
Operational Management Contracts for Adaptive Software Organisation

Alan Colman and Jun Han

Faculty of Information and Communication Technologies

Swinburne University of Technology

Melbourne, Victoria, Australia

{acolman,jhan}@it.swin.edu.au

Abstract

As modern computing environments become more

open, distributed and pervasive, the software we build
for those dynamic environments will need to become

more adaptable and adaptive. We have previously

introduced the ROAD framework for creating flexible

and adaptive software structures. This framework is

built on a distinction between functional and

management roles. Management roles participate in

contracts that regulate the global-flow of control

through a structure of objects and roles. This paper

shows how these operational-management contracts

can be defined. Such contracts specify the permissible

interactions between objects playing functional roles
within an organisational structure. Association aspects

are shown to have the expressiveness needed to

represent such management contracts.

1. Introduction

As modern computing environments become more

open, distributed and pervasive, the software we build

for those dynamic environments will need to become

more adaptable and adaptive. Organisational viability

of software is required to make software adaptable and

adaptive in changing environments [3]. In order to

achieve organisational viability we need to represent

organisational aspects of software. This paper

addresses how software organisation might be

represented, at both design and code levels, so that it is

amenable to adaptation. This is a prerequisite if we are

to create viable adaptive software systems whose

organisational representation can be manipulated.

One way to create adaptable software is to create a

loosely coupled structure and to create the relationships

between the nodes in that structure as late as possible.

The relationships in the structure are regulated accord-

ing to the changing environmental demands. In this

approach, software organisation can be viewed as the

maintenance of viable arrangements of elements and

the regulation of the flow of control in the structure.

This paper extends our work in [3] on the ROAD

framework which models software as a decoupled

network of roles and objects. The management of the

software is seen as a ‘separate concern’ from the

functional aspects of the software. In particular, we

show how management contracts can be used to

regulate the flow of control through a network of roles.

The form of such contracts is defined, and we also

demonstrate how association aspects [18] can be used

to implement them.

1.1. Example

Let us consider an example to illustrate how

organisational abstractions can be modelled. This

example models a highly simplified business

department that makes Widgets and employs

Employees with different skills to make them. In such

a business organisation an employee can perform a

number of varied roles, sometimes simultaneously.

Figure 1. Conventional Object-oriented Class Model

In Figure 1 above, roles are design-level

descriptions of association between classes. The

associations between classes are fixed at design-time in

method invocations and inheritance relationships. The

associations between classes/objects cannot be

dynamically created or richly described. For example,

what types of interaction are permissible between an

Assembler and a Foreman, and do these interactions

differ from those types of interaction between an

Assembler and a ThingyMaker? Can an Assembler tell

a Foreman what to do by invoking its methods? In

object-oriented design, there is no organisational level

description in terms of the control of the system. The

global flow of control through the structure cannot be

represented. Only particular sequences of specific

interactions can be shown (e.g. in sequence diagrams).

Finally, in conventional object-oriented design, roles

are implicit to the objects that play them. There can be

no dynamic adaptation of the structure of the

relationships between objects and roles in response to

changing demands on the system.

makes makes

Company

manufactures

Product

employs

Employee

Widget

Doover Thingy

ThingyMaker DooverMaker

Assembler
Foreman

Production
manager

assembles

Class Inheritance

Aggregation

Association

makes Role name

Proceedings of the 2005 Australian Software Engineering Conference (ASWEC’05)

1530-0803/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 11,2010 at 19:56:40 EST from IEEE Xplore. Restrictions apply.

We will rework the above example to show how

management contracts can be defined that regulate the

associations between roles in a decoupled structure.

1.2. Structure of this paper

Section 2 gives an overview of the ROAD

framework which provides the context for the

discussion of role contracts. The model of the network

formed by these management contracts is an

organisational description of the software system based

on the flow of control. Section 3 characterises the

different types of control in such a network according

to whether it is direct or indirect, and according to the

scope of control. In Section 4 we use this

characterisation of control to examine in more detail

operational-management roles and the contracts by

which they are associated. We will define these con-

tracts in terms of control-communication acts (CCAs)

and demonstrate how to formalise them into contracts.

We examine the nature of such contracts then define

the expressive requirements needed to represent them.

Section 5 provides a brief overview of association

aspects. We then show how association aspects meet

the expressive requirements needed to represent

operational-management contracts defined in the

previous section. Section 6 examines related work and

Section 7 draws conclusions and outlines further work.

2. Overview of the ROAD framework

The Role-Oriented Adaptive Design (ROAD)

framework (not to be confused with the Roadmap [7]

agent-oriented methodology) is a method for creating

adaptable and adaptive object-role software structures.

The ROAD framework extends work on role and

associative modelling in [1,9-11]. In this section we

give a brief contextual overview of our ROAD

framework. A more extensive description of the basis

of this framework can be found in [3].

A role is an interface of an object that satisfies

responsibilities to the system as a whole. We follow

Kristensen [10] in viewing roles as separate design and

implementation entities. Roles can be added to, and

removed from, objects. [10] provides a definition of

roles that is based on the distinction between intrinsic

and extrinsic members (methods and data) of an object.

Intrinsic members provide the core functionality of the

object, while extrinsic members contain the

functionality of the role.

Figure 2. Object and role members

In our view, this ‘core functionality’ is the situated

computational and communication capabilities of the

object. Extrinsic members implement the domain

function roles of the object.

Returning to our example in the Introduction, rather

than modelling a Foreman as a subclass of Employee,

Foreman becomes a role an Employee can play. The

static inheritance relationships with the Employee class

would be removed. These are replaced by potential

role-object bindings. Note that Widget would not be

treated as a role of Product because in the problem

domain Products cannot change roles.

From the basis of decoupled class-role structures,

ROAD defines organisational levels of abstraction. The

ROAD framework extends previous work on roles by

making an explicit distinction between functional and

management roles. Three types of role are defined:

functional, operational-management and

organisational- management roles.

Functional roles are focused on first-order goals —

on achieving the desired problem-domain output.

Functional roles constitute the process as opposed to

the control of the system. Some functional roles are

coupled to the environment through system i/o. In

Figure 3 below, the Employee e1 playing the role of

Foreman can invoke action (e.g. ‘make 10 widgets’) in

the WidgetMaker role played by the e2 Employee

object. The discussion of the binding between

functional roles and objects is outside the scope of this

paper.

Figure 3. Association between functional roles

Operational-management roles, on the other hand,

focus on regulating the relationships between roles.

They define contracts between roles based on a

separation of management control from process.

Operational management roles have no direct connect-

ion with the environment. Extending the example from

Figure 3 above, we can characterise the management

relationship between a Foreman and a WidgetMaker as

a Supervisor-Subordinate relationship – the Foreman in

the operational-management Supervisor role and the

WidgetMaker in the operational-management

Subordinate role. The relationship between objects,

functional roles, operational-management roles, and

contracts is illustrated in Figure 4 below.

Figure 4 Operational-management roles

Foreman

Assembler

e1:
Employee

e2:
Employee

fac: Foreman-
AssemblerContract

Supervisor

Subordinate

Supervisor-
SubordinateContract

Domain Function level Control level

response

Foreman Widget
Maker

e1:
Employee

e2:
Employee

invocation

Role2

Role1
object Extrinsic

members

Intrinsic

members

Proceedings of the 2005 Australian Software Engineering Conference (ASWEC’05)

1530-0803/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 11,2010 at 19:56:40 EST from IEEE Xplore. Restrictions apply.

A network of operational-management roles bound

by contracts regulates the flow of control through the

system — the organisation of the software. In this

paper, we are focussing on these operational-

management roles and contracts.

Organisational-management roles maintain a

reflective representation of the system’s organisation,

and have mechanisms for restructuring the organisation

by creating/destroying role-object bindings and

dynamic role-role associations. The controllers

(objects/agents/ humans) that play organisational

management roles are responsible for deciding what

objects will play the various functional roles, and for

the restructuring of the network of operational-

management roles. These controllers are linked to the

environment and monitor the performance of the

software system in terms of its goals. This forms an

adaptive loop. The discussion of organisational

management roles is beyond the scope of this paper.

Figure 5. Associations in levels of abstraction in ROAD.

Figure 5 above illustrates the relationships between

the different types of roles in the ROAD framework. In

summary, the ROAD framework achieves adaptivity

through creating decoupled object-role structures. The

roles in this initial structure are functional roles. A

cross-cutting management role-structure is then created

from operational-management roles. The creation of

links between these management roles forms an

abstract organisational structure. This structure

represents the topology of the organisation and global

control flow based on permissible role interactions.

The functional roles are bound to the network of

operational-management roles. This binding creates a

domain-specific organisational structure. An

instantiated organisational structure can then be

created by binding functional roles to objects. Such a

structure is adaptable. Run-time adaptivity is achieved

by defining organisational-management roles. These

roles control and maintain the organisation by creating

and destroying object-role bindings and dynamic role-

role associations.

In this paper, we focus on the characterisation of

operational-management roles and their association

contracts within this framework. We show how these

roles can be implemented as aspects that cross-cut

functional roles and objects.

3. Control in a management network

We define organisation as the global flow of control

through a system. Unlike natural systems, in which

organisation is emergent, software systems are

designed to achieve goals. A shortcoming of many

supposed organisational descriptions is that they

reduce the description of organisation to just the

topological structure. In our definition, organisational

descriptions of designed systems are means-end

functional descriptions. A complete organisational

description would need to indicate how goals are

transmitted through the system, how the system

changes in response to changing goals and

environmental perturbations, and how the system

maintains its organisational viability. Such

organisational descriptions can be based on the

conceptual separation of control from process — that

is, the separation of management of the process from

the process itself. An organisational/managerial aspect

of a structure facilitates the intentional flow of control

through a structure of management roles, whereas

relations between functional roles define the dataflow

through the structure. Management functions can be, to

some extent, characterized in a domain-independent

way. These functions include coordination, goal-

transmission, regulation, accounting, resource-

allocation, auditing and reporting. The organisational

perspective is one of a number of possible

perspectives, but it is a perspective that allows us to

explicitly represent and incorporate adaptive

mechanisms into a system.

Control in an organisation can be characterised as

direct or indirect. Direct control is concerned with

positive goal propagation through the structure. In a

hierarchical structure, direct control is a chain of com-

mand. Each node in the structure reinterprets the

goal(s) passed down to it. The node then operation-

alises the goal(s) either by executing a process itself or

setting goals for other roles. Indirect control is control

through constraint – for example, the regulation of a

process though the allocation of resources to roles

performing the process. Resources can be thought of as

objects that do not perform management functions

within the organisational structure.

Either individual components, or parameters that are

system/subsystem wide, can be controlled. The table

below illustrates various mechanisms for control

categorised by scope of control and type of control.

Player1 Player 2 Player 3

C2

Operational-
management
contract level

Functional-
role level

Object
level

Organisational
Manager

Role

Organisational-
management
level

Resource

Information

on state of

contract

Controls contracts

& role-object

bindings

R1 R3 R4

C1

Proceedings of the 2005 Australian Software Engineering Conference (ASWEC’05)

1530-0803/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 11,2010 at 19:56:40 EST from IEEE Xplore. Restrictions apply.

Table 1. Control type versus scope of control and example
mechanisms of control

 Scope

Control type

Individual component (Sub)system

Direct control Command / goal setting Prescriptive rules

Indirect control Resource allocation
Individual policies

Proscriptive rules
Group policies
Norms

In many systems, a combination of these modes of

organisation will be present. In this paper, we focus on

direct and indirect control of individual components

(the shaded area in the above table) through the

assignment of organisational responsibilities and the

creating of structure for management control.

In the next section we characterise such operational-

management associations and contracts in more detail.

4. Operational-management role

associations and contracts

The separation of operational-management roles

from functional roles gives us a way to describe the

organisational topology of the system and the control

regime of that structure. Management hierarchies of

any complexity, such as that shown in Figure 6 below,

can be created with such operational-management

roles. The static representation of such a hierarchy

would have the appearance of a business’s

organisational chart.

Figure 6. Abstract organisation structure of operational-
management roles

A domain-specific organisation is created when

functional-roles are bound to operational-management

roles. In Figure 7 below, an organisational structure

has been created for our Widget department using

Supervisor-Subordinate operational-management role

contracts. In order to simplify the diagram, functional

contracts have been drawn as diamonds. Every

functional role in the organisation has a position in the

control structure and thus has one or more associated

operational-management roles — one for every type of

role-role association in which the functional role

participates. In other words, there is a correspondence

between functional role-role associations and

operational-management role-role associations. We

call this binding association inheritance. Note that the

structure is still abstract because no objects have yet

been assigned to roles.

Figure 7. Domain specific abstract organisational structure

Operational-management contracts restrict the

interactions between objects playing particular roles. In

object-oriented languages such as Java, a target object

will respond to any valid invocations of its public

methods from objects that have the target in their

scope. The scoping of accessibility of such methods

can only be structured in a primitive way using

accessibility modifiers, program blocks, packages,

namespaces etc. Operational-management contracts

restrict the type of method that one role can invoke in

another role, or restrict what methods it will respond to

from another role. From our example above, the

Supervisor-Subordinate contract restricts interactions

between the objects playing the WidgetMaker and the

Foreman to certain types of interaction. For example, a

WidgetMaker cannot tell its Foreman Supervisor what

to do. These contracts also restrict interaction between

particular instances of object playing the roles. For

example, the method WidgetMaker.setProduction

Target() can only be invoked by the WidgetMaker’s

own Foreman.

Supervisor-subordinate management associations

are only one type of operational-management contract.

Others could include:

Auditor-auditee

Peer-peer

Supply-chain predecessor-successor

Production-line predecessor-successor

4.1. Control-Communication Acts

We characterise the types of operational-

management contracts in terms of the control

communication between roles that are party to the

contracts. Such control communication can be defined

in terms of control-communication act (CCA)

primitives. These performatives abstract the control

aspects of the communication from the functional

aspects. We can define a simple set of CCAs in terms

of the direct/indirect control distinction made in the

previous section. Direct control is direct invocation of

Subordinate

Subordinate Subordinate

Supervisor

Subordinate

Supervisor

Production manager

Thingy
Maker

Foreman

Supervisor

Subordinate

Doover
Maker

Peer

Assembler

Peer

Subordinate Subordinate

Supervisor-
SubordinateContract

Peer-Peer
Contract

Supervisor

Management contract

Functional contract

Proceedings of the 2005 Australian Software Engineering Conference (ASWEC’05)

1530-0803/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 11,2010 at 19:56:40 EST from IEEE Xplore. Restrictions apply.

action in another role (command) or the setting of a

goal state in another role. Indirect control is achieved

through the allocation or restriction of access to

resources. As such, indirect control is inherently

referential as it involves three entities – the role

granting access to the resource, the role consuming the

resource, and the resource itself. We assume resources

are passive objects – that is, they do not know which

roles are able to access them. Indirect control

information therefore passes between the controller

and the consumer of the resource, rather than to the

resource itself. If access to the resource were to be set

by the resource itself, it would need to be represented

by a node in the operational-management role network.

In addition to direct and indirect control, control

information needs to be passed between management

nodes. This includes responses to commands or

requests – such as accept, refuse etc. It could also

include other information relevant to the regulation of

the system - e.g. busy, off-line etc.

Table 2. Example of Control-Communication Act Primitives

Type of
communication

Communicative control acts

Direct Control DO, SET_GOAL

Indirect Control
RESOURCE_ALLOC(r),
RESOURCE_REQUEST(r)

Information ACCEPT, REFUSE, INFORM, QUERY

As an example, Table 2 above defines a set of

primitives suitable to a hierarchical organisation. Note

that because indirect CCAs express a ternary

relationship, they carry a reference to a resource r. The

above set is not logically complete. For instance it does

not capture a referential command relationship (A tells

B to tell C to do something), but it is sufficient to allow

us to define a number of contracts between

operational-management roles. From these contracts

we can create organisational structures.

4.2. Operational-management contracts

The concept of a contract is commonly used in soft-

ware engineering. For example, design-by-contract

[12,13] defines the preconditions, post-conditions and

invariants that must hold for a given type of interaction

with an object. Such contracts are essentially one-sided

in that they only explicitly express the conditions for

one party – the other party (client) is anonymous. In

the real world however, contracts always have at least

two parties. They are a type of association that

expresses the obligations and responsibilities of parties

to each other. Contracts can be unique (e.g. a contract

to build an opera house) or follow a standardized type

(e.g. contract for sale for a residence).

Contracts can have a number of incarnations: form

(à la class), instantiation (à la object) and execution.

The form (type) of a contract sets out the mutual oblig-

ations and interactions between parties of a particular

class (e.g. vendor and purchaser). A contract is instant-
iated with an identity when values are put against the

variables in the contract schedule (e.g. vendor and

purchaser are named, date of commencement agreed

etc.) and the contract is signed. Contracts can also be

thought of as having an execution state in terms of the

fulfilment of the various clauses of the contract.

Operational-management contracts are examples of

such associational contracts – they define the form of

an ongoing control association between two roles in an

abstract organisational structure. The form of such

contracts contains:

1. Variables defining the parties to the contract. These

variables are of a particular type of participant that can

enter into the contract.

2. A protocol that defines the allowable types of

interaction between those parties. In operational-

management contracts, these protocols are described in

terms of the control relationships between the parties

(e.g. A has the power to tell B what to do) rather than

the functional relationships (A tells B to do a particular

action). In terms of software, the protocols define the

allowable types of method invocation that one type of

operational-management role (e.g. supervisor) can

make on another (e.g. subordinate) and the expected

response.

3. Other clauses in the form of contract define

variables that relate to the execution of the contract.

These include conditions relating to commencement,

continuation, performance and termination of the

contract. Operational-management contracts are on-

going in that they define the control relationships

between the parties whilst there is an organisational

relationship between the parties. In this sense they are

more like a service-level-agreement or an employment-

contract, than they are like a contract of sale. In a

commercial contract such variables are part of the

contract schedule.

An instance of an operational-management contract

is created when the variables in the contract schedule

are given values — in particular when operational-

management roles are bound to functional roles (e.g. a

Supervisor role is bound to a Foreman role). The rules

for communication that are defined in the contract

protocol are mapped to the method invocations in the

functional roles. Performance criteria can also be

attached to the execution of various clauses in the

contract or to the contract as a whole.

Information on contract execution needs to be

stored, along with the static information described

above. This dynamic information is needed to ensure

that the terms of the contract are being met, and

includes information on the state of the relationship

between the parties (e.g. active, inactive, suspended,

in-breach, terminated etc.), and the state of any

Proceedings of the 2005 Australian Software Engineering Conference (ASWEC’05)

1530-0803/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 11,2010 at 19:56:40 EST from IEEE Xplore. Restrictions apply.

interaction defined by the protocols (e.g. A has sent a

Query to B and is waiting for a response). In the real

world, commercial contracts are just passive artefacts

so this information is maintained by the parties

themselves (or their agents). In software contracts, it

makes sense to store this dynamic information in the

contract itself.

Using the primitives we defined in the previous

section, a Supervisor-Subordinate contract could be

defined as in Table 3 below. When a functional role in

an organisational structure is bound to an operational-

management role using such a contact, all functional

role invocations and responses are associated with

CCA primitives.

Table 3. Example form of operational-management contract

Operational-management Contract
Name Supervisor-Subordinate
Party A Supervisor
Party B Subordinate

A initiated

DO ACCEPT, INFORM
SET_GOAL ACCEPT, INFORM
INFORM —
QUERY INFORM
RES_ALLOC ACCEPT

B initiated
INFORM —
QUERY INFORM or REFUSE
RES_REQ RES_ALLOC or REFUSE

In summary, the expressive requirements needed to

represent operational-management contracts in terms

of state and behaviour are:

State: Each instance of a contract must include:

the name of the parties (i.e. the functional roles or

objects playing those roles)

a FSM of the state of communication between the

parties as defined by the protocol. It is this

representation of the state of the association (viable

or otherwise) that allows the organisational manager

to maintain a representation of the state of control-

flow through the organisation.

Behaviour represented in the contract includes:

a protocol definition of permissible types of

interaction between the parties

a mapping from the protocol to the interface

signatures of the respective functional-roles. This

requires adherence to a naming standard for the

methods so that they can be associated with types of

invocation

a mechanism for enforcing the protocol on

communications between functional-roles

In the next section, we show how association-

aspects [18] can be used to implement operational-

management contracts with the above expressive

requirements.

5. Using Association-Aspects to implement

operational-management contracts

This section shows how we can implement

operational-management contracts using the

association aspect extension [18] to AspectJ [4]. We

begin with a brief discussion of AspectJ aspects and

association aspects and how they can be used to model

behaviour between groups of objects. The subsequent

subsections outline the steps that are taken to create a

contract:

1. The elements of a contract related to direction and

restriction on communication are defined using

pointcuts.

2. Contract clauses are then created from these

elements.

3. Actions to be taken when a contract clause is

triggered are then defined using aspect advice.

4. A contract is constructed from its clauses and other

elements in its schedule.

5. An instance(s) of a contract is created.

Aspect-oriented methods and languages seek to

maintain the modularity of separate cross-cutting

concerns in the design and source-code structures. As

pointed out above, the organisation of software as

expressed in a network of operational-management

roles, cross-cuts the program structure defined by the

functional-roles and classes.

The AspectJ extension to Java allows the

programmer to define pointcuts that pick out certain

join points (well-defined points in the program flow).

An advice is code that is executed when a join point

that matches a pointcut is reached. Aspects encapsulate

such pointcuts and advices. These units of modularity

can model various cross-cutting concerns.

While AspectJ-like aspects have previously been

used to add role behaviour to a single object [9], as far

as we are aware they have not been used to implement

associations between roles. Aspects as currently

implemented in AspectJ do not easily represent the

behavioural associations between objects [19]. Current

implementations of AspectJ provide per-object aspects.

These can be used to associate a unique aspect instance

to either the executing object (perthis) or the target

object (pertarget). When an advice execution is

triggered in an object, the system looks up the aspect

instance associated with that object and executes that

instance. This allows the aspect to maintain a unique

state for each object, but not for associations of groups

of objects.

 Sakurai et al. [18] propose the use of association-

aspects to allow an aspect instance to be associated

with a group of objects. Such association-aspects meet

the expressive requirements that we defined in the

previous section. Association-aspects are implemented

with a modification to the AspectJ compiler to handle

Proceedings of the 2005 Australian Software Engineering Conference (ASWEC’05)

1530-0803/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 11,2010 at 19:56:40 EST from IEEE Xplore. Restrictions apply.

an additional pointcut primitive. Association-aspects

allow aspect instances to be created in the form

MyAssAspt a1 = new MyAssAspt (o1, o2, … , oN);

where a1 is an aspect instance and o1 and oN are a

tuple of two or more objects associated with that

instance. Association-aspects are declared with a

perobjects modifier that takes as an argument a

tuple of the associated objects.

aspect AnAssociationAspect perobjects(o1, o2){
 //aspect variables
 //pointcut declarations
 //advice methods
}

Figure 8 below is a schema that sets out the

relationship between the code-level constructs (such as

join points, named pointcuts, advice), and the

functional-role and operational-management roles. The

contract, as implemented by the association aspect,

defines pointcuts that match particular types of

communication between particular parties. Actions

from the contract (in the form of advice) are woven

into the code of the functional role. If a control

communication triggers a clause in the contract the

respective action is executed.

Figure 8. Using association aspects to implement contracts

The following subsections will explain this schema

in more detail.

5.1. Defining the contract elements

To create an operational-management contract type,

as defined in Section 4, we need to define the parties

that participate in the contract, and which control-

communication acts (CCAs) each of the parties can

use. To do this we create three types of pointcuts:

1. Party pointcuts that match the parties to the

contract.

2. CCA pointcuts that define the types of message.

3. Instances of these two above basic types of

pointcut are then composed into pointcuts that

represent particular clauses in the management

contract. These composite pointcuts define who can

say what.

Party pointcuts represent the parties to the contract

and the direction of communication between those

parties. For example, in a contract between two

operational-management roles (of type MRole) there

would be two party pointcuts: a aToB pointcut that

represents communication from party A to party B, and

a bToA pointcut that represents communication the

other way. The definition in AspectJ is as follows:

pointcut aToB(MRole a, Mrole b):
associated(a,b) && this(a) && target(b));

The associated(a,b)condition is an AspectJ

extension from [18]. In this case it ensures that the

parties, represented by the particular MRole variables a

and b, are associated in a contract. The this(a)

condition ensures a is making the call. The

target(b) condition ensures that b is the target of

the communication.

CCA pointcuts use a mixture of primitive pointcuts

provided by AspectJ and pattern matching on the

method signatures to enforce the communication

protocol between the functional roles. If the CCA types

cannot be distinguished by primitive pointcuts alone, a

naming-convention is required that identifies the

method signature with particular CCAs in the contract.

To achieve this in our example we define the convent-

ion that: ‘an abbreviation of the CCA prefixes the

method’. For example the name setG_Daily-

WidgetQuota() enables a mapping to be created

between the functional method that sets the daily quota

of Widgets, and the SetGoal CCA primitive defined in

the operational-management contract. Where CCAs are

referential, as is the case with resource allocation, the

method signature is distinguished by the type of

parameter. In our example, all resources implement a

Resource interface. The CCA pointcut

ResourceAllocate could be defined as follows:

pointcut resAlloc() : call(* ra_*(Resource));

This pointcut called resAlloc matches any method

call that

begins with the characters “ra_”

returns any type

has a variable of type Resource as a parameter.

5.2. Defining the clauses of the contract

Contract clause pointcuts are the combination of a

Party pointcut and a CCA pointcut. For example the

pointcut below is Clause 1 (a1) of the contract. It says

that Supervisor sup has the authority to allocate

resources to the Subordinate sub.

pointcut a1(Supervisor sup, Subordinate sub)
: aToB(sup, sub) && resAlloc();

A clause is defined for every CCA that can be

initiated by either party. In the case of the

SupervisorSubordinate contract as defined in Table 3

above, there are eight clauses required in all – five

Doover
Maker

Foreman

Supervisor

Subordinate

 …
 w = new Widget();
 y = w.getx()
 y = y*2;

 ….

…
int noX;
noX = doX(); *
return noX;

Association Aspect Functional Roles

CCA Pointcuts match

method signature join points

Party Pointcuts match

functional role pairs

Contract Clause Pointcuts

combine Party and CCA

pointcuts to trigger advise

Advise insert into functional

role code

Proceedings of the 2005 Australian Software Engineering Conference (ASWEC’05)

1530-0803/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 11,2010 at 19:56:40 EST from IEEE Xplore. Restrictions apply.

governing communication from the Supervisor to the

Subordinate (a1..a5), and three governing

communication from the Subordinate to the Supervisor

(b1..b5). We can define further clauses a0 and b0 that

is the compound of all the aX and bX clauses. For

example a0 would be defined as:

pointcut a0(Supervisor sup, Subordinate sub):
a1(sup,sub)|| a2(sup,sub)|| a3(sup,sub)||
a4(sup,sub)|| a5(sup,sub);

5.3. Defining the effect of the contract clauses

Once the clauses of the operational-management

contract have been defined, the actions that occur when

particular clauses of the contract are triggered need to

be defined. These actions take the form of aspect

advices. For communications between functional roles

that are in accord with the clauses of the contract, no

modification to the communication is necessary.

However, the state machine that keeps track of the

communication within the association contract is

updated, both when the method call is made (Party A

has made a request under the terms of the contract) and

when the method returns (Party B has responded in

appropriate form). Updating of the contract state can be

done with before() and after() advices either for

individual contract clauses (e.g. a1) or a compound

clause (a0) :

before() : a1{...}/* update contract state
machine and add any extra management
functions e.g.accounting */

after() returning : a1{... } //ditto

All communication that does not conform to a

contract clause should be prohibited. This is done with

around() advice or having a before() advice throw

an exception. Around advices prevent the execution of

the invoked code. Any method call between parties to

the contract that does not correspond to terms of the

contract (e.g. !a0 as defined above), throws an error.

before(...): !a0{
 throw new InvalidCCA(thisJoinPoint);}

5.4. Putting the contract together

The Party and CCA basic pointcuts are the common

basis for all two-party operational-management

contracts. Given, this we can define an abstract

ManagementContract (MContract) aspect that

contains these basic pointcuts, rather than having to

define each management contract from scratch.

Likewise, all operational-management roles, such as

Supervisor and Subordinate, implement the

ManagementRole (MRole) interface. Figure 9 below

shows these relationships.

The code fragments below come from a program

written to test the implementation of contracts using

association aspects. Notated code for this program can

be found at [2].

Figure 9. Inheritance Diagram of Aspects and Roles

The definition of a basic abstract two-party contract

is as follows:
public abstract aspect MContract {
 ...
 protected ContractState cs; /* could be

overridden by sub-aspect */
 ...
 //Party communication direction pointcuts

 abstract pointcut aToB (MRole a, MRole b);
 abstract pointcut bToA (MRole a, MRole b);

 //CCA pointcuts

 pointcut doIt() : call(* do_*(*));
 pointcut setGoal() : set(void setG_*(*));
 pointcut inform() : set(void inf_*(*));
 pointcut query() : call(* qry_*(*));
 pointcut resAlloc(): call(* ra_*(Resource));
 //returns reference to resource
 pointcut resReq():call(Resource rr_*(String));
 //parameter name of requested resource
 //returns reference to resource or null}

The form of the Supervisor-Subordinate contract

aspect can now inherit from the general management

contract as below. The contract from Table 3 above is

replicated with numbered clauses (a1..a5, b1..b3).

Direction Clause CCA

Supervisor
initiated

a1
a2
a3
a4
a5

DO ACCEPT, INFORM
SET_GOAL ACCEPT, INFORM
INFORM —
QUERY INFORM
RES_ALLOC ACCEPT

Subordinate
initiated

b1
b2
b3

INFORM —
QUERY INFORM, REFUSE
RES_REQ RES_ALLOC, REFUSE

public abstract aspect SuperSub extends
MContract{

 ...
/*define contract clauses from directional
Party and CCA pointcuts defined in the
abstract ManagementContract parent class */

 pointcut a1(Supervisor sup, Subordinate sub)
: aToB(sup, sub) && doIt();

 pointcut a2(Supervisor sup, Subordinate sub)
: aToB(sup, sub) && setGoal();

 ...
 pointcut b1(Supervisor sup, Subordinate sub)

: bToA(sup, sub) && inform();
 ...

//all valid clauses

<< Abstract Association
Aspect>>

MContract

<< Abstract Association
Aspect>>

SuperSub

<<Interface>>

MRole

Foreman

<<Interface>>

Subordinate
<<Interface >>

Supervisor

WidgetMaker

binds &

mediates

ContractState

<< Association Aspect>>

FTContract

 FunctionalRole

Proceedings of the 2005 Australian Software Engineering Conference (ASWEC’05)

1530-0803/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 11,2010 at 19:56:40 EST from IEEE Xplore. Restrictions apply.

pointcut a0(Supervisor sup,Subordinate sub):
 a1(sup,sub)||a2(sup,sub)||a3(sup,sub)||

a4(sup,sub)||a5(sup,sub);
pointcut b0(Supervisor sup,Subordinate sub):

 b1(sup,sub)||b2(sup,sub)||b3(sup,sub);
pointcut c0(Supervisor sup,Subordinate sub):
 a0(sup, sub) || b0(sup, sub);

/*advices that define the actions when a
contract clause is triggered*/

before() : c0{
cs.update(thisJoinPoint);}
/* update contract state machine. Add any extra
management functions e.g.accounting*/

after() returning : c0{
 cs.update(thisJoinPoint);}
before(): !c0{
 throw new InvalidCAA(thisJoinPoint);}

}

We can now define a concrete aspect based on the

abstract Supervisor-Subordinate contract. Below is a

functional contract that defines the association between

a Foreman and a ThingyMaker. In addition to

monitoring and controlling the CCAs between parties

to the contract, functional contracts can define

performance requirements specific to the parties. In

real-world terms, functional contracts fill in the details

of the contract schedule attached to the form of

contract defined by the operational-management con-

tract. For example, a functional contract may require a

ThingyMaker to make a Thingy with x seconds.

public aspect FTContract extends SuperSub
perobjects(Supervisor, Subordinate) {

...
public FTContract(Foreman f, ThingyMaker t){
 ...
 associate(f, t);//creates association
}
//instantiate directional pointcuts

 pointcut aToB(Supervisor f, Subordinate t):
this(f) && target(t) && associated(f, t);

pointcut bToA(Supervisor f, Subordinate t):
this(t) && target(f) && associated(f, t);

 ...
//define methods for revoking and reassigning
contract
//define functional performance pointcuts}

5.5. Creating the contract instance between

functional roles

We now apply these programming constructs to

operational-management contracts using the

Supervisor-Subordinate contract as an example. The

creation of an instance is done as follows:

class Foreman implements Supervisor,
Subordinate {… }

class WidgetMaker implements Subordinate {… }
//create instances of functional-roles
Foreman f = new Foreman();
WidgetMaker w = new WidgetMaker();
ThingyMaker t = new ThingyMaker ();

/* create the Foreman- ThingyMaker
(FTContract) contract instance that binds the
functional-roles also passes reference to
organisational-manager creator */
FTContract ft1 = new FTContract(this, f, t);

Communications between the Foreman and the

ThingyMaker now conform to the SuperSub contract.

6. Related work

Our approach extends work on role and associative

modelling in [1] where roles are first-class design and

implementation entities [1,6,8,10,11]. Kendall [9] has

shown how aspect-oriented approaches can be used to

introduce role-behaviour to objects. Roles are

encapsulated in aspects that are woven into the class

structure. While these role-oriented approaches

decouple the class structure, they do not explicitly

define an organisational level of abstraction by

defining management roles. They are concerned with

role-object bindings rather than role contracts.

The approach here is similar to OOram [17] to the

extent that roles are nodes in an interaction structure

(role-model). In [17] role-models can be based on any

suitable separation of concerns, whereas here we

distinguish domain and abstract management concerns,

and we represent collaborations with separate contract

entities. Responsibility-driven design (RDD) also

focuses on collaborations between roles, but contracts

apply to individual objects and are seen as “really

meaningful only in the programmer's mind” [20].

Operational-management roles in ROAD can be

viewed as a type of RDD object-role stereotype. Such

stereotypes may provide the basis for defining an

expanded set of operational-management contracts.

 [16] and [18] propose different solutions to

modelling the behaviour between groups of objects.

The former’s AOP language Eos aspects can be

created to represent behavioural relationships, however

it selects advice execution associated with a target

object. Sakurai [18], on the other hand, modifies the

AspectJ compiler to handle the additional associated
pointcut primitive. We have used the latter approach

because it allows selection of the aspect instance based

on any of the objects in the association.

The notion of CCA in this paper is derived from the

concept of a communication act in multi-agent systems

(MAS) agent communication languages such FIPA-

ACL [5]. CCAs, as defined here, are more restricted in

their extent. CCAs deal only with control communic-

ation, and do not have to take intentionality of the other

parties into account. Work on roles has also been

undertaken in MAS [7,15,21]. In particular, [22]

extends the concept of a role model to an organ-

isational model. MAS systems, however, rely on

components that have deliberative capability and more

autonomy than the objects and roles discussed here.

Proceedings of the 2005 Australian Software Engineering Conference (ASWEC’05)

1530-0803/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 11,2010 at 19:56:40 EST from IEEE Xplore. Restrictions apply.

7. Conclusion and further work

In this paper we have shown how association

aspects can be used to implement operational-

management contracts. These contracts create relation-

ships between functional roles and regulate the flow of

control communication between them. In the ROAD

framework, such contracts form a flexible

organisational network that is designed to make

software structures more adaptive to changing

environments and goals.

Here we will limit the comments on further work to

the area of operational-management contracts. There

are a number of open issues. This paper has used the

supervisor-subordinate association as an example.

Contract protocols need to be developed for other

operational-management associations, such as those

listed in Section 4. The set of CCAs that defined our

example protocol is not complete and somewhat

arbitrarily defined. This informality may suffice if

operational-management contracts are only application

or domain specific. However, if CCAs are to be

generalised, a more rigorous approach may be needed.

The UML 2.0 Superstructure Specification [14]

provides a list of primitive actions which may provide

the basis for a more formal definition of CCAs.

Alternatively, agent communication languages such as

[5] may provide the basis of a more rigorous definition.

The discussion in this paper has been limited to

two-party contracts. Examples of protocols that involve

more than two parties need to be developed. Examples

of protocol sequences (e.g. negotiation protocols) that

are more than just a single invocation-reply pair, also

need to be developed. In our example, the resource

allocation clause gave permission to the Superordinate

to access any subtype of Resource. In practice,

different roles are likely to have access to different

resources. It follows that we need to develop some

scheme of resource ownership or access rights .

There are unresolved questions relating to the

execution phase of contracts. Are the contracts

managed externally by observing the state of the

contract, or is breach/failure in the contract report

triggered by the contract itself? For example, in the

case of a subordinate’s failure to meet the terms of a

contract, presumably a supervisor would try to find

another subordinate to perform the task. If that is not

possible, the supervisor would report to the next higher

level. Such issues will need to be resolved in the

context of the ROAD framework.

8. References

[1] Bäumer, D., Riehle, D., Siberski, W., and Wulf, M. "Role

Object" in Pattern languages of program design 4, eds.

Harrison et al. Addison-Wesley, 2000, pp. 15-32.

[2] Colman, A., Notated Java code for the Implementation of

Contracts using Association Aspects ,ver1.0,

www.it.swin.edu.au/personal/acolman/, 2004.

[3] Colman, A. and Han, J., "Organizational abstractions for

adaptive systems," Proc 38th Hawaii International

Conference of System Sciences, Hawaii, USA, 2005.

[4] Eclipse Foundation, AspectJ http://eclipse.org/aspectj/,

2004, last accessed 7 Oct 2004

[5] The Foundation for Physical Intelligent Agents, FIPA

Communicative Act Library Specification http://www.fipa.

org/specs/fipa00037/, 2002, last accessed 27 Aug 2004

[6] Fowler, M., "Dealing with Roles," Proc 4th Annual

Conference on the Pattern Languages of Programs,

Monticello, Illinois, USA, 1997.

[7] Juan, T., Pearce, A., and Sterling, L., "ROADMAP:

extending the Gaia methodology for complex open

systems" Proc 1st Inter. Conf. Autonomous agents and

multiagent systems, Bologna, Italy, ACM, 2002, pp. 3-10.

[8] Kendall, E. A., "Role model designs and implementations

with aspect-oriented programming." Proc ACM Conference

on Object-Oriented Systems, Languages, and Applications,

Denver, CO, 1999, pp. 353-369.

[9] Kendall, E. A., "Role Modelling for Agents System

Analysis, Design and Implementation" 1st Inter Symposium

on Agent Systems and Applications IEEE CS Press, 1999

[10] Kristensen, B. B. and Osterbye, K., "Roles: Conceptual

Abstraction Theory & Practical Language Issues" Special

Issue of Theory and Practice of Object Systems (TAPOS)
on Subjectivity in Object-Oriented Systems, 1996

[11] Lee, J. S. and Bae, D. H., "An enhanced role model for

alleviating the role-binding anomaly" Software: practice

and experience, vol.32, 2002, pp. 1317-1344.

[12] McKim, J. and Mitchell, R. Design by Contract by

Example, Addison Wesley, 2002.

[13] Meyer, B. Object-oriented software construction, New

York: Prentice-Hall, 1988.

[14] Object Management Group, UML 2.0 Superstructure

(Final Adopted specification) http://www.uml.org

/#UML2.0, 2004, last accessed 13 Oct 2004

[15] Odell, J., Parunak, H. V. D., Brueckner, S., and Sauter,

J., "Changing Roles: Dynamic Role Assignment" Journal

of Object Tech., ETH Zurich, vol.2(5) , 2003, pp. 77-86.

[16] Rajan, H. and Sullivan, K., "Eos:instance-level aspects

for integrated system design" ACM SIGSOFT Software

Engineering Notes , vol.28 (5) , 2003, pp. 297-306.

[17] Reenskaug, T. Working with Objects : the OOram

Software Engineering Method, Manning Pub. Co., 1996.

[18] Sakurai, K., Masuharat, H., Ubayashi, N., Matsuura, S.,

and Komiya, S., "Association Aspects," Proc of the Aspect-

Oriented Software Development '04, Lancaster U.K, 2004.

[19] Sullivan, K., Gu, L., and Cai, Y., "Non-modularity in

aspect-oriented languages: integration as a crosscutting

concern for AspectJ," Proc 1st Inter. Conf. on Aspect-

oriented software development, AOSD 02, 2002.

[20] Wirfs-Brock, R. and McKean, A. Object Design: Roles,

Responsibilities,& Collaborations, Addison Wesley, 2002.

[21] Zambonelli, F., Jennings, N. R., and Wooldridge, M. J.,

"Organisational Abstractions for the Analysis and Design

of Multi-Agent Systems," Workshop on Agent-oriented

Software Engineering ICSE 2000, 2000.

[22] Zambonelli, F., Jennings, N. R., and Wooldridge, M.,

"Developing multiagent systems: The Gaia methodology"

ACM Trans on Software Engineering and Methodology

(TOSEM), vol.12(3) , 2003, pp. 317-370 .

Proceedings of the 2005 Australian Software Engineering Conference (ASWEC’05)

1530-0803/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 11,2010 at 19:56:40 EST from IEEE Xplore. Restrictions apply.

