuracy, consistency and reliability, several performance measures are
defined. Let m be the number of particles in the swarm, and d be the
dimension of the search space. An algorithm is executed Nj, iterations
over Ny, runs.

1. Number of Function Evaluations (NFE): The NFE is used as a measure
of computational complexity of an algorithm. The NFE is the number
of times the objective function f(x) is evaluated in one run of the
algorithm and is given by

NFE = m x Niter (24)

2. Best Fitness Value (BFV): The BFV is defined as the minimum
optimized f(x) value obtained from Ny, independent runs.

3. Worst Fitness Value (WFV): The WFV is defined as the maximum
optimized f(x) value obtained from Ny, independent runs.

4. Mean Fitness Value (MFV): The MFV is defined as the average of the
Nyyn BFVs.

5. Standard deviation (6): The ¢ is the standard deviation of the Ny,
BFVs.

6. Success Rate (SR): At the end of one run, an algorithm is successful
if the obtained optimized f(x) value falls between the “Accept
Value” and “Minimum f(x)”. The SR is used as a measure of
reliability of an algorithm [6] [39],- [40]. The SR in percentage is
given by

Number of successful runs
Ny

SR x 100 (25)

7. Reliability Rate (RR): The RR of an algorithm over all the thirty
benchmark functions is defined as

1 30
RR =— R 2
30 ,Z; SR; @6
where SR; is the success rate of the benchmark function fi(x),i=1, 2, ...,
30.

8. Average execution time (AET): It is the execution time of an algorithm
until it reaches to “Accept Value”, averaged over Ny, independent

runs.

In order to measure the accuracy, consistency and robustness
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Fig. 9. Comparison of convergence characteristics between OPSO and GPSO algorithms for f; — fo.
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Fig. 10. Comparison of convergence characteristics between OPSO and GPSO algorithms for f;9 — f20.
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Fig. 11. Comparison of convergence characteristics between OPSO and GPSO algorithms for f2; — f30.
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Table 4
Performance comparison between GPSO and OPSO algorithm on thirty benchmark functions.
f Minimum Accept Fitness GPSO OPSO
f0o Value
fi 0.0 1x10°% BFV 1.2486 x 10%° 0.0
WEV 4.1798 x 10%° 0.0
MFV 2.4550 x 10% 0.0
¢ 5.7333 x 10%? 0.0
AET (sec) - 15.5355
f2 0.0 1x10°% BFV 2.0131 x 107 0.0
WEV 6.9372 x 10%7 0.0
MFV 3.5123 x 10”7 0.0
¢ 1.1286 x 10”7 0.0
AET (sec) - 24.7634
fs 0.0 1x10°% BFV 1.8157 x 10%2 0.0
WEV 6.8391 x 10%2 0.0
MFV 4.0027 x 10”2 0.0
c 1.0706 x 10°2 0.0
AET (sec) - 16.3259
fa 0.0 1x10°% BFV 2.3191 x 107% 0.0
WEV 3.9232 x 107 0.0
MFV 8.6259 x 107 0.0
¢ 1.0228 x 10 0.0
AET (sec) - 15.6650
fs 0.0 1x10°% BFV 1.8218 x 10%! 0.0
WEV 3.3622 x 10% 9.8813x10 3%
MFV 2.5419 x 10” 0.0
¢ 3.5500 x 10° 0.0
AET (sec) - 17.7892
fs 0.0 1x10°% BFV 2.4679 x 10 0.0
WEV 3.6900 x 10%% 0.0
MFV 2.4679 x 10% 0.0
¢ 5.7707 x 10° 0.0
AET (sec) - 14.0659
fr 0.0 1x10°% BFV 1.9811 x 10%* 0.0
WEV 5.2134 x 10 0.0
MFV 3.2116 x 10%* 0.0
G 9.4586 x 10% 0.0
AET (sec) - 26.2586
fs 0.0 1x10°% BFV 1.0849 x 1072 0.0
WEFV 5.6201 x 107" 0.0
MFV 1.2788 x 10" 0.0
¢ 1.2006 x 10~ 0.0
AET (sec) - 8.9479
fo 0.0 1x10°% BFV 7.8459 x 10%° 0.0
WEV 2.2750 x 10%* 0.0
MFV 1.5896 x 10%* 0.0
¢ 3.8854 x 10%° 0.0
AET (sec) - 25.8315
fro 0.0 1 x 10% BFV 6.8740 x 10%° 5.7699x10 %
WEV 1.1945 x 10* 5.1926x10°
MFV 9.8909 x 10% 3.1611x10
¢ 1.3836 x 10%% 1.0618x10°
AET (sec) - 11.4709
fi1 0.0 1x10°% BFV 7.2437 x 10° 0.0
WEFV 3.0307 x 10” 0.0
MFV 1.7175 x 10% 0.0
¢ 6.3452 x 10° 0.0
AET (sec) - 21.8874
fiz 0.0 1x107% BFV 4.7802 x 10° 1.4998x10 32
WEFV 1.3640 x 10" 1.4998x1032
MFV 8.3570 x 10° 1.4998x10%*
¢ 2.8145 x 10° 8.3800x10 *
AET (sec) - 44.7980
fis ~7.833223 ~7.8 x 10 BFV —5.4403 x 10! —7.83323x10°!
x 10% WEV —4.3101 x 10 —7.83323x10”"
MFV —4.8420 x 10% —7.83323x10”
¢ 3.2065 x 10° 1.3605x10 '*
AET (sec) - 23.8133
fra 0.0 1x10°% BFV 1.3035 x 10%! 0.0
WFV 1.8438 x 10% 1.3101x10'*
MFV 1.5513 x 10 2.8333x10°1°
¢ 1.5921 x 10° 3.7142x10° 1%
21.4088
fis 0.0 1x10°% BFV 41622 x 107 0.0
WEFV 7.4146 x 107 3.0038x10 %12
MFV 5.4681 x 1072 1.2027x107%13
¢ 9.5018 x 10 0.0
(continued on next page)
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f Minimum Accept Fitness GPSO OPSO
fG) Value

AET (sec) - 18.9627

fie 0.0 1x10°% BFV 8.9136 x 1071° 0.0
WEV 5.8023 x 1077 0.0
MFV 1.1718 x 10~ 0.0
¢ 1.4790 x 107 0.0
AET (sec) - 33.7595

fi7 -9.92784 —9.5 x 10 BFV ~2.9595 x 10! —9.85149x10°!

x 10% WEV —2.4683 x 10! —9.72067 x 10"

MFV ~2.6475 x 10° —9.80995x10°
¢ 1.2014 x 107 3.8892x10 "
AET (sec) - 41.2021

fis 0.0 2 x 10 BFV 9.4000 x 10%° 3.8183x10
WEV 1.0081 x 10% 1.1844x10%
MFV 9.5014 x 10% 1.4213x10”
c 3.4563 x 10% 3.9282x10"
AET (sec) - 32.5160

fio 0.0 1x10°% BFV 2.0729 x 10°? 0.0
WEV 2.6763 x 10°2 0.0
MFV 2.4074 x 10”2 0.0
¢ 1.3470 x 10° 0.0
AET (sec) - 30.6209

fa0 0.0 1x10°% BFV 8.4121 x 10° 4.4409%10 15
WEV 1.4451 x 10 7.9936x10°'°
MFV 1.0876 x 10°! 6.5725x10 1%
¢ 1.4402 x 10° 1.7764x10°°
AET (sec) - 28.3525

for —450 -350 BFV 1.3606 x 10%° —4.5000%10%2
WEV 6.3523 x 10%% —4.5000x10%*
MFV 3.4897 x 10% —4.5000x10°
¢ 1.1566 x 10%% 1.5825x107 13
AET (sec) - 8.9907

foz —450 -350 BFV 3.3409 x 10%* —4.5000%10%2
WEV 9.2368 x 10%* —4.5000x10°*
MFV 5.3040 x 10° —4.5000x10°
G 1.5313 x 10%* 1.4950x10 '3
AET (sec) - 17.2141

fos 390 490 BFV 2.8616 x 107 3.9000x10°%
WEFV 3.0831 x 10% 3.9018x10%
MFV 1.2195 x 10% 3.9009x10%%
¢ 7.3326 x 107 1.1040x10°
AET (sec) - 12.3678

fou -330 ~230 BFV 1.5114 x 10% ~3.3000x10°2
WEV 5.6216 x 10 ~3.3000x10°%
MFV 3.1415 x 10% —3.3000x10°2
¢ 1.0315 x 10 4.3415x1071*
AET (sec) - 28.1717

fos —140 ~135 BFV ~1.3118 x 102 —1.4000x10%
WEV —1.2755 x 10% —1.4000x10°*
MFV ~1.2935 x 10°2 —1.4000x10°*
¢ 8.7805 x 107 4.7488x10 %
AET (sec) - 8.9032

fo6 -180 -170 BFV ~1.5831 x 10% —1.8000 x10°*
WEV —~1.1322 x 10% —1.7995x10%*
MFV —~1.3991 x 10% —1.7999x10%
¢ 1.0342 x 10% 1.2766x10 %2
AET (sec) - 9.8174

far —-900 ~800 BFV ~7.3860 x 10°% —9.0000x10%
WEV —4.8226 x 10° —9.0000x10°*
MFV —6.2256 x 10°? —9.0000x10°*
¢ 7.6227 x 10™ 1.6450x10 **
AET (sec) - 2.1427

fos —450 -350 BFV 1.3391 x 107 —4.5000x10%2
WEV 9.7058 x 10%7 —4.5000x10°*
MFV 4.9441 x 10”7 —4.5000x10°
¢ 1.9915 x 10%7 4.7488x10 13
AET (sec) - 9.9062

foo -330 ~300 BFV ~2.6583 x 10°2 —3.3000x10°
WFV ~1.0334 x 102 —3.3075x10%
MFV —~1.9788 x 10° —3.3026x10°*
¢ 3.8162 x 10” 2.1549x10%°
AET (sec) - 26.2184

fa0 -180 -180 BFV ~1.7848 x 10°% —1.8000x10%
WEFV ~1.7555 x 10%2 —1.8000x 10
MFV —~1.7675 x 10° —1.8000x10°*
¢ 6.9078 x 10”2 2.5945x10 4
AET (sec) - 26.6115
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Fig. 12. The BFVs obtained at different runs by the OPSO and GPSO algorithms for f;o — f14, f16, f25, f27 and fao.
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Table 5
Performance comparison between OPSO algorithm and 15 ECTs using 4 unimodal functions with d = 30.
ECTs Performance fi fs fe fs
measure
OPSO MFV 0.0 0.0 0.0 0.0
(proposed) c 0.0 0.0 0.0 0.0
NFE 6.00 x 10% 6.60 x 10% 5.83 x 10% 4.04 x 10
AET (sec) 15.5355 17.7892 14.0659 8.9479
FIPSO MFV 242 x 10713 2.76 x 107 0.0 4.24 x 107
[41 c 1.73 x 10713 9.04 x 107 0.0 1.28 x 107
NFE 1.18 x 10% 1.65 x 10% - 9.10 x 10°*
CLPSO MFV 4.46 x 1074 2.51 x 107 0.0 5.85 x 107
[13] c 1.73 x 10714 5.84 x 10° 0.0 111 x 107
NFE 1.39 x 10% 1.72 x 10% - 1.33 x 10%°
HPSO-TVAC MFV 2.83 x 1073 9.03 x 1072 0.0 9.82 x 1072
[14] c 319 x 10°% 9.58 x 10°%° 0.0 3.26 x 1072
NFE 6.39 x 10% 7.89 x 10% - -
ALC-PSO MFV 1.66 x 1071¢! 1.61 x 107 0.0 -
[15] ¢ 8.20 x 107161 414 x 107 0.0 -
NFE 7.49 x 10% 8.18 x 10% 1.31 x 10% -
EPSO MFV 1.662 x 10774 1.90 x 10 0.0 2.58 x 107
[16] ¢ 2.76 x 10774 215 x 107 0.0 1.87 x 107
SAIW MFV 3.83 x 107¥ - 1.40 x 10° -
[20] c 7.85 x 1071%7 - 1.34 x 10° -
PkPSO-G MFV 1.27 x 1073* 5.02 x 1072 0.0 5.13 x 102
[22] G 2.61 x 1073 6.91 x 10°%° 0.0 2.84 x 1072
NFE 1.40 x 10% - - -
MLPSO-STP MFV 2.37 x 1071° 7.94 x 1078 0.0 2.97 x 107
[24] G 0.0 2,67 x 107 0.0 9.68 x 10°%°
NFE 9.11 x 10% 9.51 x 10% 7.51 x 10% 7.94 x 10
CCPSO-ISM MFV 3.03 x 1072 - 0 6.71 x 10°%
[271 ¢ 9.55 x 1072 - 0 1.71 x 107
NFE 3.502 x 10 - 2.023 x 10 133,985
AET (sec) 0.27 - 0.23 1.12
FPSOCM MFV 2.882 x 107 1.92 x 107 1.60 x 107 435 x 107
[38] c 3.108 x 107 248 x 107 422 x 107" 8.48 x 107
AET (sec) 9.140 8.759 6.560 9.344
OLPSO-G MFV 412 x 1074 9.85 x 107 0.0 1.16 x 1072
[39] c 6.34 x 107 1.01 x 10°% 0.0 410 x 10°%
NFE 8.92 x 10% 1.01 x 10% - 1.50 x 10%°
OLPSO-L MFV 1.11 x 1072 7.67 x 1072 0.0 1.64 x 1072
[39] ¢ 1.28 x 108 5.63 x 107 0.0 3.25 x 107
NFE 9.83 x 10% 1.14 x 10% - 1.86 x 10%°
OGABC MFV 4.69 x 1078 5.33 x 1072 0.0 5.09 x 107
[40] ¢ 5.27 x 1073 313 x 10 % 0.0 2.07 x 107
NFE 2.91x10% 4.64 x 10 1.02x10% -
DEGL/SAW MFV 8.74 x 107 4.93 x 107 9.56 x 107 1.05 x 1077
[42] c 3.82 x 10°% 3.92 x 1073 273 x 1074 2.33 x 107
NFE 3.88 x 10 4.45x10% 4.63 x 10 2.71x10%
MGBDE MFV 8.79 x 1078 8.50 x 107 0.0 214 x 107
[43] c 5.21 x 107 338 x 107" 0.0 1.08 x 107
Minimum f(x) 0.0 0.0 0.0 0.0
Accept Value f(x) 1.00 x 107 1.00 x 107 1.00 x 1078 1.00 x 10792

of each algorithm, the OPSO and GPSO algorithms were evaluated
using the thirty unimodal and multimodal functions given in Table 1.
Both OPSO and GPSO algorithms are run with maximum
NFE = 200,000. The acceleration coefficients values of ¢; and c»
in GPSO and c in OPSO algorithm are set at 2.0 and 2.05, respectively,
using trial and error method. The parameters r(t), ri(t)and ro(t) are
chosen randomly. Since m > d in the OPSO algorithm, the number
of particles (m) in OPSO algorithm is different from GPSO algorithm.
The shifted global optimum vector O is randomly distributed in
the range [-80,80]¢ for all functions except fa4 and fa9 in which the
range is [-4,4] 4 The orthogonal (rotation) matrix M is generated using
Gram-Schmidt orthogonalization process. NFE is taken as 200,000. The
value of Ny, is obtained from (24), once NFE and m are selected. The
values of m and Nj,r used in OPSO and GPSO algorithms are given in
Table 2.

4.3. Sensitivity analysis of swarm size on OPSO algorithm

In order to study the sensitivity analysis of the proposed OPSO

algorithm with variation of swarm size m, nine 30-dimensional
benchmarks functions, fa, fs, fi2, f20, f21, f23, f27, f29 and f3¢ are tested
with Njsr = 5000 and N, = 25. In addition, the AET is obtained with
t=5000 over 25 independent runs. Table 3 shows sensitivity analysis of
the OPSO algorithm with variation of swarm size m, in terms of BFV,
WFV, MFV and AET. When the swarm population, m = 32, it has 30
particles in active group and 2 particles in the passive group. It can be
seen that with m = 32, the performance of OPSO algorithm improves
substantially compared to m = 30 (i.e., the number of particles in the
passive group equals to zero). Therefore, m = 32 has been selected for
the set of 9 unimodal (f;-fo) and 11 multimodal (fip-f20) benchmark
functions, as shown in Table 2. However, in case of shifted, rotated and
shifted rotated benchmark functions, the performance of OPSO
algorithm substantially improves as m increases from 32 to 40. There-
fore, as shown in Table 2, for the ten such functions (f21-f30), m = 40 has
been selected which makes the number of passive group particles to be
10. Based on these observations, as a thumb rule, are may select the
swarm population size between 10 and 30% more than the dimension
of the search space.

156



Appendix-1

Paper E

L.T. Al-Bahrani, J.C. Patra

Swarm and Evolutionary Computation xxx (2017) 1-23

Table 6
Performance comparison between OPSO algorithm and other 16 ECTs on 7 multimodal functions with d = 30.
ECTs Performance f1o fun fis fi6 fis fio f0
measure
OPSO MFV 3.16 x 107! 0.0 1.20x10 %1 0.0 1.42 x 10” 0.0 6.57 x 10°1°
(proposed) c 1.06 x 10%° 0.0 0.0 0.0 3.92 x 10% 0.0 1.77 x 1071°
NFE 5.03 x 10% 6.70 x 10% 6.54 x 10% 3.81x10% 3.97x10% 1.16 x 10%° 7.57 x 10
AET (sec) 11.4709 21.8874 18.9627 33.7595 32.5160 30.6209 28.3525
FIPSO MFV 2.51 x 10” 9.01 x 1072 - 7.01 x 10° 9.93 x 10° 6.51 x 10°! 2.33 x 107
[41 ¢ 5.10 x 107 1.84 x 10711 - 1.47 x 10 5.09 x 10° 1.33 x 10 7.19 x 107
NFE 4.84 x 10 1.33 x 10% - - 1.33 x 10% 7.94 x 10°* 1.83 x 10%°
CLPSO MFV 2.10 x 10” 3.14 x 107 3.45 x 1077 436 x 107! 1.27 x 107! 4.85 x 107" 0.0
[13] c 2.98 x 10° 4.64 x 107" 1.94 x 1077 2.44 x 107" 8.79 x 107" 3.63 x 107! 0.0
NFE 1.08 x 10%° 1.67 x 10% - - 6.54 x 10 4.40 x 10 1.90 x 10%°
HPSO-TVAC MFV 2.39 x 10% 9.75 x 107 - 1.03 x 10” 1.59 x 10% 9.43 x 10° 7.29 x 1071
[14] G 2.65 x 10% 8.33 x 107" - 8.24 x 10° 3.26 x 10%2 3.48 x 10° 3.00 x 107**
NFE 5.06 x 10% 6.69 x 10* - - 5.66 x 10% 6.09x10% 1.02 x 10%
ALC-PSO MFV 7.61 x 10° 1.22 x 107 - 1.25 x 107! 2.10 x 10” 2.52 x 1074 1.14 x 10714
[15] ¢ 6.65 x 10° 0.0 - 6.75 x 1071 5.41 x 10° 1.37 x 10714 2.94 x 1071°
NFE 6.04 x 10% 1.01x10% - 5.89 x 104 4.66 x 10% 7.42 x 10 5.89x10%
MCPSO MFV 6.12 x 10° 1.91 x 10 '* - - 1.32 x 107 7.08 x 107 6.38 x 10712
[16] ¢ 1.09 x 10” 3.26 x 10714 - - 2.16 x 1079 3.46 x 107 5.09 x 107!
SAIW MFV 9.88 x 10° 22.0 x 107 - 31.8 x 10° —6.37 x 10%° 29.84 x 10° 22.71 x 10°
[21] G 19.96 x 10° 47.0 x 1074 - 10.30 x 10° 0.74 x 10% 10.54 x 10° 3.74 x 10 1°
pkPSO-G MFV 8.14 x 10°! 1.19 x 107 - 1.65 x 10% ~1.10 x 10%* 0.0 4.09 x 10714
[22] c 4.82 x 10% 1.37 x 107 - 2.46 x 10° 138.96 0.0 9.23 x 1071
NFE 1.40 x 10% - - - 1.58 x 10%° 1.45 x 10%°
MLPSO-STP MFV 2.52 x 10% 5.75 x 107 0.0 9.60 x 10~ - 0.0 4.03 x 10°1°
[24] G 1.84 x 107 221 x 107% 0.0 3.14 x 10° - 0.0 1.23 x 1071°
NFE 39.0 x 10% 9.30 x 10% 8.80 x 10% 8.90 x 10°* 7.50 x 10% 8.38 x 10
CCPSO-ISM MFV 7x10°2 6.84 x 1071 - - - 0 1.40 x 107
[271 ¢ 19 x 1072 1.69 x 10713 - - - 0 1.60 x 10 1*
NFE 3.22x10% 4.06 x 10% - - - 1.78 x 10% 4.89 x 10
AET (sec) 0.27 0.49 - - - 0.22 0.56
MsPSO MFV 2.89 x 10” 0.0 - - 8.63 x 107 0.0 8.88 x 1071°
[36] c 1.44 x 1072 0.0 - - 2.65 x 1072 0.0 2.01 x 10732
Gaussian PSO MFV 4.25 x 10° 7.42 x 107 5.41 x 107 5.00 x 10° 3.91 x 10° 1.74 x 10%° 418 x 107
[37] - 7.60 x 107 1.50 x 107 6.3 x 107 41 x107% 8.9 x 107 2.00 x 1072 2.50 x 107
NFE 1.26 x 10% 1.37 x 10%° - - 1.11 x 10% 7.52 x 10%* 1.52 x 10%°
FPSOCM MFV 6.09 x 107 2.23 x 107 - - - 8.26 x 10%° 9.01 x 107
[38] ¢ 1.85 x 107" 2.84 x 107%° - - - 2.78 x 10%° 6.95 x 107
AET (sec) 8.070 7.875 - - - 7.641 13.703
OLPSO-G MFV 2.15 x 10” 4.83 x 107 - - 3.84 x 10% 1.07 x 10° 2.15 x 10
[39] c 2.99 x 10% 8.63 x 107 - - 2.17 x 10%2 9.92 x 107! 2.99 x 10°!
NFE 7.87 x 10% 9.33 x 10% - - 4.05 x 10 3.77 x 10 7.87 x 10
OLPSO-L MFV 1.26 x 10 0.0 - - 3.82x 107 0.0 414 x 107"
[39] G 1.40 x 10° 0.0 - - 0.0 0.0 0.0
NFE 9.22 x 10% 10.72 x 10 - - 5.14 x 10% 4.36 x 10 12.65 x 10%*
OGABC MFV 1.10 x 10° 0.0 0.0 1.18 x 107 0.0 0.0 1.93 x 107
[40] ¢ 1.74 x 10° 0.0 0.0 5.30 x 107 0.0 0.0 4.07 x 10715
NFE 3.61 x 10 3.50 x 10%* 5.44x10% 4.10 x 10 4.30 x 10 3.94 x 10 5.89 x 10
MGBDE MFV 1.69 x 10° 0.0 - - ~1.30 x 107 3.98 x 10° 7.69 x 1071°
[43] c 2.24 x 10° 0.0 - - 1.09 x 10712 2.98 x 10° 0.0
NFE 3.92 x 10 3.64 x 10 - - 6.80 x 10%* 2.78 x 10%* 7.46 x 10°*
Minimum f(x) 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Accept Value f(x) 1.00 x 102 1.00 x 10°% 1.00 x 1078 1.00 x 107 2.00 x 10% 1.00 x 107°8 1.00 x 108

4.4. Convergence characteristics

Fig. 9 shows the convergence characteristics of OPSO and GPSO
algorithms for the nine unimodal functions f; — fg. The comparison is
obtained in terms of fitness value (FV) averaged over Ny, times at each
NFE. It can be seen that, in case of OPSO algorithm the FV reduces to a
small value (—~10’300 or lower) as NFE reaches about 1.5 x 10%.
Whereas, in case of GPSO algorithm, the FV fails to converge and
remains above the “Accept Value”, which is indicating failure of the
algorithm. The convergence characteristics of the eleven multimodal
benchmark functions fio — f3p shown in Fig. 10, indicate successful
convergence of the OPSO algorithm and failure of the GPSO algorithm.
Fig. 11 shows convergence characteristics of the ten shifted, rotated and
shifted rotated benchmark functions fa; — f3¢. It can be seen that the
OPSO algorithm achieves much better convergence than GPSO algo-
rithm in all the ten benchmark functions.

4.5. Comparison in terms of fitness values

Performance comparison between OPSO and GPSO algorithms in
terms of BFV, WFV, MFV and ¢ are shown in Table 4. It can be seen that in
case of GPSO algorithm, the three fitness values BFV, WFV and MFV
differ substantially from their optimal values for all the thirty benchmark
functions. Whereas, in OPSO algorithm, the three fitness values are the
same or very close to their optimum values for all the thirty functions.
The standard deviation ¢ remains O or close to 0 in OPSO algorithm,
indicating high consistency and reliability. In terms of average execution
time AET, the OPSO algorithm reaches the “Accept Value” within a
specific AET as shown in Table 4. However, GPSO algorithm can not
reach the “Accept Value”, therefore, it is out of the comparison. The re-
sults shown in Table 4 give evidence that the OPSO algorithm is more
accurate, stable and robust compared to the GPSO algorithm.

In order to highlight the superior performance of the OPSO algorithm
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Table 7
Performance comparison between OPSO algorithm and 4 ECTs on 2 multimodal functions
with d = 100.

ECTs Performance fiz fi7

measure
OPSO MFV —7.833233x10% —9.809959x10°!
(proposed) o 1.36x10 3.88x10 !

NFE 4.69 x 10 1.03 x 10%°
OGABC MFV ~7.833230 x 10°! -9.51915 x 10°
[40] c 8.60 x 1071 6.15 x 107"

NFE 2.52x10% 9.41x10%
0GAQ MFV ~7.83 x 10°! -9.283 x 10!
[41] NFE 1.34 x 10%° 1.34 x 10%°
EDAL MFV ~7.83 x 10 -9.43757 x 10°!
[44] NFE 1.14 x 10% 1.14 x 10%
LEA MFV ~7.831 x 10 —9.301 x 10”
[4s] NFE 1.30 x 10% 1.30 x 10%
Minimum f(x) —7.833223 x 10% —9.92784 x 10!
Accept Value f(x) ~7.80 x 10°! 9.50 x 10!

over the GPSO algorithm, in Fig. 12, we provide the BFVs obtained in
different runs for nine selected benchmark functions. The BFVs obtained
by GPSO algorithm are unacceptable as these are much above the
respective “Accept Value”. In contrast, the OPSO algorithm was suc-
cessful as the BFVs in these nine functions remain much below the
respective “Accept Values”. Similar observations were also made for the
remaining functions.

4.6. Success rate and reliability rate

The performance comparison between the OPSO and the GPSO al-
gorithms is carried out with Ny, = 25 (independent runs) in terms of SR
and RR. The GPSO algorithm fails in all the benchmark functions except
in f76 in which it was successful only four times out of twenty five runs.
However, the OPSO algorithm was successful in all the thirty benchmark
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functions giving rise to an SR of 100%. The RR of GPSO and OPSO al-
gorithms are thus found to be 0.53% and 100%, respectively.

5. Comparison between the proposed OPSO algorithm and other
ECTs

Here, we evaluate performance of the proposed OPSO algorithm by
comparing it with few ECTs recently reported by other authors [4]
[13-16], [18-24] [27], [29], [32-47]. The comparison includes four
unimodal functions, f1, fs, fs and fg, nine multimodal functions f1o, f11,
f13 and fi5 — f20, ten shifted, rotated and shifted-rotated benchmark
functions, f21 - f30.

5.1. Unimodal functions: d = 30

Performance comparison between the proposed OPSO algorithm
and recently reported fifteen other ECTs for four unimodal functions fj,
fs, fe and fg is shown in Table 5. Three performance measures MFV, ¢
and NFE are used for this comparison. In terms of MFV and o, the
proposed OPSO algorithm provides superior performance compared to
the other ECTs. In terms of NFE, it is slightly inferior to [40] and [42].
In terms of AET the OPSO algorithm is slower than CCPSO-ISM
algorithm [27] on functions fi, fs and fg.

5.2. Multimodal functions d = 30

Seven multimodal functions with 30-dimension are considered. The
global minimum is more difficult to achieve in these multimodal
functions. The performance comparison between the OPSO algorithm
and 16 ECTs for 30-dimensional multimodal functions, fig, f11, f15, f16
and fig — f20 are shown in Table 6. The OPSO algorithm shows superior
performance compared with other ECTs in terms of MFV and ¢ in case of
f115 f15, f16 and fio. It also shows better performance in terms of NFE
in case of fis and fig. In terms of other performance measures,

Table 8
Performance comparison between OPSO algorithm and other 9 ECTs on 6 shifted functions with d = 30.
ECTs Performance far faz f23 foa fos f26
measure
OPSO MFV —4.50x10% —4.50x10% 3.90x10” —3.30x10% —1.40x10% —1.80x10%
(proposed) G 1.58x10° 12 1.49x10° 12 1.10x10%° 4.34x10°1 4.74x10 4 1.27x10712
NFE 1.88x10% 2.34x10% 2.99x10% 1.49x10%* 1.84x10% 1.42x10%
AET (sec) 8.9907 17.2141 12.3678 28.1717 8.9032 9.8174
BPSO MFV —4.33 x 10”2 ~4.29 x 102 4.01 x 102 ~3.09 x 102 - -
[18] c 3.98 x 10% 4.40 x 10° 1.16 x 10° 43 x 107 - -
MCPSO MFV 2.55 x 10%° 3.63 x 10” 4.35 x 10”7 6.87 x 10° 7.11 x 10%° 1.79 x 10”
[19] ¢ 3.43 x 10° 1.97 x 10%° 6.945 x 10 2.03 x 10” 1.00 x 10” 1.66 x 10”
NFE 5% 10% 5 x 10 5% 10% 5% 10% 5% 10% 5% 10%
HCLPSO MFV - 1.70 x 107 2.39 x 10%° - - -
[20] c - 1.71 x 107 4.27 x 10%° - - -
CSPSO MFV - 252 x 10°%° 3.99 x 10 - - -
[23] ¢ - 8.49 x 10712 2.74 x 10%° - - -
NFE - 1.00 x 10%° - - -
DTT-PSO MFV - - 6.48 x 10° 1.11 x 10% - -
[29] - - - 7.28 x 10% 1.65 x 10” - -
NFE - - 1.60 x 10%° 1.60 x 10% - -
TPSO MFV 4.47 x 10 2.67 x 102 1.30 x 10% 4.26 x 10” - -
[32] c 1.41 x 10°2 1.49 x 10°2 4.08 x 10 9.48 x 10%° - -
NFE 5.00 x 10% 5.00 x 10% 5.00 x 10°* 5.00 x 10% - -
FPSOCM MFV 1.038 x 107 1.99 x 107 1.65 x 10 5.58 x 10°! - -
[38] G 2.50 x 107 1.24 x 107 3.29 x 107" 4.0 x 10" - -
AET (sec) 24.46 43.52 12,672 40.045 - -
BBO MFV 1.7 x 10 0.8 x 10% 1.1 x 10% 12.4 x 10%° 5.1 x 10% -
[46]
p-best AFEP MFV 3.01 x 107 4.056 x 104 2.08 x 10°2 9.99 x 107! 2.04 x 10% -
[47] ¢ 1.62 x 107 2.91 x 10°% 1.67 x 10% 2,62 x 107" 1.02 x 10" -
NFE 3.00 x 10%° 3.00 x 10% 3.00 x 10%° 3.00 x 10% 3.00 x 10%° -
Minimum f(x) —4.50 x 10%2 —4.50 x 10°% 3.90 x 102 —-3.30 x 10%? ~1.40 x 10%? —~1.80 x 102
Accept Value f(x) —-3.50 x 10%? -3.50 x 10%? 4.90 x 102 —-2.30 x 10%? -1.35 x 10%? ~1.70 x 10°?
20
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Table 9
Performance comparison between OPSO algorithm and other 7 ECTs on 4 rotated and shifted rotated functions with d = 30.
ECTs Performance fa7 fos fo0 f30
measure
OPSO MFV —90.0x10” —4.50x10° —3.29x10% —1.80x10%
(proposed) c 1.64x107 1 4.73x10° 1% 2.15 x 10%° 2.59x10'*
NFE 5.20x10 3.20 x 10%* 1.90 x 10% 3.20 x 10°*
AET (sec) 2.1427 9.9062 26.2184 26.6115
BPSO MFV - —4.37 x 10" ~3.09 x 102 ~1.59 x 10”2
[18] ¢ - 236 x 10” 4.1 % 10°% 3.30 x 10”
HCLPSO MFV - 2.61 x 10 5.60 x 10%! 2.00 x 1072
[20] ¢ - 6.42 x 10%° 1.29 x 10 2.00 x 1072
CSPSO MFV - 3.64 x 10 - -
[23] c - 3.22 x 10 - -
NFE - - - -
DTT-PSO MFV - - 8.47 x 10% 1.10 x 1072
[29] ¢ - - 1.30 x 10” 4.85 x 107
NFE - - 1.60 x 10% 1.60 x 10%°
TPSO MFV - 5.23 x 10° 5.78 x 10°! 1.40 x 10”
[32] ¢ - 1.85 x 10% 2.21 x 10 1.79 x 10
NFE - 5.0010%* 5.0010%* 5.0010%
BBO MFV - 0.3 x 10%° - 9.9 x 10%°
[46]
p-best AFEP MFV - 5.07 x 10%° 3.28 x 10%! 2.34 x 107
[471 ¢ - 1.36 x 10%° 2.00 x 10° 5.34 x 107
NFE - 3.00 x 10%° 3.00 x 10%° 3.00 x 10%°
Minimum f(x) -9.00 x 10%? —~4,50 x 10°2 -3.30 x 10%? ~1.80 x 102
Accept Value f(x) —8.00 x 102 —3.50 x 10%2 —3.00 x 10%2 —~1.80 x 102
Table 10
Performance comparison between OPSO algorithm and other 3 ECTs on 6 shifted functions with d = 100.
ECTs Performance fo1 foz2 fo3 foa fos fos
measure
OPSO MFV —~4.50x10%2 —4.50x10%2 3.90x10 —-3.30x10% —1.40x10% -1.80x10%
(proposed) - 3.33 x 10712 4.11x10° 13 6.60x10"" 2.41x10° 12 8.03 x 10714 2.84 x 10714
CSO MFV —~4.50x10%2 —4.16 x 102 7.80 x 10°2 —2.74 x 102 1.39 x 10°2 ~1.80x10%
[33] c 1.10x10°% 5.38 x 10%° 5.53 x 10%2 7.48 x 10 1.52 x 107 0.0
CCPSO2 MFV ~4.50x10°* —4.43 x 102 8.13 x 102 —3.29 x 102 ~1.40x10°* ~1.80x10%
[34] c 3.23 x 1071 7.83 x 10 8.65 x 10%2 1.99 x 107 3.06 x 1071 4.88 x 107
SL-PSO MFV ~4.50x10°% ~4.50x10°% 9.64 x 102 2.55 x 10°2 ~1.40x10° ~1.80x10%
[35] ¢ 3.50 x 10728 4.97 x 107 1.76 x 10°% 1.21 x 10” ~1.40x1071° 0.0
Minimum f(x) —4.50 x 10°2 —4.50 x 10°2 3.90 x 10°2 —3.30 x 102 —1.40 x 102 —1.80 x 102
Maximum NFE 500,000

performance of the OPSO algorithm is comparable to other ECTs, in
case of other functions.

5.3. Multimodal functions d = 100

Out of thirty functions considered in this study, f13 and f;7 are two
multimodal functions with dimension of 100. These two functions are
more complicated, have several local minima and their number change
dramatically with increase in dimension [40]. In Table 7, performance
comparison between OPSO algorithm and other four available ECTs
is provided. The proposed OPSO algorithm performs better than the
other four ECTs in terms of MFV and o for both functions. However, its
performance in terms of NFE is slightly inferior to other ECTs.

5.4. Shifted, rotated and shifted rotated functions d = 30

Ten shifted, rotated and shifted rotated benchmark functions with
30-dimension are considered. The global minimum is more difficult to
achieve in these functions, because, the solution vector is shifted from
the origin by the vector O, rotated by matrix M or shifted and rotated by
O and M. The performance comparison between the OPSO algorithm
and 9 ECTs for 30-dimensional shifted functions, f2; — f26 are shown in
Table 8. The OPSO algorithm shows superior performance compared
with other 9 ECTs in terms of four fitness values, MFV, o, NFE and AET.
The performance of the OPSO algorithm is the best among the 9 ECTs.

21

Table 9 shows the comparison between OPSO algorithm and 7 other
ECTs for 4 rotated and shifted rotated functions f27 — f39. The OPSO
algorithm is found to perform the best in terms of MFV, ¢ and NFE for
these four functions.

5.5. Shifted functions d = 100

Six shifted benchmark functions, i.e., f2; — fa26 with d = 100 are
selected from CEC 2008 [55]. The performance comparison between
the OPSO algorithm and three ECTs (CSO [33], CCPSO2 [34] and
SL-PSO [35]) is shown in Table 10. As recommended in Ref. [52], the
comparison has been implemented with d = 100 and N, = 25. For
each independent run, the NFE = d x 5000 = 500,000. The other
parameters used in OPSO algorithm were m = 110, Ny, = 4545 based
on (24) and ¢ = 2.05. It can be seen that for fz3 and fz4, the OPSO
algorithm outperforms the other three ECTs in terms of MFV and o.
For f27 and f25, the OPSO algorithm shares the three ECTs with similar
results in terms of MFV and . In case of f2,, performance of the OPSO
algorithm is similar to that of the SL-PSO algorithm. Finally, for fs, the
OPSO algorithm performs similar to other three ECTs in terms of MFV.
However, in terms of o, its performance is better than CCPSO2 only.

From the above observations, it is evident that the proposed OPSO
algorithm gives better performance compared to that of recently reported
ECTs for solving unimodal, multimodal and functions in terms of
convergence, accuracy, stability and reliability.
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6. Conclusion

A novel orthogonal PSO (OPSO) algorithm was proposed whose
performance is found to be superior than the GPSO algorithm. While
searching for optimal solution in a d-dimensional space, the OPSO al-
gorithm with m particles (m > d) divides the swarm population into two
groups. The first group, named active group, consists of d particles that
have the best personal experiences. The remaining (m — d) particles
constitute the passive group. The two groups introduce diversity in
swarm population. Using an orthogonal diagonalization process the
position vectors of only the active group are updated. When the
convergence is attained, the d position vectors constitute a diagonal
(orthogonal) matrix. Due to the improvement of the updating proced-
ure, the OPSO algorithm avoids the zigzagging phenomenon of GPSO
algorithm. From the sensitivity analysis, we infer that, the swarm
population size need to be selected at about 10-30% higher than the
search dimension, d. By taking thirty unimodal, multimodal, shifted,
rotated, and shifted rotated benchmark functions of dimension 30 and
100, we have shown that the OPSO algorithm outperforms the GPSO
algorithm and several recently reported ECTs in terms of convergence,
accuracy, consistency and reliability.
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Particle swarm optimization (PSO) algorithm has been successfully applied to solve various optimization
problems in science and engineering. One such popular one is called global PSO (GPSO) algorithm. One
of major drawback of GPSO algorithm is the phenomenon of “zigzagging”, that leads to premature con-
vergence by falling into local minima. In addition, the performance of GPSO algorithm deteriorates for
high-dimensional problems, especially in presence of nonlinear constraints. In this paper we propose a
novel algorithm called, orthogonal PSO (OPSO) that alleviates the shortcomings of the GPSO algorithm.
In OPSO algorithm, the m particles of the swarm are divided into two groups: active group and passive
group. The d particles of the active group undergo an orthogonal diagonalization process and are updated
in such way that their position vectors become orthogonally diagonalized. In the OPSO algorithm, the
particles are updated using only one guide, thus avoiding the conflict between the two guides that occurs
in the GPSO algorithm. We applied the OPSO algorithm for solving economic dispatch (ED) problem by
taking three power systems under several power constraints imposed by thermal generating units (TGUs)
and smart power grid (SPG), for example, ramp rate limits, and prohibited operating zones. In addition,
the OPSO algorithm is also applied for ten selected shifted and rotated CEC 2015 benchmark functions.
With extensive simulation studies, we have shown superior performance of OPSO algorithm over GPSO
algorithm and several existing evolutional computation techniques in terms of several performance mea-
sures, e.g., minimum cost, convergence rate, consistency, and stability. In addition, using unpaired t-Test,
we have shown the statistical significance of the OPSO algorithm against several contending algorithms
including top-ranked CEC 2015 algorithms.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

However, due to several power constraints, e.g., ramp rate limits
(RRLs) and prohibited operating zones (POZs), the cost function

Economic dispatch (ED) of power is one of the fundamental
problems in smart power grid (SPG) operations. Its objective is to
allocate the load demand among committed thermal generating
units (TGUs) in most economical manner, while satisfying various
practical power constraints imposed by the TGUs and SPG. In order
to make SPG more efficient, flexible, adaptive and reliable, these
constraints need to be integrated with smart meters and sensors,
advanced communication technology and high-performance com-
puting machines [1]. Therefore, there is a need to develop new
computational techniques to solve ED problem that is compatible
with rapid technological evolution in SPG.

Traditionally, the cost function of a TGU is approximately rep-
resented by a quadratic or a piecewise quadratic function [2,3].
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of an on-line TGU becomes non-convex and non-smooth with
multiple modes, i.e., multimodal objective function. Because, the
operating range of on-line TGUs is restricted by their RRLs and
discontinuities in the cost curve due to their POZs.

In the past decades, many optimization techniques including
traditional methods have been adopted in order to find the opti-
mum power dispatch and the rate of optimum product for each
on-line TGU. Some of the traditional methods include linear pro-
gramming [4], quadratic programming [5], Lagrange relaxation [6],
Lambda iterative method [7], and dynamic programming [8]. These
methods offer certain advantages, for example, they only need
to run once and do not have any problem specific parameters to
specify. However, the traditional methods are able to solve the
ED problem only when the cost function is piecewise linear and
monotonically increasing.

To overcome the above mentioned deficiencies, several evo-
lutionary computation techniques (ECTs) have been proposed to
tackle the non-convex ED problems. Some of the popular ECTs
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include genetic algorithm (GA) [9], simulated annealing [10],
artificial immune system (AIS) [11], artificial bee colony [12],
evolutionary programming [13], differential evolution (DE) [14],
harmony search [15]. Another popular ECT is the particle swarm
optimization (PSO) algorithm proposed by Kennedy and Eberhart
[16,17]. The PSO algorithm can be divided into types, one for local
PSO (LPSO) and the other for global PSO (GPSO) which is more pop-
ular. Some of the advantages of application of GPSO algorithm in
solving ED problem are: firstly, it imposes a few or no restrictions
on the shape of the cost function; secondly, it has a few parameters
and is easy to execute. However, the GPSO algorithm is suitable only
for solving optimization problems that have a continuous domain
and it is prone to get trapped into local minima when applied to
multimodal functions.

The GPSO algorithm mimics the behaviour of swarm population
of some animal species, such as, birds or fish flocking. The GPSO
algorithm operates by initializing the particles (with possible solu-
tions) of the swarm randomly and searching for global optima by
updating the position and the velocity of each particle iteratively.
While updating, each particle in a swarm uses its own personal
experience and the best experience of the swarm as two guides
through linear summation. Thus, a particle that has best experi-
ence among the personal experiences of all particles is considered
to be a best solution. The reasons for poor performance of the GPSO
algorithm can be summarized as follows. Firstly, the learning strat-
egy of the GPSO algorithm depends on the fact that each particle
in a swarm adjusts its search trajectory according to its own per-
sonal experience and its neighbors’ experiences. Therefore, each
particle in a swarm obtains two possible solutions, one from its
personal experience and the other from its neighborhood’s experi-
ence and then sums them together. The problem here is not only
existence of the summation, but also the presence of two guides.
These two guides may have a large difference or may even be oppo-
site directions at the early search step, which may lead the particles
to pull to local minima trapping and may lead to early convergence.
Often, they remain in opposite directions until final search stage.
Secondly, these two guides and their linear summation may cause
aphenomenon called “Oscillation or zigzagging” [ 18-20]. This phe-
nomenon becomes more prominent with high dimensional search
space in which the particles remain in a confused state and are
unable to control their search trajectories.

Several ECTs have been proposed in recent years to boost the
global search ability for solving different types and forms of uni-
modal and multimodal objective functions. Some of these ECTs
have been focused on solving non-convex multimodal cost function
and improving the performance of the GPSO and LPSO algorithms
in order to obtain a global optimum and to prevent the falling into
local minima. For example, self-organizing hierarchical PSO (SOH-
PSO)algorithm [3], modified PSO algorithm [21], PSO with modified
stochastic acceleration factors (PSO-MSAF) [22], an improved PSO
algorithm [23], hybrid gradient PSO (HGPSO) [24], hybrid PSO
with mutation (HPSOM) algorithm [24], hybrid PSO with wavelet
mutation (HPSOWM) algorithm [24], random drift PSO (RDPSO)
[25], simulated annealing PSO (SA-PSO) algorithm [26], new PSO
local random search (NPSO-LRS) algorithm [27], anti-predatory
PSO (APSO) [28], chaotic PSO (CPSO) algorithm [29], and quantum
mechanism PSO (QMPSO) algorithm [30] have been proposed. In
[25], eleven ECTs, i.e., GA, DE, ant colony search algorithm (ACSA),
bee colony optimization (BCO), AlS, firefly algorithm (FA), APSO,
HGPSO, HPSOM, HPSOWM, RDPSO have been applied to the ED
problem with three different power systems.

Other ECTs have been applied on solving other types of uni-
modal and multimodal objective functions, i.e., shifted and rotated
CEC2015 benchmark objective functions [31,32]. For example, local
Lipschits underestimate differential evolution (LLUDE) [33], strat-
egy adaptation differential evolution (SaDE) [33], JADE: adaptive

differential evolution [33], composite differential evolution (CoDE)
[33], self-adaptive binary variant differential evolution (SbaDE)
[34], directionally driven self-regulating PSO (DD-SRPSO) [35],
extraordinariness PSO (EPSO)[36], shrinking hypersphere PSO with
gravitational search algorithm (SHPSO-GSA) [37] have been pro-
posed.

In order to make a fair comparison, some other ECTs are
also used in the literature. They include fully decentralized
approach (FDA)[38], biogeography-based optimization (BBO) algo-
rithm [39], genetic algorithm with API (GA-API) algorithm [40],
mixed-integer quadratically constrained quadratic programming
(MIQCQP) [41], enhanced gradient simplified swarm optimization
algorithm (EGSSOA) [42], Lambda logic (A-logic) [43], self-tuning
hybrid differential evolution [44], two-phase neural network [45],
synergic predator-prey optimization (SPPO) algorithm [46], and
chaotic teaching-learning-based optimization algorithm [47], self
optimization based adaptive DE with linear population, L-SHADE
and eigenvector-based crossover and successful-parent-selecting,
SPS-L-SHADE-EIG [48], DE with success-based parameter adap-
tion (DEsPA) algorithm [49], mean-variance mapping optimization
(MVMO) algorithm [50,51], and tuned covariance matrix evolution
strategy (TunedCMAES) [52].

In this paper, we propose a novel algorithm called orthogo-
nal PSO (OPSO) algorithm with a new learning strategy to solve
non-convex ED problem for TGUs under several practical TGUs and
power grid constraints and to improve the performance by over-
coming the drawbacks of GPSO algorithm. The OPSO algorithm
consists of a swarm with m particles that looks for optimal solution
in a d-dimensional search space (m > d). The swarm population is
divided into two groups: an active group of best personal experi-
ence of d particles and another passive group of personal experience
of remaining (m - d) particles. The position vectors associated with
the m particles undergo an orthogonal diagonalization (OD) process
in which the d orthogonal guidance vectors in the active group are
obtained. In each iteration, using only one guide, the velocity and
position vectors of only the active group particles and the remaining
(m - d) particles are left unchanged. This avoids the conflicting sit-
uation of the GPSO algorithm and leads the best d particles towards
the optimal solution in multi-dimensional search space. We applied
the OPSO algorithm to small, medium and large TGUs power system
and ten selected shifted and rotated CEC 2015 benchmark func-
tions. We have shown that the OPSO algorithm is able to achieve
superior performance in terms of convergence, stability and accu-
racy compared to GPSO algorithm and several competitive ECTs.
In the recent works, the effectiveness of the proposed OPSO algo-
rithm has been shown for finding optimum power dispatch in smart
power grid applications [53-55].

Recently, the ECTs in [18-20] have been proposed under the
name, “orthogonal”, i.e., orthogonal learning PSO (OLPSO) algo-
rithms, one for local and the other for global optimization [18],
orthogonal global-best-guided artificial bee colony algorithm [19],
and orthogonal genetic algorithm with quantization [20]. They are
using a different approach called, orthogonal experimental design
(OED).The OED allows the inputs interact among them such that the
output process can be optimized. The OED works on a predefined
table of an orthogonal array of N factors with Q levels per factor. The
OED is applied to obtain a set of possible solutions to achieve the
optimal solution. However, the drawbacks through applying OED
are: firstly, it holds only when no or weak interaction among the
factors exists; secondly, the table that contains variable designs is
complicated; thirdly, the orthogonality may not be possible achieve
in the complex problems.

The rest of the paper is organized as follows. Section 2 describes
the non-convex ED problem under various power constraints.
Explanation of the learning strategy of the GPSO algorithm is pre-
sented in Section 3. Details of the proposed OPSO algorithm are
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provided in Section 4. In Section 5, the application of the OPSO
algorithm to ED problem for three power systems is presented. In
Section 6, the application of the OPSO algorithm to ten selected CEC
2015 benchmark functions is presented. Finally, conclusion of this
study is given in Section 7.

2. Problem formulation

Here, we explain the cost function and various practical power
constraints involved in this study.

2.1. Cost objective function

The main purpose of ED problem is to estimate the optimum
arrangement of on-line TGUs generation in order to minimize the
entire generation fuel cost subjected to the on-line TGUs and power
grid constraints. The fuel cost function of each on-line TGU is char-
acterized by quadratic function [25] and given by:

2
F(Py) = g + b;P; + GiP; (m

where F(P;) is the fuel cost function of jth TGU in ($/h), P; is the
output active power of jth TGU in (MW), g;, bj, and c; are fuel cost
coefficients of jth TGU. The total fuel cost of the on-line TGUs is
given by

Ngen
MinimizeFcosr = ZF(PJ') @)
=1

where Ngep is the number of committed on-line TGUS. Feost is the
function to be minimized.

2.2. Power constraints

Different practical power constraints imposed on on-line TGUs
and by SPG used in the literature are explained below.

2.2.1. Power balance constraint

The total output power of committed on-line TGUs should be
able to satisfy load demand and transmission network loss. The
power balance constraint is given as

Ngen

> Pi=Po+P 3)
j=1

where Pp is load demand in (MW) and P; is transmission network
loss in (MW).

2.2.2. Transmission network loss

The transmission network loss Py is a critical constraint of the ED
problem. Not only is it desired that the power loss incurred in the
system be minimized along with the total fuel cost, but the system
must also generate enough power to satisfy the load demand as
well as to compensate for the P.. The Py is given by [38,56]:

Ngen Ngen

PL=") "> PBP (4)

j=1 k=1

where By, are known as the loss coefficients or B-coefficients
[56,57].
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2.2.3. Transmission network loss mismatch
The total power generated is obtained using (3). From (3), the
P, is obtained and let’s call P;; as follows

Ngen

P=Y P-Pp 5)
j=1

Besides, the Py is also computed using (4) and let’s denote this
time by P;; as follows:

Ngen Ngen

Pz = > PBiP (6)

j=1 k=1

Then, the difference between two, P;> and Py, is called trans-
mission network loss mismatch (Py jismatch) as follows:

PL,mismatch:PLZ*PLl (7)

The significance of the Py psmarcn can be expressed as follows:

¢ The effectiveness and the accuracy of the algorithm in computing
optimal P; can be determined.

e One can determine whether or not the power balance constraint
(3) is satisfied.

When Py pmismatch =0, then Py =Py 1. In such case, the (5) can be
written as

Ngen

Pa=) P—Pp (8)
j=1

Subsequently, the (3) is satisfied.

2.2.4. Generation limits

Each TGU has a specified range within which its operation is
stable. Therefore, it is desired that the TGUs be run within this range
in order to maintain system stability

The generation limits of the jth TGU is given by

Pj,min <Pj Spj,max J =1,2,.. -sNgen (9)

In other words, the power generation of each TGU must remain
between its minimum P; ;;, and its maximum Pj g, limits.

2.2.5. Ramp rate limits

The operating range of all on-line TGUs is restricted by their
ramp rate limits RRLs due to the physical limitation of TGUs [58,59].
For any sudden change in the load demand, TGUs increase or
decrease their generation in order to satisfy the power balance con-
straint (3). However, the TGUs can change their generation only at
a certain rate determined by the up-ramping and down-ramping
rate. If a TGU is operating at a specific point, then its point of oper-
ation can be changed only up to a certain rate determined by the
ramp rate. Therefore, a change in TGU output power from one spe-
cific interval to the next cannot exceed a specified limit.

If power generation need to increase, then per unit time rate of
increase P; — Pjo must satisfy

P;—P° <UR; (10)

If power generation need to decrease, then per unit time rate of
decrease P;° — P; must satisfy

P —P; <DR; (11)

where Pjo is the TGU output active power at the previous time inter-
val and P; is the TGU output power at current time interval. The UR;
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Fig. 1. Lower and upper generation limits, POZs and FOZs for TGU,,

and DR; are the up-ramp and down-ramp limits of TGU j, respec-
tively, in (MW/h). By substituting (10) and (11) in (9), the (12) is
obtained.

Max{P; min, (P;° — DR})} <Pj < min{P; may. (P;° + UR;)} (12)
Let us assume that,

Pj tow = Max{P;j min, (P, — DR;)}, and (13)

P; high = Min{P; may, (P;° + UR;)} (14)

where P; j,, and P; yjgp, are the new lower and higher limits of unit
J, respectively.

2.2.6. Prohibited operating zones

The physical limitations due to the steam valve operation or
vibration in a shaft bearing of TGU may result in the generation
units operating within prohibited operating zones (POZs) [60]. The
POZs make the cost function discontinuous in nature. In such case,
it is difficult to determine the shape of the cost curve under POZs
through actual performance testing. In addition, if the TGU operates
within the POZs range in the SPG then it may lead to loss of stability.
Therefore, these regions are usually avoided during generation. By
using (9) mentioned in constraint 2.2.4, the feasible operating zones
FOZs of the jth TGU are given by

]
Pimin = Py = P4

p!

I
fer =P =P k=2.3,....Nipz

PJ!fNj.PZ < Pj = Pjmax (15)
whereP;_kand Pj”kare the lower and upper bound of the kth POZs of
the jth unit, and N; p; is number of POZs of the jth TGU. Incorpo-
rating these power constraints in (12)-(15), we get the final set of
inequality power constraints imposed on TGU in SPG are as follows:

[
Pijow <Py < P,

I
Pl =P =P k=2,3,....Npz
Pl <15 = B )

2.2.6.1. Observation. Eq. (16) gives the final set of the inequality
power constraints imposed on jth TGU in terms of new lower and
upper generation limits with RRLs and FOZs. In addition, the (16)
avoids all POZs imposed on jth TGU. Thus, all TGUs will have oper-
ation limits (OLs) satisfying all power constraints.

2.2.6.2. Anillustrative example. Inorder to illustrate new lower and
upper generation limits and FOZs generated due to presence RRLs
and POZs of jth TGU, an example of specifications of TGU, per one
hour generation is given below [25]:

P29 =170 MW; P;_in =50 MW; Py nax =200 MW; UR; =50 MW;
DR, =90 MW. The TGU, has two POZs are: POZ;=[90,110] and
POZ, =[140,160].

From (16), the new lower and upper limits of TGU, based on
RRLs are:

PZ.IOW =80MW and PZ.high =200 MW,

and there are three FOZs are:

FOZ,:80 <P, < 90
FOZ,: 110 <P, < 140

FOZ3: 160 <P, < 200

Fig. 1 shows that TGU, has minimum and maximum OLs given
by 50 MW and 200 MW, respectively. However, due to presence
RRLs (up-ramp and down-ramp limits) power constraint, TGU,
operates within new lower and higher OLs given by P, j,,, =80 MM
and P, pjgp =200 MW. In addition, three FOZs are: FOZ; =[80,90]
MW, FOZ; =[110,160] MW, FOZ3 =[160,200] MW in white color,
and two POZs are: POZ; =[90,110] MW, POZ; =[140,160] MW in
dark color are shown in Fig. 1. The intermittent zone ([50,80] MW)
is out of OL of the TGU,.

3. The GPSO algorithm

The mechanism of GPSO algorithm depends on distribution of
the particles (possible solutions) in a swarm. Firstly, each particle
flying in the multi-dimensional search area adjusts its flying trajec-
tory according to two guides, its personal experience (Gpes,;) and
its neighborhood’s best experience (Gpest). Secondly, when seek-
ing a global solution, each particle learns from its own historical
experience and its neighborhood’s historical experience. In such
a case, a particle while choosing the neighborhood’s best experi-
ence uses the best experience of the whole swarm as its neighbor’s
best experience. Since the position of each particle is affected by
the best-fit particle in the entire swarm, this technique is named,
global PSO [16,17,61-64]. Only a few parameters have been used in
GPSO algorithm later to give potential advantage and to enhance its
performance. Among user parameters of GPSO algorithm, several
strategies of inertia weight have been used. For example, constant
inertia weight [61], time-varying inertia weight [62] and constric-
tion factor for balancing global and local searches [63]. However,
when the cost function is within high-dimensional search space and
restricted by many POZs, this makes the cost function has multiple
local minima. Then, finding global optimum becomes more difficult
with these few parameters, because these few parameters become
an ineffective. Therefore, the original GPSO algorithm is considered
as a fundamental technique of PSO algorithm. The following steps
explain the mechanism of the GPSO algorithm.

Let us consider a swarm population with m particles search-
ing for a solution in d-dimensional search space, where m>1. The
objective of the GPSO algorithm is to minimize the given objective
function f(x). Each particle i (i=1, 2, ..., m) is associated with two
d-dimensional vectors; a velocity vector V; and a position vector X;.

Initialization: Iteration, t=0.

Step 1: Initialize the velocity and position vectors randomly for
particle i, (i=1,2,...,m).

Vi(0) = [vi1,Vi2s - Vigl (17)
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Xi(0) = [Xi1.Xi2, - - - Xig] (18)

Step 2: For each particle i, evaluate the objective function f{x)
using the position vector X; (0).

Step 3: Initialize the personal position vector of particle i,
Gpers,i(0) as follows:

Gpers,i(o) = [gpﬂlvgpi.Zv"'?gpi,d] =X;(0) (19)

Step 4: Determine the global best position vector, Gpes(0). It is
the best position vector among all personal positions vectors in the
swarm. The Gy (0) is given by

Ghest(0) = [85,1.8b.2 - - +&b.a] (20)

Update: Iteration, t=1, 2, ..., Njser, Where Ny, is the total num-
ber of iterations.

Step 5: In iteration ¢, the particle’s velocity and position vectors
are updated as follows:

Vi(t) =Vi(t = 1)+ c1r1(8)(Gpers,i(t = 1) = Xi(£ = 1))
+ € (t)(Gpest (£ — 1) = Xj(t = 1)) (21)

Xi(t) =Xi(t = 1)+ Vi(t) (22)

where c¢; and ¢, are two positive acceleration coefficients whose
values are chosen by using trail and error. The range of ¢; and c,
are of [2.00,2.25]. They are adapting controlled based on the evo-
lutionary states [64-66]. However, in most cases, ¢; = ¢, =2.00. The
r(t) and r(t) are two randomly generated values within the range
(0,1).

Step 6: Each particle i, the objective function f(x) is evaluated
using the position vector X; (t).

Step 7: The Gpers i and Gpeg, are updated as follows:

{Xi(f) IFX(6) < f(Gpers,i(t — 1)) }
Gpers,i(t) = . (23)
Gpers,i(t —1) Otherwise

Ghest(t) :mi”{Gpers,i(t)} (24)

End of iteration, t =Ny,

Step 8: The global best position vector Gy (t) becomes the
optimal solution and the f{Gy(t)) gives the optimal value of the
objective function. A flowchart of the GPSO algorithm is shown in
Fig. 2.

4. The OPSO algorithm

Here, the details of the proposed OPSO algorithm and explana-
tion of the diagonalization process are provided.

4.1. Orthogonal diagonalization process

The matrix diagonalization is the process of converting a square
matrix, B of size (d x d), into a diagonal matrix, D of size (d x d), as
shown below [67].

B = QDQ! (25)
where Q is a matrix of size (d x d) composed of eigenvectors of B
and the diagonal elements of D contains the corresponding eigen-
values. The Q is an invertible matrix because it contains linearly

independent vectors. When B is symmetric, the (25) may be written
as

B = CDC! (26)

in which the columns of matrix C are orthonormal to each other.
The (26) can be rewritten as

D = C'BC (27)
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[ Npariicle = m, Dimension = d, Iteration = Nicer ]

v
t=0;
Initialize Vi and X, randomly, using (17) and (18)

| Evaluate f{X,(0)) using (18) |
v

| Obtain Gpersi(0) and Gres(0) |

‘ Update Vi(¢) and Xi(¢) using (21) and (22) ‘

‘ Evaluate f{Xi(?)) using (22) ‘

‘ Update Gpers,i(f) and Gpesi(?) using (23) and (24) ‘
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t = Niter

[ Optimal Solution = Guesi(Nieer) |

End

Fig. 2. Flowchart of the GPSO algorithm.

Since matrix Cis an orthonormal matrix, the (27) can be written
as

D = C'BC (28)

Eq. (28) is called orthogonal diagonalization (OD). The process
of OD is shown in Fig. 3.

4.2. OPSO learning algorithm

In this paper, an orthogonal PSO (OPSO) algorithm is proposed
to improve the performance of the GPSO algorithm. The objective of
the OPSO algorithm is to minimize the given d-dimensional objec-
tive function f(x). Consider a swarm population with m particles,
each with a dimension of d (d <m). The OPSO algorithm provides
a new topology to the swarm population. In each iteration, the
swarm population of m particles are divided into two groups: an
active group that consists of best personal experience of d particles
and one passive group which consists of the personal experience of
rest (m —d) particles. The opinion of the active group particles are
honoured by updating their respective velocity and position vec-
tors. The opinion of the passive group particles are ignored because
their guidance may be erratic, and therefore, their velocity and posi-
tion vectors are not updated. In each iteration, the OD process (28)
is applied. The matrix B is obtained from the d best particles of
the active group and thereafter, orthonormal matrix C and diago-
nal matrix D are computed using (28). The steps involved in OPSO
algorithm are given below.

Let a d-dimensional objective function f{x) need to be optimized.

Initialization: Iteration, t=0.

Step 1: Randomly initialize the velocity V;(0) and position X;(0)
vectors for particle i, (i=1, 2, ..., m).

Step 2: Determine the personal position vectors, Gpes,;(0) using
(19).

Step 3: Evaluate the objective function f{x) using position vector
X;(0).
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L4: Obtain the diagonal matrix D using (28).

L1: Let B be a real symmetric matrix of size dxd.
L2: Apply Gram-Schmidt orthogonalization on matrix B to obtain d orthonormal vectors [67].
L3: Construct orthonormal matrix C using these vectors.

Fig. 3. The orthogonal diagonalization process.

Procedure: Convert matrix A( mxd) to a symmetric matrix B (dxd).

fori=1:d
B(1,i)=A(1, 1)
B(@, )=A(1,1)

end for
fork=2:d
fori=2:d

B(k, i) = A(k, i)
Bl(k, i) = B(k, i)
B(i, k) = B1(k, i)
end for
end for

Fig. 4. Pseudocode for converting matrix A to a symmetric matrix B.

OD process:

Initerationt, t=1, 2, ..., Njer, Where N, is the total number of
iterations.

Step 4: Arrange the m personal position vectors in an ascending
order based on their f{x) values.

Step 5: Construct matrix A of size (m x d) such that each row
occupies one of the m personal position vectors in the same ordered
sequence as in step 4.

Step 6: Using pseudocode given in Fig. 4, convert matrix A to a
symmetric matrix B of size (d x d), such that B is a real symmetric
matrix of dimension (d x d).

Step 7: Apply the OD process shown in Fig. 3 on matrix B to
obtain the diagonal matrix D. Let D; denote the ith row of matrix D,
wherei=1,2,...,d.

Update:

Step 8: Update the position and velocity vectors of the active
group particles,i=1, 2, ., d, as follows.

Vi(t) =Vi(t — 1)+ cr(t)[Di(t) — X;(t - 1)]
Xi(t) =X;(t—1)+V;(t)

(29)
(30)

where cis an acceleration coefficient and is chosen by trial and error
in the range [2.00,2.25] and r(t) is a random number within range
(0,1).

Step 9: Determine the Gpersy,-(t), i=1,2,...,m,as follows.

i . i = G ers, i\t — 1
G (1= {x (t) ifFf (X (1) < f (Gpers.i(t — 1)) } )
Gpers,i (t —1) Otherwise
(32)

Step 10: Determine the global best position, Gpe (£).
Gpest(t) =min{Gpers i(t)},i= 1,2,...,m

End of iteration, t= Nj.,

Step 11: The Gpes(Njrer) as computed in step 10 provides the
optimal solution. A flowchart of the OPSO algorithm is shown in
Fig. 5.

4.2.1. Observation 1

One of the important observation of the OPSO algorithm is as
follows. Sine D is a diagonal matrix, the d rows or columns of matrix
D are orthogonal vectors. These d vectors are used to diminish the
contribution of X;(t — 1) while updating V;(t),i=1,2,...,d. Ast — oo,

( Npariicte = m, Dimension = d, Iteration = Nier |

t=0;
Initialize V; and X;, randomly, using (17) and (18)

| Evaluate /{X; (0)) using (18) |

Obtain Gpersi (0)

Construct matrix 4

‘ OD process; obtain matrices B, C and D ‘

\ Update Vi (#) and X; (¢) using (29) and (30), respectively \

| Determine Gyersi (Xi (1)) using (31) |

| Determine Geest (Xi (£)) using (32) |

Optimal Solution = Ghest (Nirer) ‘

End

Fig. 5. Flowchart of the OPSO algorithm.

assume that the algorithm has converged. In such case, (30) can be
written as:

JimXi(6) = Xi(t-1) (33)

This implies that lim V;(t) =0. Then, (29) can be written as:
t—o0

[lirglcvi(t) =Vi(t-1)=0 (34)

which implies that

lim cr () [D;(6) = Xi (£ =1)] = 0 (35)
Since c r(t) is constant,

[lirgzcxi(t —1) = D(t) (36)

From (36) it is evident that lim X;(t) becomes diagonal and
t—o0

equals to D; when iteration becomes large and the algorithm has
converged.
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106y) = (x-2)° + (y+3)°+9.0 t=1
-- - [~33.4275 0.0000
0.0000 9.9113

Fig. 6. Fitness landscape of f(x,y). The minimum value of the functionis 9.0 atx=2.0
and y=-3.0.

Considering the d positions vectors, (36) can be written in matrix
form as:

[X(t)]active,group = [D(t)]active,group (37)

This means, at t — oo, the d position vectors of the active group
particles are equal to the d orthogonal vectors in matrix D. Thus, the
OPSO algorithm reaches convergence and leads to optimal solution.

4.2.2. Observation 2

In case of GPSO algorithm (21), two guides, Gpers j and Gpegt, are
used to update the velocity vector V;(t). These two guides may con-
flict each other which leads to zigzag behaviour of the algorithm,
that in turn causes trapping into a local minima. Whereas, in case
of OPSO algorithm (29), as only one guide, D;(t) is used in updating
of the velocity vector, V;(t), such situation is eliminated.

4.2.3. Observation 3

Due to the orthogonalization of the position vectors, as itera-
tion progresses, once the optimal solution is achieved, the solution
remains the same in the subsequent iterations until the end of
the total number of iterations. This fact provides stability to the
proposed algorithm.

4.2.4. Observation 4
From (29), the velocity vector of each particle of active group
can be rewritten as follows.

Vit) = Vi(t-1) + cr(@)[D(t) - X(t-1)]

Va(t) = Wo(t—1) + cr(0[Dat) — Xp(t—1)] (38)

Va(t) T Vat—1) T en(0)[Da(0) Xa(t—1)]
Dy(t)=[d11, 0, 0,--,0]

where Dy(t)=[0, dy,0,---,0] (39)

Dy(t)=1[0, 0, 0, dy]

It can be seen by cooperation (38) and (39), the position vector
X;,i=1,2,...,d, of active group is affected by only one orthogonal
vector D;,i=1,2,...,d. Thus, while updating, each V;,i=1,2,. ., d,is
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X = 55.4176 -31.9043 —80.94 -23.13 —6.20 79.95}

38.2285 -4.3210 23.47 23.95 —-1.65 49.64

G = —6.2957 10.2996 -23.13 55.41 -80.94 85.23
pers —1—1.6169 23.4768 23.95 38.22 23.47 —40.30

t=80

p=|—3-7383 0.0000
0.0000 3.3275

-28.0374 6.7003 43.83 -92.54  96.11 -99.44
—14.4267 16.8004 94.80 63.09 —90.95 49.64

G = 2.0074 1.4628 -6.20 -23.13 0.81 -80.94
pers —| —2.7485 —2.7543 —1.65 23.95 49.64 23.47

t=140

D= -4.4026 0.0000
0.0000 3.4027

X = —4.4068 0.0001 99.98 -92.54 96.11 -99.44
—0.0002 3.4019 94.80 63.09 -90.95 49.64

G —| 19953 1.9962 -6.20 -23.13 0.81 -80.94
pers 71 —3.0007 —2.9972 —1.65 23.95 49.64 23.47

t=200

D= —4.4051 0.0000
0.0000 3.4051

x =| 44051 0.0000 99.98 -92.54  96.11 -99.44
| 0.0000 3.4051 94.80 63.09 —90.95 49.64

G = 2.0000 2.0000 -6.20 -23.13 0.81 —80.94
pers —1-3.0000 -3.0000 —1.65 23.95 49.64 23.47

Active  Group Passive  Group

Fig. 7. A numerical example showing convergence of the OPSO algorithm.

perturbed only by d;; in the d-dimensional search space. Due to this,
the OPSO algorithm gives faster convergence and better solution.

4.2.5. Observation 5

When m =d, there is no existence of passive group and therefore
we do not see any advantages of diversity and the solution may
not yield the best. When m > d, it gives rise to more computation,
but does not provides any better solution, as seen from sensitivity
analysis (Section 6.6). Considering these two extremes a reasonable
value of m is could be about 10% more than d.

4.2.6. Anillustrative example

In order to explain the mechanism of OPSO algorithm, Fig. 6
illustrates an example of a 2-dimensional shifted function, f{x,y)
=(x—2)%+(y+3)2+9.From visual inspection, it can be seen that the
x and y are shifted from the origin [0,0] by [2.0,-3.0]. The optimum
solution of the given function equals to 9.0 at [x,y] =[2.0,—3.0]. The
aim of the algorithm is to find the values x and y such that the f{x,y)
is minimized.

The OPSO algorithm program is implemented using MATLAB
software in a personal computer with the following specifications:
Intel (R) core (TM) 2 Duo CPU T6570 @ 2.1 GHz. RAM of 4GB and
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Fig. 8. Movement of positions X;, i=1, 2, ..., 6 of six particles based on orthogonal vectors D; and D, two active group particles (1 and 2) and four passive group particles
(3-6) searching for global solution [2.0,-3.0].
Windows 7, 64-bit operating system. The OPSO algorithm is exe- (Gpers,ini=1,2,..., 6) at iteration t=1, 80, 140 and 200 are shown in

cuted with m=6 for Ny, =200. The values of position vectors (

i=1,2,...,6), the diagonal vectors (D;,i=1, 2) and personal vectors

Xi,

170

Fig. 7. The six particles are divided into an active group of two best
particles and a passive group of remaining four particles. Accord-
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Fig. 9. Movement of the personal position vectors of six particles Gpersj, i=1, 2, ...

passive group particles (3, 4, 5 and 6) searching for global solution [2.0, —3.0].

ing to the OD process, Gpers,1 and Gpers,2 are assigned to the active
group and (Gpers, 3, - - -, Gpers,6) are assigned to the passive group. In
each iteration, the velocity and position vectors of only the active
group are updated. As seen from Fig. 7, as iteration reaches 200, the
OD process causes [X]active_group = [Dlactive_group, Satisfying (37) and
causing X to be a diagonal matrix. At the end of iteration, the best
Gpers, provides the optimal solution i.e., Gpest =[2.0, —3.0].

Fig. 8 geometrically explain the movement of the six particles
of the swarm as iteration progress from 1 to 200. At first itera-
tion, the X; vectors are at random positions in search space range
of +100. The vectors Dy and D, are orthogonal to each other. As
the iteration increases, the active group position vectors (X; and
X,) moves towards the orthogonal vectors (D; and D;) and at the
end of iteration, X; =Dy and X, =D>. This can be seen from bottom
subfigure of Fig. 8 which is the magnified view at t=200. This signi-
fies achievements of orthogonalization of the active group position
vectors. Fig. 9 shows the movement of the personal position vectors
of six particles Gpers,j, i=1, 2, ..., 6 and global best position vector
Gpest» two active group particles (1 and 2) and four passive group
particles (3-6) searching for global solution [2.0, —3.0]. The best
personal vector, i.e., Gpes, Of active group gives the optimal solution
as shown in Fig. 9.

, 6 and global best position vector Gpest, two active group particles (1 and 2) and four

5. Application of OPSO algorithm to ED problem

Here we describe the simulation results carried out on three
power systems with several TGUs and SPG constraints.

5.1. Performance measures

To study the accuracy, stability and robustness of different algo-
rithms, several fitness values as explained below are considered.
Every algorithm is executed over Ny, runs each with Nj,, itera-
tions.

1 Minimum fuel cost (F;,): Defined as the minimum of the opti-
mized Feosr vValues obtained from Ny, independent runs.

2 Maximum fuel cost (Fmax): Defined as the maximum of the opti-
mized Feos¢ Values obtained from Ny, independent runs.

3 Mean fuel cost (Fpean): Defined as the average of the optimized
Feost values obtained from Ny, independent runs.

4 Standard deviation (o): The o is the standard deviation of the
optimized Fes values obtained from Ny, independent runs.

5 Range (R): The range (R) is defined as the difference between Fax
and Fpjp.
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Table 1
Specifications and power constraints for PS-1.
TGU Pj0 (MW) Pj min (MW) P; max (MW) a; ($) b; ($/MW) ¢ ($/MW?2) UR; (MW/h) DR; (MW/h) POZs (MW)
1 440 100 500 240 7.0 0.0070 80 120 [210,240] [350,380]
2 170 50 200 200 10.0 0.0095 50 90 [90,110] [140,160]
3 200 80 300 220 8.5 0.0090 65 100 [150,170] [210,240]
4 150 50 150 200 11.0 0.0090 50 90 [80,90] [110,120]
5 190 50 220 220 10.5 0.0080 50 90 [90,110] [140,150]
6 110 50 120 190 120 0.0075 50 90 [75,85][100,105]
Table 2
B-loss coefficients of 6 TGUs of PS-1.
By 1 2 3 4 5 6
Bjx=1x 106 MW~! 1 17 12 7 -1 -5 -2
2 12 14 9 1 -6 -1
3 7 9 31 0 -10 -6
4 -1 1 0 24 —6 -8
5 -5 -6 -10 -6 129 -2
6 -2 -1 -6 -8 -2 150

Fig. 10. Single line diagram of PS-1.

6 Average execution time (AET): Itis the time consumed by an algo-
rithm after convergence, averaged over Ny, independent runs.

5.2. Test case 1: power system-1 (PS-1)

The PS-1, as shown in Fig. 10, is a small-scale power system with
six TGUs (Ngen =6) and 26 buses [25]. At steady state normal oper-
ation, the maximum load demand is given as Pp=1263 MW. The
specifications of PS-1, i.e., initial output power, generation limits,
cost coefficients, RRLs and 12 POZs are given in Table 1 and the
B-loss coefficients are given in Table 2.

5.2.1. Comparison in terms of fitness values
In [25], the authors have shown the superior performance of
their proposed RDPSO algorithm over other 10 ECTs for the ED prob-

lem using PS-1. In addition, PS-1 was also used by other researchers
for performance comparison, e.g., the SOH-PSO [3], SA-PSO [26],
NPSO-LRS [27], CPSO [29], QMPSO [30], FDA [38], GA-API [40],
MIQCQP [41], N-logic [43], SPPO [46]. We compared the perfor-
mance of our proposed OPSO algorithm with these 21 ECTs and
GPSO algorithm. The comparison results of fitness values are shown
in Table 3. The parameters used OPSO and GPSO algorithms are:
m=10, Nryn =100, Niter = 1000, ¢ =c, =c=2.05. Here, “NA” stands
for not available. One can observe the following from this Table.
Firstly, the OPSO algorithm provides best result in terms of lowest
Fmean and lowest o. This shows that the OPSO algorithm provides
stable and accurate solution. Secondly, in terms of range, R, OPSO
provides the second best result, i.e., R=$0.3276/h (the best is from
GA-API algorithm [40], R=%0.0300/h). This indicates that OPSO
algorithm has second lowest dispersion of optimum F.s:. However,
the Fnjn, and Fnax of OPSO algorithm are much better than F;, and
Fmax for GA-API algorithm [40]. In term of AET, the MIQCQP [41] is
best one. The GPSO algorithm is second best but it provides worst
results in terms of other performance measures. The OPSO achieves
the third best in terms of AET. Thus, the overall performance of the
OPSO algorithm is far superior than the other 22 ECTs.

5.2.2. Convergence characteristics of OPSO and GPSO algorithms

Fig. 11 shows the convergence characteristics of OPSO and
GPSO algorithms for PS-1. It shows ensemble average Fos val-
ues obtained from 100 independent runs at each iteration. It
can be seen that OPSO algorithm settles approximately at 40
iterations and achieved Fpean =$15,443.5921/h whereas GPSO
algorithm takes about 190 iterations to converge and achieved
Finean = $15,460.8461/h. This shows faster convergence of OPSO
algorithm compared with the GPSO algorithm.

Fig. 12 shows the comparison of optimized Fc at each run
between the OPSO and GPSO algorithms. In case of OPSO algorithm,
the optimized Feos¢ after each run remains more or less steady at
about $15,443/h, whereas in GPSO algorithm, the optimized Fcost
varies between $15,442.8326/h and $16,103.3400/h. This indicates
that OPSO algorithm is more consistent and stable than GPSO algo-
rithm.

5.2.3. Comparison in terms of inequality constraint

Table 4 lists the solution vector, P; (j=1, 2, ..., 6) correspond-
ing to the best solution for OPSO and GPSO algorithms. The results
in Table 4 observe that OPSO and GPSO algorithms avoid the 12
POZs of 6 TGUs and are within RRLs (16). This indicates that both
algorithms are able to satisfy the inequality constraints of PS-1.
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Table 3
Comparison of cost performance between OPSO and other 22 ECTs for PS-1.
SLNo. Algorithm Fmin ($/h) Fnax ($/h) Fmean ($/h) o ($/h) R ($/h) AET (sec)
1 SOH-PSO [3] 15,446.0200 15,609.6400 15,497.3500 NA 136.6200 8.8620
2 GA[25] 15,445.5961 15,491.4797 15,465.1757 9.7336 45.8836 NA
3 DE [25] 15,444.9466 15,472.0651 15,450.1339 6.9854 27.1185 NA
4 ACSA [25] 15,445.3052 15,511.5269 15,459.5170 12.0247 66.2217 NA
5 AIS [25] 15,446.3283 15,481.2766 15,456.6660 7.3954 34.9483 NA
6 FA [25] 15,445.9448 15,501.3958 15,461.3003 9.3385 55.4510 NA
7 BCO [25] 15,444.5837 15,482.3963 15,457.9441 8.4816 37.8126 NA
8 APSO [25] 15,445.5109 15,538.6016 15,473.3164 12.9048 93.0907 NA
9 HGPSO [25] 15,447.1055 15,497.0335 15,462.6151 10.6456 49.9280 NA
10 HPSOM [25] 15,443.6281 15,479.8640 15,449.2603 6.2745 36.2359 NA
11 HPSOWM [25] 15,442.8205 15,502.6333 15,455.6220 15.8867 59.8128 NA
12 RDPSO [25] 15,442.7575 15,455.2936 15,445.0245 2.2828 12.5361 NA
13 SA-PSO [26] 15,447.0000 15,455.0000 15,447.0000 2.5280 8.0000 7.5800
14 NPSO-LRS [27] 15,450.0000 15,452.0000 15,450.5000 NA 2.0000 NA
15 CPSO [29] 15,446.0000 15,490.0000 15,449.0000 NA 44.0000 8.1300
16 QMPSO [30] 15,457.3380 15,489.9270 15,472.1840 4.5270 32.5890 7.1000
17 FDA [38] 15,449.5826 15,449.6508 15,449.6171 NA 0.0682 3.6340
18 GA-API [40] 15,449.7800 15,449.8100 15,449.8500 NA 0.0300 NA
19 MIQCQP [41] 15,443.0700 NA NA NA NA 0.4500
20 A-logic [43] 15,449.7960 NA NA NA NA NA
21 SPPO [46] 15,450. 0000 NA NA NA NA NA
22 GPSO 15,442.8334 16,103.3400 15,458.4000 69.6797 660.5074 2.5211
23 0oPSO 15,442.8720 15,443.1996 15,443.9754 0.2116 0.3276 2.6334
Bold values signifies the best results in the respective category.
Table 4
Optimized output power for each TGU obtained by OPSO and GPSO algorithms for PS-1.
Algorithm Optimum output power (MW) Total output power (MW)
Py Py Ps Py Ps Ps
GPSO 450.5975 172.5329 261.3800 140.0706 164.4095 86.3979 1,275.3884
OPSO 450.0003 174.1009 261.9800 140.0674 162.3809 86.8386 1,275.3681
Bold values signifies the best results in the respective category.
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Fig. 11. Convergence characteristics of OPSO and GPSO algorithms for PS-1.

5.2.4. Comparison in terms of power balance constraint

Table 5 shows the results of power balance constraint based
on Py mismatch for 11 ECTs. The load demand of PS-1 is given as
Pp=1263 MW. Using the total optimum output power generated
(from Table 4)and Eqs. (5)~(7), Pr1, P2 and Py ismarch are computed
and the results presented in Table 5. It can be seen that OPSO as well
as SOH-PSO [3], GA-API [40], MIQCQP [41], A-logic [43] and SPPO
[46] algorithms provide zero mismatch, i.e., Py mismatch =0, indicat-
ing that the power balance constraint, that is Eq. (3) is satisfied.

173

Run

Fig. 12. Comparison of optimized cost per run between OPSO and GPSO algorithms
for PS-1.

5.3. Test case 2: power system-2 (PS-2)

The PS-2 is a medium-scale power system [29] with 15 TGUs
(Ngen =15) whose generation specifications and B-loss coefficients
are shown in Tables 6 and 7, respectively. The maximum load
demand at steady state normal operation is given as Pp = 2630 MW.
The PS-2 has 11 POZs in 4 TGUs (2, 5, 6 and 12) and RRLs for each
TGU.
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Table 5
Comparison of power balance constraint among 11 ECTs for PS-1.

L.T. Al Bahrani, J.C. Patra / Applied Soft Computing 58 (2017) 401-426

SL. No. Algorithm Total P; (MW) Pp (MW) Py (MW) Py (MW) PL. mismatch (MW)
1 SOH-PSO [3] 1,275.5500 1263 12.5500 12.5500 0.0000
2 DRPSO [25] 1,275.3565 1263 12.3565 12.3598 0.0033
3 NPSO-LRS [27] 1,275.9400 1263 12.9400 12.9361 0.0039
4 CPSO [29] 1,276.0000 1263 13.0000 12.9582 —0.0418
5 QMPSO [30] 1,275.3159 1263 123159 12.4058 0.0899
6 GA-API [40] 1,276.1300 1263 13.1300 13.1300 0.0000
7 MIQCQP [41] 1,275.4400 1263 12.4400 12.4400 0.0000
8 \-logic [43] 1,275.9500 1263 12.9500 12.9500 0.0000
9 SPPO [46] 1,275.9700 1263 12.9700 12.9700 0.0000
10 GPSO 1,275.3884 1263 12.3884 12.3883 —0.0001
11 OPSO 1,275.3681 1263 12.3681 12.3681 0.0000

Bold values signifies the best results in the respective category.

Table 6

Specifications and power constraints for PS-2.
TGU P° (MW) P; min (MW) Pj,max (MW) a; (%) b ($/MW) ¢ ($/MwW?2) UR; (MW/h) DR; (MW/h) POZs (MW)
1 400 150 455 671 10.1 0.000299 80 120 -
2 300 150 455 574 10.2 0.000183 80 120 [185,225] [305,335,450,450]
3 105 20 130 374 8.8 0.001126 130 130 -
4 100 20 130 374 8.8 0.001126 100 130 -
5 90 150 470 461 10.4 0.000205 80 120 [180,200] [305,335] 390,420]
6 400 135 460 630 10.1 0.000301 80 120 [230,225] [365,395] [430,455]
7 350 135 465 548 9.8 0.000364 80 120 -
8 95 60 300 227 11.2 0.000338 65 100 -
9 105 25 162 173 11.2 0.000807 60 100 -
10 110 25 160 175 10.7 0.001203 60 100 -
11 60 20 80 186 10.2 0.003586 80 80 -
12 40 20 80 230 9.9 0.005513 80 80 [30,40] [55,65]
13 30 25 85 225 131 0.000371 80 80 -
14 30 15 55 309 12.1 0.001929 55 55 -
15 20 15 55 323 12.4 0.004447 55 55 -

Table 7

B-loss coefficients of 15 TGUs of PS-2.
Bix(x107% mw ) 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
1 14 12 7 -1 -3 -1 -1 -1 -3 5 -3 -2 4 3 -1
2 12 15 13 0 -5 -2 0 1 -2 -4 —4 -0 4 10 -2
3 7 13 76 -1 -13 -9 -1 0 -8 -12 -17 -0 -26 111 -28
4 -1 0 -1 34 -7 -4 11 50 29 32 -11 -0 1 1 -26
5 -3 5 -13 -7 90 14 -3 -12 -10 -13 7 -2 -2 —24 -3
6 -1 -2 -9 -4 14 16 -0 -6 -5 -8 11 -1 -2 -17 3
7 -1 0 -1 11 -3 -0 15 17 15 9 -5 7 -0 -2 -8
8 -1 1 0 50 -12 -6 17 168 82 79 -23 -36 1 5 -78
9 -3 -2 -8 29 -10 -5 15 82 129 116 -21 -25 7 -12 -72
10 -5 -4 -12 32 -13 -8 9 79 116 200 -27 —34 9 -11 —88
11 -3 -4 -17 -11 7 11 -5 -23 -21 -27 140 1 4 —-38 168
12 -2 -0 -0 -0 -2 -1 7 -36 -25 —34 1 54 -1 -4 28
13 4 4 —26 1 -2 -2 -0 1 7 9 4 -1 103 -101 28
14 3 10 111 1 —24 -17 -2 5 -12 -11 -38 —4 -101 578 -94
15 -1 -2 —28 —26 -3 3 -8 -78 -72 —88 168 28 28 -94 1283

5.3.1. Comparison in terms of fitness values

In [25], the RDPSO algorithm was tested with PS-2 and its supe-
rior performance compared to other 10 ECTs has been shown. In
addition, the PSO-MSAF [22], SA-PSO [26], CPSO [29], EGSSOA [42],
\-logic [43], SPPO [46] algorithms have also been tested with PS-
2. Here we compare performance of OPSO algorithm with GPSO
and other existing 17 ECTs. The set of parameters used in GPSO
and OPSO algorithms are: m=18, d =15, Nyp = 100, N = 1000 and
c=cq =C =2.05. Comparison of fitness values between OPSO algo-
rithm and other 18 existing ECTs are listed in Table 8. It can be
seen that, the OPSO algorithm provides the best results in terms
of Frean, 0 and R. These results indicate that the OPSO algorithm
provides consistent, stable and optimal results. However, in term
of AET, OPSO is the second best; the GPSO algorithm being the best
among the 19 ECTs.

5.3.2. Convergence characteristics of OPSO and GPSO algorithms

Fig. 13 shows the convergence characteristics of OPSO
and GPSO algorithms for PS-2. It shows ensemble average
Feost values at each iteration obtained from 100 indepen-
dent runs. It can be seen that OPSO algorithm settles at
about 60 iterations to achieve Fieqn=$32,670/h whereas GPSO
algorithm takes about 150 iterations to settle and achieved
Fiean =$33,185/h.

Fig. 14 shows the distribution of optimized Fos at each run. It
shows that the optimized Fqos¢ of OPSO remains steady at about
$32,669/h, whereas in GPSO algorithm, the optimized Fcos varies
over a wide range from $32,892/h and $33,851/h. This indicates
that OPSO algorithm is more consistent, stable and reliable than
the GPSO algorithm.
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Table 8
Comparison of cost performance between OPSO and other 18 ECTs for PS-2.
SL. No. Algorithm Min. Cost ($/h) Max. Cost ($/h) Mean Cost ($/h) o ($/h) R ($/h) AET (sec)
1 PSO-MSAF [22] 32,713.0900 32,798.2500 32,759.6400 NA 85.1600 19.1500
2 GA [25] 32,939.5208 33,231.6216 33,106.0019 100.1279 292.1008 NA
3 DE [25] 32,818.5792 33,116.9340 32,990.8673 61.5145 298.3548 NA
4 ACSA [25] 32,785.6031 33,185.2761 33,051.7711 77.8005 399.6730 NA
5 AIS [25] 32,895.9173 33,132.0191 33,017.6537 58.1230 236.1018 NA
6 FA [25] 32,901.6610 33,197.2718 33,081.0107 91.0111 295.6108 NA
7 BCO [25] 32,989.2341 33,301.4940 33,113.0149 69.7986 312.2599 NA
8 APSO [25] 32,687.9840 33,359.6609 32,948.0533 92.0040 671.6769 NA
9 HGPSO [25] 32,864.0501 33,280.2655 33,034.1894 63.9932 416.2154 NA
10 HPSOM [25] 32,697.2458 33,015.7284 32,819.5931 83.0907 318.4826 NA
11 HPSOWM [25] 32,696.9585 33,034.3413 32,805.7185 87.8689 337.3828 NA
12 RDPSO [25] 32,666.1818 32,934.3089 32,739.7165 56.7070 268.1271 NA
13 SA-PSO [26] 32,708.0000 32,789.0000 32,732.0000 18.0250 81.0000 12.7900
14 CPSO [29] 32,834.0000 33,318.0000 33,021.0000 NA 484.0000 13.1300
15 EGSSOA [42] NA NA 32,680.1038 NA NA NA
16 \-logic [43] 32,713.9510 NA NA NA NA NA
17 SPPO [46] 32,713.2100 NA NA NA NA NA
18 GPSO 32,891.8329 33,850.9528 33,137.5549 197.3331 959.1199 3.5901
19 OPSO 32,668.4863 32,669.3005 32,668.9205 0.1394 0.8142 43777
Bold values signifies the best results in the respective category.
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Fig. 13. Convergence characteristics of OPSO and GPSO algorithms for PS-2.

5.3.3. Comparison in terms of inequality constraint

Table 9 presents the solution vector, P; (j=1, 2, ..., 15) corre-
sponding to the best solution for OPSO and GPSO algorithms. It can
be seen that both the OPSO and GPSO algorithms are able to avoid
the 11 POZs of 4 TGUs and are within RRL constraints, thus both
algorithms are able to satisfy the inequality constraints of PS-2.

5.3.4. Comparison in terms of power balance constraint

Table 10 shows results of power balance constraints for the
OPSO and other 8 ECTs. The load demand of PS-2 is given as
Pp=2630 MW. Using the optimum output power generated given
in Table 9 and Eqs. (5)-(7), Pr1, Pr2 and Py mismarcn, Were deter-
mined. It can be seen that the OPSO algorithm as well as PSO-MSAF
[22], EGSSOA [42] and N-logic [43] algorithm are satisfying the zero
mismatch condition, i.e., Py mismatch =0, thus satisfying (3).

5.4. Test case 3: power system-3 (PS-3)
The PS-3 is a large-scale power system taken from Taipower

system [9], [25]. It consists of 40 mixed-generating units, coal-
fired, gas-fired, gas-turbines with complex cycle, diesel generating
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Fig. 14. Comparison of optimized cost per run between OPSO and GPSO algorithms
for PS-2.

Table 9
Optimized output power for each TGU obtained by OPSO and GPSO algorithms for
PS-2.

Optimum output power (MW)

TGU GPSO OPSO

1 455.0000 455.0000
2 377.1693 380.0000
3 125.8555 130.0000
4 113.9563 129.9696
5 161.2816 170.0000
6 458.6809 457.3942
7 418.2693 430.0000
8 152.0496 71.6613
9 78.3982 58.2340
10 71.8736 160.0000
11 60.5822 80.0000
12 65.7008 80.0000
13 343022 25.0000
14 50.5299 15.0000
15 36.3461 15.0000
Total output power (MW) 2659. 9955 2,657.2591

Bold values signifies the best results in the respective category.
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Table 10
Comparison of power balance constraint among 9 ECTs for PS-2.
Sl. No. Algorithm Total P, MW Pp MW Py MW Py MW PL. mismatch MW
1 PSO-MSAF [22] 2,660.4900 2630 30.4900 30.4900 0.0000
2 DRPSO [25] 2,655.3650 2630 25.3650 25.3696 0.0460
3 SA-PSO [26] 2,660.9000 2630 30.9000 30.9080 0.0080
4 CPSO [29] 2,662.1000 2630 32.1000 32.1303 0.0303
5 EGSSOA [42] 2,657.0120 2630 27.0120 27.0120 0.0000
6 A-logic [43] 2,659.9491 2630 29.9491 29.9491 0.0000
7 SPPO [46] 2,660.0000 2630 30.0000 31.4300 1.4300
8 GPSO 2,659.9955 2630 29.9950 29.9971 0.0016
9 orso 2,657.2591 2630 27.2591 27.2591 0.0000
Bold values signifies the best results in the respective category.
Table 11
Specifications and power constraints for PS-3.
TGU P (MW) P}, min (MW) Pj max (MW) a; ($/h) b; ($/MWh) ¢ ($/MW?2h) UR; (MW/h) DR; (MW/h) POZs (MW)
1 50 40 80 170.77 8.336 0.03073 35 60 -
2 60 60 120 309.54 7.0706 0.02028 40 70 [80,85]
3 150 80 190 369.03 8.1817 0.00942 50 90 [82,88]
4 24 24 42 135.48 6.9467 0.08482 42 42 -
5 42 26 42 135.19 6.5595 0.09693 42 42 -
6 75 68 140 22233 8.0543 0.01142 40 75 -
7 100 110 300 287.71 8.0323 0.00357 65 100 [155,162] [221,235]
8 152 135 300 391.98 6.9990 0.00492 65 100 -
9 200 135 300 455.76 6.6020 0.00573 65 100 [235,246]
10 100 130 300 722.82 12.908 0.00605 65 100 [200,211]
11 300 94 375 635.20 12.986 0.00515 55 95 [213,220]
12 300 94 375 654.69 12.796 0.00569 55 95 [213,220]
13 150 125 500 913.40 12.501 0.00421 80 120 [201,211][290,310] [413,425]
14 200 125 500 1760.4 8.8412 0.00752 80 120 [205,217,306,318,409,420]
15 190 125 500 1728.3 9.1575 0.00708 80 120 [214,230] [277,290] [402,412]
16 190 125 500 17283 9.1575 0.00708 80 120 [214,230] [277,290] [402,412]
17 190 125 500 17283 9.1575 0.00708 80 120 [214,230] [277,290] [402,412]
18 400 220 500 647.85 7.9691 0.00313 70 110 [307,321] [407,421]
19 400 220 500 649.69 7.9550 0.00313 70 110 [301,310] [421,431]
20 398 242 500 647.83 7.9691 0.00313 70 110 [340,351] [421,431]
21 398 242 500 647.81 7.9691 0.00313 70 110 [340,351] [421,431]
22 390 254 550 785.96 6.6313 0.00298 70 110 [306,320] [440,445]
23 390 254 550 785.96 6.6313 0.00298 70 110 [306,320] [440,445]
24 390 254 550 794.53 6.6311 0.00284 70 110 [370,390] [495,502]
25 390 254 550 794.53 6.6311 0.00284 70 110 [370,390] [495,502]
26 390 254 550 801.32 7.1032 0.00277 70 110 [380,410] [501,520]
27 390 254 550 801.32 7.1032 0.00277 70 110 [380,410] [501,520]
28 20 10 150 1055.1 3.3353 0.52124 90 150 [102,113]
29 20 10 150 1055.1 3.3353 0.52124 90 150 [102,113]
30 30 10 150 1055.1 3.3353 0.52124 90 150 [102,113]
31 30 20 70 1207.8 13.052 0.25098 70 70 -
32 40 20 70 810.79 21.887 0.16766 70 70 -
33 40 20 70 1247.7 10.244 0.2635 70 70 -
34 25 20 70 1219.2 8.3707 0.30575 70 70 -
35 25 18 60 641.43 26.258 0.18362 60 60 -
36 20 18 60 1112.8 9.6956 0.32563 60 60 -
37 20 20 60 1044.4 7.1633 0.33722 60 60 -
38 25 25 60 832.24 16.339 0.23915 60 60 -
39 25 25 60 832.24 16.339 0.23915 60 60 -
40 25 25 60 1035.2 16.339 0.23915 60 60 -

units and nuclear generating units. The maximum load demand at
steady state normal operation is given as Pp=8550 MW. The PS-
3 contains 46 POZs distributed among 25 TGUs and are shown in
Table 11. The RRLs are imposed on all the 40 TGUs. The B-loss coef-
ficients are considered and they are generated randomly as is done
in [43]. The B-loss coefficients matrix of dimension 40 x 40 is listed
in Appendix. Unfortunately, the PS-3 is tested by only a few authors
under RRLs, POZs and P; constraint. This may be due to unavailabil-
ity of B-loss coefficients or due to its high dimension with a large
number of power constraints.

5.4.1. Comparison in terms of fitness values

In [25], PS-3 has been tested with 11 ECTs and superior perfor-
mance of RDPSO algorithm over other 10 ECTs has been shown.
However, the 46 POZs, RRLs of each TGU and the P; constraint

have not been considered. Therefore, these results are less con-
strained. Considering all the POZs, RRLs and P; constraint, the PS-3
has been tested by MIQCQP [41], A-logic [43], the proposed OPSO
and GPSO algorithms. Thus, the performance of OPSO algorithm
and other existing 14 ECTs are compared. The set parameters used
in GPSO and OPSO algorithms are: m =45, Ny, = 100, Nje, = 10,000,
d=40, and c=c; =c; =2.05. The fitness values of the 15 ECTs are
listed in Table 12. It can be seen that the OPSO algorithm provides
the best result in terms of Feqn and o over 100 independent runs.
This indicated that the OPSO algorithm provides the most optimal
and consistent results. In addition, the range R of OPSO algorithm
is the lowest among the 15 ECTs, thus indicating that OPSO algo-
rithm provides solution with the lowest dispersion. Since the AET
values are not available for other ECTs, between OPSO and GPSO
algorithms, the AET of OPSO (69's), due to its computational com-
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Table 12
Comparison of cost performance between OPSO and other 14 ECTs for PS-3.
SI. No. Algorithm Min.Cost ($/h) Max. Cost ($/h) Mean Cost ($/h) o ($/h) R ($/h) AET (sec)
Without POZs, RRLs and P,
1 GA [25] 133,435.6906 136,274.9726 135,012.4985 729.3536 2,839.2820 NA
2 DE [25] 129,915.5635 137,042.9461 130,600.2269 1,335.4343 7,127.3826 NA
3 ACSA [25] 131,167.3417 134,923.6245 132,844.7110 741.0843 3,756.2828 NA
4 AIS [25] 130,133.9214 132,703.1884 131,482.2767 561.7950 2,569.2670 NA
5 FA [25] 130,948.8466 134,997.9243 133,511.4572 747.3692 4,049.0777 NA
6 BCO [25] 130,337.7290 132,999.8803 131,733.9439 589.8034 2,662.1513 NA
7 APSO [25] 130,861.5242 134,044.6303 132,587.8486 675.0344 3,183.1061 NA
8 HGPSO [25] 132,072.2495 135,528.3862 134,012.5706 684.4951 3,456.1367 NA
9 HPSOM [25] 129,177.4413 131,281.3077 130,234.1694 529.5827 2,103.8664 NA
10 HPSOWM [25] 129,717.3557 132,303.5999 130,858.6741 591.7691 2,586.2442 NA
11 RDPSO [25] 128,864.4525 131,129.0861 129,482.0970 568.9333 2.264.6336 NA
‘With POZs, RRLs and P,
12 MIQCQP [41] 128,395.2900 NA NA NA NA 13.34
13 \-logic [43] 129,777.5300 NA NA NA NA NA
14 GPSO 139,051.1893 515,712.5007 398,122.4784 95,189.4180 376,661.3114 47.32
15 oPso 126,489.6228 127,916.1972 127,349.8324 302.3502 1,426.5744 69.32
Bold values signifies the best results in the respective category.
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Fig. 15. Convergence characteristics of OPSO and GPSO algorithms for PS-3.

plexity, is found to be higher than the GPSO (47 s). These results
indicate that among the 15 ECTs, the OPSO algorithm is the most
stable, robust and is able to provide most optimal solution.

5.4.2. Convergence characteristics of OPSO and GPSO algorithms

Fig. 15 shows the convergence characteristics of OPSO and GPSO
algorithms for PS-3. Note that Fig. 14 is drawn with Ny, = 2000, to
give a better visualization. However, the OPSO and GPSO algorithms
run with Nje, =10,000. It shows ensemble average Fcos: values at
each iteration obtained from 100 independent runs. It can be seen
that OPSO algorithm settles at about 1600 iterations and achieves
Fmean Of about $127,997/h. Whereas, the GPSO algorithm takes
about 1000 iterations to converge, but settles at a local minimum
with a non-optimal Fyeqn of about $398,709/h. This indicates that
the GPSO algorithm is unable to solve ED problem with such a high
dimension and under such large number of power constraints. In
contrast, the OPSO algorithm gives high accuracy in solving such
this complex problem.

Fig. 16 shows the variation of optimized Fys; over 100 indepen-
dent runs achieved by the OPSO and GPSO algorithms. It shows
that the optimized Fs of OPSO varies between $126,489.6/h
and $127,916.2/h, whereas in GPSO algorithm, it varies between
$139,051.2/h and $515,712.5/h. This indicates that OPSO algorithm
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Fig. 16. Comparison of optimized cost per run between OPSO and GPSO algorithms
for PS-3.

is capable of providing consistent and reliable optimal solution.
Whereas, the GPSO algorithm is unable to provide optimal solution
due to the high complexity of the problem.

5.4.3. Comparison in terms of inequality constraint

Table 13 presents solution vector, P; (j=1, 2, ..., 40) corre-
sponding to the best solution obtained from the OPSO and GPSO
algorithms. In case of GPSO algorithm, the TGU,4 violates RRLs
(red color). The TGU; must operate within Py o, =24 MW and
P4 pigh =42 MW (16). This means that GPSO algorithm fails in solving
PS-3 indicating that GPSO algorithm is unable to solve large scale
ED problem. Whereas, the OPSO algorithm avoids the 46 POZs of
25 TGUs and is within RRLs.

5.4.4. Comparison in terms of power balance constraint

Since all the data for other existing ECTs are not available for
PS-3, we compare the performance between OPSO algorithm and
\-logic[43]. The GPSOis out of comparison, because it failed in solv-
ing PS-3. The load demand of PS-3 is given as Pp =8550 MW. Using
the total optimum output power generated (Table 13) and Eqgs.
(5)=(7), Pr1, Pr2 and Py mismatch, are determined and are presented
in Table 14. It can be seen that Py jsmarch Of OPSO algorithm is more
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Table 13
Optimized output power for each TGU obtained by OPSO and GPSO algorithms for
PS-3.

Optimum output power (MW)
TGU GPSO OPSO
1 70.6053 79.9959
2 87.4700| 100.0000
3 177.0581| 190.0000
4 3.5760|  41.0390
5 30.3749 36.6804
6 114.6114| 115.0000
7 151.8385| 153.4231
8 216.0995| 217.0000
9 264.3870| 265.0000
10 164.1162| 160.5088
11 344.3448 | 354.1711
12 345.5677| 348.6364
13 228.4384| 219.8558
14 263.4364| 280.0000
15 268.9301| 270.0000
16 232.0047| 270.0000
17 268.6993| 270.0000
18 469.5224 | 470.0000
19 464.1353 | 470.0000
20 467.6499 | 468.0000
21 466.5318 |  468.0000
22 447.0084 | 460.0000
23 458.6545| 460.0000
24 440.7477| 460.0000
25 446.9992 | 460.0000
26 457.2052 | 460.0000
27 459.8870 | 460.0000
28 99.6434 35.1200
29 99.9167 35.9365
30 99.2875 453153
31 23.7599 56.3309
32 63.3148 36.1663
33 65.5211 41.2330
34 20.1840|  47.6815
35 40.1371 40.0000
36 57.9855 55.0525
37 59.5737 534175
38 564260  40.0487
39 43.1472 40.0000
40 49.1706 54.4607
Total output
power (wa) 8,587.9672|8.,588.0734

close to 0.0 than A-logic [43], which indicates better performance
of OPSO algorithm.

6. Application of OPSO algorithm to CEC 2015 benchmark
functions

Economic dispatch of power under various power constraints
makes the objective function, i.e., cost function becomes multi-
modal function and it has multiple local optimums as discussed in
Section 1.In order to provide a fair comparison and demonstrate the
goodness of the proposed OPSO algorithm, ten selected shifted and
rotated functions from CEC benchmark functions 2015 are added.
Here we describe these functions and investigate performance of
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6.1. Benchmark functions

Ten benchmark functions listed in Table 15 are used in this
study. These benchmark functions are taken from the congress
on evolutionary computation (CEC) 2015 and are used in perfor-
mance comparison of global optimization algorithms [31,32]. All
ten benchmark functions are minimization tasks. In addition, these
are shifted and rotated functions, the global optimum solution x as
shown in Table 15 is not located in the center of the search domain.
The optimum solution x is shifted to a new position vector, i.e.,
shifted global optimum, Oj;=[0;1, 0j,. ., 0jq], where j=1, 2, ..., 10
and i=1, 2, ..., d. the d is the dimension of the each benchmark
function. As well as, all functions are rotated by rotation matrix,
M;, j=1, 2, ..., 10. The rotation does not affect the shape of the
function but increases the function complexity in finding global
optimum. The M is d x d matrix. It is applied to obtain the rotation
and is generated from standard normally distributed entries using
Gram-Schmidt orthnormalization process [31,32].

The ten benchmark functions are divided into two groups based
on their significant physical properties. The first group involves
three unimodal benchmark functions f;-f; [31,32]. These are f;
(Shifted and Rotated High Conditioned Elliptic), f, (Shifted and
Rotated Cigar) and f3 (Shifted and Rotated Discus). The second
group includes seven multimodal benchmark functions fs—fio.
Finding global optimum solution Gp.s is more interesting since
these benchmark functions are more difficult to optimize because
of the number of local minima as well as they are shifted and
rotated. In multimodal functions, the number of local minima
increases as the problem dimension increases [6,43]. Therefore,
the search algorithm should be able to obtain a good solution
and not become trapped in a local minimum. The seven multi-
modal functions are f; (Shifted and Rotated Ackley), f5 (Shifted
and Rotated Weierstrass), fg (Shifted and Rotated Rastrigin), f7
(Shifted and Rotated Katsuura), fg (Shifted and Rotated Happy-
Cat), fo (Shifted and Rotated HGBat) and fio (Shifted and Rotated
Expanded Griewank plus Rosenbrock).

Table 15 shows the details of the ten selected CEC 2015 bench-
mark functions. The name and mathematical description of f;-fio
are shown in columns 2 and 3, respectively. The “Threshold Error”
value of each function is available in column 4. The “optimum x”
in column 5 and the minimum value of each function, “minimum
fix)” is in column 6. The solution of each function is judged success-
ful, when the algorithm reaches to a value smaller than “Threshold
Error”. In other words, the algorithm passes the test.

6.2. Performance measures and experimental setup

To study the accuracy, stability and reliability of different
algorithms, nine performance measures as explained below are
considered. Let m be the number of particles in the swarm. Each
algorithm is run over Ny, times for Nj, iterations.

1. Number of Function Evaluations (NFE): The NFE is used as a
measure of computational complexity of the algorithms. The NFE is
the number of times the objective function f{x) is evaluated in one
run of the algorithm and is given by

the GPSO and OPSO algorithms along with a few competitive ECTs. NFE =m x Ny, (40)
Table 14
Comparison of power balance constraint between 2 ECTs for PS-3.
Algorithm Total P, MW Pp MW Py MW Py MW Pr,mismatch MW
\-logic [43] 8,637.3300 8550 87.3300 87.4037 0.0737
0PSO 8,588.0734 8550 38.0734 38.1121 0.0387

Bold values signifies the best results in the respective category.
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Table 15
Ten benchmark objective functions used in the study.
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f  Name Function Threshold Error Optimum (x) Minimum f;(x)
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fe Shifted and Rotated fe(x)=10d + g [Zé, —10cos(27Zs ;)] + Fs, 0.001 Ogi Fs =400
i=1
Zs = Ms x (%),F[xl,xz,m,xd], 06 =[061, 062, - - -, O6a]
d 32 . d]TUz
20 x Z;; — round(2' x Z:
f, Shiftedand Rotated  fy(x) = ET?H 14i E W - :TS VE 0.001 0s F, = 500
i=1 i=1
Z7 = M7 x (%),X=[XLX2, -.Xal, 07i=[071, 072, ..., 074]
d d
-, 1 0.55 72+ § Zs.i)
fs Shifted and Rotated ~ fy(x) = E Z—d| +(— )+ 05+ Fs, 0.001 Os: Fs = 600
L i=1
Zg = Mg x (%),Xﬂ)ﬁ.xz. -+ Xal, Oi =[081, 082, . . ., 084]
d d
. 2 . 2 b O.SE 22+ E Zo.i
fo  Shifted and Rotated fox) = |( E ) - E Zo.: + % 4054 F, 0.001 0y Fy = 700
L =1 i=1
Zy = Mg x (w>.x=[xuxz, - Xq], Ogi =[0s1, 092, .. ., O9q]
d d
) 1 Z
fio  Shifted and Rotated )= z550 E 2 - H cos ( %’ Y+1 0.001 O10i Fio = 800
i=1 i=1
d-1
i) = E (100 (Zyg,iy1 — Z3y; )* + (Z1oi — 1)°]
i=1
fro(x) = fe(fi(Z10.1. Z10.2) + fo(fi(Z10,2. Z10.3) + - -+
fefr(Z10,a-1> Zr0.a) + feFr(Z10,a5 Z10.1) + Fio
Zyo = Mo x (L(’;Bg“")) +1,x=[x1, %2, ..., Xq],
0O10i=[0101, 0102, - - -, 0104]
2. Best Fitness Value (BFV): The BFV is defined as the minimum and MFV. The MFEV is given by
optimized f(x) value obtained from N, independent runs.
3. Worst Fitness Value (WFV): The WFV is defined as the maxi- MFEV = |minimum (x) — MFV| (a1)

mum optimized f(x) value obtained from Ny, independent runs.
4. Mean Fitness Value (MFV): The MFV is defined as the average
of the Nyyn BFVs.
5. Minimum Function Error Value (MFEV): The MFEV is defined
as the difference between minimum f{(x), i.e., column 6 in Table 15

6. Standard deviation (o): The o is the standard deviation of the
Nrun BFVs.

7. Success Rate (SR): An algorithm is successful if the MFEV of
each function falls below the “Threshold Error”. The SR is used as a
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Fig. 18. The FEVs obtained at different runs at each NFE by the GPSO and OPSO algorithms for f, f,—fs and fio.

measure of reliability of the algorithm [31,32]. The SRin percentage
is given by

Number of successful runs
Nrun

SR x 100

(42)

8. Reliability Rate (RR): The RR of an algorithm over all the ten
benchmark functions is defined

10
> sk
i=1

where SR; is the success rate of the benchmark function fi(x), i=1,
2,...,10.

9. Average execution time (AET): It is the time consumed by an
algorithm until it reaches to MFEV, averaged over Ny, independent
runs.

In order to measure the accuracy, stability and robustness of
each algorithm, the GPSO and OPSO algorithms were evaluated
using the ten unimodal and multimodal functions given in Table 15.
Each function is tested with 30-dimension, d = 30. Based on the sug-
gestion by the CEC2015 [32], the optimization task has been carried
out for Nyyp =20 independent runs. The GPSO and OPSO algorithms
are terminated when reaching the MFEV of each is smaller than
1.00 x 10793, The Npgyige in the OPSO and GPSO algorithm for fi, f5,
... fi0 is, m=40. The OPSO algorithm requires to be m >d. How-
ever this condition is not imposed in GPSO algorithm. The number
of iterations Ny, is obtained from (40) once maximum NFE and
m is decided. Thus, Nj,, =3750. Both GPSO and OPSO algorithms
are run with maximum NFE = 150,000. The acceleration coefficients
values of ¢y and ¢ in GPSO and c in OPSO algorithm are set at 2.00
and 2.05, respectively, using trial and error method. The parame-

1
RR = 5 (43)

ters r(t), r1(t)and r,(t) are chosen randomly. In addition, the shifted
global optimum vector 0;; for each function is randomly distributed
in [-80,801%C. In addition, an orthogonal (rotation) matrix M; of
each function is generated using Gram-Schmidt orthnormalization
process.

6.3. Comparison in terms of fitness values

Performance comparison between GPSO and OPSO algorithms
in terms of BFV, WFV, MFV, MFEV, o and AET are shown in Table 16.
It can be seen that in case of GPSO algorithm, the three fitness values
BFV, WFV and MFV differ substantially from their optimal values
for the ten functions. Whereas, in OPSO algorithm, the three fitness
values are the same to their optimum values for all the ten func-
tions. The MFEV of GPSO algorithm is so far from “Threshold Error”
in fi—-f10. However, in OPSO algorithm, the MFEV is smaller than
“Threshold Error”. Itis achieved MFEV = 0.0 for the f; —f}¢. In terms of
the standard deviation o, it remains close to 0.0 in OPSO algorithm,
indicating high stability and reliability of the OPSO algorithm. The
results shown in Table 16, thus proves that OPSO algorithm is more
accurate, stable and robust compared to the GPSO algorithm. In
terms of the AET, the OPSO algorithm reaches “Threshold Error”
within a specific AET as shown in Table 16. However, GPSO algo-
rithm can’t reach “Threshold Error”, Which indicating that GPSO is
unable to solve these ten shifted and rotated CEC 2015 benchmark
functions under 30-dimension.

6.4. Success rate and reliability rate
The performance comparison between the GPSO and the OPSO

algorithms with Ny, =20 (independent runs) in terms of SR and
RR. The GPSO algorithm fails in ten CEC 2015 benchmark functions.
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Table 17
Sensitivity analysis for the OPSO algorithm with increasing swarm'’s size with d =30.
f Minimum f(x) Fitness m=33 AET (sec) m=40 AET (sec) m=50 AET (sec) m=80 AET (sec) m=100 AET (sec)
fi 100 BFV 100.00 127.44 100.00 188. 100.00 313.28 100.00 390.09 100.00 430.70
WFV 100.00 100.00 67 100.00 100.00 100.00
MFV 100.00 100.00 100.00 100.00 100.00
fr 500 BFV 500.00 55.26 500.00 124.57 500.00 182.50 500.00 232.89 500.00 282.63
WFV 500.00 500.00 500.00 500.00 500.00
MFV 500.00 500.00 500.00 500.00 500.00
fs 600 BFV 600.00 65.22 600.00 131.45 600.00 183.07 600.00 246.92 600.00 317.89
WFV 600.00 600.00 600.00 600.00 600.00
MFV 600.00 600.00 600.00 600.00 600.00
fio 800 BFV 800.00 74.13 800.00 106.63 800.00 191.14 800.00 234.64 800.00 294.27
WFV 800.00 800.00 800.00 800.00 800.00
MFV 800.00 800.00 800.00 800.00 800.00
Table 18
Performance comparison between OPSO algorithm and four ECTs using four CEC 2015-LBP [31] benchmark functions with d =30.
ECTs Performance measure fi f fa fe
OPSO (proposed) MFEV 0.00 0.00 0.00 0.00
a 5.94 x 100 332x10>* 6.11 x10-# 3.73x10°%
LLUDE [33] MFEV 5.93 x 1070 2.84x10714 2.03 x 10! 2.59 x 10%1
a 247 x 10701 2.69x 10714 2.33x10°%2 3.28 x 109
SaDE [33] MFEV 1.78 x 10%% 2.38x 107" 2.05 x 1091 3.46 x 10°1
o 1.43 x 10%° 7.22x10°11 5.99 x 10-02 6.44 x 10
JADE [33] MFEV 6.23 x 109 3.41x 101 2.03 x 1091 2.61x 100!
o 1.55 x 10! 117 x 10714 2.86 x 10-02 3.39 x 10%
CoDE [33] MFEV 1.58 x 10 6.02x10°13 2.00 x 10°! 2.97 x 10!
a 1.16 x 10% 9.88x 10713 9.98 x 1092 1.08 x 10°!
SPS-L-SHADE-EIG MFEV 0.00 0.00 2.00 x 10°! 1.03 x 10!
[48] Rank #1 CEC 2015-LBP [31] a 0.00 0.00 7.29x10°% 1.41 x 10!
DEsPA MFEV 0.00 0.00 2.01 x 109! 9.71 x 10%°
[49] Rank #2 CEC 2015-LBP [31] o 0.00 0.00 4.36x 10702 3.02 x 109
MVMO MFEV 0.00 0.00 2.00 x 1091 9.54 % 10%°
[50] Rank #3 CEC 2015-LBP [31] o 0.00 0.00 5.42 %1070 3.53 x 109
Max.NFE 3.00 x 109 3.00 x 10 3.00 x 10 3.00 x 109

Bold values signifies the best results in the respective category.

However, the OPSO algorithm was successful in all these functions
giving rise to SR of 100%. The RR of GPSO and OPSO algorithms are
thus found to be 0.0% and 100%, respectively.

6.5. Convergence characteristics

Fig. 17 shows the convergence characteristics of GPSO and OPSO
algorithms for ten shifted and rotated CEC 2015 benchmark func-
tions f;-f1g9. The comparison is obtained in terms of fitness value
(FV) averaged over Ny, times at each NFE. It can be seen that, in
case of OPSO algorithm the FV reduces to minimum value of f(x)) as
NFE less than 4.0 x 1094 except f;. Whereas, in case of GPSO algo-
rithm, the FV fails to converge and remains above the “Threshold
Error”, which is indicating failure of the algorithm.

In order to highlight the superior performance of the OPSO
algorithm over the GPSO algorithm, in Fig. 18 we provide the func-
tion error value (FEV) averaged over Ny, times at each NFE for
the four selected CEC 2015 benchmark functions, f, f;—fs and fio.
The FEVs obtained by GPSO algorithm are much above “Threshold
Error”. In contrast, the OPSO algorithm was successful as the FEVs
in these four benchmark functions remain below the “Threshold
Error”. Similar observations were made for the remaining bench-
mark functions.

The above mentioned observations provide the evidence of
superior performance of the OPSO algorithm in terms of three fit-
ness values, o, convergence, SR and RR.

6.6. Sensitivity analysis of the OPSO algorithm against swarm’s
size

In order to study the sensitivity analysis of the proposed OPSO
algorithm against the changing in the swarm population, m, four
benchmarks functions fi, f;—fs and fjo are selected with a fixed
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number of iteration, i.e., Njs = 1000. The test is carried out with
Nrun =20. In addition, the AET is obtained at t=3750 over 20 runs.
Table 17 shows sensitivity analysis of the OPSO algorithm under
effect of changing swarm’s size m, from 40 to 100, on the perfor-
mance of OPSO algorithm in terms of BFV, WFV, MFV and AET for
f1, f2-fs and f19. We can see from Table 17 that the AET increases
as m increases. This gives rise to more computation. In addition, it
does not yield any tangible change or better solution in BFV, WFV
and MFV. This result leads to that when m > d, it gives rise to more
computation, but does not provides any better solution. Consider-
ing these two extremes a reasonable value of m is could be about
10% more than d.

6.7. Comparison between the proposed OPSO algorithm and other
ECTs

Here, we verify the performance of the proposed OPSO algo-
rithm by comparing it with few ECTs recently reported by other
authors [33-37,48-52].

6.7.1. Shifted and rotated benchmark functions fi, f>, f4 and fg

The three top-ranked algorithms in the CEC 2015 [31] learn-
ing based papers (LBP) are SPS-L-SHADE-EIG [48], DEsPA [49], and
MVMO [50], in which the four shifted and rotated benchmark
functions fi, f2, f4 and fs are considered. Here, we compare the per-
formance of the OPSO algorithm against the above three top-ranked
algorithms and a few competitive algorithms from [33] for the four
functions.

The comparison has been achieved with Ny, =20 and for each
run the maximum NFE=10,000 x d, i.e., 10,000 x 30=300,000, as
given in [33]. The criterion used in this comparison depends on
the values of maximum NFE and MFEV (41). When the algorithm
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Table 19
Performance comparison between OPSO algorithm and four ECTs using six CEC 2015-EOP [32] benchmark functions with d =30.
ECTs Performance measure  f3 fs fr fs fo fio
OPSO (proposed) MFEV 6.81x 10792 1.37 x 10%° 6.40 x 100! 1.49 x 10~ 1.54 x 102 1.29 x 10%°
o 296x10°2  335x10°"  4.00x10°" 597x10°%  745x10°%  6.74x10°%
AET (sec) 2.32 x 10%° 1.98 x 10°! 4.51 x 10%° 1.47 x 10%° 1.43 x 10%° 1.60 x 10%°
SbaDE [34] MFEV 2.54 x 10%° 2.00 x 109" 4.33 x 1092 4.56 x 10% 7.52 x 10%! 2.39 x 10%7
o 5.00 x 10%° 2.04 x 102 9.46 x 109! 4.07 x 10% 4.15x 109 5.43 x 107
AET (sec) 1.76 x 10%! 1.65 x 10! 1.68 x 10%! 1.71 x 10! 1.78 x 10°! 1.72 x 109!
DD-SRPSO [35] MFEV 2.59 x 10% 2.24 x10% 2.71 x 10% 5.61x10°0 543 x 1070 3.32x 102
o 1.05 x 10% 2.12 x 0% 7.58 x 1001 1.00 x 1091 2.03x10° 2.12 x 109
AET (sec) - - - - - -
EPSO [36] MFEV 6.37 x 10% 3.38 x 102 5.04 x 10°2 6.02 x 102 7.21 x 10%2 1.27 x 10
(o8 - - - - - -
AET (sec) - - - - - -
SHPSO-GSA [37] MFEV 6.96x 1001 1.80 x 10°! 1.06 x 10% 526x10°  136x10°0" 278 x 10%
o 2.11 x 10 9.03 x 107! 5.55 x 10701 4,62 x 10701 3.11x 107" 1.04 x 10-%
AET (sec) - - - - - -
MVMO MFEV 6.93 x 1079 3.79 x 1091 1.67 x 10°! 520x 1079 439x 100 4.03 x 10%2
[51] Rank #1 CEC 2015-EOP T 3.24x10°%  3.85x10° 5.04x 10701 1.32x 107" 9.93 x 10-02 2.63 x 102
[32] AET (sec) - - - - - -
TunedCMAES MFEV 1.17 x 10% 3.21x 109 5.05 x 1092 6.00 x 1092 7.00 x 1092 8.22 x 1092
[52] Rank #2 CEC 2015-EOP o 2.19 x 10% 5.06 x 100 5.91x 107 2.35x10°01 2.86 x 10701 1.09 x 1071
[32] AET (sec) - - - - - -
Max.NFE 1.50 x 1093 1.50 x 10 1.50 x 1093 1.50 x 109 1.50 x 1093 1.50 x 109
Bold values signifies the best results in the respective category.
Table 20
Statistical results of unpaired t-Test of OPSO algorithm against seven ECTs for CEC 2015-LBP [31].
Competitive Algorithms
SLNo.  f  Statistical LLUDE [33] SaDE [33] JADE [33] CoDE [33] SPS-L-SHADE-EIG DESPA MVMO [50]
Results [48] [49] Rank #2 Rank #3
Rank #1 CEC 2015- CEC 2015-LPB
CEC 2015-LBP LBP [31] [31]
[31]
1 fi t-value —00 —00 -1.53 x10'6 —00 0.0 0.0 0.0
p-value 1] (1) 7.99 x 10297 0 5.00 x 1079 5.00 x 10701 5.00 x 107
2 f t-value 0.0 0.0 0.0 0.0 0.0 0.0 0.0
p-value 5.00 x 1001 5.00 x 109! 5.00 x 107! 5.00 x 10°01 5.00 x 10°%! 5.00 x 10701 5.00 x 1079
3 fa t-value —-2.49 %106 —2.00 x 106 —-2.49 x 1016 —2.47 x 106 —2.47 x 1016 —2.47 x 106 —2.47 x 1016
p-value 7.50 x 10301 4.74 x 1029 7.50 x 10301 9.05 x 1030 9.05 x 1030 9.05 x 1030 9.05 x 103!
4 fe t-value -1.06 x 106 —2.12x 106 —-1.08 x 1016 —o0 —2.53 x10'6 -1.19x 106 -1.17 x 1016
p-value 8.51 x 10-2%4 1.56 x 10-2%° 7.35x 107294 0 5.67 x 10301 9.13 x 102 1.28 x 10-2%4
t=negative t<0 3 3 3 3 2 2 2
t=positive t=>0 1 1 1 1 2 2 2
General Merit Over Contender 2 2 2 2 0 0 0
Bold values signifies the best results in the respective category.
Table 21
Statistical results of unpaired t-Test OPSO algorithm against six ECTs for CEC 2015-EOP [32].
Competitive Algorithms
Sl. No. f Statistical SbaDE [34] DD-SRPSO [35] EPSO [36] SHPSO-GSA [37] MVMO Tuned CMAES
Results [51] Rank #1 [52] Rank #2
CEC 2015-EOP CEC 2015-EOP
[32] [32]
1 f t-value -3.80x 10" —3.88 x 10% —9.54 x 10% -9.41 x 10! 1.33 x 10%° -1.75 x 107
p-value 2.37 x 1029 1.63 x 10114 6.14x 10122 7.89 x 1027 9.80 x 1092 5.90 x 1027
2 fs t-value —2.49 x 10% —~2.81 x10% ~4.49 x 10% —-2.22 x10% —-4.87 x 102 -4.27 x10%
p-value 7.69 x 1035 7.69 x 10-36 1.00 x 10-58 6.66 x 1034 213 x10-40 2.69 x 10-58
3 fr t-value —6.49 x 10%4 —3.96 x 102 —7.55 x 10% —1.48 x 10%? —~2.49 x 10% —7.56 x 10%*
p-value 9.44 %1078 1.12x 1038 5.27 x 10782 1.35x 103 7.39 x 10754 5.07 x 1082
4 fs t-value —3.40 x 10%7 —4.09 x 10°? —4.50 x 10%° —3.82 x 10%? —3.78 x 102 —4.48 x 10%°
p-value 1.93 x 10132 6.07 x 103° 9.85 x 1097 2.13x10738 2.67 1038 1.05 x 10-%¢
5 fo t-value —~4.07 x 10% ~2.85 x 10 —-3.90 x 10% -1.01 x 10! ~2.29 x 10%2 -3.79 x 10
p-value 6.56 x 10~77 5.50 x 1036 1.45x 109 8.08 x 10~ 3.56 x 1034 2.55 x 109
6 fio t-value -1.59 x 10%° -2.21x10% —8.48 x 10% -1.77 x 10 —2.69 x 10% —5.49 x 10
p-value 3.46 x 10164 6.77 x 1072 5.71x 102! 4.79 x 1032 1.70x10°73 2.22x10°7°
t=negative t<0 6 6 6 6 5 6
t=positive t=>0 0 0 0 0 1 0
General Merit  Over Contender 6 6 6 6 4 6

Bold values signifies the best results in the respective category.
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reaches NFE =300,000, the MFEV is recorded as a better result. The
algorithm obtains a best result when the MFEV is 0.0 or close to 0.0.

Table 18 presents the results of the MFEV and the corresponding
o obtained by the eight ECTs. We can find that the OPSO algorithm is
significantly superior to LLUDE, SaDE, JADE and CoDE [33] in solving
f1.f2.fa and fg. While comparing with CEC2015-LBP [31] algorithms,
performance of the OPSO algorithm found similar to that of the
three top-ranked algorithms for the functions f; and f,. However,
the OPSO algorithm outperforms the three top-ranked algorithms
for the function f; and fs.

General Merit Over Contender

MM MMM MHMMmOHMMmONMANNNN - e

6.7.2. Shifted and rotated benchmark functions f3, fs, fz—f10

The benchmark functions in CEC 2015 expensive optimization
papers (EOP) [32] are highly competitive and require efficient opti-
mization algorithms to provide fast solutions with a high accuracy.
The two top-ranked algorithms are MVMO [51] and TunedCMAES
[52], in which the six shifted and rotated benchmark functions f3,
fs, f7=f10 are considered.

Here, we compare the performance of the OPSO algorithm with
that of the above two top-ranked algorithms and few other compet-
itive algorithms from [34-37]. The comparison has been achieved
with Npun =20 and for each run the exact maximum NFE =1500 as
givenin[32]. The dimension of each tested function is d = 30. The 50
particles have been used in the DD-SRPSO [35] and SHPSO-GSA [37]
algorithms, whereas 60 particles are used for the EPSO [36] algo-
rithm. In this experiment, The OPSO algorithm uses 50 particles.
Thus, the Nj,, =30 based on (40).

Table 19 shows the MFEV, the corresponding o and AET of the
seven ECTs. Among the seven ECTs, the OPSO algorithm achieves
the best MFEV performance for the five functions, fs, f,—-f109, whereas
the MVMO [51] gives the best MFEV performance for the function
f3.In terms of o, the performance of the OPSO algorithm is the best
in case of the four functions fs, f;—fg and is the second best for the
functions, f3 and f1o. Thus, the performance of the OPSO algorithm
found to be superior to the two CEC 2015-EOP [32] algorithms. In
terms of AET, the OPSO algorithm performance is better than SabDE
[34] algorithm for all the functions except fs.

t= positive t>0

negative t<0
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3
3
3
3
3
3
2
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41
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27
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—1.45 x 10°2
—1.73 x 1092
—2.20 x 1092
—9.54 % 109
—1.16 x 1092
—7.05 x 10%
—8.02 x 10!
—8.95 x 109
—3.45x10°!

p-value

0.0

0.

0.0

1.64 x 10302
2.34 x 10298
4.92 x 10-270
1.39 x 10720
0.0

7.17 x 1020
1.06 x 10280
1.07 x 10190

6.8. Statistical significance of the proposed OPSO algorithm

In order to determine the statistical significance of the proposed
OPSO algorithm, we carried out three sets of unpaired one-tailed t-
Test[68] with asignificance level of a = 0.05. The results of the t-Test
for CEC 2015-LBP [31] are shown in Table 20. Here, we provide the
statistical results of the comparison between OPSO algorithm and
seven competitive algorithms for f1, f>, f4 and fs. The comparison is
made with a degree of freedom equals to 19. The OPSO algorithm
is considered to be statistically significant against the contender
algorithm when t-value<0 and p-value less than 0.05. The gen-
eral merit over contender is shown in the last row of Table 20. It
is calculated as the difference between the number of times the
OPSO algorithm is found to be statistically significant and statisti-
cally not significant among four tested functions. It can be seen that
out of the seven algorithms, the OPSO algorithm is statistically sig-
nificant against four algorithms, i.e., LLUDE, SaDE, JADE, and CoDE
[33]. However, against the three top-ranked algorithms CEC 2015-
LBP [31], SPS-L-SHADE-EIG [48], DEsPA [49], and MVMO [50], the
OPSO algorithm is statistically significant for f; and fg, whereas it is
statistically not significant for f; and f,.

Table 21 shows the statistical results of the comparison between
OPSO algorithm and six competitive algorithms for the six func-
tions, f3, fs, f7—f10. The comparison is made with a degree of freedom
equals to 19. The general merit over contender is shown in the
last row of Table 21. It can be seen that the OPSO algorithm is
statistically significant against all the six algorithms.

PS-2

t-value
—3.14 x 10%
—2.31 x10%
—2.75 x 10%
—2.50 x 10%4
—2.00 x 10%
—2.62 x 10%*
—-1.08 x 10%
—-9.84 x 10%
—5.09 x 103
—3.24 x10%
—3.18 x 10%
—6.52 x 10%3
—8.04 x 10%2

p-value

1.14 x 107201
3.25x 1021
243 %1019
2.63 x 10146
3.88x10°'77
7.53 x 1079
1.82x10°%
1.94 x 10240
2.66 x 1014
1.44 x 10144
1.02x10°'48
2.70 x 10150

-1.03 x 10
—3.27 x 10
—7.71 x 10%?
—8.55 x 10%?
—6.96 x 102
-1.42 x10%
-9.17 x 10%?
—2.86 x 10
—5.86 x 102
—8.60 x 10°2
—-3.11 x 10%
—~2.74 x 10”2
-1.79 x 10%?
6.12 x 10%°

—~2.55x10%
—3.44 x 10°?
-1.36 x 10%
—-3.02 x 10
—3.14 x 10%?

-1
t-value

AIS [25]

FA [25]

HGPSO [25]
HPSOM [25]

SA-PSO [26]
MIQCQP [41]
MSAF [22]

BCO [25]
NPSO-LRS [27]

QMPSO [30]

HPSOWM [25]
FDA [38]

Competitive
GA [25]

DE [25]
ACSA [25]
APSO [25]
RDPSO [25]
A\-logic [43]
CPSO [29]
SPPO [46]
EGSSOA [42]
SOH-PSO
GA-API [40]

SI. No.
12
13
16
17
18
20
22
23
4

Statistical results of unpaired t-Test of OPSO algorithm against twenty four ECTs for PS-1, PS-2 and PS-3.

Bold values signifies the best results in the respective category.

Table 22
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Table 22 shows the t-Test results for the three power systems,

PS-1-PS-3. The one-tailed unpaired with o

Appendix-1
rithms. As seen from the data in the last column, the proposed OPSO

algorithm is found to be statistically significant against the first

freedom of 99 is performed against twenty four competitive algo-
thirteen competitive algorithms for three power systems.

424

n508|
0550

0032
00339

03051
04514

0386
0789
03603

053
o
0sns
047
06501

09748
00760
05870
04139

03091
02638

07588

09952

0.1356

(% 1]

Since the data are not available for PS-1, PS-2, or PS-3 for eleven
algorithms with SI.No. 14-24, the t-Test is carried out against one or

two power systems. Again, from the data in the last column, one can
observe that the OPSO algorithm is statistically significant against
the eleven contending algorithms. These results give enough evi-
dence that the proposed OPSO algorithm is statistically significant
against the twenty four contending algorithms.

A novel optimization algorithm named orthogonal PSO algo-
rithm is proposed to alleviate the problems associated with the
global PSO algorithm. An orthogonal diagonalization process is

7. Conclusion

0.2905 06198

03545 06437
04301 08801

04390 06181
07817 0.57
01480 09620

carried out in the OPSO algorithm which aims to diagonalize the
position vectors of the active group particles. In contrast to two

guides as used in GPSO algorithm, the OPSO algorithm uses only
one guide while updating of the position and velocity vectors. The
OPSO algorithm is applied for solving economic dispatch prob-
lem of thermal generating units (TGUs) under various practical
power constraints imposed by the smart grid and power systems.
and ten selected CEC 2015 benchmark functions of increasing

The OPSO algorithm is tested with three practical power systems

02790 03400 02672
06754 08467 075N
05037 02461 08984

02379 05017
02436 06508
01048 07960
08584 QXM
06582 05008
0737 0N
06505 0%158
0516 08378

03264 05208 0

08418 04562
o116 0278
01478 06525
00198 09173
09643 05098

09704 09742 0

01239 01973
04674 01112
06567 021

05381 0Ins
04178 0838

complexity and its superiority over GPSO algorithm and several
existing ECTs has been shown with extensive simulation studies.
The proposed OPSO algorithm has shown evidence of superior per-

algorithm is found to be statistically significant against several ECTs

lem and shifted rotated CEC 2015 benchmark functions. The OPSO
including top-ranked CEC 2015 algorithms.

formance compared to several existing ECTs in providing reliable,
consistent and optimal solution for the economic dispatch prob-

Appendix A.
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Optimization of fuel cost function of large-scale thermal generating units under several constraints in
smart power grid is a challenging problem. Because of these constraints, the fuel cost function becomes
multimodal, discontinuous and non-convex. Although the global particle swarm optimization with
inertia weight (GPSO-w) algorithm is a popular optimization technique, it is not capable of solving such
complex problems satisfactory. In this paper, a novel multi-gradient PSO (MG-PSO) algorithm is proposed
to solve such a challenging problem. In MG-PSO algorithm, two phases, called Exploration phase and
Exploitation phase, are used. In the Exploration phase, the m particles are called Explorers and undergo
multiple episodes. In each episode, the Explorers use a different negative gradient to explore new
neighbourhood whereas in the Exploitation phase, the m particles are called Exploiters and they use one
negative gradient that is less than that of the Exploration phase, to exploit a best neighborhood. This
diversity in negative gradients provides a balance between global search and local search. The effec-
tiveness of the MG-PSO algorithm is demonstrated using four (medium and large) power generation
systems. Superior performance of the MG-PSO algorithm over several PSO variants in terms of several
performance measures has been shown.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

researches to solve real-world complex optimization problems
including ED problem. In ECTs, finding the optimum solution of a

Economic dispatch (ED) problem is one of the fundamental is-
sues in power generation systems (PGSs) of smart power grid (SPG).
Its objective is to allocate the load demand among the committed
thermal generating units (TGUs) in the most economical manner,
while satisfying all operational and physical power constraints, e.g.,
ramp rate limits, prohibited operating zones and valve-point
loading effects. Under these constraints, the fuel cost function be-
comes discontinuous and non-convex with multiple local minima
[1].

Evolutionary computation techniques (ECTs), e.g., population-
based algorithms, have been proposed and developed by several

* Corresponding author. Swinburne University of Technology, Melbourne,
Australia.
E-mail addresses: lalbahrani@swin.edu.au (L.T. Al-Bahrani), JPatra@swin.edu.au
(J. Chandra Patra).

https://doi.org/10.1016/j.energy.2017.12.052
0360-5442/© 2017 Elsevier Ltd. All rights reserved.

problem is based on two phases, namely Exploration and Exploita-
tion phases. In the Exploration phase, a global search exploring all
over the search space as much as possible is carried out to find
promising neighbourhood(s). Whereas, in the Exploitation phase, a
local search exploiting the best neighbourhood to fine-tune the
search space is carried out to obtain the optimum solution. The best
performance of an ECT is achieved when an appropriate balance
between these two phases is maintained [2]. Focusing more on
Exploration will lead to excessive search time because of wastage of
time in searching over inferior neighbourhoods, whereas focusing
more on Exploitation will cause loss of diversity, thereby possibly
getting stuck into a local optimum.

One of such popular ECTs called the global particle swarm
optimization (GPSO) algorithm has been proposed to boost the
global search and local search abilities and to make a good balance
between the Exploration and Exploitation, for solving ED problem
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[3,4]. It is easy to implement and has performed well on many
optimization problems. The GPSO algorithm has the ability to
quickly converge to the optimum solution [5]. However, in this
algorithm, all of its particles share the swarm's best experience, i.e.,
global best and this may lead the particles to cluster around the
global best. If the global best is located near a local minimum,
escaping from it becomes hard, because loss of balance between
local search guide (personal experience of each particle) and global
search guide (global best) [6—8]. Thus, the GPSO algorithm suffers
diversity loss near a local minimum.

The GPSO with inertia weight (GPSO-w) was proposed in Ref. [9]
to improve the performance of GPSO algorithm by controlling the
convergence tendency of the particles with a negative gradient of
the inertia weight, w. However, when the fuel cost function is high-
dimensional, e.g., 40 TGUs or more, and restricted by many power
constraints, it may have several local minima. In such case, finding a
global optimal with w becomes hard, because of loss of balance
between local search guide and global search guide still remains.

Recently, some of the notable ECTs that have been applied to
solve ED problem under several power constraints imposed on TGU
and PGS are orthogonal PSO (OPSO) algorithm [10], PSO with
modified stochastic acceleration factors (PSO-MSAF) [11], chaotic
sequence and crossover PSO (CCPSO) algorithm [12], hybrid PSO
with mutation (HPSOM) algorithm [13], hybrid PSO with wavelet
mutation (HPSOWM) algorithm [13], improved random drift PSO
(IRDPSO) algorithm [14], self-tuning IRDPSO (ST-IRDPSO) algorithm
[14], simulated annealing PSO (SA-PSO) algorithm [15], anti-
predatory PSO (APSO) [16], and Chaotic PSO (CPSO) algorithm
[17]. In Ref. [18], performance of the RDPSO algorithm was
compared with ten ECTs, i.e., genetic algorithm (GA), differential
evolution (DE), ant colony search algorithm (ACSA), bee colony
optimization (BCO), artificial immune system (AIS), firefly algo-
rithm (FA), and APSO, hybrid gradient PSO (HGPSO), HPSOM and
HPSOWM algorithms.

Some other groups of ECTs are also used to compare with GPSO
algorithm and its variants by several researchers [19—28] to solve
ED problem of small, medium and large PGSs. They are mixed-
integer quadratically constrained quadratic programming
(MIQCQP) [19], Lambda logic (A-logic) [20], synergic predator-prey
optimization (SPPO) algorithm [21], modified symbiotic organisms
search (MSOS) algorithm [22], fuzzy adaptive chaotic ant swarm
optimization with sequential quadratic programming (FCASO-SQP)
algorithm [23], chaotic bat algorithm (CBA) [24], greedy random-
ized adaptive search procedure (GRASP) algorithm [25], crisscross
optimization algorithm [26], 6-modified bat algorithm (6-MBA)
[27], and root tree optimization (RTO) algorithm [28].

In the recent years, the gradient method is integrated and
combined with few optimization techniques to create hybrid
optimization techniques. This combination is used to achieve faster
convergence without getting trapped into local minima. The
gradient method helps particles to move faster toward optimum
solution, whereas the optimization algorithm controls the move-
ment of the particles from falling into local minimum. Some of the
recently proposed such techniques are HGPSO algorithm [29],
enhanced gradient simplified swarm optimization algorithm
(EGSSOA) [30], and gradient-based Jaya algorithm [31]. Whereas, in
the proposed MG-PSO algorithm, multiple negative gradients are
used by m particles while searching for a global optimum. In
addition, multiple gradients help to prevent the global best particle
to fall in a local minimum.

In MG-PSO algorithm two phases are used, i.e., Exploration phase
and Exploitation phase. In Exploration phase, a particle is called an
Explorer. The Explorers operate in several episodes. In each episode,
the Explorers use a different negative gradient to explore a new
neighbourhood. Explorers enhance global search ability of the MG-
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PSO algorithm. At the end of Exploration phase, the Explorers pro-
vide a search boundary which becomes the new search space in the
Exploitation phase. In the Exploitation phase, a particle is called an
Exploiter. Exploiters use one negative gradient which is less than
that of the Exploration phase to exploit the best neighborhood. The
small negative gradient leads to small incremental change in the
velocity and position vectors during updating process. This helps
the particles to move steadily towards optimal solutions. Thus,
Exploiters enhance local search ability of MG-PSO algorithm. This
diversity in negative gradients helps the best particle from falling
into a local minimum. The combination of two phases provides a
balance between Exploration and Exploitation in search space.

In a recent work, the effectiveness of the proposed MG-PSO
algorithm has been shown in solving ED problem of small and
medium PGSs under a few power constraints in SPG applications
[32]. Whereas, in the current study, the MG-PSO algorithm is
applied to solve ED problem of four (medium and large) PGSs,
considering more constraints including valve-point loading effects.
In addition, the mathematical analysis and theoretical justification
of MG-PSO algorithm is provided. With extensive simulated ex-
periments, superior performance of the MG-PSO algorithm has
been shown in terms of convergence, consistency and accuracy
compared to GPSO-w algorithm and several competitive ECTs.

The rest of the paper is organized as follows. Section 2 describes
the ED problem under various power constraints. Explanation of
the GPSO-w algorithm is presented in Section 3. Details of the
proposed MG-PSO algorithm are provided in Section 4. In Section 5,
application of the MG-PSO algorithm to ED problem in four PGSs is
presented. Finally, conclusion of this study is provided in Section 6.

2. Problem formulation

Here, we explain the fuel cost function and various practical
power constraints involved in this study.

2.1. Fuel cost function

The aim of ED problem is to guess the optimum arrangement of
power generation of online TGUs in order to minimize the entire
generation fuel cost subjected to the online TGUs and PGS con-
straints in SPG. Considering Nge;, committed online TGUs, the fuel
cost function of jth online TGU F(P)), j=1, 2, ..., Ngen, in ($/h) is
characterized by a quadratic function given by Ref. [33]:

2
F(Pj) = a; + bjP; + P} M

where P; is the output active power in (MW) at a current time in-
terval, and aj, bj, and c; are fuel cost coefficients. Under valve-point
loading (VPL) effects, sinusoidal functions are added to the
quadratic fuel cost function (1) [34]. This makes the fuel cost
function non-smooth with multiple modes as follows:

F(P) = &+ biPy + GPF + | ¢ x sin (f x (Pimin — P)) | )

where e; and f; are the coefficients reflecting VPL effects and P; i, is
the minimum output active power of jth TGU. The symbol || cor-
responds to absolute value. The total fuel cost, Fcost, considering all
online TGUs is given by:

Ngen
Feost = ) F(Pj) (3)
=1

J

Here, Feos; is the function that needs to be minimized.
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2.2. Power constraints

Different practical power constraints imposed on the online
TGUs and by PGS in SPG used in literature are stated below:

2.2.1. Power balance constraint

The total output active power of the committed online TGUs
should be able to satisfy load demand and transmission network
loss. The power balance constraint is given as:

Protal=Pp+ P (4)
where Py = ZJ’.\’:’;‘{P]-, Pp is load demand in (MW) and P; is trans-
mission network loss in (MW).

2.2.2. Transmission network loss

The transmission network loss Py is a critical constraint of the ED
problem. Not only is it desired that the power loss incurred in the
system be minimized along with the total fuel cost, but also the
power generation system must generate enough power to satisfy
the Pp as well as to compensate for the P;. The Py is given by:

Ngen Ngen

PL=>" > " PiByP (5)
i1

j=1
where Bj are known as the loss coefficients or B-coefficients [34].

2.2.3. Transmission network loss mismatch
The P, obtained from (4) is denoted by P;; and is given by:

Py = Ptotal — Pp (6)

Let P;, be the transmission network loss obtained from (5). The
transmission network loss mismatch, Py mismatch i given by:

PLmismatch = Pr2 — Pr1 (7)

When Py mismatch = 0, it implies that optimum Py is found and
the power balance constraint (4) is achieved.

2.2.4. Generation limits

Each TGU has a specified range within which its operation is
stable. Therefore, it is desired that all the TGUs be run within their
operation range in order to maintain system stability. The genera-
tion limits of the jth TGU is given by:

Pj,min SPJ.SPj,max j:1725"'7NgEﬂ (8)

2.2.5. Ramp rate limits

The operating range of on-line TGU is restricted by its ramp rate
limits (RRLs) due to its physical limitations [35,36]. For any sudden
change in the Pp, TGU increase or decrease its generation in order to
satisfy system stability. However, the TGU can change its generation
only at a certain rate determined by its up-ramp and down-ramp
rate. If a TGU is operating at a specific point, then its point of
operation can be changed only up to a certain rate determined by
the ramp rate. Therefore, a change in TGU output active power from
one specific interval to the next cannot exceed a specified limit.

If power generation need to increase, then per unit time rate of
increase P; — P! must satisfy:

P; — PY < UR; 9)

If power generation need to decrease, then per unit time rate of
decrease P — P must satisfy:

0
Py —P; < DR; (10)
where PJ0 is the TGU output active power at the previous time in-
terval. The UR; and DR; are the up-ramp and down-ramp limits of

TGU jin (MW/h), respectively. By substituting (9) and (10) in (8), we
obtain the following constraints.

max{Pj_mm, (PJQ - DRj>} <P< min{Pj,max, (Pﬁ - URj)}

(11)
where
Pjjow = max{Pj.miru (PJO - DRj) }-, (12)
Pj high = min{Pj.maX, (PJO + UR]) }, and (13)

Pjlow and Pjpign are the new lower and higher limits of jth TGU,
respectively.

2.2.6. Prohibited operating zones

The physical limitations due to the steam valve operation or
vibration in shaft bearing of TGU may result in the generation units
operating within prohibited operating zones (POZs) [37]. The POZs
make the fuel cost function discontinuous in nature. In such case, it
is difficult to determine the shape of the cost curve under POZs
through actual performance testing. In addition, if the TGU operates
within the POZ range then it may lead to loss of the stability.
Therefore, in this study, these regions are usually avoided during
generation. By using (8), the feasible operating zones (FOZs) of the
Jjth TGU are given by:

|
Pjmin < Pj < Pj;

Pl SP <Pl k=23,..Nj (14)

u A A
Pij[,Z < Pj < Pjmax

where P}_kand P}_‘k are the lower and upper bound of the kth POZs of
the jth TGU, and N;jpz is number of POZs of the jth TGU. Incorpo-
rating these power constraints in (11)—(14), we get the final set of
inequality power constraints imposed on TGU as given below.

[
Pj,low < PJ < Pj,l7

P}fk—l < P] < le,k k= 2733~~~;Nj.PZ (15)

Pins, < Pj < Pj high

Equation (15) gives the final set of the inequality power con-
straints imposed on jth TGU in terms of new lower and upper
generation limits with RRLs and FOZs and avoiding all POZs. Thus,
all TGUs will have a set of operation limits that satisfies all the
power constraints.

3. The GPSO-w algorithm

The optimization mechanism in a global particle swarm opti-
mization with inertia weight, GPSO-w algorithm depends on the
distribution of m particles in the swarm [9]. It is represented by a
fully connected network, in which each particle has access to the
information of the swarm population. Firstly, each particle flying in
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the multi-dimensional search space adjusts its flying trajectory
based on two guides, its personal experience, Gpersi and its neigh-
borhood's best experience, Gpest. Secondly, when seeking an opti-
mum, i.e. global solution, each particle learns from its own
historical experience and its neighborhood's historical experience.
In such a case, a particle while choosing the neighborhood's best
experience uses the best experience of the whole swarm as its
neighbor's best experience. Therefore, the GPSO algorithm is
named as global PSO, because the position of each particle is
affected by the best-fit particle in the entire swarm. The following
steps explain the mechanism of the GPSO-w algorithm.

Let us consider a swarm population with m particles (m>1)
searching for optimal solution (minimum) of an objective function
flx) in a d-dimensional search space. Let total number of iterations
is Niter. The objective is to minimize the given f{(x). A particle,i(i=1,
2, ..., m), has one d-dimensional velocity vector V; and one d-
dimensional position vector X; and are denoted by

Vi=[Vvi1, Vi, ..., Vid] (16)

Xi=[Xi1, Xi2, ..., Xid] (17)

Step 1: Initialization: Iteration, t = 0.
fori=12,...m
The V; and X; of ith particle are randomly initialized within a
defined range of the search space and are denoted by V;(0)
and X;(0), respectively.
Initialize the personal position vector of particlei,i=1,2, ...,
m, Gpers,i(0) as follows:

Gpers,i(o) = Xi(o) (18)

Evaluate the f(x) using X;(0).

Determine the global best position vector, Gpes(0). It is the
best position vector among all the m personal position vec-
tors. The Gpes(0) is denoted by

Ghest(0) = [gb.1, 8b2, ---» &b.d] (19)

end i loop

Step 2: Update:
fort=1, 2, ..., Niter
fori=1,2,...m
Determine inertia weight, w(t) as given below [38].

05

W(t) - Niter

t+0.9 (20)

Update V; and X; as follows:

Vi) = w(t) Vi(t = 1) + 171 (6) [Gpers,i(t = 1) = Xi(t = 1)]
+ €212 (8)[Gpest (E — 1) = Xi(t = 1)] (21)

Xi(t) = Xi(t = 1) + Vi(t) (22)

where ¢; and c; are positive coefficients, called accelera-
tion constants which are commonly set to 2.0 [9]. The ry(t)
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and ry(t) are two randomly generated values with a uni-
form distribution in the range of [0,1].

Evaluate f(x) for particle i using X; (t).

Update Gpers i(t) as follows:

Xi(t) if fXi(0) < f(Gpersi(t—1))
Gpers,i(t> =

Gpers,i(t — 1) Otherwise
(23)
end i loop
Obtain flGpesi(t)) as follows:
S(Grese(t)) = min{f{Gpersi (1)}, i=1,2, ..., m
Obtain Gpes(t) corresponding to flGpes(t))
end t loop
Step 3: End of iteration: t = N
Optimum solution = Gpest(Njzer) and optimum
value :ﬂcbest(Niter)) (24)

4. Learning strategy and MG-PSO algorithm

Here, the details of the proposed MG-PSO algorithm and
explanation of its learning strategy are provided.

4.1. Learning strategy

The learning strategy of MG-PSO algorithm depends on the
following considerations. Consider a swarm population with m
particles (m> 1) flying in a d-dimensional space searching for a
solution, i.e., global optimum. Two fundamental phases, “Explora-
tion and Exploitation” are used by the m particles. In Exploration
phase, a particle is called Explorer. In each episode, the Explorers, i.e.,
m particles, use different negative gradient to explore new neigh-
bourhood in a d-dimensional search space. Explorers enhance a
global search ability of MG-PSO algorithm. The purpose of Explorers
is

e To obtain new neighbourhoods within a d-dimensional search
space.

e To obtain best neighborhood within a d-dimensional search
space

In each episode, the Explorers obtain best position vector
following its neighbourhood. Its neighborhood is obtained by tak-
ing “Floor” and “Ceil” of each element of the best position vector.
These operations create a new neighborhood within d-dimensional
search space that will be used in the Exploitation phase.

In Exploitation phase, a particle is called an Exploiter. The Ex-
ploiters, i.e.,, m particles, use one negative gradient which is less
than that of the Exploration phase. The Exploiters enhance the local
search ability of MG-PSO algorithm. The purpose of this phase is to
obtain an optimal position by exploiting the Exploiters in the best
neighborhood obtained from the Exploration phase.

4.2. The MG-PSO algorithm
In MG-PSO algorithm, Ngrq¢ number of negative gradients is

used while the swarm population searches for an optimal solution.
In Exploration phase, Ngrqg — 1 negative gradients are used and one
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negative gradient is used in Exploitation phase. In each episode, the
inertia weight follows one negative gradient.

Let Nier be number of iterations in MG-PSO algorithm. The
number of iterations in Exploration phase is given by

Niter,xplure =7 X Niter (25)

where v is a real and positive number in a range [0,1]. The number
of iteration in Exploration phase is given by:

Niter,xplait = (1_Y) x Niter (26)

The initial and final values of the inertia weight for kth negative
gradient (k=1, 2, ..., Ngqq) are denoted by Wik and wng,
respectively. These values are real and positive numbers within a
range [0,1] and Wini,>Wfink. The kth negative gradient (k=1, 2, ...,
Ngrag — 1) in Exploration phase is given by:

Weink — Winik 27)

grady =
N iter xplre

In Exploitation phase, the negative gradient is given by:

_ WiinNyas — WiniNgaa

grady, , = (28)
wrad Niter‘xploit
The Ngrqq gradients are selected such that (29) is satisfied.
|grad, | > |grady|--- > | grady,,, (29)

The inertia weight for kth negative gradient (k=1, 2, ..., Ngrqq) at
iteration t is given by:

wy(t) = grady x t + Winik (30)

The flowchart of the MG-PSO algorithm is shown in Fig. 1 and
the detailed steps explaining the MG-PSO algorithm are given in
Appendix.

4.3. An illustrative example

In order to explain the mechanism of MG-PSO algorithm, an
example of a 2-dimensional shifted function, flx,y) = (x —
2)% + (y + 3)? + 9is illustrated. It can be seen that x and y are shifted
from the origin (0,0) by (2,—3). The optimum solution of the given
function equals to 9at x=2 and y = —3. The aim of the MG-PSO
algorithm is to find the values x and y for which the f(x,y) is mini-
mized. The MG-PSO algorithm was implemented using MATLAB in
a personal computer with Intel (R) core (TM) 2 Duo CPU T6570 @
2.1 GHz. RAM of 4GB and Windows 7, 64-bit operating system.

The MG-PSO algorithm was executed with m =6, Njxr =60,
Y = 0.4, Ngrag = 4. Niterxplore =24 and Nierxploit = 36. The wiyix and
Wink are chosen within a range of [0,1] and are shown in Table 1.
Selection of grady (k=1, 2, ..., Ngrqa) Was done by trial and error
method. The results of the Exploration phase with three episodes
(k=1, 2 and 3) are shown in Table 1. At the end of episodes,
fGrestxplore) is found as 9.0566 that is corresponding to episode #1.
The BEST(Gpestxplore) corresponding to episode #1 is found as
(2.1625,-2.8262). The range of new search space (neighborhood) is
obtained by taking “Floor” and “Ceil” of 2.1625, i.e. [2,3], and “Floor”
and “Ceil” of —2.8262, i.e., [-3,-2]. Thus, the new search space is
given by a range of x as [2,3] and a range of y as [-3,-2].

In Exploitation phase, the Exploiters navigate in the newly found
search space, i.e. [2,3], [-3,-2], using one negative gradient (k =4)
that is less than that of Exploration phase. As shown in Table 1, at the
end, the Exploiters obtain the optimum value Gpestx-
ploit(36)) = 9.0000 and Gpestxpioit(36) = (2.0,-3.0) give the optimum
value of f{x,y) and the optimum solution of (x,y) as 9.0 and optimum
solution as (x,y) = (2.0, —3.0).

The movement of best particle G;jest(t) for three episodes, k=1,
2 and 3 over 24 iterations are shown in Fig. 2(a), (b) and (c),
respectively. The G’gest(t) follows its grady in each episode.

This diversity in negative gradients makes the MG-PSO algo-
rithm to obtain different solutions, i.e., G}, (t), G2,.,(t) and G2, (t)
which are close to optimum solution. This means that the global
best particle prevents the swarm from falling into a local minimum.

Fig. 2(d), (e) and (f) illustrate variation of inertia weight with
iteration for the episodes 1, 2 and 3, respectively. It can be seen that
the inertia weights follow different negative gradients. The
convergence characteristics, i.e., variation f (Gﬁest(t)) with iteration
are also shown in this figure. At the end of iteration the optimum
values obtained from the three episodes are given by 9.0566,
11.3179 and 10.6136. The corresponding optimum solutions for the
three episodes are given by (2.1625,-2.8262), (3.4993,-2.7352) and
(1.3299,-1.9208), respectively (as shown in Fig. 2(a), (b) and (c) and
Table 1).

Fig. 3(a) shows movement of the best particle Gpestxploie(t) in
Exploitation phase within the new search space range of x and y as
[2,3] and [-3,-2], respectively. The variation of f{Gpestxpioir) and
inertia weight w4 over 36 iterations are shown in Fig. 3(b). The
Gpestxploit gives the optimum solution (x,y) = (2.0,-3.0) and opti-
mum value of fix,y) =9.0.

4.4. Observations

Some of the important observations of the MG-PSO algorithm
are as follows:

4.4.1. Observation 1

Due to use of a different negative gradient in each episode, in
Exploration phase, the Explorers have ability to find a new neigh-
bourhood within a d-dimensional search space. The global best
particle is able to prevent the swarm from falling into a local
minimum. In addition, the diversity in negative gradients enhances
the local search ability of the Exploiters to obtain optimum solution,
as shown in Figs. 2 and 3.

4.4.2. Observation 2

In case of GPSO-w algorithm (21), two guides, Gpers,i and Gpest,
are used to update the velocity vector Vj(t). This leads to loss of
balance between global search and local search. However, in case of
MG-PSO algorithm two phases are used. In the Exploration phase,
using several episodes (each one with different gradient) a new
search space (new neighborhood) is obtained. This search space is
used in Exploitation phase to achieve the optimum solution. In this
way a balance is maintained between the global and local search
spaces.

4.4.3. Observation 3

The wy,,,(t) that follows negative gradient, grady,,, in the
Exploitation phase (Appendix) is used to diminish the contribution
of Xij(t — 1) while updating Vi(t),i=1, 2, ..., m. As t— oo, assume that

194



Appendix— 1 Paper G

LT. Al-Bahrani, J. Chandra Patra / Energy 147 (2018) 1070—1091 1075
( Start of Exploitation phase )
v
[ M, Nirer, Nevot, Winisbs Weins for k= 1,2, ..., Noraa J | Use the new search space |
v

t=1

V(= Vl{Mprr,wlwr) eomsponding to BESHGM,W)

X{(1) = Xi(Niter.spiare) corresponding to BEST(Gipest.spiare)

Gpersil 1) = Gpers ANjier.sptore) corresponding to BEST{ Gpes ptore)

Determine Njy...qpiore A0 Ny s USING
(25) and (26), respectively

[ =0, initialize ¥; and X; randomly J

v G, A1) = BEST(G, ,ford =1,2, ...
[ Compute Ginel0) using (16)19) | 4 N\ Gigrd "
v - T
[ Start ol'Expl:mtim phase | | Determine grady  using (28) |
| Episode. k=1 ] e
v
[ Determine grady using (27) | | Determine wy(1) using (30), for & = Ng,,d_]
= o
Update (1) and X(7) using (A<4)-(A-6) in
Appendix
( Determine wi(#) using (30) |
¥ .
[ Update V(1) and X(1) using (A-1)-(A-3) in Appendix | Obtain A Gre, i 1)):
v AGhestot)) = min{ fGpered ) },
Obtain /Gy, (1) : fori =1,2,..m
F(GL (0= min{ f(GE,,, ()}, fori =1,2,....m ¥
| 4 Obtain Gy, yioilf) corresponding to
[ Obtain (£ (1) corresponding to f(GL,(1)) ] NGt spicid 1))
No Is No
i Nﬂrr.l]ﬂku-
2
Yes
- - Yes
[ 0018 G (Vi) 04 S G W) |
Optimum solution (X) = G apioid Nier.spioir)
Optimum value AX) =A Ghewrxptoil Nirer.xpioi)

[ End of Exploitation phase |

Obtain minimum 7(Gy., piord Niser-spire)) USING End |

ﬂGW-?M) = min{ f(G:rsi'.rp‘an'(M'm.!;pfrv” 1, for
k=1,2, ., Nowa-1
e

v
[ Obtain BEST{Gpestspiore) corresponding to fl Ghesr,xplore) ]

(Obtain the new search space (neighbourhood) |

[ End of Exploration phase |

Fig. 1. Flowchart of MG-PSO algorithm.
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Set of parameters and performance of MG-PSO algorithm with d =2, m = 6, Njr = 60.

Set of parameters

Exploration phase

Exploitation phase

k=1 k=2 k=3 k=4
Winik 10 090 0.80 050
Wiink 01 0.15 0.20 035
grad ~0.0375 —0.0313 —0.0250 —0.0042
Gl (21625, -2.8262) (3.4993, ~2.7352 (13299, ~1.9208) (2.0000,-3.0000)
G .05 11317 10, X
F(Gho) 9.0566 3179 0.6136 9.0000

The bold numbers indicate the best solution of ith particle in a swarm during Exploration and Exploitation phases.

Fig. 2. Movement of best particle in Exploration phase over 24 iterations based on three different negative gradients in three episodes, (a), (b) and (c)
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Fig. 3. Movement of the best particle in Exploitation phase with one negative gradient, (a): movement of Gpes; Over 36 iterations, (b): the change of f{Gpestxpioie(t)) and wy(t) with
iteration t.
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Fig. 4. Performance of MG-PSO algorithm in Exploitation phase showing movement of X;, Gpers;, (i=1, 2, ..., 6) and Gpesexpioic OVer 36 iterations to obtain a solution of (2.0,-3.0).

the algorithm has converged. In such case,

ltim Xi(t) =X;(t— 1) (33)
tllln Xi(t—1) = Gpers,i(t -1 Thus,
. 31
{0 Xt = 1) = Goestpan(t = 1) lim X;(6) = I Gpers(6) = M Gpest o (0 (34)
— 00 t— o t—oo
Then, Equation (A-4) becomes Thus, when iteration becomes large and the algorithm has
converged, all the position vectors X; and personal vectors Gpeys,i,
tlim Vi(t) = wn,,,, (t) Vi(t —1) =0 (32) i=1, 2, ..., m, move towards the best position vector, Gpestxploit-

Fig. 4 shows performance of MG-PSO algorithm in the Exploitation

which implies that phase at different iterations. At t = 36, as the algorithm converges, it
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Table 2
Specifications and power constraints for PGS-1.
TGU; a; ($/h) b; ($/MWh) G ($/MW?h) ej ($/h) fi (rad/MW) Pjmin (MW) Pjmax (MW)
1 0.00028 8.10 550 300 0.035 0 680
2 0.00056 8.10 309 200 0.042 0 360
3 0.00056 8.10 307 200 0.042 0 360
4 0.00324 7.74 240 150 0.063 60 180
5 0.00324 7.74 240 150 0.063 60 180
6 0.00324 7.74 240 150 0.063 60 180
7 0.00324 7.74 240 150 0.063 60 180
8 0.00324 7.74 240 150 0.063 60 180
9 0.00324 7.74 240 150 0.063 60 180
10 0.00284 8.60 126 100 0.084 40 120
11 0.00284 8.60 126 100 0.084 40 120
12 0.00284 8.60 126 100 0.084 55 120
13 0.00284 8.60 126 100 0.084 55 120
Table 3 4 PGS-1
Set of parameters used in MG-PSO and GPSO-w algorithms for PGS-1. 1.88 x10 GS
= MG-PSO
Set of parameters MG-PSO GPSO-w 1.87 — GPSO-w
Exploration phase  Exploitation phase ./E\
£ 1.86 Y
k=1 k=2 et \
|7}
¥ 030 03 - g 1.85 ™\
e 2,05 2,05 2,00 ° l \\
Niter 150 350 500 21,84
© NG
Winik 0.90 045 0.90 b5 '\I M"\—'\
Wink 0.10 0.20 0.40 > 1.83
grady, —533x107% 7.14x107% —1.00 x 107% o
5 1.82
§
can be seen that Xj, Gpersi (i=1, 2, ..., 6) and Gpestxpioir, all converge 2 1.81
to the optimum solution (2.00,-3.00). i 18
- . 1.79
5. Application of MG-PSO algorithm to ED problem 0 100 200 300 400 500

Here we illustrate the simulation results carried out on four
PGSs with several TGUs and SPG constraints.

5.1. Performance measures

To study the accuracy, consistency and robustness of different
algorithms in solving ED problem, several fitness values as illus-
trated below are considered. Every algorithm is executed over Ny
runs each with Ny, iterations.

—_

. Ensemble average cost (Fes): At each iteration, it is the average
cost value obtained from Ny, independent runs.
2. Minimum fuel cost (Fpin): Defined as the minimum of the
optimized F,s¢ values obtained from N, independent runs.
3. Maximum fuel cost (Fpax): Defined as the maximum of the
optimized F,s values obtained from Ny, independent runs.

Iteration,t

Fig. 5. Convergence characteristics of MG-PSO and GPSO-w algorithms for PGS-1.

4. Mean fuel cost (Fnean): Defined as the average of the optimized
Feost Values obtained from Ny, independent runs.

5. Standard deviation (c): The ¢ is the standard deviation of the
optimized Fys values obtained from N;,, independent runs.

6. Range (R): The range (R) is defined as the difference between

Fnax and Fipin.

Average execution time (AET): It is the time consumed by an

algorithm after convergence, averaged over Ny, independent

runs.

~

5.2. Test case 1: power generation system-1 (PGS-1)

The PGS-1 is a medium-scale PGS [25], and consists of 13 TGUs.

Table 4

Comparison of cost performance between MG-PSO algorithm and other 8 ECTs for PGS-1.
SLNo. Algorithm Min. Cost Fpin ($/h) Max. Cost Frnax ($/h) Mean Cost Frean ($/h) o ($/h) R ($/h) AET (sec)
1 IRDPSO [14] 17,965.8480 NA 17,972.8090 0.8326 NA 2.26
2 ST-IRDPSO [14] 17,963.8300 NA 17,966.5700 3.3070 NA 2.28
3 MSOS [22] 17,963.8292 17,963.8292 17,963.8292 6.8 x10 12 0.0 0.81
4 FCASO-SQP [23] 17,964.0800 NA 18,001.9600 NA NA 19.62
5 CBA [24] 17,963.8300 17,995.2256 17,965.4889 6.8730 31.3956 0.97
6 C-GRASP-SaDE [25] 17,960.3930 17,968.8680 17,966.1060 2.7010 8.4750 NA
7 RTO [28] 17,969.8024 18,204.6303 18,056.9358 NA 234.8279 NA
8 GPSO-w 18,047.1192 18,531.1387 18,326.4056 145.2735 484.0195 11.95
9 MG-PSO 17,955.8802 17,956.2793 17,955.9948 0.1085 0.3991 17.36

The bold numbers indicate the best solution found by corresponding algorithm.
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Fig. 6. Comparison of optimized cost per run between MG-PSO and GPSO-w algo-
rithms for PGS-1.

Table 5
Optimized output power in (MW) for each TGU obtained by MG-PSO and GPSO-w
algorithms for PGS-1.

TGU; P; (MW)

GPSO-w MG-PSO
1 449.7956 628.3002
2 149.5601 149.5959
3 224.7231 222.5866
4 109.8681 109.7003
5 110.1797 60.0017
6 160.0134 109.9501
7 109.8367 109.9506
8 60.0840 109.9501
9 160.1193 109.9506
10 77.4152 40.0028
11 40.2176 40.0013
12 92.4584 55.0071
13 55.7288 55.0025
Total output power (MW) 1800 1800

The maximum load demand at normal operation steady state is
given as Pp = 1800 MW. Here, the VPL effects and power generation
limits are taken into account. However, the RRLs, POZs and P, are

1079

not considered. The specification of PGS-1 is shown in Table 2 [25].

5.2.1. Comparison in terms of fitness values

Recently, the PGS-1 has been tested by several ECTs. In Ref. [14],
PGS-1 has been tested by 2 ECTs, i.e., IRDPSO and ST-IRDPSO. It has
also been tested by MSOS [22], FCASO-SQP [23], CBA [24], contin-
uous GRASP with self-adaptive differential evolution (C-GRASP-
SaDE) [25] and RTO [28]. Here, we compare the performance of the
proposed MG-PSO algorithm with other 8 existing ECTs. The set of
parameters used in MG-PSO and GPSO-w algorithms are shown in
Table 3. In addition, both are run with m =20, d = 13 and Ny, = 25.
In MG-PSO algorithm, two negative gradients are selected
(Ngrag = 2), by using trial and error method, one for Exploration
phase and another for Exploitation phase as shown in Table 3.

The fitness values of MG-PSO algorithm and other 8 ECTs are
listed in Table 4. It can be seen that MG-PSO algorithm provides
the best result in terms of Fpeqn over 25 independent runs.
However, it is the second best in terms of ¢. This indicates that the
MG-PSO algorithm provides most optimum and consistent results.
In addition, the range R of MG-PSO algorithm is close to the best
one MSOS [22], thus indicating that MG-PSO algorithm provides
solution with low dispersion. In terms of AET, the MG-PSO algo-
rithm is the fifth best. These results indicate that among the 9
ECTs, the MG-PSO algorithm is stable, robust and is able to provide
optimum solution.

5.2.2. Convergence characteristics of MG-PSO and GPSO-w
algorithms

Fig. 5 shows the convergence characteristics of MG-PSO and
GPSO-w algorithms for PGS-1. It shows ensemble average Feos
values at each iteration obtained from 25 independent runs. It can
be seen that MG-PSO algorithm settles at about 150 iterations and
achieves Freqn of about $17,956/h. Whereas, the GPSO-w algorithm
takes more than 500 iterations to converge, and settles at a local
minimum with a non-optimum Fpeq, of about $18,326/h. This in-
dicates that MG-PSO algorithm gives higher accuracy in solving this
PGS, compared to GPSO-w algorithm.

Fig. 6 shows the variation of optimized Fos: over 25 independent
runs achieved by the MG-PSO and GPSO-w algorithms. It shows
that the optimized Fgs of MG-PSO algorithm varies between
$17,955.88/h and $17,956.27/h whereas, in GPSO-w algorithm, it
varies between $18,047.11/h and $18,531.13/h. This indicates that
MG-PSO algorithm is capable of providing consistent and reliable
solution. Whereas, the GPSO-w algorithm is rather far from opti-
mum solution due to VPL effects.

Table 6
Specifications and power constraints for PGS-2.
TGU P2 (MW) P;min (MW) P;max (MW) a; ($/h) b; ($/MW) ci ($/MW? UR; (MW/h) DR; (MW/h) POZs (MW)
1 400 150 455 671 10.10 0.000299 80 120 NC
2 300 150 455 574 10.20 0.000183 80 120 [185,225][305,335][420,450]
3 105 20 130 374 8.80 0.001126 130 130 NC
4 100 20 130 374 8.80 0.001126 130 130 NC
5 90 150 470 461 10.40 0.000205 80 120 [180,200][305,335][390,420]
6 400 135 460 630 10.10 0.000301 80 120 [230,255][365,395][430,455]
7 350 135 465 548 9.80 0.000364 80 120 NC
8 95 60 300 227 11.20 0.000338 65 100 NC
9 105 25 162 173 11.20 0.000807 60 100 NC
10 110 25 160 175 10.70 0.001203 60 100 NC
11 60 20 80 186 10.20 0.003586 80 80 NC
12 40 20 80 230 9.90 0.005513 80 80 [30,40][55,65]
13 30 25 85 225 13.10 0.000371 80 80 NC
14 30 15 55 309 12.10 0.001929 55 55 NC
15 20 15 55 323 12.40 0.004447 55 55 NC

NC: No constraints.
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Table 7
B-loss coefficients of 15 TGUs of PGS-2.
: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 14 12 7 -1 -3 -1 -1 -1 -3 5 -3 -2 4 3 -1
2 12 15 13 0 -5 -2 0 1 -2 —4 —4 -0 4 10 -2
3 7 13 76 -1 -13 -9 -1 0 -8 12 -17 -0 -26 111 -28
4 -1 0 -1 34 -7 —4 11 50 29 32 -1 -0 1 1 26
5 -3 5 -13 -7 90 14 -3 ~12 -10 -13 7 -2 -2 -24 -3
6 -1 -2 -9 —4 14 16 -0 -6 -5 -8 11 -1 -2 17 3
7 -1 0 -1 1 -3 -0 15 17 15 9 -5 7 -0 -2 -8
8 -1 1 0 50 12 -6 17 168 82 79 -23 -36 1 5 -78
9 -3 -2 -8 29 -10 -5 15 82 129 116 -21 -25 7 12 -72
10 -5 —4 -12 32 -13 -8 9 79 116 200 -27 -34 9 -1 -88
11 -3 —4 -17 -11 7 1 -5 23 -21 27 140 1 4 38 168
12 -2 -0 -0 -0 ) -1 7 -36 -25 34 1 54 -1 —4 28
13 4 4 -26 1 -2 -2 -0 1 7 9 4 -1 103 -101 28
14 3 10 111 1 —24 17 -2 5 -12 -1 -38 —4 -101 578 —94
15 -1 -2 -28 -26 -3 3 -8 -78 ~72 -88 168 28 28 94 1283
Bix=1x0 %MW 1.
Table 8
Set of parameters used in MG-PSO and GPSO-w algorithms for PGS-2. 6X 10 PGS-2
58 —— MG-PSO
Set of parameters ~ MG-PSO GPSO-w . ‘ —— GPSO-w
Exploration phase  Exploitation phase = 5'2
= 5.
k=1 k=2 &
b 5.2
Y 0.40 0.40 - 2 5
1 G 2.05 2.05 2.00 3) ‘|
Niter 400 600 1000 g 4.8 |
Winik 1.00 0.50 0.90 © 4.6 ,]
Wiink 0.10 0.10 0.40 0 4.4
grady, -225x10°% 6.67 x 10794 —~5.00 x 10794 b L\
o 42 L
S 4 = |
5.2.3. Comparison in terms of ?nequality const'raints g 3.8
Table 5 presents the solution vector, P; (j=1, 2, ..., 13) corre- 236
sponding to the best solution of MG-PSO and GPSO-w algorithms. Way
Note that the Pp = 1800 MW. It can be seen that both the MG-PSO 3.2
and GPSO-w algorithms are working within generation limits (8) 3
and satisfying power balance constraint. 0 200 400 600 800 1000

5.3. Test case 2: power generation system-2 (PGS-2)

The PGS-2 is a medium-scale PGS [18] with 15 TGUs (Nge;, = 15).
The TGU specification and B-loss coefficients are shown in Table 6

Iteration,t

Fig. 7. Convergence characteristics of MG-PSO and GPSO-w algorithms for PGS-2.

and Table 7, respectively. Maximum load demand at normal oper-
ation is given as Pp = 2630 MW. As seen from Table 6, the PGS-2 has

Table 9

Comparison of cost performance between MG-PSO algorithm and other 20 ECTs for PGS-2.
SL.No. Algorithm Min. Cost ($/h) Max. Cost ($/h) Mean Cost ($/h) o ($/h) R ($/h) AET (sec)
1 OPSO [10] 32,668.4863 32,669.3005 32,668.9205 0.1394 0.8142 43777
2 PSO-MSAF [11] 32,713.0900 32,798.2500 32,759.6400 NA 85.1600 19.1500
3 SA-PSO [15] 32,708.0000 32,789.0000 32,732.0000 18.0250 81.0000 12.7900
4 CPSO [17] 32,834.0000 33,318.0000 33,021.0000 NA 484.0000 13.1300
5 GA[18] 32,939.5208 33,231.6216 33,106.0019 100.1279 292.1008 NA
6 DE [18] 32,818.5792 33,116.9340 32,990.8673 61.5145 298.3548 NA
7 ACSA [18] 32,785.6031 33,185.2761 33,051.7711 77.8005 399.6730 NA
8 AIS [18] 32,895.9173 33,132.0191 33,017.6537 58.1230 236.1018 NA
9 FA [18] 32,901.6610 33,197.2718 33,081.0107 91.0111 295.6108 NA
10 BCO [18] 32,989.2341 33,301.4940 33,113.0149 69.7986 312.2599 NA
11 APSO [18] 32,687.9840 33,359.6609 32,948.0533 92.0040 671.6769 NA
12 HGPSO [18] 32,864.0501 33,280.2655 33,034.1894 63.9932 416.2154 NA
13 HPSOM [18] 32,697.2458 33,015.7284 32,819.5931 83.0907 318.4826 NA
14 HPSOWM [18] 32,696.9585 33,034.3413 32,805.7185 87.8689 337.3828 NA
15 RDPSO [18] 32,666.1818 32,934.3089 32,739.7165 56.7070 268.1271 NA
16 A-logic [20] 32,713.9510 NA NA NA NA NA
17 SPPO [21] 32,713.2100 NA NA NA NA NA
18 0-MBA [27] 32,680.5956 32,693.2640 32,687.3305 NA 12.6684 0.0983
19 EGSSOA [30] NA NA 32,680.1038 NA NA NA
20 GPSO-w 33,118.2274 33,429.7840 33,246.5605 72.0523 311.5566 7.2378
21 MG-PSO 32,677.9098 32,678.0217 32,677.9666 0.0348 0.1119 9.2084

The bold numbers indicate the best solution found by corresponding algorithm.
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x10* PGS-2 performance was compared to other 10 ECTs. In addition, the OPSO

3.35 ——weFso [10], PSO-MSAF [11], SA-PSO [15], CPSO [17], A-logic [20], SPPO [21],

3.34 ? —e— GPSO-w 6-MBA [27] and EGSSOA [30] algorithms have also been tested with

’ / \ A PGS-2. Here, the performance of MG-PSO with GPSO-w algorithms

333 and other existing 19 ECTs are compared. The set of parameters

= /\A [ V\/\/ \A \ / used in MG-PSO and GPSO-w algorithms are shown in Table 8. In

£ 332 ] v SERR ] V addition, both are run with m = 20, d = 15 and Ny, = 25. In MG-PSO

% algorithm, two negative gradients are selected (Ngsqq = 2), by using

|.|_8 3.31 trial and error method, one for Exploration phase and another one
5 33 for Exploitation phase as shown in Table 8.

9 ) The Comparison of fitness values between MG-PSO algorithm

€ 3.09 and other 20 existing ECTs are listed in Table 9. It can be seen that,

a the MG-PSO algorithm achieves the best positions in terms of ¢ and

© 3.28 R and the second best position result in terms of Fyeqn. The best

Finean is achieved by OPSO algorithm [10]. However, in terms of AET,

3.27 the MG-PSO algorithm is the fourth best. The NA denotes that the

.26 value was not available in corresponding paper. The bold values

0 5 10 15 20 25

Run

Fig. 8. Comparison of optimized cost per run between MG-PSO and GPSO-w algo-
rithms for PGS-2.

Table 10
Optimized output power in (MW) for each TGU obtained by MG-PSO and GPSO-w
algorithms for PGS-2.

TGU; P{MW)

GPSO-w MG-PSO
1 455.0000 455.0000
2 303.3837 380.0000
3 128.0633 129.9965
4 129.6879 130.0000
5 169.8932 170.0000
6 363.6612 459.8764
7 429.8892 430.0000
8 148.3850 60.0045
9 161.6133 50.0179
10 135.3756 160.0000
11 79.7284 80.0000
12 20.0354 80.0000
13 32.9961 25.0000
14 54.6227 31.9996
15 54.6609 15.0000
Total output power (MW) 2666.9959 2656.8949

11 POZs in 4 TGUs and RRLs are applied in each TGU.

5.3.1. Comparison in terms of fitness values
In Ref. [18], the RDPSO algorithm was tested on PGS-2 and its

indicate the best solution found by corresponding algorithm. These
results indicate that the MG-PSO algorithm provides consistent,
stable and robust performance.

5.3.2. Convergence characteristics of MG-PSO and GPSO-w
algorithms

Fig. 7 shows convergence characteristics of MG-PSO and GPSO-
w algorithms for PGS-2. It shows ensemble average Fgs values at
each iteration obtained from 25 independent runs. It can be seen
that MG-PSO algorithm settles at about 450 iterations to achieve
Finean = $32,678/h whereas GPSO-w algorithm takes about 800 it-
erations to settle and achieved Fpeqn = $33,000/h.

Fig. 8 shows the distribution of optimized Fo at each run. It
shows that the optimized F,s of MG-PSO algorithm remains steady
at about $32,677/h, whereas in GPSO-w algorithm, the optimized
Feost varies over a wide range from $33,118/h to $33,429/h. This
indicates that MG-PSO algorithm is more consistent, stable and
reliable than the GPSO-w algorithm.

5.3.3. Comparison in terms of inequality constraints

Table 10 presents the solution vector, P; (j=1, 2, ..., 15) corre-
sponding to the best solution for MG-PSO and GPSO-w algorithms.
It can be seen that both the MG-PSO and GPSO-w algorithms are
able to avoid the 11 POZs imposed on 4 TGUs and are remain within
RRLs constraints imposed on each TGU. Thus, both algorithms are
able to satisfy the power constraints (15). Note that the
Pp=2630 MW for PGS-2.

5.3.4. Comparison in terms of power balance constraint

Table 11 shows results of power balance constraint for the MG-
PSO algorithm and other 9 ECTs. The load demand of PGS-2 is given
by Pp=2630 MW. Using the optimum output power generated as

Table 11

Comparison of power balance constraint among 10 ECTs for PGS-2.
SI. No. Algorithm Total P; (MW) Pp (MW) Py (MW) P> (MW) Ppmismatch (MW)
1 OPSO [10] 2657.2591 2630 27.2591 27.2591 0.0000
2 PSO-MSAF [11] 2660.4900 2630 30.4900 30.4900 0.0000
3 SA-PSO [15] 2660.9000 2630 30.9000 30.9080 0.0080
4 CPSO [17] 2662.1000 2630 32.1000 32.1303 0.0303
5 RDPSO [18] 2655.3650 2630 25.3650 25.3696 0.0460
6 A-logic [20] 2659.9491 2630 29.9491 29.9491 0.0000
7 SPPO [21] 2660.0000 2630 30.0000 31.4300 1.4300
8 EGSSOA [30] 2657.0120 2630 27.0120 27.0120 0.0000
9 GPSO-w 2666.9959 2630 36.9959 36.9956 0.0003
10 MG-PSO 2656.8949 2630 26.8949 26.8949 0.0000

The bold numbers indicate the best solution found by corresponding algorithm.
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Table 12
Specifications and power constraints for PGS-3.
TGU; P? (MW) Pjmin (MW) Pjimax (MW) a; ($/h) b; ($/MWh) ci ($/MW?h) UR; (MW/h) DR; (MW/h) POZs (MW)
1 50 40 80 170.77 8.3360 0.03073 35 60 NC
2 60 60 120 309.54 7.0706 0.02028 40 70 NC
3 150 80 190 369.03 8.1817 0.00942 50 90 [82,88]
4 24 24 42 135.48 6.9467 0.08482 42 42 NC
5 42 26 42 135.19 6.5595 0.09693 42 42 NC
6 75 68 140 222.33 8.0543 0.01142 40 75 NC
7 100 110 300 287.71 8.0323 0.00357 65 100 [155,162][221,235]
8 152 135 300 391.98 6.9990 0.00492 65 100 NC
9 200 135 300 455.76 6.6020 0.00573 65 100 [235,246]
10 100 130 300 722.82 12.9080 0.00605 65 100 [200,211]
11 300 94 375 635.20 12.9860 0.00515 55 95 [213,220]
12 300 94 375 654.69 12.7960 0.00569 55 95 [213,220]
13 150 125 500 913.40 12.5010 0.00421 80 120 [201,211][290,310][413,425]
14 200 125 500 1760.4 8.8412 0.00752 80 120 [205,217][306,318][409,420]
15 190 125 500 1728.3 9.1575 0.00708 80 120 [214,230](277,290][402,412]
16 190 125 500 17283 9.1575 0.00708 80 120 [214,230][277,290][402,412]
17 190 125 500 17283 9.1575 0.00708 80 120 [214,230][277,290][402,412]
18 400 220 500 647.85 7.9691 0.00313 70 110 [307,321][407,421]
19 400 220 500 649.69 7.9550 0.00313 70 110 [301,310][421,431]
20 398 242 500 647.83 7.9691 0.00313 70 110 [340,351][421,431]
21 398 242 500 647.81 7.9691 0.00313 70 110 [340,351][421,431]
22 390 254 550 785.96 6.6313 0.00298 70 110 [306,320][440,445]
23 390 254 550 785.96 6.6313 0.00298 70 110 [306,320][440,445]
24 390 254 550 794.53 6.6311 0.00284 70 110 [370,390][495,502]
25 390 254 550 794.53 6.6311 0.00284 70 110 [370,390][495,502]
26 390 254 550 801.32 7.1032 0.00277 70 110 [380,410][501,520]
27 390 254 550 801.32 7.1032 0.00277 70 110 [380,410][501,520]
28 20 10 150 1055.10 3.3353 0.52124 90 150 [102,113]
29 20 10 150 1055.10 3.3353 0.52124 90 150 [102,113]
30 30 10 150 1055.10 3.3353 0.52124 90 150 [102,113]
31 30 20 70 1207.80 13.0520 0.25098 70 70 NC
32 40 20 70 810.79 21.887 0.16766 70 70 NC
33 40 20 70 1247.70 10.2440 0.26350 70 70 NC
34 25 20 70 1219.20 8.3707 0.30575 70 70 NC
35 25 18 60 641.43 26.2580 0.18362 60 60 NC
36 20 18 60 1112.80 9.6956 0.32563 60 60 NC
37 20 20 60 1044.40 7.1633 0.33722 60 60 NC
38 25 25 60 832.24 16.3390 0.23915 60 60 NC
39 25 25 60 832.24 16.3390 0.23915 60 60 NC
40 25 25 60 1035.2 16.3390 0.23915 60 60 NC

NC: No constraints.

shown in Table 10 and Equations (5)—(7), Py, Pr2 and Ppmismatch,
were determined. It can be seen that the proposed MG-PSO algo-
rithm as well as OPSO [10], PSO-MSAF [11], A-logic [20] and EGSSOA
[30] algorithms are able to satisfy the zero mismatch condition, i.e.,
Prmismatch = 0, thus satisfying (4).

5.4. Test case 3: power generation system-3 (PGS-3)

The PGS-3 is a large-scale PGS taken from Taipower system [39].
The PGS-3 consists of 40 mixed-generating units, coal-fired, gas-

fired, gas-turbines with complex cycle, diesel generating units and
nuclear generating units. The maximum load demand at normal
and steady-state operations and is given as Pp=38550 MW. The
PGS-3 contains 46 POZs distributed among 25-TGU and are shown
in Table 12. The RRLs are imposed on all the 40 TGUs. The B-loss
coefficients matrix of dimension 40 x 40 is taken from Ref. [10].
Unfortunately, the PGS-3 is tested by only a few authors with RRLs,
POZs and P; constraint. This may be due to unavailability of B-loss
coefficients or due to its high dimension with a large number of
power constraints.

Table 13
Set of parameters used in MG-PSO and GPSO-w algorithms for PGS-3.
Set of parameters MG-PSO GPSO-w
Exploration phase Exploitation phase
k=1 k=2 k=3
Y 0.30 0.30 0.30 -
1, G 2.05 2.05 2.05 2.00
Nicer 300 300 700 1000
Winik 1.00 0.80 0.40 0.90
Wiink 0.20 0.20 0.15 0.40
grady, —2.67 x 109 —2.00 x 1079 —357 x 107 —~5.00 x 10794
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Table 14
Comparison of cost performance between MG-PSO and other 15 ECTs for PGS-3.
SI. No. Algorithm Min.Cost Frip ($/h) Max. Cost Frnax ($/h) Mean Cost Finean ($/h) G ($/h) R ($/h) AET (sec)
Without POZs, RRLs and P;
1 GA[18] 133,435.6906 136,274.9726 135,012.4985 729.3536 2839.2820 NA
2 DE [18] 129,915.5635 137,042.9461 130,600.2269 1335.4343 7127.3826 NA
3 ACSA [18] 131,167.3417 134,923.6245 132,844.7110 741.0843 3756.2828 NA
4 AIS [18] 130,133.9214 132,703.1884 131,482.2767 561.7950 2569.2670 NA
5 FA [18] 130,948.8466 134,997.9243 133,511.4572 747.3692 4049.0777 NA
6 BCO [18] 130,337.7290 132,999.8803 131,733.9439 589.8034 2662.1513 NA
7 APSO [18] 130,861.5242 134,044.6303 132,587.8486 675.0344 3183.1061 NA
8 HGPSO [18] 132,072.2495 135,528.3862 134,012.5706 684.4951 3456.1367 NA
9 HPSOM [18] 129,177.4413 131,281.3077 130,234.1694 529.5827 2103.8664 NA
10 HPSOWM [18] 129,717.3557 132,303.5999 130,858.6741 591.7691 2586.2442 NA
11 RDPSO [18] 128,864.4525 131,129.0861 129,482.0970 568.9333 2264.6336 NA
With POZs, RRLs and P,
12 OPSO [10] 126,489.6228 127,916.1972 127,349.8324 302.3502 1426.5744 69.32
13 MIQCQP [19] 128,395.2900 NA NA NA NA 13.34
14 A-logic [20] 129,777.5300 NA NA NA NA NA
15 GPSO-w 136,185.0955 564,890.7051 396,596.5735 155,100.0223 424,705.6096 18.60
16 MG-PSO 126,561.5538 126,683.8917 126,625.0260 20.2709 145.2457 29.38

The bold numbers indicate the best solution found by corresponding algorithm.

5.4.1. Comparison in terms of fitness values

In Ref. [18], PGS-3 has been tested with 11 ECTs and superior
performance of RDPSO algorithm over other 10 ECTs has been
shown. However, the 46 POZs of 25-TGU, RRLs of each TGU and the
P; constraint have not been considered. Therefore, these results are
less constrained. Considering all the POZs, RRLs and P, the PGS-3
has been tested by OPSO [10], MIQCQP [19], A-logic [20], the pro-
posed MG-PSO and GPSO-w algorithms. Thus, here, we are compare
the performance of MG-PSO algorithm and other 15 existing ECTs.
The set of parameters used in MG-PSO and GPSO-w algorithms are
shown in Table 13. In addition, both are run with m =20, d = 40 and
Nryn=25. In MG-PSO algorithm, three negative gradients were
selected (Ngrqq = 3) by trial and error method, two for Exploration
phase and another one for Exploitation phase as shown in Table 13.

The fitness values of the 16 ECTs are listed in Table 14. It can be
seen that the MG-PSO algorithm provides the best result in terms of
Fmean and o over 25 independent runs. This indicates that the MG-
PSO algorithm provides the most optimum and consistent results.
In addition, the range R of MG-PSO algorithm is the lowest among
the 16 ECTs, thus indicating that MG-PSO algorithm provides
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Fig. 9. Convergence characteristics of MG-PSO and GPSO-w algorithms for PGS-3.
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solution with lowest dispersion. In terms of AET, the MG-PSO al-
gorithm is the third best. The GPSO-w algorithm is not able to
provide an accurate solution. These results indicate that among the
16 ECTs, the MG-PSO algorithm is the most stable, robust and is able
to provide most optimum solution.

5.4.2. Convergence characteristics of MG-PSO and GPSO-w
algorithms

Fig. 9 shows convergence characteristics of MG-PSO and GPSO-
w algorithms for PGS-3. It shows ensemble average Fqs values at
each iteration obtained from 25 independent runs. It can be seen
that MG-PSO algorithm settles at about 300 iterations and achieves
Frnean of about $126,850/h. Whereas, the GPSO-w algorithm takes
about 320 iterations to converge, and settles at a local minimum
with a non-optimal Fpeqy of about $396,798/h, which is not
acceptable solution. This indicates that the GPSO-w algorithm is
unable to solve ED problem with such a high dimensional search
space and under large number of power constraints. In contrast, the
MG-PSO algorithm gives high accuracy in solving this complex
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Fig. 10. Comparison of optimized cost per run between MG-PSO and GPSO-w algo-
rithms for PGS-3.
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Table 15 problem.

Optimized output power in (MW) for each TGU obtained by MG-PSO and GPSO-w
algorithms for PGS-3.

PMW)

6y, GPSO-w | MG-PSO
1 74.5895|  79.0000
2 96.9291|  99.4847
3 189.6310| 189.9937
4 4.5545| 41.7679
S 5.5192| 36.9848
6 135.4468 | 114.0129
7 141.8746| 153.8540
8 155.1454| 216.8515
9 263.7921 | 264.9643
10 163.1132| 159.2085
11 352.4871| 354.9607
12 350.0376| 354.8539
13 212.5726| 219.3862
14 279.9737| 279.4602
15 258.5637| 269.8465
16 269.7745| 269.4247
17 269.7528 | 269.4615
18 462.0362 | 469.5305
19 462.3999 | 469.0488
20 467.5911| 467.9253
21 468.0000| 467.9503
22 453.4392| 459.5271
23 448.1765| 459.6845
24 456.8332| 459.9493
25 457.6291| 459.9707
26 455.8000| 459.1375
27 459.4759| 459.6122
28 77.9077|  35.7708
29 85.5141 35.0501
30 87.2770| 45.2832
31 69.9753|  56.5482
32 69.3169|  36.2317
33 563171 41.4976
34 51.5673| 47.2478
35 57.7413|  40.5899
36 19.8839|  55.1936
37 40.2083 |  53.4405
38 37.7862|  40.9827
39 59.4037| 40.3516
40 59.9943|  54.0824
Total output power(MW) | 8588 0316 | 8,588.1223
FAIL | SUCCESS

Table 16
Comparison of power balance constraint among 3 ECTs for PGS-3.

Fig. 10 shows the variation of optimized F.,s over 25 indepen-
dent runs achieved by the MG-PSO and GPSO-w algorithms. It
shows that the optimized Fos of MG-PSO algorithm varies between
$126,561.5538/h to $126,683.8917/h, whereas in GPSO-w algo-
rithm, it varies between $136,185.0955/h to $564,890.7051/h. This
indicates that MG-PSO algorithm is capable of providing consistent
and reliable optimal solution. Whereas, the GPSO-w algorithm is
unable to provide optimal solution due to high complexity of the
problem.

5.4.3. Comparison in terms of inequality constraints

Table 15 presents the solution vector, P; (j=1, 2, ..., 40) corre-
sponding to the best solution obtained from MG-PSO and GPSO-w
algorithms. Note that the load demand, Pp = 8850 MW. In case of
GPSO-w algorithm, based on (15), the TGU4, TGUs and TGUg violate
RRLs (red color). The TGU4, TGUs and TGUg must operate within
Py low =24 MW to  Pspigh=42MW,  P5jon =26 MW to
Ps high =42 MW, Pg o =68 MW to P pigh = 115 MW, respectively.
This means that GPSO-w algorithm fails in solving PGS-3 indicating
that it is unable to solve large-scale ED problem. Whereas, the MG-
PSO algorithm avoids all the 46 POZs of 25 TGUs and remains
within RRLs.

5.4.4. Comparison in terms of power balance constraint

Since all the data for other existing ECTs are not available for
PGS-3, we compare the performance between MG-PSO algorithm
and OPSO [10], A-logic [20]. The GPSO-w is out of comparison,
because it failed in solving PGS-3. The load demand of PGS-3 is
given as Pp=8550 MW. Using the total optimum output power
generated (Table 15) and Equations (5)—(7), Py, P2 and Py mismatchs
were determined and are presented in Table 16. It can be seen that
Prmismatcn of MG-PSO algorithm is more close to 0.0 than OPSO [10]
and A-logic [20], which indicates better performance of MG-PSO
algorithm.

5.5. Test case 4: power generation system-4 (PGS-4)

The PGS-4 is a very large-scale PGS taken from Korean PGS [25].
It is a complex with 140 TGUs each having RRLs. In addition, the
cost functions of 12 TGUs have VPL effects and 4 TGUs have 11 POZs.
The maximum load demand under steady-state and normal oper-
ations is 49,342 MW. The Py of this PGS is neglected. The PGS-4 data
are available in Ref. [25].

5.5.1. Comparison in terms of fitness values

The PGS-4 has already been tested with 2 existing ECTs, i.e.,
CCPSO [12] and C-GRASP-SaDE [25]. Here, the performance of MG-
PSO algorithm is compared with these two algorithms and GPSO-w.
The set of parameters used in MG-PSO and GPSO-w algorithms are
shown in Table 17. In addition, both are run with m =20, d = 140
and Ny = 25. In MG-PSO algorithm, four negative gradients were
selected (Ngrqq =4) by trial and error method, three for Exploration
phase and another one for Exploitation phase as shown in Table 17.

The fitness values of the 4 ECTs are listed in Table 18. It can be
seen that in GPSO-w, Fyean = $2,529,855.79/h and ¢ = $358,126.35/

Algorithm Total P; (MW) Pp (MW) Py (MW) P> (MW) Ppmismatch (MW)
OPSO [10] 8588.0734 8550 38.0734 38.1121 0.0387
A-logic [20] 8637.3300 8550 87.3300 87.4037 0.0737
MG-PSO 8588.1223 8550 38.1223 38.1227 0.0004

The bold number indicates the best solution found by corresponding algorithm.
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Table 17
Set of parameters used in MG-PSO and GPSO-w algorithms for PGS-4.

Set of parameters MG-PSO GPSO-w

Exploration phase Exploitation phase
k=1 k=2 k=3 k=4

Y 0.40 0.40 0.40 0.40 -

c1, C2 2.05 2.05 2.05 2.05 2.00

Niter 1200 1200 1200 1800 3000

Winik 0.80 0.80 0.80 035 0.90

Wiink 0.10 0.20 0.30 0.20 0.40

grady, —5.83x10°% —5.00 x 104 —416 x 1074 —8.33x107° —1.67 x 107%
Table 18
Comparison of cost performance between MG-PSO algorithm and other 3 ECTs for PGS-4.

SL.No. Algorithm Min. Cost Fpin ($/h) Max. Cost Fiax ($/h) Mean Cost Fiean ($/h) o ($/h) R ($/h) AET (sec)

1 CCPSO [12] 1,657,962.7300 1,657,962.7300 1,657,962.7300 0.00 0.00 150.00

2 C-GRASP-SaDE [25] 1,657,962.7268 1,658,583.5267 1,658,006.2712 NA 620.79 NA

3 GPSO-w 1,933,419.8873 3,366,473.6288 2,529,855.7978 358,126.35 1,433,053.74 31.29

4 MG-PSO 1,656,515.4715 1,656,917.3113 1,656,667.4650 8.01 401.83 48.37

The bold numbers indicate the best solution found by corresponding algorithm.

h. These results indicate that GPSO-w is unable to solve PGS-4.
Whereas, the MG-PSO algorithm is efficient in obtaining the best
result in terms of Fneqn over 25 independent runs. In addition, in
terms of ¢, the performance of the MG-PSO algorithm is the second
best. This shows that the MG-PSO algorithm provides optimum and
consistent results. In addition, the range R of MG-PSO algorithm is
the second lowest among the 4 ECTs, thus indicating that it pro-
vides solution with low dispersion. In terms of AET, the MG-PSO
algorithm shows the second best performance. These results indi-
cate that among the 4 ECTs, the MG-PSO algorithm is stable and
robust and is able to provide optimum solution.

5.5.2. Convergence characteristics of MG-PSO and GPSO-w
algorithms

Fig. 11 shows the convergence characteristics of MG-PSO and
GPSO-w algorithms for PGS-4. It shows ensemble average Feos
values at each iteration obtained from 25 independent runs. It can
be seen that MG-PSO algorithm settles at about 1300 iterations and
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Fig. 11. Convergence characteristics of MG-PSO and GPSO-w algorithms for PGS-4.
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achieves Finean of about $1,656,700/h. Whereas, the GPSO-w algo-
rithm settles at a non-optimal Fyeqn of about $2,529,855.79/h since
the beginning of its learning. Early convergence of the GPSO-w al-
gorithm indicates that it has trapped into a local minimum of at
about $2,529,855.79/h. This indicates that the GPSO-w algorithm is
unable to solve ED problem with such a high dimension (d = 140)
and under such a large number of power constraints. Whereas, it is
clear that for this complex PGS, the MG-PSO algorithm efficiently
converges to the vicinity of the optimum solution with different
power constraints imposed by SPG.

Fig. 12 shows the variation of optimized F.,s over 25 indepen-
dent runs achieved by the MG-PSO and GPSO-w algorithms. It
shows that the optimized Fos of MG-PSO algorithm varies between
$1,656,515/h and $1,656,917/h, whereas in GPSO-w algorithm, it
varies between $1,933,419.88/h and $3,366,473.62/h. This indicates
that MG-PSO algorithm is capable of providing consistent and
reliable optimal solution. Whereas, the GPSO-w algorithm is unable
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Fig. 12. Convergence characteristics of MG-PSO and GPSO-w algorithms for PGS-4.
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Table 19

Optimized output power in (MW) for each TGU obtained by GPSO-w and MG-PSO algorithms for PGS-4.

LT. Al-Bahrani, J. Chandra Patra / Energy 147 (2018) 1070—1091

GPSO-w MG-PSO

TGU| P, [TGU| P, [TGU| P, | TGU; p |TGu| P, |TGU| P, |TGU| P, |TGU; P,

i i i i i i

1 119.f 39 | 611.] 77 | 513.1 115 36821 1 118.902( 39 | 773.955| 77 |389.939 | 115 | 244.0759
0 1 9 0 1

2 150.[ 40 | 707.] 78 | 336.4| 116 286.4| 2 |163.931] 40 | 768.938( 78 |330.875| 116 | 244.3029
8 6 7 9 5

3 167.| 41 4.7 79 | 196.7 117 3482 3 | 189.835| 41 3.5417] 79 (530.714 | 117 | 244.0177
7 6 8

4 137.] 42 | 12.1| 80 | 2724 118 160.9| 4 189.811| 42 3.1421| 80 [530.954| 118 95.1031
8 9 8

5 183.( 43 | 170.] 81 | 525.4| 119 119.8] 5 | 189.839( 43 | 249.756| 81 |541.691| 119 95.2248
4 4 1 3 7

6 | 129.] 44 | 185.] 82 90.8 120 189.3] 6 | 189.979( 44 | 249.798 82 |56.1218 | 120 | 116.1326
3 4 0 6

7 | 320.| 45 | 222.| 83 | 156.1 121 300.7| 7 | 489.925( 45 | 249.931| 83 |115.441 | 121 175.2108
7 9 0 5 6

8 [ 285 46 | 197.] 84 | 236.1 122 11.0[ 8 |489.993| 46 |249.757| 84 |115.308 | 122 2.0596
0 2 2 4 4

9 | 392.] 47 | 178.] 85 | 2419 123 17.6f 9 | 495.836] 47 |249.966| 85 |115.437 | 123 4.1350
6 2 1 4 0

10 | 266.| 48 | 191.| 86 | 239.3 124 63.7] 10 |495.944| 48 | 249.898| 86 |207.480 | 124 15.1293
4 0 9 2 2

11 | 441.] 49 | 224.] 87 | 211.7 125 16.2] 11 | 495.828| 49 | 249.884( 87 |207.050 | 125 9.3245
0 3 4 1 6

12 | 329.] 50 | 234. 88 | 295.0] 126 20.6( 12 | 495.893| 50 |249.892| 88 |[175.216 | 126 12.3679
6 8 1 7 8

13 | 351.] 51 | 365.| 89 | 193.6 127 13.3| 13 | 505.948] 51 | 165.009| 89 |175.270 | 127 10.0243
5 2 5 0 9

14 | 467.| 52 | 484 90 | 2393 128 230.0| 14 | 508.954| 52 | 165.071| 90 [175.307 | 128 | 112.1335
3 4 5 8 8

15 | 424, 53 | 383.] 91 | 3246 129 19.0f 15 | 505.931| 53 | 165.270| 91 | 175308 129 4.0748
4 5 7 1 2

16 | 377.| 54 | 457.| 92 | 516.7 130 349| 16 [ 504.879| 54 | 165.348| 92 |575.323 | 130 5.3571
6 9 7 5 6

17 | 309.] 55 | 269.] 93 | 509.8 131 6.2 17 | 505.921| 55 | 180.091| 93 |[547.281 | 131 5.3220
7 9 9 8 4

18 | 360.] 56 | 380.] 94 | 983.9 132 86.9] 18 | 505.925| 56 | 180.221| 94 [836.256 | 132 50.0785
9 7 2 3 9

19 | 369.[ 57 | 278.] 95 | 813.1 133 6.8 19 | 504.978| 57 | 103.097| 95 |837.283 | 133 5.1698
5 5 7 4 4

20 | 348.] 58 | 521.| 96 | 634.2 134 71.9] 20 | 504.870| 58 | 198.653| 96 |681.898 | 134 42.1825
6 0 3 6 9

21 | 263.] 59 | 230.[ 97 | 712.4 135 65.6] 21 [504.993] 59 |311.801| 97 |719.987 | 135 42.3435
6 9 6 1 7

22 | 352, 60 | 216.[ 98 | 683.5] 136 51.2| 22 | 504.987| 60 |311.664 | 98 | 717.649| 136 41.2530
5 3 1 8 3

23 | 470.| 61 | 425.| 99 | 705.5 137 23.1| 23 | 504.873| 61 [163.796 | 99 | 719.686| 137 17.2795
7 2 2 1 5

24 | 272.] 62 | 298.| 100 | 891.5 138 17.8| 24 | 504.801| 62 [95.8232 | 100 | 963.814| 138 7.0127
5 6 4 1

25 | 505.[ 63 | 478. 101 | 945.7 139 7.6] 25 | 536.845] 63 |510.991 | 101 | 957.958| 139 7.0810
1 2 8 8 3

26 | 507.| 64 | 470.[ 102 | 862.4 140 34.6] 26 |536.956| 64 |510.902 | 102 | 946.520] 140 26.1599
6 4 6 6 3

27 | 481.| 65 | 205.[ 103 | 976.1|P, = 49,342MW 27 | 548.948| 65 | 489.632| 103 | 933.772| P, = 49,342MW
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4 1 8 8 7
Total output Total output
28 | 420. 66 | 458.| 104 | 984.6(ower—40231.1M | 28 | 548.992( 66 |252.681 [ 104 | 934.871 (50049 3420
2 6 3 9 8
Ww. Ww.
29 | 324.| 67 | 413.] 105 | 1,014. 29 |500.995] 67 |489.756 | 105 | 876.443
FAIL SUCCESS
9 8 3 5 2 7
30 | 463.| 68 | 293.] 106 | 906.0 30 | 498.989| 68 |489.674 | 106 | 880.127
6 6 5 1 7
31 | 430.| 69 | 175.] 107 | 938.4 31 |505.939] 69 |130.816 | 107 | 873.455
2 3 2 8 3
32 | 285.] 70 | 297.| 108 | 874.2 32 |505.871] 70 [296.627 | 108 | 877.280
0 0 7 3 1
33 | 473.| 71 | 337.] 109 | 879.0 33 | 505.901] 71 |142.757 | 109 | 871.210
8 9 3 3 3
34 | 455.| 72 | 411.] 110 | 919.5 34 | 505.801| 72 |367.651 | 110 | 864.680
5 5 6 8 2
35 | 461.| 73 | 345 111 | 969.3 35 1499.941| 73 |195.681 | 111 | 882.379
1 3 0 9 3
36 | 293.| 74 | 473.| 112| 1653 36 | 499.828| 74 |219.696 | 112 | 94.3471
9 3 1 0
37 | 164.] 75 | 483.| 113 | 1934 37 |240.999| 75 [217.811 | 113 | 94.2248
8 2 9 7
38 | 216.| 76 | 523.| 114 | 113.6 38 |240.966] 76 |267.883 | 114 | 94.2292
7 9 6 1
to provide optimal solution due to the high complexity of the contender algorithm when t-value < 0 and p-value less than 0.05.

problem.

5.5.3. Comparison in terms of inequality constraints

Table 19 presents solution vector, P; (j=1, 2, ..., 140) corre-
sponding to the best solution obtained from MG-PSO and GPSO-w
algorithms. Note that Pp=49,342 MW. In case of GPSO-w algo-
rithm, 11 TGUs violate RRLs, as shown in red color. Table 20 shows
the details of the 11 TGUs for which GPSO-w algorithm failed to
satisfy RRLs. These 11 TGUs must operate within the range of RRLs
based on (15). In addition, TGU #136 violates POZ [50—74] MW
based on (15), as shown in blue color in Table 19. This means that
GPSO-w algorithm fails to solve PGS-4. This indicates that GPSO-w
algorithm is unable to solve ED problem of very large-scale TGUs
under different power constraints. Whereas, the MG-PSO algorithm
avoids the 11 POZs imposed on 4 TGUs and working within RRLs of
each TGU and solving non-smooth cost function due to VPL effects
imposed on 12 TGUs.

5.6. Statistical significance of the proposed MG-PSO algorithm

In order to determine the statistical significance of the proposed
MG-PSO algorithm, three sets of unpaired one-tailed t-Test are
carried out [40] with a significance level of o = 0.05. The MG-PSO
algorithm is considered to be statistically significant against the

The general merit over contender is shown in the last row of
Table 21.

Table 21 shows the t-Test results for the four PGSs, PGS-1, PGS-2,
PGS-3 and PGS-4. The one-tailed unpaired (o = 0.05 with a degree
of freedom of 24) is performed against 29 competitive algorithms.
As seen from the data in the last column in Table 21, the proposed
MG-PSO algorithm is found to be statistically significant against the
GPSO-w algorithm for four PGSs.

Since data are not available for the 28 algorithms corresponding
to the four PGSs with SL.No., 2 to 29, the t-Test was carried out
against one or two PGSs. Again, from the data in the last column,
one can see that the MG-PSO algorithm is statistically significant
against the 28 contending algorithms and neutral with the OPSO
algorithm [10]. These results give enough evidence that the pro-
posed MG-PSO algorithm is statistically significant against all the
29 contending algorithms.

6. Conclusion

A novel algorithm called multi-gradient PSO (MG-PSO) algo-
rithm is proposed and applied to optimize total fuel cost of four
medium and large PGSs under several practical constraints. In MG-
PSO algorithm, several negative gradients are used by m particles
while searching for a global optimum in two phases called

Table 20

List of 11 TGUs that violate RRLs based on output active power P; obtained by GPSO-w for PGS-4.
TGU; 92 93 94 103 104 105 106 107 109 110 111
Pjtow (MW) 539.4 5115 795.0 844.0 875.0 816.5 820.9 813.7 799.5 795.0 810.0
P; high (MW) 575.4 547.5 836.8 934.0 935.0 876.5 880.9 873.7 871.7 864.8 882.0
P; (MW) 516.7 509.8 983.9 976.1 984.6 1014.3 906.0 938.4 879.0 919.5 969.3
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2.54x10°48

—4.36 x 10°2

MIQCQP

27

1

134x10°%

—5.96 x 10°!

CCPSO

[12]

2

6.04 x 1028

~6.16 x 10°!

6.87 x 104

—4.61 x 102

C-GRASP-SaDE

[25]

29

Numbers in bold signatures that MG-PSO algorithm is statistically significant with respect to the corresponding algorithms.

L.T. Al-Bahrani, J. Chandra Patra / Energy 147 (2018) 1070—1091 1089

Exploration and Exploitation. The combination of two phases pro-
vides a balance between global and local search spaces. With
extensive simulation studies, performance of the MG-PSO algo-
rithm was compared with GPSO-w algorithm and several existing
competitive algorithms and its superiority is demonstrated in
terms of mean cost, convergence rate and consistency. In case of
PGS-1, the proposed MG-PSO algorithm provides the best mean
cost when compared to eight competitive ECTs. In PGS-2, it pro-
vides the second best mean cost results when compared with
twenty other ECTs. The best mean cost is achieved by our earlier
proposed OPSO algorithm. In case of two large PGSs with more
constraints, the proposed algorithm achieves the best mean cost
when compared with several ECTs. In addition, statistical tests were
carried out to demonstrate the effectiveness of the proposed al-
gorithm. Thus, the MG-PSO algorithm has proved to be a powerful
and highly effective algorithm that is capable of solving multi-
modal, discontinuous and non-convex functions.

Appendix

Begin MG-PSO Algorithm
Choose Niter, Ngrad» Winik Weinks K=1, 2, ..., Ngraa
Determine Njgerxpiore and Nigerxploir using (25) and (26),
respectively.
Step 1: Initialization: Iteration, t =0
Obtain Gpes(0) using (16)—(19)
Step 2: Begin Exploration phase
fork=1,2, ..., Ngaqg— 1
begin of episode k
Determine grady using (27)
for t=1,2, ..., Niterxplore
Determine wy(t) using (30)
fori=1,2,...,m
Update the particle's velocity and position vectors as
follows

VE©) = Wie(t) VE(E = 1) + €1 11 (6) [ Gl (6 — 1) = XE(E = 1)
4 12(0) [ Ghege (6 = 1) = X(e = 1)]

(A-1)
XK = Xkt = 1) + V@) (A-2)
Evaluate the particle's performance by substituting (A-

2)in flx)

Update Gpers,i as follows

Xk t i Xk ) < Gk (t—=1
Gzlgers,i(t) = ' ( ) lf f( 1 ( )) *f( pers.z( ))
GII;ers.i(t -1) Otherwise
(A-3)
end i loop

Obtain f(GK ., (1))
F (G (0)) = min{f(Gk,, (6)) i=1,2, ... m
Obtain G, (t) corresponding to f(Gf,.,(t))
end t loop
Obtain Ggesf<Niter.xplore) and f(Gﬁest (Niter.xplare))
end of episode k
end k loop
Obtain minimum f(Gbest,xplore(Ni[er,xplore)) by

209



Appendix-1

Paper G

1090 LT. Al-Bahrani, J. Chandra Patra / Energy 147 (2018) 1070—1091

f(Gbest, xplore) =
min{f(cléest(Niter,xplore))}s k=12, ---Ngrad -1
Obtain BEST(Gpest,xplore) corresponding to f(Gpestxplore)
Obtain new search space (neighborhood) by taking “Floor”
and “Ceil” of each element of BEST(Gpest xpiore)
End Exploration phase
Begin Exploitation phase
Step 3: Initialization: Iteration, t =1
fori=12,...m
Vi(1) = Vi(Niterxplore) corresponding to BEST(Gpestxplore)
Xi(1) = Xi(Niterxplore) corresponding to BEST(Gpest,xplore)
Gpers,i(1) = Gpers,i( Niterxplore) corresponding to
BEST(Gbest,xplore)
Ghest,xploit(‘1 ) = BEST(Gbest,xplore)
end i loop
Determine grady,,, using (28)
Step 4: Update
for t=2, 3, ..., Niteraploit
Determine wy(t) using (30)
fori=1,2,..,m
Update the particle's velocity and position vectors as
follows:

Vi(t) = Wiy (£) Vit = 1) + 171 () [Gpersi(E — 1) = X;(t = 1)]
+Cara(t) [Gbest,xploit(t =1) =Xt - 1)]
(A-4)

Xi(t) = Xi(t = 1) + Vi(t) (A-5)

Evaluate the particle's performance by substituting (A-5)

in f{x)
Update Gpers,i(t) as follows
Xi(t) lf f(Xi(t)) Sf(Gpers‘i(t - 1))
Gpers,i(t) =
Gpers,i(t— 1) Otherwise
(A-6)
end i loop

Obtain f(Gpest,xploit(t))
f(Grestxolie(t)) = min{ flGpersi(t)) },i=1,2,...,m
Obtain Gpestxploit(t) corresponding to ﬂGbest,xplait(t))
end t loop
Optimum solution = Gpestxploit(Niterxploit)
Optimum value = f{Gpest xploit(Niter.xploit))

End of Exploitation phase
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Abstract

Over the last two decades a large number of optimization techniques have been
proposed for solving complex unimodal and multimodal problems. One popular
population-based optimization technique is global particle swarm optimization with
inertia weight (GPSO-w) algorithm. In this paper, a novel multi-gradient PSO (MG-
PSO) algorithm is proposed to solve such complex problems. In MG-PSO algorithm,
two phases called Exploration phase and Exploitation phase are used. In the Exploration
phase, the m particles are called Explorers and undergo multiple episodes. In each
episode, the Explorers use a different negative gradient to explore new neighbourhood
whereas in the Exploitation phase, the m particles are called Exploiters and they use one
negative gradient that is less than that of the Exploration phase, to exploit a best
neighborhood. This diversity in negative gradients provides a balance between global
search and local search of the Explorers and Exploiters. The effectiveness of the
MG-PSO algorithm is verified using ten selected shifted and rotated benchmark
functions with dimensions of 30 and 100 taken from congress on evolutionary
computation (CEC) 2015. In addition, the MG-PSO algorithm is evaluated using a real-
world problem (case study), i.e., economic dispatch of South Korea power generating
system. Superior performance of the MG-PSO algorithm has been shown over the
GPSO-w algorithm and several existing optimization techniques in terms of several
performance measures, e.g., fitness value, convergence rate, and consistency. In
addition, by using unpaired t-test, the statistical significance of the MG-PSO algorithm
has been shown against several contending algorithms including top-ranked CEC 2015

algorithms.

Keywords: Multi-gradient particle swarm optimization; exploration and exploitation

phases; unimodal and multimodal benchmark functions, economic dispatch problem.
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1 Introduction

Many optimization problems are generally classified into two groups, unimodal and
multimodal problems. Some of the proposed evolutionary computation techniques
(ECTs), i.e., population-based techniques to solve such problems are particle swarm
optimization (PSO) [1-4] algorithm, genetic algorithm [5-7], and differential evolution
(DE) [8-10]. In ECTs, finding the optimum solution of an objective function is based on
two phases, namely Exploration phase and Exploitation phase. In the Exploration
phase, global search particles, i.e., individuals, exploring all over the search space as
much as possible is carried out to find promising new neighbourhoods. Whereas, in the
Exploitation phase, local search particles exploiting the best neighbourhood to fine-tune
the search space is carried out to obtain the optimum solution. The best performance of
an ECT is achieved when an appropriate balance between these two phases is
maintained [11-12]. Focusing more on Exploration will lead to excessive search time
because of wastage of time in searching over inferior neighbourhoods, whereas focusing
more on Exploitation will cause loss of diversity, thereby possibly getting stuck into a

local minimum.

One of such popular ECTs named global PSO with inertia weight (GPSO-w)
algorithm has been proposed [13], for solving unimodal and multimodal functions. The
negative gradient of inertia weight, w, in GPSO algorithm is used to boost the global
search and local search abilities and to make a balance between the Exploration and
Exploitation phases [14]. Thus, the w helps the particles to control the convergence

tendency and to quickly convergence to optimum solution.

In unimodal optimization problems, there is only one global minimum. Movement of
the particles in the direction of negative of the gradient leads to the global minimum.
Since an objective function decreases by the largest amount possible in the direction of
the negative gradient, movement of the particles in this direction will cause a greater
decrease of the function. Therefore, the GPSO-w algorithm has performed well on
smooth and convex unimodal problems. However, under high-dimensional complex
unimodal problems, e.g., shifted and rotated benchmark functions taken from the
congress on evolutionary computation (CEC) 2015 [15-16], the GPSO-w algorithm may
suffer from the curse of dimensionality and overcoming the premature convergence

remains a challenge, in spite of existence of negative gradient of w.
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In multimodal problems, which have multiple local minima, all of its particles in
GPSO-w algorithm share the swarm’s best experience, i.e., global best and this may
lead the particles to cluster around the global best. If the global best is located near a
local minimum, then escaping from it becomes hard, because of loss of balance between
the local search guide (personal experience of each particle) and the global search guide
(global best) [17-20]. Thus, the GPSO-w algorithm suffers diversity loss near a local

minimum.

Recently, some of the notable ECTs that have been used to improve the GPSO-w
algorithm through enhancing their Exploration and Exploitation processes are as
follows. In [21], a shrinking hypersphere PSO with gravitational search algorithm
(SHPSO-GSA) using a gravitational search to enhance the performance of PSO
algorithm was proposed. A directionally driven self-regulating PSO (DD-SRPSO) [22]
applies cooperation between two strategies: directional update and rotational invariant.
In [23], extraordinariness PSO (EPSO) algorithm considering an extraordinary motion
of the particles was proposed. Based on this motion, the particles can move toward a
global optimum which can be global best, local bests, or even the worst individual. In
[24-25], orthogonal PSO (OPSO) algorithm divides the particles into an active group
and another passive group, and uses an orthogonal diagonalization process. Here, the
orthogonality is used in active group particles to enhance global and local search

processes to achieve optimum solution.

Some other categories of ECTs that have been applied to solve complex unimodal
and multimodal problems are self-optimization based adaptive DE with linear
population (L-SHADE) and eigenvector-based crossover and successful-parent-
selecting (SPS-L-SHADE-EIG) [26], DE with success-based parameter adaption
(DEsPA) algorithm [27], mean-variance mapping optimization (MVMO) algorithm
[28-29], tuned covariance matrix evolution strategy (TunedCMAES) [30], local
Lipschits underestimate DE (LLUDE) [31], strategy adaptation DE (SaDE) [31], JADE
adaptive DE [31], composite DE (CoDE) [30], and self-adaptive binary variant DE
(SabDE) [32], chaotic sequence and crossover PSO (CCPSO) algorithm [33],
continuous greedy randomized adaptive search procedure (C-GRASP) with self-
adaptive DE (C-GRASP-SaDE) algorithm [34], and C-GRASP with modified DE
(C-GRASP-MDE) algorithm [34].
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The gradient method is one of the classical methods. It is used to solve linear and
unimodal problems. In general, the classical methods including gradient method have
major disadvantages like they are inefficient to solve unimodal problems with high-
dimensional search space, they suffer from the “curse of dimensionality”, they are
inefficient to solve multimodal problems, e.g., non-convex, non-smooth, and
discontinuous problems, they are sensitive to an initial starting point, they requires a
monotonically increasing objective function, and they are often trap into local minima.
However, in the recent years, the gradient method is successfully integrated and
combined with few optimization techniques to create hybrid optimization techniques.
This combination is used to achieve faster convergence without getting trapped into
local minima. The gradient method helps particles to move faster toward optimum
solution, whereas the optimization algorithm controls the movement of the particles
from falling into a local minimum. Some of the recently proposed such techniques are
hybrid gradient algorithm [35], enhanced gradient simplified swarm optimization

algorithm [36], and gradient-based Jaya algorithm [37].

In this paper, a novel algorithm called multi-gradient PSO (MG-PSO) algorithm is
proposed in which multiple negative gradients are used by m particles while searching
for optimum solution. The multiple negative gradients help to prevent the global best
particle to fall in a local minimum. In MG-PSO algorithm two phases are used, i.e.,
Exploration phase and Exploitation phase. In Exploration phase, a particle is called an
Explorer. The Explorers operate in several episodes. In each episode, the Explorers use
a different negative gradient to explore a new neighbourhood. Explorers enhance global
search ability of the MG-PSO algorithm. At the end of Exploration phase, the Explorers
provide a search boundary which becomes the new search space in the Exploitation
phase. In the Exploitation phase, a particle is called an Exploiter. Exploiters use one
negative gradient which is less than that of the Exploration phase to exploit the best
neighborhood. The small negative gradient leads to small incremental change in the
velocity and position vectors during updating process. This helps the particles to move
steadily towards optimum solution. Thus, Exploiters enhance local search ability of
MG-PSO algorithm. This diversity in negative gradients helps the best particle from
falling into a local minimum. The combination of two phases provides a balance

between Exploration and Exploitation in search space. In addition, the combination of
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two phases is successfully applied to overcome the disadvantages of the gradient

methods.

In a recent work, the effectiveness of the proposed MG-PSO algorithm has been
shown in solving real-world non-convex problem, i.e., economic dispatch (ED) of
small, medium and large power generating systems (PGSs) under several power
constraints in smart power grid applications [36-37]. Whereas, in the current study, the
MG-PSO algorithm is applied to solve different complex problems with 30 and 100
dimensions, i.e., CEC 2015 shifted and rotated unimodal and multimodal benchmark
functions as well as solving ED problem of the South Korea PGS (case study).
Furthermore, the mathematical analysis and theoretical justification of MG-PSO
algorithm is provided. With extensive simulated experiments, superior performance of
the MG-PSO algorithm has been shown in terms of several performance measures, e.g.,
fitness values, convergence rate and consistency, compared to GPSO-w algorithm and
several competitive ECTs. In addition, with unpaired t-test, the statistical significance of
MG-PSO algorithm has been shown, over several competing algorithms including top-

ranked CEC 2015 algorithms.

The rest of the paper is organized as follows. Explanation of the GPSO-w algorithm
is presented in Section 2. Details of the proposed MG-PSO algorithm are provided in
Section 3. In Section 4, application of the MG-PSO algorithm to CEC 2015 benchmark
functions is presented. In Section 5, solving ED problem of the South Korea PGS is

presented. Finally, conclusion of this study is provided in Section 6.

2 The GPSO-w algorithm

The optimization mechanism of the GPSO-w algorithm depends on the distribution
of the particles in a swarm [13]. It is indicated by a fully connected network, in which
each particle has access to the information of the swarm population, as follows. Firstly,
each particle flying in the multi-dimensional search space adjusts its flying trajectory
according to two guides, its personal experience, G, and its neighborhood’s best
experience, Gpi. Secondly, when seeking an optimum solution (global solution), each
particle learns from its own historical experience and its neighborhood’s historical
experience. In such a case, a particle while choosing the neighborhood’s best experience
uses the best experience of the whole swarm as its neighbor’s best experience.

Therefore, the GPSO algorithm is nélined as global PSO, because the position of each
7
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particle is affected by the best-fit particle in the entire swarm. The following steps
explain the mechanism of the GPSO-w algorithm.

Consider a swarm population with m particles (m > 1) searching for optimum
solution (minimum) of an objective function f{x) in a d-dimensional search space. Let
the total number of iterations is Ny The objective is to minimize the given f(x). A
particle, i (i = 1, 2, ..., m), has one d-dimensional velocity vector V; and one d-
dimensional position vector X; and these are denoted by

Vi=1[Vit, Vizy +-+» Vid] (1)
Xi =[x, Xigs -+ Xid] (2)
Step I: Initialization: Iteration, t = 0.

fori=1,2,....m

Initialize the V; and X; randomly within a defined range of d-dimensional search space and

denote these by V;(0) and X(0), respectively.

Initialize the personal position vector of particle i, Gy (0), as follows:

Ghers,(0) = Xi(0) 3)

Evaluate the f{x) using X0).

end i loop

Determine the global best position vector, Gp..(0). It is the best position vector among all the

m personal position vectors. The Gp.,(0) is denoted by

Gresi(0) = (€515 b25 -+ -» &b.dl 4)
Step 2: Update:

fort=1,2, ..., N

fori=1,2,...,m
Determine inertia weight, w(z) [40], as given below:

o=

iter

t+0.9 ©)

Update V; and X; as follows:

Vilt) =w(t) Vit = 1) + c1 (1) [Gpersi(t = 1) = Xi(t = )] + c272(8) [Gpesit = 1) = Xi(1 = 1)] (6)
Xi(0) =Xt = 1) + V(1) (7
where ¢, and ¢, are positive coefficients, called acceleration constants which are
commonly set to 2.0 [40]. The r(¢) and r,(¢) are two randomly generated values with a
uniform distribution in the range of [0,1].

Evaluate f(x) for particle i using X; (¢).

Update Ger(?), as follows:
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X0 if JXO)<S(Gpt =)

Gpers,i(t) = (8)
Gt =1)  Otherwise

end 7 loop
Obtain f{Gy.s(?)) as follows:
fori=1,2, ..., m {obtain {Ger; (1)}
S Gresi(£)) = min{flGpers,i (1))
Obtain Gjq(t) corresponding to f{Gpes (1))
end ¢ loop
Step 3: End of iteration: t = Ny,,
Optimum solution = Gy (N;,) and optimum value = f{Gpes(Nizer)) )]

3 Learning strategy and MG-PSO algorithm

Here, the details of the proposed MG-PSO algorithm and explanation of its learning

strategy are provided.

3.1 Learning strategy

The learning strategy of MG-PSO algorithm depends on the following
considerations. Consider a swarm population with m particles, whereas m > 1, flying in
a d-dimensional space searching for an optimum solution, i.e., global optimum. Two
fundamental phases, “Exploration and Exploitation” are used by the m particles. In
Exploration phase, a particle is called Explorer. In each episode, the Explorers use a
different negative gradient to explore new neighbourhood in a d-dimensional search
space. The Explorers enhance a global search ability of MG-PSO algorithm using
several episodes. The purpose of Explorers is to obtain a new neighbourhood within the
d-dimensional search space in each episode, and to obtain the best neighborhood among

episodes.

In each episode using a different negative gradient, the Explorers obtain best position
vector following its neighbourhood in the d-dimensional search space. Its neighborhood
is obtained by taking “Floor” and “Ceil” of each element of the best position vector.
These operations create a new search space (best neighborhood) within the d-
dimensional search space that will be used in the Exploitation phase. In Exploitation
phase, a particle is called an Exploiter. The Exploiters use one negative gradient which

is less than that of the Exploration phase. The Exploiters enhance the local search
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ability of MG-PSO algorithm. The purpose of this phase is to obtain an optimum
position by exploiting the Exploiters in the best neighborhood obtained from the

Exploration phase.

3.2 The MG-PSO algorithm

In MG-PSO algorithm, number of negative gradients (Ng.qs) are used while the
swarm population searches for an optimum solution. In Exploration phase, Ngrua — 1
negative gradients are used and one negative gradient is used in Exploitation phase. In

each episode, the inertia weight follows one negative gradient.

Let Ny be number of iterations in MG-PSO algorithm. The number of iterations in

Exploration phase is given by

]viter,xp[ore =Y X ]Viter (10)

where v is a real and positive number in a range [0,1]. The number of iterations in
Exploration phase is given by:

Zviter,xploit = (lf’Y) X ]Viter ( 11 )

The initial and final values of the inertia weight for kth negative gradient (k=1, 2, ...,
Ngraq) are denoted by winix and wy,, i, respectively. These values are real and positive
numbers within a range [0,1] and Wi,k > wsn k. The kth negative gradient (k =1, 2, ...,
Ngrqaa — 1) In Exploration phase is given by:

Wiink — W,

ini,k
o (12)

iter,xplre

grad, =

In Exploitation phase, the negative gradient is given by:

_ Wﬁn’Ngrad - ‘/v}”i’Ngmd

gmngmd = (13)
iter,xploit
The Ngqq gradients are selected such that (14) is satisfied.
grad, ‘ > ‘ grad, ‘ > ‘ grangmd (14)

The inertia weight for kth negative gradient (k= 1, 2, ..., Nguq) at iteration ¢ is given by:
wi(t) = grady X t + Wipik (15)

The flowchart of the MG-PSO algorithm is shown in Fig. 1. The detailed steps
explaining pseudocode of the MG-PSO algorithm are given in Appendix.
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Start Start of Exploitation phase J

Select 1. Nigor- Nerad [ Use the new search space }
* N
|for kb= 1.2.....Ng,.ad{} t=1
(select Wing . Wi Obtain V1), X{(1). Gpers(1) using (A-6)-(A-8)
- v — Obtain Gess xpioi( 1) using (A-9)
Determine Nz piore ald Niggp xpion Using
(10) and (11), respectively . v :
¥ Determine gmd_.\.md using (13) }
[I: 0. 1mtialize ¥; and X; randomly *4
v . r=r+1
[Compute Gres:(0) using (1)-(4)
v N [ Determine w(f) using (15). for k= N, .4
[ Start of Exploration phase | 2
(Episode. k=1 | (Update V(#). X(1). Gyars (1) using (A-10)-(A-12)]
o it e
e ]
[ Determne grad; using (12) ] [Obtain SGrastvomd ) using (A-13) ]
|
t=t+1 . ; "
* [ Obtain Gpestpion(f) corresponding to J
G 5| oi] t
[ Determine wy(7) using (15) ] ACostopnnd 1)
[z ; Is
: ~k ; CIVAlAL =
| Update V,(:‘).X(f].(r}r__w(r}) using (A-1)-(A-3) ] 1= Noorspion No
9

(Obtain £(GL,,,(1)) using (A-4) | Yes
[Oprunum solution (X) = et xptoid Virarplo) J

Optimum value fX) <A GrestsptoiNiter apioir))

v

[ End of Exploitation phase ]

Obtain G,(7) corresponding to f(GL_(7)) }

€.

. End

[ Obtain flGpestxpiore) USING (A-5) ]
v

[ Obtain BEST(Ghestpiore) corresponding to fl Gpest wpiors) J

{ Obtain the new search space (best neighbourhood) ]

v

: End of Exploration phase J
Fig. 1. Flowchart of the MG-PSO algorithm.

3.3 An Illustrative Example:

In order to explain the mechanism of MG-PSO algorithm, an example of a
2-dimensional shifted function, f{x,y) = (x — 2)*+ (y + 3)> + 9 is illustrated in Fig. 2. It
can be seen that x and y are shifted from the origin (0,0) by (2,-3). The optimum
solution of the given function equals to 9 at x = 2 and y = -3. The purpose of the MG-
PSO algorithm is to find the solutions x and y for which the f(x,y) is minimized. The
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MG-PSO algorithm was implemented using MATLAB in a personal computer with
Intel (R) core (TM) 2 Duo CPU T6570 @ 2.1 GHz. RAM of 4GB and Windows 7,
64-bit operating system.

The MG-PSO algorithm was executed with m = 6, Ny, = 60, v = 0.4, Ngag = 4,
Niterxpiore = 24 and Nizer. xpioir = 36. The wiyix and wp, x are chosen within a range of [0,1]
and are shown in Table 1. Selection of grad; (k =1, 2, ..., Ngaq) Was done by trial and
error method. The results of the Exploration phase with three episodes (k= 1, 2 and 3)
are shown in Table 1. At the end of episodes, f{Gpesixpiore) 1S found as 9.0566 that is
corresponding to episode 1. The BEST(Gpeg,xpiore) corresponding to episode 1 is found as
(2.1625,-2.8262). The range of new search space (best neighborhood) is obtained by
taking “Floor” and “Ceil” of 2.1625, i.e., [2,3] and “Floor” and “Ceil” of -2.8262, i.c.,
[-3,-2]. Thus, the new search space is given by a range of x as [2,3] and a range of y as
[-3,-2].

In Exploitation phase, the Exploiters navigate in the newly found search space, i.e.,
[2,3] [-3,-2], using one negative gradient ( k = 4) that is less than that of Exploration
phase. As shown in Table 1, at the end, the Exploiters obtain the optimum value
Ghestploif(36)) = 9.0000 and Gpeg,pi0i(36) = (2.0,-3.0) give the optimum value of f{x.y)

and the optimum solution of (x,)) as 9.0 and optimum solution as (x,y) = (2.0, -3.0).

The dynamics of the MG-PSO algorithm in Exploration phase in three episodes are
shown in Fig. 3. Figs. 3(a), (b) and (c) illustrate variation of inertia weight with iteration
for the episodes 1, 2 and 3, respectively. It can be seen that the inertia weights follow

different negative gradients. The convergence characteristics, i.e., variation f(GJ,(t))

with iteration are also shown in this figure. At the end of iteration the optimum values
obtained from the three episodes are given by 9.0566, 11.3179 and 10.6136. As shown
in Figs. 3(d), (e) and (f) and Table 1, the corresponding optimum solutions for the three
episodes are given by (2.1625,-2.8262), (3.4993,-2.7352) and (1.3299,-1.9208),

respectively.

The movement of best particle G, ,(¢) for three episodes, kK = 1, 2 and 3 over 24
iterations are shown in Figs. 3(d), (e) and (), respectively. The G, (¢) follows its gradj

in each episode. This diversity in negative gradients makes the MG-PSO algorithm to

obtain different solutions, i.e.,G},,(¢),GL,()and G}, (tf) which are close to optimum

est
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solution. This means that the global best particle prevents the swarm from falling into a

local minimum.

The dynamics of the MG-PSO algorithm in Exploitation phase is shown in Fig. 4.
The variation of f{Gpesi,xpioir) and inertia weight wy over 36 iterations are shown in Fig.
4(a). Fig. 4(b) shows movement of the best particle Gpes xpioif) In Exploitation phase
within the new search space range of x and y as [2,3] and [-3,-2], respectively. The
Ghesioploir g1ves the optimum solution (x,y) = (2.0,-3.0) and optimum value of flx,y) =

9.0000.

_ 2 2
fxy) = (c:2)° + (y+3)7+9.0 20

= 4 =]
Lol

T T T T
Lot [

1

[t e e e Bt e i A e

I —I—  + +

I_ 1

T

IR

— ==t =)

N [y Ay N Ay D A A B

1
1

Fig. 2. Two-dimensional shifted function with minimum f{x,y) = 9.0 at x = 2.0 and y = -3.0.

Table 1
Set of parameters and performance of the MG-PSO algorithm with d = 2, m = 6, N, = 60
Set of Exploration phase Exploitation phase

parameters k=1 k=2 k=3 k=4

Wini k 1.0 0.90 0.80 0.50

Wik 0.1 0.15 0.20 0.35

grad,, -0.0375 -0.0313 -0.0250 -0.0042

Gk, (2.1625, -2.8262)((3.4993, -2.7352|(1.3299, -1.9208)| (2.0000,-3.0000)

fGL, 9.0566 11.3179 10.6136 9.0000

The bold numbers indicate the best solution of the ith particle in a swarm during Exploration
and Exploitation phases.

223



Appendix-1

800 1
——w, (1)
700+ "°"f(Gt1)es1(t))
: 10.8
600} i grad1= -0.0375
— 1 —
::gg,oo, f(Gpeq(24)) = 9.0566 |
"0 400 L \;’F
Y 0:0-0-0-0-0-0
300 : 10.4
200} :
o 10.2
100}
b0.q,
(o] L . 99%%.0.00:0:00:0
0 5 10 15 20 28
t
(a)
300 t 1
275/ DR X:
250/ 7 0 H(Geg®) 0.8
225 grad_=-0.0313
: 5 2 10.7
200 & (G2 (24)) = 11.3179
S 175 best 10.6
%150 0.5
N_O ;
Q125 i o
100} los
75¢
50, 10.2
| o000 10.1
2g 6-0-0 <‘>o o0 o?'°'°'°'o-9-o-o-oo-9-o-o-o-o
0 5 10, 15 20 28
(b)
850~ 1
800 ¢ ——wy(t) 05
700; i o (G| e
6001 % grad, = -0.0250 |
E ool 3 - '

) §500 f(G3 (24)) 10.6136,0_6?;q
Q4001 ;. lo.53
300¢ i 10.4
200} 10.3
100} : 10.2

5-0-0-0-0-0-0.,
0 L L 0000000000 0:00 81
0 5 10 t 15 20 2

(c)

Paper H
P
00| Gl (24) = (2.1625,-2.8262)
15, grad, =-0.0375
10
° o, End
>0 R
5 .o .:o
-10 Begin o
150 ¥ 0
R
20 e

-2 S S —
-%5 -20-15-10 -5 0 5 10 15 20 25
X

(d)

15—
120% (24) = (3.4993 -2.7352) ]
est 0
9 grad_=-0.0313 SN
6 2 " Begin]
3! ]
End i

6 |

9 |

12! |

B T S

-15-12 -9 -6 -3 2 3 6 9 1215
(e)

30

25¢ 1

20! ,
15¢ Begin/ 1

10¢ ]
5l .
>0F
-5t
-10¢
-15F =3 -
Gbest(24) =(1.3299,-1.9208)

-20+ ~ o
25! grad3 =-0.0250

s,
S
%,
'O

3%0-2520-15-10 5 0 5 10 15 20 25 30
X
(M

Fig. 3. Movement of the best particle in Exploration phase based on three different negative gradients. (a), (b)

and (c): the change of f (Gl’,c L(0)and wi(2), k =1, 2, 3, with iteration ¢ ; (d), (¢) and (f): movement of

(&
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18 0.5 -1 ‘ o : ‘
—— o Gt xpioit(36) = (2:0000,-3.0000)
16/ 7 oo | grad, =-0.0042
grad, = -0.0042 10.45 ) 4=
g i - e
Ea f(GbeStgpg(i)té?)) ) o5 Begin e ]
o " = . ~ > -2.5} ‘.. ,“
“; Q 10.4 ¥ o~ . "b
2 : Q Ll
(D.Q 124 ¢ 3l o ;
h 0.35
107 ¢ -3.5 End
8 \ \ ‘ -4 ‘ ‘ ‘ ‘ ‘
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(a) (b)

Fig. 4. Movement of the best particle in Exploitation phase with one negative gradient. (a): the change of
N Ghesiypioi(t)) and w,(f) with iteration £; (b): movement of Gy, over 36 iterations.

3.4 Observations:

Some of the important observations of the MG-PSO algorithm are detailed, as

follows:

3.4.1 Observation 1

Because of using a different negative gradient in each episode, in Exploration phase,
the Explorers have ability to find a new neighbourhood within a d-dimensional search
space. The global best particle is able to prevent the swarm from falling into a local
minimum. In addition, the diversity in negative gradients enhances the local search
ability of the Exploiters to obtain optimum solution. In addition, the combination of two
phases is successfully applied to overcome the disadvantages of the gradient methods,

as shown in Figs. 3 and 4.

3.4.2 Observation 2

In case of GPSO-w algorithm (6), two guides, Gy, and Gpeg, are used to update the
velocity vector V(). The continuous conflict between them until end of the iteration
leads to loss of balance between global search and local search. However, in case of
MG-PSO algorithm two phases are used. In the Exploration phase, using several
episodes (each one with a different negative gradient) a new search space (new
neighborhood) is obtained. This search space is used in Exploitation phase to achieve
the optimum solution. In this way a balance is maintained between the global and local

search spaces.
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3.4.3 Observation 3
The W g @ that follows negative gradient, grady in the Exploitation phase is used

to diminish the contribution of Xi(# — 1) while updating Vi(z), i = 1, 2, ..., m. As t—x0,

assume that the algorithm has converged. In such case,

Lim Xi(1—1) = Gpursi(t = 1)

%lm X;(t - 1) = Gbest,xploit(t - 1) (16)

Then, Equation (A-10) becomes

%m)loVi(t) = Wy, Vit=1)=0 (17)
which implies that
ltimoXi(t):Xi(t*l) (18)
Thus,
Lim X(0) = lim Giers () = Uim Giesopioid ) (19)

Thus, when iteration becomes large and the algorithm has converged, all the position
vectors X; and personal vectors Geri , i = 1, 2, ..., m, move towards the best position
vector, Gpegxpioir- F1g. 5 shows performance of MG-PSO algorithm in the Exploitation
phase at different iterations. At ¢ = 36, as the algorithm converges, it can be seen that X,

Gpersi(i=1,2, ..., 6) and Gpess xpioir, all converge to the optimum solution (2.00,-3.00).
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Fig. 5. Performance of the MG-PSO algorithm in Exploitation phase showing movement of X;, Geys; (i =
1, 2, ..., 6) and Gyeg,upioi at different iterations to achieve a solution of (2.0,-3.0).

4 Application of MG-PSO algorithm to unimodal and multimodal CEC 2015

benchmark functions

Here, the simulation results carried out on ten selected benchmark functions that are
taken from CEC 2015 [15-16]. Here we describe these benchmark functions and
investigate performance of MG-PSO and GPSO-w algorithms along with a several
competitive ECTs.

4.1 Benchmark functions

Ten benchmark functions listed in Table 2 are selected and used in this study. These
benchmark functions are taken from the congress on evolutionary computation, CEC
2015, and are widely used in performance comparison of global optimization algorithms
[15-16]. All the ten benchmark functions are minimization tasks. In addition, these are

shifted and rotated unimodal and multimodal benchmark functions, and the global
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optimum solution x as shown in Table 2 is not located at the center of the search space.
The optimum solution x is shifted to a new position vector, i.e., shifted global optimum,
O =1oi, 0i2, . . ., 0i4], i =1, 2, ..., 10, where d is the dimension of each benchmark
function. In addition, all benchmark functions are rotated by a rotation matrix of size d
xd, M;,i=1, 2, ..., 10. The rotation does not affect the shape of the objective function
but increases the objective function complexity in finding global optimum. The M; is
applied to obtain the rotation and is generated from standard normally distributed

entries using Gram-Schmidt orthnormalization process [15-16].

The ten benchmark functions are divided into two groups based on their significant
physical properties. The first group involves three unimodal benchmark functions (f;-/3)

and the second group consists of seven multimodal functions (f-f79).

In Table 2, the name and mathematical expression of (f;-f;¢) are shown in columns 2
and 3, respectively. The “Accepted Error” value of each function is available in column
4. The “optimum x” and the minimum value of each objective function, “minimum f{x)”
are shown in column 5 and column 6, respectively. The solution of each function is
judged successful, when the algorithm reaches to a value smaller than the “Accepted

Error”, in other words, the algorithm passes the test.
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Table 2
Ten benchmark functions selected from CEC 2015 used in this study
.. . A ted| Opti Mini
f Name Objective function ﬁgf P (1)rcr)1um H;&l;lm
Shifted and d @=L
Rotated High | fi(x)= . (10°) -1 Z + F,
/i | Conditioned i=1 0.001 0, F;=100
Elliptic Zy=M;x(x—0)), x = [X1, X2, ..., Xg), O1 = [011, 012, ..., 01d]
[15]
Shifted and d
X)=2Z5+10°Y 73, + B,
/- Rgltataerd f‘z( ) N =2 > ? 0.001 0, F,=200
[lgS] Zy=M>x (x—0), x =[x}, X2, ..., Xa], O2=[021, 022, ..., 024]
Shifted and d
x)=10°Z3 + Y 73, + F,
f %Qtated S st it 0.001 0, | F;=200
[llsg]]'ls Zj = M; X (x - 03), X = [)C17 X2y veey Xd], 03 = [0517 032y veuy 03,1]
Shifted and
Rotated | f()=~a exp (b $.23,) —exp ( S costeZ, )+
4 Ackley 0.001 0y F,=300
[15] a+exp(1)+F4 a—20b 0.2, c—27c
Zy=M; < (x = Oy), x = [x1, X2, ..., Xal, O4= [041, 042, .., 0.44]
d kmax kmax
Shifted and | /5= % Lzl d cos b (Zs; +0.5)-d 3" d cos (nb")} +
Rotated =LEE -
fs R 0.001 Os Fs=300
Weierstrass | _ _ _ 0.5x(x— 0Oy -
[16] a= 059 b - 3; kmux - 20= ZS = M5 X [#) s, X = [X], X2y eeey xu’]
Os5 =051, 052, ..., 05d]
d
Shifted and | f6() =10d + zl [Z2,—10cos 2nZg )]+ F,
iz
. Rotated
.. — 0.001 O, =400
% Rastrigin Zg=Mgx (512X(x06)j > X = [X1, X2, ey Xa), O5 = [061, 062, - 0sd] ’ ’
[15] 100
10
Shifted and 10 4 2 [2'xZ;;—round 2'x Z;)) at? 1
Rotated ﬁ(x):diﬂl 1+’.Zl o 7702+F7
J7|  Katsuura . . 0.001 0; F,=500
16
[16] Z;=M;x 3x(x=0y) , X = [x7, X2, o0y Xal, Oz = [071, 072, .., 074]
100
1
Shifted and 10 [izz T (0 SZZg,JrZZgl)) 0sap
X) = i +(—F=——E—)+ + F,
fi Higga;ecit 5 a7 d ’ 0.001 0s | Fy=600
[16] Zg=Mgx (W] X =[x, X2, oy Xa], Osi = [081, 082, <. 084)
. 1 2
Shifted and . a 0. szzgl + 21291)
Rotated | fo(x) = (Z Zy ) (Z Zy )|+ (= 7 )+ 0.5+ F,
f| HGBat 0.001 % | £,=700
[16] Z—MxMxxx > X4), 09 = [001, 0 00d] '
9 = 9 100 1s A2y d]ls 9 915 U925 s U994
. 1 d
fg(x)=mz HCOS( 101) 1
Shifted and ' i
Rotated s o 5
Expanded | /f,(x) = [100 (Zyo 141 = Zi0;)" +(Zyo,; = D7)
Griewank
.001 F=
Jio plus Jio(¥) = fg(fr(Zl o Zi02) + fo(filZ1g2, Zyg3) + -+ + 0.00 O =800
Rosenbrock Je(FZioa1 Zioa) + fo(F(Zio.a Ziop) + Fio
[16]
Zo = Myy % (5><(1x()—00m)j L= [ s )
O10= 10101, 0102, ---» O10d]
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4.2 Performance measures and experimental setup

To study the fitness values, convergence rate, accuracy, consistency, robustness and
reliability of different algorithms [41-44], eight performance measures as explained
below are considered. Let m be the number of particles inside a swarm. Each algorithm

1s run over N,,, times with N, iterations.

1. Number of function evaluations (NFE): It is used as a measure of computational
complexity of the algorithms. The NFE is the number of times the objective function
fx) 1s evaluated in one run of the algorithm and is given by

NFE=m X Ny, (20)

2. Fitness value (FV): It is defined as the average value obtained from »,,, times at each
NFE.

3. Best fitness value (BFV): It is defined as the minimum optimized f{x) value obtained
from N,,, independent runs.

4. Worst fitness value (WFV): It is defined as the maximum optimized f(x) value
obtained from N,,,, independent runs.

5. Mean fitness value (MFV): It is defined as the average of the N,,, BFVs.

6. Minimum function error value (MFEV): It is defined as the difference between

minimum f{x), i.e., column 6 in Table 2 and MFV. The MFEV is given by
MFEV=minimuny (x) - MFV] 21)

7. Standard deviation (c): The o is the standard deviation of the N,,, BFVs.

8. Success rate (SR): An algorithm is successful if the MFEV of each function falls
below the “Accepted Error”. The SR is used as a measure of reliability of the
algorithm. The SR in percentage is given by

_ Number of successful runs

SR %100 (22)

run

9. Reliability rate (RR): The RR of an algorithm over all the ten benchmark functions is
defined

—_
(=]

1

RRli

SR, 23)

where SR;is the success rate of the benchmark function fi(x),i=1, 2, ..., 10.
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10. Average execution time (AET): It is the time consumed by an algorithm until it

reaches to MFEV, averaged over N,,, independent runs.

In order to measure the fitness values, convergence rate, accuracy, consistency,
robustness and reliability of each algorithm, the proposed MG-PSO and GPSO-w
algorithms were evaluated using the ten shifted and rotated unimodal and multimodal
benchmark functions given in Table 2. Each benchmark function is tested with d = 30
and d = 100 dimensions where d is dimension of the f{x). Based on the suggestion by
the CEC 2015 [16], the optimization task has been carried out for N,,,, = 20 independent
runs. The GPSO-w and MG-PSO algorithms are terminated when reaching the MFEV
of each is smaller than 1.00x10"”. The number of particles is selected as 20, in both
MG-PSO and GPSO-w algorithms. The MG-PSO and GPSO-w algorithms run with
maximum NFE = 100,000. Thus, from (20), Ny = 5,000. The acceleration coefficients
of ¢; and ¢, in GPSO-w and ¢ in MG-PSO algorithms were set at 2.00 and 2.05,
respectively, using trial and error method. The parameters 7(¢), ri(f) and ry(¢) are
generated randomly within a range of [0,1]. In MG-PSO algorithm, in case of ten
benchmark functions (f;-f;9) with d = 30, two negative gradients were selected (Ngraq =
2) by trial and error method, one for Exploration phase and another one for Exploitation
phase. Whereas, in case of f;-f;p with d = 100, three negative gradients were selected
(Ngraa = 3) by trial and error method, two for Exploration phase and another one for

Exploitation phase.

Besides, the shifted global optimum vector, O; (i =1, 2, ..., 10), for each function is
randomly distributed in [-80,80]" and an orthogonal (rotation) matrix M; (i =1, 2, ..., 10)
of each function is generated using Gram-Schmidt orthnormalization process. Another
set of parameters used in MG-PSO and GPSO-w algorithms are shown in Tables 3 and
4.
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Table 3
Set of parameters of the MG-PSO and GPSO-w algorithms used for ten benchmark functions

(CEC 2015) with d = 30

Set of parameters
f Algorithm
Y | Nier |Winik | Whni| &rady
Exploration phase k=1 [0.30{1,500| 1.00 | 0.10 |-6.00x10"*
MG-PSO =
/i Exploitation phase k=210.70 3,500 0.50 | 0.25 |-7.14x10"
GPSO-w - 15,000| 0.90 | 0.40 |-1.00x10"
Exploration phase k=1 |0.30|1,500| 1.00 | 0.20 |-5.33x10™
MG-PSO
1 Exploitation phase k=210.70 3,500 | 0.40 | 0.15 |-7.14x10
GPSO-w - 15,000| 0.90 | 0.40 |-1.00x10"
Exploration phase k=1 |0.30{1,500| 0.95 | 0.15 |-5.33x10"
MG-PSO
f Exploitation phase k=20.70|3,500 | 0.45 | 0.25 |-5.71x10
GPSO-w - 15,000] 0.90 | 0.40 |-1.00x10™
Exploration phase k=1 [0.40{2,000| 1.00 | 0.10 |-4.50x10"*
MG-PSO =
§7 Exploitation phase k=2 {0.60 [ 3,000| 0.50 | 0.30 |-6.66x10"
GPSO-w - 15,000| 0.90 | 0.40 |-1.00x10"
Exploration phase k=1 {0.30{1,500| 0.90 | 0.10 |-5.33x10™*
MG-PSO -
/s Exploitation phase k=210.70 3,500 | 0.40 | 0.15 |-7.14x10"
GPSO-w - 15,000| 0.90 | 0.40 |-1.00x10"
Exploration phase k=1 [0.40{2,000| 0.90 | 0.10 |-4.00x10"*
MG-PSO
s Exploitation phase k=2 ]0.60 [ 3,000{0.35 [0.10 |-8.33x10
GPSO-w - 15,000| 0.90 | 0.40 |-1.00x10"%
Exploration phase k=1 [0.40{2,000| 0.95 | 0.45 |-2.50x10"*
MG-PSO =
f Exploitation phase k=2 {0.60 [ 3,000 | 0.45 | 0.25 |-6.66x10"
GPSO-w - 15,000| 0.90 | 0.40 |-1.00x10"
Exploration phase k=1 [0.40{2,000| 1.00 | 0.10 |-4.50x10"*
MG-PSO =
fs Exploitation phase k=2 ]0.60 [ 3,000| 0.40 | 0.25 |-5.00x10"
GPSO-w - 15,000| 0.90 | 0.40 |-1.00x10"
Exploration phase k=1 |0.40|2,000| 0.90 | 0.20 |-3.50x10*
MG-PSO
o Exploitation phase k=20.60|3,000 | 0.40 | 0.15 |-8.33x10
GPSO-w - 15,000| 0.90 | 0.40 |-1.00x10"%
Exploration phase k=1 [0.30{1,500| 0.90 | 0.25 |-4.33x10""
MG-PSO
fro Exploitation phase k=20.70|3,500 | 0.55 | 0.35 |-5.71x107
GPSO-w - 15,000| 0.90 | 0.40 [-1.00x10™
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Table 4
Set of parameters of the MG-PSO and GPSO-w algorithms used for ten benchmark functions
(CEC 2015) with d =100

Set of parameters
f Algorithm

Y Nier Wini k | Whink gradj
k=110.65|3,250| 0.95 | 0.10 |-2.61x10"
Exploration phase o

p MG-PSO k=210.65|3,250] 0.85 | 0.15 |-2.15x10
! Exploitation phase |k=310.35[1,750| 0.30 | 0.15 |-8.57x10™
GPSO-w - 15,000] 0.90 | 0.40 |-1.00x10™
k=110.70|3,500| 1.00 | 0.15 |-2.43x10°%
Exploration phase o7

P MG-PSO k=210.70|3,500| 0.95 | 0.25 |-2.00x10
’ Exploitation phase | k=3 ]0.30| 1500 | 0.40 | 0.10 |-1.66x10"
GPSO-w - 15,000] 0.90 | 0.40 |-1.00x10™
k=110.50]2,500| 0.90 | 0.10 |-3.20x10"
Exploration phase o7

. MG-PSO k=210.50|2,500| 0.80 | 0.15 |-2.60x10
’ Exploitation phase | k=3 10.50|2,500| 0.45 | 0.15 |-1.20x10""
GPSO-w - 15,000] 0.90 | 0.40 |-1.00x10™
k=110.60|3,000| 0.90 | 0.15 |-2.50x10"*
Exploration phase o7

P MG-PSO k=210.603,000| 0.85 | 0.10 |-2.16x10
! Exploitation phase | k=3 ]0.40|2,000| 0.50 | 0.30 |-1.00x10"%
GPSO-w - 15,000] 0.90 | 0.40 |-1.00x10™
k=110.502,500] 0.80 | 0.10 |-3.20x10™
Exploration phase o7

1 MG-PSO k=210.50|2,500| 0.75 | 0.10 |-3.00x10
? Exploitation phase | k=3 10.50|2,500| 0.50 | 0.25 |-2.00x10"
GPSO-w - 15,000] 0.90 | 0.40 |-1.00x10™
k=110.55|2,750| 1.00 | 0.15 |-3.09x10"*
Exploration phase o7

P MG-PSO k=210.55|2,750| 0.95 | 0.15 |-2.91x10
’ Exploitation phase |k=130.45[2,250[0.50 |0.35 |-6.66x10""
GPSO-w - 15,000] 0.90 | 0.40 |-1.00x10™
k=110.50]2,500| 0.95 | 0.15 |-3.20x10°*
Exploration phase o7

P MG-PSO k=210.502,500| 0.85 | 0.15 |-2.80x10
! Exploitation phase |k=3[0.50|2,500| 0.45 | 0.25 |-8.00x10™
GPSO-w - 15,000] 0.90 | 0.40 |-1.00x10™
k=110.50]2,500| 0.95 | 0.10 |-3.40x10"*
Exploration phase o7

P MG-PSO k=210.502,500] 0.75 | 0.10 |-2.60x10
s Exploitation phase |k=310.50{2,500| 0.50 | 0.25 |-1.00x10"%*
GPSO-w - 15,000] 0.90 | 0.40 |-1.00x10™
k=110.50]2,500| 0.95 | 0.20 |-3.00x10"*
Exploration phase o

P MG-PSO k=210.502,500] 0.92 | 0.22 |-2.80%10
! Exploitation phase | k=3 10.50|2,500| 0.60 | 0.25 |-1.40x10"*
GPSO-w - 15,000] 0.90 | 0.40 |-1.00x10™
k=110.50(2,500| 0.90 | 0.10 |-3.20x10°*

Exploration phase o7

p MG-PSO k=210.50|2,500] 0.85 | 0.15 | -2.6x10
1 Exploitation phase | k=3 [0.50{2,500| 0.55 | 0.35 | 8.00x10""
GPSO-w - 15,000] 0.90 | 0.40 |-1.00x10™

233



Appendix-1 Paper H

4.3 Performance comparison between MG-PSO and GPSO-w algorithms

An extensive performance comparison between MG-PSO and GPSO-w algorithms

with several performance measures as explained below.

4.3.1 Fitness values

Performance comparison between MG-PSO and GPSO-w algorithms in terms of
BFV, WFV, MFV, MFEV, ¢ and AET are shown in Tables 5 and 6. One can be seen
from Tables 5 and 6 that in case of GPSO-w algorithm, the three fitness values, BFV,
WFV and MFV differ substantially from their optimum values for all the ten functions
(f1-f10) with d = 30 and d = 100. Whereas, in MG-PSO algorithm, the three fitness
values are the same as their optimum values for all the ten functions (f;-f79). The MFEV
of GPSO-w algorithm is far from the “Accepted Error” in (f;-f19). However, in MG-PSO
algorithm, the MFEV is smaller than “Accepted Error” as shown in Tables 5 and 6. The
MFEV = 0.0 for the ten function (f;-fi9). In terms of the o, it remains close to 0.0 in
MG-PSO algorithm, indicating high consistency and reliability of the MG-PSO
algorithm. The results shown in Tables 5 and 6, thus proves that MG-PSO algorithm is
more accurate, stable and robust compared to the GPSO-w algorithm. In terms of the
AET, the MG-PSO algorithm reaches “Accepted Error” within a specific AET as shown
in Tables 5 and 6. However, GPSO-w algorithm could not reach “Accepted Error”,
indicating that GPSO-w is unable to solve these ten shifted and rotated under high-
dimensional search space. Whereas, MG-PSO algorithm successfully achieves the

optimum solution for all the ten benchmark functions with d = 30 and d = 100.
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Table 5
Performance comparison between MG-PSO and GPSO-w algorithms on ten benchmark functions (CEC 2015)
with d =30
/ M";g:)‘“m AP Bimess | GPSO-w | MGPSO | | 7 Ml;‘%g“m ACCePted | Fimess | GPSO-w | MG-PSO
‘ BFV | 1.0100x10%] 1.0000x10% BFV [5.4213x10™ [ 4.0000%10"
WFV | 1.3660x10" | 1.0000x10" WFV |8.2457x10% | 4.0000x 10"
MFV | 1.0267x107| 1.0000x 10" MFV |[6.1298x10% | 4.0000x 10™
£l 100 1x10* | MFEV | 2.6700x10™ 0.0000]| | /5 | 400 1x10* | MFEV |2.1298x10™ 0.0000
s | 8.8217x10% 0.0000 o |1.4678x10" 0.0000
AET AET
(s60) - 26.2786 (s60) - 8.9211
BFV | 2.0030x10%| 2.0000x10% BFV [5.5525x10™ [ 5.0000% 10"
WFV | 2.0032x10% | 2.0000x10" WFV |5.8913x10™ [ 5.0000%x10"
MFV | 2.0030x10% | 2.0000x10™ MFV |7.4021x10% | 5.0000% 10"
£ 200 1x10™ [ MFEV |3.0000x10" 0.0000] | /5] 500 1x10™ [MFEV [6.9021x10% 0.0000
6 |5.0663x10" 0.0000 o | 1.7701x10™ 0.0000
AET AET
(s60) - 36.1856 (se0) - 16.3386
BFV | 2.3214x10% | 2.0000x 10” BFV |[6.7597x10% | 6.0000x 10™
WFV | 2.0134x107 | 2.0000x10™ WEV [1.5060x10% | 6.0000x10%
MFV | 2.0754x10™ | 2.0000x10™ MFV [9.0597x10% | 6.0000% 10"
£ 200 1x10 [ MFEV | 7.5400x10% 0.0000| | fs| 600 1x10™ [ MFEV |3.0597x10% 0.0000
c | 6.4387x10" 0.0000 o |2.6147x10" 0.0000
AET AET
(se0) - 27.8475 (se0) - 13.6193
BFV | 3.2280x10% | 3.0000x 10" BFV |1.0023x10% | 7.0000x10"
WFV | 3.2283x10% | 3.0000x10™ WEV [1.2923x10% | 7.0000x10%
MFV | 3.2289x10™ | 3.0000x10™ MFV |[1.0906x10” | 7.0000x 10"
£ 300 1x10% [ MFEV | 2.2800x10™ 0.0000] | fo| 700 1x10%° [ MFEV |5.9094x10"™ 0.0000
6 |6.4987x10™ [5.0797x10™° o 3.906x10% 0.0000
AET AET
(sc0) - 21.9311 (se0) - 10.7789
BFV | 3.8910x10%] 3.0000x10" BFV |6.0686x10™ | 8.0000%10"
WEV | 3.9000x10% | 3.0000x10™ WEV [1.1069x10% | 8.0000x 10"
MEV | 3.8960x10% | 3.0000x 10" MFV [9.0618x10% | 8.0000x 10™
fi| 300 1x10” [MFEV | 8.9600x10" 0.0000 | |fio| 800 1x10” [MFEV | 1.0618x10% 0.0000
s |2.9843x10°7[1.0957x10™" o |1.1905x10% 0.0000
AET - 16.1625 AET - 28.7829
(sec) (sec)
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Table 6
Performance comparison between MG-PSO and GPSO-w algorithms on ten benchmark functions (CEC 2015)
with d =100
o [Minimum| Accepted| g GpsO-w | MG-PSO | | £ | Minimum | Accepted | e o GPSO-w | MG-PSO
fx) Error fx) Error

BFV |3.5443x10% | 1.0000x10% BFV | 1.1166x10% | 4.0000x10"
WEV [2.9834x10" | 1.0000x10" WEV [2.6532x10% | 4.0000x 10"
MEV | 7.4585x10” | 1.0000x10" Ixo% MEV 2.8028x10% | 4.0000x10%
i 100 1x10% | MFEV | 7.4585x10” 0.0000 | |fs 400 MFEV |2.7988x10% 0.0000
s |2.3048x10” 0.0000 o |8.3621x10% 0.0000

AET AET
(sec) - 87.5865 (sec) - 42.8296
BFV |2.8756x10% | 2.0000x10% BFV |3.5672x10% | 5.0000x10"
WEV [4.7665x10% | 2.0000x10" WEV [1.0134x10% | 5.0000x 10"
MFV |7.1500x10" | 2.0000x10% Ix109 [_MFV 4.5238x10% | 5.0000%x10"
5 200 1x10" [ MFEV | 7.1499x10" 0.0000| | £~ 500 MFEV [4.5188x10” 0.0000
G 1.7462x10" 0.0000 G 5.1634x10% 0.0000
AET : 126.6174 AET - 58.6221

(sec) (sec)
BFV |4.2260x10% | 2.0000x10% BFV |2.0234x10% | 6.0000x10"
WEV |6.0347x10% | 2.0000x10" WEV | 8.3452x10% | 6.0000x 10"
Ix10% |_MFV 1.8104x10™ | 2.0000x10* Ix109 [_MFV 4.1727x10" | 6.0000%x10"
fi 200 MFEV | 1.8104x10% 0.0000 | | fg 600 MFEV |4.1726x10" 0.0000
G 2.8373x10™ 0.0000 G 4.2622x10" 0.0000

AET AET
(sec) - 96.0738 (sec) - 61.2868
BFV [8.1423x10%| 3.0000x10% BFV [2.1435x10% | 7.0000x10"
WFV [4.9753x10" | 3.0000x10% WEV | 7.3487x10% | 7.0000x 10"
Ix10% |MEV 7.7177x10% | 3.0000x10* Ix109  |MFV 2.0057x10% | 7.0000%x10"
14 300 MFEV | 7.7174x10" 0.0000 | | fo 700 MFEV |2.0050x10" 0.0000
G 1.8038x10" | 8.2341x10™° G 3.3489x10% 0.0000

AET AET
(sec) - 76.3164 (se0) - 55.1879
BFV [1.2001x10| 3.0000x10% BFV | 1.9087x10% | 8.0000x10"
WFV | 7.3401x10"" | 3.0000x10% WEV [3.6723x10% | 8.0000x10"
Ix109 |_MEV 1.1600x10" | 3.0000x10* Ix100 |_MFV 1.5312x10 | 8.0000x10”
fs 300 MFEV | 1.1599x10" 0.0000 | | f70 800 MFEV | 1.5304x10"% 0.0000
6 |2.7494x10" | 2.6578x10™ G 1.8484x10" 0.0000
AET . 59.4783 AET - 1217515

(sec) (sec)

4.3.2 Success rate and reliability rate

Here, the performance comparison between the MG-PSO and GPSO-w algorithms
with N,,, = 20 (independent runs) in terms of SR and RR is carried out. The MG-PSO
algorithm was successful in all the ten functions giving rise to SR of 100%. Whereas,
the GPSO-w algorithm fails in all the ten CEC 2015 benchmark functions. Thus, RR of
MG-PSO and GPSO-w algorithms are found to be 100% and 0.0%, respectively.

4.3.3 Convergence characteristics

Fig. 6 shows the convergence characteristics of MG-PSO and GPSO-w algorithms
for ten shifted and rotated CEC 2015 benchmark functions f; — fio with d = 30. The
comparison is obtained in terms of FV averaged over N,,, times at each NFE. It can be
seen that, in case of MG-PSO algorithm, the FV reduces to minimum value with NFE

less than 3.0x10°* (i.e., Ny = 1,500) except for fi. Whereas, in case of GPSO-w
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algorithm, the FV fails to converge and remains above the “Accepted Error”, indicating
failure of the algorithm.

In order to highlight the superior performance of the MG-PSO algorithm over the
GPSO-w algorithm, in Fig. 7 the MFEV over N,,, times at each NFE with d = 30 have
been provided for the four selected CEC 2015 benchmark functions, fi, 17, fs and fi9. The
MFEVs obtained by GPSO-w algorithm are much above “Accepted Error”. Whereas,
the MG-PSO algorithm was successful as the MFEVs in these four benchmark
functions remain below the “Accepted Error”. Similar observations were made for the

remaining benchmark functions with d = 100.

The above mentioned observations provide the evidence of superior performance of
the MG-PSO over GPSO-w algorithm in terms of three fitness values, o, convergence,

SR, RR and convergence rate.
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Fig. 6. Comparison of convergence characteristics between MG-PSO and GPSO-w algorithms for f; — f;,.
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f1: Shifted and Rotated High Conditioned Elliptic f7: Shifted and Rotated Katsuura
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Fig. 7. The FEVs averaged over 20 runs at each NFE obtained by MG-PSO and GPSO-w algorithms for
J1s.f7, fsand fio.

4.4 Sensitivity analysis of MG-PSO algorithm against swarm size

In order to study the sensitivity analysis of the proposed MG-PSO algorithm against
change in swarm population m, four benchmarks functions f;, 17, fs and f;p were selected.
The test was carried out with Ny, = 5,000, N,,, = 20 and d = 30. The set of parameters
given in Table 3 were used in MG-PSO algorithm.

Table 7 shows sensitivity analysis of the MG-PSO algorithm with variation of swarm
population, m, from 5 to 25 in terms of BFV, WFV, MFV and AET for £}, 17, fs and f.
When m increases from 5 to 15, the fitness values do not yield optimum solution.
Whereas, m = 20, the fitness values provide optimum solution. Any further increase of
m (m = 25), increase the AET without giving any further improvement in performance.

Therefore, the appropriate value of m = 20 is selected in this study.
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Table 7

Sensitivity analysis of the MG-PSO algorithm with increase size of swarm

f M‘%;‘)mm Fitness | m = 5 éSCT) m=10 éeECT) m=15 éch) m=20 éeECT) m=25 ngT)
BFV |100.00 100.00 100.00 100.00 100.00

fi 100 WFV [104.75]15.83|100.52|18.80 | 100.01|21.23 | 100.00 | 25.34 | 100.00 | 27.56
MFV | 101.63 100.10 100.00 100.00 100.00
BFV |500.00 500.00 500.00 500.00 500.00

17 500 WFV [503.15|11.65|500.23 | 13.03 | 500.03 | 14.97 | 500.00 | 16.76 | 500.00 | 18.32
MFV |501.28 500.10 500.00 500.00 500.00
BFV |600.00 600.00 600.00 600.00 600.00

s 600 WEFV [601.87|12.34|600.01 | 14.20 | 600.00 | 15.76 | 600.00 | 17.61 | 600.00 | 20.54
MFV |600.09 600.02 600.00 600.00 600.00
BFV |800.00 800.00 800.00 800.00 800.00

S0 800 WFV [802.32|13.45| 800.85| 18.45 | 800.02 | 20.87 | 800.00 | 22.56 | 800.00 | 23.97
MEFV |800.16 800.12 800.00 800.00 800.00

4.5 Performance comparison between MG-PSO algorithm and other ECTs

Here, we verify the performance of the proposed MG-PSO algorithm by comparing it
with few ECTs recently reported by other authors [21-24] and [26-32].

4.5.1 Shifted and rotated benchmark functions: fi, f>, f4 and fswith d = 30

The three top-ranked algorithms in the CEC 2015 [15] learning based papers
(CEC 2015-LBP) are SPS-L-SHADE-EIG [26], DEsPA [27], and MVMO [28], in
which the four shifted and rotated benchmark functions, i.e., f, />, fy and fs with d = 30,
are considered. The set of parameters given in Table 3 were used in MG-PSO
algorithm. Here, the performance of the MG-PSO algorithm against the above three top-
ranked algorithms and a few competitive algorithms from [31] as well as OPSO [24] for

the four functions, has been compared.

The comparison has been achieved with N,,, = 20 and for each run the maximum
NFE is 10,000%d, i.e., 10,000x30 = 300,000, where d is dimension of f{x). The criterion
used in this comparison depends on the values of maximum NFE and MFEV (21).
When the algorithm reaches NFE = 300,000, the MFEV is recorded as a better result.
The algorithm obtains a best result when the MFEV is 0.0 or close to 0.0.

Table 8 presents the results of the MFEV and the corresponding ¢ obtained by MG-
PSO algorithm and eight ECTs. We can see that the MG-PSO algorithm is significantly
superior to LLUDE, SaDE, JADE and CoDE [31] in solving fi, f>, f+ and fs. While
comparing with CEC 2015-LBP [15] ranked algorithms, performance of the MG-PSO

algorithm found similar or better than that of the three top-ranked algorithms for the
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four functions. Furthermore, performance of the MG-PSO algorithm is found similar to

that of OPSO algorithm [24] for the functions f7, f5, f+and fs.

Table 8
Performance comparison between MG-PSO algorithm and eight ECTs using four CEC 2015-LBP [15]
benchmark functions with d =30

NS Performance
No. ECTs measure Ji /2 i Js
MG-PSO MFEV 0.00 0.00 0.00 0.00
1
(proposed) o 0.00 0.00 | 5.07x10°%¢ | 3.73x10"*
OPSO MFEV 0.00 0.00 0.00 0.00
2
[24] s 5.94x10% | 3.32x10°* | 6.11x10* | 3.73x 10
SPS-L-SHADE-EIG MFEV 0.00 0.00 | 2.00x10°" | 1.03x10"
3 [26]
Rank #1 Cﬁg]zow'LBP o 0.00 0.00|7.29x10™ | 1.41x10"
DEsPA MFEV 0.00 0.00| 2.01x10°" | 9.71x10%
4 [27]
Rank #2 Cﬁ§]2°15'LBP 6 0.00 0.00 | 4.36x10™ | 3.02x10%
MVMO MFEV 0.00 0.00 | 2.00x10°"| 9.54x10%
s [28]
Rank #3 Cﬁg]zow'LBP o 0.00 0.00 | 5.42x10™ | 3.53x10
LLUDE MFEV  [5.93x10°" | 2.84x10™| 2.03x10" | 2.59x10"
6
[31] G 2.47x10°" [ 2.69x10™| 2.33x10% | 3.28x10%
SaDE MFEV | 1.78x10%|2.38x10™" | 2.05x10"" | 3.46x10"'
7
(31] G 1.43x10% | 7.22x10™ | 5.99x102 | 6.44x10%
JADE MFEV | 6.23x10"|3.41x10™| 2.03x10"" | 2.61x10"'
8
311 6 1.55%10% | 1.17x10™| 2.86x10™* | 3.39x10%
CoDE MFEV | 1.58x10%]6.02x10™ | 2.00x10"' | 2.97x10"
9
[31] G 1.16x10% ] 9.88x10™| 9.98x 102 | 1.08x10"!

The bold numbers indicate the best solution found by corresponding algorithm

4.5.2 Shifted and rotated benchmark functions: f, f>, f+ and fswith d =100

The three top-ranked algorithms in the CEC 2015-LBP [15] are SPS-L-SHADE-EIG
[26], DEsSPA [27], and MVMO [28], in which the four shifted and rotated benchmark
functions, i.e., f1, f>, fs and f5, are considered. Here, the performance of the MG-PSO
algorithm is compared with the above three top-ranked algorithms with d = 100.

The comparison has been achieved with N,,, = 20 and for each run the maximum
NFE is 300,000. The criterion used in this comparison depends on the values of
maximum NFE and MFEV (21). When the algorithm reaches NFE = 300,000, the

MFEV is recorded as a better result. The algorithm obtains a best result when the
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MFEV is 0.0 or close to 0.0. The set of parameters given in Table 3 were used in MG-
PSO algorithm.

Table 9 presents the results of the MFEV and the corresponding ¢ obtained by MG-
PSO algorithm and three top-ranked algorithms in the CEC 2015-LBP [15]. We can see
that the MG-PSO algorithm is significantly superior to SPS-L-SHADE-EIG [26],
DEsPA [27] and MVMO [28] in solving f; and fs. While for f; and f5, the MG-PSO
algorithm is found similar or better than that of the three top-ranked algorithms.

Table 9
Performance comparison between MG-PSO algorithm and three top-ranked CEC 2015-LBP [15]
benchmark functions with = 100

NS Performance
No. ECTs measure i 2 Ja Js
1 MG-PSO MFEV 0.00 0.00 0.00 0.00
(proposed) G 0.00 0.00 [ 1.03x10™ | 3.73x10™
SPS-L-SHADE-EIG MFEV 0.00 0.00 | 2.00x10°" | 3.80x10"'
) [26]
Rank #1 C[Elg]z‘)”'LBP o 0.00 0.00 | 22510 | 1.08x10"
DEsPA MFEV  [4.60x10%|3.07x10°" | 2.03x10°" | 4.51x10""
3 [27]
Rank #2 C[Fig]z‘)”'LBP o 1.34x10% | 1.30x10% | 2.12x10" | 7.08x10%
MVMO MFEV 0.00 0.00 | 2.00x10°"| 1.66x10%
4 [28]
Rank 3 C[Fig]z‘m'LBP o 0.00[  0.006.02x10" | 2.12x10"

The bold numbers indicate the best solution found by corresponding algorithm

4.5.3 Shifted and rotated benchmark functions: f, fs, f7 — fio with d = 30

The benchmark functions in CEC 2015 expensive optimization papers (CEC 2015-
EOP) [16] are highly competitive and require efficient optimization algorithms to
provide fast solutions with a high accuracy. Six shifted and rotated benchmark functions
f3, fs, f7 — f10 are considered in the two top-ranked algorithms are MVMO [29] and
TunedCMAES [30].

Here, we compare the performance of the MG-PSO algorithm with that of the above
two top-ranked algorithms and few other competitive algorithms from [21-23], [32].
The comparison has been done with N,,,, = 20 and for each run the exact maximum NFE
is set at 1,500, as given in [16]. The dimension of each tested function d is 30. In the
SHPSO-GSA [21] and DD-SRPSO [22] algorithms 50 particles are used whereas 60
particles are used for the EPSO [23] algorithm. In this experiment, the MG-PSO

algorithm uses 20 particles and set of parameters were given in Table 3.
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Table 10 shows the MFEV, the corresponding ¢ and AET for the eight ECTs.
Among the eight ECTs, the MG-PSO algorithm achieves the best MFEV performance
for the five functions, f5, f7-f;p, whereas the MVMO [29] gives the best MFEV
performance for the function f;. In terms of o, the performance of the MG-PSO
algorithm is the best in case of the four functions f5, f7-fo and is the second best for the
function f3 and f;9. Thus, the performance of the MG-PSO algorithm is found to be
superior to the two CEC 2015-EOP [16] algorithms. In terms of AET, the MG-PSO
algorithm performance is better than the OPSO [24] and SabDE [32] for all the six

functions, f3, fs, f7-f10. The AET information for other algorithms is not available.

Table 10
Performance comparison between MG-PSO algorithm and seven ECTs using six CEC 2015-EOP [16]

benchmark functions with d = 30

o ECTs Performance| 2 5 5 5 fio
MFEV | L6710 | 1.24x10™ | 5.00x10°" | 1.24x10°% | 2.24x10°" | 1.12x10"
1 (xf;ig) o 1.58x10% | 4.22x10°" | 2.35x10°" | 1.82x10™" | 1.83x10" | 1.07x10*
AET (sec) | 1.34x10% | 1.23x10" | 1.15x10" | 1.07x10" | 1.03x10* | 1.49x10"
MFEV  |6.96x10"" | 1.80x10"" | 1.06x10" | 5.26x10" | 1.36x10" | 2.78x10%
2 SHPS[’;']GSA o 2.11x10”"9.03x10°" | 5.55x10"" | 4.62x10°"" | 3.11x10°" | 1.04x10™"
AET (sec) - - - - - -
MFEV | 2.59x10™ | 2.24x10"" | 2.71x10" | 5.61x10°" | 5.43x10™" | 3.32x10%
5 DD'[S;]PSO o 1.05x10% | 2.12x10% [ 7.58x10°" | 1.00x10° | 2.03x10°" | 2.12x10
AET (sec) - - - - - -
MFEV | 6.37x10% | 3.38x10"| 5.04x10% | 6.02x10" | 7.21x10”| 1.27x10%
EPSO
4 [23] ° ' ' ' ' . '
AET (sec) - - - - - -
MFEV | 6.81x10| 1.37x10%| 6.40x10°" | 1.49x10°* | 1.54x10* | 1.29x10%
s 0[1;2]0 o 2.96x10%]3.35x10°" | 4.00x10° | 5.97x10% | 7.45x10 | 6.74x10
AET (sec) | 2.32x10"| 1.98x10"" | 4.51x10% | 1.47x10% | 1.43x10% | 1.60x10%
MVMO MFEV  |6.93x10™| 3.79x10”" | 1.67x10” | 5.20x10" | 4.39x10" | 4.03x10%
6 |Rank #1 c[Ezg]zols-EOP o 3.24x10™| 3.85x10”[5.04x10°" | 1.32x10" | 9.93x10 | 2.63x10™
[16] AET (sec) - - - - - -
TunedCMAES MFEV | 1.17x10%| 3.21x10?| 5.05x10”| 6.00x10%| 7.00x10%| 8.22x10%
7 Rank#ZC[ég]mlS—EOP c 2.19x10% | 5.06x10°|5.91x10°" | 2.35x10°" | 2.86x10°" | 1.09x10™"
[16] AET (sec) - - - - - -
MFEV | 2.54x10% | 2.00x10%" | 4.33x10% | 4.56x10**| 7.52x10°" | 2.39x10"
8 S*[‘;’?]E o 5.00x10% | 2.04x10" | 9.46x10°" | 4.07x10™" | 4.15x10% | 5.43x10”
AET (sec) | 1.76x10°" | 1.65x10”" | 1.68x10""| 1.71x10°"| 1.78x10"" | 1.72x10"'
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4.5.4 Shifted and rotated benchmark functions: f3, fs, f7 — f10 with d = 100

The benchmark functions in CEC 2015-EOP [16] are highly competitive and require
efficient optimization algorithms to provide fast solutions with a high accuracy. Six
shifted and rotated benchmark functions f3, f5, f7— f10 are considered. The test has been
done with N,,, = 20 and for each run the exact maximum NFE is set at 1,500, as given
in [16]. The MG-PSO algorithm has been run for f;, fs5, f7— fio with d = 100. It uses 20
particles and set of the parameters were given in Table 3. The results are shown in Table
11. It can be seen that the MG-PSO algorithm perform quite satisfactorily. However, as

there is no other reported paper, we are unable to compare with other algorithms.

Table 11
Performance of the MG-PSO algorithm for six CEC 2015-EOP [16] benchmark functions with d = 100

SI. Performance

ECTs e S5 17 Js Jo Juo

No. measure

MFEV  [3.85x10%%|2.79x10%| 7.34x10™ | 2.48x10™ [ 3.36x10% | 2.31x10

| | MG-PSO c 1.69x10™ | 5.45x10™ | 4.43x10%* | 2.78x10™ | 3.43x10™ | 2.06x10*

(proposed)
AET (sec) | 4.48x10% | 5.36x10% | 4.67x10" | 4.34x10" | 4.23x10% | 5.01x10%

4.6 Statistical significance of the MG-PSO algorithm for CEC 2015 benchmark

functions

In order to determine the statistical significance of the proposed MG-PSO algorithm,
we carried out two sets of unpaired one-tailed t-test [45] with a significance level of a =
0.05. The results of the t-Test for CEC 2015-LBP [15] are shown in Table 12. Here, the
statistical results of the comparison between MG-PSO algorithm and eight competitive
algorithms for f}, />, f4 and fs are provided. The comparison is made with a degree of
freedom equals to 19. The MG-PSO algorithm is considered to be statistically
significant against the contender algorithm when t-value < 0 and p-value less than 0.05.
The general merit over contender is shown in the last row of Table 12. It is calculated as
the difference between the number of times the MG-PSO algorithm is found to be
statistically significant and statistically not significant among four tested functions. It
can be seen that out of the eight algorithms, the MG-PSO algorithm is statistically
significant against four algorithms, i.e., LLUDE, SaDE, JADE and CoDE [31].
However, against the three top-ranked algorithms CEC 2015-LBP [16], SPS-L-
SHADE-EIG [26], DEsPA [27] and MVMO [28], the MG-PSO algorithm is statistically

significant for f; and fs, whereas it is statistically not significant for f; and f>. In addition,
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the MG-PSO algorithm is statistically not significant against the OPSO algorithm [24]
for 11, />, f1 and fs.

Table 13 shows the statistical results of the comparison between MG-PSO algorithm
and seven competitive algorithms for the six functions f3, fs, f7— f10 CEC 2015-EOP. The
comparison is made with a degree of freedom equals to 19. The general merit over
contender is shown in the last row of Table 13. It can be seen that the MG-PSO
algorithm is statistically significant against all the seven algorithms. Note that, numbers
in bold signatures that MG-PSO algorithm is statistically significant with respect to the

corresponding algorithms.

Table 12
Statistical results of unpaired t-test of MG-PSO algorithm against eight ECTs for CEC 2015-LBP [15]

Competitive Algorithms
SPS-L- DEsPA MVMO
Sl Statistical SHADE-EIG [27] [28]
No |/ | Results | OPSO [26] Rank #2 Rank #3 | JADE | CoDE |LLUDE| SaDE
[24] | Rank#l | CEC2015- | CEC2015- | [31] | [311 | [31] | [31]
CEC2015-| LBP[15] LBP [15]
LBP [15]
t-value 0.0 0.0 0.0 0.0 TR e | = |
1
% value 5.00x 5.00x 5.00% 5.00x 7.99x 0.0 0.0 0.0
p 107! 10! 10! 100! 1027 . . .
t-value 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
20/ value 5.00x 5.00x 5.00% 5.00x 5.00x | 5.00x | 5.00x | 5.00x
p 100! 100! 10! 100! 10! 10! 100! 10!
tvalue 0.0 - -2.47x - -2.49x | -2.47% | -2.49% | -2.00x
P . 10 10 10 10 10
"1 value 5.00x 0.0 9.05% 0.0 7.50% | 9.05x | 7.50x | 4.74x
p 100! . 107" . 103 | 107 | 103" | 102
t-value 0.0 -2.53x -1.19% -1.17% -1.08x - -1.06x | -2.12x
P . 106 10 106 10'6 - 106 106
o value 5.00x 5.67x 9.13x 1.28x 7.35% 0.0 8.51x | 1.56x
p 10! 107391 1072 102 102 . 102 | 102
t =negative
t<0 0 2 2 2 3 3 3 3
t=positive 4 2 2 2 1 1 1 1
t=>0
General Merit Over 4 0 0 0 ) ) ) 5
Contender

Numbers in bold signatures, that MG-PSO algorithm is statistically significant with respect to the corresponding algorithm.
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Table 13
Statistical results of unpaired t-test MG-PSO algorithm against seven ECTs for CEC 2015-EOP [16]
Competitive Algorithms
MVMO TunedCMAES
Sl Statistical [29] [30]
No.| /| Results | SHPSO-GSA | DD-SRPSO | EPSO | OPSO Rank #1 Rank #2 SabDE
[21] [22] [23] (241 | cEC 2015-EOP |CEC 2015-E0p| 17
[16] [16]
t-value -9.41x -3.88x -9.54x -9.89x 9.15x% -1.75% -3.80x%
1001 1006 1006 1003 1000 1007 1011
1
J3 p-value 7.89% 1.63x% 6.14% 3.10x 2.15x% 5.90x% 2.37x
10—27 10—114 10—122 10—65 10-08 10—127 10—209
t-value -1.37x% -2.32x
=00 1016 =00 =00 1016 =00 =00
2|5 -value 6.05% 2.77%
p 0.0 1o 0.0 0.0 Lo 0.0 0.0
t-value -2.06x% -2.51x -2.04x
- 10'¢ - 10'¢ 10'6 - -
3|5
-val 2.14x% 6.34x 3.06x%
p-value 0.0 ppect 0.0 et 02 0.0 0.0
t-value -2.06x% -3.74x% -1.02x
10 =00 =00 10 10 =0 =0
4| -value 2.63x 3.24x 1.71x%
P 0 0.0 0.0 et e 0.0 0.0
t-value -1.06x -2.13x% -3.86x -3.44x% -2.30x%
1016 1016 =00 1016 1016 =00 1016
5
fo p-value 7.29% 1.44x% 1.73x% 1.56% 3.22x
1 0—294 10—299 0-0 1 0—304 10—303 0-0 1 0—300
t-value -1.36x% -1.26x%
10'° -0 =00 10'6 -00 -00 -0
6 1ol Salue 6.94x 2.86x
P T02% 0.0 0.0 e 0.0 0.0 0.0
t =negative
(<0 6 6 6 6 5 6 5
t = positive
=20 0 0 0 0 1 0 0
General Merit
Over Contender 6 6 6 6 4 6 6

Numbers in bold signatures, that MG-PSO algorithm is statistically significant with respect to the corresponding algorithm.

5 Case study: Solving economic dispatch problem of South Korea PGS

The economic dispatch of active power of online thermal generating units (TGUs),
also termed as ED problem, performs an important part in economic operation of PGS.
It is considered as a non-linear constrained optimization problem. The problem becomes
multimodal, i.e., non-convex, non-smooth and discontinuous, when the TGUs are
subjected to valve-point loading (VPL) effects and a set of prohibited operating zones

(POZs) operating power constraints.

In this section, we study the ED problem of large-scale TGUs for South Korea PGS
under four practical operating power constraints, i.e., VPL effects, generation limits,
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ramp rate limits (RRLs) and a set of POZs. The objective function of ED problem is the
fuel cost. Explanation of the fuel cost function and its four operating practical power
constraints, i.e., VPL effects, generation limits, ramp rate limits (RRLs) and a set of

POZs are considered, as follow:

5.1 Fuel cost function (objective function)

The aim of ED problem is to guess the optimum arrangement of power generation of
all online TGUs in order to minimize the entire generation fuel cost objective function
subjected to the online TGUs. In general, the fuel cost function of each on-line TGU is
characterized by a quadratic function given by [46]:

F(P)=a;+bP,+c,P’ (24)
where F(P;) is the fuel cost function of jth TGU in ($/h), P; is the output active power in

(MW) at current time interval, and a;, b;, and ¢; are fuel cost coefficients.
5.2 Operating power constraints imposed by thermal generating units

Here, four practical operating power constraints imposed on the online TGUs are

considered.

5.2.1 Valve-point loading effects

Under valve-point loading effects, sinusoidal functions are added to the quadratic
cost function (1) [34]. This makes the cost function, non-smooth and non-convex with

multiple modes, as follows:

F(P)=a;+b;P+c,P + ‘ €;x S"”(fj x (Pj,min _Pj))‘ (25)

where e; and f; are the coefficients reflecting VPL effects and Pj, 1s the minimum
output active power of jth TGU. The symbol | | corresponds to absolute value. The

total fuel cost function considering all on-line TGUs is given by:

cost —

Foy= X F(R) (26)

where Ng., 1s the number of scheduled online TGUs and F., is the total fuel cost

function to be minimized.

An illustrative example: To explain the impact of VPL effects on the fuel cost function,

let us suppose two TGUs, TGU,; and TGU,, with a set of parameters as shown in Table
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14 [47]. The TGU,; and TGU, are steam powered turbo generators with multiple valves.
Practically, the valves of steam-turbine control the steam entering through separate
nozzle groups. Each nozzle group provides best efficiency when its operating at
maximum output. Thus, when increasing the output power, the valves of seam-turbine
are opened and closed in sequence in order to achieve a highest possible efficiency for a
given output power. Subsequently, causing ripple-like effects and then the fuel cost
function becomes non-linearity of higher order. Fig. 8 shows the total fuel cost of TGU;
and TGU, under VPL effects. It can be concluded that multiple local minima are caused

by the sinusoidal functions (25).

Table 14
Parameters of TGU, and TGU,

a; b; ¢ ¢ | S | Pimin
($/h) |($/MWh)|($/MW?h)|($/h)[(MW™)|(MW)
1 | 95829 21.60 | 0.00043 | 450| 0.041 | 150
2 [1,313.60] 21.05 | 0.00063 | 600| 0.036 | 135

TGU;

Non-smooth fuel cost function

2.5 x 10°
2.2
< 2
% 2
3
8§15
1.8
1.
500 1.6
1.4

TG U2 300 200 TGU

Fig. 8. Total fuel cost function of TGU, and TGU, under VPL effects.
5.2.2 Generation limits

Each online TGU has a specified range within which its operation is stable.
Therefore, it is desired that the TGUs be run within this range in order to maintain

system stability. Normally, the generation limits of the jth TGU is given by

Pj,min S Pj Sijax ] = 1, 25 seey Ngen (27)
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5.2.3 Ramp rate limits

The operating range of online TGU is restricted by its ramp rate limits, RRLs, due to
its physical limitations [48-49]. For any sudden change in the Pp, TGU increase or
decrease its power generation in order to satisfy system stability. However, the TGU
can change its power generation only at a certain rate determined by its up-ramp and
down-ramp rate. If a TGU is operating at a specific point, then its point of operation can
be changed only up to a certain rate determined by the ramp rate. Therefore, a change in
TGU output active power from one specific interval to the next cannot exceed a
specified limit.

If power generation need to increase, then per unit time rate of increase P; — PjO must
satisfy:
P~ P < UR, (28)

If power generation need to decrease, then per unit time rate of decrease P;’ — P; must
satisfy:

P/~ P;<DR, (29)
where P,O is the TGU output active power at the previous time interval. The UR; and

DR; are the up-ramp and down-ramp limits of TGU j in (MW/h), respectively.
By substituting (28) and (29) in (27), we obtain the following constraints.

max{P;in, (P = DR)} < P;< min{Pj par, (P + UR))} (30)

where
P io = max{P in, (P’ DR}, 31
P high = Min{P; par, (P + UR))} , and (32)

P; 10w and P; ;g5 are the new lower and higher limits of jth TGU, respectively.
5.2.4 A set of prohibited operating zones

The physical limitations due to the steam valve operation or vibration in shaft
bearing of TGU may result in the generation units operating within prohibited operating
zones [49]. The POZs make the fuel cost function discontinuous in nature. In such case,
it is difficult to determine the shape of the cost curve of the fuel cost function under a
set of POZs through actual performance testing. In addition, if the TGU operates within
the POZ range then it may lead to loss of the stability. Therefore, these regions are
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usually avoided during generation. By using (27), the feasible operating zones (FOZs)
of the jth TGU are given by:

/
Pj,min = })j < le
Py <SP <P, k=2,3,.,N;p (33)
;:IN/,PZ =) = " jmax

where P/, and P!, are the lower and upper bound of the kth POZs of the jth TGU, and

N; pz 1s number of POZs of the jth TGU. Incorporating these power constraints in (30)-
(33), we get the final set of inequality power constraints imposed on TGU as given

below.

P4 SP<P, k=23 ,Np (34)

Equation (34) gives the final set of the operating power constraints imposed on jth TGU
in terms of new lower and upper generation power limits with RRLs and FOZs and
avoiding all POZs. Thus, all online TGUs will have a set of operation limits (OLs) that

satisfies all the operating power constraints.

An illustrative example: In order to illustrate new lower and upper generation limits and
FOZs obtained due to presence RRLs and POZs of jth TGU, an example of
specifications of TGU, per one-hour generation is given below [46]:

P2’= 170 MW; P in = 50 MW; P30 = 200 MW; UR; = 50 MW; DR, = 90 MW. The
TGU; has two POZs: POZ; =[90,110] and POZ, = [140,160].

From (34), the new lower and upper limits of TGU, based on RRLs are:
P> iow= 80 MW and P; isn = 200 MW,
and the three FOZs are:
FOZ,: 80 <P, <90

FOZ,: 110 <P, <140

FOZ;: 160 < P, <200
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Fig. 9 shows that TGU, has minimum and maximum OLs given by 50 MW and 200
MW, respectively. However, due to presence of RRL power constraint, TGU, operates
within new lower and higher OLs given by P, = 80 MM and P pi;n = 200 MW. In
addition, three FOZs: FOZ; = [80,90] MW, FOZ, = [110,160] MW and FOZ; =
[160,200] MW, and two POZs: POZ, = [90,110] MW and POZ, = [140,160] MW in
dark color are shown in Fig. 9. The intermittent zone ([50,80] MW) is out of OL of the
TGU,.

I_’.g,min [_)’, Jow Ig,fl [‘_:‘1\, 1_{,1‘2 1,_{,‘.; 1::“ I;J:y;h - ie Mmax
Out of OL FOZ,
50 80 90 110 140 160 170 200
MW MW MW MwW MW MW MW MW

Fig. 9. Lower and upper generation limits, POZs and FOZs for TGU,.

5.3 Performance measures

To study the accuracy, consistency and robustness of different algorithms in solving
ED problem of South Korea PGS, several fitness values as illustrated below are

considered. Every algorithm is executed over N,,, runs each with Ny, iterations.

1. Ensemble average cost (F..s): At each iteration, it is the average cost value obtained
from N,,, independent runs.

2. Minimum fuel cost (F,,): Defined as the minimum of the optimized F,,y values
obtained from N,,,, independent runs.

3. Maximum fuel cost (F4): Defined as the maximum of the optimized F,,; values
obtained from N,,,, independent runs.

4. Mean fuel cost (Feqan): Defined as the average of the optimized F., values obtained
from N,,, independent runs.

5. Standard deviation (c): The o is the standard deviation of the optimized F,, values
obtained from N,,, independent runs.

6. Range (R): The range (R) is defined as the difference between F, and F;,.

7. Average execution time (AET): It is the time consumed by an algorithm after

convergence, averaged over N,,, independent runs.
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5.4 Test case study: South Korea power generation system

The South Korea power generation system is a very large-scale PGS [34]. It consists
of gas, stream, diesel, and nuclear power stations. The South Korea PGS is a complex
with 140 TGUs each having generation limits and RRLs. In addition, the cost fuel
functions of 12 TGUs have VPL effects and 4 TGUs have 11 POZs. The maximum load
demand under steady-state and normal operations is 49,342 MW. The South Korea PGS

data are available in [34].

5.4.1 Comparison in terms of fitness values

The The South Korea PGS has been tested with three existing ECTs, i.e., CCPSO
[33], C-GRASP-SaDE [34], and C-GRASP-MDE [34]. Here, the performance of MG-
PSO algorithm is compared with these three algorithms as well as GPSO-w. The set of
parameters used in MG-PSO and GPSO-w algorithms are shown in Table 15. In
addition, both are run with m = 20, d = 140 and N,,, = 25. In MG-PSO algorithm, four
negative gradients were selected (Ngqq = 4) by trial and error method, three for

Exploration phase and another one for Exploitation phase as shown in Table 15.

The fitness values of the five ECTs are listed in Table 16. It can be seen that in
GPSO-w, Fiean = $2,529,855.79/h and o = $358,126.35/h. These results indicate that
GPSO-w is unable to solve South Korea PGS. Whereas, the MG-PSO algorithm is
efficient in obtaining the best result in terms of Fj...,, over 25 independent runs. In
addition, in terms of o, the performance of the MG-PSO algorithm is the second best.
This shows that the MG-PSO algorithm provides optimum and consistent results. In
addition, the range R of MG-PSO algorithm is the second lowest among the five ECTs,
thus indicating that it provides solution with low dispersion. In terms of AET, the MG-
PSO algorithm shows the second best performance. These results indicate that among
the five ECTs, the MG-PSO algorithm is stable and robust and is able to provide

optimum solution.
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Table 15
Set of parameters used in MG-PSO and GPSO-w algorithms for South Korea PGS
MG-PSO
Set of Exploration phase Exploitation phase| GPSO-w
parameters
k=1 k=2 k=3 k=4

Y 0.40 0.40 0.40 0.40 -

cr, o 2.05 2.05 2.05 2.05 2.00

Niger 1,200 1,200 1,200 1,800 3000

Winik 0.80 0.80 0.80 0.35 0.90

Wiink 0.10 0.20 0.30 0.20 0.40

grad, -5.83x10-5.00x10™|-4.16x10%|  -8.33x10°  |-1.67x10°"

Table 16
Comparison of cost performance between MG-PSO algorithm and other 3 ECTs for South Korea PGS
S1.No. Algorithm Min. Cost Max. Cost Mean Cost c R AET
Flin ($/h) Fax ($/h) Flyean ($/h) ($/h) (8/h) (sec)

1 |CCPSO [33]]1,657,962.7300{1,657,962.7300|1,657,962.7300 0.00 0.00{150.00
2 |C-GRASP-SaDE [34]]1,657,962.7268|1,658,583.5267|1,658,006.2712 NA 620.79| NA
3 |C-GRASP-MDE [34]1,666,667.7400|1,897,207.1500| 1,,685,973.32 NA| 230,539.41] NA
4 |GPSO-w 1,933,419.8873(3,366,473.6288|2,529,855.7978|358,126.35|1,433,053.74| 31.29
5 |MG-PSO 1,656,515.4715/1,656,917.31131,656,667.4650 8.01 401.83| 48.37

The bold numbers indicate the best solution found by corresponding algorithm.

5.4.2 Convergence characteristics of MG-PSO and GPSO-w algorithms

Fig. 10 shows the convergence characteristics of MG-PSO and GPSO-w algorithms
for South Korea PGS. It shows ensemble average F.,, values at each iteration obtained
from 25 independent runs. It can be seen that MG-PSO algorithm settles at about 1,300
iterations and achieves Fj,.., of about $1,656,700/h. Whereas, the GPSO-w algorithm
settles at a non-optimum F,.,, of about $2,529,855.79/h since the beginning of its
learning. Early convergence of the GPSO-w algorithm indicates that it has trapped into
a local minimum of at about $2,529,855.79/h. This indicates that the GPSO-w algorithm
is unable to solve ED problem of South Korea PGS with such a high dimension (d =
140) and under such a large number of operating power constraints. Whereas, it is clear
that for this complex PGS, the MG-PSO algorithm efficiently converges to the vicinity
of the optimum solution with four operating power constraints imposed by online

TGUs.

Fig. 11 shows the variation of optimized F,s over 25 independent runs achieved by
the MG-PSO and GPSO-w algorithms. It shows that the optimized F,; of MG-PSO
algorithm varies between $1,656,515/h and $1,656,917/h, whereas in GPSO-w
algorithm, it varies between $1,933,419.88/h and $3,366,473.62/h. This indicates that

MG-PSO algorithm is capable of prz%\éiding consistent and reliable optimum solution.
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Whereas, the GPSO-w algorithm is unable to provide optimum solution due to the high
complexity of the problem.
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Fig. 10. Convergence characteristics of MG-PSO and GPSO-w algorithms for South Korea PGS.
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Fig. 11. Convergence characteristics of MG-PSO and GPSO-w algorithms for South Korea PGS.

5.4.3 Comparison in terms of four operating power constraints

Tables 17 presents a solution vector P; (j = 1, 2, ..., 140) corresponding to the best
solution obtained from MG-PSO and GPSO-w algorithms. Four practical operating
power constraints imposed on 140 TGUs in South Korea PGS, i.e., VPL effects, RRLs,
generation limits and a set of POZs, are considered. In case of GPSO-w algorithm, it is
unable to solve non-smooth, non-convex cost function due to VPL effects, as shown
from the values of fuel cost (minimum, maximum and mean) in Table 16. In addition,

11 TGUs violate RRLs and generation limits, as shown in red color in Table 17. The
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details of the 11 TGUs for which GPSO-w algorithm failed to satisfy RRLs and
generation limits are shown in Table 18. These 11 TGUs must operate within the range

of RRLs and generation limits, based on (34).

In addition, TGU #136 violates POZ [50-74] MW, based on (34), as shown in blue
color in Table 17. This means that GPSO-w algorithm fails to solve ED problem for
South Korea PGS and is unable to solve the four operating power constraints imposed
on a large-scale TGUs. However, the MG-PSO algorithm avoids the 11 POZs imposed
on 4 TGUs and working within RRLs and generation limits of each TGU and solving

non-smooth cost function due to VPL effects imposed on 12 TGUs.
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Table 17
Optimized output active power in (MW) for each TGU obtained by GPSO-w and MG-PSO algorithms for
South Korea PGS
GPSO-w MG-PSO

t6u| P, |TGu;| P, |TGu| P, |TGU| P, |TGU| P, |TGU| P, |TGU]| P, |TGU| P

—_

119.0f 39 |[611.1] 77 | 513.1 | 115 (368.2 1 [118.9029| 39 |773.9550| 77 |389.9391] 115 |244.0759

2 |150.8] 40 |707.6] 78 | 336.4 | 116 |286.4] 2 |163.9317| 40 |768.9389| 78 [330.8755| 116 |244.3029
3 [167.7 41 | 47 | 79 | 196.7 | 117 (3482 3 |[189.8356| 41 | 3.5417 | 79 |530.7148| 117 |244.0177
4 |137.8] 42 | 12.1| 80 | 2724 | 118 [160.9] 4 [189.8119| 42 | 3.1421 [ 80 [530.9548| 118 | 95.1031
5 [183.4| 43 [170.4| 81 | 525.4 | 119 [119.8 5 |[189.8391| 43 [249.7563| 81 |541.6917| 119 | 95.2248
6 (1293 44 [185.4| 82 | 90.8 | 120 [189.3 6 |[189.9790| 44 |249.7986| 82 | 56.1218 | 120 |116.1326
7 [320.7 45 [222.9| 83 | 156.1 | 121 (300.7( 7 [489.9250| 45 |249.9315| 83 |[115.4416| 121 |175.2108
8 |285.0( 46 |[197.2| 84 | 236.1 | 122 | 11.0 | 8 |489.9932( 46 [249.7574] 84 |115.3084| 122 | 2.0596
9 [392.6 47 [178.2] 85 | 241.9 | 123 | 17.6 | 9 |[495.8361| 47 |249.9664| 85 |115.4370| 123 | 4.1350

10 |266.4| 48 |191.01 86 | 239.3 | 124 | 63.7 | 10 |495.9449| 48 |[249.8982| 86 |207.4802| 124 | 15.1293

11 (441.0 49 (2243 87 | 211.7 | 125 | 16.2 | 11 [495.8284| 49 |249.8841| 87 |207.0506| 125 | 9.3245

12 |329.6] 50 |234.8] 88 | 295.0 | 126 | 20.6 | 12 |495.8931| 50 [249.8927| 88 |175.2168| 126 | 12.3679

13 |351.5] 51 3652 89 | 193.6 | 127 | 13.3 | 13 |505.9485( 51 |[165.0090| 89 |175.2709| 127 | 10.0243

14 |467.3| 52 |484.4 90 | 239.3 | 128 |230.0] 14 |508.9545| 52 [165.0718| 90 |175.3078| 128 [112.1335

15 (4244 53 (383.5( 91 | 324.6 | 129 | 19.0 | 15 [505.9317| 53 |165.2701| 91 |175.3082| 129 | 4.0748

16 (377.6| 54 [457.9( 92 | 516.7 | 130 | 349 | 16 |504.8797| 54 |165.3485| 92 |575.3236| 130 | 5.3571

17 (309.7| 55 [269.9| 93 | 509.8 | 131 | 6.2 | 17 |505.9219| 55 [180.0918| 93 |547.2814| 131 | 5.3220

18 (3609 56 |(380.7( 94 | 983.9 | 132 | 86.9 | 18 |[505.9252| 56 [180.2213| 94 |836.2569| 132 | 50.0785

19 (369.5( 57 (278.5( 95 | 813.1 | 133 | 6.8 | 19 [504.9787| 57 |103.0974| 95 |837.2834| 133 | 5.1698

20 |348.6| 58 |[521.01 96 | 6342 | 134 | 71.9 | 20 |504.8703| 58 [198.6536| 96 |681.8989( 134 | 42.1825

21 |263.6| 59 (2309 97 | 712.4 | 135 | 65.6 | 21 |504.9936| 59 [311.8011| 97 |719.9877( 135 | 42.3435

22 |352.5| 60 (2163 98 | 683.5 | 136 | 51.2 | 22 |504.9871| 60 [311.6648| 98 |717.6493| 136 | 41.2530

23 |470.7| 61 |425.2| 99 | 705.5 | 137 | 23.1 | 23 |504.8732| 61 [163.7961| 99 |719.6865( 137 | 17.2795

24 |272.5| 62 |298.6| 100 | 891.5 | 138 | 17.8 | 24 |504.8014| 62 | 95.8232| 100 |963.8141| 138 | 7.0127

25 |505.1| 63 |[478.2| 101 | 945.7 | 139 | 7.6 | 25 |536.8458| 63 [510.9918] 101 |957.9583| 139 | 7.0810

26 |507.6| 64 |[470.4| 102 | 862.4 | 140 | 34.6 | 26 |536.9566| 64 [510.9026| 102 |946.5203| 140 | 26.1599

27 |481.4| 65 |[205.1| 103 | 976.1 27 |548.9488| 65 [489.6328| 103 |933.7727
28 |420.2] 66 |(458.6| 104 | 984.6 28 |548.9923| 66 [252.6819| 104 |934.8718
29 |3249| 67 |413.8] 105 [1,014.3 29 |500.9955| 67 [489.7562| 105 |876.4437
30 |463.6] 68 |293.6] 106 | 906.0 30 |498.9895| 68 |(489.6741| 106 |880.1277
31 |430.2] 69 |175.3] 107 | 938.4 31 |505.9392| 69 |130.8168| 107 [873.4553
32 |285.01 70 |297.0] 108 | 874.2 32 |505.8717| 70 |296.6273| 108 |877.2801
33 |473.8] 71 |337.9] 109 | 879.0 FAIL 33 |505.9013| 71 |142.7573| 109 [871.2103 SUCCESS
34 |455.5] 72 |411.5] 110 | 919.5 34 |505.8016| 72 |367.6518| 110 |864.6802
35 |461.11 73 |3453| 111 | 969.3 35 |499.9410f 73 |195.6819| 111 [882.3793
36 (2939 74 |473.3| 112 | 165.3 36 |499.8281| 74 |219.6960| 112 | 94.3471
37 |164.8] 75 |483.2] 113 | 193.4 37 |240.9999| 75 |217.8117] 113 | 94.2248
38 |216.7] 76 |523.9] 114 | 113.6 38 |240.9666| 76 |267.8831| 114 | 94.2292
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Table 18
List of 11 TGUs that violate RRLs and generation limits based on output active power P; obtained
by GPSO-w for South Korea PGS

TGU; 92 93 94 | 103 | 104 105 106 | 107 | 109 | 110 | 111
P;ipy (MW)|539.4|511.5|795.0|844.0|875.0|816.5 |820.9|813.7(799.5|795.0|810.0
P pign (MW) | 575.4|547.5|836.8|934.0|935.0876.5 |880.9|873.7|871.7|864.8 | 882.0
P, (MW)|516.7]509.81983.9(976.1|984.6|1,014.3|906.0|938.4|879.0(919.5|969.3

5.5 Statistical significance of the MG-PSO algorithm for South Korea PGS

Here, the statistical significance of the proposed MG-PSO algorithm has been
determined, one set of unpaired one-tailed t-Test is carried out [45] with a significance
level of o = 0.05. The MG-PSO algorithm is considered to be statistically significant
against the contender algorithm when t-value < 0 and p-value less than 0.05. The

general merit over contender is shown in the last row of Table 19.

Table 19 shows the t-Test results for South Korea PGS. The one-tailed unpaired
(o = 0.05 with a degree of freedom of 24) is performed against four competitive
algorithms. As seen from the data in the last column in Table 19, the proposed MG-PSO
algorithm is found to be statistically significant against the GPSO-w algorithm for South
Korea PGS. One can see from the statistical data in the last column of Table 19 that the
MG-PSO algorithm is statistically significant against the four contending algorithms for
solving ED problem of the South Korea PGS. These results give enough evidence that
the proposed MG-PSO algorithm is statistically significant against all four contending

algorithms.
Table 19
Statistical results of unpaired t-Test of MG-PSO algorithm against four ECTs for South Korea PGS
iti South Korea PGS | '~ t=
I\Sli; %nz)pr;t}lltg: negative | positive | General Merit Over Contender
) & t-value | p-value | t<0 t>0
-4.02 1.84
1 GPSO-w X1004 >(10_95 1 0 1
CCPSO -5.96 1.34
2 [33] <100 | x10%| ! 0 1
3 C-GRASP-SaDE | -6.16 6.04 1 0 1
[34] x10" |  x107
4 C-GRASP-MDE -6.05 6.13 1 0 1
[34] x10°'| x10%
Numbers in bold signatures, that MG-PSO algorithm is statistically significant with respect to the corre sponding
algorithm.
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6 Conclusion

An algorithm called multi-gradient PSO (MG-PSO) algorithm is proposed and
applied to optimize unimodal and multimodal problems. In MG-PSO algorithm, several
negative gradients are used by m particles while searching for an optimum solution in
two phases called Exploration and Exploitation. The combination of two phases
provides a balance between global and local search spaces. Thus, this combination is
successfully applied to overcome the disadvantages of the gradient methods. With
extensive simulation studies, performance of the MG-PSO algorithm was compared
with GPSO-w algorithm and several existing competitive algorithms and its superiority
is demonstrated in terms of several performance measures. The MG-PSO algorithm was
applied to ten selected unimodal and multimodal benchmark functions (CEC 2015) with
d =30 and d =100 as well as to South Korea power generating system (case study). The
proposed MG-PSO algorithm outperformed several existing ECTs including top-ranked
CEC 2015 algorithms. In addition, the sensitivity analysis and statistical tests were
carried out to demonstrate the effectiveness of the proposed algorithm. Thus, the MG-
PSO algorithm proved to be a powerful and highly effective algorithm that is capable of

solving complex unimodal and multimodal functions.
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Here, pseudocode of the MG-PSO algorithm is provided.

Begin MG-PSO Algorithm

Let f{x) be the function to be minimized.

Choose Nier, Nrads Winiks Whingo K =1,2, ..., Ngraa

Determine Niser,xpiore AN Niger xpioi using (10) and (11), respectively.
Step 1: Initialization: Iteration, t =0

Obtain Gp,(0) using (1)-(4)

Step 2: Begin Exploration phase
fork=1,2, ..., Ngs— 1
begin of episode &
Determine grad, using (12)
for t=1,2, ..., Nyerxpiore
Determine wy() using (15)
fori=1,2,....m
Update the particle’s velocity and position vectors as follows

VO = w @ VA =D + 6 OIG e (t = 1) = Xt = D]+ ¢ O[Gey £ = 1) = X[ = D)]

XK@y = XE D+ V@)
Evaluate the particle’s performance by substituting (A-2) in f{x)
Update G, as follows

Xio) it f(XEO) < (G, (t—1)
Gl;ers,i (t) =

G]pfers,i(t - 1) Otherwise
end i loop

fori=1,2,..,m
Obtain £ (G}, (1))
end loop i
S(Ghe®) = min{ [ (G, ()}
Obtain G.,.(¢) corresponding to f(GL,(¢))

end ¢ loop
. k k
Obtain Gbest(]viter,xplore) and f (Gbest(]viter,xplore))

end of episode k&
end £ loop
fork=1,2, ..., Noaq-1

Obtain f (Gllvfest (Zviter,xpl()re))

end k& loop
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ﬂGbest,xplore) = mm{ f (GII;est(]viter,xplore)) }

(A-5)

Obtain BES T(Gbest,xplure) corresponding tOﬂGbas‘t,xplore)

Obtain new search space (neighbourhood) by taking “Floor” and “Ceil” of each element of

BEST( ( Gbest,xplore)

End Exploration phase

Begin Exploitation phase

Use the new search space

Step 3: Initialization: Iteration, t = 1

fori=1,2,....m

Vi(1) = Vi(Niterpiore) corresponding to BEST(Gpest.spiore)

Xi(1) = Xi(Niterxpiore) corresponding to BEST(Gpeg xpiore)
Gers,(1) = Gpers, i Niter,piore) corresponding to BEST(Gpegxpiore)
end 7 loop

Gbest,xploil( 1 ) = BEST( Gbest,xplare)

Determine gmngmd using (13)

Step 4: Update

fort= 27 3: [EED) Mteraxploil

Determine wy(f) using (15)

fori=1,2,....m
Update the particle’s velocity and position vectors as follows:

Vl(t) = WNgmd(t) I/l(t_ 1) + C1 rl(t) [Gperx,i(t_ 1) _)(l(t_l)]

+ ar2(t) [Grestpioit — 1) — Xi(t —1)]

Xi(t) =Xi(t = 1) + Vi(2)
Evaluate the particle’s performance by substituting (A-11) in f{(x)
Update G, (1) as follows

X0 if f(X(0)) < f(Gpepst = 1)
Gpers,i(t) =

Gt =1) Otherwise
end i loop
fori=1,2,..,m
Obtain f{Gper, (1))

end loop /

f(Gbext,xolit(t)) =min {f(Gpem, ,([))}

Obtain Gyegpioilt) corresponding to A Gpestapioid 1))

end ¢ loop

Optlmum solution = Ghest,xploit(jv[ter,xploit)

Optlmum value = f( Ghest,xploit(]viter,xploit))

End of Exploitation phase
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