
Anomaly Detection Using Logs

and Metrics Analysis for System

Application Operations

Mostafa Farshchi

Submitted in ful�lment of the requirements of the

degree of Doctor of Philosophy

Faculty of Science, Engineering and Technology

Swinburne University of Technology

Melbourne, Australia

February, 2018

Abstract

The dependability of systems and software has been a topic of research for at

least the last �ve decades. Despite the usage of the modern technologies and

the advances in system monitoring and anomaly detection techniques, failure

rates are still high. Cloud computing systems are a prime example of the

usage of such technologies that provide facilities to make application services

resilient against failures of individual computing resources. However, resiliency

is typically limited by a cloud consumer's use and operation of cloud resources.

In particular, system operation-related failures have been reported as one of

the leading causes of system-wide outages.

This speci�cally applies to Development and Operations (DevOps) pro-

cesses, such as backup, redeployment, upgrade, customised scaling, and mi-

gration � which are executed at much higher frequencies now than a decade

ago. These frequent changes in environments with virtualisation technologies,

that are inherently complex due to the �exibility provided and a large number

of resources involved, make monitoring and anomaly detection of applications

and resources a challenging task.

One of the key challenges in current anomaly detection techniques is to

perform anomaly detection with regards to the type of activities or the context

that a system is exposed to. Another challenge with anomaly detection in

modern environments such as cloud computing is the large scale of resources

involved which can lead to a large volume of monitoring data. Also, there

is a challenge related to having combined cross-level monitoring from various

resources such as logs and resource metrics. Therefore, this thesis focuses

on addressing the above challenges with a focus on system and application

operation health and performance monitoring.

iii

In this thesis, we propose a novel approach to employ both application

operation logs and resource metrics data for near real-time anomaly detection.

We propose a set of methods to map the contextual log events to observed data

from resource metrics. Also, this thesis presents an e�ective solution to identify

the metrics that are most relevant to operational behaviour and shows how the

metric selection leads to better anomaly detection. In addition, we propose an

approach to derive a correlation model between logs and metrics and leverage

the model to derive assertion speci�cations. With these assertions, we do not

only detect anomalies at run-time, we also know which types of log events as

well as which resources are involved in an anomalous incident.

The anomaly detection approach proposed in this thesis is a non-intrusive,

unsupervised, context-based anomaly detection technique. We have conducted

a set of experiments with di�erent con�gurations for two industry-grade case

studies. In this evaluation, our approach was e�ective in detecting anomalies

caused by faults with high accuracy.

Acknowledgements

No words can express my gratitude to my PhD supervisors, Jean-Guy Schnei-

der, Ingo Weber, and John Grundy. Without their continuous guidance, criti-

cal feedback, and encouragement, this thesis would not exist. Jean-Guy, your

seasoned supervision, helpful advice, and insightful feedback has been invalu-

able for me. I am very thankful that you have always been willing to take extra

time out of your busy schedule when an important issue came up. I learned a

lot from your guidance, especially your structural and methodological analysis,

and attention to detail. Ingo, I am very grateful for all your guidance and sup-

port, especially in that you have been very meticulous about my writing and

providing constructive feedback. Also, your regular attendance at our weekly

meeting through video conferencing and other times through Skype or phone

calls gave me the feeling that I could reach you at any time. John, I am very

glad and thankful for, �rstly, suggesting that I apply for a PhD at Swinburne

and introducing me to Jean-Guy, and secondly for providing your advice and

feedback throughout my PhD journey.

I would also like to to thank my friends, who have made this di�cult journey

easier for me. I thank Amir Kiyaei for all his empathy and encouragement,

which has been valuable for me. Also, I like to thank my friends Amin Rigi

and Sahar Sohrabi, who have helped me tremendously in this journey through

their a�ection, feedback, and company, from our English writing practice, to

our research discussions and relaxing tea breaks.

I thank the Swinburne University of Technology and Data61, CSIRO, for

providing funding and facilities to undertake this research. In particular, I

would like to thank my colleagues at the Process Oriented Dependability Group

in Data61, who gave me the chance to make use of their consultation, and to

v

access their tools and data. Special thanks go to An Binh Tran, Sherry Xu,

Liming Zhu, and Len Bass. Also, I would like to express my appreciation to

Ra�aele Della Corte, Marcello Cinque, and Antonio Pecchia from Università

degli Studi di Napoli Federico II, who provided access to the data of one of the

case studies of this thesis. I also like to thank Audrey van Ryn for helping with

proofreading and the thesis examiners for providing their valuable comments

and feedback.

Last but certainly not least, I am deeply grateful to my family for all their

support, a�ection, and love. I am especially indebted to my mother, who had

to bear a di�cult time of sickness while I was far away from her. I express my

deepest love and regard for my mother.

Declaration

This is to certify that this thesis contains no material which has been accepted

for the award of any other degree or diploma and that to the best of my

knowledge this thesis contains no material previously published or written by

another person except where due reference is made in the text of the thesis.

Mostafa Farshchi

February, 2018

vii

List of Publications

1. Mostafa Farshchi, Jean-Guy Schneider, Ingo Weber, John Grundy: Met-

ric Selection and Anomaly Detection for Cloud Operations using Log

and Metric Correlation Analysis, Journal of Systems and Software. Mar

2017.

2. Mostafa Farshchi, Jean-Guy Schneider, Ingo Weber, John Grundy: Ex-

perience report: Anomaly detection of Cloud Application Operations

Using Log and Cloud Metric Correlation Analysis, 2015 IEEE 26th Inter-

national Symposium on Software Reliability Engineering (ISSRE), Wash-

ington, D.C., USA, Nov 2015, pp. 24-34. (Best Paper Award)

3. Ingo Weber, Mostafa Farshchi, Jan Mendling and Jean-Guy Schneider:

Mining Processes with Multi-Instantiation, ACM/SIGAPP Symposium

on Applied Computing (ACM SAC), Salamanca, Spain, April 2015.

ix

Contents

1 Introduction 1

1.1 Research Problem . 3

1.2 Objective and Research Questions 5

1.3 Research Contributions . 6

1.3.1 Logs-Metrics Mapping 7

1.3.2 Metric Selection . 9

1.3.3 Assertion Speci�cation Derivation and Anomaly Detection 10

1.3.4 Ripple E�ect Detection 11

1.3.5 Anomaly Detection Evaluation 11

1.4 Organisation of the Thesis . 12

1.5 Related Publications . 13

2 Background and Related Work 15

2.1 De�nitions . 15

2.2 System Monitoring with Virtualisation Technologies 17

2.3 DevOps Operations . 19

2.4 Metric Selection . 20

2.5 Anomaly Detection . 23

2.5.1 What is Anomaly Detection? 23

2.5.2 Anomaly Detection Characterisation: Data Labels 24

2.5.3 Anomaly Detection Characterisation: Types of

Anomalies . 26

2.5.4 Challenges in Anomaly Detection 28

2.6 Anomaly Detection Techniques 30

2.6.1 Classi�cation-based Techniques 30

xi

2.6.2 Clustering-based Techniques 31

2.6.3 Nearest Neighbour-based Techniques 32

2.6.4 Information Theoretic Techniques 33

2.6.5 Statistical Techniques . 33

2.7 Summary . 36

3 Metric Selection and Unsupervised Anomaly Detection Using

Log-Metric Regression Analysis 37

3.1 Overview of the Proposed Approach 37

3.2 Sources of Monitoring Data and

Data Preparation . 43

3.2.1 Event Logs from Operation Tools 43

3.2.2 Metrics from Monitoring Tools 44

3.3 Log Processing and Log Abstraction 46

3.3.1 Representing Logs as Quantitative Metrics 46

3.3.2 Abstracting Event Logs to Activities 51

3.4 Log-Metric Regression-based Model 54

3.4.1 Target Metric Selection 57

3.4.2 Identi�cation of In�uential Log-Events and Assertion Deriva-

tion for Anomaly Detection 61

3.5 Closely Related Work to the Anomaly

Detection Approach of this Thesis 67

3.5.1 Context-based Anomaly Detection 67

3.5.2 Closely Related Work . 68

3.6 Summary . 78

4 Anomaly Checking Prototype 79

4.1 Anomaly-Checker and Integration with POD Services 79

4.2 Key Features and Architecture 80

4.2.1 Data Repository: Elasticsearch 83

4.2.2 Data Schema . 83

4.3 Con�guration Input . 85

4.4 Anomaly Checking . 86

4.5 Summary . 90

5 Rolling Upgrade Case Study 91

5.1 Rolling Upgrade . 92

5.1.1 Experimental Environment 94

5.1.2 Net�ix Asgard - Event Logs from Operations Tools . . . 95

5.1.3 Amazon CloudWatch - Resources Metrics 96

5.1.4 Direct and Derived Metrics 99

5.2 Log Analysis . 102

5.2.1 Log Parsing and Log Representation as a Quantitative

Metric . 102

5.2.2 Log Events Correlation Clustering - Mapping Low Gran-

ular Logs to a Set of Activities 105

5.3 Metric Selection . 109

5.3.1 Log-Metric Correlation Learning - Which Metrics Should

be Selected for Monitoring? 109

5.4 Assertion Derivation for Anomaly Detection with Log-Metric

Causality Learning . 114

5.4.1 Causality Analysis and Assertion Derivation: Impact of

Log Activities on Selected Metrics 114

5.4.2 Suitability of Metric for Anomaly Detection 116

5.5 Anomaly Detection Evaluation 120

5.5.1 Evaluation Method . 121

5.5.2 Evaluation Result with State-Based Metric 123

5.5.3 Evaluation Result with Non-State-Based Metric 126

5.5.4 Ripple E�ect Detection 129

5.6 Summary and Lessons Learned 132

6 Flight Data Processor Case Study 135

6.1 Experimental Set-Up . 136

6.2 Log Analysis . 139

6.2.1 Log Event Type Extraction 139

6.2.2 Representing Log Event Type

as Quantitative Metric 144

6.2.3 Log Event Type Correlation Clustering 148

6.3 Metric Selection . 150

6.4 Assertion Derivation . 153

6.5 Anomaly Detection . 155

6.5.1 Predictability Power Evaluation 156

6.5.2 Anomaly Detection Evaluation 160

6.6 Summary . 168

7 Conclusions and Future Directions 169

7.1 Summary . 169

7.2 Answers to Research Questions 172

7.3 Open Problems and Future Work 174

7.3.1 Optimal Time Window 174

7.3.2 Automatic Error Diagnosis and Self-Healing 174

7.3.3 Best-Practices in Statistical-Based

Anomaly Detection . 175

7.3.4 Usage of Machine Learning Techniques 176

7.3.5 Dynamic Recon�guration Using Logs and Metrics Analysis176

7.4 Final Remarks . 176

Bibliography 177

List of Figures

2.1 Dependability and security attribute [8]. 16

2.2 Relationship between faults, errors, failures and event log [27]. 17

2.3 Relationship between type of training data and type of anomaly

detection technique . 25

2.4 An illustration of point anomaly: N1 and N2 are sets of nor-

mal points, while O1−3 are outliers or sets of anomalous points.

. 26

2.5 An illustration of contextual anomaly, month of a year (time)

as the contextual attribute for monitoring normality of temper-

ature. 27

2.6 An illustration of collective anomaly 28

3.1 The occurrence of log events and metric data over time. *Note:

A1..A5 are activities; Metric1..3 are metrics like CPU utilisa-

tion, network usage, number of instances changes, etc. 39

3.2 An example of JBoss logs with clustering related log events to

set of activities. 41

3.3 Work�ow of the proposed framework. 42

3.4 Sample lifecycle of a virtual machine with transient actions and

states from one state to another. 46

3.5 Sample of Pearson correlation coe�cient output in scatter plots

- adopted from [72] . 53

3.6 Checking the relevancy of a monitoring metric 63

4.1 Anomaly-Checker Abstract Architecture 82

xv

4.2 Elasticsearch Data Schema for Metric, Anomaly Report, and

Log Event . 84

4.3 A sample of an Anomaly Report 87

4.4 Anomaly Checking Activity Diagram. 89

5.1 Flow Chart of a Rolling Upgrade Process [42]. 93

5.2 CloudWatch Overview - source: AWS documentation. 96

5.3 A sample JSON output of two di�erent metrics of CloudWatch. 98

5.4 Amazon EC2 instance lifecycle- source: AWS documentation. . 100

5.5 Sample of log event and extracted regular expression of the

rolling upgrade operation with Net�ix Asgard. 102

5.6 Visualization of occurrence of 18 event types of rolling upgrade

for 4 VM instances. 104

5.7 Correlation matrix generated by SPSS based on interpolated

occurrence strength of each event type. 106

5.8 Correlation clustering graph based on values given in Fig.5.7. . 107

5.9 Prediction ability for each monitoring metric, based on Adj.R2 113

5.10 Predictors' relative importance for selected monitoring metrics

based on Standardized Coe�cient(B) - larger value indicates

higher contribution of an activity to the changes in a metric. . 118

5.11 Results for three di�erent time windows and with ripple e�ects

for CPUAverage and CPUMaximum vs. TerminatedInstance. . . 130

6.1 High-level architecture of the middleware prototype instrumented

with the monitoring system . 137

6.2 A screenshot of POD-Discovery - yellow circles show the tree

nodes at 10% similarities, the selected node shows the log events

under the tree hierarchy of that node at the bottom of the screen142

6.3 A snapshot of POD-Discovery output for identifying log event

types . 143

6.4 A snapshot of the log event type matrix of interpolated occur-

rence strength of each event type at di�erent timestamps 147

6.5 A snapshot of a correlation matrix (generated by SPSS) of in-

terpolated occurrence strength of event types. 149

6.6 Prediction ability for each monitoring metric, based on Adj.R2 152

6.7 Prediction in�uence of each log activity on CPU usage, based on

standardized regression coe�cient(B) extracted from regression

analysis . 155

6.8 Actual CPU usage versus predicted CPU usage for four sepa-

rate runs: Normal, Active Hang, Passive Hang, and Crash with

highlighted fault activation periods where present. 158

6.9 Actual CPU usage versus predicted CPU usage from assertion

equation . 159

6.10 Precision of anomaly detection for three experiments with zero

second time window, and with zero and one second time window

with change detection . 167

6.11 Recall of anomaly detection for three experiments with zero

second time window, and with zero and one second time window

with change detection . 167

6.12 F-Score of anomaly detection for three experiments with zero

second time window, and with zero and one second time window

with change detection . 167

List of Tables

3.1 Matrix of interpolated occurrence strength for each event type. . 51

3.2 Coe�cient correlation output of OLS regression 65

3.3 Coe�cient Correlation Table Notations 66

3.4 Studies adopted multiple source of information for anomaly de-

tection in system health and performance monitoring 77

5.1 Event logs to activity abstraction for the rolling upgrade oper-

ation . 108

5.2 Coe�cient Correlation and Coe�cient Determination results for

each metric . 110

5.3 Coe�cient Correlation - 40 instances - Terminated-Instances

Metric . 115

5.4 Coe�cient Correlation for identi�ed in�uential factors - 40 in-

stances - Terminated-Instances Metric 116

5.5 Classi�cation metric for the generated alarm 122

5.6 Evaluation results of state-based metric (TerminatedInstances)

� basic detection. 124

5.7 Type of ripple e�ects observed in the experiment. 125

5.8 Evaluation results with state-based metric (TerminatedInstances)

� detection result with manual ripple e�ect re-classi�cation . . . 126

5.9 Evaluation Result with Non-State-Based Metrics for CPUUti-

lizationMaximum . 128

5.10 Evaluation Result with Non-State-Based Metrics for CPUUti-

lizationAverage . 128

6.1 List of available metrics . 151

xix

6.2 Coe�cient correlation and coe�cient determination results for

each metric . 151

6.3 Coe�cients for identi�ed in�uential factors 154

6.4 Coe�cient for identi�ed in�uential factors 155

6.5 Accuracy of prediction of CPU usage in four di�erent experi-

ments . 159

6.6 Anomaly detection results. 162

6.7 Anomaly detection results with Change Detection. 166

Chapter 1

Introduction

The failure of systems and software has been a topic of research for a very long

time [40, 48, 68]. Despite many advances in this area failure rates are still con-

siderable [24]. Several industry surveys show signi�cant loss of money, market

share, and reputation due to various types of system downtime. According

to a survey conducted by the International Data Corporation (IDC) [35] in

late 2014, the average cost of unplanned downtime in Fortune-1000 companies

is $100K per hour. This observation is in line with other industry estimates

from Gartner [22], Avaya [7], Veeam [123], and Ponemon [106]. These surveys

estimate the cost of application downtime to be between $100K and $540K

per hour.

A separate survey from 205 medium to large business �rms in North Amer-

ica states that companies are losing as much as $100 million per year as a

result of server, application, and/or network downtime, respectively [61]. Such

signi�cant losses (both in monetary and non-monetary terms such as losing

customers trust) demonstrate the need to address the key reasons for system

failures. Operation and con�guration issues have been reported to be one of

the main causes of overall system failure [30, 31, 51, 143], and an empirical

study conducted by Yuan et al. [143] reports that operational activities such as

backup, update and upgrade, and migration are the root cause of up to 69%

of system-wide outages.

One of the reasons for such high percentages of operational failure issues

is the complexity of modern and large-scale applications, especially in the

1

2 Chapter 1. Introduction

situations where system virtualization is used such as in cloud environments.

Virtual machines facilitate the hosting of software application services in an

isolated way that simulates a physical computer system. In such environment,

there is a signi�cant range of dynamism and �exibility provided. A user can

increase or decrease the dedicated resources to a VM or change the number of

available VM instances that are in service, where resource dedication can be

automatically con�gured and adjusted by observation of workload or detection

of anomalies in a system [15]. These environments are inherently complex due

to the �exibility provided and a large number of resources involved. Detecting

errors in these types of environments has always been challenging and has

attracted a number of studies [15, 50, 67, 68, 78]. Modern applications are

subject to regular changes from sporadic operations, for instance, operations

such as on-demand scaling, upgrade, migration, and/or recon�guration [140]

cause frequent changes to the systems and applications.

Given these complexities, it is not surprising that detecting and diagnosing

operational-related failures have been reported as one of the main challenges

in system failures and outages [30, 140]. However, operation and con�guration

activities have not received the much-deserved attention until the recent emer-

gence of the software DEVelopment and information technology OperationS

(DevOps) movement.

DevOps is a concept that emphasizes on collaboration and communication

between software developers and system administrators. Bass et al. de�nes

DevOps as �a set of practices intended to reduce the time between committing a

change to a system and the change being placed into normal production, while

ensuring high quality� [12]. In another de�nition, Hüttermann de�nes DevOps

as �practices that streamline the software delivery process, emphasizing the

learning by streaming feedback from production to development and improving

the cycle time� [57].

As the result of DevOps, unlike the past that major changes to the complex

system were infrequent and often done during scheduled downtime, in mod-

ern complex systems, various sporadic operations are conducted with a high

frequency [110]. These operations involved in continous deployment practices

Chapter 1. Introduction 3

take place from few times a month to over 1,000 deployments into production

each day [110].

Sporadic operations are usually implemented by a set of separate tools and

are subject to interference from simultaneous operations dealing with the same

resources. For instance, an application service composed of multiple Virtual

Machine (VM) instances may go through a routine backup operation from a

commercially developed tool while the same system may also be exposed to an

either manual or automatic scaling up or scaling down operation. Such interfer-

ences of operations on same resources make the identi�cation of abnormalities

of system resources a highly challenging task. Executing an operation like

an upgrade in such an environment is error-prone, as changes to one resource

(e.g., the state of a VM) may a�ect the correct execution of other operations.

To this end, this thesis has the aim to �nd mechanisms to improve de-

pendability 1 assurance of systems exposed to sporadic operations, especially

systems with virtualization technologies such as in cloud environments. In

this direction, the research problem is presented in the next section. Then,

the objective of this research and research questions are presented. Next, an

overview of the thesis structure is given. Finally, research contributions are

listed, followed by the list of related publications where the contributions of

this research have in part been published.

1.1 Research Problem

One way to improve a system's dependability is to leverage a set of tools

and techniques to monitor running operations and to assess their impact on a

system in real-time and detect anomalous states. However, many challenges

are associated with monitoring of application operations that makes the task

of dependability assurance of application operations a very challenging task.

One challenge is that system operators have to deal with tracking multiple

monitoring metrics and may receive too much monitoring information, includ-

1This thesis mainly addresses the reliability and availability aspects of system depend-
ability according to the de�nition given in [8]. We will provide de�nitions and background
in more details in Chapter Two.

4 Chapter 1. Introduction

ing many false warnings and alerts. Ongoing system monitoring of systems

with multiple resource nodes can lead to an overwhelming volume of monitor-

ing data [50]. This distracts system operators from becoming aware of critical

abnormal situations [94, 109]. This problem has caused operators to disable

monitoring when sporadic operations are running, so as to avoid too many

false alerts [50, 138].

The next limitation is related to the type of anomaly detection. Most of

the existing approaches to systems monitoring and anomaly detection solely

focused on point-based monitoring: they observe the state of hardware and

software metrics, such as CPU utilisation, network tra�c, etc. without mon-

itoring the contextual behaviour of a system or inspecting the impact of ac-

tivities of application operation on systems resource utilization. In the past,

as the sporadic operations were not as frequent as today, this did not lead

to many anomalous states, but with the frequent operations like continuous

deployment in modern complex application systems, this can lead to many

anomalous situations and, thus, generation of too many false positive alarms.

Another challenge is related to log monitoring. When it comes to moni-

toring with consideration of system behaviour, an application operation's log

is the primary source of information for monitoring the system's behaviour

[28, 96]. Logs provide valuable information about running operations and they

have been employed for system failure detection and diagnosis in the past [95],

yet they are not fully reliable as there are various limitations in monitoring by

system logs [23]. Logs are usually low-level, noisy, and lack the information

about changes to the states of resources. This limits the usefulness of logs as

the main source of information for system behaviour monitoring [130, 140].

Many studies have shown that some of the failures and abnormalities that

happen in a system either are not detected and reported by log events, or

they are detected in various degrees, depending on the quality of the logging

mechanism of the system under test [28, 29].

Moreover, many of the current techniques of anomaly detection in a do-

main of system health and performance monitoring are supervised methods,

which require labelled data instances for both normal and anomalous items [60].

Chapter 1. Introduction 5

Methods working with the labelled data have an underlying assumption that

there is a priori knowledge for each data instance of being normal or anoma-

lous data. However, obtaining data with anomalous data labels is often very

challenging and when anomalous data instances are available, their frequency

is rare [23]. Therefore, one important challenge is to employ unsupervised

anomaly detection techniques that do not require labelled data.

Last but not least, major monitoring and anomaly detection approaches

merely rely on one source of information for their monitoring purposes, while

none of the monitoring data from metrics or logs alone can cover both aspects

of the behavior and the status of the system. The need of cross-level monitoring

has been highlighted in the literature [2], yet how to integrate various sources

of monitoring information is not well addressed. Therefore, one important

challenge is to combine and map di�erent sources of monitoring data for better

detection of errors and abnormalities in a system, respectively.

Above-mentioned issues and challenges make dependability assurance of

system and application operation health and performance monitoring a very

challenging task. Yet, these issues have not been well addressed, especially

in regards with employing unsupervised context-based methods. Therefore,

in this thesis, we aim to address these matters with a focus on application

operations and system health and performance monitoring.

1.2 Objective and Research Questions

The aim of this thesis is as follows:

To design, implement and evaluate mechanisms to improve dependability

assurance of system application operations through monitoring of system re-

sources and activities, as well as anomaly detection techniques.

Given the problems highlighted in the previous section and to ful�l the

above objective, the main research questions that this thesis aims to answer

are:

• RQ1: As event logs and resource metrics are two separate sources of

6 Chapter 1. Introduction

monitoring information with di�erent structures, how can we combine

the information from these two sources and derive a statistically mean-

ingful relationship between them?

• RQ2: What is an appropriate mechanism to distinguish insensitive mon-

itoring metrics from the ones that are sensitive to the activities of system

application operations and how do we best leverage this to identify the

most suitable monitoring metrics for anomaly detection?

• RQ3: How can we build a statistically supported model based on log

and resource metrics data to derive assertions that enable high-accuracy,

unsupervised, contextual anomaly detection?

1.3 Research Contributions

This thesis makes original contributions to the knowledge in the areas of sys-

tem dependability by focusing on application operations and system health

and performance monitoring. In this direction, this thesis aims to develop a

novel approach to address the di�culties related to system monitoring and

anomaly detection that are exposed to sporadic operation through learning

from the correlation between changes on the status of resources and activities

of application operations.

The main overall contribution of this thesis is twofold: �rst is a metric

selection mechanism based on the relationship between system resources and

activity logs; second is an unsupervised contextual-based anomaly detection ap-

proach by combining both sources of monitoring information that show the

behaviour of the systems through activities reported in event logs and status of

resources in metrics.

Therefore, this thesis aims to contribute to system dependability by propos-

ing solutions that take the dynamics of system behaviour into account along

with states of resources for system monitoring and anomaly detection. The

�rst step to ful�l this aim is to �nd a way to map and combine the two sources

Chapter 1. Introduction 7

of information of logs and metrics. However, the data collected from contex-

tual logs are essentially di�erent from the metrics collected from the status of

resources. Logs are textual information while metrics are often a set of numer-

ical values. How to map and combine these two sources of information was

one of the key challenges of this thesis.

This thesis proposes a novel approach to successfully employ both types

of information for real-time anomaly detection of a system and also to use

the proposed approach for verifying the correct execution of the steps of an

operation. In fact, the proposed method is capable of detecting at what step

of a process an anomaly occurred. Such outcome can be employed for depend-

ability assurance of critical operations like back-up, upgrade, and migration

processes.

To this end, the proposed approach improves the dependability assurance

of systems through the following key contributions:

1.3.1 Logs-Metrics Mapping

The data collected from contextual logs often have a di�erent format from the

numerical metrics gathered from observing the status of resources. To map and

combine these two sources of information we proposed the following methods:

• Representing logs as quantitative metrics: operational logs are

often �ne-granular and voluminous - the number of logs in a typical

application operation may include thousands log lines [95, 119]. Logs

are being broadly adopted to record runtime behaviour of software sys-

tems [54], so to know how the behaviour of a software system changes

the states of resources it is necessary to �nd a way to track log events.

Therefore, we �rst adopt an approach that uses pattern matching using

regular expressions to identify all log events that have similar patterns

and label similar log events as a unique log event type. Then we pro-

pose a mechanism to represent each log event based on the interpolated

occurrence strength of the log event type that occurs within a speci�c

time-window (e.g. one-minute time-window). The interpolated weight-

timing approach proposed generates a metric that is indicative of what

8 Chapter 1. Introduction

type of log event occurred, how many times it occurred in a time-window,

and in what relative interval that log appeared. The proposed extracted

interpolated occurrence strength allows us to present logs in a quanti-

tative form which can be used for statistical analysis and it enables us

to map the event log into the same time-window interval of available

monitoring data of resource metrics.

• Clustering low-granular logs using weight timing and correla-

tion coe�cients: Most often system behaviour is not characterised by

a single log event; it is often a set of log events indicate changes in the

state of a resource. Therefore, it is important to identify which set of log

events are responsible for certain changes in a system, which in this the-

sis it is referred to as log abstraction: the process of clustering individual

correlated log events to log activities.

We propose a log abstraction technique to cluster low-granular relevant

log events into a set of meaningful activities. The proposed approach in

this thesis uses the combination of weight timing within a time-window

and Pearson correlation coe�cient analysis to address this issue. We

demonstrate how this approach is e�ective on utilising the output of

metric extraction from the previous step along with Pearson coe�cient

correlation analysis to produce a set of meaningful log activities. The

results of the produced log clusters are compared with a previous related

study that used experts judgement to cluster log event - our study showed

our automatic approach produced comparable results to the manual out-

comes from experts reviews.

• Mapping logs to metrics and identifying in�uential log activ-

ities: A statistically based solution with employing regression analy-

sis is presented to derive a model to explain the relationship between

log messages and metrics values. There is a large number of studies

in anomaly detection using statistical techniques and few of them have

used regression analysis [23, 60]. However, most of these studies are lim-

ited to point-based methods rather than context-based methods. With

Chapter 1. Introduction 9

context-based methods, concurrent utilisation of logs and metrics has

not been well studied in an integrated form for fault detection and di-

agnosis. To the best of our knowledge, this thesis is the �rst work that

proposes a systematic approach that attempts to perform a statistically

supported exploratory analysis between log events and resource metrics

using regression analysis and identi�es the individual log activities that

are responsible for changes on system resources utilisation.

1.3.2 Metric Selection

This thesis proposes a systematic approach to �nd the resource metrics that

are most sensitive to operations' behaviour. The proposed approach addresses

the current challenge of dealing with too many monitoring metrics to identify

the most suitable metric candidates from employing regression analysis and

then ranking the metrics based on their lowest to highest sensitivity to the

behaviour of the operation.

In this thesis, we present a method that is e�ective in �nding the metrics

that are most relevant to operational behaviour and show how the statistical-

based selection of metrics lead to better anomaly detection of a system applica-

tion operation. In particular, our contribution to reducing monitoring metrics

dimension bring the following bene�ts:

• By signi�cantly reducing the metric dimensions to the essential ones, it

helps the operators to focus on a limited number of metrics rather than

a long list of metrics.

• Large volume of monitoring data, too many false positive alarms, and

several alarms from the same event have been reported to overwhelm

system operators cause alarm fatigue. Reducing metrics dimension can

be helpful in this matter [23, 50, 138].

• System monitoring and anomaly detection are often computationally in-

tensive [20], and many approaches have been suggested to reduce this

cost, especially for large-scale infrastructure by reducing precision [62],

or employing adaptive monitoring [67, 91] and decentralized architectures

10 Chapter 1. Introduction

[120] or other methods [2, 38]. Our approach, in particular, contributes

to this domain through reducing the cost of system monitoring by nar-

rowing down the focus on the most relevant metrics.

1.3.3 Assertion Speci�cation Derivation and Anomaly De-

tection

Another important contribution of this thesis is related to de�ning assertion

speci�cations from the regression analysis. We propose a method which uses

the outcome of identi�ed monitoring metrics to derive a statistically justi�ed

mathematical model that can be used for run-time assertion checking. Asser-

tions are used to check if the actual state of the system corresponds to the

expected state of the system; otherwise, the data instance is detected as an

anomaly. The expected state of the system is derived from log analysis using

assertion speci�cation derivation.

In this process, the selected metrics are employed at run-time to verify

that the actual state of the system observed from monitoring metrics actually

corresponds to the expected state of the system based on the outcome of

assertion prediction at run-time. This assertion checking is a crucial part of

error detection in monitoring the execution of operation steps, especially for

critically sensitive operations like migration, upgrade, security checking etc.

With the help of assertion speci�cation, we detect anomalies at run-time,

we also know which types of log events as well as which resource are involved in

an anomalous incident. Also, our approach is a non-intrusive solution, meaning

that it does not require changes to the source code or the logs. Although the

regression analysis has been employed for anomaly detection, to the best of

our knowledge, this is the �rst work in this domain that derives assertion

speci�cation from regression analysis with considering the context of logs and

metrics at the same time for a non-intrusive and online anomaly detection

method.

Chapter 1. Introduction 11

1.3.4 Ripple E�ect Detection

In this thesis, a method is proposed to identify anomalies resulting from ripple

e�ects of errors and distinguishing them from direct e�ects of errors. When a

failure occurs in a system, it often propagates multiple anomalous symptoms

that are all caused by one error but they may be observed at di�erent points

in time, which can trigger too many false alarms [138]. Also, with the plethora

of monitoring and security tools that have overwhelmed the system adminis-

trators with an exponentially growing number of information, excessive alarms

may make operators to miss the crucial vulnerabilities [46].

In this direction, the proposed method contributes to this domain by dis-

tinguishing the alarms that are identi�ed as the result of direct anomalies from

the ones that are the ripple e�ects of the already reported anomalies. By di�er-

entiating these two, we can reduce the redundant false alarms and as the result

to increase the precision of anomaly detection. In the algorithm proposed, the

ripple e�ects are reported as warnings rather than actual errors.

1.3.5 Anomaly Detection Evaluation

To conduct experiments and facilitate the anomaly detection process, a service-

oriented tool is developed to check system anomaly in real-time. This tool

gets the input of the regression analysis from con�guration settings and checks

automatically if an anomaly occurs at run-time.

On the basis of this tool, the ideas proposed in this thesis are evaluated with

two separate industry-grade case studies. We have conducted experiments to

evaluate the proposed approach in one case study of using Rolling Upgrade

operation with di�erent con�guration settings and upgrade two, eight, and

forty virtual machines on the Amazon AWS public cloud service. In addition,

we explored and investigated the applicability of our approach with data from

an air tra�c middle-ware system.

These two case studies have signi�cant di�erences from each other including

the environment, the scale of logs and metrics, the forms of metrics available,

and the type of faults injected. In these case studies, we used our approach

to abstract �ne-granular input logs to a set of coarser-granular activities, map

12 Chapter 1. Introduction

textual logs to numerical metrics, select most relevant target metrics, learn

from error-free traces, specify assertions, and evaluate if the assertions can

detect injected faults.

1.4 Organisation of the Thesis

The organisation of the thesis is outlined below:

Chapter 2 provides the necessary background of the topic of interest of this

thesis and overviews the related work that addresses problems similar to the

one considered in this thesis. In particular, this chapter provides a background

and literature survey on system health and performance monitoring, metric

selection, and anomaly detection.

Chapter 3 summarises and formalises the problem of the work and presents

the proposed conceptual framework and methodology to address the research

problem of the thesis. In this chapter, the steps of the proposed approach

including the steps of obtaining data, performing log analysis, �nding relevant

metrics from all available metrics, and the process of assertion derivation for

anomaly detection are explained and elaborated.

Chapter 4 gives an overview of the tools used in this research and illus-

trates the prototypical implementation of the tool to conduct and evaluate our

proposed online anomaly detection approach.

Chapter 5 investigates the applicability of the proposed solution, as im-

plemented in the tool, with a comprehensive case study of Rolling Upgrade op-

erations. The steps described in our methodology from chapter 3, are further

investigated, and evaluated with this case study. The conducted experiments

provide a practical example of challenges faced in the process of upgrading sys-

tems in a real cloud environment. Further, the e�ectiveness of the approach

is evaluated by injection of random faults and assessing the success rate of

accurate anomaly detection.

Chapter 6 assesses the applicability of the proposed approach in a sec-

ond case study. Similar to the Chapter 5, this chapter also elaborates the

steps taken to evaluate the applicability of the proposed approach for the data

Chapter 1. Introduction 13

obtained from a case study with an air-tra�c middle-ware system.

Chapter 7 concludes the thesis by summarising the presented results and

their contributions to the knowledge, answering the research questions, and

highlighting possible extensions and future work.

1.5 Related Publications

The content, material and results presented throughout this thesis have been

partially published and presented in the following papers:

• Mostafa Farshchi, Jean-Guy Schneider, Ingo Weber, John Grundy: Met-

ric Selection and Anomaly Detection for Cloud Operations using Log and

Metric Correlation Analysis, Journal of Systems and Software. Accepted

Mar 2017.

• Mostafa Farshchi, Jean-Guy Schneider, Ingo Weber, John Grundy: Ex-

perience report: Anomaly detection of Cloud Application Operations

Using Log and Cloud Metric Correlation Analysis, 2015 IEEE 26th Inter-

national Symposium on Software Reliability Engineering (ISSRE), Wash-

ington, D.C., USA, Nov 2015, pp. 24-34. (Best Paper Award).

• Ingo Weber, Mostafa Farshchi, Jan Mendling and Jean-Guy Schneider:

Mining Processes with Multi-Instantiation, ACM/SIGAPP Symposium

on Applied Computing (ACM SAC), Salamanca, Spain, April 2015.

14 Chapter 1. Introduction

Chapter 2

Background and Related Work

In this chapter, we provide background information for the research problem

addressed in this thesis. First, we provide de�nitions for the key terms that

are frequently used throughout the thesis. Then, we present the background of

the concept of sporadic operations and explain some of the current challenges

of systems operations monitoring, in particular, for the domain of monitoring

systems with virtualization technologies.

In addition, we conduct an analysis of contemporary metric selection and

anomaly detection techniques, and highlight the di�erences of our approach in

comparison to the existing methods.

2.1 De�nitions

This section provides clari�cation of some of the concepts that we will fre-

quently refer to throughout this thesis.

The thesis aims to improve the dependability of system application op-

erations through system logs and system resource monitoring. Many of the

de�nitions used, including the de�nition of system dependability, are taken

from the �Basic Concepts and Taxonomy of Dependable and Secure Comput-

ing� paper in [8]. According to this paper, dependability is an integrating

concept that includes the following attributes:

• availability: �readiness for correct service�

• reliability: �continuity of correct service�

15

16 Chapter 2. Background and Related Work

Figure 2.1: Dependability and security attribute [8].

• safety: �absence of catastrophic consequences on the user(s) and the

environment�

• integrity: �absence of improper system alterations�

• maintainability: �ability to undergo modi�cations and repairs�.

Among the above attributes, security requires the existence of con�den-

tiality, integrity, and availability[8]. This relationship is shown in Fig. 2.1.

This thesis has a key focus on system health and performance monitoring,

and anomaly detection. Thus, it mainly addresses the reliability and availabil-

ity aspects of system dependability. Therefore, usage of the term �dependabil-

ity� throughout the thesis refers to these two aspects of system dependability.

Also related to system dependability, we use fault, error and failure terms

throughout the thesis. The relationship between fault, error, failure and the

event log is depicted in Fig. 2.2. As the �gure shows, an activation of a fault

may lead to an error, and some of the errors may cause a system or a service

failure, but not all failure and errors may be reported immediately in the

monitoring mechanisms. For instance, a connection to a database may be lost

and reported as an error in a log event, but a VM may go to a halt state and

no errors are reported. More precise de�nitions of these terms are as follows:

• failure: �failure is an event that occurs when the delivered service devi-

ates from correct service� [8].

• error: �an error is a state that may bring about a subsequent failure:

a failure happens when an error reaches the service interface and alters

the service� [8].

Chapter 2. Background and Related Work 17

Figure 2.2: Relationship between faults, errors, failures and event log [27].

• fault: �The adjudged or hypothesised cause of an error is called a fault�

[8]. A fault can be caused by a computation process, a speci�c sequence

of inputs, or environmental conditions [104].

event log: �A single line of text containing various �elds (time-stamp,

nodeID, protocol, application, error message) that reports a given activ-

ity of a system. Such an event is also often called a log message� [53]. It

is worth to note that, a log event is the manifestation of an event, or a

trace that an event has happened.

2.2 SystemMonitoring with Virtualisation Tech-

nologies

This thesis aims to improve system health and performance monitoring, with

the focus on systems with virtualization technologies. These technologies have

quickly gained popularity, and virtual resources have become broadly avail-

able. Virtual machines facilitate the modularity of application services and

help to deliver services to a large number of service consumers by providing

each with the illusion of a dedicated server. Customers1 can rent VMs and

automatically change their computational demands based on the pay-for-use

concept in the cloud space. Virtualisation has become the mainstream prac-

tice for deployment of multiple application services in a multiple numbers of

1Organisations using virtualised resources to serve their end users

18 Chapter 2. Background and Related Work

virtual machines running in one or a limited number of physical servers. In

fact, virtualization has become the de facto standard of cloud-based services.

With the emergence of the virtualization environment, the dependability

assurance of systems is not just limited to operating systems and physical

resources; it also includes virtual machines, hypervisors and related technolo-

gies. Virtualization provides the �exibility of performing many operational

tasks that have not been easily possible.

Examples of these tasks are cloning, scaling up or scaling down, changing

the size of virtual machines, migrating of VMs, changing of inclusion and

exclusion of various system components, changing execution environments, and

frequent release and deployment [47, 64]. In this domain, system monitoring

is not con�ned to few resources: system operators have to deal with a large

number of metrics showing the status of resources, operations running, and

applications of individual VMs.

In addition, multi-tenancy using virtualization technologies exacerbates the

complexity and dynamism of this environment. This unprecedented dynam-

icity introduces new challenges in monitoring systems and operations, as the

occurrence of a failure is common in such an environment.

The dependability assurance of VMs is of particular importance in cloud

environments. Public cloud computing services, like Amazon Web Services

(AWS), are designed and engineered in a way to be fault-tolerant for service

delivery. This resiliency is achieved mainly through shared resources, in which

the failure of one resource will not signi�cantly a�ect the whole system. How-

ever, it does not mean that all cloud services are fault-tolerant. In fact, many

of these services are fault-tolerant to the extent a cloud customer chooses to

design them.

In contrast to service delivery in the cloud, where the status of a VM

is important in an aggregated form, at the operational level (e.g., upgrade,

deployment, or backup), each individual VM and its attached resources are

important in their own right. From time to time a VM fails � for example,

it freezes, crashes and/or it becomes unresponsive. Such failures are usually

caused by one of the following: a problem stemming from the resources that

Chapter 2. Background and Related Work 19

the VM is running on, memory over-usage due to an increased system load,

an application bug that stresses the VM, an operating system kernel bug,

or random system termination for the assessing of a system's resiliency and

recoverability in production. The occurrence of any of these failures during an

upgrade operation can put the upgrade process on hold or even derail it.

Hence, we are interested in investigating the applicability of the approach

of this thesis for anomaly detection for environments with virtualization archi-

tecture.

2.3 DevOps Operations

As highlighted above, environments with virtualization technologies are ex-

posed to frequent changes by various operations, especially due to DevOps

processes. DevOps is a concept that emphasizes collaboration and communi-

cation between software developers and system administrators, also de�ned as

"a set of practices intended to reduce the time between committing a change to

a system and the change being placed into normal production, while ensuring

high quality� [12]. These types of system operations are also referred to as

sporadic operations [79, 139, 140].

Sporadic operations refer to a subset of administrative operations that do

not necessarily have a scheduled routine. In other words, �There is a spo-

radic nature to these operations, as some are triggered by ad-hoc bug �xing

and feature delivery while others are triggered periodically� [139]. Sporadic

operations are often not running continuously or with predictable frequency,

while often causing stress on resource consumption, thus many anomaly detec-

tion approaches mistake the e�ect of these operations on systems as anomalies

[138].

Examples of sporadic operations are Backup, (Rolling) Upgrade (upgrading

multiple virtual machines in an iterative way, such as updating 100 machines

by updating 10 machines at a time), Cloud migration (migrating from one or

a set of server types to another set of servers or also migrating to another

cloud service provider), Recon�guration, On-demand scaling (increasing or de-

20 Chapter 2. Background and Related Work

creasing the number of machines in service in response to the computational

demand, often done automatically with a set-up of prede�ned rules), Rollback-

/Undo (changing the state of operational service to a healthy restore point in

the case of detecting unexpected errors or failure, and Deployment.

Cloud sporadic operations can be subject to interference from simultane-

ous operations, whether through automatic concurrent operations or manual

changes applied to a system and its resources. Changes in cloud con�guration

are one of the reasons that make operation validation in this environment very

challenging. A cloud provides a con�gurable and scalable resource sharing en-

vironment, and thus software applications and services are exposed to frequent

con�guration changes, due to e�cient and cost-e�ective use of these shared re-

sources. Examples of frequent con�guration changes in Amazon AWS are:

detaching or attaching an elastic block storage (EBL) disk volume from/to a

VM; changes in conditions and con�guration of an auto-scaling group (ASG),

such as its size (horizontal scaling in/out); manual termination or reboot of a

VM; VM manipulation for testing purposes; migration of machines to di�er-

ent zones or regions; or changing from one machine type to another (vertical

scaling up/down). Such con�guration changes of cloud resources may happen

frequently [47, 64]. They are another motivation for our work, demonstrating

that the validation of sporadic operations has critical importance.

In the previous section, we discussed several technological challenges in

using VM technologies. Sporadic operations have to deal with the above tech-

nologies, while these operations often have a system-wide impact (e.g. migra-

tion operation). Such complexities make the assurance of successful execution

of this type of operation a challenging task. Therefore, within the scope of sys-

tem health, performance monitoring and anomaly detection, we are interested

in systems with virtualization technologies and DevOps operations.

2.4 Metric Selection

Continuous system health and performance monitoring of large-scale systems

can lead to an overwhelming amount of data. The volume of system monitoring

Chapter 2. Background and Related Work 21

data in a large-scale system can reach hundreds or even thousands of terabytes

[97, 100]. Processing a large volume of data as the result of having many

metrics can cause a signi�cant increase in the cost of system monitoring [20,

67, 91].

In addition to the above, having a large number of metrics often increases

the complexity of the process of anomaly detection [49]. Administrating tens

or hundreds of machines while tracking changes on each metric is often imprac-

tical, and, in many cases, not immediately bene�cial. In fact, system operators

are often exposed to a plethora of monitoring information, and they receive

too many monitoring warnings and alerts [94, 109, 138].

The current state of the practice of metric selection relies on system op-

erators, with many alert con�gurations de�ned based on operators' domain

knowledge, and sometimes alerts are set arbitrarily or based on ill-informed

thresholds [90]. This exposure to a plethora of data makes system monitoring

an overwhelming task for system operators.

To facilitate the above process, many software monitoring packages such as

Nagios2, Sensu3, and Misto4 provide customization, often allowing the choice

of which metrics to show and how alarms should be generated. However,

this customization has become more di�cult with the ever-growing number of

resource types in cloud environments [49].

In Chapter 1, Section 1.3.2, we highlighted the bene�ts of and reasons for

metrics selection. In addition to the above, in anomaly detection for system

health and performance monitoring, having the maximum number of metrics

may not lead to better accuracy. On the contrary, it may degrade the accuracy

of anomaly detection [49]. Most of the current anomaly detection solutions

focus on anomaly detection techniques while paying little attention to the

metric selection process.

Fu et al. [44] proposed an approach to quantify the relevance and redun-

dancy of system performance metrics for cloud anomaly detection. The pro-

posed approach �rst employs mutual information to measure the dependency

2https://www.nagios.org/
3https://sensuapp.org
4https://mist.io/

22 Chapter 2. Background and Related Work

between two metrics, and then adopts principal component analysis (PCA)

[1], as a feature extraction method, to extract a subset of metrics that best

represent all metrics. In this approach, PCA-based metric extraction for cloud

anomaly detection is based on the hypothesis that the �amplitude of perfor-

mance metrics of anomalous system components increases as the severity of

the fault/failure increases�. Although this approach is shown to be e�ective for

selecting metrics that are sensitive to failures, the metric selection extraction

is bound to the availability of failure samples. In fact, this is a semi-supervised

tree classi�er approach for metric selection. This approach has the limitation

of requiring labelled data for metric selection and anomaly detection.

In another study, Yang et al. [141] proposed a statistical method to dimin-

ish the volume of performance data. They used a Pearson product-moment

correlation coe�cient to obtain a quantitative estimation of the strength of

correlation between performance metrics. Then, they adopted a stepwise

regression-based method to identify the metrics that are relevant to appli-

cation performance metrics. This approach relies on statistical techniques.

However, this method does not take into account the selection of metrics with

regard to the workload or activity logs.

Another example of the adaptation of statistical methods for identifying

relevant metrics is presented in [65]. This paper models the quantitative rela-

tionship between the application performance and virtualized system metrics

using regression analysis, and proposes a metric selection algorithm to rank

the relevance of metrics from reconciled models related to application response

time. This approach has the limitation of taking into account just the appli-

cation response time and not considering the impact of operation activities.

Another line of work makes use of machine learning techniques. In this

direction, Zhang and his colleagues [145] �nd that by using a tree-augmented

naive Bayesian network (TAN) method, they can �nd which low-level system

metrics are correlated to high-level metrics of service level objective (SLO)

violations. Their approach is based on driving models from data using pat-

tern recognition and probability modelling techniques. This approach has the

advantage of being independent of domain knowledge; however, labelled data

Chapter 2. Background and Related Work 23

(supervised learning) is needed to derive a metric attribution model. Also,

the high computational complexity of TAN makes it un�t for online anomaly

detection at large-scale. In this line, similar approaches have been employed

for classi�cation of a large number of performance metrics by creating ��nger-

prints� for observed performance anomalies via a selected subset of relevant

metrics [17].

Although the selection of relevant metrics is vital and can directly impact

the e�ciency and accuracy of anomaly detection, and while feature selection

techniques are being broadly used to reduce the number of features or variables

in machine learning and statistics, very few studies have attempted to address

the problem of metric selection in the domain of system health and performance

monitoring [17, 44, 141, 145]. Therefore, in this study, we propose an approach

for metric selection as part of our anomaly detection approach, and hence, in

the current section, we reviewed the above studies that have explored this

domain.

2.5 Anomaly Detection

In this section, we provide background on the concept of anomaly detection.

Then, anomaly detection solutions will be discussed, based on the types of solu-

tion and the availability of data. Further, a classi�cation of the most employed

anomaly detection techniques in the domain of system health and performance

monitoring are presented, along with their advantages and disadvantages.

We will review the current methods closely related to the proposed ap-

proach of this thesis after introducing our approach in the last section of

Chapter 3. We will discuss the strengths and limitations of each method and

compare the approach of this thesis with previous work.

2.5.1 What is Anomaly Detection?

The practice of detecting anomalies in a dataset is commonly referred to as the

identi�cation of items or events that do not match the expected patterns of

other data in a dataset. �Anomalies are patterns in data that do not conform

24 Chapter 2. Background and Related Work

to a well-de�ned notion of normal behaviour� [23]. Anomaly detection has

application in a broad range of domains, such as in fraud detection, security

breach detection, network intrusion detection, system monitoring and error

detection, medical problems, or image and text processing. For example, in

the medical domain, the anomalous data observation from an MRI image may

show the presence of malignant tumours [113]. Anomalous activity in credit

card transactions could be the indicator of credit card fraud [5]. Also, network

tra�c with an anomalous pattern may indicate an intrusion into the network

[70].

Anomaly detection is di�erent from noise detection, although they are often

related. According to [23], �Noise can be de�ned as a phenomenon in data that

is not needed to be analysed, but acts as a hindrance to data analysis�. In other

words, a type of irregularity in the data that is interesting to the analyst and

has relevance to the nature of the data, which is often an indicator of an

unexpected event or phenomenon, is referred to as an anomaly. In fact, noise

removal is usually a pre-processing step of removing unnecessary items before

data is used for the process of anomaly detection.

2.5.2 Anomaly Detection Characterisation: Data Labels

Anomaly detection processes can be classi�ed from di�erent perspectives, and

a few past survey studies [3, 11, 23, 56, 85, 86, 102], have attempted to o�er

some classi�cation in this domain. Availability of data labels is one of these

classi�cations.

Data with labels refers to training data where the status of data records

is known, whether these records have anomalous status or normal status [23].

Considering the availability of data labels, anomaly detection techniques are

classi�ed into three categories: supervised anomaly detection, unsupervised

anomaly detection, and semi-supervised anomaly detection.

Supervised Anomaly Detection: Anomaly detection approaches under

this category have the underlying assumption that training data items are

available with both normal items and anomalous items [47, 74]. One major

challenge for anomaly detection learning in this category is the ratio of available

Chapter 2. Background and Related Work 25

normal data instances to non-normal data instances, especially considering

that anomalous instances are often comparatively rare events [23, 74]. Given

a large number of anomalous data instances, this type of approach often leads

to an anomaly detection result with high precision.

Nevertheless, as the approaches under this category have known anomaly

status, �rst, it is challenging to obtain data or simulate anomaly instances that

are representative of the real world; second, this type of anomaly detection

technique has the shortcoming of not detecting previously unknown anomaly

instances [23]. For example, supervised approaches have been reported to be

vulnerable against new types of malicious attacks in the domain of network

intrusion detection [76]. The approach proposed in this thesis does not �t

into this category, as the training data in our approach has no dependency on

labelled data.

Unsupervised Anomaly Detection: In this type of technique, data do

not require labelled data, and thereby, data have a wider range of applicability.

This technique has an underlying assumption that the number of normal data

points is more frequent than anomalous data points, otherwise, the anomaly

detection may lead to too many false negative alarms [23, 76]. This technique

has the advantage of being employed for the environments where changes are

usually perceived. This type of anomaly detection approach is an especially

good candidate for �detecting unknown anomalies in cloud data centres where

precise de�nition of anomaly characteristics may not always exist� [60]. The

Figure 2.3: Relationship between type of training data and type of anomaly
detection technique

26 Chapter 2. Background and Related Work

approach proposed in this thesis has a similar assumption. In other words,

the learning phase of our approach can be conducted with a data set without

labelling data when the presence of anomalous instances is far less than normal

instances.

Semi-supervised Anomaly Detection: This technique aims to bring

the bene�ts of both the approaches of supervised and unsupervised techniques.

Semi-supervised methods have the underlying assumption that labelled data

are available for a portion of data, while the rest of the data are unlabelled [60].

Thus, learning from a small chunk of data helps to build a learning structure for

the remaining data. Although this technique, unlike the supervised technique,

does not require labelling of all data instances, the need for labelling data for

a portion of learning data still makes it less applicable for many environments

where such labelling data are not available [23].

2.5.3 Anomaly Detection Characterisation: Types of

Anomalies

Anomaly detection approaches are broadly categorised into three types: point

anomalies, contextual anomalies, and collective anomalies.

Point Anomalies: �A point anomaly is any point that deviates from the

range of expected values in a given set of data� [60]. In this type of anomaly,

Figure 2.4: An illustration of point anomaly: N1 and N2 are sets of normal
points, while O1−3 are outliers or sets of anomalous points.

Chapter 2. Background and Related Work 27

a distinct point in data is considered anomalous in comparison with the rest

of the data, thereby the detected anomalous instance is referred to as a point

anomaly. The vast majority of research on anomaly detection has focused

on point anomalies [23]. A simple method in this type of anomaly detection

technique is to de�ne a statistic rule to identify outliers within a range of data.

For instance, whenever the value of a data instance of a metric (e.g. number of

open service sessions in memory) deviates more than three standard deviations

from the mean, it is considered an outlier, and, as a result, an alarm should be

triggered. In system performance monitoring, this type of anomaly detection

has been broadly used for detection of spikes in system resource utilisation

[60]. An illustration of point anomaly is shown in Fig. 2.4

Contextual Anomalies: This type of anomaly detection technique, also

called conditional anomaly, inspects a data instance according to the given

context of that data instance. In other words, �These anomalies manifest

themselves under speci�c conditions or contexts� [60]. For instance, high net-

work throughput during working hours is considered normal behaviour, while

if such high tra�c is perceived after working hours, then that is considered

anomalous behaviour. Some common examples of contextual attributes are

time or date (e.g. hours of a day, day of a week, or special calendar event),

location (e.g. longitude and latitude, IP address), system con�gurations, and

type of workload. An illustration of contextual anomaly is shown in Fig. 2.5.

Collective Anomalies: In this type of anomaly, the detection of anoma-

Figure 2.5: An illustration of contextual anomaly, month of a year (time)
as the contextual attribute for monitoring normality of temperature.

28 Chapter 2. Background and Related Work

lous incidents is analysed in a group of data instances rather than individual

data points. For instance, the anomaly instances are interpreted according to

the value of their neighbours, such as an observation of low-throughput com-

pared with higher-throughput value in prior observation windows [60]. Hence,

the notion of normal behaviour has a dynamic nature, which may change from

one range of data to another (e.g. comparing current value with previous

time windows). An emergent subcategory of collective anomalies is pattern

anomalies. In this technique, anomaly detection is conducted based on de-

tecting anomalous patterns, as metrics may manifest themselves in speci�c

shapes and graphs [4, 52]. This pattern recognition is usually done with the

help of mathematical models. The major drawback of pattern-based anomaly

detection is the high computational complexity of continuously analysing pat-

terns [4]. An illustration of contextual anomaly is shown in Fig. 2.6.

In this thesis, our anomaly detection approach inspects point data from

resource metrics according to what is expected from the context of the activity

logs. Therefore, our approach is mainly a contextual based technique.

2.5.4 Challenges in Anomaly Detection

In short, an anomalous behaviour is a deviation from normal behaviour. There-

fore, to detect deviations from normal behaviour, a criterion or measurement

is needed to de�ne normal behaviour. However, this seemingly simple task

of de�ning a range or criterion for normal behaviour and distinguishing it

from abnormal behaviour is very challenging in practice. Chandola and his

colleagues [23] outline these challenges as the following:

Figure 2.6: An illustration of collective anomaly

Chapter 2. Background and Related Work 29

• De�ning normal region: De�ning proper criteria that indicate the

range of normal data instances is often a di�cult task. This is especially

challenging when we need to draw a line between normal data instances

and anomalous data instances. In fact, in many cases, it is likely that

data in a normal region that is close to a borderline is an indicator of an

anomaly, and vice versa.

• Detecting malicious actions: Malicious actions may adapt themselves

to mimic normal behaviour in a system, thereby making it di�cult to

distinguish normal behaviour from non-normal behaviour.

• Evolution of normal behaviour: If the characteristics of the current

notion of normal behaviour change, then the normal behaviour needs to

be updated as normal behaviour changes.

• Di�erent domains require di�erent anomaly notions: The exact

notion of an anomaly varies from one application domain to another.

For example, while �uctuations in the value of a stock market may be

accounted as normal, in the medical �eld, a minimal deviation from the

normal value of a blood test can be considered anomalous. This makes

the adaptation of an e�ective anomaly detection technique of one domain

not suitable in another domain.

• Lack of labelled data: Many anomaly detection techniques rely on

labelled data, while for much training data, such labelling is not available.

• Distinguishing noise from anomalies: There is a chance that noise

is similar to anomalous data instances, thereby making a di�erentiation

between these two a challenging task.

The challenges outlined above make the detection of anomalies a challeng-

ing task. As a result, most anomaly detection techniques are designed for a

particular domain, and choosing a proper anomaly detection method requires

consideration of a set of factors such as the �eld of work, the characteristics of

the available data, the type of anomalies to be detected, and data dependency

and data volume [73]. Thus, in this chapter, we review the anomaly detection

30 Chapter 2. Background and Related Work

techniques that have been adopted, to some extent, in the domain of system

health and performance monitoring, respectively.

2.6 Anomaly Detection Techniques

In the previous subsection, we discussed the three categories of anomaly detec-

tion approaches. In this section, we will present the classi�cation of di�erent

anomaly detection techniques and discuss the strengths and drawbacks of each

type of technique.

The domain of failure and anomaly detection is very broad, and few studies

have attempted to provide a structural survey of general anomaly detection

techniques and applications. A comprehensive systematic analysis of anomaly

detection techniques and their applications in di�erent domains has been given

in [23]. Further extensive analyses and surveys on anomaly detection methods

can be found in [3, 11, 56, 60, 103]. The focus of the current thesis is on system

health, operation, and performance monitoring. Thus, we focus on this domain

for analysis of the related work.

2.6.1 Classi�cation-based Techniques

Classi�cation methods are a type of supervised machine learning method which

requires labelled data. In this technique, the data instances with normal and

anomalous labels are used to learn a model called a classi�er. Then the clas-

si�er from the training phase is used to test the accuracy of the classi�er to

distinguish normal data instances from anomalous ones [104]. There are sev-

eral classi�cation techniques available, but they can be categorised into two

general groups of one-class and multi-class anomaly detection techniques [23].

One-class anomaly detection techniques assume data has one type of normal

instance, while for the case of multi-class anomaly detection methods, there

are multiple types of normal instances in a dataset. Some popular classi�ca-

tion methods include Bayesian networks, neural networks, and decision trees.

[60].

Related to these types of techniques, Tan et al. [115] attempted to predict

Chapter 2. Background and Related Work 31

and classify performance anomalies for virtualised cloud computing infrastruc-

ture using a Bayesian classi�er and tree augmented network. Classi�cation as a

decision tree has been leveraged by [44, 101] to detect performance bottlenecks

and degradation. Also, Parekh et al. [101] and Powers et al. [107] present a

comparative and exploratory study of several classi�cation techniques for per-

formance anomaly detection.

The process complexity of the classi�cation methods varies widely from one

classi�cation algorithm to another, nevertheless, for most of the classi�cation

algorithms, the testing phase is fast in comparison to other approaches [60].

Unlike the adopted technique in this thesis, classi�cation techniques require

anomalous labelled data instances, which is often di�cult to obtain in the

domain of performance anomaly detection. Further, this type of technique has

weaknesses as regards detecting the unknown type of anomalies.

2.6.2 Clustering-based Techniques

Clustering approaches rely on grouping similar data instances into separate

clusters. Clustering anomaly detection techniques work based on one of the

following assumptions: normal data instances belong to a cluster, while anoma-

lies do not belong to any cluster; anomalous instances are data instances that

are far away from a cluster centroid in oppose to normal data instances; nor-

mal data instances belong to large and dense clusters in compare to anomalous

data instances that belong to smaller or spare clusters [23].

In contrast to classi�cation-based methods, clustering techniques are often

unsupervised machine learning methods, though semi-supervised methods also

have been proposed recently [100]. In clustering techniques, outlier detection

relies on measuring the distance of data, often based on one or a combination

of the following rules. Data instances are anomalous if:

• (i) they do not belong to any cluster, or

• (ii) they are far away from their cluster centre, or

• (iii) they belong to sparse clusters [23].

32 Chapter 2. Background and Related Work

Some of the popular clustering methods are self-organization maps clustering,

K-means clustering, and expectation maximization [56, 60].

Related to this technique in the domain of system anomaly detection, Dean

et al. present an unsupervised clustering method using self-organizing maps

to distinguish the normal states of the system from the unhealthy states, and

then use a decision tree mechanism to detect failures in the cloud environment

[33]. Also, Yu and Lan [142] present an approach using majority-voting, a non-

parametric clustering technique, for anomaly detection in Hadoop clusters.

Clustering methods have the advantage of working in an unsupervised mode

(similar to this thesis), and they are often reported to be fast in the testing

phase, as the number of clusters is usually small [23]. As for the weakness

of clustering techniques, computational complexity at the learning phase is

often expensive, and if the number and association of anomalous instances

are not signi�cant enough to form clusters, then a clustering algorithm will

not be e�ective [23]. Another di�culty with this approach is the processing of

complex data, such as streaming and spatial data, for which creating a distance

measure is often complicated [60].

2.6.3 Nearest Neighbour-based Techniques

Nearest neighbour-based techniques are unsupervised techniques and they have

some similarities to clustering-based techniques. Like clustering techniques, in

nearest neighbour-based techniques, the distance computation between pair

instances is required for classi�cation purposes. However, rather than the dis-

tance of instances to be compared with the centre of the clusters, the distances

are analysed with respect to their dense neighbourhood. The base hypothesis

in this type of technique is that normal data instances are located in dense

neighbourhoods, while anomalous data instances tend to be located at some

distance from their closest neighbours [23]. Two of the popular techniques of

this type are k-nearest neighbour [66] and the local outlier factor [105].

An example of this technique is the study proposed by Huang et al. that

uses a local outlier factor method to detect contextual anomalies in cloud

computing systems [58]. Similarly, Wang et al. introduce an algorithm that

Chapter 2. Background and Related Work 33

learns from workload patterns in a web application and then adopts the local

outlier factor for anomaly detection of such patterns [127]. Further, Bhaduri

et al. leverage a distance-based anomaly detection rule using the K-nearest

neighbour method to detect machine failures in cloud infrastructure [14]. The

advantages and drawbacks of nearest neighbour-based techniques are often

similar to clustering methods.

2.6.4 Information Theoretic Techniques

This category is introduced for the �rst time in [23] and includes approaches

that �nd anomalies based on irregularities in the content of a dataset. Ir-

regularities, or the degree of dispersal and concentration of content in a data

set [126], is measured using techniques such as Kolmogorov Complexity [124],

entropy, relative uncertainty [75] and similar techniques [23].

The above techniques in system monitoring can be applied to detect anoma-

lies by measuring the di�erences between two windows of metric observation

[60]. In this process, an entropy-based technique has been adopted by [125]

and [75] to identify malicious activities in network tra�c. Wang et al. [126]

used a similar approach for detecting anomalies in cloud environments. This

technique has the advantage of working with unsupervised data and has no re-

striction on the data type distribution. However, �nding an optimal threshold

for the size of the substructure of data is challenging. Further, in contrast to

the approach adopted in this thesis, this approach is more e�cient when there

is a signi�cant number of anomalous instances available [23].

2.6.5 Statistical Techniques

Techniques in this category utilise various statistical-based methods to anal-

yse the probability distribution of data and the relationship between them to

construct a model that de�nes the range of data in normal states. Broadly

speaking, statistical techniques can be divided into two groups: parametric

and non-parametric techniques.

34 Chapter 2. Background and Related Work

Parametric Methods

Three broadly used parametric methods are the Gaussian-based anomaly de-

tection technique, the correlation-based anomaly detection technique, and the

regression-based anomaly detection technique.

The Gaussian-based anomaly detection technique is one of the most utilised

methods in the literature, which has the underlying assumption that data

distribution is normal. Mean and variance are two parameters that are used

to build this type of model, and the distance of a data instance from the

mean is used as a threshold to detect anomalous items [23]. For example, a

data instance that is not within three standard deviations from the mean is

considered to be an outlier.

The correlation-based technique is another type of parametric statistical

technique that measures the interdependency between two sets of data. For

instance, this method is used to �nd the correlation between two di�erent met-

rics or two subsets of data of the same metric. In this method, coe�cient R

is calculated by various algorithms, such as the Pearson or Spearsman cor-

relation, to measure the association of two variables. In this technique, the

correlation of two sets of data, often within a time window, is measured, and

if it is not between the expected minimum and the maximum coe�cient R,

then data records will be tagged as anomalous data instances. In this thesis,

we have extensively leveraged the Pearson coe�cient correlation for �nding

associations between log events but not for the sake of anomaly detection.

The regression-based technique is another method that has been used for

system performance anomaly detection, especially for time-series data. In

regression analysis, there are two types of variables for statistical analysis:

response variables, also named dependent variables (DV) [89], and predictor

variables, also called independent variables (IV). The Dependent Variable is

a predicted variable in response to changes in predictors. In other words, the

dependent variable is the response value that, with the help of the regression

model, is desired to be explained by the predictors. The Independent Variable

predicts the value of the dependent variable. In other words, regression is used

to explain the variation in a DV by analysis of the variation of IVs. Thus,

Chapter 2. Background and Related Work 35

IVs are the variables that an experimenter may manipulate in order to derive

a statistical model that has the best prediction ability. In short, regression

technique can be used to understand how much of the variation in a DV or

target variable can be explained by a set of IVs or explanatory variables.

The objective of the regression-based method is to �t a regression model

that has the least amount of absolute error [60, 69]. Once the model is �tted,

the computed residuals (the error of estimate) are used to detect anomalous

data instances which are not within the range of the residual score of the esti-

mate. In this thesis, we adopt the regression-based technique for our anomaly

detection approach.

Non-parametric Methods

Several other statistical methods have been used for anomaly detection in the

past. Nonparametric methods are a subset of these methods which build a

pro�le of normal data from the given data using methods such as a histogram.

Histograms are used as one of the simplest non-parametric statistical tech-

niques to maintain a pattern pro�le of normal data. Histogram-based tech-

niques are particularly popular in the domain of network intrusion detection

and fraud detection [23].

In the process of anomaly detection with a histogram for univariate data,

�rst a histogram is built based on values from the training data, then the

testing data will be checked to see if they fall in the bins of the histogram.

The data that do not fall in the histogram bins will be tagged as anomalous

data. In this method, �the size of the bin used when building the histogram is

key for anomaly detection: if the bins are small, many normal test instances

will fall in empty or rare bins, resulting in a high false alarm rate; if the bins

are large, many anomalous test instances will fall in frequent bins, resulting

in a high false negative rate� [23]. Therefore, one of the challenges in the

histogram-based technique is to de�ne the optimal size of bins, in order to get

the best anomaly detection result.

Non-parametric methods are often simpler than parametric methods to

implement when dealing with univariate data, but when we need to work with

36 Chapter 2. Background and Related Work

multivariate data, they are not able to capture the interaction between di�erent

attributes. This limitation makes this technique not suitable for detecting

anomalies that are only perceived as the combination of multiple variables,

such as the work of this thesis, which takes into account multiple independent

variables derived from event logs to predict the status of a resource metric.

The models derived from statistical anomaly detection techniques often

o�er robust solutions, as they are based on statistical signi�cance, though

applying statistical techniques has the challenge of �nding the best statistical

model to �t the data. Anomaly detection based on statistical techniques has

the advantage that the detection of anomalous instances often comes with

a con�dence interval derived from the anomaly score [23]. This con�dence

indicator can be used as additional information for decision making, such as

for the prioritising of anomaly alarms. In addition, statistical techniques often

have the bene�t of being employed for unsupervised data instances when the

number of anomalous data instances is far less than the normal data instances

[23].

2.7 Summary

In this chapter, we gave a background on the importance of system monitor-

ing, especially for the environment with virtualization technologies. We also

highlighted the importance of DevOps operations in this domain. Moreover,

we provided a background on common anomaly detection techniques and sum-

marised the advantages and disadvantages of each technique.

Please note that the closely related works of this thesis are discussed after

presenting and discussing the proposed approach of the thesis in Chapter 3,

Section 3.5.

Chapter 3

Metric Selection and Unsupervised

Anomaly Detection Using

Log-Metric Regression Analysis

This chapter provides a conceptual framework and presents a structured view

of the approach that is proposed in this thesis. First, the overview of the steps

of the research approach is outlined, then the mechanisms that are employed

for each of these steps are explained and elaborated. In this direction, in

this chapter we will explain and discuss the process of data collection and

metric derivation. Next, we explain the log abstraction process and log-metric

mapping. Followed by a section about how to �nd correlation between log

events and resource metrics. We then use the correlation model derived in

the previous step for metric selection and later for assertion speci�cation and

anomaly detection.1

3.1 Overview of the Proposed Approach

The goal of the approach of this thesis is to address the challenges and limita-

tions outlined in Section 1.1 and to ful�l the objective of the thesis highlighted

in Section 1.2. In particular, the approach in this chapter proposes a metric

selection and anomaly detection technique for system health and performance

1Parts of this chapter have been published: [36, 37].

37

38 Chapter 3. Metric Selection and Unsupervised Anomaly Detection

monitoring. Unlike many anomaly detection methods, the proposed approach

is an unsupervised approach, which does not require anomalous labelled data

[47, 74]. Also, it proposes a context-based anomaly detection technique. The

context-based technique (also referred to as the behavioural or conditional

anomaly detection technique) means observed data instances are considered

anomalous in association with behavioural attributes of a system [23].

Logs represent the behaviour (context) of system operation, while metrics

show the health, system, and performance status of a system. Several studies

have leveraged logs for failure detection and diagnosis, and a large number

of studies have adopted metrics for system health and performance anomaly

detection e.g. [23, 60, 143]. Some of these studies are discussed in Chapter

2. However, the combination of these two valuable sources of information in

an integrated form for system monitoring and anomaly detection has not been

studied before.

Combining these two sources provides the bene�ts to identify the anomalies

that are not detected in either of these sources of data alone. In this direc-

tion, we propose and employ a set of techniques to combine information from

logs and metrics based on statistical analysis without requirement of domain

knowledge of the system.

Event logs are textual content, while system resource metrics are often

represented with numerical values. As can be seen in Fig. 3.1 and Fig. 3.2,

event logs are generated at various points in time, and metrics are collected at

potentially di�erent points in time.

• Events refer to individual log lines. We assume each log line has a

timestamp and a description.

• Clustering is a process that clusters �ne-grained correlated event logs to

set of coarse-grained activities. We refer to this process as log abstraction

or log clustering.

• Activities refer to sets of log events that together are responsible for

making a change in a system or indicating a status of a system or ap-

plication, for instance, retrieving user pro�le information or launching a

VM instance.

Chapter 3. Metric Selection and Unsupervised Anomaly Detection 39

Figure 3.1: The occurrence of log events and metric data over time. *Note:
A1..A5 are activities; Metric1..3 are metrics like CPU utilisation, network
usage, number of instances changes, etc.

• Metrics represent status and utilisation of system resources within a

time window, for instance, average CPU utilisation or network usage

within the last 5 seconds.

Detailed system monitoring is often a cost-intensive process, and the mon-

itoring metrics are often collected with longer frequency than logs [20, 67, 91].

Moreover, collecting monitoring data usually happens at �xed intervals (such

as every 5 seconds, 1 minute, or every 5 minutes). In contrast, observation

of system operations behaviour through event logs happens at non-�xed inter-

vals, such as the occurrence of a few event logs within one second, and then

the absence of any event logs for the next few seconds or even minutes. For

example, Fig. 3.2 shows a sample of the logs of a JBoss application server.

By looking at the timestamps, we can observe that logs are happening with

di�erent time intervals. Also, in this �gure we show a few examples of group-

ing a set of related log events to a set of activities. We will explain the log

abstraction process in Section 5.3.

In our investigation, we are interested to �nd the relationship between oper-

ation activities derived from log events and the symptoms observed in resource

metrics. Once we map logs and metrics, we adopt a statistically justi�ed tech-

40 Chapter 3. Metric Selection and Unsupervised Anomaly Detection

nique using correlation analysis to narrow down the number of metrics to the

most sensitive metrics in�uenced by application operation behaviour that is re-

�ected in event logs. Then, our approach uses a statistical technique to extract

a regression-based model that explains the correlation and potential causalities

between operation event logs and resource metrics. To derive assertions from

observations, we assume that there is a stream of time-stamped events, such as

events represented by log lines, and at least one metric that can be observed.

The output of the regression model is used to generate assertions, which are

then leveraged for anomaly detection of run-time execution of application op-

erations. The high-level steps of the approach, also shown in Fig. 3.3, are as

follows:

1. data collection and data preparation;

2. metrics derivation;

3. log abstraction and log-metrics data mapping;

4. correlation derivation between logs and metrics;

5. metric selection; and

6. assertion speci�cation for anomaly detection.

We will describe and discuss above steps in detail in next sections.

C
h
a
p
ter

3
.
M
etric

S
electio

n
a
n
d
U
n
su
p
erv

ised
A
n
o
m
a
ly

D
etectio

n
41

15:58:06,314 Creating Service {http://swim.sesar.eu/fowsdl}FOService from WSDL: SESAR_IOP-FOInterface.wsdl
15:58:06,539 Setting new service endpoint address in wsdl: http://localhost:8080/FOService/FOInterface
15:58:06,783 Setting new service endpoint address in wsdl: http://swim-host:8180/FOService/FOInterface
15:58:06,819 Setting the server's publish address to be http://swim-host:8180/FOService/FOInterface
15:58:06,904 WSDL published to: file:/home/swim/wsdl/SESAR_IOP-FOInterface.wsdl

15:58:07,996 Installing container for EJB FODataManagementBean
15:58:07,997 with dependencies:
15:58:07,997 with demands:
15:58:07,997 jboss-injector:topLevelUnit=SWIM-BOX.dds.ospl-2.1.WAC2015.ear,unit=FDD.war,bean=FODataManagementBean
15:58:07,997 jndi:ParticipantsManagerServiceBean/local
15:58:07,997 jndi:FOPersistenceManagerBean/local
15:58:07,997 with supplies:
15:58:07,997 Class:org.swim_suit.fddomain.internal.services.FODataManagementControl

15:58:08,008 Installing container for EJB SDDPubSubBean
15:58:08,008 with dependencies:
15:58:08,008 with demands:
15:58:08,008 with supplies:
15:58:08,008 Class:com.selexsi.swimbox.sdd.pssconnector.SDDPubSubInterface

15:58:08,044 Installing container for EJB DataStoreBeanFRQ
15:58:08,044 with dependencies:
15:58:08,045 with demands:
15:58:08,045 jndi:SWIMSharedDatastoreBean/remote
15:58:08,045 jndi:SWIMSharedDatastoreBean/local
15:58:08,045 with supplies:
15:58:08,045 Class:com.selexsi.swimbox.sdd.sdsconnector.ejb.DataStoreFRQ

15:58:11,195 instantiating TransactionManagerLookup: org.hibernate.transaction.JBossTransactionManagerLookup
15:58:11,195 instantiated TransactionManagerLookup

Activity:
Create
Service

Activity:
Install

Container

Activity:
Install

Container

Activity:
Install

Container

Activity:
Instantiate
Transaction
Manager

Logs occurring at
non-fix time intervals Event logs description

Figure 3.2: An example of JBoss logs with clustering related log events to set of activities.

42 Chapter 3. Metric Selection and Unsupervised Anomaly Detection

Collect monitoring
metric data

Collect operation
event-logs data

Extract direct and
indirect metrics

Is the
results
valid?

No

Define assertion
specification

Metrics

Operation
monitoring

Operation tool
event-logs

Mapped Logs-Metircs

1- Prediction formula,
2- Main factors affecting
the target variable.

Clustered
Event-logs

VM
Instances

Derive measurable
log-data metric

Log abstraction/
clustering and Log-

metric mapping

Derive log-metric
correlation model with

regression analysis

Assertion derivation
and statistical model

checking

Yes

Metric Selection

Selected Metric

Monitoring
tool/service

Start

Statistical model
Didn’t fit the data.

End of Design/Training phase

Figure 3.3: Work�ow of the proposed framework.

Chapter 3. Metric Selection and Unsupervised Anomaly Detection 43

3.2 Sources of Monitoring Data and

Data Preparation

We describe the steps of data collection for both monitoring metrics and logs

in this section.

3.2.1 Event Logs from Operation Tools

While the status of resources is often monitored through metrics, logs are the

main source of information that reports what functions are executed in a sys-

tem [58]. Log events explain the behaviour of the applications and operations,

and, in our context-based anomaly detection approach, is the main source to

extract the events of a system [58, 96].

In the approach presented in this thesis, to draw mappings between nu-

merical metrics and contextual logs, we needed to extract a set of metrics that

show the occurrences of di�erent event logs. Although the styles of logging

might be di�erent, almost all types of log contain time-stamped information,

whether they are application logs, database logs, or operation logs. Further-

more, a log message represents information about an event, including logs that

indicate preparation or waiting periods.

The timestamp and description attributes can be seen in almost all oper-

ational logs, though the quality and granularity of logs may di�er from one

application to another. For instance, middleware application servers and op-

erational tools such as Apache Tomcat2, Eclipse Jetty3,JBoss 4, Asgard5, and

CloudTrail6 provide logs that contain these types of information (logs with

timestamp and event description).

Hence, this study assumes a logged event must have at least two attributes:

a timestamp and an event description. Knowledge derived from logs can be

leveraged to monitor the behaviour of a system and detect errors and diagnosis

the root cause failure [28, 29]. In the approach proposed in this thesis, we use

2https://tomcat.apache.org/
3http://www.eclipse.org/jetty/
4http://www.jboss.org/technology/
5Net�ix Deployment Tool - https://github.com/Net�ix/asgard/wiki
6Logs reporting service of Amazon AWS - https://aws.amazon.com/cloudtrail/

44 Chapter 3. Metric Selection and Unsupervised Anomaly Detection

the information from logs, along with metrics, to identify anomalies in a system

operation.

3.2.2 Metrics from Monitoring Tools

The approach of this study requires two sources of monitoring data: one is

the set of log events of running operations and the other is the metrics from

the resources. Both of these types of monitoring data are available in almost

all enterprise application systems. For example, public and private cloud ser-

vice providers o�er monitoring services, namely: Azure Monitor for Microsoft

Azure7, Google Stackdriver for Google cloud8, CloudWatch for Amazon AWS

9, LogicMonitor 10 and many other third-party services and application per-

formance monitoring solution providers11.

Monitoring tools provide multiple metrics to show the status of various

system and application resources. For example, at the operating system level,

one can collect monitoring data of running processes, system activities and

hardware and system information either using native Linux tools like �top� and

�vmstat� or utilising more sophisticated monitoring solutions like Nagios.12 As

another example, public cloud service providers such as Microsoft Azure and

Google Cloud provide several monitoring metrics which are available at both

individual resource level (e.g. storage, or VM instances level) and at a group

level, showing the aggregated form of multiple resources (e.g. the average disk

write usage for 10 storage devices).

Typically, system monitoring can be conducted in two forms: through

performance-based metrics, or state-based metrics.

• Performance or direct metrics: These basic metrics are often avail-

able by default with the monitoring tools and available for most of

the metrics that show the capacity or performance of various resources.

7http://azure.microsoft.com/
8http://cloud.google.com/stackdriver
9http://aws.amazon.com/cloudwatch/
10http://www.logicmonitor.com/
11http://haydenjames.io/20-top-server-monitoring-application-performance-monitoring-

apm-solutions/
12https://www.nagios.com/

Chapter 3. Metric Selection and Unsupervised Anomaly Detection 45

These types of metrics are the metrics that show the percentage or the

degree of the changes of the usage of the resources, such as CPU util-

isation, disk read IO, memory usage, network tra�c, number of SQL

threads running, number of open connections, etc. A list of hundreds of

these metrics from Google cloud platform metrics, Stackdrive Monitor-

ing Agent metrics and Amazon Web Services metrics can be found in the

link in footnote 13.

• State-based or derived metrics: These metrics may not always be

available directly and they often indicate the transition of the status of

resources from one state to another. One important example of these

types of metrics are the ones indicating the status of a VM. For example

CloudWatch (AWS monitoring service), includes no metric that explicitly

shows the number of instances started or terminated within an auto

scaling group. Fig. 3.4 shows a typical state �ow of the lifecycle of a VM

[55].

As shown in Fig. 3.4:

• Uninstantiated is the pre-creation or baseline state of a VM and may

involve platform-dependent operations. For instance, a pre-state of VM

creation is baking an Amazon Machine Image (AMI) which has the con-

�guration of creating a virtual machine.

• Waiting often refers to the state of resource allocation and booting

process.

• Running is the state of a VM that is ready to provide services.

• Paused refers to a temporary suspension of a VM which is stored in the

memory.

• Suspended is also called �stopped� and indicates a suspension of a VM

but the state of the VM is persisted on the physical disk rather than the

memory.

13https://cloud.google.com/monitoring/api/metrics

46 Chapter 3. Metric Selection and Unsupervised Anomaly Detection

Figure 3.4: Sample lifecycle of a virtual machine with transient actions and
states from one state to another.

• Terminated is the state in which a VM is destroyed and thus cannot

be restored.

In this thesis, we will explore both types of performance metrics (direct

metrics) and state-based metrics (derived metrics) and evaluate the applica-

bility and e�ectiveness of our approach for each of these groups.

As there is usually a large number of monitoring metrics available, a sys-

tem operator needs to decide which monitoring metric or metrics to focus on.

In Section 3.4.1, we will demonstrate how to leverage a statistical supported

technique to identify the most sensitive metrics for detection of anomalies in

a system.

3.3 Log Processing and Log Abstraction

3.3.1 Representing Logs as Quantitative Metrics

Raw log events are often unstructured, as developers write log messages as free

text for convenience and �exibility [15]. Also, system logs are often available

in large numbers and they are �ne-grained [43, 96]. This makes the monitoring

and troubleshooting of systems using raw logs a cumbersome task, especially

in large-scale computing environments. For instance, the number of registered

log events in an application server such as Tomcat or JBoss can reach over

Chapter 3. Metric Selection and Unsupervised Anomaly Detection 47

dozens or hundreds of log lines per minute. Nevertheless, most of the log

events are often recurring, indicating occurrences of similar events.

For our study, to observe how the activities reported on log events change

the state of resources, we are interested in tracking reoccurring log events.

So we need a way to parse and trace log events. A typical approach for log

parsing is to utilise regular expression to derive a template of event logs [54,

114, 117, 130, 144]. Similarly, we employed the common approach of using

regular expressions to identify log event types. In this process, the raw log

messages are transformed into a set of structured log events.

As shown in the example in Fig. 3.2, log messages typically come with a

timestamp and message content. The log message describes what is happening

at runtime [114]. Thus, for the log processing in our approach, we assume logs

contain both timestamps and a message description. The message part of a log

event of a particular type can be divided into two parts: the constant part and

the variable part [54]. The constant part of the message is �xed and remains

the same for every log event of this type. The variable part holds the runtime

information of log events like an IP address and port number [54].

The goal of log parsing in our approach is to extract the pattern of recurring

event logs by automatically separating the constant parts and variable parts

of a raw log message, and further transform each log message associate with

a speci�c log event type. To ful�l this aim, we process log �les through the

following steps.

First, the timestamps and log description are extracted for each log line,

followed by tokenisation of the log message. Next, regular expressions are

generated for each token of the log message. Then, message tokens are divided

into two parts: constant tokens and variable tokens, by analysing the pattern

of regular expressions, using a set of pre-de�ned rules. Lastly, the generated

regular expressions are combined to form a unique log event type. For each

new log line, the log event is compared by pattern matching with regular

expressions, and if a pattern is not found, the above steps will be repeated for

the new log line.

The rules we used in our log analysis with regular expressions include com-

48 Chapter 3. Metric Selection and Unsupervised Anomaly Detection

mon patterns of URL address, IP address, port number, camel-case strings, and

numerical values (which may include time duration, IDs, etc.). This method is

simple and shown to be e�ective in past studies [117, 138, 140], however, these

rules may need to be con�gured or extended for parsing logs of a new project.

In the process of log transformation, the variable tokens are replaced with

the regular expression for the token type. For instance, string token pro-

cess[11043] is replaced by process[\d+], �\d+� indicates that the string must

have one or more numbers as a variable in the brackets; the rest of the token

is taken as an exact expression. a complete example of log transformation is

shown below - �\s� is an indicator of space:

``Remove instances [i-08 b43bc7] from Load Balancer ELB -01''

generate the following regular expression:

``Remove\sinstances\s\[i-[a-z0 -9]+\]\ sfrom\sLoad\sBalancer\s.*''

The output of the above step is a set of regular expression patterns that

represent unique types of event logs.

Interpolate Occurrence Strength of Log Types

Once we have parsed the logs and identi�ed what type each log event belongs

to, we can start counting the occurrence of each log event type, however,

we need a mechanism to map the counting extracted from the event logs to

the time window for which our system health and performance metrics are

available. For instance, if metrics are available with one-minute intervals, then

to model the relationship between logs and metrics, we need to represent the

metrics extracted from the logs with the same time window.

To the best of our knowledge, this matter has not been explored in previous

approaches for log analysis, perhaps as most of these past approaches had a sole

focus on logs, rather than considering other factors like metrics. Also, unlike

many past studies [18, 43, 114, 119, 134] that employ feature extractions in

order to track what happens in a log, in our approach, we propose a simple

method that does not have an interest in interpreting the context of the log

message.

Chapter 3. Metric Selection and Unsupervised Anomaly Detection 49

In fact, the focus of this thesis is to �nd out whether the mere occurrence

of individual log events, without having domain knowledge of the context of

the logs, can be employed alongside resource metrics in order to improve met-

ric selection and anomaly detection. In this direction, and since many system

resource monitoring (such as in the case of public cloud services) there are

limited options available for con�guring the frequency of resource monitor-

ing, we propose a weight-timing method that performs counting based on the

interpolated occurrence strength of each log event within a time window.

It is worth noting that, in the beginning, we started our investigation based

on the simple counting of occurrence of log event types without interpolated

values, but this didn't lead to sensible clustering due to the collinearity ob-

served among event types in our experiments, therefore, we incorporated in-

terpolated occurrence strength into our analysis.

In this method, the interpolation indicates at which unit (e.g. second)

of a time window (e.g. minute) an event happened. Indicating a point of

time for the derived metric for log events would show a relative interval of the

occurrence of a set of log events. To this end, we parse the timestamp of each

log message and extract the point of time (e.g. seconds of a minute) the event

happened. Then a relative occurrence value is calculated as an interpolated

value, capturing the time-wise proximity of the event to the full time window

(e.g. minute) and a time window before and after the event happened.

Given a log event type is denoted as e, the smallest unit of time that logs

can track is denoted as x, the interval of time that monitoring metrics are

available is denoted as tw, and Dtw represents the duration of time window,

then the weight-timing occurrence of an event type at time x of a full time

window can be obtained:

en(tw) =
Dtw − x
Dtw

The weight-timing for the interpolated value of the above event for the next

minute can be obtained from:

en(tw+1) =
x

Dtw

50 Chapter 3. Metric Selection and Unsupervised Anomaly Detection

So for the sum of n times occurrences of an event type for a time window,

we have:

Etw =
i=n∑
i=1

en(tw)

To give an example, let us assume we have a time window of 1 minute

(60 seconds) duration, and event e1 happened once at 25 seconds, the second

time it happens at 40 seconds, and suppose there is no occurrence of e1 in the

following minutes, then its occurrence strength for the current minute and the

next minute for the �rst and second log occurrences are obtained as:

For the �rst occurrence of event type:

e1tw =
60− 25

60
= 0.583 e1tw+1 =

25

60
= 0.417

e1tw =
60− 40

60
= 0.333 e1tw+1 =

40

60
= 0.666

Then the interpolated occurrence strength for e1 in the current time window

and the next time window are obtained as follows:

E1tw = 0.588 + 0.333 = 0.921

E1tw+1 = 0.417 + 0.666 = 1.083

The outcome of the above step is a matrix of interpolated occurrence

strength, as shown in Table 3.1), for each event type at each time window.

This outcome allows us to employ statistical analysis and �nd the correlation

between log event types and clustering log events to a set of activities. Also,

with this approach we are able to map the event logs into the time window

interval of the monitoring resource metrics of our system.

Chapter 3. Metric Selection and Unsupervised Anomaly Detection 51

Table 3.1: Matrix of interpolated occurrence strength for each event type.

Timestamp E1 E2 Ek

tw1 E1tw1 E2tw1 ... Ektw1

tw2 E1tw2 E2tw2 ... Ektw2

tw3 E1tw3 E2tw3 ... Ektw3

...

...

twn E1twn E2twn ... Ektwn

3.3.2 Abstracting Event Logs to Activities

Systems application and operations logs are often more �ne-grained than the

activities that are at the business level or the level that a�ects the status

of resources. The increasing volume and complexity of logs have made the

monitoring of system behaviour through logs a very daunting task [58]. Hence,

many application operation tools, such as JBoss or Tomcat provide a mode

of producing logs at either a verbose or a non-verbose logging level. In many

cases, even at a non-verbose level, it is often a set of log events together that

report an execution of a use case. For example, terminating a VM instance

from an Auto Scaling Group in Amazon EC2 leaves the trace of �ve unique log

events in an operation tool like CloudTrail or Asgard. This issue has motivated

the emergence of log abstraction techniques [43, 63, 82, 92]. In fact, many log

�le analysis methods rely on log abstraction, such as for failure troubleshooting

[84], operational pro�ling [93], and anomaly detection [43, 136].

Given the above matter and the objective of this study, we abstracted

logged events into higher-level activities for the following reasons:

• Most often a system behaviour is not characterised by a single log event;

typically, a set of log events together cause a tangible impact on the

status of resources, thus, to �nd the impact of event logs on resources

we need to cluster related log events.

• If a set of event types always co-occur, then high correlation among

them may cause a problem of multicollinearity in some statistical models,

52 Chapter 3. Metric Selection and Unsupervised Anomaly Detection

which can lead to unreliable and unstable estimates.

• Logs are often low-level and voluminous; by raising the level of abstrac-

tion, the tracking of system activities becomes simpli�ed, and users may

�nd the information provided more useful [10, 58].

In order to �nd the related log events, we adopted the Pearson product-

moment correlation coe�cient. The Pearson product-moment correlation co-

e�cient is a measure of the strength of the linear relationship between two

variables [98], thus, we have adopted this method to derive a measure of asso-

ciation strength between two pairs of event logs.

The Pearson correlation coe�cient is commonly represented by the symbol

r. Given we have one dataset x1, ..., xn containing n values and another dataset

y1, ..., yn containing n values then r is obtained as follows:

r =
n
∑
xiyi − (

∑
xi)(

∑
yi)√

[n
∑
x2i − (

∑
xi)2][n

∑
y2i − (

∑
yi)2]

In the case of calculating the correlation strength between two log event

types, in the above equation:

• n is the number of monitoring observations

• xi denotes the interpolated occurrence strength of event type x (Sec-

tion 3.3.1), at time i,

• yi denotes the interpolated occurrence strength of event type y (Sec-

tion 3.3.1), at time i.

The value of r obtained from the above equation ranges from −1 to +1; a

value of zero or very close to zero indicates that there is no correlation between

two variables. A value close to 1 indicates a strong positive correlation between

the variables, which, in our case of event log correlation, indicates that events

of this types (almost) always co-occur. Negative values indicate that events of

the respective event types rarely co-occur. Fig. 3.5 shows a few examples of

di�erent values of r in scatter plots.

Therefore, based on the interpolated occurrence strength described in Sec-

tion 3.3.1, and with the help of the Pearson correlation coe�cient, we can

Chapter 3. Metric Selection and Unsupervised Anomaly Detection 53

Figure 3.5: Sample of Pearson correlation coe�cient output in scatter plots -
adopted from [72]

determine where strong associations exist between any two event types. Event

types with a very high correlation can then be combined into an activity.

The above proposed log abstraction technique using extracted interpolated

occurrence strength is a novel approach in the domain of log abstraction,

though we do not claim that the proposed approach outperforms past tech-

niques. To the best of our knowledge, the existing log abstraction techniques

[10, 18, 43, 54, 58, 63, 82, 92, 118, 134] do not take into account the �xed time-

interval (which is enforced by metric availability, as discussed in Sections 3.3.1)

and interpolation occurrences of log event types, whilst our approach e�ectively

addresses this requirement.

Moreover, unlike many log abstraction techniques that analyse the context

of logs by using pattern signature and feature extraction methods [18, 43, 114,

119, 134], our approach does not rely on feature extraction from log messages,

and does not aim to interpret the context of the log messages. This feature

brings the advantage of being less dependent on the quality of the text of

the logs, especially as some studies have highlighted signi�cant di�erences in

the quality of di�erent log �les [29, 104]. Besides, in contrast to some of

the previous studies that required the source code that generated log events

54 Chapter 3. Metric Selection and Unsupervised Anomaly Detection

[134�136], another advantage of our approach is that it does not depend on

having access to the source code of generated logs. And lastly, our approach

is a non-intrusive method, meaning it does not require manipulation of log

messages.

3.4 Log-Metric Regression-based Model

For the purpose of this study, we are interested in �nding out the e�ect of

operation actions on changes in the status of resources. To this end, we start

from data that has been collected over a period of time and has resulted in

a su�ciently large number of data points. We then use a regression-based

technique to discover the correlation between logged events and changes in

metrics, that is, the absence, presence, and strength of such changes.

For instance, in a web application where a user signs into a system, a

new web session will be created and dedicated to the user by a middleware

container like Jetty 14. Having the assumption that opening a new session is

a resource consuming process, then analysing the relationship between event

logs that shows users creating a new session by signing into the system, and the

observation of system memory, we should be able to learn how much memory

is consumed when a new session is created, from the changing values of the

memory metric. Such observations can be used to learn about the normal

behaviour of the system, and outcome like above can be leveraged for anomaly

detection.

Based on the above intuition, we had the hypothesis that the status of

system resources can be predicted from activities in the event logs. Each

prediction implies that the change in one variable or set of variables together

will produce a change in another. Therefore, we have two types of variables

for our statistical analysis: response variables, also named dependent variables

(DV) [89], and predictor variables, also called independent variables (IV).

• Dependent Variable: is the predicted variable in response to changes

in the predictor (input) variables. In other words, the dependent vari-

14http://www.eclipse.org/jetty/

Chapter 3. Metric Selection and Unsupervised Anomaly Detection 55

able is the response value we wish to explain by our predictors. In our

approach, this refers to a resource metric.

• Independent Variable: predicts the value of the dependent variable.

In other words, the variation in a DV is our target, to be explained by

the variation of IVs. Thus, IVs are the variables that an experimenter

may manipulate in order to derive a statistical model that has the best

prediction ability. In our approach, they are the activities abstracted

from event logs.

The central idea behind correlation is that two variables have a systematic

relationship between their values. This relationship can be positive or negative

and varies in strength. We employed the Pearson Coe�cient in our previous

step to �nd the correlation between log events. In this stage, we are interested

in the relationship between log events and resource metrics. We are not just

interested in the correlation between them; we also want to be able to predict

the values of resource metrics from the activities of log events, as well as

wanting to explain which activities in a log cause changes to the resources.

Therefore, we employ a multiple regression technique to address these needs.

�There are two general applications for multiple regression: prediction and

explanation� [99]. This means, �rst, multiple regression can be utilised to pre-

dict an outcome for a particular phenomenon [89]. Second, multiple regression

can be used to understand how much of the variation of the outcome can be ex-

plained by the correlated variables. Therefore, to understand the relationship

between event logs and resource metrics, and to have a predictive model we

adopt a multiple regression technique, namely, Ordinary Least Squares (OLS)

regression [89].

Multiple linear regression attempts to model the relationship between one

or more explanatory variables and a response variable by �tting a linear equa-

tion to observed data. Every value of the independent variable x is associated

with a value of the dependent variable y. Given we have one dependent vari-

able y and one independent variable x, the simple regression model will be:

yi = α + βxi + εi

56 Chapter 3. Metric Selection and Unsupervised Anomaly Detection

In this mode, α is the intercept, which refers to the value y when x is zero; β

denotes the regression coe�cient or slope, which indicates the rate of variation

in y for one unit variation in x, and i is the observation record, and ε is the

error term. In fact, in practical research, we have an error of estimate for y.

The residual

εi = yi − yi

is the di�erence between the value of the dependent variable predicted by

the model, yi, and the true value of the dependent variable, yi. Given the

population sample of independent variable x and y, where x denotes the mean

of sample population of x, and y denotes the sample population of y, then the

regression coe�cient is obtained as [71]:

β =

∑
(xi − x)(yi − y)∑

(xi − x)2

and mean α is obtained as:

α = y − βx

As mentioned above, multiple regression is done for several independent

variables (IV) as predictors (i.e. Activities clustered from event logs), and

one dependent variable (DV) (i.e. a monitoring metric) as the outcome. An

objective of applying regression technique is to derive a model from input

sample data with the minimum absolute (squared) error [99]. Given:

• y is the dependent variable,

• β1, β2, . . . , βn are the regression parameters,

• x1, x2, . . . , xn are the independent variables,

• ε is the error term or noise,

• α denotes a constant value as an intercept, where it indicates the mean

value of y when all x=0.

The general form of a multiple linear regression function is

y = α + β1x1 + β2x2 + · · ·+ βnxn + ε

Chapter 3. Metric Selection and Unsupervised Anomaly Detection 57

The coe�cients β1x1+β2x2+· · ·+βnxn denote the e�ect of each variable on an

overall model. The coe�cient parameters measure the individual contribution

of independent variables to the prediction of the dependent variable, after

taking into account the e�ect of all the independent variables. Several types

of linear regression models are based on the above mechanism, and these types

di�er in the kinds and distribution of data for which they are suitable. A

statistical model often can be generated by using standard statistical software

packages such as R,15 SPSS,16 SAS,17 STATA,18 Minitab19 and so on. We used

mainly SPSS to conduct our experimental data analysis.

Multiple regression is a robust model, used as the basis of data analysis

in many disciplines [99]. In the next sections, we will employ this technique

for �nding the correlation between resource metrics and activity logs, and, as

a result, select most relevant metrics to the changes of log events. Then, we

further leverage the exploratory aspect of multiple regression for identifying

the most in�uential factors that change the resources. Finally, we take the

outcome of our exploratory analysis to derive assertions and use assertion

formulas for online anomaly detection.

3.4.1 Target Metric Selection

In system monitoring, there are usually many monitoring metrics available. For

example, AWS CloudWatch o�ers 168 metrics for an ASG with 10 machines,

an ELB and Elastic Block Storage (EBS).20 When administrating dozens or

hundreds of machines, tracking changes on each metric is often impractical,

and, in many cases, not immediately bene�cial. In fact, system operators are

often exposed to an excessive amount of monitoring information, and they re-

ceive too many monitoring warnings and alerts [94, 109, 138]. Other problems

include a system operator receiving too many false alarms or a �ood of alerts

15http://www.r-project.org/
16https://www.ibm.com/analytics/au/en/technology/spss/
17http://www.sas.com/
18http://www.stata.com/
19http://www.minitab.com
20At the time of writing this thesis, Amazon AWS provides metrics monitoring for 30

AWS services, including 14 metrics per EC2 instance, 8 metrics per ASG, 10 metrics per
ELB and 10 metrics per EBS. For further information refer to: http://docs.aws.amazon.
com/AmazonCloudWatch/latest/DeveloperGuide/CW_Support_For_AWS.html

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/CW_Support_For_AWS.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/CW_Support_For_AWS.html

58 Chapter 3. Metric Selection and Unsupervised Anomaly Detection

from di�erent channels about the same event [12].

In today's practice of system monitoring, the task of metric selection is done

by system operators, mostly manually, based on their domain knowledge. In

fact, most of the software monitoring packages, such as Nagios, Sensu21 and

Misto22 provide customisation, often allowing the choice of which metrics to

show and how alarms should be generated. However, this customisation has

become more di�cult with the ever-growing number of resource types in cloud

environments and the variety of associated metrics.

This excessive information load can make the detection of anomalies more

complicated, and it may delay the detection of an issue at critical times. There-

fore, it is important to identify which subset of monitoring metrics is most rel-

evant for a speci�c monitoring requirement. In a nutshell, reducing monitoring

metrics dimensions has the following advantages:

• it helps system operators to focus on a limited number of metrics, and

thus, they can have a faster response to detected anomalies [57].

• it reduces the exposure to too many alarms, and, as a result, reduces

alarm fatigue [94, 109, 138].

• it reduces the high cost of system monitoring by narrowing down the

focus of monitoring to the most relevant metrics, in other words, smaller

number of metrics to monitor reduces the volume of monitoring data

[2, 20, 38, 62, 67, 91, 120].

We developed a new approach that facilitates the process of metric selec-

tion, primarily by statistical analysis, rather than merely relying on domain

knowledge. Once a multiple regression equation has been constructed, we can

check how strong the regression output is in terms of (i) correlation of the

event logs with the target metrics, and (ii) the model's predictive abilities.

In our approach, we refer to metric selection as a process of identifying a

subset of metrics that can be helpful to get the optimum anomaly detection

result while considering both logs and metrics. Thus we aim to identify, from all

21https://sensuapp.org
22https://mist.io/

Chapter 3. Metric Selection and Unsupervised Anomaly Detection 59

original available metrics, a subset of metrics that have the highest correlation

with the activities of logs. We are also interested to present these metrics with

the highest to the lowest relevance. We can perform the above task with the

help of our multiple regression analysis.

In the previous section, we explained that a regression model helps us to

model the correlation relationship between a set of independent variables and

a dependent variable. In the process of metric selection, independent variables

are our log activities, and the dependent variable is the candidate metric. The

prerequisite step to learn the impact of the behaviour of event logs on resources

and select target metrics is to observe the behaviour of a system over a period

of time and collect logs and metrics within this period and map these two

sources of data, as explained in previous sections.

To achieve robust learning from statistical analysis, it is important to collect

a large enough number of data records. As a rule of thumb, having n number

of independent variable (log activities), (n ∗ 10) records or data needed [121].

For instance, assuming having 20 activities as the result of log abstraction,

then 20 ∗ 10 = 200 records of data will be a desirable number. One may still

apply regression analysis with a smaller number of records and �nd sensible

results, however, the higher the number of observation records of data, the

better the accuracy of the regression model [71] will be.

Unlike many other �elds, such as in the medical or social domain, where

collecting sample data is often a timely and costly process, in the domain of sys-

tem health and performance monitoring, historical monitoring data are often

collected continuously and are available in a large volume [60]. Thus, many

data-oriented approaches such as ones that employ statistical and machine-

learning methods, have shown to be e�ective in producing robust models in

this domain [60].

Given a su�ciently large number n of records of data of a sample popula-

tion, independent variables as predictors, denoted by x1 . . . xp (log activities),

the observed dependent variable, denoted by yi (actual value of metric), the

estimation of yi using the regression model (also called the �tted response),

denoted by fi (predicted value of the metric), with y being the mean of the

60 Chapter 3. Metric Selection and Unsupervised Anomaly Detection

observed dependent variable and fi the mean of the estimations is:

y =
1

n

n∑
i=1

yi (3.1)

The total sum of squares is obtained as:

SStot =
n∑

i=1

(yi − y)2 (3.2)

Similarly, the sum of squares of residuals is de�ned as:

SSres =
n∑

i=1

(yi − fi)2 =
n∑

i=1

ε2i (3.3)

Using equations 3.2 and 3.3, we can determine how much variation of a depen-

dent variable can be explained by a predictor. The coe�cient of determination

R2 is de�ned as [99]:

R2 = 1− SSres

SStot

(3.4)

R2 indicates how well a model predicts new observations, and can be used

to assess the predictive power of a regression model for the given predictors

and target variables [99], respectively. Adj.R2 is a slightly more conservative

version of R2 that penalizes a high number of predictor variables in a model

[99]. Adj.R2 is always equal or less than R2 and the di�erence between R2

and Adj.R2 gets smaller as the sample size increases. With p being the total

number of independent variables in the model and n is the sample size, Adj.R2

is de�ned as:

Adj.R2 = 1− n− 1

n− p
(1−R2) (3.5)

It is important to note that a high value for R2 indicates that a metric

has a linear relationship with the activity logs of an operation, and such a

metric can be potentially employed for anomaly detection of an operation.

When a metric does not show a correlation with the operation's activities,

either there is no direct relationship between them or there might be a non-

linear relationship that could be explored further with non-linear regression

Chapter 3. Metric Selection and Unsupervised Anomaly Detection 61

models. In two case studies presented in Chapters 5 and 6, we will show how

we applied this technique to narrow down the number of metrics to the most

sensitive metrics of the activities of event logs.

3.4.2 Identi�cation of In�uential Log-Events and Asser-

tion Derivation for Anomaly Detection

The core objective of this thesis is to present an approach to improve system

dependability through system monitoring and anomaly detection. We have

the objective to present an anomaly detection mechanism with the following

characteristics:

• to be a non-intrusive method � meaning it would not require modi�cation

of existing monitoring systems, and it should be utilised on top of the

existing systems;

• to be an unsupervised method � meaning it would not require anomalous

data labels for learning data;

• to be a context-aware method � meaning it would include the aspect of

behavioural utilisation of the system on anomaly detection;

• to be a real-time/online method � meaning the proposed technique should

be used with live data, rather than through a post-mortem analysis;

• to be a method with low computational complexity � monitoring data

is continuous and voluminous, therefore we intended to avoid methods

with high computational complexity at run-time.

In this direction, so far we have presented logs as a quantitative form, using

the derived interpolated occurrence strength of log events (3.3.1), abstracted

the log events to a set of activities (3.3.2), mapped activity logs to resource

metrics, and identi�ed the most relevant monitoring metrics without breaching

the above features (3.4.1). As the next step, we focus on employing regression-

based analysis to identify from event logs the in�uential activities that a�ect

resources. One of the objectives of performing multiple regression analysis is

62 Chapter 3. Metric Selection and Unsupervised Anomaly Detection

to �nd an explanatory relationship between independent variables (activities)

and the dependent variables (resource metrics).

C
h
a
p
ter

3
.
M
etric

S
electio

n
a
n
d
U
n
su
p
erv

ised
A
n
o
m
a
ly

D
etectio

n
63

Derive log-metric

correlation model with

regression analysis

Access the Correlation

Coefficient and Coefficient

of Determination of event

logs with each metric

Is there a strong

correlation, and does

the statistical model

have a good fit?

Monitoring metric

Metrics derived from

clustered logged events

Metrics having correlation

 with operation logs

Metrics not showing significant

correlation with operation logs

No No

Yes

Assign the metric to be

evaluated for the

intended anomaly

detection

Start

Statistical model

Didn’t fit the data

End of target

metric selection

Figure 3.6: Checking the relevancy of a monitoring metric

64 Chapter 3. Metric Selection and Unsupervised Anomaly Detection

�Correlation� is de�ned as a statistical tool to measure the degree or the

strength of association between two or multiple variables, whereas �causation�

expresses the cause and e�ect between variables [59]. It is important to note

that while the presence of causation certainly implies correlation, the existence

of correlation only implies a potential causation. For instance, one may observe

a correlation between power consumption and the number of errors. However,

the underlying cause of a higher number of errors could be due to the increased

chance of observing any error when a higher number of VMs are involved in

a scaling-up process to respond to incoming higher workload tra�c. Correla-

tion is a powerful tool, as it can signify a predictive relationship that can be

exploited in practice, especially for forecasting. In order to infer whether a cor-

relation implies causality, one needs to ensure that the correlation is extracted

from a controlled environment, that is, to ensure there are no factors, other

than the ones included in the analysis, a�ecting the target variable. If this

criterion is ful�lled, a meaningful correlation can be interpreted as causation.

To give an example, one of the best practices of upgrading applications in

environments with virtualisation technologies is to prepare a new VM image

that contains the new version of the application. Then, the new image, in an

upgrade process, is deployed to the cloud by terminating the old VM instances

and replacing them by launching new VM instances that had been created from

a new image. Hence, whenever there is a log event indicating that a termination

request for one VM has been issued, the expectation is that within the next

minute, one VM will transition from �running� to �shutting-down�, and �nally

�terminated,� followed by the log events that report the launching process of a

new VM instance. As the example suggests, there will be a linear correlation

between log events of the launching VMs and the termination VMs; however,

does that imply log events of launching instances caused the termination? Of

course not, and here we are interested in leveraging the powerful explanatory

feature of regression analysis to distinguish these two.

In the previous section, we explained how to �nd the metrics that have cor-

relations with the operation's activities overall, yet we need to �nd out which

of the operation's activities are a�ecting a target metric to derive assertion

Chapter 3. Metric Selection and Unsupervised Anomaly Detection 65

speci�cations for an anomaly detection requirement. We thus seek to distin-

guish the activities of the operation that are likely to a�ect one of the target

metrics from the others.

In order to perform such analyses, we consider the coe�cient correlation

result from the regression analysis, where y denotes the dependent variable

(metrics), and x1, x2 and x3 refer to the relevant activities from logs, also

called predictors. A model of coe�cient output from OLS regression analysis

is shown in Table 3.2, and Table 3.3 explains the list of parameters of coe�cient

correlation output.

The resulting regression equation derived from Table 3.2 is:

y = α + β1 ∗ x1 + 0 ∗ x2 + β3 ∗ x3 + · · ·+ 0

From the model, we learn concrete values for α and the βi. For any xi,

where the explanatory analysis of a correlation is not statistically signi�cant,

where (p > .005) or Standardized Coe�cient is close to zero, we set βi = 0.

The p − value gives us a measurement criterion to make sure a predictor

is being statistically signi�cant in our statistical observation. Moreover, the

standardised coe�cient will tell us how much a predictor contributes to the

changes of a metric.

Table 3.2: Coe�cient correlation output of OLS regression

Predictors β Std. Error B p-value

Intercept (Constant) βI seI � pI

x1 β1 se1 B1 p1

x2 β2 se2 B2 p2

x3 β3 se3 B3 p3

x... β... se... B... p...

x... β... se... B... p...

xn βn sen Bn pn

If the standardised coe�cient value is close to zero for a predictor, it means

66 Chapter 3. Metric Selection and Unsupervised Anomaly Detection

Table 3.3: Coe�cient Correlation Table Notations

Notation Description

α Intercept - also labelled as constant

Predictors Activity log events

β Unstandaridized regression coe�cient

Std. Error Standard error of estimate

B Standardized regression coe�cient

p value Calculated probability, where p > .005 is statistically signi�cant

that the predictor has almost no impact on changes in a resource. Hence its

e�ect on the assertion speci�cation equation will be none. For instance, activ-

ities that report waiting or a status rather than reporting an action, have no

e�ect on a resource. Other activities recorded in logs might have an impact

on one metric but not on another. For example, an activity may have a high

impact on Disk I/O but an insigni�cant impact on network metrics. Therefore,

by leveraging regression analysis and assessing the standardised coe�cient val-

ues, the number of predictors can be narrowed to the only ones that actually

contribute to the changes in resources.

In order to do anomaly detection at run-time, each log event is processed as

outlined earlier in this section, so that an interpolated occurrence strength for

each of the independent variables (x1, x2 and x3 in the example) is obtained.

Every minute (or other time-interval), a prediction is calculated and compared

with the actual value of the metrics. The above outcome can be used for live

anomaly detection of application operations.

One challenge remains: as the prediction is not usually as exact as the

actual value, a threshold of accepted range should be considered. To de�ne a

threshold t, such that 0<t< 0.5, the prediction is set to the natural number

i closest to y i� y is closer to i than t, that is, |y − i| < t. Finding a suit-

able threshold t has to be done for each application scenario separately, as a

trade-o� is needed between missing too many real alarms (false negatives) and

receiving too many false alarms (false positives).

Chapter 3. Metric Selection and Unsupervised Anomaly Detection 67

3.5 Closely Related Work to the Anomaly

Detection Approach of this Thesis

Previously we presented and discussed the concept of anomaly detection, ex-

plained the anomaly detection characterisations classi�cations. Especially, we

gave an overview of common anomaly detection techniques and highlighted

strength and weakness of each techniques. In this section, we focus on the

studies that are closely related to the approach of this thesis.

3.5.1 Context-based Anomaly Detection

Anomaly detection has been broadly employed for system health and perfor-

mance monitoring, nevertheless, the majority of the anomaly detection ap-

proaches have mostly focused on point-based techniques [60]. In this type of

technique, the anomaly detection is conducted based on the monitoring of a

target metric and comparison of the metric with the rest of data. However,

point-based techniques do not take into account the impact of dynamic nature

of workload or the legitimate contextual and behavioural factors are causing

anomalous spikes on system resource utilisation. This issue motivated several

studies to propose context-based techniques. Anomaly detection in context-

based techniques is conducted according to a set of conditions or behavioural

attributes of a system.

In fact, a point anomaly detection problem can be transformed to a con-

textual anomaly detection problem by incorporating the context information

[23]. The principal advantage of contextual anomaly detection approaches is

that they are based on a natural model of an anomaly in many real-life appli-

cations where data instances tend to be similar within a context [19]. These

approaches can �nd the anomalous cases that might not be identi�ed by point-

based anomaly detection techniques due to taking a global view of the data

for anomaly detection [19].

The most utilised methods of contextual anomaly technique in the domain

of system health and performance monitoring is using time-related factors or

other simple conditions as a set of rules for assessing the normality of a data

68 Chapter 3. Metric Selection and Unsupervised Anomaly Detection

point. For instance, a high volume of system transactions towards Christmas

is considered normal, while it is not normal at other times of a year.

While contextual anomaly detection techniques have been most commonly

studied in time-series data [23], there have been a small number of studies

making use of other sources of information. The context-based anomaly de-

tection methods have been highlighted as one of the main future directions

in anomaly detection [60], especially, this gap has become more signi�cant by

the nature of cloud computing environments, where a higher level of �exibility

and dynamism is provided.

In this direction, this thesis attempts to address this gap by proposing a

context-based anomaly detection through a novel combination of both resource

metrics and event logs. Therefore, in the following we focus on reviewing

the past studies that attempted to contribute to this domain by employing

information that re�ect the dynamic behaviour of systems in combination with

resource metrics. In addition to discuss each of past studies, we provided a

comparison view of the above-discussed related work to this thesis at the end

of this section, presented in Table 3.4.

3.5.2 Closely Related Work

Few studies model system behaviour through workload pro�ling and then com-

bine this information with resource metrics for anomaly detection. Wang et

al., propose an approach using an incremental k-means clustering technique to

recognise access patterns and request volume from the workload [127]. Then

local outlier factor (LOF), has been employed to identify anomalous data in-

stances for each type of workload pattern. LOF is a machine learning technique

which works based on a concept of a local density. In this method, locality

is given by k nearest neighbours, where distance is employed to estimate the

density. By measuring the local density of a data point in comparison to the

local densities of its neighbours, the areas of similar density can be detected,

and objects that have a considerably smaller density than their neighbours are

tagged as anomalies.

The above approach has the advantage of being independent of domain

Chapter 3. Metric Selection and Unsupervised Anomaly Detection 69

knowledge. However, their approach has the limitation on workload charac-

terization as their method is not suitable for �ne-grain monitoring due to many

clusters generated from workload patterns [128]. Also, this approach has high

computational complexity due to workload pattern recognition and LOF cal-

culation for each arrival data instance. And in contrast to our work, their

approach was a supervised approach, and hence required labelled data.

In an extension to above work, Wang et al., [128] attempted to address the

above limitations. Wang et al., [128] proposed an approach where the signature

of di�erent workload on resource utilisation is analysed using Canonical Cor-

relation Analysis(CCA) technique. Then, by identifying the abrupt changes

of correlation coe�cients with a control chart, anomalous data points are de-

tected, and then this information along with a feature selection method is

employed to suggest suspicious metrics that are associated with the detected

failure.

Similar to our work, this approach can be utilised for unsupervised data,

which does not need anomalous data instances to be labelled. Also, their ap-

proach could handle �ne-grain workload characterization. Nevertheless, work-

load pro�ling used in Wang et al., study is limited to the number of concurrent

users, response time, and throughput. In contrast to our work, the type of con-

text of workload has not been taken into account, therefore, their approach is

incapable of including the in�uence of the workload at activity-level.

In another study, Cherkasova et al., [25] present a regression-based model to

model the resource consumption of Web applications. They present a pro�ling

method by identifying application performance signature (using transaction

count, transaction latency, count of the database call, and latency of outbound

call) in order to model the run-time application behaviours. Their work is

shown to be e�ective in detecting CPU consumption pattern; however, no

other metrics have been explored.

In comparison to our work, similarly, they employed a regression-based

technique, but our work di�ers from the above from the following viewpoints.

One limitation to their approach is related to the adopted application perfor-

mance modelling method, as their method for application performance model

70 Chapter 3. Metric Selection and Unsupervised Anomaly Detection

is solely based on transaction volume and latency, while in our approach we

focus on event logs as the indicators of workload. Also, it is not clear whether

the above approach can be applied to state-based metrics, besides, CPU was

the only non-state based metric that has been examined in their study. In

addition, the exploratory/causation aspect of regression model has not been

used, as the way we do for identifying the log activities that stress a resource

the most and for the derivation of assertion speci�cation.

Magalhaes and Silva, [80, 81]; introduce an approach to detect root-cause

factors of observed performance variations due to workload changes or appli-

cation updates. This is done by adopting the Pearson coe�cient of correlation

between system metrics and aggregated workload. In this approach, they em-

ployed Aspect Oriented Programming (AOP) to monitor the response time of

every transaction and then Pearson correlation is used to model the correlation

between transaction and response time.

Magalhaes and Silva's approach is limited to work with just one metric of

workload ([69]) at a time. This is a considerable weakness with the common

large scale web applications that perform hundreds of transactions per second,

or more. Moreover, monitoring response time with changing source code en-

forces signi�cant overhead to the monitoring system. Lastly, it is an intrusive

approach as it requires access to the native code of the application.

Kang et al., [65] proposed DAPA (Diagnosing Application Performance

Anomalies), a statistical approach to model the quantitative relationship be-

tween the application response time and virtualized system metrics based on

SLA violations. The main criterion in their study for monitoring anomalies

were the indicators of SLA violation. In the above approach, anomaly de-

tection target metrics are not system resource metrics, application response

time is the only source of monitoring information for detecting SLA violation.

Being limited to one metric of application response time, this approach has

the limitation to detect failures that do not lead to immediate performance

degradation.

As one of the recent studies close to the idea of this thesis, Gurumdimma et

al., [53], propose CRUDE (Combining Resource Usage Data and Error Logs),

Chapter 3. Metric Selection and Unsupervised Anomaly Detection 71

to detect errors. Similar to our approach, they take advantage of both appli-

cation logs and resource metrics. CRUDE methodology relies on the computa-

tion of mutual information, entropy and anomaly score to identify the chain of

events that may lead to a failure. Logs are analysed with hierarchical cluster-

ing and feature extraction methods, and Principal Component Analysis (PCA)

is employed to detect anomalous jobs within a period. CRUDE assume that

a higher entropy (uncertainty) with reduced mutual information could denote

abnormal system behaviour or a failure sequence, with the opposite signify the

normal behaviour.

Although this approach is similar to our study with regards to using both

logs and metrics for anomaly detection, it is very di�erent in terms of the

proposed framework. Firstly, the approach detects sequence anomaly (rather

than point-anomaly) based on the sequence of events in a relatively long time-

window (e.g. 60 minutes), while in our study we aim to detect point anomalies

in the relatively small time window (e.g. 5 seconds or 1 minute). In other

words, this approach identi�es the faulty sequence of events preceding failures

based on changes in the entropy of sequences, instead of detecting individual

fault events. Secondly, setting thresholds for various metrics needs multiple

observation and readjustment to �nd an optimum result, while in our approach

the threshold is set (though con�gurable) based on the error estimate of the

regression model. Their approach are shown to be useful in HPC data centres,

but it is unlikely to deliver a lot of value in cloud settings. This limitation

makes de�ning thresholds for a large number of metrics a cumbersome task.

Besides, the e�ectiveness of the approach is not examined with resource met-

rics, alternatively the resource consumption for each computing job is leveraged

as the metrics under observation, such metrics pro�le may not be available in

many systems.

One of the studies that inspired the work of this thesis, which we address

its limitations to some extend, is called POD-Diagnosis 23 [140]. This ap-

23POD-Diagnosis and POD-Monitor are part of the work of Process Oriented Depend-
ability(POD) research group in Data 61 (https://research.csiro.au/data61/process-oriented-
dependability/), which I am a member of it and thus I had the chance to receive their guid-
ance and disscuss their work. Also I had access to their data and resources, and the anomaly
detection tool that I developed has the architectures in a way to be integrated with other

72 Chapter 3. Metric Selection and Unsupervised Anomaly Detection

proach models the cloud sporadic operations as processes and uses the process

context to catch errors, �lter logs and perform on-demand assertion checking

for online error handling [137, 140]. This technique addresses the problem of

online validation of operations to some degree. However, the approach has two

limitations, which we discuss below: it requires manual assertion speci�cation,

and it relies on logs as the primary source of information.

The �rst limitation is related to manual assertion speci�cation. Assertions

in POD-Diagnosis check if the actual state of a system corresponds to the

expected state of a system. In previous work [140], intermediate expected

outcomes of process steps have been de�ned manually as assertions. This

method is suboptimal for the following reasons:

• First, manual assertion speci�cation is time-consuming and thus, with

fast evolving changes of modern applications, might not be practical.

• Second, manually speci�ed assertions might not correctly express the

exact timing and e�ects of a logged event, resulting in an imperfect

speci�cation and thus lowered precision in the assertion speci�cations.

• Third, manual assertion speci�cation relies on the expertise of the ad-

ministrator or developer writing it. If that developer is not the involved

in developing the underlying tool, the expertise about the exact function

of that tool is typically limited, and its encoding in assertions may be

incomplete. For instance, for a 10-step process touching on 20 resources

with an average of 10 parameters each, a full speci�cation of all desired

and undesired changes results in 10x20x10=2,000 potential assertions.

It is unlikely that any administrator will (correctly) specify all of them.

This will result in a partial coverage of assertions, potentially leaving out

important causes for failures simply because the administrator has never

experienced them. Our approach di�ers from POD-Diagnosis as we rely

on statistical correlation analysis rather than domain knowledge.

The second limitation is related to the dependency on logs as the main

source of information for operation monitoring.

POD-related tools of this team.

Chapter 3. Metric Selection and Unsupervised Anomaly Detection 73

• First, logs are often low-level, noisy, and with inconsistencies in style [95].

For instance, in [95] the authors report the di�culties of failure detec-

tion due to a lack of relevant information in logs, and [29] highlights that

over 60 percent of failures in their experiments of fault injection were not

reported in the logs. Many of the current practices of generating logs fo-

cus on developer needs during development time, rather than considering

administrative needs in production settings [143].

• second, logs are voluminous, and it is usually di�cult to derive which

log line, or which set of log lines, is actually responsible for an action in

changing the state of a system resource. In addition, the granularity level

of log data is usually di�erent from resource metric data, and this uneven

granularity makes the mapping between these two more challenging.

• third, monitoring execution behaviour of an operation solely based on

the operations log is not adequate due to frequent changes in large-scale

applications, in which hundreds of shared resources are involved and

resources are exposed to changes from multiple concurrent operations.

Thus, it is not trivial to isolate the execution of one such operation from

other running operations.

These limitations exacerbate the di�culty of error detection for cloud op-

erations, and relying on log content limits the generalizability to tools with

high-quality log output. Therefore, it is important to employ one or more ad-

ditional sources of information along with the information extracted from logs

for validation of running operations. To tackle these limitations, this study

leverage cloud metric data, in addition to information extracted from logs, to

cross-validate the execution of cloud DevOps operations.

Another approach that attempts to address the above limitations is POD-

Monitor [138]. Xu et al., attempt to address the gap of monitoring DevOps

operations in the cloud environment by using a process model extracted from

logs and data point metrics. In their technique, a process model that is the

indicator of start time, progression, and stop time of an operation is used

as a contextual information to suppress false alarms of detected anomalies

74 Chapter 3. Metric Selection and Unsupervised Anomaly Detection

in resources usage. However, their approach did not track individual event

logs and their approach lacks the support for anomaly detection of steps of

cloud operations that are proposed in this thesis. POD-Monitor considers the

operational context on the level of whole operation processes � e.g., rolling

upgrade is running � and focuses on anomaly detection on resources, whereas

we conduct anomaly detection at the �ne-grained level of individual steps of

operations.

The domain of anomaly detection is vast, and some studies have attempted

to conduct systematic surveys in this domain [3, 23, 56, 60]. One of the high-

lighted issues in the domain of system monitoring is the lack of cross-layer

monitoring [2]. Cross-layer monitoring is a challenging task, as it is di�cult

to map di�erent monitoring data types and to interpret them in an integrated

form. This thesis, in particular, contributes in this direction, as we consider

two di�erent types of monitoring information, which can span multiple layers.

Thereby, we narrowed down our focus to the context-based anomaly detection

methods in system health and performance monitoring, which attempted to

combine di�erent sources of information for anomaly detection.

In order to give a comparison view of the above-discussed related work to

this thesis, we summarised our analysis in Table 3.4.

C
h
a
p
ter

3
.
M
etric

S
electio

n
a
n
d
U
n
su
p
erv

ised
A
n
o
m
a
ly

D
etectio

n
75

Paper Monitoring

Resource

Method Technique Intrusive

/Non-

Intrusive

Virtuali-

sation

/Cloud

Application

Domain

Supervised

/Non-

Supervised

Cherkasova

et al., 2008

[25]

System-level

metric(only

CPU), Ap-

plication

Workload

Statistical Linear Regression (Pre-

dictive Analysis)

non-

intrusive

No Web-based

Multi-tier

application

Unsupervised

Gurumdimma

et al., 2016

[53]

Job-resource

met-

rics,lLogs

Information

Theoretic,

Statistical

Clustering Logs using

(distance from cen-

troid), Information

Theoreic(entropy), Statis-

tical(PCA)

intrusive No Hadoop Unsupervised

Kang et al.,

2012 [65]

system-level

metrics,

aplicaiton

response

time

Clustering

and Statisti-

cal

K-means Clustering (for

SLA model clustering) Re-

gression (for metric and

SLA relationship)

non-

intrusive

Yes Non-Web

Application

on VMs

Supervised

76
C
h
a
p
ter

3
.
M
etric

S
electio

n
a
n
d
U
n
su
p
erv

ised
A
n
o
m
a
ly

D
etectio

n

Paper Monitoring

Resource

Method Technique Intrusive

/Non-

Intrusive

Virtuali-

sation

/Cloud

Application

Domain

Supervised

/Non-

Supervised

Magalhaes

and Silva,

2010,2012

[80, 81]

system-level

metrics,

Workload

from Tran-

scation Mix

model.

Statistical Correlation Analysis,

ANOVA

intrusive

(request/re-

sponse

tracing with

native code)

No Web Appli-

cation

Unsupervised

Wang et al.,

2014 [127]

System-level

metrics, Web

Application

Workload

Clustering Clustering (Incremen-

tal Clustering Method

and K-Means For work-

load pattern recognition

- Unsupervised) and

Nearest Neighbor(LOF

for anomaly detection

-Supervised)

non-

intrusive

No Web Appli-

cation

Supervised

C
h
a
p
ter

3
.
M
etric

S
electio

n
a
n
d
U
n
su
p
erv

ised
A
n
o
m
a
ly

D
etectio

n
77

Paper Monitoring

Resource

Method Technique Intrusive

/Non-

Intrusive

Virtuali-

sation

/Cloud

Application

Domain

Supervised

/Non-

Supervised

Wang et al.,

2016 [128]

System-level

metrics, Web

Application

Workload

Clustering

and Statisti-

cal

Clustering (Incremental

Clustering Method and

K-Means For workload

pattern recognition -

Unsupervised) and Statis-

tical (CCA for anomaly

detection -Unsupervised)

non-

intrusive

Yes Web-

Application

in Cloud

Unsupervised

Xu, et al.,

2015 [138]

System-level

metrics, logs

Classi�ction Machine Learning - Sup-

port Vector Machine (

SVM)

non-

intrusive

Yes Cloud,

DevOps

Operation

Supervised

This thesis

approach

State-based

and Non-

state based

resource

metrics, logs

Statistical Pearson Correlation Clus-

tering for Logs, Regres-

sion (Predictive and Ex-

ploratory Analysis) for

Anomaly Detection

non-

intrusive

Yes Non-Cloud

and Cloud,

DevOps

Operation

Unsupervised

Table 3.4: Studies adopted multiple source of information for anomaly detection in system health and performance monitoring

78 Chapter 3. Metric Selection and Unsupervised Anomaly Detection

3.6 Summary

In this chapter, we described a conceptual framework of a metric selection and

anomaly detection technique, along with the steps of the proposed approach.

Initially, we gave an overview of the approach, where the relationship between

log events and resource metrics for system monitoring was described, and a

work�ow of the proposed approach to anomaly detection, using both logs and

metrics, was presented. Then, we explained the steps of the work�ow, includ-

ing the techniques that this study has utilised to extract metrics from logs, and

to cluster logs to activities using Pearson's correlation coe�cient. Also, this

chapter has described the mechanism to identify the statistically-proven rele-

vant target monitoring metrics from all available metrics. Finally, we discussed

our proposed approach of deriving assertion speci�cation and identi�cation of

in�uential factors from log events.

The proposed approach of mapping log events to resource metrics, selection

of target metrics, identi�cation of in�uential factors in the logs, and assertion

equation extraction from regression analysis, provides a framework that facil-

itates integrated cross-level (logs and metrics levels) monitoring and anomaly

detection. This is achieved by comparing the behaviour of system operations

that is re�ected through the operations' logs with the status of the resources

that are re�ected in the metrics.

Further in this chapter, we reviewed and discussed the contextual anomaly

detection studies that attempted to incorporate a source of information other

than resource metrics data for their anomaly detection. In this direction, a

brief summary of each method and its limitations along with the di�erences of

each approach in comparison to our approach is presented. Also, we presented

a review of past studies on metric selection and discussed the strength and

weakness of each approach in relation to the metric selection method proposed

in this thesis.

In the next chapter we will introduce the tool that we developed to conduct

the experiments of the proposed approach, followed by two industry-grade

case study chapters that we will perform the experiments and evaluate the

e�ectiveness of the approach presented in this chapter.

Chapter 4

Anomaly Checking Prototype

The anomaly detection approach of this thesis can be divided into two main

phases: learning and testing/evaluation. In the learning phase, an anomaly

detection model from training data is built, according to the information con-

tained in the logs and metrics data of the project under study. Once the model

is built, it can be used many times for anomaly checking.

In this direction, we focussed our e�orts on developing a prototype that au-

tomates the anomaly checking process at run-time, as well as for post-mortem

analysis. The tools and techniques that are used during the learning phase are

explained with examples of actual data of two separate case studies in Chapter

6 and 7, respectively. This chapter concentrates on the prototype that is used

for testing/evaluation phase.

In this chapter, we introduce this prototype, together with its features

and architecture. On the basis of this prototype, the ideas proposed in this

thesis are evaluated with two industry-grade case studies that are presented in

Chapters 6 and 7, respectively.

4.1 Anomaly-Checker and Integration with POD

Services

Anomaly-Checker is implemented as an independent micro service of the big-

ger architecture of Data61 Process Oriented Dependability (POD) services 1.

1https://research.csiro.au/data61/process-oriented-dependability/

79

80 Chapter 4. Anomaly Checking Prototype

POD refers to a set of activities, tools, and services that aim to improve the

dependability of process operations, with a focus on cloud application oper-

ations. �POD treats operations as processes and uses a process context to

provide a basis for run-time error detection, diagnosis, and recovery� [32].

As part of the POD research e�ort, several solutions have been proposed,

including POD-Discovery [129, 130] that addresses discovering processes from

logs/scripts, POD-Detection that focuses on error detection among others by

process conformance checking [131, 140], POD-Diagnosis that is designed to

automatically diagnose errors using fault trees, Bayesian networks and au-

tomatic diagnostic testing [139, 140], POD-Recovery which aims to perform

guided/automatic recovery [42], and POD-Viz [130] that handles the visu-

alization of operation progress and error detection. As a result of the above

activities, a few services and tools have been developed, which have been partly

released [32].

Although our Anomaly-Checker, as introduced in this chapter, is designed

to work as a standalone service, its architecture is integrated with some of the

other POD services. The anomaly detection output of Anomaly-Checker can

be used for data visualisation through the user interface provided by POD-

Viz. Anomaly-Checker provides the results in JSON format and the POD-Viz

processes this input for appropriate visualization of logs and metrics. Further,

when anomalies are detected by Anomaly-Checker, it has the ability to auto-

matically trigger the services of the POD-Diagnosis tool for error debugging

and diagnosis.

Further information about POD research activities, publications and tools

can be found on the link provided in the Footnote 1 in the previous page.

4.2 Key Features and Architecture

Anomaly-Checker is a service-oriented application that is developed for de-

tecting anomalies in a system, based on the data from activities on logs and

resource monitoring metrics, respectively. To this end, Anomaly-Checker pro-

vides the following key features:

Chapter 4. Anomaly Checking Prototype 81

• data access management for monitoring data (store, retrieve/search, up-

date, and delete)

• tracking and identifying log event types, counting the occurrence of log

events within a time window and deriving the metric value for each log

event

• performing run-time anomaly detection based on assertion checking be-

tween logs and metrics, and reporting the status of anomaly checking

• appropriate web service interfaces to provide Anomaly-Checker services

to POD-Viz and other application services.

To provide the above features, we designed and developed Anomaly-Checker

using the Java and MVC (Model View Controller) architectural design pattern.

MVC is a widely adopted design pattern that provides separation of concerns

by di�erentiating the layers of a project. MVC facilitates future enhance-

ments, re-usability of the code, and maintainability of applications. Although

our main objective was to develop a simple prototype, we chose the Spring

MVC architecture pattern because of the above features, in order to allow the

prototype to be easily enhanced and integrated with other POD services. Also,

we used RESTful web services, as they make the functions of the prototype

available as web services that can be easily called by POD-services or other

third-party applications.

The abstract architecture of Anomaly-Checker is shown in Fig.4.1. Anomaly-

Checker is a service-oriented application that has a multi-tier architecture com-

prising the following abstract layers:

• Persistence layer: This layer stores metric and log data in a persistent

storage and also stores the results of anomaly checking. We used the

Elasticsearch database 2 as the data repository in our project.

• Data access layer: This layer provides a mapping application for the

persistence layer and simpli�es access to the stored data. We adopted

2https://www.elastic.co/products/elasticsearch

82 Chapter 4. Anomaly Checking Prototype

Data Access Layer

Business Logic Layer

Service Layer

Elasticsearch DB

Spring DATA JPA – ORM Mapping

Domain
Object,

Entities and
Value

Objects

Configur-
ation

RESTful Services

Spring JAVA APIs

Anomaly Checker with Spring Framework

POD-Viz

POD-Diagnosis
POD-*

Figure 4.1: Anomaly-Checker Abstract Architecture

Spring Data JPA3to implement this layer. Spring Data provides rich

APIs to access data repositories and expose data to upper layers.

• Business logic layer: This layer encodes the core logic of Anomaly-

Checker. It de�nes the business rules of how to create, store, and access

data, as well as the logic, to perform the anomaly checking itself.

• Service layer: This layer is responsible for exposing the Anomaly-Checker

application functions to external application services. All the imple-

mented services are developed with RESTful technology. REST has the

advantages of being independent of platform and language, provides de-

coupling between the client and server, and can be directly called through

HTTP URL fetching. This feature allows Anomaly-Checker services to

be easily integrated with other services.

3https://projects.spring.io/spring-data-jpa/

Chapter 4. Anomaly Checking Prototype 83

4.2.1 Data Repository: Elasticsearch

Anomaly-Checker requires two sources of data inputs: monitoring metrics and

log events. As di�erent monitoring solutions provide access to monitoring data

with di�erent technical speci�cations, we chose to have an independent data

repository for the monitoring data from logs and metrics. We used a database

called Elasticsearch as our monitoring data repository for the reasons outlined

below.

Elasticsearch is an open source non-relational data storage that stores our

monitoring and anomaly detection data. We preferred Elasticsearch as a non-

relational database rather than a relational database, as Elasticsearch natively

stores data in JSON format, and because this format is being commonly used in

the monitoring solutions of public cloud providers such as Amazon CloudWatch

and Google Stackdrive. Having a format similar to mainstream monitoring

solution providers in the cloud facilitates the task of data conversion and inte-

gration between Anomaly-Checker and these monitoring services. Also, Elas-

ticsearch is not just a database that stores the monitoring data, but it is also

a search engine that provides a distributed, multitenant-capable [13] full-text

search engine. Elasticsearch is well integrated with Kabana4 (an open source

data analytics and visualisation solution), and Logstash5 (an open source data

processing pipeline that ingests data from multiple sources). In addition, the

data stored in an Elasticsearch database can be directly viewed and updated

by an HTTP-based web interface using schema-free JSON documents. These

features makes Elasticsearch an ideal tool to be used as the data repository in

our Anomaly-Checker prototype, as well as to be used for extra data analysis

of monitoring data when needed.

4.2.2 Data Schema

We designed three data schemas for Anomaly-Checker in our Elasticsearch

database: a schema to keep the resource monitoring data, a schema to store

the operation's log events, and a data schema that keeps track of anomaly

4https://www.elastic.co/products/kibana
5https://www.elastic.co/products/logstash

84 Chapter 4. Anomaly Checking Prototype

Metric Schema Anomaly Report Schema Log Event Schema

Figure 4.2: Elasticsearch Data Schema for Metric, Anomaly Report, and Log
Event

checking reports. The schema de�nitions are shown in Fig. 4.2.

The metric schema is designed to store the raw monitoring data for each

metric. Each metric is presented in the schema by its label. Each metric

belongs to a dimension that refers to a node or a name-value pair that uniquely

identi�es a metric such as a VM instance or a load balancer. In cases where the

metric is a cumulative metric (by having multiple sample observations since

the last timestamp), then we may have a minimum, average, and maximum,

sample count, and a sum as the values for the metric, similar to the Amazon

Cloudwatch data format. The average value is taken as the default value of

Chapter 4. Anomaly Checking Prototype 85

the metric. In this schema, �unit� speci�es the unit of the sample value, such

as percentage for CPU or byte for disk I/O.

The log event schema is designed to keep the records of log messages. Before

log messages being stored to this schema, they need to pass a pre-processing

step which makes sure each log message contains a timestamp, and thereby

it extracts the timestamp from the log. These data are stored in log, and

logtime, respectively. logOrigin refers to the identi�er of an operation that the

log originated from and activityId is the indicator of which activity this event

is clustered to. The other �elds in this schema are reserved for consistency

with other POD-services.

The anomaly report schema brings the log and metric into an integrated

view. Looking at the anomaly report schema in Fig. 4.3, it contains the in-

formation of the estimated value (estimatedValue) from log events, the actual

value (actualValue) from the resource metric, and the result of the anomaly

(anomalyStatus). In addition, we provided the metric and logs involved in the

anomaly checking report. Two samples of the anomaly report are shown in

Fig. 4.3.

4.3 Con�guration Input

Anomaly-Checker, in addition to logs and metrics as input, requires a set of

con�gurations to perform anomaly checking. The following are the con�gura-

tion inputs:

• General Spring application con�gurations using native format of the

framework in �.properties� �les to boot and execute the application. The

con�guration includes the URL and port settings, Elasticsearch access

DB settings and other related application settings.

• Con�gurations related to log processing with regular expressions. We use

a simple text �le to de�ne the regular expressions listed in separated lines.

Each regular expression is unique and represents the pattern of a unique

log event type. These regular expressions are derived for each log origin

86 Chapter 4. Anomaly Checking Prototype

through log processing, as described in Section 3.3 (also demonstrated

with examples for two case studies in Sections 5.2 and 6.2).

In our Anomaly-Checker, each log message is compared against the list

of regular expressions to �nd the matching log event type. Based on

this matching process, we track the occurrence of logs and derive the

interpolated occurrence strength of each log activity, which is used, along

with coe�cient values, to build the assertion formula.

• Coe�cient values derived from an assertion equation are the other re-

quired con�guration inputs. The assertion formula is obtained from re-

gression analysis during the learning phase, as described in Section 3.4.2

(also demonstrated with actual values from investigating two case stud-

ies in Sections 5.4 and 6.4). To estimate the value of metrics from log

occurrences at run-time, we need to know the coe�cient value of each

log activity to obtain the estimated value of a metric.

We designed a matrix presented as a CSV con�guration �le for this

purpose. In our matrix, each row indicates the identi�er of log activity

and each column identi�es the target metric. The matrix cell contains

the coe�cient value related to the log activity and metric. The assertion

equation is automatically built from the given matrix in the implemented

code and used by the anomaly checking service at run-time.

4.4 Anomaly Checking

In the Anomaly-Checker prototype, all the main use cases of the prototype

are exposed as web services. In addition, the Anomaly-Checker services are

designed in a way that can be simply called by issuing an HTTP request. The

data of calling the Anomaly-Checker services are returned in JSON format.

In our prototype, ultimately we aimed to perform anomaly checking, but

�rst, we had to implement the necessary operations to manage access to mon-

itoring data in our data repository. Therefore, several operations were imple-

mented to perform CRUD actions, as well as a few searching operations to

Chapter 4. Anomaly Checking Prototype 87

Figure 4.3: A sample of an Anomaly Report

access the monitoring data.

Next, in our Anomaly-Checker, we aimed to make the anomaly checking

solution capable of being used at both run-time and for post-mortem anal-

ysis. Therefore, we implemented a service so that Anomaly-Checker can be

called, based on the given time intervals and the duration needed for Anomaly-

Checker.

The main service for anomaly detection performs anomaly checking for one

or multiple monitoring metrics based on the following parameters:

• logOrigin: Every monitoring operation should be identi�ed with an iden-

88 Chapter 4. Anomaly Checking Prototype

ti�er (an ID assigned to the project that logs are obtained from). Here

logorigin refers to the identi�er of the operation.

• dimension: Dimension property refers to the node or source of metric

observation, such as the instance ID of a virtual machine to monitor.

• labels : Metric names can be more than one metric, such as CPUUtiliza-

tion, and TerminatedInstance.

• startTime: The data from a given timestamp will be processed for

anomaly checking. The start time can be set as a current time for real-

time anomaly checking or as a time in the past for post-mortem anomaly

checking.

• endTime: This indicates the end time of anomaly checking. A null value

will cause the anomaly checking to be continued endlessly.

• interval : This indicates the interval of anomaly checking in milliseconds.

As can be seen in the activity diagram depicted Fig. 4.4, this Anomaly-

Checker service receives the above inputs, and, based on the coe�cient values

of the assertion equation that is given in a con�guration �le, it will start

to calculate the predicted value of each metric. Once the predicted value is

obtained, it is compared to the actual value, and if the prediction is not close

enough to the actual value, it will update the anomaly status to true, meaning

an anomaly is detected for a given timestamp. The high-level steps of the

process of anomaly checking from a service call to return an anomaly report

is shown in Fig. 4.4.

C
h
a
p
ter

4
.
A
n
o
m
a
ly

C
h
eck

in
g
P
ro
to
ty
p
e

89

Service Layer Data Access LayerBusiness Logic Layer

Elasticsearch

(Anomaly Checker REST Service)
Validate Input Parameters and

Perform Anomaly Checking
Obtain Relevant Logs

Retrieve Log Data

Load Configuration Input

Process Event Logs and
Count Logs Occurrences

Obtain Target Resource
Metrics Data

Load Coefficient Values
and Log Counting

and Build Assertion Equation

Retrieve Resource Metrics Data

Estimate
Values of Metrics

Perform Anomaly Checking
and Build Anomaly Checking Report

Store and Return
Anomaly Checking Report

Report the Result of
Anomaly Checking

Anomaly

Observed?

No

Configuration

Call Relevant Services
(Report Alarm/Fetch
POD-Diagnosis, etc.)

Yes

Expose Anomaly Checking
 Report in JSON

End

(Anomaly Checking

Reported)

 Start

(By User/Time/

External Services)

End
End

Figure 4.4: Anomaly Checking Activity Diagram.

90 Chapter 4. Anomaly Checking Prototype

Fig. 4.3 shows a sample of two records of anomaly checking (as described

for Anomaly Report schema in the previous section) of a rolling upgrade case

study. The �rst record shows the checking of anomaly detection for an ag-

gregated CPU utilization metric of a scaling group (dimensions), and the log

events that are reported at that timestamp. The anomaly status (anoma-

lyStatus) as the result of comparing actual value and estimated value is false

in this record, meaning that no anomaly was observed in this timestamp for

this metric. The next record (in the brackets in the bottom block) reports the

anomaly status as true, checking TerminatedInstance for the scaling group of

a di�erent timestamp.

As we mentioned earlier in this chapter, the focus of the anomaly checking

prototype that we designed and implemented for this thesis was on the detec-

tion of anomalies only. The role of visualisation of monitoring data is designed

to be handled by POD-Viz [130] in the future. Also, the role of anomaly de-

bugging and diagnosis is planned to be integrated with POD-Diagnosis [140].

4.5 Summary

In this chapter, we presented an overview of the anomaly checking prototype

that is used to conduct experiments and evaluate the proposed approach of

this thesis.

Some of the main components that have been implemented as part of

the development of this prototype to conduct our experiments include log-

preprocessing for validation of logs and log sanitisation, conversion and persis-

tence of logs to log events according to the log event schema of Elasticsearch,

conversion and storage of raw monitoring metric data in Elasticsearch, pro-

cessing and extracting the interpolated occurrence strength of each log event,

processing and extracting indirect monitoring metrics, and �nally, the anomaly

checking for processing data to detect the occurrence of anomalies from the

analysis of both logs and metrics. We used this prototype as part of our in-

vestigation and experimentation with two case studies that we will discuss in

detail in the next two chapters.

Chapter 5

Rolling Upgrade Case Study

In this chapter, we will present a case study to explore the e�ectiveness of

the proposed approach of this thesis that was proposed in Chapter 3. For this

purpose, we will use the tool described in the previous chapter. Speci�cally, we

are looking to evaluate to what extent, with the help of the proposed approach,

we can address the research questions of this thesis that were articulated in

Chapter 1, page 5. Related to our research questions we have the following

hypotheses:

• By employing the techniques introduced in Section 3.3 using regular

expressions, representing logs as quantitative metrics using interpolated

occurrence strength of log event type, and cluster log events for a set

of log activities, we may be able to map log activities to the observed

resource metrics (addressing RQ1).

• By using the statistical analysis explained in Section 3.4, we may be able

to identify resource metrics that are a�ected by the system behaviour

represented in logs, and also to identify the most sensitive metrics that

would be the best candidates for anomaly detection (addressing RQ2).

• By exploiting the predictive and exploratory power of regression analysis

of log activities as input variables and resource metrics as target vari-

ables, we may be able to build a statistically supported model to derive

assertions that enable high-accuracy, unsupervised, contextual anomaly

detection (addressing RQ3).

91

92 Chapter 5. Rolling Upgrade Case Study

In this chapter, we will investigate the above hypotheses with employing

Rolling Upgrade operation as our case study.1

5.1 Rolling Upgrade

Our study aims to investigate whether it is possible to derive a strong corre-

lation model between event logs of operations and the observable metrics of

cloud resources. To conduct this investigation, we chose rolling upgrade, as

implemented by Net�ix Asgard2 on top of Amazon Elastic Computing Cloud

(EC2), as a case study of such an operation.

A rolling upgrade operation is an excellent example of a sporadic cloud

operation . Applications in the cloud are deployed on a collection of virtual

machines (VMs). As one common approach to upgrade process, once there

is a new version of the application released, a new virtual machine image is

prepared with the new version; this is also called �baking the image�. Then

all the current virtual machines will be replaced by a newly prepared image

through an upgrade process, such as rolling upgrade [9].

A rolling upgrade replaces VM instances, x at a time [129], e.g. upgrading

400 instances in total by upgrading 10 instances concurrently at any given

time during the operation. In Asgard � a Net�ix cloud deployment tool � the

rolling upgrade process has the following steps - also shown in Fig. 5.1:

1. Create a new Launch Con�guration (LC3),

2. Update the Auto Scaling Group (ASG4),

3. Set user-speci�ed rolling policy,

4. Remove and deregister the instance from Elastic Load Balancer (ELB5),

1Parts of this chapter have been published: [36, 37].
2https://github.com/Net�ix/asgard
3A launch con�guration is a template specifying the information for launching virtual

machines instances in an Auto Scaling Group [6].
4�An Auto Scaling group contains a collection of EC2 instances that share similar char-

acteristics and are treated as a logical grouping for the purposes of instance scaling and
management� [6].

5�Elastic Load Balancing distributes incoming application tra�c across multiple EC2
instances, in multiple Availability Zones�[6].

Chapter 5. Rolling Upgrade Case Study 93

Figure 5.1: Flow Chart of a Rolling Upgrade Process [42].

5. Terminate the old instance,

6. Wait until the auto-scaling group replaces the missing instance with a

new instance (running the updated version of the application),

7. The new instance is registered with the ELB.

8. Repeat the steps 4 to 7 for each VM instance.

In the process of rolling upgrade, there is a chance that an instance faces a

con�guration change or an error at any time during these steps. For example,

a VM freezes, crashes and/or it becomes unresponsive. Such failures may

be caused by a problem stemming from the resources the VM is running on;

memory over-usage due to an increased system load; an application bug that

94 Chapter 5. Rolling Upgrade Case Study

stresses the VM; an operating system kernel bug; or through random system

termination for assessing of systems resiliency and recoverability in production.

The occurrence of any of these failures during an upgrade operation can put

the upgrade process on hold or even derail it.

In a nutshell, rolling upgrade is an excellent exemplar operation for our

investigation for the following reasons: upgrade operations are one of the most

error-prone operations [34]; the rolling upgrade operation is one of the most

sensitive and critical operations in cloud system administration, as a failure

may cause a system-wide outage; and a rolling upgrade operation is likely to

be a�ected by interference of concurrent operations and con�guration changes,

respectively.

The contemporary practice of continuous deployment focuses on pushing

every commit into production as soon as possible � as long as it passes a

large number of tests. In such an environment, upgrades can occur with high

frequency � between a few times a week [39] to many times per day [88],

updating hundreds of machines, without causing any service downtime. Such

frequency of executing this sensitive operation was another reason that inspired

us to choose this case study for investigation in this thesis.

For further information about rolling upgrade, readers can refer to [78],

[132], or [108].

5.1.1 Experimental Environment

In this section, we give an overview of the experimental environment. To set

up an experiment and obtain data from a realistic environment, we collected

data by running rolling upgrade operations in a public cloud environment.

To this end, we used environments and tools that are in widespread use in

industry: clusters of VMs on Amazon EC2, grouped into Auto Scaling Groups

(ASGs), Amazon CloudWatch for collecting cloud monitoring metrics, and

Net�ix Asgard for executing the operations and collecting event logs.

One concern of our study was to choose a suitable cluster size for the

experiments that resemble a realistic scenario in the industry. While there are

some studies [21, 116, 133] and guidelines [45, 122] regarding optimal virtual

Chapter 5. Rolling Upgrade Case Study 95

machines placement and con�guration setting for server architecture, to the

best of our knowledge, there is no survey report or statistics available on

server size in industry. Hence, based on our intuition, we chose two di�erent

con�guration settings that emulate both a medium-scale server and a fairly

large-scale server environment.

In this direction, we performed our analysis based on two separate case

studies of rolling upgrades: �rst, to emulate a medium-size cluster size, we

conducted multiple runs of rolling upgrade of 8 instances ,upgrading 2 instances

at a time; and the second case study, to emulate a fairly large-scale cluster, we

conducted rolling upgrade of 40 instances, upgrading 4 instances at a time.

We conducted a total of 20 rounds of rolling upgrade operations, for each

case study running 10 rounds of rolling upgrade on Amazon EC2. In this

process we collected logs from our operation execution environment through

Net�ix Asgard, and we gathered monitoring metric data from Amazon Cloud-

Watch. The above con�guration gave us a fairly good representation of a

medium and a large-scale server environment.

5.1.2 Net�ix Asgard - Event Logs from Operations Tools

In our case study, we used Net�ix Asgard to execute rolling upgrade opera-

tions and to collect operation logs. Asgard has been one of the primary tools

for application deployment and cloud management at Net�ix for years [112].

Asgard is an open-source web-based tool published by Net�ix for managing

cloud-based applications and infrastructure. Asgard automates some of the

AWS cloud operations, such as deployment and upgrade.

Asgard was developed by Net�ix, one of AWS's largest customers, to pro-

vide a higher-level management interface, and since it has been released pub-

licly, is in widespread use. Its log ful�ls our base assumption, and contains

high-quality textual messages � albeit the latter is not required in our ap-

proach. A log event should have a timestamp and a description in order to

be employed by our approach; this format is broadly accepted in industry

[29, 54, 95, 119].

The rolling upgrade process can be observed by tracking the log events of

96 Chapter 5. Rolling Upgrade Case Study

Figure 5.2: CloudWatch Overview - source: AWS documentation.

rolling upgrade operation with Asgard administration console. As was previ-

ously highlighted, we ran 20 rounds of rolling upgrade operations. For each

round of rolling upgrade operation, we collected operation log events from

Asgard as the contextual source of information for monitoring and anomaly

detection throughout this chapter. Having the operation logs along with met-

rics data give us the data needed to evaluate our approach.

5.1.3 Amazon CloudWatch - Resources Metrics

Metrics are data about the state or performance of systems [6]. In AWS,

a metric represents a time-ordered set of data points that are published to

CloudWatch. In other words, a metric is a variable to monitor, and the data

points represent the values of that variable over time [6].

CloudWatch is, in essence, a metrics repository. It provides monitoring

metrics for many Amazon services, including EC2, ASG, and ELB. In addition

to the above, CloudWatch provides a feature to retrieve simple statistics about

data, and de�ne rules for alarm noti�cation, as well as being a console for

con�guration and metric visualisation. Fig. 5.2 shows an overview of Amazon

CloudWatch.

Chapter 5. Rolling Upgrade Case Study 97

Metric data is available in �ve-minute intervals by default, but CloudWatch

can be con�gured, at extra cost, to collect metrics as precisely as at one-minute

intervals. 6 The data is available in JSON �le format and can be retrieved

through an API. A sample of CloudWatch metric data in JSON format is

shown in Fig. 5.3. Following describes the elements of CLoudWatch JSON

metric schema:

• Label: Metric Name e.g. CPUUtilization,

• Dimensions: Node or a name/value pair that uniquely identi�es a met-

ric such as ASG, ELB and individual VM instances,

• Datapoints

� timestamp: the timestamp of the observation ,

� sampleCount: number of data point collection within the obser-

vation period - e.g. 8 times in one minute,

� average: The value of Sum / SampleCount during the speci�ed

period,

� sum: All values submitted for the matching metric added together,

e.g. all bytes received from Network,

� minimum: The lowest value observed during the speci�ed period.,

� maximum: The highest value observed during the speci�e d pe-

riod.,

� unit: The unit of measure, such as Bytes, Seconds, Count, and

Percent.

By default, several metrics related to individual VM instances can be

collected by CloudWatch, including CPU utilization, network tra�c (incom-

ing/outgoing), failed health checks, and so on. For a whole ASG, averages

can be obtained. Fig. 5.3 shows two sample monitoring record at the same

6CloudWatch retains metrics data as follows: �Data points with a period of 60 seconds
(1 minute) are available for 15 days; Data points with a period of 300 seconds (5 minutes)
are available for 63 days; Data points with a period of 3600 seconds (1 hour) are available
for 455 days (15 months)� [6].

98 Chapter 5. Rolling Upgrade Case Study

timestamp, the top one indicates CPUUtilization for an AutoScalingGroup,

and the bottom one shows the network input (NetwrokIn) for a speci�c VM

instance. In the samples, the average refers to the mean of data points col-

lected within a time window. For example, as shown in Fig. 5.3, sampleCount

of CPUUtilization shows eight times CPU utilisations have been recorded,

where the average of these eight times was 37.96 percent, the minimum 35

percent and the maximum 42.62 percent.

These metric data can be used for purposes like monitoring the health of

the system or for custom auto-scaling. In this study, we just have the focus

on employing the data for system health and performance monitoring.

Figure 5.3: A sample JSON output of two di�erent metrics of CloudWatch.

Chapter 5. Rolling Upgrade Case Study 99

5.1.4 Direct and Derived Metrics

In our study, to verify the e�ect of logged events, we are not just interested in

the metrics that show the resource consumption of resources such as memory

usage and network tra�c, we are also interested in having metrics that repre-

sent the transitions between states of a VM instance such as the time a VM

goes from launch to pending. Therefore, we are interested in both performance

and state-based metrics.

Direct metrics are basic metrics that are often available by default with

monitoring tools and available for most of the metrics that show the capacity

or resource consumption of various resources. These types of metrics are the

metrics that amount or the percentage or the degree of the changes of the usage

of the resources, such as CPU utilisation, disk read IO, memory usage, network

tra�c, number of SQL threads running, and number of open connections.

Derived metrics are the metrics that may not always be available directly

and they often indicate the transition of the status of resources from one state

to another. One important example of these types of metrics are the ones in-

dicating the status of a VM. For example, CloudWatch (AWS monitoring ser-

vice), includes no metric that explicitly shows the number of instances started

or terminated within an auto scaling group.

As rolling upgrade operation directly a�ect the life cycle of virtual machine

instances, in our experiment, we were interested to know the state of VM

instances at each monitoring time interval. However, we noticed this metric

type was not directly available in CloudWatch. The state-based metrics are

necessary metrics because the process of rolling upgrade with baked (prepared)

images involves taking a running virtual machine out of service, terminating

the machine, and replacing it with a new one, and, �nally, registering the new

machine as an in-service machine. The life-cycle of state changes of Amazon

EC2 VMs is shown in Fig. 5.4. For example, once a termination action is

triggered through operation execution, one EC2 VM instance should transition

from state �running� to �shutting down� and eventually to state �terminated�.

In CloudWatch, there is a metric indicating the total number of healthy

machines; however, this is only partly indicative of the number of started or

100 Chapter 5. Rolling Upgrade Case Study

Figure 5.4: Amazon EC2 instance lifecycle- source: AWS documentation.

terminated machines: if, during any minute, a new machine becomes active and

an old one is terminated directly after, the total number of healthy machines

remains static. This is a very common occurrence during a rolling upgrade. To

address this, we implemented a mechanism to derive the number of terminated

VM instances and the number of started instances for each minute by tracking

the individual metrics of each VM instance.

In CloudWatch, the IDs of all VM instances are available, and it is a

straightforward task to understand whether a machine is in service or not by

querying its metrics from CloudWatch API. Given that t denotes the observa-

tion time and v denotes the individual in-service VM instances, and supposed

we have:

0 if VM X is not in service during time t

1 if VM X is in service during time t

then, the total number of in-service instances in time t is represented by

capital I and can be obtained as:

It =
∑

v1t + v2t + ...vNt

When there is an absence of the record of active metrics for an instance ID

in the previous minute, we know this is a new machine. Given this description,

Chapter 5. Rolling Upgrade Case Study 101

we de�ne the started instances as those that have vXt−1 = 0 and vXt = 1, and

the opposite for terminated machines.

We denote the new launched VM instances as sv and represent the total

number of new launched instances with SI (Started Instance), and obtain the

metric of SI (StartedInstance):

SIt =
∑

sv1t + sv2t + ...svNt

By having the information of total active VM instances of previous minute

and current minute, and the number of newly launched VM instances, we

obtain the TI (TerminatedInstance) of time t as below:

TIt =
∣∣∣(∑ It −

∑
SIt)−

∑
It−1

∣∣∣
Based on the above, we derived precise metrics for the numbers of started

and terminated instances, respectively. These metrics derived from Cloud-

Watch data are a cornerstone for the successful application of our approach to

rolling upgrade.

It is worth noting that many metrics may be available in CloudWatch, both

at the instance level and at the group level. Considering instance-level metrics

monitoring are, in general, impractical, especially if hundreds of VM instances

are to be considered. Further, metrics associated with instances cease to exist

once the corresponding VM goes out of service. Therefore, we consider group-

level metrics of instances and metrics of the EC2 Auto Scaling Group (ASG)

and the Elastic Load Balancer (ELB). To this end, we managed to obtain

data for 17 group-level metrics, based on the above-mentioned experiments,

including the metrics of started instances and terminated instances.

102 Chapter 5. Rolling Upgrade Case Study

5.2 Log Analysis

5.2.1 Log Parsing and Log Representation as a Quanti-

tative Metric

In order to map metrics obtained from CloudWatch to event logs from Asgard,

we extract a set of metrics that show the occurrences of di�erent event logs.

In programs with any form of repetition, it is common to have logged events of

recurring event types. In our case study of rolling upgrade, every time a VM

is terminated, the same type of event is logged, where only certain parameters

(VM ID, timestamp, etc.) di�er.

For processing the raw event logs of Asgard, we followed the steps explained

in Section 3.3.1, by which all unique types of event logs for an operation are

identi�ed and corresponding regular expressions are extracted. In this process,

�rst, the timestamps and log description are extracted for each log line. Then,

the log description is tokenized, and for each token that does not contain digits,

the exact string of the token is extracted as the regular expression.

For example, a string of �Create Launch Con�guration� in a log is presented

in a regular expression as �\sCreate\sLaunch\sCon�guration� 7. For those

tokens with digits such as IP address, VM instance IDs or a reported waiting

7\s matches whitespaces, tabs and new lines.

Figure 5.5: Sample of log event and extracted regular expression of the rolling
upgrade operation with Net�ix Asgard.

Chapter 5. Rolling Upgrade Case Study 103

time, the regular expression that matches any digits with the format of the

token is extracted. For instance, the extracted pattern for a token string like

�instance i-4583197f� which indicates a VM instance ID is as �instance\s\[i-[0-

9a-f]8\] �. The output of the above step is a set of regular expression patterns

that represent unique types of event logs. Fig. 5.5 shows an example of the

extracted regular expression pattern for the given log lines.

The output of the above step gave us 18 event types for our rolling up-

grade case study using Asgard. Visualization of the occurrence of event log

types based on the above may help with recognizing patterns in system oper-

ations, and may help better understand the execution of an operation. In this

direction, Fig. 5.6 shows the pattern of occurrences of the event logs through-

out the process of rolling upgrade operation for updating four virtual machine

instances.

In the log occurrence pattern shown in Fig. 5.6, the axis that is labelled

as Logged event types lists event type 1 (ET01) to event type 18 (ET18);

the axis labeled as Timestamp shows the timeline of the operation; and the

vertical axis shows the number of occurrences of each logged event type for each

minute of the operation. Looking at the �gure, it reveals that there are certain

patterns in the event type occurrences. For instance, ET01, ET02, ET04,

ET05, ET06, ET07 and ET08 appear just at the beginning of the operation,

which may imply that they are related to the logs associated with the starting

and preparation steps of the operation. In contrast, there is a reoccurring

pattern for event types ET09 to ET17, which may represent recurring activities

such as VM termination. In this chapter, we will explore and investigate the

occurrence and correlations of these logged events in detail with statistical

analysis. However, we think visualizing textual log events can be helpful for

a preliminary analysis, and it may be useful for better understanding of the

behaviour of application operations.

Amazon CloudWatch o�ers metrics with a granularity no �ner than one

minute. In contrast, events can be logged whenever they occur with no regula-

tion and the intervals can be from split seconds to minutes. Therefore, the log

and metric data need to be mapped. Since we can observe actual changes to

104 Chapter 5. Rolling Upgrade Case Study

13:17:00

13:18:00

13:19:00
13:20:00

13:21:00
13:22:00

13:23:00
13:24:00

13:25:00
13:26:00

13:27:00
13:28:00

13:29:00
13:30:00

13:31:00
13:32:00

13:33:00
13:34:00

0

1

2

3

4

ET01 ET02 ET03 ET04 ET05 ET06 ET07 ET08 ET09 ET10 ET11 ET12 ET13 ET14 ET15 ET16 ET17 ET18

Figure 5.6: Visualization of occurrence of 18 event types of rolling upgrade for
4 VM instances.

cloud resources only through the CloudWatch metrics, that is, only once per

minute, we chose to interpolate the occurrence strength of event log types that

occurred within each one-minute time window to the respective minute. This

gives us the interpolated occurrence strength of each event type. It is worth

noting that, in the beginning, we started our investigation based on the sim-

ple counting of occurrence of log event types without interpolated values, but

this didn't lead to sensible clustering due to the collinearity observed among

event types, therefore, we incorporated interpolated occurrence strength into

our analysis.

Speci�cally, the interpolation indicates at which second of a minute an event

happened. Indicating a point of time for the derived metric for log events would

show a relative interval of a set of log events happening. Therefore, we parse

the timestamp of each log message and extract the point of time (seconds of

a minute) the event happened. Then a relative occurrence value is calculated

as an interpolated value, capturing the time-wise proximity of the event to the

full minute before and after the event. For instance, say event E1 happened

at t minutes and 30 seconds, then its occurrence strength is counted as 0.5 for

Chapter 5. Rolling Upgrade Case Study 105

both minute t and minute t+1. If it happened at t minutes and 15 seconds,

the occurrence strength for minute t is 0.75 and for minute t+1 it is 0.25. This

interpolated occurrence strength allows us to map the event log data onto the

one-minute interval of our cloud metric data.

5.2.2 Log Events Correlation Clustering - Mapping Low

Granular Logs to a Set of Activities

In the previous section, we derived a metric that represents the interpolated

occurrence strength of log event types. In this section, we employ a Pearson

correlation analysis to �nd the log event types which are highly correlated with

their occurrence. Therefore, we generated a Pearson correlation coe�cient for

two di�erent data sets of upgrading 8 machines and 40 machines.

First, we generated correlation data for running a rolling upgrade of eight

virtual machine instances, upgrading two instances at a time. Then, we de-

�ned a rule that event types be grouped together when they had a correlation

strength of more than 75% (Pearson-r > 0.75), where values show highly sta-

tistical signi�cance (i.e. p-value < 0.01). In other words, as a rule, any event

type of an activity should indicate at least 75% correlation with every other

event type of the group that formed an activity. The generated correlation

matrix(using SPSS) including the value of Pearson Correlation (Pearson-r) as

well statistical signi�cance (p-value) of log event types is shown in Fig. 5.7.

Also, Fig. 5.8 shows a generated radar graph based on these correlation values.

Considering the correlation strength of 0.75, the graph clearly shows the close

correlation mapping of E01-E07, E08-E11, E12-E14, E15-E16, E17, and E18.

One may choose a higher or lower level, depending on the desired abstrac-

tion level to be obtained from logs. We chose Pearson-r > 0.75, as it is low

enough to avoid multicollinearity in our regression analysis and high enough

to associate strongly correlated event types together. To make sure that the

correlation of activities is not a�ected by di�erent con�gurations and scales of

the operation, we applied the same process for running rolling upgrade of 40

virtual machine instances, upgrading four instances at a time.

106
C
h
a
p
ter

5
.
R
o
llin

g
U
p
g
ra
d
e
C
a
se

S
tu
d
y

ET01 ET02 ET03 ET04 ET05 ET06 ET07 ET08 ET09 ET10 ET11 ET12 ET13 ET14 ET15 ET16 ET17 ET18

Pearson Correlation 1 1 0.928 0.923 0.923 0.911 0.911 0.26 0.26 0.15 0.148 -.063 -.060 -.063 -.073 -.073 -.073 -.019
Sig. (2-tailed) 0.000 .000 .000 .000 .000 .000 .000 .000 .001 .001 .153 .176 .153 .100 .099 .099 .672
Pearson Correlation 1 1 0.928 0.924 0.924 0.912 0.912 0.261 0.261 0.152 0.15 -.063 -.060 -.063 -.073 -.073 -.073 -.019
Sig. (2-tailed) 0.000 .000 .000 .000 .000 .000 .000 .000 .001 .001 .154 .177 .154 .100 .099 .100 .673
Pearson Correlation 0.928 0.928 1 1 1 0.997 0.997 0.293 0.292 0.198 0.195 -.064 -.061 -.064 -.074 -.074 -.074 -.019
Sig. (2-tailed) .000 .000 0.000 0.000 0.000 0.000 .000 .000 .000 .000 .146 .169 .146 .094 .093 .093 .667
Pearson Correlation 0.923 0.924 1 1 1 0.998 0.998 0.293 0.293 0.201 0.198 -.064 -.061 -.064 -.074 -.074 -.074 -.019
Sig. (2-tailed) .000 .000 0.000 0.000 0.000 0.000 .000 .000 .000 .000 .147 .171 .147 .095 .094 .095 .668
Pearson Correlation 0.923 0.924 1 1 1 0.998 0.998 0.293 0.293 0.201 0.198 -.064 -.061 -.064 -.074 -.074 -.074 -.019
Sig. (2-tailed) .000 .000 0.000 0.000 0.000 0.000 .000 .000 .000 .000 .147 .171 .147 .095 .094 .095 .668
Pearson Correlation 0.911 0.912 0.997 0.998 0.998 1 1 0.296 0.295 0.209 0.206 -.063 -.060 -.063 -.073 -.073 -.073 -.019
Sig. (2-tailed) .000 .000 0.000 0.000 0.000 0.000 .000 .000 .000 .000 .152 .176 .152 .099 .098 .098 .672
Pearson Correlation 0.911 0.912 0.997 0.998 0.998 1 1 0.296 0.295 0.209 0.206 -.063 -.060 -.063 -.073 -.073 -.073 -.019
Sig. (2-tailed) .000 .000 0.000 0.000 0.000 0.000 .000 .000 .000 .000 .152 .176 .152 .099 .098 .098 .672
Pearson Correlation 0.26 0.261 0.293 0.293 0.293 0.296 0.296 1 1 0.777 0.77 -0.247 -0.234 -0.247 -0.106 0.126 0.627 -.073
Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 0.000 .000 .000 .000 .000 .000 .017 .004 .000 .097
Pearson Correlation 0.26 0.261 0.292 0.293 0.293 0.295 0.295 1 1 0.778 0.771 -0.247 -0.234 -0.247 -0.106 0.125 0.627 -.073
Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 0.000 .000 .000 .000 .000 .000 .016 .004 .000 .097
Pearson Correlation 0.15 0.152 0.198 0.201 0.201 0.209 0.209 0.777 0.778 1 0.998 -0.25 -0.236 -0.25 -0.213 -0.111 0.637 -.074
Sig. (2-tailed) .001 .001 .000 .000 .000 .000 .000 .000 .000 0.000 .000 .000 .000 .000 .011 .000 .094
Pearson Correlation 0.148 0.15 0.195 0.198 0.198 0.206 0.206 0.77 0.771 0.998 1 -0.251 -0.237 -0.251 -0.216 -0.119 0.631 -.074
Sig. (2-tailed) .001 .001 .000 .000 .000 .000 .000 .000 .000 0.000 .000 .000 .000 .000 .007 .000 .092
Pearson Correlation -.063 -.063 -.064 -.064 -.064 -.063 -.063 -0.247 -0.247 -0.25 -0.251 1 0.751 1 .043 -0.141 -0.25 -.064
Sig. (2-tailed) .153 .154 .146 .147 .147 .152 .152 .000 .000 .000 .000 .000 0.000 .331 .001 .000 .146
Pearson Correlation -.060 -.060 -.061 -.061 -.061 -.060 -.060 -0.234 -0.234 -0.236 -0.237 0.751 1 0.751 0.354 0.102 -0.237 -.061
Sig. (2-tailed) .176 .177 .169 .171 .171 .176 .176 .000 .000 .000 .000 .000 .000 .000 .021 .000 .169
Pearson Correlation -.063 -.063 -.064 -.064 -.064 -.063 -.063 -0.247 -0.247 -0.25 -0.251 1 0.756 1 .043 -0.141 -0.25 -.064
Sig. (2-tailed) .153 .154 .146 .147 .147 .152 .152 .000 .000 .000 .000 0.000 .000 .331 .001 .000 .146
Pearson Correlation -.073 -.073 -.074 -.074 -.074 -.073 -.073 -0.106 -0.106 -0.213 -0.216 .043 0.354 .043 1 0.813 -.081 -.074
Sig. (2-tailed) .100 .100 .094 .095 .095 .099 .099 .017 .016 .000 .000 .331 .000 .331 .000 .067 .094
Pearson Correlation -.073 -.073 -.074 -.074 -.074 -.073 -.073 0.126 0.125 -0.111 -0.119 -0.141 0.102 -0.141 0.813 1 0.172 -.068
Sig. (2-tailed) .099 .099 .093 .094 .094 .098 .098 .004 .004 .011 .007 .001 .021 .001 .000 .000 .123
Pearson Correlation -.073 -.073 -.074 -.074 -.074 -.073 -.073 0.627 0.627 0.637 0.631 -0.25 -0.237 -0.25 -.081 0.172 1 0.265
Sig. (2-tailed) .099 .100 .093 .095 .095 .098 .098 .000 .000 .000 .000 .000 .000 .000 .067 .000 .000
Pearson Correlation -.019 -.019 -.019 -.019 -.019 -.019 -.019 -.073 -.073 -.074 -.074 -.064 -.061 -.064 -.074 -.068 0.265 1
Sig. (2-tailed) .672 .673 .667 .668 .668 .672 .672 .097 .097 .094 .092 .146 .169 .146 .094 .123 .000

ET17

ET18

ET11

ET12

ET13

ET14

ET15

ET16

ET05

ET06

ET07

ET08

ET09

ET10

Correlations

ET01

ET02

ET03

ET04

Figure 5.7: Correlation matrix generated by SPSS based on interpolated occurrence strength of each event type.

C
h
a
p
ter

5
.
R
o
llin

g
U
p
g
ra
d
e
C
a
se

S
tu
d
y

107

Figure 5.8: Correlation clustering graph based on values given in Fig.5.7.

108 Chapter 5. Rolling Upgrade Case Study

Table 5.1: Event logs to activity abstraction for the rolling upgrade operation

Event Activity

ET01_StartedThread
A1_Start of

Rolling upgrade

(Launch

Con�guration

for Auto Scaling

Group)

ET02_UpdatingLaunchWithAmi

ET03_CreateLaunchCon�g

ET04_UpdatingGroupXToUseLaunchCon�g

ET05_UpdateASG

ET06_SortedInstances

ET07_XInstancesWillBeReplacedXAtATime

ET08_DisablingXInELB A2_Remove

Instance from

ELB and

Terminate

Instance

ET09_RemoveInstanceFromELB

ET10_TerminateInstance

ET11_WaitingInstancesPending

ET12_ItTookXminInstanceToBeReplaced A3_Instance

Replacement

ProcessET13_InstanceInLifeCycleStatePending

ET14_WaitingForInstanceToGoInService

ET15_ItTookXminInstanceToGoInService A4_New

Instance to go in

serviceET16_WaitingForInstanceToBeReady

ET17_InstanceXIsReady A5_Instance is ready

ET18_Completed A6_Rolling upgrade

completed

In both experiments, although there were slight di�erences in correlation

values, the log abstraction led to identical clusters. The 18 event types are

grouped into six clusters of event logs (i.e. activities). Note that the whole

process of log abstraction was done without relying on domain knowledge.

To evaluate how meaningful our log abstraction result is, we investigated the

context of the log entries; the result, given in Table 5.1, shows that all the

event types of each cluster are meaningfully related to each other. In other

words, individual event types are clustered to activities that ful�l a particular

goal such as Launch Con�guration or VM Termination. For instance, the four

events DisablingXInELB, RemoveInstanceFromELB, TerminateInstance, and

WaitingInstancesPending that are clustered together are related to the action

Chapter 5. Rolling Upgrade Case Study 109

of terminating a VM instance. For the sake of the presentation of our analysis,

each cluster was given a name according to the context of its event types. The

full log to activity mapping is given in Table 5.1.

5.3 Metric Selection

To investigate the relationship between the occurrence of event types and cloud

metrics in the regression model, we assigned the activities derived from log

clustering as predictor variables and the monitoring metrics from CloudWatch

as candidate target variables. We aimed to identify which metrics have the

highest potential to re�ect the e�ect of running rolling upgrades in the system.

5.3.1 Log-Metric Correlation Learning - Which Metrics

Should be Selected for Monitoring?

We performed multiple regression analysis to predict the value of monitoring

metrics, given the six activities extracted from logged events, from the 20 total

runs of rolling upgrade for eight and 40 instances. The results of regression

analysis over group-level monitoring metrics are shown in Table 5.2 (metrics

with the highest correlation are shown in bold).

In the table, R denotes the correlation between the occurrences of activities

extracted from the event logs and a monitoring metric, and R2 indicates how

well the model from activites predicts values of the target metric. In general,

R2 is used to assess the predictive power of the regression model for the given

predictors and target variables [99].

Adj.R2 is a modi�cation version of R2 that adjusts for the number of predic-

tors in a model [99]. The value of R2 may increase by chance if new predictors

are added to the model, leading to over-�tting of the model. Adj.R2 takes

this into account by penalizing models with more variables, meaning that the

increase in R2 (i.e. the improvement of the �tting) must be reasonably large

for the inclusion of a new variable to cause an increase in Adj.R2 [89].

110
C
h
a
p
ter

5
.
R
o
llin

g
U
p
g
ra
d
e
C
a
se

S
tu
d
y

Table 5.2: Coe�cient Correlation and Coe�cient Determination results for each metric

Experiment: 8 Instances Experiment: 40 Instances

Metric R R2 Adj.R2 p-value R R2 Adj.R2 p-value

CPUUtilizationAverage 0.751 0.564 0.555 0.000 0.801 0.642 0.638 0.000

CPUUtilizationMinimum 0.391 0.153 0.134 0.000 0.367 0.135 0.124 0.000

CPUUtilizationMaximum 0.810 0.656 0.649 0.000 0.855 0.732 0.728 0.000

NetworkInAverage 0.532 0.283 0.267 0.000 0.299 0.089 0.079 0.000

NetworkInMinimum 0.428 0.183 0.165 0.000 0.640 0.410 0.403 0.000

NetworkInMaximum 0.214 0.046 0.025 0.420 0.166 0.027 0.016 0.028

NetworkOutAverage 0.502 0.252 0.236 0.000 0.299 0.090 0.079 0.000

NetworkOutMinimum 0.475 0.226 0.209 0.000 0.635 0.403 0.396 0.000

NetworkOutMaximum 0.349 0.122 0.103 0.000 0.118 0.014 0.002 0.313

InServiceInstances 0.771 0.595 0.586 0.000 0.676 0.457 0.450 0.000

ELBLatencySum 0.405 0.164 0.146 0.000 0.118 0.014 0.002 0.304

ELBLatencyAverage 0.430 0.185 0.167 0.000 0.060 0.004 0.008 0.934

ELBLatencyMinimum 0.169 0.029 0.007 0.235 0.052 0.003 0.009 0.968

ELBLatencyMaximum 0.458 0.209 0.192 0.000 0.125 0.016 0.004 0.239

ELBRequestCount 0.091 0.008 0.000 0.808 0.135 0.018 0.007 0.152

StartedInstances 0.828 0.686 0.679 0.000 0.884 0.782 0.780 0.000

TerminatedInstances 0.921 0.848 0.845 0.000 0.955 0.912 0.911 0.000

Chapter 5. Rolling Upgrade Case Study 111

Based on the explanation given the above, we chose Adj.R2 as it was the

most reliable measure to assess the relevance of each of monitoring metrics

and the activities of the rolling upgrade operations. In other words, Adj.R2

is chosen, as it is a less biased metric, to measure the prediction accuracy of

a regression model, given the predictors (event logs) and target (monitoring

metric) variable. Prediction abilities of the metrics based on the value of

Adj.R2 are shown in Fig. 5.9.

For several metrics, highlighted in bold in Table 5.2, we observe fairly

strong values (> 0.5 for both experiments) of R2 and Adj.R2, which suggests

that the variation of these monitoring metrics can be explained by our re-

gression model. In other words, given operation logs, the model is capable

of predicting the value of monitoring metrics for a few of the metrics, includ-

ing CPUUtilizationAverage, CPUUtilizationMaximum, StartedInstances, and

TerminatedInstances.

However, for the rest of monitoring metrics, the regression model did not

�t the data, and a derived regression equation may lead to weak predictions.

As shown in Fig. 5.9, the best �t of the model is obtained for Terminate-

dInstances in the experiment, with 40 instances: 91.2% of the variation in

TerminatedInstances can be explained by the linear relationship between six

predictor variables derived from event logs and TerminatedInstances. In this

case, R2 = 0.912 and Adj.R2 = 0.912 are statistically signi�cant at con�dence

level p < 0.05. A similar interpretation of the model can be inferred from

Table 5.2 for the experiments with eight instances, and 40 instances for other

metrics.

The results show that seven metrics have a p-value greater than .05, indi-

cating that our regression analysis does not show a good �t for these metrics.

Therefore, they are not valid candidates for our anomaly detection. These

seven metrics include all �ve ELB metrics. Other metrics, such as NetworkIn-

put, show relative correlation with the operation's event logs. However, corre-

lation and prediction power (Adj.R2) are not strong enough to be considered

as potential candidates for our anomaly detection. Based on the above results,

we select the four metrics that had the best prediction precision for further

112 Chapter 5. Rolling Upgrade Case Study

analysis: TerminatedInstance, StartedInstances, CPUUtilizationMaximum and

CPUUtilizationAverage.

C
h
a
p
ter

5
.
R
o
llin

g
U
p
g
ra
d
e
C
a
se

S
tu
d
y

113

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

NetworkOutMaximum

ELBLatencySum

ELBLatencyMaximum

ELBRequestCount

ELBLatencyAverage

ELBLatencyMinimum

NetworkInMaximum

NetworkInAverage

NetworkOutAverage

CPUUtilizationMinimum

NetworkOutMinimum

NetworkInMinimum

InServiceInstances

CPUUtilizationAverage

CPUUtilizationMaximum

StartedInstances

TerminatedInstances

40 Instance Prediction Ability 8 Instances Prediction Ability

Figure 5.9: Prediction ability for each monitoring metric, based on Adj.R2

114 Chapter 5. Rolling Upgrade Case Study

5.4 Assertion Derivation for Anomaly Detection

with Log-Metric Causality Learning

In the previous section, we identi�ed metrics that had a strong correlation

with the activities of the rolling upgrade operation. We now need to �nd out

which of these metrics are useful for the purpose of our anomaly detection

requirements. We articulate our anomaly detection objective as follows:

To verify the successful execution of upgrading VM instances to a new ver-

sion, using the rolling upgrade operation in the environment of Amazon EC2.

In more details, we aim to detect anomalies during an operation's execution

as mismatching values in the comparison of the actual value of a target metric

with a predicted value, which we calculate from a regression equation. To

this end, we explore the correlation and causalities of our regression model

to assess how well we can leverage it to satisfy the above anomaly detection

requirement.

5.4.1 Causality Analysis and Assertion Derivation: Im-

pact of Log Activities on Selected Metrics

One of the objectives of performing multiple regression analysis was to �nd an

explanatory relationship between independent variables (activities) and the

dependent variables (cloud metrics). In Section 5.3 we found the metrics that

have correlation with the operation's activities overall, yet we need to �nd

out which of the operations' activities are a�ecting a target metric, to derive

assertion speci�cations for our anomaly detection. In other words, we know

from correlation analysis that running rolling upgrade operation signi�cantly

a�ect few metrics such as the number of Terminated or Started Instance and

CPU Utilization, yet we don't know which of the activities reported in Table 5.1

have a contribution to the changes we observe in the resource metrics.

Based on above, we thus seek to distinguish the activities of the cloud op-

eration that are likely to a�ect one of the target metrics. In order to perform

such analyses, we considered the correlation coe�cient results for each predic-

Chapter 5. Rolling Upgrade Case Study 115

Table 5.3: Coe�cient Correlation - 40 instances - Terminated-Instances Metric

Predictors β Std. Error B p-value

Intercept (Constant) 0.083 0.027 � 0.003

A1_Start of Rolling upgrade 0.529 0.208 0.035 0.011

A2_Terminate Instance 1.139 0.026 0.836 0.000

A3_Instance Replacement -0.023 0.016 -0.019 0.168

A4_New Instance to go in service -0.023 0.018 -0.017 0.214

A5_Instance is ready 0.201 0.026 0.150 0.000

A6_Rolling upgrade completed -0.730 0.184 -0.058 0.000

*Note. β = Unstandardized regression coe�cient;

B = Standardized regression coe�cient.

tive metric of our multiple regression models generated by regression analysis.

We will �rst explain the process we used by applying it to the case of the

Terminated-Instances metric and the experiments with 40 instances. This is

followed by a summary of the results for the StartedInstances and CPUUti-

lization metrics, respectively.

We performed regression analysis and Table 5.3 shows the coe�cient cor-

relation result for each operation's activity. By considering the p-values in

Table 5.3, we observe that the correlation of the metric and activities A3 and

A4 are statistically insigni�cant (p > .05). Therefore, we conclude that the

corresponding two variables cannot explain the variation of the target variable.

Further, the standardized regression coe�cient (B) shows that the contribu-

tion of activities A1 and A6 are almost zero, and can also be excluded. These

observations allowed us to narrow the set of contributing activities down to A2

and A5. Rerunning multiple regression with only these two activities resulted

in the outcomes shown in Table 5.4.

Given the large di�erence between Activity A2 (0.836) and Activity A5

(0.15), presented in Table 5.4, it can be concluded that Activity A2 is the main

activity that has the highest correlation to the termination of an instance. The

respective log messages of the activity con�rm that the model was e�ective

in correctly identifying the activities that are related to the termination of

VMs. These �ndings can then be used to de�ne an assertion speci�cation, as

116 Chapter 5. Rolling Upgrade Case Study

Table 5.4: Coe�cient Correlation for identi�ed in�uential factors - 40 instances
- Terminated-Instances Metric

Predictors β Std. Error B p-value

Intercept (Constant) 0.051 0.021 � 0.018

A2_Terminate Instance 1.197 0.024 0.836 0.000

A5_Instance is ready 0.149 0.023 0.111 0.000

*Note. β = Unstandardized regression coe�cient;

B = Standardized regression coe�cient.

explained in Section 3.4.2, with the following equation:

PredictedTerminatedInstancesi = 0.051 + 1.197 ∗ A2i + 0.149 ∗ A5i (5.1)

We applied a similar approach for the regression analysis of other candi-

date metrics. Fig. 5.10 shows the importance or relative contribution of each

predictor for each candidate metric, similar to the one that is explained for

TerminatedInstances in Table 5.3, Table 5.4 and Equation 5.1.

5.4.2 Suitability of Metric for Anomaly Detection

Our key anomaly detection objective articulated at the beginning of this sec-

tion was: which of these metrics is most suitable to be leveraged for veri�cation

of successful execution of a rolling upgrade operation?

To �nd the answer to this question, two factors need to be considered:

• (i) which metrics have the best prediction ability using statistical infor-

mation?

• (ii) what types of metrics are best suited for the purpose of anomaly

detection?

In regard to the �rst consideration, among the available metrics, few show

a high correlation in the regression model. The predictive ability of Terminate-

dInstances is the highest, with R2 = 0.912 and Adj.R2 = 0.911 in Table 5.2.

Chapter 5. Rolling Upgrade Case Study 117

Such factual information can be a strong aid for an operator when �ltering

out all but the most relevant metrics, and to understand which metrics are

a�ected by which activities in an operation.

118
C
h
a
p
ter

5
.
R
o
llin

g
U
p
g
ra
d
e
C
a
se

S
tu
d
y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A5_Instance is ready

A2_Terminate instance

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A5_Instance is ready

A4_New instance to go in service

A3_Instance replacement

A2_Terminate instance

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A5_Instance is ready

A4_New instance to go in service

A3_Instance replacement

A2_Terminate instance

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

A6_rolling upgrade completed

A4_New instance to go in service

A3_Instance replacement

A2_Terminate instance

a) Predictors relative importance for TerminatedInstances b) Predictors relative importance for StartedInstances

d) Predictors relative importance for CPUUtilizationAverage c) Predictors relative importance for CPUUtilizationMaximum

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A5_Instance is ready

A4_New instance to go in service

A3_Instance replacement

e) Predictors relative importance for InSeriveInstances

Figure 5.10: Predictors' relative importance for selected monitoring metrics based on Standardized Coe�cient(B) - larger value indicates
higher contribution of an activity to the changes in a metric.

Chapter 5. Rolling Upgrade Case Study 119

With regard to the second consideration, given the anomaly detection re-

quirement for a rolling upgrade operation, state-based metrics that may re�ect

the target changes of the rolling upgrade operation should be the �rst candi-

dates. This is important because our anomaly detection has the objective of

�nding unintended changes in the number of terminated and updated VMs

while the upgrade operation is running.

Therefore, looking at state-based metrics is a rational choice, and thus we

considered TerminatedInstances and StartedInstances as the best candidates

for anomaly detection. Nevertheless, for the sake of comparison between the

results from state-based metrics (e.g. TerminatedInstances) and non-state-

based metrics (e.g. CPUUtilization), we demonstrate the evaluation result of

both types of metrics in the next section.

Note that other (types of) metrics might better suit anomaly detection with

di�erent goals. For example, if we had the objective of detecting performance

anomalies of cloud resources during rolling upgrade operations, then a CPU

utilization metric is likely to be more appropriate. Such outcomes could also

be employed for dynamic recon�guration of cloud auto-scaling policies when a

rolling upgrade operation is running, to e�ectively counter-balance the impact

of running these types of sporadic operations.

The reader may be concerned with how much is needed to relearn when the

conditions and con�guration of systems change. In our case study, the learning

process has been conducted from two di�erent learning data sets and both

lead to very similar conclusions, although the experiment with 40 instances

provided slightly more accurate learning, as there were more records of data

to be utilized for our statistical analysis.

As long as we have su�cient data for a statistical analysis, we can be sure

that even in the case of changing conditions, the result of identifying selected

metrics and the log event predictors that a�ect a particular metric will be

the same. For instance, the metric of TerminatedInstances will always show

high correlation with the activities of rolling upgrade (Fig. 5.9), or A2 in logs

(Fig. 5.10) will always have the highest impact on changing the TerminatedIn-

stance metric compared to other activities. However, how much the impact

120 Chapter 5. Rolling Upgrade Case Study

of activities on metrics will change if the system conditions or con�guration

changes needs further investigation.

Another question that may be asked is how precise the monitoring informa-

tion must be in order for the approach to work. Inevitably, if the precision of

the monitoring information is universally low, we might not be able to detect

a statistically signi�cant correlation between metrics and log events. However,

�rst, this becomes clear during the training phase, and second, thanks to the

emergence of the DevOps movement, the monitoring systems of most of the

current private and public cloud solution providers have comparable opera-

tional monitoring tools to CloudWatch - a survey and comparison of cloud

monitoring platforms is reported in [2].

As for the expressiveness of logs, the important point is that log events can

be distinguished from one another, that is, it is possible to determine which

particular event is represented by a log line. Besides timestamp information,

we do not further use the actual content of log lines, and hence the required

expressiveness is fairly low for our work.

5.5 Anomaly Detection Evaluation

In the previous sections, we investigated and discussed what steps should be

taken to perform log analysis, map log events to metrics, select the most rel-

evant metrics and derive a statistical model to learn the relationship between

activities reported in logs and changes in resource metrics. The purpose of this

section is to examine and evaluate the applicability of the proposed approach

to detect anomalies.

Therefore, in this section, we describe the evaluation method and we ex-

plain how we applied our approach to error detection in the rolling upgrade

case study. As argued in Chapter Two, our method is unsupervised � thus so

far for selecting metric and deriving assertion speci�cations we train it only on

data from normal instances of the operation processes, i.e. without injected

faults. But in this section, as it has focused on the evaluation of the approach,

we injected faults into 22 runs of rolling upgrade and used our learned model

Chapter 5. Rolling Upgrade Case Study 121

for prediction and fault detection. Additionally, we address the cases of anoma-

lies that result from ripple e�ects of faults, and present our technique that can

automatically distinguish them from direct e�ects of faults. Key insights and

lessons learned from our experiments are discussed at the end of the section.

5.5.1 Evaluation Method

In order to evaluate how well the derived assertions (Section 5.4) can detect

errors, we conducted a second experiment which was run independently from

the one used to learn the model. In this direction, the experiments were

conducted on Amazon EC2, upgrading eight instances, two instances at a

time.

Rolling upgrade was executed while multiple tasks (HTTP loads, CPU in-

tensive tasks, and network intensive tasks) were running, and faults simulating

individual VM failure were randomly injected into the system. We obtained

data on 22 rounds of rolling upgrade operations, including 574 minutes of

metric data and 5,335 lines of logs emitted by Asgard (Section 5.1.2).

As explained in Section 5.4, the equations derived from the multiple re-

gression model in the learning phase can be used to predict the values for the

target metrics, such as started and/or terminated instances within the last

minute: given the observed log lines, how many VMs should have been started

or terminated? If this predicted value does not match the actual value, an

anomaly is detected. In this direction, we wanted to �nd out how accurately

the proposed approach in this thesis could identify anomalies.

We hypothesise that in any given time window, in case there are anomalies

happening at runtime, our approach could identify most of these anomalies.

We expect these anomalies, such as sudden termination of a VM or a peak

on CPU usage, to be distinct from the impact of a rolling upgrade operation

because the e�ect of the activity of rolling upgrade operations on the status of

resources has already been taken into account to calculate the predicted value.

To this end, a total of 115 faults were injected in VMs involved in 22

rounds of rolling upgrade operation. Since the injected faults were all VM

failures, our approach tries to distinguish between VMs being terminated due

122 Chapter 5. Rolling Upgrade Case Study

Table 5.5: Classi�cation metric for the generated alarm

Fault Injected Fault Not Injected

Prediction 6= Actual: Alarm TP FP

Prediction = Actual: NO Alarm FN TN

to legitimate operational activity, and termination caused by faults. We chose

to inject faults that caused VM failures because the scope of our work has a

focus on DevOps/sporadic operations. For such operations � in particular, for

the rolling upgrade case study used here � the state of VMs is a prime source

of anomalies, as discussed in Section 2.2. Therefore, it was reasonable to inject

fault types that cause VM termination, rather than other types of faults.

The faults were injected automatically to the VMs every three to six min-

utes by a software service that was running in parallel with the rolling upgrade

operation. In our experiments, each fault was injected into the respective VM

separately. There were cases where two VMs went out of service due to two

separate fault injections within the same time window.

It is worth mentioning that rolling upgrade operations can be a time-

consuming process and they may target tens or hundreds of VMs. Hence

it is possible that more than one failure could occur during one rolling up-

grade operation, thus, having concurrent faults injected in a rolling upgrade

operation is more realistic than the opposite. When an anomaly is detected

during a time window, an alarm is issued, containing the information about the

di�erence between the expected value calculated from the regression equation

based on log events versus the actual number of terminations that occurred in

that minute, as indicated in the respective metric.

In order to measure the precision and recall of the prediction, we classi�ed

the result of the prediction into four categories: True Positive (TP), False Pos-

itive (FP), True Negative (TN), and False Negative (FN). Table 5.5 explains

these four categories in terms of an alarm being raised (or not), and a fault

is injected (or not). For any of the 574 minutes of data, we aim to raise an

alarm when a fault was injected (TP) or raise no alarm when no fault was

injected (TN). FP and FN thus mark cases where the prediction did not work

perfectly.

Chapter 5. Rolling Upgrade Case Study 123

These four categories are the basis for calculating precision, recall, and the

F-measure [83]. Precision is a measure to assess the exactness of the result,

i.e. the percentage of the valid issued alarms out of all issued alarms.

Precision(P) =
TP

TP + FP

Recall is a measure of completeness of correct alarms, i.e. the percentage of

injected faults where an alarm was raised.

Recall(R) =
TP

TP + FN

F-measure (or F1-score) is the weighted average (harmonic mean) of precision

and recall.

F1 = 2× P ×R
P +R

5.5.2 Evaluation Result with State-Based Metric

Given the discussion in Section 5.1.4 regarding direct and derived metrics, in

this section, we will focus on evaluating the proposed approach on a state-based

derived metric.

In order to evaluate the anomaly detection, we employ the assertion equa-

tion derived from Equation 5.1 and run the anomaly detection for all the

available data records. As our metric collection had one-minute time intervals,

the prediction also calculated at each minute and compared with the actual

value of the metric. We labelled the results of this default time window as zero

minute time window (0mTW). The precision, recall and F-score of running

22 rounds of rolling upgrade operation with 115 injected faults of 0mTW are

shown in Table 5.6.

In our study, we observed possible delays between an operation action and

its e�ect(s) becoming observable which may not be re�ected in 0mTW. For

instance, consider the duration of terminating one VM: the time between the

respective event being logged and the VM actually being terminated may vary

between 15 seconds and three minutes. It is thus not uncommon that a VM

is terminated in one minute, but the CloudWatch metrics re�ect only the

124 Chapter 5. Rolling Upgrade Case Study

Table 5.6: Evaluation results of state-based metric (TerminatedInstances) �
basic detection.

Evaluation Metrics 0mTW 1mTW 2mTW

Precision 0.567 0.712 0.745

Recall 0.670 0.914 0.921

F1-Score 0.706 0.826 0.849

termination in the next minute, or possibly later. This delay is observable in

the actions of legitimate operations, as well as in injected faults.

Therefore, we studied the results of applying three di�erent time windows

for prediction: zero minutes (0mTW), that is, only the current minute; one

minute di�erence (1mTW), that is, the current minute, the minute before,

and the minute after; and two minutes' di�erence (2mTW), that is, from two

minutes before to two minutes after. Please note that a longer time window

also delays when the result of the prediction becomes available. This is an

application-speci�c trade-o� in practice: is it worth waiting two minutes longer

for an alarm, if the F1-score increases by x?

The results of monitoring the operation based on the metric of Terminate-

dInstances and log context with the three di�erent time windows are shown

in Table 5.6. Precision, recall, and F1-scores are given without considering the

impact of the ripple e�ect of injected faults. It may be noted that there is a

signi�cant di�erence between the basic precision value of 0mTW and 1mTW:

0.145 (or 14.5%). The di�erence between 1mTW and 2mTW, in contrast, is

comparatively smaller. The recall changes in a similar fashion.

These observations can be explained because of the time delay that the

action of termination takes to be completed: the majority of terminations

are completed either within the current minute or the next minute � it rarely

takes longer than that. Time window size for alarms can be con�gurable in a

real-time monitoring system. For our experiment, we concluded that 1mTW

o�ers a good trade-o� between capturing most anomalies and keeping the delay

short, respectively.

Not all the e�ects of injected faults result in observable errors immediately.

There are cases where errors have ripple e�ects. Ripple e�ects may occur

Chapter 5. Rolling Upgrade Case Study 125

Table 5.7: Type of ripple e�ects observed in the experiment.

Occurrences Ripple E�ect Explanation

21 Rolling upgrade's attempt to

terminate a VM has no ef-

fect, since the respective VM

has already been terminated

by fault injection.

5 Fault injection's termination

attempt fails due to instance

being already terminated by

rolling upgrade.

2 Instance is terminated by

fault injection while waiting to

be started.

when the model predicts a particular change to one (or more) metric values,

but due to the fact that an anomaly has already occurred (e.g. a VM instance

prematurely terminated), the predicted change does not occur. This can lead

to further false alarms at a later stage of the operation's process. Table 5.7

shows three types of ripple e�ects we observed in the experiment, as well as

their numbers of occurrence.

The �rst two types of ripple e�ects are essentially race conditions when

rolling upgrade and fault injection both want to terminate a particular VM.

In particular, rolling upgrade retrieves the list of VMs to be replaced at the

beginning of the process, and subsequently goes through the list and attempts

to terminate instances. If a VM has already been terminated earlier by fault

injection � whether or not correctly detected by our approach at that time �

this is not taken into account by Asgard. Instead, the log states that Asgard

attempted terminating a VM, and no such e�ect is observed � hence an alarm

is raised. Since no fault had been injected at that time, the alarm is counted

as FP in the basic detection (cf. Table 5.6).

To distinguish actual failed predictions from ripple e�ects (where the pre-

diction behaved as expected), we analyzed all 30 FP and seven FN cases for

1mTW (in total 37 cases), by looking at details of the log lines and metrics.

We found that 28 out of 37 FN/FP cases were caused by ripple e�ects of fault

injection. Since the prediction behaved as expected in these cases, we apply

126 Chapter 5. Rolling Upgrade Case Study

Table 5.8: Evaluation results with state-based metric (TerminatedInstances)
� detection result with manual ripple e�ect re-classi�cation

Evaluation Metrics 1mTW_Ripple E�ect 2mTW_Ripple E�ect

Precision 0.923 0.925

Recall 1.000 1.000

F1-Score 0.960 0.961

a ripple e�ect detection algorithm to classify them as TP/TN, leading to the

results shown in Table 5.8 and in Fig. 5.11 respectively. In Section 5.5.4 we

discuss a method for automatic ripple e�ect detection.

5.5.3 Evaluation Result with Non-State-Based Metric

In the previous section, we demonstrated and discussed anomaly detection per-

formance utilizing TerminatedInstance as the main monitoring metric. In our

metric selection process (cf. Section 5.3), we observed that the non-state-based

(direct) metrics of CPUUtilizationMaximum and CPUUtilizationAverage also

have a fairly good correlation with the rolling upgrade log activities, though

not as high a correlation as TerminatedInstances. In this section, we follow

the same approach that was explained in detail in the previous section and

show the result of anomaly detection when using these CPU-related metrics,

and compare this with the results we obtained when using the Terminated-

Instances metric.

In the approach for the state-based metric, the threshold value is an indica-

tor of whether a change of state occurred or not, and whether that matches the

normal behaviour of the system. For non-state-based metrics such as CPU uti-

lization, a threshold indicates the value that separates outliers from the range

of normal values of the metric. In most statistical-based anomaly detection

techniques, standard deviations (σ) from the mean are used to detect outliers.

Often the values dispersed above ±2.5σ to ±3.0σ are considered outliers [102].

In our approach, the metric threshold indicates the acceptable range of di�er-

ence between the values calculated from the regression formula and the actual

value of CPU utilization. Any observed values above this range are considered

Chapter 5. Rolling Upgrade Case Study 127

anomalies. In our experiment, we consider the di�erences of the predicted

and the actual value of CPU utilization that are within accepted standard

error of estimate and smaller than one standard deviation ±1σ from mean to

be normal, otherwise, an alarm is registered. The use of tighter thresholds

than in the literature becomes possible in our setting, since we gain additional

precision from analyzing the process context.

As in the experiments for TerminatedInstances, we have used the two sepa-

rate datasets for learning and evaluation. Both the learning and the evaluation

system were monitored and exposed to a workload averaging approx. 40% CPU

utilization of the respective EC2 Auto Scaling Group's aggregated CPU power,

with a standard deviation of 2.05% CPU utilization. The systems under test

for evaluation were also exposed to an additional CPU workload task of 20%

CPU utilization on average. This additional load was injected periodically: it

lasted between two and three minutes, followed by no additional load for two

minutes, and then repeated.

In contrast to regular anomaly detection methods in the literature, where

the metrics are the main source of information, we have contextual informa-

tion from the operation, and we obtained the approximate e�ects of oper-

ation activities on resource consumption from the learning dataset through

regression analysis. Among all the log activities of the operation, Activity A4

(New instance to go in service) had the highest impact on CPU utilization

(cf. Fig. 5.10) while A2, A3 and A5 had very low impact on CPU Utilization,

and A1 and A6 did not show any observable impact. Our approach accounted

for the impact of these activities, based on Equation 5.1, by means of which

we learned the assertion from the learning dataset. With this assertion, we

predicted values for the evaluation dataset and raised alarms where the predic-

tion did not match the observed metric values. Then we classi�ed each time

window as TP, TN, FP, and FN as before, and calculated precision, recall, and

the F1-score. The results are given in Table 5.9, 5.10 and Fig. 5.11

The precision and recall for a zero minute time window, as shown in Ta-

ble 5.9, 5.10 and Fig. 5.11, are very low for both CPUUtilizationAverage and

CPUUtilizationMaximum. When expanding the time window to one minute

128 Chapter 5. Rolling Upgrade Case Study

Table 5.9: Evaluation Result with Non-State-Based Metrics for CPUUtiliza-
tionMaximum

CPUUtilizationMaximum

Metric 0mTW 1mTW 2mTW 1mTWRipE� 2mTWRipE�

Precision 0.212 0.399 0.595 0.427 0.614

Recall 0.728 0.798 0.917 0.814 0.918

F-Score 0.329 0.532 0.721 0.560 0.736

Table 5.10: Evaluation Result with Non-State-Based Metrics for CPUUtiliza-
tionAverage

CPUUtilizationAverage

Metric 0mTW 1mTW 2mTW 1mTWRipE� 2mTWRipE�

Precision 0.235 0.433 0.701 0.464 0.716

Recall 0.833 0.789 0.895 0.828 0.914

F-Score 0.367 0.559 0.786 0.594 0.803

before and after (1mTW), the results improve. But the best results were ob-

tained by using two-minute time windows (2mTW) as most of the detection

happened within one minute time window, it was expected expanding the time

window further to two minutes improve the result slightly more. Based on our

analysis and understanding, we hypothesize that there are two reasons for this

observed delay of the e�ect of VM failures based on CPU metrics. The �rst

reason is similar to an e�ect on TerminatedInstances: a VM that is in state

�terminating� may still send metrics to CloudWatch for some time within the

tens of seconds.

The second hypothesized reason is the cycle that an instance going into

service experiences: (i) While it boots up, its CPU utilization is 100%; at

some point during boot-up, CloudWatch data starts being collected for this

instance, and registered for the Auto-Scaling Group. (ii) Once boot-up is com-

pleted, the CPU utilization drops to less than 10%, as the VM does not yet

receive requests. (iii) Finally, the machine is registered with the load balancer

and receives requests. Soon after that, its CPU utilization becomes similar

to that of the other machines in the ASG. Due to (i) and (ii), the start of a

VM can have a strong distorting e�ect on the CPU utilization, in particular,

CPUUtilizationMaximum can be distorted by (i). The whole procedure typi-

Chapter 5. Rolling Upgrade Case Study 129

cally completes within less than two minutes for the VM con�guration we used,

and hence we hypothesize that the e�ect becomes less impactful for detection

with 2mTW.

It may be noted that there is a considerable gap between anomaly detec-

tion delay between TerminatedInstance and CPUUtilization. This observa-

tion can be explained as follows. For the case of detecting anomalies with

TerminatedInstance, we had the information to decide when the termination

happened and whether it was the result of a legitimate process or our fault

injection, and that helped us to detect failures as soon they occurred. In

contrast, when we attempt to detect a failure from metrics based on CPU

utilization, there are additional factors that complicate detection further.

5.5.4 Ripple E�ect Detection

In the previous subsections, we discussed the presence and sources of ripple

e�ects of errors, and how we manually identi�ed them as anomalies. We showed

that our approach achieves high accuracy of detecting injected failures when

ripple e�ects are accounted for.

Anomalies detected in a system are reported through some form of alerts

or noti�cations. As discussed previously, excessive amounts of less important

alerts and noti�cations can cause alert fatigue, and this concern also applies

to the detection of anomalies caused by ripple e�ects. The remaining open

question therefore is: how can we detect ripple e�ects automatically? In more

detail, how can we distinguish if a detected anomaly stems directly from an

error vs. from the ripple e�ect of an error? If we can answer this question, we

can suppress alerts from the latter.

In this section, we describe our approach to addressing this issue, i.e. a

mechanism to automatically detect ripple e�ects of errors. To this end, we

kept track of the instance identi�ers, which are present in both the metrics

data and in the operation's logs. Additionally, we already had the timestamps

of the event logs � e.g. the time that the termination of an instance had been

triggered. Given this information, as well as the records of detected anomalies,

we determined if a raised anomaly is related to an already a�ected VM or not;

130 Chapter 5. Rolling Upgrade Case Study

a) Precision

b) Recall

c) F-Score

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

0mTW 1mTW 2mTW 1mTW_RipEff 2mTWRipEff

Precision

TerminatedInstance CPUAverage CPUMaximum

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

0mTW 1mTW 2mTW 1mTW_RipEff 2mTW_RipEff

Recall

TerminatedInstance CPUAverage CPUMaximum

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

0mTW 1mTW 2mTW 1mTW_RipEff 2mTW_RipEff

F-Score

TerminatedInstance CPUAverage CPUMaximum

Figure 5.11: Results for three di�erent time windows and with ripple e�ects
for CPUAverage and CPUMaximum vs. TerminatedInstance.

Chapter 5. Rolling Upgrade Case Study 131

Algorithm 1 Ripple e�ect detection in the process of anomaly detection

1: while rolling upgrade is not completed do

- Input:

2: opsLogs ← Read Logs at each minute

3: metricsActual ← Read metric at each minute

- Anomaly Detection:

4: metricEstimated ← Estimate metric with regression equation

5: if metricEstimated = metricActual then
6: anomaly ← false
7: else

8: anomaly ← true
9: end if

- Ripple E�ect Detection:

10: if anomaly = true then
11: failedVMs ← retrieve latest list of VM instances that were failed

12: if the error has been already reported then

13: anomalyType ← rippleEffectWarning
14: else

15: anomalyType ← directErrorAlert
16: end if

17: ReportAnomalyWithAnomalyType(anomalyType)
18: end if

19: end while

if not, we tag the anomaly as a ripple e�ect. The pseudo-code of this ripple

e�ect detection algorithm is shown as Algorithm 1. In the implementation

of this method, if our method decides that a detected anomaly is a direct

failure, we raise an error alert ; if it is a ripple e�ect, we raise a warning alert.

Suppressing the latter is a simple con�guration change.

We then applied the implementation of Algorithm 1 to the entire fault in-

jection experiment. First, we re-ran the detection with automatic ripple e�ect

detection enabled for fault detection, based on the metric TerminatedInstances.

The three types of ripple e�ects we observed in our experiments are shown

in Table 5.7. Out of the total of 28 ripple e�ects, �ve were related to our fault

injection process and thus they had no e�ect on the rolling upgrade process.

Their presence is thus an e�ect of the experimental set-up and should not be

taken into account. Therefore, we did not count these at all.

Out of the remaining 23 ripple e�ects, our automatic ripple e�ect detection

managed to automatically detect 21. These ripple e�ects were related to the

VM instances that the rolling upgrade operation intended to terminate and

replace, but the instance had already gone out of service due to injected faults.

132 Chapter 5. Rolling Upgrade Case Study

The remaining two ripple e�ects could not be detected automatically; they

were associated with two VM instances that were in the state �pending to be

started� when the faults were injected. Hence, fault injection did not cause

the VM instances to be terminated, and they bypassed our automatic ripple

e�ect detection.

For the CPU utilization-based detection, the technique applies in the same

way: any of the 21 FPs caused by a ripple e�ect that we could detect was

corrected. If a ripple e�ect was not detected in the �rst place, it was already

classi�ed as a TN � in other words, the fact that the error detection missed

it actually played out in its favour, i.e. higher precision. For detection based

on CPUUtilizationMaximum with 2mTW, this was the case in 16 cases. For

2mTW and CPUUtilizationAverage, this case occurred 18 times. The auto-

matic ripple e�ect detection here worked correctly in the remaining �ve and

three cases, respectively.

5.6 Summary and Lessons Learned

We have shown that our approach is e�ective in detecting anomalies whilst

cloud rolling upgrade application operations were running. It is worth noting

that the proposed method is a non-intrusive approach: it does not require

changes to cloud application or platform code, the content of the logs, or the

monitoring metrics. Although our approach is non-intrusive, it depends on

information from operations' logs and monitoring metrics. We assume that

having higher-quality logs and metrics can improve the quality of anomaly

detection. It can also help to improve the resiliency built into operations.

For instance, we observed several cases where the rolling upgrade process

attempted to terminate instances that had already gone out of service. This

�nding gave us an understanding of two limitations of this operation: (i) the

operation did not check the status of the instance before attempting to de-

register and terminate the instance; and (ii) the unavailability of the instance

was not logged. These insights can be used to improve the rolling upgrade

operation and its logging.

Chapter 5. Rolling Upgrade Case Study 133

Another insight we gained was related to the process of collecting moni-

toring data. Collecting monitoring data for resources on a large scale and for

24 hours a day can be a costly process, and so it is important to collect mon-

itoring data e�ciently. Our case study and analysis showed that integrating

the context of the operation's behaviour from logs with resource metrics can

reveal which metrics we need for anomaly detection. To this end, we anticipate

that adopting our approach to correlate an operation's behaviour derived from

logs with monitoring metrics can also help to improve management of DevOps

operations in the following ways:

• to understand the limitations of log content, and thus to improve the

quality of the logging where needed;

• to have statistical information about the importance of metrics and if

the given frequency of monitoring data is su�cient; and

• to derive new requirements for improving operational processes.

134 Chapter 5. Rolling Upgrade Case Study

Chapter 6

Flight Data Processor Case Study

In the previous chapter, we evaluated di�erent stages of the proposed approach

of this thesis in a comprehensive case study of rolling upgrade with di�erent

con�guration settings. In this chapter, we extend our evaluation in order to

assess the applicability of the proposed approach for second case study on

Flight Data Processor(FDP).

We will follow the same steps in our framework that were explained in

Chapters 3 and 5, thus, we give a concise explanation of each step while pro-

viding more explanation about the nature of the case study, the di�erences

between this case study and the rolling upgrade case study, and the results

obtained from running the experiments.

Similar to the previous chapter, we aim to evaluate to what extent we can

answer the research questions of this thesis. In particular, we are looking to

investigate the applicability and generalisability of our approach in a di�er-

ent environment from the previous case study of rolling upgrade. The case

study used in this chapter has key di�erences with the case study of rolling

upgrade, including environment, the scale of monitoring data and the format

and structure of logs and metrics, which some of these di�erences are explained

below.

• The previous case study was based on a public cloud provider (Amazon

EC2), while in this case study, the service is hosted on private in-house

servers.

135

136 Chapter 6. Flight Data Processor Case Study

• In contrast to having the well-developed and systematic monitoring solu-

tion of CloudWatch, monitoring in this case study relies on native Linux

operating system monitoring mechanism. In particular, the granularity

of the sampling rate of resource monitoring for these two settings are

signi�cantly di�erent: a one-minute sampling rate in CloudWatch versus

a 100-millisecond sampling rate for this case study.

• Rolling upgrade is a sporadic operation which is often executed with

irregular frequency and is an administrative operation, while this case

study focuses on a middleware operation which is a type of ongoing

operation used for an application service.

• Most importantly, in terms of the scale of log �le, the middleware log

used in this case study is signi�cantly larger compared to the rolling

upgrade case study. In particular, this case study has over eight times

more unique log event types.

6.1 Experimental Set-Up

The data of this project and the description given in this section has been

made available to the author of this thesis by Ra�aele Della Corte, Marcello

Cinque, and Antonio Pecchia from Dipartimento di Informatica e Sistemistica

- Università degli Studi di Napoli Federico II. The content of this section

originates from [26] and personal communication.

System Overview

The system used for this case study is a middleware platform for the integration

of mission-critical distributed systems for an air tra�c control (ATC) system.

The middleware is a complex modular Java system, which allows integrating

a variety of legacy ATC applications, such as �ight data processors (FDPs)

and controller working positions (CWPs). The middleware runs on the JBoss1

application server.

1http://jbossas.jboss.org/

Chapter 6. Flight Data Processor Case Study 137

Figure 6.1: High-level architecture of the middleware prototype instrumented
with the monitoring system

The high-level architecture of the prototype is shown in Fig. 6.1, together

with the deployment of the monitoring service. The prototype has been pro-

vided with two ATC applications, that is, a �ight data processor application,

which generates and updates �ight data (i.e., data that describe a �ight, such

as arrival and departure time and �ight trajectory) and publishes the data on

the middleware, and a web-based controller working position, which receives

the �ight data from the middleware and presents it on a web console.

The middleware platform consists of transport and adapting layers. The

transport layer ensures the communication between the FDP and CWP ap-

plications, according to the publish-subscribe paradigm. The adapting layers

allow applications FDP and CWP to use the middleware and its services. The

Business Activity Monitor (BAM) is a service that automates the collection

of system probes and execution data, allowing it to monitor the behaviour

of systems consisting of several nodes/services running on Linux operating

systems.

The data collection from system probes is conducted by the monitoring

agent using the loadable kernel module (LKM) of the Linux operating system.

The Linux kernel stores all the information about each running process into

138 Chapter 6. Flight Data Processor Case Study

a process descriptor, which contains information such as data describing the

open �les of the process, its state and its resources usage (e.g., CPU and RAM).

The middleware has been deployed in a con�guration consisting of two

nodes (two separate virtual machines of Intel Xeon E5-1620 v2 - 8 cores, 16

GB RAM, 1 GB/s network interface and running Ubuntu 14.04) that emulate

an ATC system. The testbed is shown in Fig 6.1. Two nodes run (i) an FDP

application and a web-based CWP application, respectively, (ii) an instance of

JBoss application server with the middleware, and (iii) the monitoring service

which hosted on a separate machine, allowing monitoring data collection and

visualisation.

It is worth noting that while the experimentation has been conducted in a

controlled testing environment, the applications emulate a real ATC system.

The source code of the FDP and adapting layers of the middleware have been

instrumented by means of rule-based logging; the OS processes running the

FDP and the middleware are monitored by the kernel probes collected with a

period of 100 ms.

The FDP both generates the data and updates the �ight information. The

web-based CWP receives data from the middleware and presents �ight infor-

mation on a web console. The system was exposed to simulated workload over

a duration of around six minutes, producing around 4,000 log lines.

To force the collection of data under failure conditions, errors were emu-

lated into randomly selected pieces of code of the FDP application. As with

experimental organisation, �rst, monitoring data were collected in a normal

(error-free) mode, then three types of errors were emulated, including active

hangs that are emulated by triggering an in�nite loop, passive hangs that are

emulated introducing a wait on a locked semaphore, and crashes which are

induced by deliberately dereferencing a null pointer. In this process, for each

experiment, the middleware and the applications are started. Then the sys-

tems are exposed to a normal workload. Next, error emulations are performed

2-3 minutes after the beginning of the run.

The focus in our analysis in this chapter is on JBoss middleware logs of the

FDP machine, and available resource monitoring data. The normal run of the

Chapter 6. Flight Data Processor Case Study 139

operation is used as the source for the learning phase, and the operation runs

that contain errors for anomaly detection evaluation.

6.2 Log Analysis

This section describes how we process log �les, identify unique log event types,

represent log events in a quantitative form and cluster highly correlated log

event types to a set of log activities.

The prerequisite step to process logs in our approach is to make sure that

log events include timestamps. Timestamps are necessary to track log events

and also to map the occurrence of log events to metric observations. Unlike

the rolling upgrade logs, where all log events were presented in separate log

lines and they had timestamps, in this case study we found that some log

event types are dispersed across multiple lines, as shown in Listing 6.1. To

prepare the log for further analysis, we implemented a module to standardize

the log events, in which all of them contain a timestamp and each log event is

encapsulated in only one log line.

Listing 6.1: Example of log event reported in multiple lines

Line1: 2015 -09 -28 12:24:44 ,332 INFO [SWIM_SUIT.SDS] (http -swim

-host2F192 .168.0.52 -8180 -1) [SWIMSharedDatastoreBean]

getData () : trying to retrieve data with key:

Line2: dataDomain: FDD

Line3: dataIdentifier : :

Line4: stakeholder_ID: SELEX_TWR_LIMC

Line6: dataType: com.selex.swim.fdd.sharedData.

FDDSharedDataKind@3f54dda7

6.2.1 Log Event Type Extraction

To observe how the activities reported in log events change the state of re-

sources, we are interested in tracking the occurrence of log events. We needed

a way to parse and trace log events. As we explained in Chapter 3, we employ

regular expressions to derive a template of event logs. At this stage, the goal

of log parsing is to extract the pattern of recurring event logs by automatically

140 Chapter 6. Flight Data Processor Case Study

separating the constant and variable parts of a raw log message, and further

transform each log message into a speci�c log event type. In this process of

regular expression extraction, the raw log messages are transformed into a set

of unique structured log events. For each new log line, the log event is com-

pared by pattern matching with regular expressions, and if a pattern is not

found, the above steps are repeated for the new log line.

The middleware server log �les in our case study have around 4,000 log

lines. Extracting regular expressions and �nding unique event types in such a

volume of log lines cannot be done in a manual way. Therefore, we employed

a tool called POD-Discovery to generate regular expressions for unique log

events. POD-Discovery is a log abstraction tool [130] which can be used to

cluster low-level event traces into higher-level events. The desired level of

abstraction from low-level logs to higher-level logs depends on the system to

be monitored.

Similar to our approach for the rolling upgrade case study, POD-Discovery,

as its core concept, tokenises each log message to several tokens. The tokens

of a log message can be divided into two parts: the constant parts and the

variable parts [54]. The constant tokens of a recurring log event remain the

same for a recurring log event by default, while the variable tokens hold the

runtime information of a recurring log event, like an IP address or a port

number.

In the process of regular expression extraction, the constant tokens are used

as an exact string, while the variable tokens are expressed with a regular expres-

sion that matches the variable parts. For example, the log message containing

�Class Loader Updated� will be expressed as �Class\sLoader\sUpdated�, where

�\s� matches whitespace (spaces, tabs and new lines). As an example of a vari-

able token, �Thread-37� will be de�ned as �Thread-\d+� where �\d+� indicates

that the thread ID can be of a number with one or more digits. POD-Discovery

provides a con�guration �le where the variable tokens can be de�ned with reg-

ular expressions, and by means of this, all the variable tokens are replaced

with the allocated regular expression in the process of log transformation. We

used this feature to customize POD-Discovery for the this case study.

Chapter 6. Flight Data Processor Case Study 141

POD-Discovery employs a token distance measure using Levenshtein dis-

tance [77] for string comparison. This method is used as a metric to know how

many similarities exist between a token of one log event and another one. This

tool provides a scale for adjusting the desirable similarity distance measure,

which can be used as a threshold to cluster low-level logs to a higher-level ab-

straction. Fig 6.2 shows a snapshot of the dendrogram diagram generated from

processing FDP middleware server logs. Yellow circles show the tree nodes at

10% similarities, and selecting each node shows the log events under the tree

hierarchy of that node at the bottom of the screen.

For pattern extraction of unique log events from logs in our study, we

began to set a distance measure of minimum similarities and we generated

log clustering. Our initial inspection of clustered logs at the minimum level

showed that they were too low, as there were similar log events dispersed over

two or three activities. After trying this and a few rounds of inspection and

gradually increasing similarity levels, we found the 20% distance threshold

gives us a level which grouped highly similar log events into individual groups.

Fig 6.3 shows a snapshot of the log clustering output. Each cluster/section

contains similar log events that refer to one log event type. Once a desirable

log similarity threshold is chosen, the clustered logs can also be inspected

manually and wherever necessary they can be �ne-tuned by either combining

two or several clusters together or by splitting the logs of one cluster into

smaller ones. Fig 6.3 shows a snapshot of the log events of FDP logs that form

unique log event types. Further details about the POD-Discovery tool can be

found in [130].

In order to extract a regular expression pattern that identi�es unique log

event types, we processed the sanitised (pre-processed) middleware server log

�le with POD-Discovery at 20% similarity distance. The output of processing

4,000 lines of middleware server log led to 155 unique log event types. The

above outcome, especially compared to the rolling upgrade case study where

we were dealing with 18 event types, demonstrates that employing the above-

described method signi�cantly facilitates the processing of a large log �le for

the extraction of a fairly large number of log event types.

142
C
h
a
p
ter

6
.
F
lig
h
t
D
a
ta

P
ro
cesso

r
C
a
se

S
tu
d
y

Figure 6.2: A screenshot of POD-Discovery - yellow circles show the tree nodes at 10% similarities, the selected node shows the log events
under the tree hierarchy of that node at the bottom of the screen

C
h
a
p
ter

6
.
F
lig
h
t
D
a
ta

P
ro
cesso

r
C
a
se

S
tu
d
y

143

Figure 6.3: A snapshot of POD-Discovery output for identifying log event types

144 Chapter 6. Flight Data Processor Case Study

6.2.2 Representing Log Event Type

as Quantitative Metric

In the previous section, we extracted the regular expressions that represent

unique event types. In Chapter 5 for the rolling upgrade case study, the

monitoring data from Amazon Cloudwatch was available at not less than one-

minute intervals. Therefore, we used a one-minute time window for mapping

the activities of logs, based on their timestamps.

Middleware logs in the case study of this chapter are available with the

precision of milliseconds, however, the occurrence of logs varies between a few

milliseconds to a few seconds. Monitoring metrics are reported in near2 100-

millisecond intervals. Given the interval occurrence of logs and the availability

of the data, we decided to choose a one-second interval as the default time

window. This time window is small enough to provide �ne-grain monitoring

and not so small that the lasting impact of the operation's action on resources

would lead to too many false alarms.

Similar to what we explained in Chapter 3, Section 3.3.1 and for Chapter 5,

Section 5.2.1, we extract a metric that shows the occurrence of log events based

on the interpolated occurrence strength of each event type. The di�erence

between the rolling upgrade case study and this case study is the size of the

time window.

As discussed in Chapter 3, given a log event type is denoted as e, the

smallest unit of time that logs can track is denoted as x, the interval of time

that monitoring metrics are available is denoted as tw, and Dtw represents the

duration of time window, then the weight-timing occurrence of an event type

at time x of a current time window and the next time window can be obtained:

en(tw) =
Dtw − x
Dtw

en(tw+1) =
x

Dtw

So for the sum of n times occurrences of an event type for a time window,

we have:

2Actual interval varies between 100 and 105 milliseconds.

Chapter 6. Flight Data Processor Case Study 145

Etw =
i=n∑
i=1

en(tw)

The process of deriving log counting metrics based on the above is auto-

matically executed using our anomaly detection prototype. For instance, given

these two log events:

2015 -09 -28 12:26:16 ,562 INFO [SWIM_SUIT.FDD] (Thread -37) [

FDD_FlightDataListener_Impl] Class Loader Updated

2015 -09 -28 12:26:16 ,974 INFO [SWIM_SUIT.FDD] (Thread -37) [

FDD_FlightDataListener_Impl] Class Loader Updated

the two log events from the same event type here occurred two times within

the one-second time window in the timestamp 12:26:16 at 562 and 974 millisec-

onds, respectively. We obtain the interpolated occurrence strength as below:

e112:26:16 =
1000− 562

1000
= 0.438 e112:26:17 =

562

1000
= 0.562

e112:26:16 =
1000− 974

1000
= 0.026 e112:26:17 =

974

1000
= 0.974

Then the interpolated occurrence strength for e1 in the current time window

and the next time window are obtained as follows:

E112:26:16 = 0.438 + 0.026 = 0.464

E112:26:17 = 0.562 + 0.974 = 1.536

As the result shows, the impact of the occurrence of log events is distributed

between two time windows (two seconds), where we have a higher interpolated

occurrence strength for the second time window. Similar steps are applied

automatically using a Java module, and thereby the metrics of the interpolated

occurrence strength of log event types are derived for all the 155 event types

146 Chapter 6. Flight Data Processor Case Study

at each second. Fig 6.4 shows a snapshot of few records of this matrix: E27

to E48 show event types 27 to event type 48, and the zero value indicates no

occurrence of the event type within that timestamp.

C
h
a
p
ter

6
.
F
lig
h
t
D
a
ta

P
ro
cesso

r
C
a
se

S
tu
d
y

147

Figure 6.4: A snapshot of the log event type matrix of interpolated occurrence strength of each event type at di�erent timestamps

148 Chapter 6. Flight Data Processor Case Study

6.2.3 Log Event Type Correlation Clustering

In the approach of this thesis, we are interested in �nding the log event types

where their occurrences are highly correlated, regardless of the similarity or

the dissimilarity of their log message. In the previous sections, we derived a

metric of interpolated occurrence strength of log events. In this section, we use

these metrics to �nd the correlation between log events. In this direction and

similar to the rolling upgrade case study, we leveraged the Pearson correlation

coe�cient to identify the highly correlated log event types.

We de�ned a rule for event types to be grouped together when they had

a correlation strength of more than 75% (Pearson-r > 0.75), where the values

are shown to be statistically signi�cant (i.e. p-value < 0.01). In other words,

as a rule, any event type of an activity should indicate at least 75% correlation

with any other event type of the group that formed an activity. Fig. 6.5 shows

a portion of the correlation matrix generated from the interpolated occurrence

strength of log event types.

As a result of our correlation analysis, the event types are grouped into 17

log activities. The number of log event types associated with a group varies

widely from one event type in a group to over 20 event types in a group. We

named these event type groupings from Log Activity 01 until Log Activity 17.

It is worth noting that in this process of log analysis and clustering, we

relied on statistical analysis only, so we neither analysed the context of the log

nor used domain knowledge for clustering log events.

C
h
a
p
ter

6
.
F
lig
h
t
D
a
ta

P
ro
cesso

r
C
a
se

S
tu
d
y

149

Figure 6.5: A snapshot of a correlation matrix (generated by SPSS) of interpolated occurrence strength of event types.

150 Chapter 6. Flight Data Processor Case Study

6.3 Metric Selection

As discussed in Chapter 3, and similar to the rolling upgrade case study, in

this section, we aim to �nd which of the metrics have the highest sensitivity

to the log activities from the operation.

For this case study, we received middleware monitoring data collected from

system probes by the loadable Kernel module (explained in Section 6.1). The

monitoring data includes several metrics with timestamps of approximately

100-millisecond frequency. Table 6.1 shows the list of metrics of monitoring

data that were available with timestamps.

It is worth noting that there were some other monitoring metrics included

in the data of the case study such as Load Average and Network tra�c-related

metrics show sensitivity to the activities of operation. However, due to the

lack of timestamps for monitoring records, we had to disregard them for the

analysis. This is because timestamp is a pre-requisite for our analysis in order

to map the log activities to the monitoring metric data.

As can be seen in Table 6.1, among the metrics that were available with

timestamps, some of these could not be used for statistical analysis as they

did not come with complete data: their values were �lled with zero or just

one constant value was recorded for all the metrics records. Therefore, we

dropped these non-suitable metrics for our analysis, which are listed as Not

Valid metrics in Table 6.1. As a result of this, we ended up having 11 metrics

that were suitable for the statistical analysis.

Based on the above outcome, we used the monitoring metrics, along with

the metrics derived from the log activities, and performed regression analysis to

assess how well each target monitoring metric shows sensitivity to the activities

reported in the logs. Similar to the rolling upgrade case study, the metrics from

the log activities are taken as the predictor variables in our regression analysis,

and each resource metric as a target metric. The result of applying regression

is shown in Table 6.2.

Similar to what we had for the rolling upgrade case study, in the table, R

denotes the correlation between a given monitoring metric and the occurrences

of activities from the event logs, and R2 indicates how well the model predicts

Chapter 6. Flight Data Processor Case Study 151

Table 6.1: List of available metrics

Metric Validity Status

CPU usage - (Average of: CPU usage - core 0, CPU usage -

core 1, CPU Usage - core 2, CPU usage - core 3)

Valid

number of voluntary context switches Not Valid

number of involuntary context switches Not Valid

RAM usage Valid

VM current size Valid

VM peak size Valid

VM currently resident in RAM Valid

peak of VM resident in RAM Valid

VM size for data Valid

VM size for stack Not Valid

VM size for code Not Valid

number of page faults Valid

disk read Not Valid

disk write Not Valid

number of opened �les Valid

number of sockets Valid

heap size Valid

Table 6.2: Coe�cient correlation and coe�cient determination results for each
metric

Metric R R2 Adj.R2 p-value

CPU Usage 0.877 0.769 0.761 0.000

RAM usage 0.198 0.039 0.008 0.218

VM current size 0.716 0.513 0.498 0.000

VM peak size 0.542 0.294 0.271 0.000

VM currently resident in RAM 0.186 0.034 0.003 0.0

Peak of VM resident in RAM 0.208 0.043 0.012 0.141

VM size for data 0.308 0.095 0.064 0.0

Number of minor page faults 0.273 0.074 0.045 0.000

Number of opened �les 0.380 0.145 0.115 0.0

Number of sockets 0.381 0.145 0.116 0.000

Heap size 0.246 0.060 0.028 0.021

152 Chapter 6. Flight Data Processor Case Study

new observations. R2 is used to assess the predictive power of the regression

model for the given predictors and target variables [99]. Adj.R2 is a modi�ca-

tion version of R2 that adjusts for the number of predictors in a model [99].

Prediction abilities of the metrics based on the value of Adj.R2 are shown in

Fig. 6.6.

By looking at Table 6.2 and Fig. 6.6, we observe the only metric that shows

strong values of R2 and Adj.R2 is the CPU usage with values of 0.769 and 0.761

for R2 and Adj.R2, respectively. Second to CPU usage is VM current size, with

a correlation coe�cient of R2 = 0.513 and Adj.R2 = 0.498, which indicates not

as strong correlation as for CPU usage. The rest of the metrics show almost

none to fairly low correlation to the log activities.

Given the above outcome, CPU usage is the best metric candidate for using

the log as the context, along with the metrics, for anomaly detection. The

strong value for the CPU metric suggests that the variation of the CPU usage

metric should be explained by our regression model and therefore, changes in

values in the CPU that may not be predicted from the log activities may be

the indicator of anomalies in a system. We will investigate this hypothesis in

the next section.

0.3%

1.2%

2.1%

4.5%

6.4%

11.5%

11.6%

21.8%

27.1%

49.8%

76.1%

0.0% 10.0% 20.0% 30.0% 40.0% 50.0% 60.0% 70.0% 80.0%

VM currently resident in RAM

Peak of VM resident in RAM

Heap size

Number of minor page faults

VM size for data

Number of opened files

Number of sockets

RAM usage

VM peak size

VM current size

CPU usage

Prediction Ability

Figure 6.6: Prediction ability for each monitoring metric, based on Adj.R2

Chapter 6. Flight Data Processor Case Study 153

6.4 Assertion Derivation

As mentioned before, one of the objectives of performing multiple regression

analysis is to �nd an explanatory relationship between the independent vari-

ables (activities extracted from logs) and the dependent variables (monitoring

metrics). In the previous section, we identi�ed CPU usage as a good candidate

metric, as it had high correlation with the log activities. In this section, we

aim to �nd out which of the log activities are a�ecting the target metric (CPU

usage), in order to derive assertion speci�cations for our anomaly detection.

In this direction and based on one of the research questions (RQ3) of this

thesis, we would like to investigate the generalisability of our approach on

identifying the in�uential log activities of this case study. Based on our �ndings

with the �rst case study, we expect by employing the exploratory power of

regression analysis we would be able to derive assertion speci�cations where the

value of the metric at each time window could be predicted from log activities

based on the derived assertion equation.

In order to perform such analyses, we take the regression coe�cient for

each predictive metric of our multiple regression models generated by the re-

gression analysis, based on the steps discussed in Section 3.4 and similar to

the one applied in the rolling upgrade case study. In this process, log activities

are taken as input predictor variables and CPU usage as the target variable,

and then the regression results are obtained3. The coe�cient results for all

predictors are shown in Table 6.3.

The key indicator for identifying predictors that do not have signi�cance

on a regression model is by looking at the p-value. Therefore, by checking the

p-values in Table 6.3, we observe that the coe�cients of the activities A01,

A02, A03, A04, and A09 are statistically insigni�cant (p > .05) 4. These

observations allowed us to narrow the set of contributing activities down to

the 11 activities that are shown in Table 6.4.

Rerunning multiple regression with activities that have statistical signi�-

cance (p < .05) resulted in the outcomes shown in Table 6.4. By looking at the

3We performed all our statistical analysis, including generating regression coe�cient re-
sults, using IBM SPSS (https://www.ibm.com/analytics/au/en/technology/spss/).

4The p-value of 0.05 is commonly chosen as an acceptable level of signi�cance [41, 98].

154 Chapter 6. Flight Data Processor Case Study

Table 6.3: Coe�cients for identi�ed in�uential factors

Predictors β Std. Error B p-value

Intercept (Constant) 1.480 0.104 � 0.000

A01 0.186 0.770 0.008 0.810

A02 -0.363 0.818 0.010 0.658

A03 -0.1.257 1.075 0.057 0.243

A04 -0.135 1.180 0.006 0.909

A05 4.975 2.231 0.085 0.260

A06 3.981 1.863 0.066 0.033

A07 19.799 1.091 0.405 0.000

A08 3.766 0.208 0.403 0.000

A09 -3.108 2.791 0.042 0.266

A10 -38.030 6.065 0.352 0.000

A11 4.368 1.970 0.086 0.027

A12 0.719 0.406 0.044 0.047

A13 11.157 2.348 0.106 0.012

A14 -14.192 5.904 0.145 0.001

A15 7.723 2.356 0.073 0.000

A16 48.403 5.112 0.000 0.000

A17 3.901 0.515 0.816 0.000

*Note. β = Unstandardized regression coe�cient;

B = Standardized regression coe�cient.

standardized coe�cient values in Table 6.4, we can understand the predictive

power of each log activity for CPU usage. Also, Fig. 6.7 shows the importance

or relative contribution of each predictor for CPU usage.

In addition, we use the unstandardised coe�cient (β) values from Table 6.4

to derive the assertion equation that can be used for the prediction of CPU

usage at each second. The derived assertion equation is presented in Equa-

tion 6.1. The actual value is expected to be predicted based on this equation

with the Standard Error (refer to page 55) of estimate of 6.059 (absolute value).

PredictedCPUUsagei = 0.1.462 + 14.606 ∗ A06i + ...+ 3.557 ∗ A17i (6.1)

Chapter 6. Flight Data Processor Case Study 155

Table 6.4: Coe�cient for identi�ed in�uential factors

Predictors β Std. Error B p-value

Intercept (Constant) 1.462 0.101 � 0.000

A06 4.606 1.819 0.077 0.012

A07 19.808 1.819 0.405 0.000

A08 3.766 0.208 0.403 0.000

A10 -30.411 3.955 0.281 0.000

A11 2.539 1.128 0.050 0.025

A12 0.797 0.394 0.049 0.025

A13 11.176 2.344 0.106 0.044

A14 -9.358 3.699 0.091 0.000

A15 7.741 2.351 0.073 0.012

A16 41.415 2.890 0.698 0.000

A17 3.557 0.463 0.216 0.000

*Note. β = Unstandardized regression coe�cient;

B = Standardized regression coe�cient.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

A12

A11

A15

A06

A14

A13

A17

A10

A08

A07

A16

Lo
g

A
ct

iv
it

ie
s

(P
re

d
ic

to
rs

)

Standardized Coefficient

Figure 6.7: Prediction in�uence of each log activity on CPU usage, based on
standardized regression coe�cient(B) extracted from regression analysis

6.5 Anomaly Detection

Based on the analysis of the training dataset in the previous section, we man-

aged to identify the most sensitive metric and derive the assertion equation.

Also, we identi�ed which activities in the log have the highest contribution to

156 Chapter 6. Flight Data Processor Case Study

the changes in CPU usage. In this section, we aim to use these �ndings and

evaluate how these outcomes can be utilised for predicting actual values and

ultimately leverage that for contextual anomaly detection. In this direction,

�rst, we evaluate how well the selected metric, along with the assertion for-

mula from the learning model, can predict the actual metric values. Then,

we evaluate if the proposed approach is e�ective for detecting three types of

emulated errors in the system.

It is worth restating that the author of this thesis had no in�uence on the

experimental campaign of the testing data and the emulation of the errors

that are presented in this section. Therefore, it was valuable for us to evaluate

the generalisability of our approach on a case study obtained from an external

source.

We obtained the raw data from the Dipartimento di Informatica e Sis-

temistica - Università degli Studi di Napoli Federico II. Accessing this data

gave us the chance to evaluate the applicability and generalisability of the pro-

posed approach of this thesis for a separate industry-grade case study which

has a di�erent environment and scale from the case study of the rolling upgrade

that we presented in the previous chapter.

6.5.1 Predictability Power Evaluation

In this section, we aim to address the following question: having the activities

reported in the logs, can we predict the values of the selected target metric

using the derived assertion equation from the regression model?

In order to answer this question, we leverage the testing data sets from

four runs of the FDP middleware: one with the training data itself labelled

as Normal Run, and three others with the data that comes with the error

emulated records.

To enable the collection of data under anomalous conditions, three types

of errors were emulated into code pieces of FDP application; these three types

of errors are as follows:

• Active Hang: The system appears to be running, but its services may

Chapter 6. Flight Data Processor Case Study 157

be perceived as unresponsive; in such a hang, CPU cycles are typically

consumed uselessly.

• Passive Hang: The system appears to be running, but its services may

be perceived as unresponsive, typically because of an inde�nite wait for

resources that will never be released within an expected time-out.

• Crash: The system terminates unexpectedly and is not able to execute

subsequent method invocations.

The fault injection process in three runs that contain error emulated records

has been instrumented in a way to activate and deactivate the error emulation

during the execution of the experimental campaign. Therefore, we can track

which data records are collected under the condition of fault injection and

which ones under normal conditions.

Given the above explanation, in this subsection, we focus on understanding

the predictability power of our approach for non-faulty records. In other words,

for three data sets that contain errors, only the non-faulty records will be

employed for the evaluation.

As with the normal run, we used the derived assertion equation formula

from Equation 6.1, taking the occurrence of log activities as input and es-

timating the CPU usage at each time window. First, we applied the above

equation and calculated the outcome for each record for the Normal Run. The

results show that out of 483 records of data, 480 records have the predictions

within the standard error of the estimate. Fig. 6.8.a depicts a line chart of the

actual values versus predicted values, which the records on the horizontal axis

indicate individual seconds.

The results obtained show that the model demonstrates an accuracy (i.e.

trueness) of 99.4% on predicting CPU usage within the accepted threshold

(error estimate of 6.059 (absolute)). The results are shown in Fig. 6.9.

So far the analysis shows that the prediction has a very high accuracy,

but this assessment has been done on the data set that the training has been

based on, and therefore there might be a chance of overly in�uencing the result

obtained. In order to make sure that the model has e�ective predictability

158 Chapter 6. Flight Data Processor Case Study

0

10

20

30

40

50

60

70

80

90

1 9 17 25 33 41 49 57 65 73 81 89 97 10
5

11
3

12
1

12
9

13
7

14
5

15
3

16
1

16
9

17
7

18
5

19
3

20
1

20
9

21
7

22
5

23
3

24
1

24
9

25
7

26
5

27
3

28
1

28
9

29
7

30
5

31
3

32
1

32
9

33
7

34
5

35
3

36
1

36
9

37
7

38
5

39
3

40
1

40
9

41
7

42
5

43
3

44
1

44
9

45
7

46
5

47
3

48
1

48
9

49
7

50
5

51
3

0

10

20

30

40

50

60

70

80

1 10 19 28 37 46 55 64 73 82 91 10
0

10
9

11
8

12
7

13
6

14
5

15
4

16
3

17
2

18
1

19
0

19
9

20
8

21
7

22
6

23
5

24
4

25
3

26
2

27
1

28
0

28
9

29
8

30
7

31
6

32
5

33
4

34
3

35
2

36
1

37
0

37
9

38
8

39
7

40
6

41
5

42
4

43
3

44
2

45
1

46
0

46
9

47
8

48
7

49
6

50
5

51
4

52
3

0

10

20

30

40

50

60

70

80

90

1 9 17 25 33 41 49 57 65 73 81 89 97 10
5

11
3

12
1

12
9

13
7

14
5

15
3

16
1

16
9

17
7

18
5

19
3

20
1

20
9

21
7

22
5

23
3

24
1

24
9

25
7

26
5

27
3

28
1

28
9

29
7

30
5

31
3

32
1

32
9

33
7

34
5

35
3

36
1

36
9

37
7

38
5

39
3

40
1

40
9

41
7

42
5

43
3

44
1

44
9

45
7

46
5

47
3

48
1

48
9

49
7

a. Normal Run

b. Active Hang

c. Passive Hang

d. Crash

0

10

20

30

40

50

60

1 9 17 25 33 41 49 57 65 73 81 89 97 10
5

11
3

12
1

12
9

13
7

14
5

15
3

16
1

16
9

17
7

18
5

19
3

20
1

20
9

21
7

22
5

23
3

24
1

24
9

25
7

26
5

27
3

28
1

28
9

29
7

30
5

31
3

32
1

32
9

33
7

34
5

35
3

36
1

36
9

37
7

38
5

39
3

40
1

40
9

41
7

42
5

43
3

44
1

44
9

45
7

46
5

47
3

48
1

Fault Activation

Fault Activation

Fault Activation

Figure 6.8: Actual CPU usage versus predicted CPU usage for four separate
runs: Normal, Active Hang, Passive Hang, and Crash with highlighted fault
activation periods where present.

for an out-of-sample data set, we evaluated the approach for three separate

experiments, named Active Hang, Passive Hang and Crash. (Fault-injection

details for each of these three experiments are described in the next section.)

Chapter 6. Flight Data Processor Case Study 159

Table 6.5: Accuracy of prediction of CPU usage in four di�erent experiments

Normal Run Active Hang Passive Hang Crash

Total Records 483 513 519 387

Non-Faulty Records 483 451 459 383

True Predictions 480 443 448 372

False Predictions 3 8 11 11

Accuracy 0.994 0.982 0.976 0.971

0.994

0.982
0.976

0.971

0.850

0.870

0.890

0.910

0.930

0.950

0.970

0.990

Normal Run Active Hang Passive Hang Crash

Predictability

Figure 6.9: Actual CPU usage versus predicted CPU usage from assertion
equation

For all these experiments, similar to the above, we obtained the counting

of log activities for each experiment and simply employed the equation from

Equation 6.1 to predict the CPU usage. In these experiments, the accuracy

of prediction is solely calculated based on non-fault-injection records, which

means the records during the fault-injection period were excluded from the

analysis. Table 6.5 and line charts in Figs. 6.8 show the results of actual CPU

usage in comparison with the predicted CPU usage.

The graphs in these �gures demonstrate that the estimated CPU usage

almost mimics the pattern of actual CPU usage, with a few cases of the wrong

prediction for each experiment, which was reported in Table 6.5. Please note

the gaps between actual values and predicted values that can be observed in

records 334 to 337 of Active Hang in Fig. 6.8, and that the last records of

Crash were part of the records with fault-injection, and were excluded, as

in this section our sole focus was on gauging the predictability power of our

160 Chapter 6. Flight Data Processor Case Study

model. We will investigate the e�ectiveness of our approach to detect these

anomalous cases in the next section.

Based on the results presented in Table 6.5, the proposed approach is shown

to be e�ective in having high accuracy in correctly predicting CPU usage from

the activities reported from the logs, and thus providing a positive answer to

the research question we highlighted at the beginning of this section.

6.5.2 Anomaly Detection Evaluation

One of the main research questions of this thesis is whether the correlation

learned from the activity of logs and resource metrics can be used for detect-

ing system health and performance anomalies. In the previous section, we

showed that the assertion equation formula derived from regression analysis

was e�ective in predicting CPU usage in the non-faulty parts of four sepa-

rate experimental runs. In this section, we aim to leverage this predictability

power and evaluate the applicability of the proposed approach for detecting

anomalies.

As we stated in the previous section, to enable the collection of data under

anomalous conditions, three types of errors were emulated into code pieces of

FDP application with Active Hang, Passive Hang, and Crash.

For each experiment, after starting the middleware, �rst the middleware is

exposed to a nominal workload, then the error emulation is performed a few

minutes after the beginning of the operation. The triggering of hangs for both

Passive Hang and Active Hang were aborted automatically around one minute

after the start of the error emulation, followed by a normal workload. However,

for the experiment with the Crash error, the system went out of service after

few seconds of error emulation.

In order to measure the precision and recall of the prediction, similar to

the rolling upgrade case study, we classi�ed the result of the prediction into

four categories: True Positive (TP), False Positive (FP), True Negative (TN),

and False Negative (FN). Table 5.5 explains these four categories in terms of

an alarm being raised (or not), and a fault is injected (or not). For any of the

data records, we aim to raise an alarm when a fault is injected (TP) or raise

Chapter 6. Flight Data Processor Case Study 161

no alarm when no fault is injected (TN). FP and FN thus mark cases where

the prediction did not work perfectly. These four categories are the basis for

calculating precision, recall, and F-measure [83].

Anomaly Detection Result

Given the above description, and using the assertion equation, the anomaly

detection is run and results are obtained. The di�erence between actual metric

value and predicted values from regression output are shown in Figs. 6.8 for

each error emulation run, respectively. Also, the precision, recall, and F-Score

for each of the three experiments are presented in Table 6.6.

With Active Hang, we can observe in Fig. 6.8.b that the predicted values

closely mimic the actual values. In a few points, such as in records 90-91

(horizontal axis in Fig. 6.8.b) and 153, there are considerable di�erences be-

tween actual values and predicted values. The predicted values follow a similar

pattern (sharp increase on CPU usage) to the actual values.

At about record 334, a sudden signi�cant gap between the actual value and

predicted value appears and continues for a period of around 60 seconds. This

time period is exactly the time during which the fault injections were activated.

From this observation, we hypothesise anomalies as the result of di�erences of

actual and predicted values to be detected with fairly good accuracy.

Looking at the results of the anomaly detection of Active Hang in Table 6.6

(for zero second time window - 0sTW) con�rms our visual observation. In this

process, out of 513 records of data, we had 443 cases of TN, 0 cases of FN,

62 cases of TP, and eight cases of FP. As a result, we have a precision of

0.886, recall of 1.000, and F-Score of 0.939. One the one hand, the recall value

of 1.000 shows the proposed approach managed to successfully detect all of

the Active Hang anomalies. On the other hand, there were few cases (92-94,

137-138, 153-154, 488) of false reported anomalies that a�ected the precision

value.

As with the Passive Hang, similar patterns can be observed in Fig. 6.8.c,

with the exception that there is no gap between prediction and actual value

when the Passive Hang fault injection is activated from record 342. In this

162 Chapter 6. Flight Data Processor Case Study

Table 6.6: Anomaly detection results.

Active Hang Passive Hang Crash

Metric 0sTW 1sTW 0sTW 1sTW 0sTW 1sTW

Precision 0.886 0.925 0.000 0.000 0.267 0.333
Recall 1.000 1.000 0.000 0.000 1.000 1.000
F-Score 0.939 0.961 NA NA 0.421 0.500

*Notes: 0sTW indicates Zero second time window and 1sTW

indicate One second time window.

experiment, we obtained 519 records of data, where we had 450 cases of TN,

58 cases of FN, 0 cases of TP, and 11 cases of FP.

Having 0 cases of TP (zero detection of anomalies) results in precision

and recall of 0, clearly indicating that the approach is ine�ective for detecting

Passive Hang errors. This is an important observation. During a passive hang,

the system goes to an inde�nite waiting state for resources, causing a pause

on operation activities. As such, no logs are emitted and no changes can be

observed in resource metrics (with a mean close to inactivity) during this time.

In other words, this type of error is asymptomatic in both log activities and

CPU usage, meaning that the fault does not a�ect CPU usage and does not

leave log traces in the log �le.

The experiment run with the Passive Hang revealed an important limita-

tion in our approach. We employ both logs and metrics, and having anomalous

symptoms on each of these sources of monitoring data can lead to the detection

of anomalies. Nevertheless, we cannot �nd errors that impact both simultane-

ously. It is worth noting that, POD-Detection that focuses on error detection

among others by process conformance checking [131, 140], has the ability to

detect timing anomalies in the log behaviours. With POD-Discovery, in cases

that logs are not reported within the range of expected frequency, timing

anomalies will be reported. Therefore, the limitation of our approach can be

covered by employing POD-Discovery along our anomaly Checker.

The last experiment contains the error emulation that caused the system

to crash. In this experiment, the prediction fairly resembles the actual values

where there is normal run, however, after the activation of error, the operation

execution is aborted in few seconds - see Fig. 6.8.d. In this process, out of

Chapter 6. Flight Data Processor Case Study 163

387 records of data we had 372 cases of TN, 0 cases of FN, four cases of TP,

and 11 cases of FP. As a result, we have a precision of 0.267, recall of 1.000,

and an F-Score of 0.421. The recall value shows that the approach successfully

managed to detect the anomalies that occurred, however, the low precision

value is an indicator of the existence of too many false alarms in comparison

to true positive alarms.

So far the results presented were based on a default time window of zero

second. In addition to the above, and similar to the rolling upgrade case

study, we expanded our time window of analysis to ±1 Second. As a result,

the number of false positives slightly reduced and the precision improved. Ad-

ditional expansion of time window to ±2 seconds did not lead to improvement

of the result. Table 6.6 shows the results of a zero-second and one-second time

window.

Anomaly Detection with Change Detection

We learned from the analysis in the previous section, that the predicted values

mimic the same pattern of actual values, however, in some cases, it can not

correctly predict the hight of the spikes. For example, in Fig, 6.8.c record

160 shows a peak in CPU usage both in predicted value and actual value.

However, the di�erence between these two values is fairly large, as the actual

value indicates 76.16% CPU usage while the predicted value indicates 40.14%

CPU usage. Both of these values are far bigger than the mean value (2.05)

of CPU usage. This implies that both of these high values for CPU usage

are very likely to be caused by the activities reported in the logs, but still

our approach detected them as anomalies. This is because the criterion for

detecting anomalous instances we had used so far was based on the gap between

the predicted value and the actual value.

The problem of modelling workload bursts or spikes in system monitor-

ing, resource allocation and anomaly detection have been a topic of interest

in recent studies [16, 87, 111]. This inspired us to investigate further whether

we can improve the accuracy of our prediction from the perspective of change

detection along with the prediction obtained from our assertion equation. To

164 Chapter 6. Flight Data Processor Case Study

Algorithm 2 - Change Detection

- Anomaly Detection:

1: if (|ac− pr| < ε) then
2: anomaly ← false
3: else if (|ac −m| < σ AND |pr −m| < σ) OR (ac > m + σ AND pr > m + σ)

OR (ac < m− σ AND pr < m− σ) then
4: anomaly ← false
5: else

6: anomaly ← true
7: end if

achieve this, we propose a new threshold policy for detecting anomalies. In this

new policy, we check whether both predicted and actual values indicate a sig-

ni�cant change from the mean. The algorithm underlying the proposed policy

is described in Algorithm 2, here referred as the Change Detection algorithm.

Let us denote the actual value as ac, the predicted value as pr, standard

deviation as σ, and standard error of estimate as ε. The Change Detection

algorithm �rst checks whether the di�erence between ac and pr is within the

accepted error of estimate, i.e., ε. If the condition is not satis�ed then instead of

reporting the record as an anomalous instance, it checks if both ac and pr have

similar changes with respect to the standard deviation σ from the mean m.

Otherwise, it reports the record as an anomaly. It worth to note that in most

statistical based anomaly detection techniques, standard deviations (σ) from

the mean are used as a threshold to detect signi�cant deviation from normal

behavior; often the values larger than ±3.0σ are considered outliers [102]. The

use of tighter thresholds than in the literature becomes possible in our setting,

since we gain additional precision from analyzing the log context.

By employing the change detection algorithm, we managed to reduce the

number of false positives for all three experiments. The number of false pos-

itives reduced from eight to four, 11 to eight, and 11 to six cases for Active

Hang, Passive Hang, and Crash, respectively. The precision, recall, and F-

Score with the change detection algorithm with zero-second time window and

one-second time window along with previous results are shown in Table 6.7.

Recalling the research question highlighted at the beginning of this section,

the above results demonstrate that the proposed approach of this thesis was

e�ective in modelling the relationship between log activities and resource met-

rics. A derived assertion equation from a regression model was shown, which

Chapter 6. Flight Data Processor Case Study 165

can be employed to predict the in�uence of the FDP application operation

reported in logs on the CPU usage metric with high predictability power. In

addition, the results show that the proposed approach is highly e�ective for

detecting two of three types of anomalies emulated in the system. Further,

we observed a signi�cant improvement in precision by employing the proposed

change detection technique and slightly expanding the time window of the ob-

servation. Figs. 6.10, 6.11, and 6.12 show the comparative view of precision,

recall and F-score for all the conditions.

166
C
h
a
p
ter

6
.
F
lig
h
t
D
a
ta

P
ro
cesso

r
C
a
se

S
tu
d
y

Table 6.7: Anomaly detection results with Change Detection.

Active Hang Passive Hang Crash

Metric 0sTW 1sTW 0sTW-CD 1sTW-CD 0sTW 1sTW 0sTW-CD 1sTW-CD 0sTW 1sTW 0sTW-CD 1sTW-CD

Precision 0.886 0.925 0.939 1.000 0.000 0.000 0.000 0.000 0.267 0.333 0.400 0.800

Recall 1.000 1.000 1.000 1.000 0.000 0.000 0.000 0.000 1.000 1.000 1.000 1.000

F-Score 0.939 0.961 0.969 1.000 NA NA NA NA 0.421 0.500 0.571 0.889

*Notes:

0sTW = Zero second time window.

1sTW = One second time window.

0sTW-CD = Zero second time window with Change Detection.

1sTW-CD = One second time window with Change Detection.

Chapter 6. Flight Data Processor Case Study 167

0.000

0.200

0.400

0.600

0.800

1.000

0sTW 1sTW 0sTW_CD 1sTW_CD

Precision

Active Hang Passive Hang Crash

Figure 6.10: Precision of anomaly detection for three experiments with zero
second time window, and with zero and one second time window with change
detection

0.000

0.200

0.400

0.600

0.800

1.000

0sTW 1sTW 0sTW_CD 1sTW_CD

Recall

Active Hang Passive Hang Crash

Figure 6.11: Recall of anomaly detection for three experiments with zero sec-
ond time window, and with zero and one second time window with change
detection

0.000

0.200

0.400

0.600

0.800

1.000

0sTW 1sTW 0sTW_CD 1sTW_CD

F-Score

Active Hang Passive Hang Crash

Figure 6.12: F-Score of anomaly detection for three experiments with zero
second time window, and with zero and one second time window with change
detection

168 Chapter 6. Flight Data Processor Case Study

6.6 Summary

In this chapter, we investigated the applicability and generalisability of the

proposed approach of this thesis in an industrial �ight data processor(FDP)

case study. In addition, the case study discussed in the chapter has signi�cant

di�erences from the previous case study of the rolling upgrade from multiple

aspects including the environment, the scale of logs and metrics, the forms of

metrics available, and the type of faults injected.

Given FDP case study was from a di�erent deployment environment, had

a �ner monitoring sampling rate, and a larger number of log event types, we

did not observe that these key di�erences would a�ect the applicability or

the accuracy of the predicted results. We learned that we can use the POD-

Discovery tool to facilitate the log event type extraction process. Also, we

found that employing the change detection technique can improve the anomaly

detection rate of our approach. Moreover, we understood that our approach is

mainly e�ective when the anomalies are not asymptomatic in logs and metrics.

In other words, our approach is ine�ective for those errors which simultaneously

suppress the normative system activity and metric changes. This is a valuable

observation that when the anomalous symptoms are absent at logs and metrics

simultaneously, our approach has limitation to detect that.

Overall, we revisited the research questions of this thesis, and demonstrated

that the proposed approach of this thesis is e�ective for mapping logs and met-

rics, identifying the most sensitive metrics for system monitoring, predicting

the value of monitoring metrics from log activity with high accuracy, and �-

nally, adopting the assertion speci�cation for context-based anomaly detection

of the system.

Chapter 7

Conclusions and Future Directions

This chapter provides the �nal conclusions for the work presented in this the-

sis. We summarise the main results and the contributions to the research

questions of this thesis. Following that, we discuss potential improvements

and extensions of the work described and outline future research that could be

undertaken.

7.1 Summary

The major objective of this thesis was to investigate mechanisms to improve

the dependability of system application operations using system monitoring

and anomaly detection techniques. In particular, this thesis has focused on

leveraging the dynamics of system application behaviour from logs, along with

the state of resources from resource metrics, in order to perform metric selec-

tion and anomaly detection.

In this direction, we formulated a framework that includes the steps of

parsing log messages and tracking the occurrence of log events, mapping logs

to metrics, identifying the most relevant resource metrics and deriving assertion

speci�cations for anomaly detection. In summary, our main contributions are

in the following areas in this thesis.

As log events and resource metrics have di�erent data formats [95] and

they belong to two di�erent sources of information, in our work we proposed

an approach to map log events to resource metrics. For this objective, we

169

170 Chapter 7. Conclusions and Future Directions

provided a solution using regular expressions to extract unique log event types,

and counted the occurrence of log events at each time window, clustered low-

granular logs to a set of log activities using weight timing and correlation

analysis, and mapped log activities to resource metrics from the derived metrics

from both logs and metrics.

Next, we proposed a systematic approach to identify the most sensitive

resource monitoring metrics for anomaly detection. In particular, we showed

that not all the metrics are a�ected by an application operation, and we also

showed how a metric with higher sensitivity to operational behaviour can lead

to a better anomaly detection rate. The issue we addressed here is particularly

important, as dealing with too many monitoring metrics has been highlighted

as one of the issues in system health and performance monitoring in several

past studies [23, 60].

We proposed a method to derive assertion speci�cation from the regression

analysis. We showed how the result of a derived assertion equation can be

employed to check whether the expected state of the system from observed

activities in logs matches the actual resource metric data. The output of

assertion derivation also helped us to understand what factors contribute the

most to the changes in resources.

Further, a ripple e�ect detection mechanism is proposed in this thesis that

has been shown to be helpful in distinguishing actual anomalies from the ripple

e�ect of anomalies. The result of this e�ort contributes to the reduction of

the excessive alarm rate that has been reported as one of the issues for today's

system monitoring and anomaly detection approaches [94, 109, 138].

Finally, we explored and evaluated the proposed approach of this thesis

with two di�erent industry-grade case studies. We developed a prototype tool

to conduct the experiments and we showed that the proposed approach is

e�ective for detecting anomalies.

The main observations of investigating our approach to these two case

studies are as follows:

• As the proposed approach is a non-intrusive approach, we showed that in

both case studies, this approach could be implemented without the need

Chapter 7. Conclusions and Future Directions 171

for instrumenting application code or the native environment to execute

the operation and monitoring solutions.

• We showed that the proposed approach is applicable for di�erent envi-

ronmental settings. We demonstrated the applicability of the approach

with a rolling upgrade case study running on Amazon Cloud Services

with a well-established monitoring service, as well as with a �ight data

processor case study hosted on private data centres using native operat-

ing system monitoring solutions.

• One important di�erence between the two case studies is in the sampling

rate monitoring of the metrics collection. We investigated a rolling up-

grade operation based on one-minute monitoring intervals and an FDP

case study based on a one-second time interval. Our approach was e�ec-

tive in both case studies for detecting the majority of anomalies.

• As our approach is designed to be unsupervised, we demonstrated with

both case studies that the proposed approach was e�ective in devel-

oping a statistical model that can be used for anomaly detection for

non-labelled data.

• From the analysis of case studies, we found that among the anoma-

lies investigated, our approach is e�ective for detecting anomalies that

show changes in behaviour of logs or values of resource metrics. If an

anomaly remains asymptomatic (not a�ecting values of resource and log

event patterns simultaneously), our approach will be ine�ective. Also,

our approach is not designed to address the anomalies solely a�ecting

log events. However, POD-Detection [131, 140] has the ability to detect

timing anomalies in the log behaviours and thus this limitation can be

covered by employing POD-Discovery along side our Anomaly-Checker.

Given this limitation, our approach managed to detect the type of anoma-

lies that have impacts on metric resources, with high accuracy in both

case studies.

Overall, the evaluation results of our experiments show that the proposed

unsupervised context-based anomaly detection approach can be e�ectively

172 Chapter 7. Conclusions and Future Directions

used to detect anomalies using analysis of logs and metrics in a non-intrusive

way.

7.2 Answers to Research Questions

The research questions under consideration, as outlined in Chapter 1, can be

answered based on the results of the work presented in this thesis. Below we

provide concise responses to each of the research questions investigated:

Research Question 1:

As event logs and resource metrics are two separate sources of monitoring in-

formation with di�erent structures, how can we combine the information from

these two sources and derive a statistically meaningful relationship between

them?

In order to address this research question, we proposed a set of steps to

map the two heterogeneous data types of textual log messages and numeri-

cal metrics. From the log processing perspective, the �rst challenge we faced

was related to parsing log messages and tracking the occurrence of log events

and representing them as a quantitative metric. We showed in our experimen-

tal analysis that by employing regular expressions we can manage to parse

log messages, identify unique log events, trace the recurrence of log events,

and derive a metric that shows the interpolated occurrence strength of each

event. Once we obtained the quantitative metrics from logs, we were able to

map log activities to resource monitoring metrics based on their timestamps.

This mapping helped us to perform statistical analysis on logs and metrics (as

demonstrated in Chapters 5 and 6) and thus leverage the mapping as the basis

of our work for addressing the next two main research questions.

Research Question 2:

What is an appropriate mechanism to distinguish insensitive monitoring met-

rics from the ones that are sensitive to the activities of system application

Chapter 7. Conclusions and Future Directions 173

operations and how do we best leverage this to identify the most suitable mon-

itoring metrics for anomaly detection?

To address this question, we proposed adopting a regression-based correla-

tion analysis technique to identify a subset of metrics that have a statistically

signi�cant correlation with the activities of application operations. We ex-

plained this approach in Chapter 3 and investigated and evaluated it in two

case studies in Chapters 5 and 6. The results of our analysis showed that the

proposed metric selection approach helped to narrow down the metrics dimen-

sion to the most relevant metrics. Further, the selected metrics were shown to

be e�ective to be used as the basis for system monitoring for anomaly detec-

tion, respectively.

Research Question 3:

How can we build a statistically supported model based on log and resource

metrics data to derive assertions that enable high-accuracy, unsupervised, con-

textual anomaly detection?

In order to address this research question, we employed the solutions pro-

posed for addressing RQ1 and RQ2 and having the above outcomes and using

regression analysis, we showed that the relationship between the activities on

logs and the changes in resources can be statically modelled. By taking ad-

vantage of both, the predictive and exploratory features of regression analysis,

we found how well the statistical model can predict the outcome, as well as

what factors (log activities), have the highest impact on changes in resource

metrics. This helped us to derive assertion equations for anomaly detection.

By adopting assertions at run-time, we demonstrated with two di�erent case

studies that the proposed approach was successful in detecting symptomatic

anomalies with high accuracy. Our approach, however, has a limitation in

�nding the types of anomalies that are asymptomatic in both logs and metric

simultaneously such as Passive Hang in FDP case study, which had no impact

on resource usage and log behaviour.

174 Chapter 7. Conclusions and Future Directions

7.3 Open Problems and Future Work

The work presented in this thesis can be extended and continued in few research

directions. In particular, in the future, we would like to address some of the

limitations we faced throughout the investigation with our work.

7.3.1 Optimal Time Window

An aspect that we wanted to investigate further is related to the monitoring

sampling rate. What is the appropriate time window for detecting anomalies?

Currently, we de�ne our monitoring time window based on the availability of

monitoring data and our intuition about the system environment to �nd an

appropriate size for default time window for detecting anomalies.

Having a small time window may lead to issuing too many false alarms

too soon as the e�ect of an operation activity or failure may not yet be fully

re�ected on resources. In contrast, expanding the time window causes a delay

on detection of anomalies. This is a case-speci�c trade-o�: how much more de-

lay is acceptable for what kind of an increased accuracy of anomaly detection?

Therefore, an interesting research question for future work is how to systemat-

ically �nd the suitable time window when the availability of monitoring data

is not the limiting factor.

7.3.2 Automatic Error Diagnosis and Self-Healing

The focus of this thesis was on anomaly detection, and thus we did not explore

error debugging and diagnosis when an anomaly is detected. We suggest that

one of the interesting future research of our research is with regards to error

debugging and diagnosis because with the help of the assertion speci�cation

derived in our analysis, we can extract which log activities and metrics were

involved in the incidence of an anomaly. This knowledge of logs and metrics is

likely to be helpful in debugging errors and providing suggestions as to what

might be the potential causes. Especially, if error debugging will be assisted

with the identi�cation of the type of anomalies may assist this process. An

extension of the above direction could be to design a self-adaptive operation.

Chapter 7. Conclusions and Future Directions 175

Such an operation would be able to perform self-healing actions after an error

occurs.

Another future area of research in extending the above is how we can

distinguish the type of anomalies based on the symptoms and lasting impacts

of the anomalies on the monitoring data. For instance, distinguishing ones that

have short impact symptoms from the ones that have long impact symptoms,

respectively. Also, can we use the knowledge derived from the detected type of

anomalies and their impact on system resources to tag the detected anomalies

with a severity level?

7.3.3 Best-Practices in Statistical-Based

Anomaly Detection

Statistical techniques for data analysis is often considered to be one of the

most robust techniques. Nevertheless, one of the limitations of our approach,

similar to the most statistical based techniques, is that there is a degree of sub-

jective analysis needed in the learning phase to derive a predictive model. One

aspect in regards to this matter is related to the presence of anomalies in the

training data. �Anomaly detection techniques typically assume that anomalies

in data are rare when compared to normal instances, though this assumption

is generally true, anomalies are not always rare� [23]. This applies to our ap-

proach as we mentioned throughout this thesis that in the learning process we

assumed the occurrence of anomalous data instances are either absent or they

occurrence is far less than the normal data instances. As a rule of thumb a

presence of 5% outliers for anomalous instances do not have a signi�cant e�ect

on regression analysis, but what if the presence of anomalies to be more than

this value? In case of presence of more percentage of anomalous instances,

how that may a�ect the accuracy of the derived model? An investigation and

guideline on this matter might be helpful.

176 Chapter 7. Conclusions and Future Directions

7.3.4 Usage of Machine Learning Techniques

In this thesis, we employed statistical-based techniques. An alternative solu-

tion using machine learning technique for modelling the correlation between

log activities and source metrics can be an interesting area for the future work.

Machine learning and statistics have a shared ground yet a comparative study

that reveals the bene�ts and drawbacks of each approach is worth investigat-

ing. In particular with the perspective of automating the steps of the learning

phase.

7.3.5 Dynamic Recon�guration Using Logs and Metrics

Analysis

In addition, having a correlation model for logs and metrics can potentially be

used in various research areas. An interesting research direction could be to

adopt the correlation of log activities with resource metrics for the dynamic

recon�guration of systems. For example, knowing that certain operation ac-

tivities put signi�cant stress on CPU consumption, a predictive model can be

learned and implemented for automatic scaling down and scaling up of the

computing power of the system under load in the cloud computing environ-

ment.

Another aspect that the correlation between logs and metrics can be adopted

for is dynamic monitoring solutions. We reported in our related work that sys-

tem monitoring with a large number of resources is an intensive and costly

process. A predictive statistical model has the potential to be used for dy-

namic switching from high-level monitoring to detailed monitoring and vice

versa. A practical solution in this direction can bring value to the domain of

system performance monitoring

7.4 Final Remarks

In this thesis, we addressed the problem of monitoring system application op-

erations through log and metrics analysis. Our contributions include a novel

Chapter 7. Conclusions and Future Directions 177

approach that assists in �nding the subset with the most relevant monitoring

metrics. It further includes employing those metrics for improving the de-

pendability of the correct execution of system application operations which are

common practice in DevOps, particularly our use case of staged upgrading of

clusters of virtual machines (VMs). Core to this approach is a domain-agnostic

regression-based correlation analysis technique that correlates the event logs

and resource metrics of operations. Based on this correlation, we can identify

which monitoring metrics are signi�cantly a�ected by an operation's activities

and how.

We illustrated that the selected target monitoring metrics, along with the

derived regression model, can be used as the basis for generating runtime asser-

tions which are suitable for the detection of anomalies in running operations.

We evaluated our approach with two separate industry-grade case studies. Our

results demonstrate that our regression-based analysis technique was able to

detect the emulated anomalies with high precision and recall, respectively.

178 Chapter 7. Conclusions and Future Directions

Bibliography

[1] H. Abdi and L. J. Williams, �Principal component analysis,� Wiley inter-

disciplinary reviews: computational statistics, vol. 2, no. 4, pp. 433�459,

2010.

[2] G. Aceto, A. Botta, W. de Donato, and A. Pescapè, �Cloud monitoring:

A survey,� Computer Networks, vol. 57, no. 9, pp. 2093�2115, 2013.

[3] M. Agyemang, K. Barker, and R. Alhajj, �A comprehensive survey of

numeric and symbolic outlier mining techniques,� Intelligent Data Anal-

ysis, vol. 10, no. 6, pp. 521�538, 2006.

[4] L. Akoglu, H. Tong, and D. Koutra, �Graph based anomaly detection and

description: a survey,� Data Mining and Knowledge Discovery, vol. 29,

no. 3, pp. 626�688, May 2015.

[5] E. Aleskerov, B. Freisleben, and B. Rao, �Cardwatch: a neural net-

work based database mining system for credit card fraud detection,� in

Proceedings of the IEEE/IAFE Computational Intelligence for Financial

Engineering (CIFEr), Mar 1997, pp. 220�226.

[6] Amazon Team, Amazon Web Services(AWS) Documentation, 2017.

[Online]. Available: https://aws.amazon.com/documentation/

[7] Avaya, �Network downtime results in job, revenue loss,� Mar.

2014. [Online]. Available: http://www.avaya.com/usa/about-avaya/

newsroom/news-releases/2014/pr-140305/

[8] A. Avizienis, J. C. Laprie, B. Randell, and C. Landwehr, �Basic concepts

179

https://aws.amazon.com/documentation/
http://www.avaya.com/usa/about-avaya/newsroom/news-releases/2014/pr-140305/
http://www.avaya.com/usa/about-avaya/newsroom/news-releases/2014/pr-140305/

180 Bibliography

and taxonomy of dependable and secure computing,� IEEE Transactions

on Dependable and Secure Computing, vol. 1, no. 1, pp. 11�33, Jan 2004.

[9] AWS User Guide, Best Practices: Managing and Deploying Apps and

Cookbooks, 2013.

[10] T. Baier and J. Mendling, �Bridging abstraction layers in process mining

by automated matching of events and activities,� in Proceedings of the

11th International Conference on Business Process Management (BPM),

2013, pp. 17�32.

[11] Z. A. Bakar, R. Mohemad, A. Ahmad, and M. M. Deris, �A comparative

study for outlier detection techniques in data mining,� in Proceedings of

the Cybernetics and Intelligent Systems. IEEE, 2006, pp. 1�6.

[12] L. Bass, I. Weber, and L. Zhu, DevOps - A software architect's perspec-

tive. Addison-Wesley, 2015.

[13] K. Beiske. (2017) Discovering the need for an indexing strategy in

multi-tenant applications. [Online]. Available: https://www.elastic.co/

blog/found-multi-tenancy

[14] K. Bhaduri, K. Das, and B. L. Matthews, �Detecting abnormal machine

characteristics in cloud infrastructures,� in Proceedings of the11th IEEE

International Conference on Data Mining, 2011, pp. 137�144.

[15] R. Birke, I. Giurgiu, L. Y. Chen, D. Wiesmann, and T. Engbersen, �Fail-

ure analysis of virtual and physical machines: Patterns, causes and char-

acteristics,� in Proceedings of the 44th Annual IEEE/IFIP International

Conference on Dependable Systems and Networks (DSN), Jun 2014, pp.

1�12.

[16] P. Bodik, A. Fox, M. J. Franklin, M. I. Jordan, and D. A. Patterson,

�Characterizing, modeling, and generating workload spikes for stateful

services,� in Proceedings of the 1st ACM Symposium on Cloud Comput-

ing. ACM, 2010, pp. 241�252.

https://www.elastic.co/blog/found-multi-tenancy
https://www.elastic.co/blog/found-multi-tenancy

Bibliography 181

[17] P. Bodik, M. Goldszmidt, A. Fox, D. B. Woodard, and H. Andersen,

�Fingerprinting the datacenter: Automated classi�cation of performance

crises,� in Proceedings of the 5th European Conference on Computer Sys-

tems. ACM, 2010, pp. 111�124.

[18] R. P. J. C. Bose and W. M. P. van der Aalst, �Discovering signature

patterns from event logs,� in Proceedings of the IEEE Symposium on

Computational Intelligence and Data Mining (CIDM), Apr 2013, pp.

111�118.

[19] W. Budgaga, �A framework for real-time, autonomous anomaly detec-

tion over voluminous time-series geospatial data streams,� PhDThesis,

Colorado State University, 2014.

[20] R. N. Calheiros, K. Ramamohanarao, R. Buyya, C. Leckie, and S. Ver-

steeg, �On the e�ectiveness of isolation-based anomaly detection in cloud

data centers,� Concurrency and Computation: Practice and Experience,

pp. 41�69, 2017.

[21] J. Cao, K. Hwang, K. Li, and A. Y. Zomaya, �Optimal multiserver con�g-

uration for pro�t maximization in cloud computing,� IEEE Transactions

on Parallel and Distributed Systems, vol. 24, no. 6, pp. 1087�1096, Jun

2013.

[22] D. Cappuccio, �Ensure cost balances out with risk in high-availability

data centers,� Gartner, Tech. Rep., Jul. 2013. [Online]. Available: http:

//blogs.gartner.com/andrew-lerner/2014/07/16/the-cost-of-downtime

[23] V. Chandola, A. Banerjee, and V. Kumar, �Anomaly detection: A sur-

vey,� ACM Computing Surveys (CSUR), vol. 41, no. 3, pp. 15:1�15:54,

2009.

[24] R. N. Charette, �Why software fails,� IEEE Spectrum, vol. 42, no. 9, pp.

42�49, Sep 2005.

[25] L. Cherkasova, K. Ozonat, N. Mi, J. Symons, and E. Smirni, �Anomaly?

Application change? Or workload change? Towards automated detection

http://blogs.gartner.com/andrew-lerner/2014/07/16/the-cost-of-downtime
http://blogs.gartner.com/andrew-lerner/2014/07/16/the-cost-of-downtime

182 Bibliography

of application performance anomaly and change,� in Proceedings of the

IEEE International Conference on Dependable Systems and Networks

With FTCS and DCC (DSN), Jun 2008, pp. 452�461.

[26] M. Cinque, R. D. Corte, and S. Russo, �Error monitoring for legacy

mission-critical systems,� in Proceedings of the 46th Annual IEEE/IFIP

International Conference on Dependable Systems and Networks Work-

shop (DSN-W), Jun 2016, pp. 66�71.

[27] M. Cinque, D. Cotroneo, and A. Pecchia, �Event logs for the analysis of

software failures: A rule-based approach,� IEEE Transactions on Soft-

ware Engineering, vol. 39, no. 6, pp. 806�821, Jun 2013.

[28] M. Cinque, D. Cotroneo, R. D. Corte, and A. Pecchia, �What logs should

you look at when an application fails? insights from an industrial case

study,� in Proceedings of the 44th Annual IEEE/IFIP International Con-

ference on Dependable Systems and Networks, (DSN), Jul 2014, pp. 690�

695.

[29] M. Cinque, D. Cotroneo, R. Natella, and A. Pecchia, �Assessing and

improving the e�ectiveness of logs for the analysis of software faults,�

in Proceedings of the 2010 IEEE/IFIP International Conference on De-

pendable Systems and Networks (DSN), Jul 2010, pp. 457�466.

[30] R. J. Colville and G. Spa�ord, �Con�guration management for

virtual and cloud infrastructures,� May 2013. [Online]. Available:

http://goo.gl/P5edKP

[31] O. Crameri, N. Knezevic, D. Kostic, R. Bianchini, and W. Zwaenepoel,

�Staged deployment in mirage, an integrated software upgrade testing

and distribution system,� in Proceedings of the 21st ACM Symposium

on Operating Systems Principles (SOSP), Dec 2007, pp. 221�236.

[32] Data61, �Dependable cloud - make cloud use and operations more

dependable,� 2017. [Online]. Available: https://research.csiro.au/

data61/wp-content/uploads/sites/85/2016/08/AAP-Overview.pdf

http://goo.gl/P5edKP
https://research.csiro.au/data61/wp-content/uploads/sites/85/2016/08/AAP-Overview.pdf
https://research.csiro.au/data61/wp-content/uploads/sites/85/2016/08/AAP-Overview.pdf

Bibliography 183

[33] D. J. Dean, H. Nguyen, and X. Gu, �Ubl: Unsupervised behavior learn-

ing for predicting performance anomalies in virtualized cloud systems,�

in Proceedings of the 9th International Conference on Autonomic Com-

puting. ACM, 2012, pp. 191�200.

[34] T. Dumitras and P. Narasimhan, �Why do upgrades fail and what can

we do about it?� in Proceedings of the 10th ACM/IFIP/USENIX Inter-

national Middleware Conference, Nov 2009, pp. 349�372.

[35] S. Elliot, �DevOps and the cost of downtime: Fortune 1000 best

practice metrics quanti�ed,� International Data Corporation (IDC),

Tech. Rep., Dec. 2014. [Online]. Available: http://devops.com/blogs/

real-cost-downtime/

[36] M. Farshchi, J.-G. Schneider, I. Weber, and J. Grundy, �Experience re-

port: Anomaly detection of cloud application operations using log and

cloud metric correlation analysis,� in Proceedings of the 26th IEEE Inter-

national Symposium on Software Reliability Engineering (ISSRE), Nov.

2015, pp. 24�34.

[37] ��, �Metric selection and anomaly detection for cloud operations using

log and metric correlation analysis,� Journal of Systems and Software,

pp. �, 2017.

[38] K. Fatema, V. C. Emeakaroha, P. D. Healy, J. P. Morrison, and T. Lynn,

�A survey of Cloud monitoring tools: Taxonomy, capabilities and objec-

tives,� Parallel and Distributed Computing, vol. 74, no. 10, pp. 2918�

2933, 2014.

[39] D. G. Feitelson, E. Frachtenberg, and K. L. Beck, �Development and

deployment at Facebook,� IEEE Internet Computing, vol. 17, no. 4, pp.

8�17, 2013.

[40] N. E. Fenton and N. Ohlsson, �Quantitative analysis of faults and failures

in a complex software system,� IEEE Transaction on Software Engineer-

ing, vol. 26, no. 8, pp. 797�814, 2000.

http://devops.com/blogs/real-cost-downtime/
http://devops.com/blogs/real-cost-downtime/

184 Bibliography

[41] J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical

learning. Springer, 2001.

[42] M. Fu, L. Zhu, I. Weber, L. Bass, A. Liu, and X. Xu, �Process-oriented

non-intrusive recovery for sporadic operations on cloud,� in Proceedings

of the 46th Annual IEEE/IFIP International Conference on Dependable

Systems and Networks (DSN), Jun 2016, pp. 85�96.

[43] Q. Fu, J. G. Lou, Y. Wang, and J. Li, �Execution anomaly detection in

distributed systems through unstructured log analysis,� in Proceedings

of the Ninth IEEE International Conference on Data Mining, Dec 2009,

pp. 149�158.

[44] S. Fu, �Performance metric selection for autonomic anomaly detection on

cloud computing systems,� in Proceedings of the IEEE Global Telecom-

munications Conference (GLOBECOM), Dec 2011, pp. 1�5.

[45] J. Gaudreau, VM Right-Sizing Best Practice Guide, 2014.

[46] D. Gibson, �Six IT predictions for 2016,� 2016. [Online]. Available:

https://blog.varonis.com/tag/predictions/

[47] N. Görnitz, M. Kloft, K. Rieck, and U. Brefeld, �Toward supervised

anomaly detection,� Journal of Arti�cial Intelligence Research, vol. 46,

no. 1, pp. 235�262, Jan. 2013.

[48] J. Gray, �Why do computers stop and what can be done about it?� in

Proceedings of the Symposium on reliability in distributed software and

database systems. Los Angeles, CA, USA, Jun. 1986, pp. 3�12.

[49] Q. Guan and S. Fu, �Adaptive anomaly identi�cation by exploring met-

ric subspace in cloud computing infrastructures,� in Proceedings of the

32nd IEEE International Symposium on Reliable Distributed Systems,

Sep 2013, pp. 205�214.

[50] Q. Guan, �Autonomic failure identi�cation and diagnosis for building

dependable cloud computing systems,� PhDThesis, 2014.

https://blog.varonis.com/tag/predictions/

Bibliography 185

[51] H. S. Gunawi, M. Hao, T. Leesatapornwongsa, T. Patana-anake, T. Do,

J. Adityatama, K. J. Eliazar, A. Laksono, J. F. Lukman, V. Martin,

and A. D. Satria, �What bugs live in the cloud? A study of 3000+

issues in cloud systems,� in Proceedings of the ACM Symposium on Cloud

Computing, Nov 2014, pp. 7:1�7:14.

[52] N. J. Gunther, Analyzing Computer System Performance with Perl::

PDQ. Springer Science & Business Media, 2011.

[53] N. Gurumdimma, A. Jhumka, M. Liakata, E. Chuah, and J. Browne,

�Crude: Combining resource usage data and error logs for accurate error

detection in large-scale distributed systems,� in Proceedings of the 35th

IEEE Symposium on Reliable Distributed Systems (SRDS), Sep 2016,

pp. 51�60.

[54] P. He, J. Zhu, S. He, J. Li, and M. R. Lyu, �An evaluation study on log

parsing and its use in log mining,� in Proceedings of the 2016 46th An-

nual IEEE/IFIP International Conference on Dependable Systems and

Networks (DSN), June 2016, pp. 654�661.

[55] F. Hermenier, �Virtualized hosting platforms,� Project-Team OASIS,

Tech. Rep., 2012. [Online]. Available: https://team.inria.fr/DAESD/

�les/2012/05/Fabien-BtrPlace.pdf

[56] V. Hodge and J. Austin, �A survey of outlier detection methodologies,�

Arti�cial Intelligence Review, vol. 22, no. 2, pp. 85�126, Oct 2004.

[57] M. Hütterman, DevOps for Developers. Apress, 2012.

[58] L. Huang, X. Ke, K. Wong, and S. Mankovskii, �Symptom-based problem

determination using log data abstraction,� in Proceedings of the Advanced

Studies on Collaborative Research, 2010, pp. 313�326.

[59] R. J. Hyndman and G. Athanasopoulos, Forecasting: Principles and

Practice. OTexts, May 2014.

https://team.inria.fr/DAESD/files/2012/05/Fabien-BtrPlace.pdf
https://team.inria.fr/DAESD/files/2012/05/Fabien-BtrPlace.pdf

186 Bibliography

[60] O. Ibidunmoye, F. Hernández-Rodriguez, and E. Elmroth, �Performance

anomaly detection and bottleneck identi�cation,� ACM Computing Sur-

veys (CSUR), vol. 48, no. 4, pp. 1�35, 2015.

[61] Infonetics, �The cost of server, application, and network downtime,�

Infonetics Research, Tech. Rep., Jan. 2015. [Online]. Available:

https://goo.gl/Pa9Y0y

[62] N. Jain, M. Dahlin, Y. Zhang, D. Kit, P. Mahajan, and P. Yalagandula,

�STAR: self-tuning aggregation for scalable monitoring,� in Proceedings

of the 33rd International Conference on Very Large Data Bases, Sep

2007, pp. 962�973.

[63] Z. M. Jiang, A. E. Hassan, P. Flora, and G. Hamann, �Abstracting exe-

cution logs to execution events for enterprise applications (short paper),�

in Proceedings of the 8th International Conference on Quality Software,

Aug 2008, pp. 181�186.

[64] K. R. Joshi, G. Bunker, F. Jahanian, A. van Moorsel, and J. Weinman,

�Dependability in the cloud: Challenges and opportunities,� in Proceed-

ings of the IEEE/IFIP International Conference on Dependable Systems

Networks, Jun 2009, pp. 103�104.

[65] H. Kang, X. Zhu, and J. L. Wong, �Dapa: Diagnosing application per-

formance anomalies for virtualized infrastructures,� in Proceedings of the

2Nd USENIX Conference on Hot Topics in Management of Internet,

Cloud, and Enterprise Networks and Services. USENIX Association,

2012, pp. 1�8.

[66] S. Kanj, F. Abdallah, T. Den÷ux, and K. Tout, �Editing training data

for multi-label classi�cation with the k-nearest neighbor rule,� Pattern

Analysis and Applications, vol. 19, no. 1, pp. 145�161, Feb 2016.

[67] G. Katsaros, G. Kousiouris, S. V. Gogouvitis, D. Kyriazis, A. Menychtas,

and T. Varvarigou, �A self-adaptive hierarchical monitoring mechanism

for clouds,� Journal of Systems and Software, vol. 85, no. 5, pp. 1029�

1041, 2012.

https://goo.gl/Pa9Y0y

Bibliography 187

[68] S. Kavulya, K. R. Joshi, F. D. Giandomenico, and P. Narasimhan, �Fail-

ure diagnosis of complex systems,� in Resilience Assessment and Evalu-

ation of Computing Systems. Springer, 2012, pp. 239�261.

[69] T. Kelly, �Transaction mix performance models: Methods and applica-

tion to performance anomaly detection,� in Proceedings of the 20th ACM

Symposium on Operating Systems Principles. ACM, 2005, pp. 1�3.

[70] V. Kumar, �Parallel and distributed computing for cybersecurity,� IEEE

Distributed Systems Online, vol. 6, no. 10, 2005.

[71] M. H. Kutner, C. Nachtsheim, and J. Neter, Applied linear regression

models. McGraw-Hill/Irwin, 2004.

[72] Laerd Statistics, �Pearson product-moment correlation,� 2017. [Online].

Available: https://statistics.laerd.com/

[73] Z. Lan, Z. Zheng, and Y. Li, �Toward automated anomaly identi�cation

in large-scale systems,� IEEE Transactions on Parallel and Distributed

Systems (TPDS), vol. 21, no. 2, pp. 174�187, 2010.

[74] P. Laskov, P. Düssel, C. Schäfer, and K. Rieck, �Learning intrusion de-

tection: Supervised or unsupervised?� in Proceedings of the 13th In-

ternational Conference on Image Analysis and Processing (ICIAP), Sep

2005, pp. 50�57.

[75] W. Lee and D. Xiang, �Information-theoretic measures for anomaly de-

tection,� in Proceedings of the IEEE Symposium on Security and Privacy

(SP'01), 2001, pp. 130�143.

[76] K. Leung and C. Leckie, �Unsupervised anomaly detection in network in-

trusion detection using clusters,� in Proceedings of the 28th Australasian

Conference on Computer Science. Australian Computer Society, Inc.,

2005, pp. 333�342.

[77] V. I. Levenshtein, �Binary codes capable of correcting deletions, inser-

tions, and reversals,� in Soviet physics doklady, vol. 10, 1966, pp. 707�

710.

https://statistics.laerd.com/

188 Bibliography

[78] T. A. Limoncelli, S. R. Chalup, and C. J. Hogan, The Practice of Cloud

System Administration: Designing and Operating Large Distributed Sys-

tems. Pearson Education, 2014, vol. 2.

[79] L. E. Lwakatare, P. Kuvaja, and M. Oivo, �Dimensions of devops,� in

Proceedings of the 16th International Conference on Agile Processes in

Software Engineering and Extreme Programming: (XP). Springer In-

ternational Publishing, May 2015, pp. 212�217.

[80] J. P. Magalhaes and L. M. Silva, �Detection of performance anomalies

in web-based applications,� in Proceedings of the 9th IEEE International

Symposium on Network Computing and Applications, Jul 2010, pp. 60�

67.

[81] J. P. Magalhães and L. M. Silva, �Anomaly detection techniques for

web-based applications: An experimental study,� in Proceedings of the

11th IEEE International Symposium on Network Computing and Appli-

cations, Aug 2012, pp. 181�190.

[82] A. A. Makanju, A. N. Zincir-Heywood, and E. E. Milios, �Clustering

event logs using iterative partitioning,� in Proceedings of the 15th ACM

SIGKDD International Conference on Knowledge Discovery and Data

Mining. ACM, 2009, pp. 1255�1264.

[83] J. Makhoul, F. Kubala, R. Schwartz, and R. Weischedel, �Performance

measures for information extraction,� in Proceedings of DARPA broad-

cast news workshop, 1999, pp. 249�252.

[84] L. Mariani and F. Pastore, �Automated identi�cation of failure causes

in system logs,� in Proceedings of the 19th International Symposium on

Software Reliability Engineering (ISSRE), Nov 2008, pp. 117�126.

[85] M. Markou and S. Singh, �Novelty detection: a review - part 1: statistical

approaches,� Signal Processing, vol. 83, no. 12, pp. 2481�2497, 2003.

[86] ��, �Novelty detection: a review - part 2: neural network based ap-

proaches,� Signal Processing, vol. 83, no. 12, pp. 2499�2521, 2003.

Bibliography 189

[87] A. Mehta, J. Dürango, J. Tordsson, and E. Elmroth, �Online spike de-

tection in cloud workloads,� in Proceedings of the IEEE International

Conference on Cloud Engineering, Mar 2015, pp. 446�451.

[88] J. Miranda, �How Etsy deploys more than 50 times a day,�

Mar. 2014. [Online]. Available: http://www.infoq.com/news/2014/03/

etsy-deploy-50-times-a-day

[89] D. C. Montgomery, E. A. Peck, and G. G. Vining, Introduction to Linear

Regression Analysis. Wiley, 2012.

[90] A. Morrow, E. Baseman, and S. Blanchard, �Ranking anomalous high

performance computing sensor data using unsupervised clustering,� in

Proceedings of the International Conference on Computational Science

and Computational Intelligence (CSCI), Dec 2016, pp. 629�632.

[91] M. A. Munawar, �Adaptive monitoring of complex software systems us-

ing management metrics,� PhDThesis, Electrical and Computer Engi-

neering, 2009.

[92] M. Nagappan and M. A. Vouk, �Abstracting log lines to log event types

for mining software system logs,� in Proceedings of the 7th IEEE Working

Conference on Mining Software Repositories (MSR 2010), May 2010, pp.

114�117.

[93] M. Nagappan, K. Wu, and M. A. Vouk, �E�ciently extracting opera-

tional pro�les from execution logs using su�x arrays,� in Proceedings of

the 20th International Symposium on Software Reliability Engineering,

Nov 2009, pp. 41�50.

[94] T. H. Nguyen, J. Luo, and H. W. Njogu, �An e�cient approach to reduce

alerts generated by multiple IDS products,� International Journal of

Network Management, vol. 24, no. 3, pp. 153�180, 2014.

[95] A. J. Oliner, A. Ganapathi, and W. Xu, �Advances and Challenges in

Log Analysis,� Communications of the ACM, vol. 55, no. 2, pp. 55�61,

2012.

http://www.infoq.com/news/2014/03/etsy-deploy-50-times-a-day
http://www.infoq.com/news/2014/03/etsy-deploy-50-times-a-day

190 Bibliography

[96] A. J. Oliner and J. Stearley, �What supercomputers say: A study of �ve

system logs,� in Proceedings of the 37th Annual IEEE/IFIP International

Conference on Dependable Systems and Networks (DSN), 2007, pp. 76�

86.

[97] ��, �What supercomputers say: A study of �ve system logs,� in Pro-

ceedings of the 37th Annual IEEE/IFIP International Conference on De-

pendable Systems and Networks (DSN), 2007, pp. 76�86.

[98] J. P. Onyango and A. Plews, A textbook of basic statistics. East African

Publishers, 1987.

[99] J. W. Osborne, �Prediction in multiple regression,� Practical Assessment,

Research and Evaluation (PARE), vol. 7, no. 2, pp. 1�9, 2000.

[100] H. S. Pannu, J. Liu, and S. Fu, �A self-evolving anomaly detection frame-

work for developing highly dependable utility clouds,� in Proceedings of

the IEEE Global Communications Conference (GLOBECOM), Dec 2012,

pp. 1605�1610.

[101] J. Parekh, G. Jung, G. Swint, C. Pu, and A. Sahai, �Issues in bottleneck

detection in multi-tier enterprise applications,� in Proceedings of the 14th

IEEE International Workshop on Quality of Service, Jun 2006, pp. 302�

303.

[102] A. Patcha and J. Park, �An overview of anomaly detection techniques:

Existing solutions and latest technological trends,� Computer Networks,

vol. 51, no. 12, pp. 3448�3470, 2007.

[103] ��, �An overview of anomaly detection techniques: Existing solutions

and latest technological trends,� Computer Networks, vol. 51, no. 12, pp.

3448�3470, 2007.

[104] A. Pecchia and S. Russo, �Detection of software failures through event

logs: An experimental study,� in Proceedings of the 23rd International

Symposium on Software Reliability Engineering, Nov 2012, pp. 31�40.

Bibliography 191

[105] D. Pokrajac, A. Lazarevic, and L. J. Latecki, �Incremental local outlier

detection for data streams,� in Proceedings of the IEEE Symposium on

Computational Intelligence and Data Mining, Mar 2007, pp. 504�515.

[106] Ponemon, �Breaking down the cost implications of a data center

outage,� Ponemon Institute, Tech. Rep., Dec. 2013. [Online].

Available: http://www.emersonnetworkpower.com/en-US/Solutions/

infographics/Pages/Cost_Implications_of_Outages.aspx

[107] R. Powers, M. Goldszmidt, and I. Cohen, �Short term performance

forecasting in enterprise systems,� in Proceedings of the 11th ACM

SIGKDD International Conference on Knowledge Discovery in Data

Mining. ACM, 2005, pp. 801�807.

[108] E. T. Roush, �Cluster rolling upgrade using multiple version support,� in

Proceedings of the IEEE International Conference on Cluster Computing

(CLUSTER), Oct 2001, p. 63.

[109] A. Sadighian, J. M. Fernandez, A. Lemay, and S. T. Zargar, �ONTIDS: A

highly �exible context-aware and ontology-based alert correlation frame-

work,� in Proceedings of the 6th International Symposium on Foundations

and Practice of Security (FPS), Oct 2013, pp. 161�177.

[110] T. Savor, M. Douglas, M. Gentili, L. Williams, K. Beck, and M. Stumm,

�Continuous deployment at facebook and OANDA,� in Proceedings of

the 38th International Conference on Software Engineering (ICSE), May

2016, pp. 21�30.

[111] M. Sladescu, A. Fekete, K. Lee, and A. Liu, �Geap: A generic approach

to predicting workload bursts for web hosted events,� in Proceedings of

the 15th International Conference Web Information Systems Engineering

(WISE). Springer International Publishing, Oct 2014, pp. 319�335.

[112] J. Sondow, �Asgard: Web-based cloud management and deployment,�

2012. [Online]. Available: https://medium.com/net�ix-techblog

http://www.emersonnetworkpower.com/en-US/Solutions/infographics/Pages/Cost_Implications_of_Outages.aspx
http://www.emersonnetworkpower.com/en-US/Solutions/infographics/Pages/Cost_Implications_of_Outages.aspx
https://medium.com/netflix-techblog

192 Bibliography

[113] C. Spence, L. Parra, and P. Sajda, �Detection, synthesis and compression

in mammographic image analysis with a hierarchical image probability

model,� in Proceedings of the IEEE Workshop on Mathematical Methods

in Biomedical Image Analysis (MMBIA), 2001, pp. 3�10.

[114] J. Stearley, �Towards informatic analysis of syslogs,� in Proceedings of

the IEEE International Conference on Cluster Computing, Sep 2004,

pp. 309�318.

[115] Y. Tan, H. Nguyen, Z. Shen, X. Gu, C. Venkatramani, and D. Rajan,

�Prepare: Predictive performance anomaly prevention for virtualized

cloud systems,� in Proceedings of the 32Nd IEEE International Con-

ference on Distributed Computing Systems. IEEE Computer Society,

2012, pp. 285�294.

[116] Z. Usmani and S. Singh, �A survey of virtual machine placement tech-

niques in a cloud data center,� Procedia Computer Science, vol. 78, pp.

491 � 498, 2016.

[117] R. Vaarandi, �SEC - a lightweight event correlation tool,� in IEEE Work-

shop on IP Operations and Management, 2002, pp. 111�115.

[118] ��, �A data clustering algorithm for mining patterns from event logs,�

in Proceedings of the 3rd IEEE Workshop on IP Operations Management

(IPOM), Oct 2003, pp. 119�126.

[119] R. Vaarandi, M. Kont, and M. Pihelgas, �Event log analysis with the

logcluster tool,� in Proceedings of the IEEE Military Communications

Conference, (MILCOM), Nov 2016, pp. 982�987.

[120] R. van Renesse, K. P. Birman, and W. Vogels, �Astrolabe: A robust and

scalable technology for distributed system monitoring, management, and

data mining,� ACM transactions on computer systems, vol. 21, no. 2, pp.

164�206, 2003.

[121] C. W. VanVoorhis and B. L. Morgan, �Understanding power and rules of

Bibliography 193

thumb for determining sample sizes,� Tutorials in Quantitative Methods

for Psychology, vol. 3, no. 2, pp. 43�50, 2007.

[122] J. Varia, Architecting for the Cloud: Best Practices, 2011.

[123] Veeam Team, �Veeam data centre availability report,� Veeam Software,

Tech. Rep., Dec. 2014. [Online]. Available: http://go.veeam.com/

2014-availability-report.html

[124] P. M. B. Vitanyi and M. Li, �Minimum description length induction,

bayesianism, and kolmogorov complexity,� IEEE Transactions on Infor-

mation Theory, vol. 46, no. 2, pp. 446�464, Mar 2000.

[125] A. Wagner and B. Plattner, �Entropy based worm and anomaly detec-

tion in fast ip networks,� in Proceedings of the 14th IEEE International

Workshops on Enabling Technologies: Infrastructure for Collaborative

Enterprise. IEEE Computer Society, 2005, pp. 172�177.

[126] C. Wang, V. Talwar, K. Schwan, and P. Ranganathan, �Online detection

of utility cloud anomalies using metric distributions,� in Proceedings of

the IEEE Network Operations and Management Symposium (NOMS),

Apr 2010, pp. 96�103.

[127] T. Wang, J. Wei, W. Zhang, H. Zhong, and T. Huang, �Workload-aware

anomaly detection for web applications,� Journal of Systems and Soft-

ware, vol. 89, pp. 19�32, Mar 2014.

[128] T. Wang, W. Zhang, C. Ye, J. Wei, H. Zhong, and T. Huang, �FD4C: au-

tomatic fault diagnosis framework for web applications in cloud comput-

ing,� IEEE Transactions on Systems, Man, and Cybernetics: Systems,

vol. 46, no. 1, pp. 61�75, 2016.

[129] I. Weber, M. Farshchi, J. Mendling, and J.-G. Schneider, �Mining pro-

cesses with multi-instantiation,� in Proceedings of the 30th Annual ACM

Symposium on Applied Computing. ACM, 2015, pp. 1231�1237.

http://go.veeam.com/2014-availability-report.html
http://go.veeam.com/2014-availability-report.html

194 Bibliography

[130] I. Weber, C. Li, L. Bass, X. Xu, and L. Zhu, �Discovering and Visual-

izing Operations Processes with POD-Discovery and POD-Viz,� in Pro-

ceedings of the 45th Annual IEEE/IFIP International Conference on De-

pendable Systems and Networks (DSN), Jun 2015, pp. 537�544.

[131] I. Weber, A. Rogge-Solti, C. Li, and J. Mendling, �Ccaas: Online con-

formance checking as a service.� in Proceedings of the International Con-

ference on Business Process Management, (BPM), 2015, pp. 45�49.

[132] A. Wolski and K. Laiho, �Rolling upgrades for continuous services,� in

Proceedings of the First International Service Availability Symposium

(ISAS), May 2004, pp. 175�189.

[133] M. Xu, W. Tian, and R. Buyya, �A survey on load balancing algorithms

for virtual machines placement in cloud computing,� Concurrency and

Computation: Practice and Experience, vol. 29, no. 12, p. NA, 2017.

[134] W. Xu, �System problem detection by mining console logs,� PhDThesis,

University of California, Berkely, 2010.

[135] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan, �Detecting

large-scale system problems by mining console logs,� in Proceedings of

the ACM SIGOPS 22Nd Symposium on Operating Systems Principles.

ACM, 2009, pp. 117�132.

[136] W. Xu, L. Huang, A. Fox, D. A. Patterson, and M. I. Jordan, �Mining

console logs for large-scale system problem detection.� SysML, vol. 8, pp.

1�16, 2008.

[137] X. Xu, I. Weber, L. Bass, L. Zhu, H. Wada, and F. Teng, �Detecting

cloud provisioning errors using an annotated process model,� in Proceed-

ings of the 8th Workshop on Middleware for Next Generation Internet

Computing, (MW4NextGen), Dec 2013, pp. 5:1�5:6.

[138] X. Xu, L. Zhu, M. Fu, D. Sun, A. B. Tran, P. Rimba, S. Dwarakanathan,

and L. Bass, �Crying Wolf and Meaning It: Reducing false alarms in

Bibliography 195

monitoring of sporadic operations through POD-Monitor,� in Proceed-

ings of the 1st IEEE/ACM International Workshop on Complex Faults

and Failures in Large Software Systems, 23May 2015, pp. 69�75.

[139] X. Xu, L. Zhu, D. Sun, A. B. Tran, I. Weber, and L. Bass, �Error diag-

nosis of cloud application operation using bayesian networks and online

optimisation,� in Proceedings of the 11th European Dependable Comput-

ing Conference, (EDOC), Sep. 2015, pp. 37�48.

[140] X. Xu, L. Zhu, I. Weber, L. Bass, and D. Sun, �POD-Diagnosis: Error

diagnosis of sporadic operations on cloud applications,� in Proceedings

of the 44th Annual IEEE/IFIP International Conference on Dependable

Systems and Networks ((DSN)), jun 2014, pp. 252�263.

[141] L. Yang, J. M. Schopf, C. L. Dumitrescu, and I. Foster, �Statistical data

reduction for e�cient application performance monitoring,� in Proceed-

ings of the 6th IEEE International Symposium on Cluster Computing

and the Grid (CCGRID), vol. 1, May 2006, pp. 8 pp.�334.

[142] L. Yu and Z. Lan, �A scalable, non-parametric anomaly detection frame-

work for hadoop,� in Proceedings of the ACM Cloud and Autonomic

Computing Conference. ACM, 2013, pp. 22:1�22:2.

[143] D. Yuan, Y. Luo, X. Zhuang, G. R. Rodrigues, X. Zhao, Y. Zhang,

P. Jain, and M. Stumm, �Simple testing can prevent most critical failures:

An analysis of production failures in distributed data-intensive systems,�

in Proceedings of the 11th USENIX Symposium on Operating Systems

Design and Implementation (OSDI), Oct 2014, pp. 249�265.

[144] Z. Zheng, Z. Lan, B. H. Park, and A. Geist, �System log pre-processing

to improve failure prediction,� in Proceedings of the IEEE/IFIP Inter-

national Conference on Dependable Systems Networks, Jun 2009, pp.

572�577.

[145] Y. Zhu, N. M. Nayak, and A. K. Roy-Chowdhury, �Context-aware ac-

tivity recognition and anomaly detection in video,� IEEE Journal of

Selected Topics in Signal Processing, vol. 7, no. 1, pp. 91�101, Feb 2013.

	Introduction
	Research Problem
	Objective and Research Questions
	Research Contributions
	Logs-Metrics Mapping
	Metric Selection
	Assertion Specification Derivation and Anomaly Detection
	Ripple Effect Detection
	Anomaly Detection Evaluation

	Organisation of the Thesis
	Related Publications

	Background and Related Work
	Definitions
	System Monitoring with Virtualisation Technologies
	DevOps Operations
	Metric Selection
	Anomaly Detection
	What is Anomaly Detection?
	Anomaly Detection Characterisation: Data Labels
	Anomaly Detection Characterisation: Types of Anomalies
	Challenges in Anomaly Detection

	Anomaly Detection Techniques
	Classification-based Techniques
	Clustering-based Techniques
	Nearest Neighbour-based Techniques
	Information Theoretic Techniques
	Statistical Techniques

	Summary

	Metric Selection and Unsupervised Anomaly Detection Using Log-Metric Regression Analysis
	Overview of the Proposed Approach
	Sources of Monitoring Data and Data Preparation
	Event Logs from Operation Tools
	Metrics from Monitoring Tools

	Log Processing and Log Abstraction
	Representing Logs as Quantitative Metrics
	Abstracting Event Logs to Activities

	Log-Metric Regression-based Model
	Target Metric Selection
	Identification of Influential Log-Events and Assertion Derivation for Anomaly Detection

	Closely Related Work to the Anomaly Detection Approach of this Thesis
	Context-based Anomaly Detection
	Closely Related Work

	Summary

	Anomaly Checking Prototype
	Anomaly-Checker and Integration with POD Services
	Key Features and Architecture
	Data Repository: Elasticsearch
	Data Schema

	Configuration Input
	Anomaly Checking
	Summary

	Rolling Upgrade Case Study
	Rolling Upgrade
	Experimental Environment
	Netflix Asgard - Event Logs from Operations Tools
	Amazon CloudWatch - Resources Metrics
	Direct and Derived Metrics

	Log Analysis
	Log Parsing and Log Representation as a Quantitative Metric
	Log Events Correlation Clustering - Mapping Low Granular Logs to a Set of Activities

	Metric Selection
	Log-Metric Correlation Learning - Which Metrics Should be Selected for Monitoring?

	Assertion Derivation for Anomaly Detection with Log-Metric Causality Learning
	Causality Analysis and Assertion Derivation: Impact of Log Activities on Selected Metrics
	Suitability of Metric for Anomaly Detection

	Anomaly Detection Evaluation
	Evaluation Method
	Evaluation Result with State-Based Metric
	Evaluation Result with Non-State-Based Metric
	Ripple Effect Detection

	Summary and Lessons Learned

	Flight Data Processor Case Study
	Experimental Set-Up
	Log Analysis
	Log Event Type Extraction
	Representing Log Event Type as Quantitative Metric
	Log Event Type Correlation Clustering

	Metric Selection
	Assertion Derivation
	Anomaly Detection
	Predictability Power Evaluation
	Anomaly Detection Evaluation

	Summary

	Conclusions and Future Directions
	Summary
	Answers to Research Questions
	Open Problems and Future Work
	Optimal Time Window
	Automatic Error Diagnosis and Self-Healing
	Best-Practices in Statistical-Based Anomaly Detection
	Usage of Machine Learning Techniques
	Dynamic Reconfiguration Using Logs and Metrics Analysis

	Final Remarks

	Bibliography

