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Preface

This thesis is submitted under Swinburne University Policy for the Degree of Doctor of
Philosophy, Regulation 4.2, Admission to candidature for thesis by publication. This
allows for

"thesis by publication on the basis of research which has been carried out
prior to admission by candidature and which has been published, normally in
texts or refereed publications. Only those publications not previously
submitted by the applicant for a degree in any tertiary institution may be
included in support of the application for candidature and in the Candidates
thesis. In such cases the...Candidate must produce a significant body of
work on an integrated theme that will comprise the thesis. This thesis would
normally include a substantial introduction showing the relevance of the
publications to development of the theme, plus a series of publications and
any necessary linking commentary. All publications must be appropriately
identified and referenced and the contributions of the Candidate to each
publication must be clearly specified."

From my work in applications in sport over many years, | have selected for this thesis
some of the papers relating to performance measurement in football (including
Australian rules and English soccer), and cricket. Most of the football work relates to
measurement of home advantage and forecasting match results. The football work has
the advantage from an operational research viewpoint that it is heavily based on real
data, and has also been implemented to the degree that the results have been regularly
published in the popular media. The work on performance measurement and tactics in
cricket makes up the second part of the thesis and uses the traditional OR technique of
dynamic programming. | toyed with the idea of using my work on squash and
badminton, which also falls in the general theme, but thought the thesis already long
enough.

In this thesis each chapter usually comprises one publication. This has meant some
repetition, as there is some commonality in literature surveys and game descriptions in
various papers. However it has the advantage that each chapter is self contained and
may be read in isolation. The content of each publication is as it originally appeared,
but with style changes to create uniformity of presentation throughout the thesis. This
necessitated some superficial changes. All headings, tables, figures and equations have
been renumbered using the chapter number as a prefix. The style of referencing has



been standardised, and the references consolidated in the bibliography at the end of the
thesis. In a very few cases notation has been changed and tables and figures given a
more descriptive caption.

A commentary section which details later developments or further work has been added
at the end of some chapters.

The following lists the publications used in each chapter, states if they were refereed,
and specifies the candidates input to co-authored papers.

Chapter I. Written specifically for the thesis.

Chapter Il. The early part of this chapter is based loosely on Stefani, R. T., & Clarke,
S. R. (1991), Australian rules football during the 1980s. ASOR Bulletin, 10(3), 11-
15. The paper evolved from a 50% contribution by Professor Stefani and a 50%
contribution from myself. In Chapter Il, | have repeated all the analysis on 16 years
of data.

The latter part of the chapter is from Clarke, S. R. (1997a), Home ground advantage
in the Australian Football League, 1980-85, a paper presented at the APORS
conference 1997, Melbourne.

Chapter 1l1lI. Clarke, S. R., & Norman, J. M. (1995), Home ground advantage of
individual clubs in English soccer. The Statistician, 44, 509-521. Refereed. The
conception of this paper resulted from joint collaboration. Professor Norman
assisted with the collection of data, which I computerised and analysed. | wrote the
first draft of the paper, but Professor Norman assisted with following drafts and
provided the necessary local knowledge.

The commentary material is based on Clarke, S. R. (1996b), Home advantages in
balanced competitions - English soccer 1990-1996. In N. de Mestre (Ed.),
Mathematics and Computers in Sport (pp. 111-116). Gold Coast, Qld.: Bond
University.

Chapter IV. Clarke, S. R. (1993), Computer forecasting of Australian rules football for
a daily newspaper. Journal of the Operational Research Society, 44(8), 753-759.
Refereed.



Vi

Chapter V. Clarke, S. R. (1992), Computer and human tipping of AFL football - a
comparison of 1991 results. In N. de Mestre (Ed.), Mathematics and Computers in
Sport (pp. 81-93). Gold Coast, Qld: Bond University.

Chapter VI. Stefani, R. T., & Clarke, S. R. (1992), Predictions and home advantage for
Australian rules football. Journal of Applied Statistics, 19(2), 251-261. Refereed.
This paper resulted from joint discussions over several years on computer tipping
and home advantage. | provided the data and my computer methods for the
Australian rules analysis, Professor Stefani provided the least squares method as
well as the data and results for the other sports.

Chapter VII. Clarke, S. R. (1996a), Calculating premiership odds by computer - an
analysis of the AFL final eight play-off system. Asia Pacific Journal of Operational
Research, 13(1), 89-104. Refereed. The commentary is based on my own work not
yet submitted.

Chapter VIII. Clarke, S. R., & Norman, J. M. (1998b), When to rush a behind in
Australian rules football: a dynamic programming approach. Journal of the
Operational Research Society, in press. Refereed. In terms of input this paper is
the complement of Chapter I1l. The conception of the paper resulted from joint
collaboration. The development of the model was a joint exercise, but Professor
Norman wrote the computer implementation and the first draft of the paper. |
assisted with further development of the model and the paper, and provided the
necessary local knowledge.

Chapter IX. Clarke, S. R. (1997b), Test Statistics. In J. Bennet (Ed.), Statistics in Sport.
Edward Arnold (to appear). This is a slightly reduced version of the material to be
published in the text. Several figures and tables extracted from published works
and required for the text have been omitted here.

Chapter X. Clarke, S. R. (1986), Another look at the 1985/86 Sheffield Shield
competition cricket results. Sports Coach, 10(3), 16-19.



vii

Chapter XI. Clarke, S. R. (1988), Dynamic Programming in one day cricket - Optimal
scoring rates. Journal of the Operational Research Society, 39(4), 331-337.
Refereed.

The commentary is based on Johnston, M. 1., Clarke, S. R., & Noble, D. H. (1992),
An analysis of scoring policies in one day cricket. In N. de Mestre (Ed.),
Mathematics and Computers in Sport (pp. 71-80). Gold Coast, Qld: Bond
University. | wrote this paper based on joint development of my original idea by all
authors. Mr Johnston wrote all the necessary computer programs.

Chapter XII. Clarke, S. R., & Norman, J. M. (1998a), Dynamic programming in
cricket: Protecting the weaker batsman. Asia Pacific Journal of Operational
Research, in press. Refereed. | developed the models and paper with the continued
assistance of Professor Norman's help and advice.

Chapter XIII. Clarke, S. R., & Norman, J. M. (1997c), To run or not? Some Dynamic
Programming models in cricket. In R. L. Jenson & I. R. Johnson (Eds.),
Proceedings of the Twenty-Sixth Annual Meeting of the Western Decision Sciences
Institute (pp. 744-746). Hawaii: Decision Sciences Institute. The full paper, which
appears here, was refereed. The above is a shorter version published in the
proceedings as is the practice at this conference. | developed Models 1 and 2 along
with the necessary computer programs. Professor Norman developed Model 3
along with the necessary computer programs. | wrote the first draft of the paper.
Both authors provided assistance and advice to the other in the development of the
models and the paper.

Chapter XIV. Johnston, M. 1., Clarke, S. R., & Noble, D. H. (1993), Assessing player
performance in one-day Cricket using dynamic programming. Asia-Pacific Journal
of Operational Research, 10, 45-55. Refereed. | wrote the paper based on joint
development of my original idea by all authors. Mr Johnston wrote all the
necessary computer programs.

Chapter XV. Written specifically for the thesis.
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Abstract

This thesis investigates problems of performance modelling in sport. Mathematical
models are used to evaluate the performance of individuals, teams, and the competition
rules under which they compete. The thesis comprises a collection of papers on
applications of modelling to Australian rules football, soccer and cricket. Using
variations of the model wjj = uj + hj - uj + ejj where wijj is the home team winning
margin when home team i plays away team j, uj is a team rating, hj is an individual
ground effect and ejj is random error, the evaluation of team home ground advantage
effect (HA) is studied in detail. Data from the Australian Football League and English
Association Football for 1980 to 1995 are investigated. The necessity of individual
team HASs is demonstrated. The usual methods of calculating HA for competitions is
shown to be inappropriate for individual teams. The existence of a spurious HA when
home and away performances are compared is discussed. For a balanced competition,
fitting the above model by least squares is equivalent to a simple calculator method
using only data from the final ladder. A method of calculating HA by pairing matches
is demonstrated. Tables of HA and paired HA in terms of points/game for each year are
given. The resultant HAs for both Australian rules football and soccer are analysed.
Clearly there is an isolation effect, where teams that are isolated geographically have
large HAs. For English soccer, the paired HA is shown to be linearly related to the
distance between club grounds. As an application of these methods, the development
and implementation of a computer tipping program used to forecast Australian rules
football by rating teams is described. The need for ground effects for each team and
ground, and the use of heuristic methods to optimise the program is discussed. The
accuracy of the prediction model and its implementation by publication in the media is
discussed. International comparisons show prediction methods are limited by the data.
Methods for evaluating the fairness of the League draw and the finals systems are
given. The thesis also investigates the use of dynamic programming to optimise tactics
in football and cricket. The thesis develops tables giving the optimal run rate and the
expected score or probability of winning at any stage of a one-day cricket innings.
They show a common strategy in one-day cricket to be non-optimal, and a heuristic is
developed that is near optimal under a range of parameter variations. A range of
dynamic programming models are presented, allowing for batsmen of different abilities
and various objective functions. Their application to performance modelling are shown
by developing a radically different performance measure for one day cricket, and
applying it to a one-day series.



CHAPTER |

INTRODUCTION AND LITERATURE REVIEW

1.1. Introduction

Would Casperov have beaten Casablanka? Was John Coleman better than Gary Ablett?
Is Greg Norman a better golfer than Nick Faldo? Is Dean Jones the best one-day
cricketer? Which is the best golf hole? Is Essendon a better football team than
Collingwood? Is the final 8 system better than the final 6? To answer these questions
you need criteria.

In most sporting competitions there is a major criterion that teams or individuals are
judged on - win the premiership, win the tournament, score as much as you can.
However other statistics and measures of performance are also used as they presumably
affect the likelihood of the desired outcome, or the way in which it is achieved. The
weight of a boxer is worth documenting because it is known that this affects markedly
his punching power, whereas his shoe size should be of little interest as it is of no
relevance to his chance of winning or his method of winning. For a golfer, the average
length of drive is recorded as it is thought to influence his chance of winning. However
too often such statistics are measured in isolation of other factors (out of context). For
example the putting ability of a golfer may be measured by the number of pultts.
However while a small number of putts could indicate the golfer is a good putter, it
could also indicate a good chipper so his putts are generally from a shorter distance.

Similarly the average score for a one day cricketer is usually recorded. However a
large score, scored at a slow rate, may be detrimental to the team. Thus not only should
the size of scores be measured, but the rate of scoring. But again, while obviously a
large score at a fast rate is optimal, what are the offsets. How do we compare a small
score at a fast rate and a large score at a slow rate? How do these interact? Either may
be appropriate at different stages of a game. Modelling the game can assist by
providing a much more subtle measure of performance.

In many sporting competitions there are three levels at which decisions are taken that
reflect on the outcome. The individual player, the team they play for and the
competition in which the individual or team participates. Performance measurement
should be driven by some model of the system, and reflect what the player or team or
competition is trying to achieve. Thus, in team events, individual player performance



measures should reflect the extent to which they contribute to team goals. The best
interests of the team are then achieved by the player simply optimising his performance
measure.

The performance of a set of rules for a competition can also be measured. A
competition is generally designed to produce a winner or order of merit. It can be
measured by the degree to which this order of merit corresponds to some desired order.
For example the effects of different lengths of matches in racquet sports on the chances
of the best player winning has been studied in the literature. Similarly, one day cricket
matches are often decided by the application of rain interruption rules. The fairness of
these rules in preserving a team's chances of winning can be measured through
modelling. In multi-team competitions, while the order of merit a team achieves may
be the primary measure of its success, there may be other factors that combine to
produce the teams success. For example, in most team sports it is recognised that team
ability and home advantage (HA) are important. Modelling is necessary to separate out
the importance of these various effects to individual teams. The competition rules can
then be judged on the degree to which these traits are rewarded or allowed for.

While one linking theme of my research is performance measurement through
modelling, a second is measuring variability. Almost all current performance measures
in sport are averages or sums. Yet it is widely recognised that consistency (or
variability) is a major determinant of sporting success. However there are virtually no
commonly kept statistics in major sports that measure variability. Once a modelling
approach is taken, because variability is such an important determinant of success,
many measures of variability will naturally arise. Thus HA is a natural measure to
apply to football teams as it explains the variability in their performance from home to
away.

1.2. Why sport?

When | first began research into sport, a perception existed that something so much fun
could not be a serious pursuit. However the application area has become acceptable,
and I no longer have to justify working in sport. A radio interviewer once accused me
of wasting government money by indulging in such frivolous activity. Just in case there
are still some doubters, it is perhaps worthwhile to reiterate some of the reasons why
sport is a worthwhile area for the application of mathematical modelling.



Sport is important to a large proportion of the population. Many people spend a
great part of their lives playing, watching, discussing or thinking about sport. This
interest is not limited to one socio-economic group but encompasses all income and
education levels. A quick look at any daily newspaper will illustrate the extent to
which sport dominates large sections of the media.

Sport is big business. For example, the American Football league sold its 1990
rights to TV for $1.25 billion. Although still well behind the USA, with the
introduction of sophisticated marketing methods, sports like cricket, football and
tennis are becoming big money earners in Australia. Over the years Governments
and industry have capitalised on the commercial aspects of sport so that it is now a
multi billion dollar industry, and probably rivals traditional sectors. Its importance
to economies and reputation is illustrated by the fervour with which cities compete
for the honour of holding the Olympic games.

Most importantly, sport abounds with problems to tackle. Administrators, selectors,
coaches and players continually make decisions which could be assisted by
analysis. Every sport has its golden rules which are often untested. Many sports
collect reams of statistics, which are often left unanalysed. Every fan continually
makes conjectures which are unproven. Many of these problems are amenable to
analysis by statistical and operational research techniques.

Sport has become an acceptable, and even encouraged, area of publication. Mottley
(1954) first suggested the use of OR techniques in sport, and the publication in the
mid 1970's of Machol, Ladany, & Morrison (1976) as a special issue of
Management Science, and )Ladany & Machol (1977) based on previously published
articles on strategy showed the many possibilities for quantitative research in sport.
As researchers have tackled problems and published solutions, the realisation has
grown on learned societies and journals that members and readers are interested in
these applications, not only because of the techniques used but also because they
share the general public's inherent interest in sport. The problem and its solution is
of major interest, not just the solution technique.

Many professional societies, and some journals, now have special sections devoted
to applications in sport. To give three examples, the American Statistical Society
has a special interest section in sport, The Royal Statistical Society has a regular
section in its Series D journal focusing on sport, and the Australian Mathematical
Society have a biennial conference on mathematics and computers in sport.

Because many papers are problem oriented, the area is truly inter disciplinary.
Papers on mathematical modelling in sport appear in mathematics, operational
research, computing, statistics, psychology, engineering and even sports science



journals.

» Finally sport is a great source of problems for teaching. Because of their interest in
the problems, because they have a stake in the answers, students will question
techniques and methods used if the application is in sport. They see quantitative
methods as being useful in solving real problems.

Since this thesis is a selection of my work in the area of sports modelling and
performance measurement, | will give a review of that work. In doing so I will
highlight some of the themes that have characterised my work and by association an
overview of operational research work in related areas.

1.3. Scoring in racquet sports

Clarke & Norman (1979), my first paper, resulted from an investigation with John
Norman on squash. This began my interest in applications in sport and the paper
illustrated three important aspects of modelling in sport. The first was measurement
based on a mathematical model. Players and commentators would often complain that
the English scoring system resulted in longer games than the American system, but
these observations were based on subjective feelings rather than any analysis. It would
have been possible to tackle this problem by collecting data on actual matches.
However Schutz (1970) had developed a mathematical model for tennis and applied it
to various scoring systems in tennis. Schutz & Kinsey (1977) applied the method to
squash, and assuming players had a constant probability of winning a rally, investigated
the average length of a match under both scoring systems. However they were unable
to solve the model for the mean and standard deviation of the length of the game and
hence resorted to simulation. We were able to set up recurrence relations for the
probability of winning and the mean and variance of the number of rallies left in the
match, to solve the problem numerically. (In retrospect, the paper would have been
better titled numerical results).

These results showed the importance of randomness and variation. The work to some
extent quantified the importance of randomness or luck in squash, by giving tables that
showed the probability the better player won the match. Randomness exists in all
sporting contests but its effects are rarely quantified. In this case the effects were felt
not only in which player won, but the length of the game. The mean length of the two
games was much the same - it was the variance of the English game that was much
larger. The perception of participants that games under the English scoring system



were longer was really based not on the average length but the extremes. This is a
second important theme in most of my work - the variation in sport and the effects of
randomness.

The third issue was tactics. In English scoring a player makes a decision at 8-8 to play
to 9 or 10. As a player should make the choice which maximises their probability of
winning, we needed to solve this simple preliminary problem before tackling the main
point of the paper. Our results were to some extent anti intuitive. The more likely a
person was to lose the next point, the greater the advantage in choosing to play to 9
rather than 10. There are many opportunities in sport to analyse tactics, and some of
my work has gone down this path. In Clarke (1979) | extended the model to allow for
each player to have different probabilities of winning their serve, and looked in detail at
tie point decisions in both English and American squash. Clarke & Norman (1978) put
the results of the tie breaker research to the attention of squash players and
administrators. It is important that results of such research be brought not only to other
researchers through the professional journals, but also to players and followers of the
game. Finally, as | stated above, examples from sport are great motivation for students.
Clarke (1984, 1985a, 1985h) were the first of several of my papers designed to bring
this idea to the attention of teachers.

Many researchers have subsequently investigated the effects of different scoring
systems in racquet sports on the chances of players winning and the mean and variance
of the length of matches, for example Croucher (1982c, 1986), Pollard (1983), Riddle
(1988). The problem has now been solved analytically, as distinct from the numerical
solutions we found. Miles (1984) related the probability of winning to the mean length
of the match through the concept of efficiency. Tennis commentators often talk about
important points, and this concept of importance was first given a mathematical
definition by Morris (1977). Pollard (1986a) performed an extensive study of sports
scoring systems, in particular investigating the concept of 'important points' and
efficiency. Because a sports scoring system is attempting to find the better of two
players, the results found more general application in hypothesis testing in Pollard
(1992). On a different tack, Wright (1988) extended the model in squash to allow for
different probabilities of winning a point depending on the side of the court to which
the player is serving.

The research output of papers in this area also illustrates a problem perhaps more
common to sport than other application areas. In most topic or application areas,



researchers concentrate on a technique or application area and build up a knowledge of
the literature and previous work over many years. Papers in sport are often 'one off".
Because of their own involvement in sport, a researcher will independently analyse a
problem unaware of previous work. Since papers are published in a wide range of
journals, a literature search solely in the researchers field will fail to bring up relevant
papers. Because of this, problems often reappear in the literature with little recognition
of previous work. For example, Alexander, McClements, & Simmons (1988), Brooks
& Hughston (1988) and Simmons (1989) all revisit tie point strategy without
recognition of much of the previous work.

1.4. Dynamic programming in cricket

In analysing squash and tennis scoring systems, the method involved defining the state
of the match as the score. By finding a relationship between the value of the required
measure (probability of winning, mean and variance of number of rallies in the
remainder of the match etc.) in the state before a rally was played, to its value in
surrounding states reached after the point was played, it was possible to start at the end
of the match when the values were known and work backwards to the beginning or any
intermediate score. This is only dynamic programming (DP) without the decisions, and
it was a natural progression to use DP in sporting applications. Its suitability in sporting
applications had been proposed by Bellman (1977) and there are now many examples
where a DP formulation has the potential to assist the sports person with decision
making. Norman (1995) in giving one example of an application of DP in each sport
lists 10 papers. Sphicas & Ladany (1976) use it to extend the static strategy developed
in an earlier paper, Sphicas, Humes, & Ladany (1975), by allowing the optimal aiming
line in the long jump to depend on the jumps already taken. Norman (1985) used DP in
a simple decision problem on whether to serve hard or soft at tennis, and Hayes &
Norman (1984) is an interesting study on optimal route choice in orienteering.
Recently Clarke & Norman (1997b, 1998b) have applied the technique to Australian
rules football for the first time (see Chapter VIII). However the method had
surprisingly not been applied to cricket, although Thomas (1978) had used cricket to
illustrate a Markov problem in a student exercise (see also White (1993, p177-179).

In spite of the interest in cricket, and the availability of extensive statistics, there has
been surprisingly little research on cricket (see Chapter IX for a literature review).
Elderton (1945) and Wood (1945) in two of the earliest articles using quantitative
methods in sport, investigate the measurement of consistency and the distribution of



cricket scores. Elderton notes that if a score is equally likely to advance by one
whatever the score, cricket scores should follow a geometric distribution. However he
then denies the inherent variability this implies by defining a consistent batsman as one
with a zero variance. Wood more correctly in my view, suggests that as the scores of
consistent batsmen should follow the geometric distribution, a perfectly consistent
batsmen should have a coefficient of variation of scores of 100. Although the record of
meeting shows a lively discussion, the issue was not taken up in the literature. In
Clarke (1991b, 1994c) I use an improved model that assumes for each ball a constant
probability of dismissal. This idea is at the heart of most of my cricket models, and
produces a geometric distribution for the number of balls faced rather than the score. A
distribution of scores off each ball then produces coefficients of variation greater than
100, so that different batsmen, each perfectly consistent but with different distribution
of scores off each ball, can have different coefficients of variation. These papers also
suggest several other measures of performance for batsmen.

Croucher (1979, 1982b) is typical of the occasional papers on cricket in statistics
journals. These often show up interesting points by standard statistical analysis of
results. However the OR literature is strangely devoid of cricket applications. Willis
(1994), Willis & Armstrong (1993) and Wright (1991, 1992) are more recent papers but
apply to scheduling matches and umpires, and are not concerned with the game per se.

The ball by ball nature of cricket lends itself to analysis by DP. In Clarke (1988b), I
used a DP model to investigate optimal strategies for both first and second innings. In
the first innings, the formulation maximised the expected number of runs in the
remainder of the innings. This gave an optimal run rate and expected score in the
remainder of the innings depending on the number of wickets in hand. The second
innings is a final value problem, and maximises the probability of achieving more runs
than the opposition. This gave the optimal run rate and the probability of achieving
more runs than the opposition depending on the number of wickets in hand and the
number of runs to go. While a relationship between probability of dismissal and
scoring rate had to be assumed, Johnston (1992) later showed the results were valid
over a wide range of relationships. This work also followed up a suggestion made in
Clarke (1988b) and developed the first innings formulation into a radically different
performance measure for individual players. This measure successfully combined the
twin needs in one day cricket of scoring big and scoring fast by allocating to each
player the excess scored each ball over the optimal given by the DP formulation.
Details and some results are given in Johnston et al. (1992, 1993). The method ensures



that a player's performance measure is consistent with team goals, and a player will
maximise his measure by maximising his team's chance of winning.

The above models all assume batsmen are of equal ability. This restriction has been
removed in several models which investigate a range of possible objective functions,
some applicable to test cricket. Clarke & Norman (1995b, 1998a) investigate the
problem of putting the weaker batsman on strike at the end of the over, so the better
batsman is on strike at the beginning of the new over. The model is soluble analytically
and could form a useful teaching example. However, while it produces optimal
strategies to achieve the objective, the paper also shows this does not necessarily
minimise the weaker batsman's exposure to the strike. Clarke & Norman (1997c)
maximise the expected score in the remainder of the innings. In both these papers the
decision is made after the ball is bowled and the batsman decides whether to take all the
runs or not. The second also looks at a model where the batsman can also decide on his
type of stroke. The applications of DP to cricket forms Chapters XI to XIV of this
thesis.

1.5. Home advantage

In Clarke (1986a) , I looked at the problem of HA in cricket (see chapter X). That
paper showed that in Australian cricket, most states won more than 50% of their
matches at home, and all state teams performed better at home than away. However,
because some grounds were more likely to produce outright results which carried more
points than first inning victories, many more points were allocated for matches on some
grounds than others. Thus the final year ladder was distorted by this unfair advantage
carried by some states. Alternative methods of ranking the states were investigated.

The phenomena of HA has long been recognised by sports fans and has been the basis
of considerable study since the seventies. In the first detailed study, Schwartz &
Barsky (1977) found the percentage of matches won by the home team to be 53% in
pro baseball, 60% in pro football, 64% in ice hockey and 64% in college basketball.
They advanced three explanations for HA, learning factors, travel factors and crowd
factors. Various studies have subsequently looked at the importance of these factors.

1. Learning factors: These cover ground familiarity etc. Pollard (1986b) found the
percentage of wins for soccer teams with the smallest and largest playing surfaces, the
team playing on artificial turf, and teams with large capacity grounds did not differ



significantly from other teams in the League. Barnett & Hilditch (1993), using more
refined analysis, showed soccer teams playing on artificial surface enjoyed a higher HA
than the remaining teams. This finding was supported by Clarke & Norman (1995).

2. Travel factors: These generally are a disadvantage to the visiting team and cover
physical and mental fatigue, and disruption of routine due to travel. Both Schwartz &
Barsky (1977) and Pollard (1986b) point out that as travel has become easier and
progressed from train to air over a long period the HA has remained constant. Schwartz
& Barsky (1977) argued that as the season progresses, travel effects should accumulate
and HA increase. However they found no consistent evidence of this, and this has been
repeated in later studies by Courneya & Carron (1991) and Pace & Carron (1992). In
similar multiple regression studies in baseball and hockey, they found that travel factors
such as distance, number of time zones crossed, direction of travel, time between
games, number of successive games at home, and length of visitors road trip accounted
for less than 1.5% of the variation in win-loss outcome. Snyder & Purdy (1985) found
the HA was 64.7% when visiting basketball teams travelled less than 200 miles, but
84.6% when they travelled more than 200 miles. On the other hand Pollard (1986b)
found in soccer that in both cases the HA was 64.3%.

3. Crowd factors: This includes social support for the home team and possible referee
bias. Schwartz & Barsky (1977) attributed HA in the main to audience support. They
claimed in baseball that increments in attendance can directly enhance the home team'’s
chances of winning. Dowie (1982) argued that the HA is common across four soccer
divisions where average crowd size varies by a factor of ten. Pollard (1986b)
concurred, and also used the constancy of HA over the pre war and post war period
when crowds halved as further evidence of a lack of influence of absolute crowd size on
HA. Pollard (1986b) also used the constancy of HA across divisions to discount crowd
density, which ranges from 20% in Division 4 to 70% in Division 1 as a factor in HA.
Clarke & Norman (1994) support this finding although Bland & Bland (1996) disputed
the claim. However Schwartz & Barsky (1977) found the home team's winning
percentage increased with increasing crowd density, and Neville et al. (1996) found HA
varying significantly across divisions in a manner related to mean attendance.

As can be seen from the above selection, most of this research is documented in the
sports science and psychology literature, and uses in my view inappropriate measures.
Courneya & Carron (1992) give a comprehensive review of this work. In the section
where they survey the 'what' of HA, (the relationship between game location and



outcome), 16 studies are listed, covering at various levels sports such as baseball,
hockey, US football, basketball and soccer, and all but one with the home win
percentage listed. Other measures such as points per game are not investigated in any
of these studies. Pollard (1986b) is typical of the approach in that HA is measured as
the number of games won by teams playing at home expressed as a percentage of all
games played. However modelling shows the probability that the home team wins
depends not only on the HA but the difference between team performance levels and
the variability of results. Thus the percentage of home wins in a competition depends
on the range of performance levels in the group as well as the HA. Snyder & Purdy
(1985) show the limitations of the usual approach, when in looking at a university
basketball competition they found division 2 teams won only 40% of their home
matches against division 1 teams. This implies the quality of opposition effect
overshadowed the HA effect. Gayton, Mathews, & Nickless (1987) also make this
concession, when they exclude from their study teams that make a clean sweep of the
finals because, "as Baumeister & Steinhilber (1984) note, the home court advantage is
not likely to appear when one team is far superior to the other." Because the quality of
teams differ, we must allow for differences in ability and measure HA by comparing a
team’'s home and away performance. Thus HAs, particularly of individual clubs, can
only be investigated properly through the use of models that incorporate the
performance level of the teams as well as a HA.

Such work was being undertaken, but by researchers whose primary interest was in
forecasting sporting contests. To do this successfully they had to measure HA.
Although Harville (1980) gave estimates of just over two points per game with standard
errors of about 0.4 of a point for the common HA in NFL for each year from 1971 to
1977, and Stefani (1980) quotes a three point HA for college and a two point HA for
pro football, both these papers are ignored by Courneya & Carron (1992) in their
literature review.

1.6. Computer forecasting of sport results

There are several models that can be used in modelling results of games between two
teams. To facilitate discussion we give some that are common in the literature. Let wij;

be the winning margin when the home team i plays away team j in match k. Note that
wij could be a 1,0 or similar win/loss variable, but it is more usual to use a goal or point
margin. Let uj be a rating for team i. This summarises a team's level of performance,
their ability or form, and is modelled as either a fixed or random effect. Let ejj be a
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random error, usually assumed to be zero mean.
Model 1. Wij = Uj - Uj + &j; (1.2)

Since j and k are dependent through the match schedule, j is more correctly specified
as j(k), but I will normally not specify k in the models. This model allows for no HA.
As such there is no need to use home and away to differentiate between teams, and
some writers use winning and losing team. Since (1.1) is clearly only soluble to within
an additive constant, an extra condition such as the average rating is 100 or zero is
necessary.

Model 2. Wij = Uj + h - Uj + ejj (1.2)

where h is a common HA and includes all that is advantageous for a team playing at
home and disadvantageous for a team playing away. The team rating uj now is

interpreted as a measure of the performance of team i on a neutral ground. Since in
some competitions not all matches are played on the home ground of one of the teams,
h is often interpreted as 0, +h or -h depending on whether the kth match is played on a
neutral ground, or the home ground of team i or team j. In some cases the approach
taken is to pre calculate HA, and adjust the match results for HA. Model 1 can then be
fitted to the adjusted results.

Most of the literature before work in which | was involved used models such as the
above. One of the advances of the work in this thesis is the use of models that allow for
different teams to have different HAs.

Model 3. Wij = Ui +hj - uj + gjj (1.3

where hj includes all that is advantageous for team i playing at home and
disadvantageous for any other team playing at i's home ground. This allows for

different HAs for each team.
This model was suggested by Stefani & Clarke (1992) as a special case of

Model 4. Wij = Ui + hij - Uj + gjj (1.4)

where hj;j is the paired HA between team i and j. This includes all that is advantageous
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to the home team and disadvantageous to the away team when team i plays team j.

In actually fitting these models to an N team competition, there will be N team ratings,
and the models are usually fitted using a matrix of dummy variables. Let w be an m X
1 column vector of the m match results, e an m x 1 column vector of the m match

errors, r a column vector of the N team ratings and a number of HAs depending on the
model. A is a selection matrix, where ay j is +1 if team i is the home team for the kth

match, axj = -1 if team j is the away team and O otherwise, and similar selection
coefficients for the hjs. We then have

w =Ar +e (1.5)

Standard least squares theory shows the value of r that minimises the sums of squares
of the errors eTe satisfies the equations

(ATA)Y =ATw (1.6)

In this case, the matrix A TA is singular and we need to add the restriction Zuj = 0.

This is accomplished using the Lagrange multiplier technique and minimising
eTe + L Zuj . This results in extra terms being added to the equations represented by
(1.5). (In solving the above we are finding estimates of the true model values. | have
not used the usual notation to differentiate parameters and their estimates, as it usually
obvious from the context, and only complicates the notation.)

All of the above models can be used at the end of a season to rate a team's performance
or calculate HAs. This is sometimes called a bit misleadingly prediction, as we can use
it to predict (albeit an event that has already occurred) the match results based on the
ratings. Perhaps it would be better called match fitting. Alternatively, the ratings can
be calculated or estimated on an ongoing basis, and used to forecast future match
results. Unfortunately this is also often called prediction.

While there had been sporting computer predictions and ratings published in the
American media since the 1940s, their methods were proprietary. Leake (1976) gave
details of a least squares rating system for college football, which he showed is
analogous to an electrical circuit. The method takes no account of HA. The two
pioneers in computer tipping are Stefani and Harville. Stefani began forecasting
American college and professional football in 1970 and published details of his least
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squares method in Stefani (1977). He used least squares to obtain ratings (and hence
predictions) on college and pro football teams and college basketball. He claimed 72%
accuracy for college football, 68% for pro football and 69% for basketball. His method
used (1.1) with i and j being the winning and losing team. The least squares solution of
(1.5) is r = (ATA)-IATw. He used the extra criterion average rating equals 100 to
ensure ATA was non singular. In his case (120 teams) the matrix was too large to
invert, but by investigating the form of ATA he showed that the least squares solution
gives a team's rating as their average winning margin plus the average rating of their
opponents. This can be solved iteratively provided a step is taken to avoid cycling.
Note that with this method a team's rating will change, even though they do not play,
due to the change in the rating of teams they previously played. For basketball, as the
schedule often changes, a simpler method was developed where only ratings of teams

that have played are changed. By making some approximations he arrived at the
formula for updating ratings based on a match result of rpey = fog +

1 . . :
n+l (error in previous forecast) , where n is the number of matches a team has played.

This is similar to exponential smoothing with a smoothing parameter that is high at the
beginning of the season and low at the end. In a study of half a pro football season,
Stefani claimed "essentially the same accuracy™ as the iterative method.

In Stefani (1980), he extends his method to include a common HA. By approximating
for a large number of games, h becomes the average of home team points minus the
away team points. The win margin is adjusted by removing the HA, and then the
previous procedure carried out on the adjusted margins. Because he found his expected
margin of victory greater than the actual he reduced the predicted margins by a factor L,
so his prediction model is wjj = h + L*(rj - rj). Again L was chosen to minimise the
sum of squares of errors and was about .67 for pro football and .75 for college football.
In the case where the number of games used to determine each team's rating is the
same, a team's rating will only change due to the outcome of its most recent game. The

. . L m-1 : - .
updating equation he derived is ey, = roig + <1 (€rror in prediction) , where n is the

number of games the team has played and m is the number of games its opponent has
played. In this case the necessary calculations are simple enough to be processed on a
calculator. Stefani claimed improved accuracy both in terms of correct winners and
average absolute error. As it affects my approach, it is interesting to note that although
much analysis is performed to find equations that minimise sums of squares of errors,
some heuristic models still need to be used, and the accuracy of the predictions is
judged by the mean absolute deviation, not the variance, of the errors.
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Harville (1977, 1980) described using mixed linear models to predict scores in
American National Football League (NFL). He used Model 2 but whereas the common
HA is a fixed effect, the performance levels are random effects which change between
seasons following a first order auto regressive process. Maximum likelihood
procedures are used and the resultant equations solved using numerical iteration,
Kalman filtering and smoothing algorithms. The method is applied to seven years of
NFL data obtaining the correct winner 70.93% of the time. He also showed the method
is slightly less accurate than the betting line as measured by number correct, average
absolute error, and average squared error. Accuracy is generally better than Stefani,
both in percentage correct and absolute average error. However the method obviously
requires more computing power. Harville suggested the accuracy might be improved
by allowing the weekly performance levels to be correlated. This would place
increased emphasis on more recent games. However when this model was fitted he
found no evidence of improvement. He also suggested that in using the method for
rating, large margins should be truncated to avoid teams ‘running up points'.

There are some problems with the above approaches as they apply to prediction of
Australian rules football. The very large margins that can occur in Australian rules, and
prediction errors of well over 100 points puts doubt on least squares as the optimising
goal. In sport, proportion correct and mean absolute deviation are the usual measures
of accuracy used, so it is preferable to optimise these. Although least squares theory
can produce exact equations, simplifying assumptions often need to be made to enable
solution. It is significant, | believe, that Stefani's methods were developed for regular
publication, and from 1971 appeared in the Fort Wirth Star - Telegram. When tips need
to be provided regularly, with little time between matches predicted and those already
played on which the predictions are based, ease of computation is an important
consideration. For these reasons | used a heuristic approach. In a subsequent review of
his methods, Stefani (1987) suggested the simpler method of updating only the ratings
of teams that play is not only computationally efficient but more accurate. With all
ratings being adjusted, some untypical results tend to ripple through the ratings of all
teams. In comparing his methods with those of Harville, Stefani finds little difference
in the accuracy.
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1.7. Application to Australian rules football

In 1980, following a student project, | became interested in computer tipping of
Australian rules football. The development of this work is outlined in several papers
and is discussed in Chapters IV to VI of the thesis. The results from the program have
been published in the daily press from 1981 to 1986, and from 1990 to 1996. They are
currently published in newspapers in both Victoria and South Australia, and broadcast
weekly on TV in South Australia. This led to joint work with one of the pioneers of
computer tipping, Ray Stefani.

In designing a prediction model for Australian rules to compete with human tipsters,
my approach, outlined in Clarke (1981), followed the lead of Stefani in producing
ratings that could be updated after each match rather than computed from scratch.
Since his least squares methods ultimately ended up with updating equations similar to
that used by Elo (1978) for rating chess players, it was decided to use exponential
smoothing methods. Model 2 was used with a common HA. Because of the large
margins possible in Australian rules, the model allowed truncation as suggested by
Harville (1980). In Clarke (1988a, 1988c) an improved method, developed in 1986,
was described. This used an extension of Model 3 which allowed a ground/team effect
in addition to several other effects and used a power method to gradually reduce the
effect of large margins and errors. The parameters were optimised by minimising the
absolute average error. The methods and output are described in detail in Chapter IV of
the thesis. This thesis shows that extremely simple exponential smoothing methods can
be used in Australian rules football to provide team ratings and measures of HA that
can be used to predict match results with an accuracy comparable to the expert tipster
Stefani & Clarke (1992) found this method and Stefani's least squares method gave
similar results when applied to 1446 Australian football matches from 1980 to 1989.
The least squares method had slightly more correct predictions, while not surprisingly
my method had a smaller absolute average error. Neither difference was statistically
significant. (see Chapter VI).

1.8. Home advantage of individual clubs

In investigating the reasons for HA, researchers still tend to look at an overall
competition. For example, to investigate the effects of travel on HA, two competitions
would be investigated, one with a lot of travel and one with little. However this is very
inefficient. Within a competition some teams would travel a lot, others little. If the

15



individual HAs of teams could be calculated, then these could be related to the travel
those individual teams have to undergo.

The researchers involved in computer tipping were also looking at HA. Stefani &
Clarke (1991, 1992) used Model 3 and 4 to investigate individual HAs and paired HAs
in Australian rules. This work is the first time in the literature individual HAs have
been calculated. Clarke & Norman (1995a) used Model 3 and 4 to investigate
individual and paired HAs in English soccer. Kuk (1995), Dixon & Coles (1996) and
Dixon & Robinson (1996) are later papers that use models incorporating HA in soccer
prediction models.

Harville & Smith (1994) were also investigating individual HAs. They defined home
court advantage as the net effect of several factors that may have a (generally positive)
effect on the play of the home team, and a (generally negative) effect on the play of the
visiting team. They fitted models equivalent to 1, 2 and 3 to college basketball. They
pointed out that Model 2 implies the expected difference between two teams on a
neutral court is halfway between the expected differences on their own home courts.
Model 3 implies the expected difference on a neutral court is the same as the difference
in the expected differences between them and a common opponent on that team's home
court. They defined home court advantage as the expected difference in score in a
game played by a team on its home court minus the expected difference in the score
played by the same team on a neutral court against the same opponent. In Model 1 this
IS zero, in Model 2 this is h and in Model 3 this is hj. They discuss various estimable
functions that reflect performance level, among them the expected overall performance
level in relation to the average, .5 (2uj + hj - (1/n)(Z(2uj + hj)) =uj + .5h;j - (1/n)(Zhj).
By looking at the marginal difference in the sums of squares between the models, they
find strong evidence for a common HA, and some evidence for different HAs, but also
that the practical difference is not great. Clarke (1997a) uses a similar method to show
significant evidence of different HAs in Australian rules. Stefani & Clarke (1991,
1992) had already shown the size of these differences to be practically important. My
contributions to quantifying HA is discussed in Chapters I, 111 and V1 of the thesis.

1.9. Teaching applications
I have always believed the area of sport is excellent for motivating students at all levels

and for making the study of mathematics, operational research and statistics more
interesting. Several authors have taken up this theme, for example Croucher (1984,
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1994) and Townend (1984) . In Clarke (1984, 1985a, 1985b, 1986b, 1988a, 1992b,
1994b, 1995), Tobin & Clarke (1993) and Clarke & Handley (1994), | have presented
much of my material in a form suitable for teachers.

1.10. Thesis structure

This thesis investigates performance measurement in sport through mathematical
modelling.

This chapter gives an overview of my and others contribution to modelling in sport. In
Chapter Il data from Australian rules football from 1980 to 1995 is investigated. When
measuring a team's success, the necessity of modelling HA is demonstrated, and
problems of HA in an unbalanced competition discussed. The existence of different
HAs for different teams is demonstrated, and paired and individual HAs for Australian
football teams tabulated and analysed. Chapter 11l develops special methods of
calculating HA and team ratings for balanced competitions. Using 15 years of English
soccer data, HAs for all clubs are calculated and analysed. Chapter IV demonstrates the
applicability of the methods used by describing a computer tipping program used to rate
teams and measure HA. Chapter VV compares the accuracy of the computer with that of
human tipsters. Chapter VI combines both HA and computer forecasting by comparing
different forecasting methods and making some international comparisons of HA. In
Chapter VII we begin to look at the performance of the competition structures within
which teams compete. We first analyse the performance of a finals system, and then
demonstrate how the results of the computer tipping program can be used to quantify
the effects of administration decisions and evaluate the fairness of an unbalanced draw.
Chapter VIII introduces the use of DP to analyse a tactical situation in football.
Chapter 1X begins the work on cricket by giving a complete literature review. Chapter
X shows that many of the problems discussed in Chapters Il to VII have their
counterpart in cricket, and that competition rules can give an unfair HA. Chapter XI
develops a DP formulation to optimise first and second innings strategy in one day
cricket. Chapters XII and XIII extend this in various ways to allow for batsmen of
differing abilities and alternative objective functions. Chapter XIV demonstrates how
the DP models can be used to measure performance by developing a player rating.
Chapter XV summarises the findings of the thesis.
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CHAPTER II

HOME GROUND ADVANTAGE IN
THE AUSTRALIAN FOOTBALL LEAGUE 1980-95

2.0. Abstract

In this chapter we raise some of the issues concerning home advantage (HA) in
Austraianrulesfootball. Wefirst ook at traditional measuresof HA as applied to whole
competitions, such as percentage of games won, and alternative measures such as
average margin of victory for the home team. We investigate the stability of these
measuresfrom year to year and throughout the season. We then look at individual HAs
for each team. Two aternative methodsof calculatingtheseareinvestigated. Thefirstis
through paired matches, which operates independently of rating teams and does give
more detailed information on HA, but is wasteful of data. The second uses all the data,
and also givesteam ratings as well as HAs. We then investigate the HAs obtained, and
look at variationsand possible causes or groupingsof HA. Finaly welook at the overall
significance of various models, and show that the models are a significant improvement
over previous models assuming acommon HA.

2.1. Introduction

The major winter sport of the southern states of Australiais Australian rules football.
The game is played with a rugby shaped ball between teams of 18 players on oval
grounds of different sizes (the same grounds used for cricket during the summer). A
match is played for four quarters, and when timeon for play interruptionsis added these
each last for about 30 minutes. While the mgor method of moving the ball is by kicking,
players can aso punch the ball and run with it provided they bounce or touch it to the
ground every 15 metres. Playersrunning with the ball can be tackled by the opposition.
For infringements of the rules, afree kick is awarded, which allows the recipient some
time to dispose of the ball without being tackled by an opponent. A free kick is aso
given for amark, awarded when a player catchesa kick before the ball first touches the
ground or another player. Onedf the great spectaclesaf the gameis a player soaring over
his opponents to take an overhead mark. Over the last 20 years, increasing use of
handball and the option to play on after a mark or free kick combined with no off-side
rule has meant the game has developed into a very fast flowing game requiring lots of
running by players. The scoring region consistsof four upright posts. Kicking the ball
between the two centre posts scores a goa worth six points, while the region between
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either centre post and the corresponding outside post scores a behind worth one point.
Drawsarerare. A typical score might be 18 goals 12 behinds 120 pointsto 12 goals 15
behinds 87 points for a winning margin of 33 points. Ladder position is in order of
premiership points (four for a win and two for a draw) with ties decided on percentage
(100 x total pointsfor / total points against). The top teams at the end of the home and
away draw play off in afinal seriesto determinethe premier team.

The major competition in Australian rules, organised by the Victorian Football League
(VFL), began in 1897 with 14 rounds between eight Victorian based clubs. By 1925 the
competition consisted of 12 Victorianclubs, and it wasstill in that form in 1980 when the
datafor thisstudy begins. With the exception of Geelong (Go Cats) all clubs were based
in metropolitan Melbourne. The competition began to go national in 1982 with the
movement of the South Melbourne club to Sydney. The administration of the
competition was transferred to the Australian Football League (AFL) in 1990, and by
1995 the competition had grown to 16 teamsincludingfive interstate clubs. For the 1996
season, the entrance of another interstate club and planned mergers between Victorian
clubstransformed the competition yet again. The competition receives a hugefollowing
both in terms of spectator and mediainterest. For example, each Friday, one Melbourne
daily paper, The Sun News Pictorial, has a 12 page centre lift out in addition to several
back pages devoted to AFL pre match coverage. Interstate matchesare covered live on
freeto arr TV, with replaysof Melbourne matches. One of the cable pay TV operators
has a channel expressly devoted to AFL coverage. Important matches are regularly
attended by over 60,000 spectators.

The ultimate aim of a season of football is to win the premiership, or at least finish as
high on the ladder as possible. Teams measure their success by ladder position.
However final ladder position as a measure of team ability istempered by the degree to
which the draw is unfair. Russel (1980) discussesthe problem of carry over effects due
to ateam continually playing the previousopponent of the sameteam. The problem arose
fromoneteam in the VEL draw having the same carry over effect in 21 of its 22 matches.
However the unfairnessof the draw goes much deeper. The VFL and AFL competitions
have traditionally been unbalanced in quality of opposition. For instance, from 1926
through to 1967 (with the exception of somedisruptionin the forties due to the war) the
draw consisted of 18 rounds between 12 clubs. Thus each team played some teams
twice, and othersonce. From 1970 to 1986 there were 22 rounds and each team played
each other twice, but with new teamsin 1987 the opponent balance was again lost. Thus
it may well be that some teams are playing against much stronger average competition



than others. While thisis recognised in general by fans and administrators, it is never
quantified.

A mgjor determinant of the difficulty of adraw for a particular team is the grounds that
matches are played on. It is accepted by sportsfollowers that most teamsenjoy a HA.
Matches on home grounds are more likely to be won than matcheson away grounds. It
is important for the draw to be balanced in terms of home and away games. While
traditionally each team has played haf its matches away and hdf a home, to maximise
crowds it has become common to share grounds and move matches to large capacity
grounds. While non-Victorian teams currently play half their matches on their home
ground, the Victorian sides do not. We will show there is no semblance of ground
balancein the current competition.

Since the draw is not fair on al teams, it is important that we look at measuresof team
success other than ladder position. Asamajor determinant of fairness, we will also look
in detail at HA. All football followers recognise the importance of a home ground
advantage, but never before this work has the actual advantage of individual teamsin
points been published. In particular, while it is recognised that individual teams have
larger HAs than others, these effects are rarely quantified. One reason is probably the
difficulty to assessHA becausethe draw is not balancedfor either ability of opponent nor
home and away matches.

In this chapter we look first at the HA of the competition as a whole using traditional
measures. We then investigatethe HA of individual clubs and the joint HA of pairs of
clubs, and investigate whether these more complicated modelsare justified.

Data have been collected on an on going basisfor all AFL football matchesfrom 1980
onwards. The data consist of year, round number, home team, away team, ground,
home score in goals and behinds and away score in goals and behinds. The data were
originally collected on aweekly basisfrom daily newspapersand football recordsfor the
purposeof forecasting match results. A subset of homeand away matchesfrom 1980 to
1995 inclusive was used for the analysisin this paper. Rodgers & Browne (1996) was
used as the authority for results and grounds.



2.2. HAs of the nominal home team

In the league draw, irrespective of where the match is played, the first named team is
nominated as the home team. The usual measure of HA used in the literature is
percentage of wins by the home team. Table2.1 shows the percentage of |osses draws
and wins by the nominal home team. It has possibly shown some increase over the
years. Over the 16 years 2361 matches resulted in 1345 wins for the home side with
another 18 matches drawn. Counting adraw as haf awin this gives 57.3 % winsfor the
home side. The table also shows how the number of matches has varied with the
addition of new clubs and changes to the number of rounds played each year.

TABLE 2.1. Match resultsand HA in pointsratio for the nominal home team for each

year 1980 - 1995
Ratio of
totdl
Total | Win | Draw | Loss | HAin Tota points to
Year | games| % % % points Points HA

80 132 | 54.5 23 | 432 1.3 210.0 161.2
81 132 | 545 0.0 | 455 8.8 199.8 22.7
82 132 | 545 0.8 | 44.7 10.6 224.2 21.2
83 132 | 53.8 0.0 | 46.2 5.7 212.2 37.3
84 132 | 55.3 0.0 | 4.7 5.1 205.8 40.6
85 132 | 545 0.8 | 44.7 6.0 211.0 35.4
86 132 | 58.3 0.0 | 417 11.0 203.5 18.5
87 154 | 60.4 1.3 | 383 12.7 209.3 16.5

88 154 | 60.4 0.6 | 39.0 8.8 195.1 22.1
89 154 | 61.0 0.6 | 383 11.9 189.1 15.9
90 154 | 591 0.0 | 40.9 8.1 200.1 24.9
91 165 | 56.4 1.2 | 424 8.4 205.2 24.6

92 165 | 55.2 1.2 | 436 8.1 207.3 25.7
93 150 | 56.7 0.7 | 42.7 8.7 210.2 24.3
94 165 | 60.6 0.6 | 388 11.0 188.9 17.2
95 176 | 55.7 1.7 | 42.6 4.1 188.8 46.0
80-95 | 2361 | 57.1 0.8 | 42.2 8.2 203.2 24.8
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Since the percentage of home wins depends on the variation in the performance level of
the teams as well as their HA, it is not a good measure to compare HAs between
competitions, or even seasons. An alternative measureis the average margin of victory
by the home team. To make comparisons across competitions and sports this can be
standardised by comparing it to the total number of points scored in amatch. Table 2.1
also gives the average winning margin of the nominal home team (HA in points), the
average total points scored in amatch and the ratio (the average number or points scored
for every point attributableto HA). The table showsthat HA is quite variable from year
to year, but that over 16 yearsit averaged 8.2 points a game or about one point in every
25.

There are probably two competing effects at work here. One is the introduction of
interstate clubs; we will see later they tend to have high HAs. On the other hand, a
smaller proportion of games are actually played on a home ground. In Melbourne many
grounds are shared, so what isnominally a home match for a particular club may in fact
be on a neutral ground.

2.3. Changes in ground usage due to ground rationalisation

One of the reasons given for HA isground familiarity. This can be obtained by training
at aground or playing at the ground. The current names of the training grounds of the
clubs for the period 1980 to 1995 are listed in Table 2.2. We have used the current
names where the names of the venues have changed, but the actual venues have not
changed. In the same way we use Sydney to refer to South Melbourne, and AFL to refer
to VFL.

However, in the AFL competition, teams do not necessarily play home matches on their
training grounds. Over the years the AFL has sought to maximise crowd attendance by
moving clubs from small capacity grounds to sharing larger grounds. The League also
built their own ground, Waverley Park. It became available for regular use from 1970,
and the League required all clubsto play some home matches there. Theleague hasalso
attempted to maximise the use of the MCG. This has meant a steady erosion of the
traditional home ground where ateam plays and trains.



TABLE 2.2. Training grounds and home groundsof all clubsfor period 1980-1995

Team Training ground Home ground
Addade Football Park, 91-95 Football Park, 91-95
Carlton Optus Ova Optus Ovd
Collingwood VictoriaPark VictoriaPark 80-93, MCG 94-95
Essendon Windy Hill Windy Hill 80-91, MCG 92-95
Fitzroy Junction Ova Junction Oval 80-84, VictoriaPark 85-86,
and many others Optus Ova 87-93, Whitten Oval, 94-95
Footscray Whitten Oval Whitten Oval
Geelong KardiniaPark KardiniaPark
Hawthorn GlenferrieOva Optus Oval 80-91,
Waverley Park 92-95
Melbourne MCG MCG
Nth Melbourne | Arden St. Arden St 80-84, MCG 85-95
Richmond Richmond CG MCG
Sydney Lakeside Oval 80-81, Lakeside Oval 80-81,
Sydney CG 82-95 Sydney CG 82-95
StKilda Moorabbin Ova 80-92, | Moorabbin,80-92
Waverley Park 93-95 Waverley Park 93-95
Brisbane Carrara87-92, CarraraGold Coast 87-92,
Brisbane CG 93-95 Brisbane CG 93-95
West Coast Subiaco Oval, 87-95 Subiaco Oval, 87-95
Fremantle Fremantle, 95 Subiaco Oval, 95

The changesover the years are best illustrated by comparing thefirst and last years of the
period under study. For atypical year in the early sixties, prior to the introduction of
Waverley Park and the beginnings of ground sharing, each team played all its home
matches at its training ground, so each ground was used by only one team for home
matches. In 1980, the first year in the period we are studying, the training grounds of
Hawthorn (7) and Richmond (10) were not used for matches. These teams used Optus
Oval and the MCG respectively as their home ground. However Waverley Park was
used by all 12 teamsfor some home matches. Apart from Waverley, Optus Oval and the
MCG were the only shared grounds, with each shared by two clubs. With the exception
of the matches at Waverley Park, each team played all its home matches on its home

ground.

23



By 1995 the pattern had become much more confusing. Training grounds no longer used
for home matches included those of Essendon, Hawthorn, Nth Melbourne, Richmond
and Fitzroy. Five clubs (Melbourne, Richmond, Nth Melbourne, Essendon and
Collingwood) played the majority of their home matches at the MCG, but another three
clubs played some home matches there. This resulted in other matches being moved
away, usually to Optus Ova. Most of the MCG tenants had to play some home matches
a Optus Oval, so even traditional owners Melbourne, who train at the MCG, were now
onedf six clubsto play some home matchesat Optus Oval. Fitzroy played home matches
at four different grounds, including the first ever match at Canberra. West Coast and
Fremantleshared the WACA and Subiaco. Hawthorn and StKilda shared Waverley, but
two other clubs also played a home match there. Only Adelaide, Sydney and Brisbane
had the traditional pattern of auniquenon shared groundfor all their home matches.

2.4. Actual home grounds

Clearly,in the AFL, it is arguable which is the home ground of someteams. Teams play
their home matches on a variety of grounds, which may or may not be their training
grounds. In other cases, because of ground sharing, teams may play avay matches on
grounds other than their home ground several times. For example in 1995 with five
teams sharing the MCG, ateam could play five away matches at the MCG. With such a
program, ateam could becomevery familiar with groundsother than their home ground.

For this study, the home ground of ateam for a particular year was defined as the ground
on which the team played the most home matches. For example, in 1995 Collingwood
played three home matchesat VictoriaPark, their training ground, but eight at the MCG.
The MCG was therefore defined as their home ground. In all cases this resulted in the
same ground as that officialy recognised by the AFL. The resulting home grounds are
given in Table 2.2. Most clubs have been very stable, only moving to the MCG or
Waverley. Fitzroy is the exception, with four home grounds.

The above definition does mean that some games which may carry alarge HA are not
classified as played on a home ground. One case would be the Collingwood games
played at Victoria Park mentioned above. Another example is West coast. They play
about four home matches each year at the WACA, which becauseof the travel involved
for visiting clubs would carry alarge HA. Yet these would not be classed as a home
ground on the above criteria. These matches, played on neither teams 'home' ground
nevertheless may give one side a significant HA. Similarly, many 'home' matches are
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actually played on neutral grounds. An example would be any match between MCG
cotenants. To check on actual HA, a team was categorised as having a perceived
advantage if the match was played on their home ground or training ground or other
ground with which they could be expected to have a HA. Thus Collingwood have a
perceived advantage in any matches played at Victoria Park in seasons when this was not
their home ground. Similarly West Coast and Fremantle have a perceived advantage in
any matches played at the WACA or Subiaco. Matches were then discarded as neutral if
neither or both teams had a perceived advantage. Table 2.3 gives the results and average
HA for the remaining matches. These give a better reflection of the actual HA that exists
in Australian rules than Table 2.1.

The percent of games won by the 'home' teams has generally increased and in almost all
cases the ratio of points to margin has decreased. Most of thisis probably due to the
introduction of interstate teams. For example, counting a draw as0.5 of awin, in the
seven years prior to the introduction of two more interstate teams in 1987 the win
percentage for home teams averaged 56.6%. The nine yearsfollowing averaged 60.5%.
This difference was significant at the 5% level (p=0.017). Thedrop in points scored at
the end of 1993 is attributable to a change in the length of the quarters and time off
definitions which reduced the effective playing time. Whilethis would presumably also
cause a slight decreasein the average home winning margins, this effect has been ignored
inthe analysisin thisthesis.

Tosumupin 16 years of Australian rulesfootball, 1869 matches carried a perceived HA.
Of these the advantaged team won 1094 and drew another 15. Counting adraw as half a
win this amounts to 59.3%. In termsof marginsthe average win for the home team was
just under 10 points per game, or just under one point advantage in every 21 points
scored.
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TABLE 2.3. Match resultsand HA in pointsratio for the team with the perceived HA for
each year 1980 - 1995

Ratio

of total

Totd | Win | Draw | Loss | HAin | Totd | pointsto

Yeaxr | games| % % % points | points HA

80 107 | 57.0 2.8 | 40.2 34 | 2105 62.2
81 102 | 54.9 0.0 | 451 | 103 | 1994 194
82 104 | 56.7 1.0 | 423 | 129 | 226.6 17.5
83 106 | 55.7 0.0 | 443 8.9 | 214.7 241
84 103 | 59.2 0.0 | 40.8 | 105 | 205.3 19.6
85 100 | 52.0 1.0 | 470 5.6 | 212.7 38.1
86 100 | 58.0 0.0 | 420 | 11.7 | 2055 17.6
87 119 | 62.2 1.7 | 36.1 | 13.7 | 2120 15.5
88 117 | 615 09 [ 376 | 120 | 1944 16.1
89 121 | 64.5 08 | 347 | 144 | 1879 13.0
90 118 | 60.2 0.0 | 398 9.6 | 201.6 21.1
91 130 | 59.2 1.5 | 39.2 | 120 | 204.7 17.1
92 134 | 53.0 15 | 455 5.3 | 208.6 39.4
93 131 | 60.3 08 | 389 [ 109 | 208.5 19.1
94 135 | 62.2 0.7 | 370 | 114 | 189.6 16.6
95 142 | 57.7 0.0 | 42.3 4.8 | 187.7 39.1
ALL | 1869 [ 58.5 0.8 | 40.7 9.8 | 203.7 20.8

2.5. HA throughout the season

We can aso look at the percentage of wins and HA in points throughout the season.
Table 2.4 reorganisesthe datain Table 2.3 by combining the 16 years of datain groups
of four or five weeks, so the table shows the monthly progression of scoring and the
HA. Also included is a column showing the Win/Draw percentage, where draws are
counted as 0.5 of awin. Scoring is somewhat lower in the last three months of the
season as the westher deteriorates. There is some evidencefor alower HA in thefirst
fiverounds of the season, at least in termsof point margin and ratio of margin to points
scored, but there is no consistent pattern of an increase or decrease in HA through the
remainder of the year. Thus it may be an advantage for teams to play away matches
against important opponentsat the beginning of the season.



TABLE 2.4. Match resultsand HA in pointsratio for the team with the perceived HA for
each stage of season

Ratio

Win/ of total

Total | Win | Draw | Loss | Draw | HAin | Tota | points
Round | games | % % % % points | points | to HA

1-5 | 4283 57.2 1.2 416 | 57.8 76 | 2118 | 279
6-9 | 331 58.0 [ 0.9 41.1 | 58.5 9.6 | 2053 | 20.2
10-13 | 335 61.8 | 0.6 376 | 621 | 11.2 1995 | 17.7
14-17 | 331 571 ] 09 420 | 57.6 9.6 199.2 | 20.7
18plus | 449 58.8 | 0.4 40.8 | 59.0 | 10.7 2015 | 18.8
Total | 1869 58.5 | 0.8 40.7 | 58.9 9.8 203.7 | 20.8

26 Paired HA

A team may win more of its home matches simply because it is better than the teamsiit
playsthere. When weinvestigate HA of individual clubs, we need to balancefor ability.
One way to do thisisto consider matchesin pairs. We have seen that about 80% of the
games involve a perceived home team situation. Most of those involve a return match
with the same team, and about 80% of those also involve a perceived HA. The two
results together give us a measure of the joint HA between the two teams. This can be
estimated without the need for estimating performance levels by adding the two results.
For Model 1.4 we had

wij =uj + hjj - uj +ejj
For the return match
wii = uj + hji - u; + eji
and so adding we obtain
Wij +w]',- = hjj +hj,' + error

where h;; t hj; can be thought of asa paired HA. (Note that if we revert to model 2,
where h;; = hi, the paired HA becomes 4; t hj, the sum of the individual HAs of the



two teams). By assuming this remains constant over several years, we can average over
several years to reduce the error. Table 2.5 gives the number of pairs for each pair of
teams (top half) and the average paired HA (bottom half). Note that in a perfectly
balanced competition such as English soccer, each pair would occur 16 times. Here
some clubs have many more pairs than others. For example, Sydney (team 11), which
has never shared a ground, and as an interstate club was not required to share Waverley
Park, generally has more pairs than others. Some values need to be treated with caution,
as they are based on only afew pairs. For example, the largest paired advantage in the
table is Geelong/Adelaide at 147 points. However this is based on only two pairs.
Nevertheless it isinteresting to note that in 1996, Geelong lost by 64 pointsin Adelaide
but won by 35 points at Geelong - aturn around of 99 points. We should treat Fremantle
(team 15) figures with extreme caution as they are only based on asingle pair.

Some inferences can be drawn from the table. Most of the interstate clubs have large
paired HAs with other teams, and virtually all the values over 40 pointsinvolve Adelaide,
Brisbane or West coast. There are afew negatives in the table, and nearly al involve
Victorian clubs.



TABLE 25. Mean paired HA for each team and number of pairsfor the years 1980 to 1995

Team | Adel | Car | Coll | Ess | Fitz | Foot | Geel | Haw | Mdb [ NthM | Rich | qyg | StK | Bris | WC | Frem
Adel 2 2 2 2 2 2 2 2 3 3 3 4
Car 48.0 5 2 8 8 3 5 8 8 11 5 6
Coll 245 | -31.2 6 8 9 7 8 4 5 11 3 4
Ess 720 | 323 | 24.2 9 9 7 6 8 7 8 10 2 6 1
Fitz 62.0 751 278 16.7 8 9 4 6 6 9 13 10 5 3 1
Foot 61.0| 22.1| 393 28.2 | 258 8 9 7 6 6 11 10 6 6 1
Geel | 1470 | 214 -1.4 3.7 31.2| 399 8 9 8 7 13 5 5 1
Haw | -34.0 | -23.3| 21.9 0.8 148 | 22.7 2.6 7 10 9 9 5 4
Mdb 225 -4.6 | -29.6 11.0 47| 271 324 14.6 3 12 6 5
NthM | 445 236 | 175 114 | -188 | -145 | -14.1| 304 | 27.7 5 11 10 4 3
Rich | -18.0| 43.4| 424| -105 20.6 | 335 -7.6 | -33.6 14 12 6 6 5 1
| Syd -16.0 | 193 9.5 39.1 126 | 25.6 -5.5 19.8 24.3 -95 9.8 12 6 4 1
StK 68.7 -49 | 363 18.3 | 13.2 441 51.6 -2.4 9.4 89| 31.2| 238 5 4
Bris 53 42.6 -9.3 185 50.4 -7.5 284 | 48.8| 438 26.3 60.7 33.0] 320
WC 67.5 615 | 578 56.5 477 277 15.8 -2.0] 404 | 303 11.0| 745 | 66.8 53.2
Frem 39.0 9.0| 33.0] 420 -2.0| 410




2.7. Individual HAs

There are several ways these paired HAs can be manipulated to produce measures of
individual team HA. A simple averaging isilluminating although as we shall see needsto
be treated with some caution. Table 2.6 gives the averages of the above figures, for each
team. We have also given the average margin of each team in their home matches and the
average margin in their away matches. These are simple measures the average supporter
would understand, particularly soccer followers as they are analogousto home and away
goal difference. Because we have included only those matches which can be paired, the
average paired HA isthe difference in the two columns. Note the high average paired
HA of all the interstate teamsexcept for Sydney.

TABLE 2.6. Average of the paired HA for each team from 1980to 1995

Average | Average | Average
Number | home away Paired
Team of pairs | margin | margin HA

Adelaide 3 15.0 -21.7 36.8
Carlton 85 28.8 8.5 204
Collingwood 85 13.8 -1.1 14.9
Essendon 94 26.8 6.6 20.2
Fitzroy 93 2.0 -17.4 19.4
Footscray 105 0.9 -21.8 22.7
Geelong 108 19.9 24 174
Hawthorn 20 28.4 194 8.9
Melbourne 83 -1.8 -18.4 16.5
Nth Melbourne 87 6.8 -11 7.9
Richmond 90 -4.2 -17.3 13.1
Sydney 139 0.8 -16.0 16.8
StKilda 102 -7.5 -29.2 21.7
Brisbane 66 -6.7 -39.9 33.1
West Coast 64 34.6 -8.7 43.3
Fremantle 6 24.0 -3.0 27.0
All 1330 9.7 -9.7 19.5




The above paired HAs include a component due to the other teams HAs. Thisincreases
the apparent HA of each team by including acomponent due to the HA of all the other
teams. This spurious HA can be explained by the following simplistic argument. Each
pair of matchesgives usan estimateof 4; * hjfor the two teamsi, j. By averaging these
pairsfor team i, we obtain an estimate of k; + h, where h is the average of the hj. We
need to remove h to get back to our estimate of hi. Stefani & Clarke (1991) give one
method using an iterativeprocedure. An dternativeisto useregression. Theindividual
hj can be estimated using general linear methods to find aleast squaresfit. While this
could be done with the 220 averages of Table 2.5, it is better to use the original 664
individua pairs. While the actual estimates do not differ much, the second method gives
greater weight to those averages based on more matches, and tends to produce more
significant results. The REG procedure from SAS/STAT was used to obtain the
estimates given in Table 2.7. Perhaps not surprisingly given the comments above, the
figures are quite similar to those obtained by subtracting from the average paired HAs
givenin Table 2.6 their overall averagedf 9.7.

Thefiguresare consistent with those given in Stefani & Clarke (1992) which covered the
years 1980-89, and their comments on the relative mix of travel, especially acrosstime
zones, crowd intimidation, and lack of familiarity with the playing conditionsin regard to
international comparisons apply here. It islogical that West Coast should benefit from
the distances travelled by other teams, across two time zones. In addition, Western
Australiaand South Australiaaretraditional Australian rules states, and matchesplayed in
those states are in front of one sided capacity crowds. Note that all interstate clubs with
the exception of Sydney havealarge HA. The biggest four HAs all belong to interstate
clubs. Fremantleis not significant due to there being only afew pairs, but the value is
still large. Travel between Sydney and Melbourneinvolves no time zone changes. As
Sydney isthe one interstate team that was actually formed by relocatingaMelbourneclub
to atraditionally non Australian rulescity, the crowd support at matchesin which Sydney
plays is much less one sided than for other interstate teams. Some other teams have
above average HAs, specifically Footscray, StKilda, Essendon and Carlton. While this
is probably in line with most supporters' perceptions, other parts of the table are not.
Geelong isin the lower hdf on the table, while Collingwood is thirteenth. The supposed
intimidation effect of the Collingwood supporters a Victoria Park does not appear to
show up in the figures.



The negative HA of North Melbourne is also surprising. Although not significantly
different from zero, it is neverthel essinteresting that over 16 years ateam should average
two points worse at home than away. Previoudy the only negative HAs reported were
by Baumeister & Steinhilber (1984) in the context of deciding matchesin finals series of
baseball and basketball, but Gayton et a. (1987) failed to replicate in ice hockey and
Benjafield & Liddel (1989) limited it to teams with an expectation of winning. Thetable
lends weight to ground familiarity as acausefor HA. The bottom three teams have for
most of the period all played on shared grounds on which they do not train. Thus they
do not gain familiarity with the playing ground during training, and other teams gain
more familiarity than usual by playingmoreaway matchesat the ground. Significantly
the bottom five teams on the tableall currently play on a shared ground.

TABLE 2.7. Individual HAs of al teamsin points per game based on paired matchesfor
the years 1980-1995, in order of decreasing HA

p vaue
HA Standard for

Team Edimate Error HA =0
West Coast 335 7.0 0.00
Addaide 25.2 9.7 0.01
Brisbane 234 6.9 0.00
Fremantle 18.3 22.6 0.42
Footscray 12.9 55 0.02
StKilda 12.6 5.6 0.02
Essendon 10.9 5.8 0.06
Carlton 10.2 6.1 0.09
Fitzroy 9.9 5.9 0.09
Geelong 8.0 54 0.14
Sydney 7.9 4.8 0.10
Melbourne 5.6 6.2 0.37
Collingwood 5.2 6.1 0.40
Richmond 2.3 6.0 0.70
Hawthorn -0.5 6.0 0.93
Nth Melbourne -2.0 6.1 0.74




2.8. Using linear regresson analysis on individual match results

The above method is quite wasteful of data. To dlow for team ability we paired the data,
so only those matchesthat can be paired are used, and this resultsin discarding 44% of
the matches. Thislimitsits use on ayearly basis, as many of the teamswould only have
afew pairs. An aternativeis to fit amode with team and HA effects to the original
match results for each year separately. We could use any of the Models 1, 2 or 3, or
variations could be used. For example, you could allow for different hs for different
grounds. Thus Collingwood could be alowed a different h for VictoriaPark as against
the MCG, or West coast a different value for the WACA and Subiaco. This could be
used to possibly differentiate travel effects from ground effects. In all these cases, no
datais wasted as even amatch on a neutral ground contributes toward determining the us.

Figure 2.1 gives a sample regression output for 1995. In this case we have used Model 3
which alows for individual HAs, and used the actual home ground for that year as
defined in section 2.4. Note the root mean sgquare error is 39 points so football is very
unpredictable. None of the HAs are significantly different from zero. Thisisdueto the
large error and the small number of matches played on each home ground. Again we
need to look across seasons to obtain enough data to make reasonabl e observations about
differencesin HA. Neverthelessthe us and hs are generally in line with that expected.
The top teams have large us, the interstate teams generally large HAs. The correlation
between the us and premiership pointsis 0.83, and between the us and percentage is
0.93. The better correlation with percentageis not surprising, as premiership points can
be very dependent on afew closewins.



The SAS System
----------------------------- YEAR=95 === oo e e o
Model : MODEL1
NOTE: Restrictions have been applied to paraneter estinates.
NOTE: No intercept in nodel. Rsquare is redefined.
Dependent Variable: MARG N
Anal ysi s of Variance

Sum of Mean
Sour ce DF Squar es Squar e F Val ue Prob>F
Model 31 150750. 24391  4862. 91109 3. 092 0. 0001
Error 145 228022. 75609 1572. 57073
U Tot al 176 378773. 00000
Root INBE 39. 65565 R-squar e 0. 3980
Dep Mean 4,10795 Adj R sq 0. 2693
C. V. 965. 33814
Par amet er Esti nat es
Par arret er St andar d T for HO
Vari abl e DF Estimate Error Parameter=0 Prob > |7T|
o 1 - 31. 444878 12.06997367 -2.605 0.0101
Ul 1 26. 205001 11.28522369 2.322 0.0216
U2 1 -1. 646862 12.97593121 -0.127 0.8992
w3 1 26. 925728 13.79836118 1:951 0.0529
w 1 -40. 973561 10.41715016 ~3.933 0.0001
us 1 -2. 340900 10.89383102 -0.215 0.8302
U6 1 26.167461 11.39850125 2.296 0.0231
us 1 - 8. 320901 12.54937285 -0.663 0.5083
U3 1 3. 829991 11.79737605 0.325 0.7459
U9 1 22. 525549 11.91225347 1.891 0.0606
Ul0 1 0.912430 13.03292146 0.070 0.9443
Ull 1 -4.379118 11.87188608 -0.369 0.7128
ui2 1 -15. 250602 12.33104761 -1:237 0.2182
u13 1 -11.118884 11.85595351 -0.938 0.3499
ul4 1 6. 591798 10.86629163 0.607 0.5450
uis 1 2.317748 10.83552132 0.214 0.8309
Ho 1 28. 698837 17.70174191 1.621 0.1071
HL 1 4. 905900 17.93123963 0.274 0.7848
H2 1 5.599304 18.40599612 0.304 0.7614
H3 1 -7.534129 18.79107521 -0.401 0.6891
H4 1 -13. 420776 18.48592833 -0.726 0.4690
H5 1 -5. 950555 17.99247664 -0.331 0.7413
Ho 1 -4.916018 17.60617708 -0.279 0.7805
H7 1 8. 716675 17.88099084 0.487 0.6267
H3 1 -6. 615524 18.11296561 -0.365 0.7155
Ho 1 -22. 089570 18.35510965 -1.203 0.2308
H10 1 6. 985185 18.37912233 0.380 0.7045
H11l 1 7.992999 17.49195170 0.457 0.6484
H12 1 - 6. 804360 17.59674637 -0.387 0.6996
HL3 1 19.880955  17.49099143 1.137 0.2576
H14 1 26. 939111 18.28337767 1.473 0.1428
H15 1 -14. 528699 18.15355155 -0.800 0.4248
RESTRICT -1 -2.55617E-14 -

Figure2.1. SAS output obtained from regression procedure fitting a team rating and
individual HA to 1995 margin results
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Since teams have traditionally played half their matches at home we might use u; + 0.5 &;
asameasure of ateam's success through the year. Thisisin line with Harville & Smith
(1994) who suggests an equivalent measure for a team's overall performance level in
relation to the average performance level. This measure has a correlation of 0.90 with
premiership pointsand 0.98 with percentage. Figure 2 shows a scatter plot of percentage
against u; T 0.5 #; and demonstrates the extremely closefit. Thusthew; and 4; together
give a good measure of ateam's overall success through the year, but separately give a
measure of how much contribution the effects of team ability and HA made. It also
suggests that percentage is a better measure of ateam's average performance level than
premiership points.

140.0
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100.0
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60.0.

50.0 [ [ [ ] [ ] [
-50.0 -30.0 -10.0 10.0 20.0 30.0
Rating +0.5 HA

Figure 2.2. Percentage versus u; + 0.5 h; for 1995

The HAs for each club for each year obtained by this method are given in Table 2.8.
Again the averages are roughly in line with those previously obtained, and most of the
comments made in regard to the average paired HAs apply here. Three of the interstate
teams have the largest average HAs. Sydney isthe exception. Notein the early years
after their move they had a high HA, but this has diminished, possibly as teams got used
totravel. Note the very low HAs of teams that have shared the MCG for many years.
Melbourne, Richmond and North Melbourne are al in the lower third of the table.
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TABLE 2.8. Home advantagesfor all clubsin the AFL 1980-1995

Year
Team | 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 | 80-95
Adel 46 34 44 29 29 | 36
Bris -11 33 39 43 -5 45 438 30 20 | 27
WC 42 21 38 -2 17 17 12 -15 27 | 17
Foot 15 17 12 34 28 25 26 10 12 19 -50 29 7 20 33 -6 | 14
Car 13 5 39 33 -11 -3 12 17 32 -6 -6 20 16 -2 48 5| 13
StK -2 7 15 -16 8 6 20 38 17 33 25 13 11 8 -10 -7 | 10
Coll | -11 29 11 32 11  -33 6 -9 21 17 25 32 -2 8 13 6 | 10
Syd 36 5 17 9 ) 15 6 28 -18 10 2 -4 4 34 -18 8 9
Ess 5 11 10 15 7 32 -2 31 8 17  -13 23 -19 -14 29 -8 8
Fitz 9 12 -3 35 6 -10 28 28 29 -8 15 9 -5 2 -10 -13 8
Geel -3 28 27 -40 20 -5 22 17 -28 25 15 3 14 24 7 -5 8
Meb | -10 15 -9 12 -4 18 20 3 5 -15 21 -18 7 37 1 -7 5
Haw 25 -12 19 -28 9 30 -9 8 20 24 -24 10 -12 -12 1 9 4
Rich -5 -4 -6 -10 14 -9 8 -0 14 12 17 -17 -13 -12 28 7 1
NthM | -17 2 21 28 23 -23 2 -10 12 -3 53 -3 31 -35 18 -22 1
Frem -15 | -15
All 4 10 13 9 10 4 12 14 13 14 9 10 5 11 12 2 9.3
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2.9. Further analysis of individual HAs

Do different teams have different HAs or are the above differences due to random
variation? Table 2.8 provides data that can be analysed by normal statistical methods.
The year to year variation in HA for individual teamsis very large, and littlefaith could
be placed on individua values. Nevertheless,some may be of interest to administrators
and supporters. For example, why did Footscray, after a decade of consistently high
positive HAs, have a huge-50 in 1990? StKilda, after its move to Waverley in 1993,
had three consecutive HAs all less than they had enjoyed in any of the preceding nine
years. Some aspects have been investigated in more detail below.

29.1. Team and year effects

The data were analysed in variousways using the general linear models. With HA asthe
dependant variable a model for al the data with a year and team effect was highly
significant (p=0.036). The year effect wasinsignificant (p=0.83) but the team effect was
highly significant (p=0.002). (Removing the single Fremantle observation resulted in
virtually no change.) Thisisclear evidencethat in Australian rulesthe HAs of all teams
are not the same.

2.9.2. Interstate teams

The cause of this difference can be traced to the interstate clubs. If the same model is
fitted to the years 1980 to 1986 (beforethe introduction of Brisbane and West coast) the
model as awholeis not significant, and the team effect has ap value of 0.57. However
when fitted to the years 1987 to 1995, the overall model was significant at p = 0.04 and
the team effects at p=0.01. When the data were split into two groups, Victorian and
interstate, the 178 Victorian values had a mean HA of 7.7 with standard deviation of
17.6. The 38 interstate values had a mean of 17.5 with a standard deviation of 19.8.
The differences in standard deviation were statistically insignificant, allowing an equal
variances t test which showed the differences in the mean for the two groups was
significant with p=0.003. Note that the differencesare not just statistically significant,
but of practical significance. The averageHA of theinterstate teamsis more than double
the Victorian clubs.
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29.3. MCG teams

One reason advanced for HA isground familiarity. Sincethe MCG is played on by many
clubs, other teams will also be familiar with the ground, and the home team's advantage
will bereduced. To investigateif teams sharing the M CG had a different HA than other
teams the interstate teams were removed. Since they have a higher HA than average, and
none use the MCG, their inclusion would invalidate the results. This analysis was
therefore restricted to the Victorian clubs only. The 49 HA values for clubs in the
seasons they used the MCG as a home had a mean of 1.4, the other 129 values for
Victorian clubs had mean of 10.0. The difference wassignificant at p=0.002.

2.9.4. New Ground effect

When clubs change ground, they would be lessfamiliar with their new ground and hence
should have a lower HA. Table 2.1 shows that Victorian clubs changed grounds to
another Victorian venue eight times. The eight HAs for the first season at the new
grounds had a mean -2.9. The other 170 seasons by Victorian clubs had a mean of 8.2.
The difference was marginally significant (p=0.08). This effect could be confounded
with the effect shown in the previous section, as three of the moves were to the MCG.

2.10. Significance of various models

While the above analysis suggests that teams have different HAs, they may occur in
groups. For example, we may only need one HA for interstate teams, one for MCG
teams and onefor other teams. Harville & Smith (1994) test the significance of Models 1
through 3 by successively fitting the models and testing if the incremental improvement is
significant. They find that while including a common HA in Model 2 is highly
significant, the gains made by the extra complication of including individual HAs gained
some improvement but this was not significant. One of the improvements they suggested
was to group teams. We adopt this approach here, and also test two incremental models
between models 2 and 3. In the first of these extra models (model 2a) we alow a
different but common HA for all interstate teams (hi) to the Victorian teams (hv), whilein
the second (model 2b) we allow a common HA for the MCG teams (hm). Because we
are interested primarily in the interstate effect, in this section we only consider the years
91 to 95, and all games at Subiaco and the WACA are classed as home games. The
process is explained in detail for 1995, and then summary results are given for al years
1991-1995. In keeping with Harville, the notation Sj; represents the difference between
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the residual sum of sguaresobtained by fitting model i and j respectively - i.e. the extra
sum of squaresexplained by fitting Model j over that obtained by fitting Model i. Table
2.9 shows the marginal sums of squares explained by progressively fitting the models.
An F ratio can be formed to test if the model is a significant improvement over the
previous model using the final residual mean square (these are the values given in the
table). More correctly, the margina sums of squarescan be totalled to test any required
hypothesis. Suppose we wish to test whether Model 2 is a significantimprovement over
Model 1. Theimprovementin the sum of squaresgained by fitting the extra parameter in
model 2is2634.1. Theresidual sum of squaresis 10547.8+11.2+10794.9+223567.5 =
244921.4 with 1+1+14+13+145 = 150 degrees of freedom. This gives an F statistic of
1.6, in thiscase not significant. Totest if Model 3 is an improvementover Model 2, the
extra 15 parametersof Model 3 contribute 10547.8+11.2+10794.9=21353.9 for a mean
square of 1423.6. Compared to the error mean square of 1541.8 this gives an F value of
0.92, clearly insignificant.

The various hypothesesare relatively simple to implement with PROC REG in SAS. We
simply start of with the most complicated Model 3 and progressively restrict groups of
the hs to be equal, and request the relevant tests of hypothesis. For example to test
Model 3 against Model 2 we request the hypothesis test hg=h;=hy=h3s=h4=hs=he¢=
h7=hg=hg=h1g=h11=h12=h13=h14=h;5. To test Model 2 against Model 1 we put a
restriction ho=hj=hy=h3=hs=hs=hg=h7=hg=hg=h19=h11=h12 =h13=h14=h5 and test the
hypothesis 7p=0.

On the basis of 1995 only, there is strong evidence for Model 1 and 2a, somewhat
marginal evidence for Model 2 and no evidence for the other models. While it is
surprising that Model 2 is not significant, note from Table 2.3 that 1995 had one of the
lowest HAs in termsof pointsfor al years. Other years may yield adifferent result. The
results of the analysisfor each mode for the years 91 to 95 is now discussed in detall.
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TABLE 2.9. Marginal significancecof variousmodelsfor the year 1995

Degrees
of Marginal Sum of Mean

Source | freedom sguares square F p
Modd 1 15 SS1=131217.4 87478 | 5.7 | QO
Modd 2 1 SSyi1 =2634.1 26341 | 1.7 | .19
Model 1
Model 2al 1 SS2a1p = 10547.8 10547.8 | 6.8 .01
Model 2
Model 2bl | SSoppa =112 11.2 .01 .92
Model 2a
Model 3| 13 SS3pp = 10794.9 830.4 S | 92
Modd 2b
Residual 145 223567.5 1541.8

Tota 176 378773.0

Model 1: Model 1 aloneis highly significant, with ap value < 0.0001 each year. There
is no doubt there are differencesin the mean level of team performances.

Model 2: Model 2 proved to be significant in most years. Table 2.10 gives the
significance of the improvement for Model 2 over Model 1 (ie for the hypothesis test
h=0), the R-square value (i.e. the percentage of variation in the marginsexplained by the
model) and the estimated value of the common HA for each year and its standard error.

TABLE 2.10. Model 2 resultsfor the years 1991-95

p for
Year Ho: h=0 R2 h se(h)
1991 .002 44 11.2 3.6
1992 074 42 6.5 3.6
1993 .001 41 11.8 3.4
1994 .004 .37 12.2 3.6
1995 191 .35 4.4 3.4




Clearly Model 2 is significant and its place as the standard model is justified by these
results. Note the estimated valuesfor the common HA are all within one standard error
of those given in Table 2.3, which suggeststhat the simple methods used there do give a
reasonabl e estimate of acommon HA. The model generally explains about 40% of the
variation in results, which again illustratesthe large variation present in Australian rules.

Model 2a: Theinclusion of adifferent HA for interstate teamsis generally significant.
Table 2.11 gives the significance of the improvementfor Model 2aover Model 2 (iefor
the hypothesis test hi = hv), the R-square value and the estimated value of the common
HAs for interstate and Victorian teams. With three of the five years significant thereis
strong evidence for the interstate teams having a different HA to Victorian clubs.
However there are still large errorsin the estimatesand averagesover severa years need
to be taken to obtain accurate estimates. 1994 is atypica with the estimate for Victorian
clubs dlightly higher than interstate clubs. Neverthelessthe table asa wholeisconclusive
evidence that some clubs do have higher HAs than others, and that a more complicated
model than acommon HA isjustified.

TABLE 2.11. Mode 2aresultsfor the years 1991-95

pfor
Yexr Ho: hi=hv R2 hi se(hi) hv se(hv)
1991 0.296 0.45 19.4 8.6 7.2 5.1
1992 0.006 0.45 27.4 8.2 -3.6 5.0
1993 0.016 0.44 31.1 8.6 3.6 4.8
1994 0.759 0.37 10.0 8.0 13.2 4.9
1995 0.008 0.38 21.2 7.1 -5.3 4.9

Model 2b: The evidence for a different HA for the MCG and other Victorian clubs is
somewhat inconclusive. The p valuesfor 1991 through to 1995 for the improvement in
Model 2b over Model 2a were 0.05, 0.11, 0.50, 0.77, and 0.93, which suggests that
while adifferencemay have existed it has disappeared in recent years.

Model 3: There is weak evidence for an improvement in Model 3 over Model 2. The
respective p values are 0.51, 0.29, 0.11, 0.25 and 0.54. While none individualy are
significant, taken as a group they provide someevidencefor improvement. However all
of thisimprovement can be put down to the gains made by the simpler Model 2a. (Thep
values for the improvement of Model 3 over 2a are 0.52, 0.77, 0.30, 0.20, and 0.93,



which show no tendency towards significance). However not a great deal is lost by
using Model 3 in place of Model 2. The adjusted R2 value, which adjusts R2 making
allowances for the number of parameters in the model, is generally slightly higher for
Model 3.

Summary: The above results suggest that based on the resultsin 1991 to 1995, while a
common HA or separate HAs for interstate and Victorian teams is justified, further
increasing the number of distinct HAs is not. Other groupings may be possible. For
example it may be advantageous to remove Sydney from the group of interstate teams, as
they are much less isolated than the othersin the group. There may also be justification
for singling out Victorian sides such as Footscray, whose calculated HAs appear to
confirm their long held reputation for a large HA. Of course, one way of deciding
possible candidates for groupings is to fit a model with unique HAs for each team and
further investigate their similarities and differences. For this reason alone it is worth
persevering with Model 3.

2.11. Conclusion

The AFL competition is not balanced with respect to quality of opposition nor HA. The
added complication of ground sharing makesit difficult to calculate team ratings and HA.
All measures of HA vary greatly from year to year. Over the period 1980 to 1995 the
team with a perceived HA won approximately 59% of the matches. Thisis made up of
two distinct periods. Prior to 1987 the home win percentage was 56%, but this increased
to 60% after the introduction of new interstate teamsin 1987. However a better measure
is the average winning margin of the home team, which was just short of 10 points.
Although this is not adjusted for ability of opposition, it gives similar yearly values to
fitting a regression model with acommon HA. Quality of opposition can aso be allowed
for by looking at the paired HA, but several yearsdatais necessary to obtain reasonable
averages. These clearly show an isolation factor, with virtually all paired HAs over 40
points involving Adelaide, Brisbane or West Coast. There are various methods for
extracting individual HAs from the paired values, but care must be taken to alow for a
spurious HA caused by the HA of the opposition. However when this is done an
ordering of the clubs by HA clearly shows an isolation effect. West Coast, Adelaide,
Brisbane and Fremantle head the table with HAs over 20 points. Melbourne,
Collingwood, Richmond, Hawthorn and Nth Melbourne, al inner city Melbourne clubs,
bring up the rear. Over the 16 years, Nth Melbourne had a negative HA (-2 points).
Regression analysis was used to calculate individual HAs for each year. Detailed
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analysis of these showed that the team effect was highly significant. Thereis strong
evidence that thisis due to the interstate teams having a different HA to the others. There
was also evidence for MCG teams and teams playing for the first season on a new
ground having a lower than average HA. By investigating models of varying
complexity, it is clearly shown that the use of models more detailed than those
incorporating only acommon HA isjustified. While unique HAs for all clubs may not be
necessary, in the AFL competition they are at least as accurate as using acommon HA.
The optimum appears to be somewhere in between, with perhaps a different HA for
interstate teams from the others.

The analysis has clearly shown that different clubs have different HAs. This allows an
investigation of the effects of differencesin travel, crowd and familiarity factors. This
could previously only be done by comparing competitions between different sports or
grades.



CHAPTER III

HOME GROUND ADVANTAGE OF INDIVIDUAL CLUBS
IN ENGLISH SOCCER

3.0. Abstract

Least squaresis used tofit amode to theindividual match resultsin English football and
produce a home ground advantage effect for each team in addition to ateam rating. We
show that for a balanced competition this is equivalent to a simple calculator method
using only data from the final ladder. The existence of a spurious home advantageis
discussed. Home advantagesfor all teamsin the English Football |eague from 1981-82
to 1990-91 are cal cul ated, and some reasonsfor their differencesinvestigated. A paired
home advantageis defined and shown to be linearly related to the distance between club
grounds.

Key words: football statistics, home ground advantage, soccer, performance
measures, least squares.

3.1. Introduction

The existence of a home advantage (HA) in most sports is now well documented.
Courneya & Carron (1992) give asummary of the work done on HAs. They made the
point that future research should be directed to the causesof HA rather than document its
existence. However this requires the calculation of the HAs of individual clubs, so
differences can be related to the playing characteristics of the clubs. Pollard (1986b)
quantified HA (in a competition where each team plays an equal number of matches at
home and away) as the number of games won by teams playing a home expressed as a
percentage of all games played, with 50% indicating no HA. Although this method is
acceptablewhen averages over a whole competition are taken, it is obvioudy inadequate
when the performance of individual clubsis studied. Here ateam may win more (or less)
than 50% at home because it is a relatively strong (or weak) team. Snyder & Purdy
(1985) show the limitations of this approach, when in looking at a universities basketball
competition they found that division 2 teams won only 40% of their home matches
against division 1 teams. Thisimpliesthat the quality of opposition effect overshadowed
the HA effect. Because the quality of teams differ, we must alow for differencesin
ability and measure HA by comparing a team's home and away performance (See also
Harville& Smith (1994).)



TABLE 3.1. End of season ladder for Division 1, 1986-87

TEAM HW HD HL Hf Ha HGD AW AD AL Af Aa  AGD GD Pnts h u
Everton 6 4 14 9 11 383 10 4 7 27 20 7 45 86 0.84 0.92
Liverpool 15 3 3 43 16 2r 8 5 8 29 26 3 30 77 0.49 0.76
TottenhamHotsp. | 14 3 4 40 14 26 7 5 9 28 29 -1 25 71 0.64 0.57
Arsena 2 5 4 31 12 19 8 5 8 27 23 4 23 70 0.04 0.82
Norwich City 9 10 2 27 20 7 8 7 6 26 31 -5 2 68 -0.11 0.42
Wimbledon 11 5 5 32 22 10 8 4 9 25 28 -3 7 66 -0.06 051
Luton Town 14 5 2 29 13 6 4 7 10 18 32 -14 2 66 0.79 -0.03
Nottingham Forest | 12 8 1 36 14 2 6 3 12 28 37 -9 13 65 0.84 0.20
Watford 12 5 4 38 20 8 6 4 1 29 A -5 13 63 0.44 0.40
Coventry City 14 4 3 35 17 8 3 8 10 15 28 -13 5 63 0.84 0.01
Manchester United | 13 3 5 33 18 20 1 11 9 14 27 -13 7 56 0.94 0.01
Southampton 11 5 5 44 24 20 3 5 13 25 -19 1 52 1.24 -0.28
Sheffield Wed 9 7 5 39 24 5 4 6 1 19 35 -16 -1 52 0.84 -0.12
Chelsea 8 6 7 30 30 O 5 7 9 23 A -11 -11 52 -0.16 0.15
West Ham United | 10 4 7 3 28 5 4 6 1 1 19 39 -20 -15 52 0.54 -0.29
QueensP. Rangers| 9 7 5 31 27 4 4 4 1 3 17 37 -20 -16 50 0.49 -0.29
NewcastleUnited | 10 4 7 3 29 4 2 7 1 2 14 36 =22 -18 47 0.59 -0.38
Oxford United 8 8 5 30 25 5 3 5 1 3 14 44 -30 -25 46 1.04 -0.77
Charlton Athletic 7 7 7 26 22 4 4 4 1 3 19 33 -14 -10 44 0.19 -0.00
L eicester City 9 7 5 39 24 5 2 2 17 15 52 -37 -22 42 1.89 -1.12
Manchester City 8 6 7 28 24 4 0 9 12 8 33 -25 -21 39 0.74  -0.53
Aston Villa 7 7 7 25 25 0 1 5 15 20 54 -34 -4 36 0.99 -0.95
Total 297 -297 14.14 0.00

H, home; A, away; W, win; D, Draw; L, Loss; f, goasfor; a, goasagainst; GD, god difference;s, Home advantage; u, team rating.




Table 3.1 shows atypical ladder (division 1, 1986) as published for English soccer, with
the addition of two extra columns to be explained later. Sports followers have long
recognised the importance of a HA, and soccer tables have traditionally separated a
team's home and away performance. At the bottom of the table, Aston Villa, under the
definition of percentageof games or points scored at home, could be construed as having
no HA. Counting adraw as 0.5 of awin, they have won exactly 10.5 or 50% of games
at home and scored exactly 50% of the goalsin their home matches. However, thisis
largely dueto their low team ability relative to their opponents. The away matches can be
used to allow for team ability, and we see that Aston Villa have won only 3.5 of their
away matches and scored 34 fewer goals than their opponents. A supporter might say
that over the season they enjoyed a 10.5-3.5=7 game and a 0—(—34)=34 goal HA.
Virtually all teams, irrespective of ability, have a HA when measured in this way.
However, we shall show that this includes the HA of all the other teams, and so
overestimates the trueindividual HA effect. Itisnot generally appreciated that each team
with a 'real' home ground advantage automatically gives each other team in the
competition a'spurious or apparent HA. Thisis best demonstrated by a simple example
which is given in Appendix 3.1.

3.2. Modédling team ability and home advantage

To estimate HA correctly we need to model for the ability of team. We use a model
similar to that used by Stefani (1983, 1987), Stefani & Clarke (1992), and Clarke
(1993b) that has proved successful in predicting match results. The winning margin wj;
in a match between team i and team j played at the home ground of team i is modelled as

ng=ui—uj+hf+eg’, (3.1)

where u; is a measure of team i's ability, &; is a measure of team i's HA and ejj is azero
mean random error. We assume that the u; and &; are constant throughout the season.

The wjj can be measured either in ‘win margin' (1, 0 or -1 depending on whether the
home team won, drew or lost) or goals margin. The second case is usually followed in
prediction models, and that is the method we prefer here asit is more sensitive to HA.
For example a team that wins 3-0 at home and wins 2-1 away shows no HA if win
margins are used, but shows a 2 goa advantage if goal margins are used.
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This model, with the additional constraint that the u; (being relative) sum to zero, can be
fitted to the individual match results with a standard regression package by using dummy
variablesfor the us (1 if ateamis home, -1 if theteam isaway and O for the other teams)
and hs (1 for the home team and O for the others). In this case the REG procedurefrom
SAS 6.08 gave the valuesfor u and h shown in the last two columnsof Table3.1. The
overall model was significant at the 0.01% level, with R2 = 0.19. The low value of R?
reflects the high variability in soccer, and for the other seasons analysed increased with
the unevenness of the season. Each u had a standard error of 0.33 and the hs a standard
error of 0.49. A Q-Q plot of the residuas indicated they were normally distributed,
which was confirmed with a Shapiro-Wilk test of normality statisticof 0.99 (p=0.63). A
plot of the residuals against predicted valuesshowed no evidence of heteroskedasticity.

Alternatively, the Lagrange multiplier techniquecan be used to derivethe valuesof »; and
hi that minimise the sums of the squares of theerrors. Thisis shown in Appendix 3.2.
Surprisingly, the equationsderived only use simple arithmetic on information contained
in the end of year ladder. Thus, provided that the draw is balanced, instead of using
complicated regression procedureson theindividual match results, ability and HA effects
areeasily found by using only acalculator and data obtained from the final ladder.

The procedureis asfollows. Given a season'sresultsin an N team competition, where
each team plays the other N—1 teams once a home and once away, we can obtain
measuresu; and h; that describeeach team'slevel of performanceon a neutral ground and
their home ground advantage.

(@ H=X h;=% HGD;/(N-1) isthetota of al theindividual teams HAs, i.e. H is
the total of the team's HGD column, divided by N-1. In the ladder of Table 3.1, H=
297121 = 14.14.

(b) For each team, the HA h; = (HGD; - AGD; — H) /(N-2), i.e. for each team, their
HA is the difference in their home and away goal difference, less the total of all the
teams HAs, all divided by (N-2). For example for Everton hj= (38-7-14.14)/20 =
16.86120 = 0.84, and for Aston Villahyy ={0- (-34) —14.14}/20 = 0.99.

(c) For each team, the ability measure u; = {HGD; — (N-1) h; }/N. In Everton's case
u1 = (38-21x0.84)/22 = 0.92, and for Aston Villauyy = (0-21x0.99)/22 = -0.95.

These equations could be explained quite smply to alayman by replacing each match
result in the usual home and away grid with the expected or model result and using
simpleaddition. Thisderivationis givenin Appendix 3.3.



The source of the spuriousHA is now clearly shown in (b) above. Thedifferencein a
team's home and away performanceis given by (N-2)4; + Xh;. Thedifferenceis made
up of one component due to that individual teeam'sHA, and a second due to the total of al
the teams HAs. Thus, although ateam does better at home than away, this may be due
to the collective advantageenjoyed by the other teams.

The final two columns of Table 3.1 show the resultsfor 1986 division 1. Although all
teams do better at home than away, the sum of the HAs of all teams is 14.14 goals.
Teams with 14 goals or less difference in their home and away performance will
consequently have a negative HA. For Norwich, Wimbledon and Chelsea their better
home than away performances are spuriousand due entirely to the HA of the other teams.
The us have arange of about 2, so their difference has arange of about 4, whereasthe hs
havearange of about 1.4. Thisimpliesthat in equation (3.1) ability is about three times
more important than HA in determining goal difference. For the above ladder, the
correl ation between actual ladder position and the ladder position determined by u; + kh;
isbest for k of about 0.5. As u affectsateam'sperformanceevery match, and h only for
haf the matches, thisis perhaps not unexpected.

3.3. Data and results

Data were collected for al English soccer matchesfrom season 1981-82 to season 1990-
91, comprising 920 teams and 20,306 matches. The Official Football Association
Y earbook published by Penguin containsa summary of the previous year's match results
and final ladders for each division. Individua results were entered and a computer
program used to produce the end of year ladders, which were checked with those
published. This often showed up about a 1% error rate in the actual match results (i.e.
about threeresults per year per division wereincorrectly reported). Resultswere checked
with the newspapers if necessary until agreement with the ladder was obtained. All
computing work was performed with SAS.

The home teams won 9894 (48.7%) and drew another 5415 (26.7%) of their matches.
Of the total 54,378 goals the home team scored 32,556 or 59.9%, which is very closeto
but just under the percentage of wins 48.7 + 0.5x26.7 = 62.1%. This may suggest that
HA factors are slightly better at producing wins than larger margins. The proportion of
wins, draws and losses was remarkably consistent across divisions, with a chi square
test for independence of results and division producingap value of 0.949.



However, our main interest hereis in calculating individual HAs. Using the methods
shown above, the HAs were calculated for all teams playing from 1981-82 to 1990-91,
and aregivenin Table3.2. Table3.2issorted in order of decreasing average HA, which
isshown in thelast column. By looking at the HAs of individual clubswe may discover
the mechanism behind HA.

3.4. Discussion

The results show that a team's HA is quite variablefrom year to year and that in some
years some teams have a negative HA. Infact 126 of 920 or about 14% are negative- in
any onedivisionin any year about 3 teams actually have a negative HA. Because of the
inherent variation in soccer matches, an average over several yearsis necessary to obtain
areasonable measure of HA.

On average the home ground advantage is worth just over 0.5 of agoal, and that is
amazingly constant over the divisions (0.521, 0.529, 0.529, 0.533 for divisions 1 to 4).

The general linear models framework was used to perform various analysis-of-variance
(ANOVA) tests which indicated that the year is significant, division is not, and
differences between the clubs were only borderlinesignificant. For exampleatest on all

the data, 920 values, gave for year effect p = 0.014, division effect p =0.990 and club
effect p = 0.085. The residuals passed the usual tests for normality, and the R2 value
for this model was 14% so thereis alarge variationin HA. Thefollowing is clear from
these results.

(& Thereisnodivision effect. Thisisin contrast with the results of Pollard (1986b) and
seems to negate crowd factor asacausedf HA.

(b) Thereisahighly significant year effect. The HA isabout 10% higher than averagein
1982, 1983 and 1985 seasons, and 10% lower in 1981, 1987 and 1989.

(c) There is some evidence for a significant club effect, but this is not conclusive.
Certainly the club effect is weaker than the year effect.



TABLE 3.2. Home ground advantagesfor dl teamsin English soccer,
1981-82 to 1990-91, in order of decreasing average home advantage

pank| Team || 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 | Aver
= [Plymo | 036 0.72 138 050 103 084 122 108 038 150[001i1
2 |Alder | 043 076 079 093 152 086 114 075 058 0.73]0.849
3 |Maids 131 032]o.816
2 |Luton | 031 020 -022 133 075 079 1.60 1.44 0094 089]0.803
5 |Exete | 131 081 -035 070 -003 118 054 163 118 1.00|0.798
6 |Leeds | 099 -026 106 094 096 1.39 075 026 083 0.94]|0.788
7 |Leice | 021 009 058 113 050 189 079 072 051 1.28|0.770
g |Evet | 049 065 023 118 070 084 060 106 155 0.39/0.768
o |Cali | 095 1.09 056 074 076 047 127 -055 1.08 1.27}0.765
10 |Colch | 052 135 138 025 084 109 -023 068 081 0.743
11 [Milw | 027 136 1.11 096 091 079 056 061 071 0.00]0.728
12 [Bolto | 091 074 111 119 043 0.33 113 093 020 0.27|0.724
13 [Soton | 1.24 075 073 -002 1.35 124 -013 033 049 1.22|0.720
14 |Orien | 056 086 083 005 029 077 104 159 006 1.14[0.719
15 |Stock | 089 112 029 165 034 068 0.13 032 086 087|0.714
16 |Queen | 141 084 043 138 125 049 071 0.1 -001 044|0705
17 |Hartl | 043 126 129 047 120 -005 -0.19 0.68 158 0.32]|0.700
18 |Bourn | 002 100 065 132 057 0.60 056 0.90 0.29 1.09|0.700
19 |Stoke | 044 100 1.08 038 076 079 089 0.81 042 0.37]|0.694
20 |Yok | 121 162 052 069 139 106 -018 091 -0.14 -0.27]|0.679
21 |BrisR | 049 113 092 082 098 042 1.14 -016 052 0.46]0.673
2 |Oldha |[-0.04 -006 121 079 051 034 056 081 138 1.23/0.673
23 |ShefU | 052 150 115 039 051 054 070 0.84 006 0.44]|0.666
24 |Scunt | 0.30 022 088 102 047 109 036 0.13 036 1.77|0.659
5 |Gilli 0.81 -000 088 096 093 128 095 0.30 0.22 0.23]|0.657
% |Rochd [ 039 1.35 093 034 134 050 027 113 008 0.14]|0.646
27 |BrisC | 022 049 120 069 112 074 073 0.11 006 1.09|0.645
B |Brigh | 064 095 136 049 056 044 041 090 033 032]0641
2 |Newca | 091 049 101 078 115 059 0.39 0.39 065 0.00]0.636
D [Shrew | 111 -011 111 114 086 099 008 008 056 0.50/0.633
3 [Charl | 126 144 126 049 061 019 050 056 0.16 -0.13|0.633
2 [Bpool | 048 1.03 1.02 034 057 019 073 021 025 1.41|0.622
B |Pret | 008 127 056 096 011 004 064 080 125 0.500.620
3 [Bumn! | 013 129 097 059 002 013 054 118 004 1.23|0.612
35 |Rothe | 1.11 -016 061 055 162 047 050 -009 093 0.59]0.611
% [MancU |[-011 115 043 123 -000 094 034 067 088 0.56]0.608
% |Haif | 025 040 184 011 056 022 081 1.04 004 0.73|0.600
38 [Oxfor |-019 004 061 179 100 1.04 039 031 029 0.46|0574
P |Walsa | 054 091 088 0.14 143 101 023 -019 034 0.23|0.551
40 |Soend | 0.08 036 106 020 070 041 114 089 0.81 -0.18]0.547
41 |WestH | 0.44 065 068 058 090 054 039 -017 1.01 0.41]0.544
42 lipsvi | 069 005 063 058 0.5 049 098 067 0.92 0.23]0.540
43 |Bourn | 031 1.09 036 054 081 069 018 126 001 0.09]0.535
44 |chfld | 013 036 029 056 048 038 055 098 090 0.68]0.531
45 |Coven | 059 090 043 0.88 0.15 0.84 -029 -0.06 049 1.33]0.527
46 |Swans | 1.04 035 096 -004 134 068 -014 048 015 041]0524
47 |Torqu | 048 049 079 002 111 018 -001 091 045 0.77|0519
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TABLE 3.2. (Continued)

—
Rank|Team | 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990| Aver
78 |Amsen | 0.24 0.75 -0.07/ 1.03 0.70 0.04 055 -0.61 1.60 0.83[0507
40 |Wigan | 057 -005 038 091 116 0.38 0.27 -0.16 0.88 0.59|0.494
50 | Hull 025 058 052 046 0.86 0.39 065 0.67 -0.53 1.05|0.490
51 |Canbr | 0.86 119 046 -072 065 091 0.31 0.82 040 0.00|0.488
52 |Pvale | -0.02 -024 1.02 070 0.79 -012 0.95 0.30 0.83 0.59]0.480
53|Wrexh | 021 141 006 065 079 -005 0.81 0.23 0.22 0.46]|0.479
54 [Psmth | 1.04 -0.09 026 -0.06 056 074 050 0.90 0.20 0.69|0.473
55 [Heref | 021 067 015 015 156 050 0.13 0.86 -0.32 0.77]0.469
56 |Cryst | -014 124 -019 024 -0.19 099 0.89 0.67 1.27 -0.11|0.467
57 |[Wolve | 1.04 079 0.78 0.19 -043 -023 0.27 1.07 0.74 0.41]|0.463
58 |Linco | 054 104 052 059 025 0.72 0.41 -0.23 0.32|0.462
5 [North | 1.16 1.08 043 0.38 -025 054 0.27 0.48 -0.07 0.59]|0.460
60 |Hudde | 0.49 1.09 -034 -0.01 086 054 051 0.71 0.20 0.55|0.460
61 | Bradf 0.16 054 029 -009 116 0.29 065 0.36 0.79 0.46|0.460
& |Aston |-011 1.75 073 0.73 010 0.99 -092 0.61 0.21 0.50|0.460
63 | Readi 063 0.72 138 -063 0.16 074 018 0.30 0.43 0.68|0.459
64 |Watfo | 0.71 1.20 038 0.63 085 044 -013 031 0.79 -0.59|0.458
6 |Mansf | 030 031 1.02 020 047 028 0.36 048 1.02 0.14]|0.458
66 |Scarb 0.86 -0.37 0.72 0.59|0.452
67 |Grims | -009 124 0.76 059 066 0.09 -041 0.50 0.36 0.73]|0.443
63 [MancC | 054 060 0.61 079 -000 074 056 0.13 0.55 -0.11]|0.441
® |NottC |-0.11 115 0.03 019 030 1.10 064 0.30 0.61 0.09(0.430
70 | Peter 1.02 044 147 011 097 -005 -028 0.13 -0.01 0.46|0.428
71 |Deby | 1.06 0.14 111 078 -0.16 049 018 0.11 021 0.28(0421
72 |Norwi | 091 0.65 0.88 063 061 -0.11 0.18 -0.17 049 0.11(0.418
73 |Swind | 0.36 067 020 115 056 -022 051 0.54 042 -0.04|0.416
74 |[NottF |-021 015 0.88 063 -010 084 050 0.17 0.16 0.89/0.390
7 |Traom | -0.11 0.44 -0.07 129 -025 -0.09 122 045 0.75 0.27/0.389
76 | Totte 014 190 018 -052 050 0.64 0.39 -033 0.05 0.78]0.372
77 |WBA 004 055 063 0.83 0.60 -001 060 0.58 -0.49 0.37]0.371
78 |Newpo | 0.18 0.04 0.70 -0.04 012 047 1.13 0.370
79 |Donca | 0.77 050 0.20 0.37 -043 097 050 0.73 -0.19 0.18(0.359
8 |Bans | 041 0.19 0.11 099 -0.19 -0.16 0.41 049 042 0.91(0.359
8L |Bury 098 0.17 -039 061 134 0.15 009 0.39 0.02 0.23/0.358
& [Liver |-031 055 118 -062 120 0.49 044 0.06 -023 0.56(0.332
&3 [sunde |-0.11 060 078 -0.17 046 0.09 0.14 0.95 0.06 0.50|0.329
8 [Chds | 0.11 079 061 0.38 -015 -0.16 123 -0.42 -0.18 0.89]0.311
8 [Middl | 009 024 041 -011 011 028 0.79 0.39 0.38 0.37]0.296
86 |ShefW | 0.01 -026 051 048 025 0.84 -003 0.17 0.82 0.00(0.279
87 |Fuha | 036 0.14 0.06 019 026 -022 0.18 0.57 0.56 0.68|0.279
88 |Brent |-0.32 072 0.65 091 -052 024 0.14 0.66 043 -0.27|0.264
89 |Crewe | 0.80 0.44 0.52 -0.03 047 -0.09 -0.14 0.18 0.11 0.37(0.262
9 [Cadi |-0.19 0.86 046 -071 007 0.18 063 121 -0.07 0.14|0.257
91 |Birmi 0.39 040 008 -031 035 059 022 036 0.75 -0.27]|0.256
92 |Darli 025 -047 043 0.38 0.66 0.69 068 -0.46 0.00(0.241
93 |Chstr 0.18 -0.06 -0.12 0.43 0.38 -0.22 -009 1.07 0.70 0.09]/0.236
| 94 [wimbl | 0.72 012 033 079 051 -0.06 0.23 0.67 -1.01 -0.33|0.198

Aver 045 066 064 052 059 051 047 0.50 0.45 0.50[0.528
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34.1 Special Clubs

Pollard (1986b) singled out five clubsfor specia attention when looking at the effect of
local conditions: Bristol Rovers and Halifax (small pitch), Manchester City and Carlisle
(large pitch), Queen'sPark Rangers (artificial turf). Pollard found that the pointsgained
at home were not significantly different for these clubs. However, as we argued above,
this would be affected greatly by the relative strengthsof those clubs. Table 3.2 shows
that most of them arein the top third - with ranks9, 16, 21, 37 and 68 in atable with 94
values. A rank sum test gives R = 151 which has ap value of 0.076 which is some
evidencethat these teams have a higher-than-average HA.

What can we conclude about the 13 London clubs - Millwall (ranked 11), Leyton Orient
(14), Queen's Park Rangers (16), Charlton (30), West Ham (41), Arsenal (48), Crystal
Palace (56), Watford (64), Tottenham (76), Chelsea (84), Fulham (86), Brentford (88)
and Wimbledon (94)? Because of their proximity we might expect them to have low
HAs, and therearefour in the bottom 11 rankings. Again, arank sum test givesR =708
with ap value of 0.161. Since Queen's Park Rangers has already been singled out as
having special propertiesthat may giveit alarge HA, it might be argued that we should
exclude it in thisanalysis. Doing thisgivesR =692 which has ap value of 0.072. So
again thereis some evidencethat the London clubs have alower than average HA.

Barnett & Hilditch (1993) looked specifically at the effect of artificia pitch on HA. Table
3.2 confirmstheir findings of an artificia pitch effect. Queen'sPark Rangersfrom 1981-
82 to 1987-88, Luton from 1985-86 to 1989-90, Oldham from 1986-87 to 1990-91 and
Preston from 1986-87 to 1990-91 all had artificial pitches. The 22 seasons played on an
artificial pitch had a mean HA of 0.889, compared with 0.519 for the other 898 seasons -
significant at the 0.1% level. Asthis may be dueto ayear or team effect, includingtype
of pitch aong with year, division and club in an ANOVA test showed that the type of
pitch was significant at the 1% level (p = 0.0013).

342 HA vesustime in divison

A possiblereason often advanced for HA is the home team'sfamiliarity with the 'quirks
of their homeground. Alternatively we could argue that the visiting teams are unfamiliar
with the home team's facility. If this was so we would expect the HA to be greatest
when ateam is new to thedivision. To test thisthe current length of time continuously in
the division for all teamswas calculated. The results were the reverse of that expected,
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with a small non significant positive correlation between HA and years in division.
Perhaps when teams are new to the competition the opposition put effort into
counteracting their peculiarities, but relax thiseffort after they (mistakenly) believe that
they are familiar with the opposition. To make sure this was not due to a year effect,
averages by year and continuous time in divisions were looked at and the results
confirmed thefinding. For O or 1 yearsin thedivision, most of the averages were below
the yearly average, whereas for 2 to 3 years in the division, most of the averages were
above the yearly averages. Contrary to expectation, the teams that are new or have been
in the division for only one year do not appear to have higher-than-averageHAs.

3.5. Paired home advantage

The arguments advanced earlier for going from acompetition level to aclublevel can be
extended one stage further. Just asthe competitionlevel HA is an average of the HAs of
all theclubs, so an individual club'sHA is an average of its paired HA with all the other
clubsit plays. For example, suppose that the HA isdueentirely to distance travelled. A
particular club would travel a short distance to some clubs (with no HA) and a long
distance to others (with a consequently large HA). Asits HA is an average of these it
would have an average HA and the effect of distance would be lost. Thusthe HA of one
clubisreally the average of all its paired HAs with the HAs of the other clubs removed.
It includes matches with nearby clubs, far clubs etc and so to some extent averages out
the effects (of distance, crowd etc). Can we obtain a more refined measure by looking at
thepaired HA?

Stefani & Clarke (1992) state that the home ground advantage can be thought of as &;;.
For each pair of teams the difference in home and away matches - in our previous
notation wj; t wiji whichisequivalent to #; +If - gives ameasure of thisfor each year.
Note that we need the actual match results for this - it cannot be calculated from the
ladder. For our data, this gave 10153 match pairs, played between 2865 club pairs, with
an average of 1.057 paired HA. This agrees with the previous estimate that a HA is
worth about 0.5 of agoal, asthe paired HA incorporates two individual HAs. However,
the valuesare highly variable, ranging from -7 to +11.

To investigate whether distance had an effect, the grid coordinates of the home ground of
each club on a map were estimated and the straight line distance between each pair
calculated. The correlation between distance and HA was 0.07 - thisis very small but
because of the great number of observations is highly significant with p=0.0001. The



low correlation is due to the high variation in the individual data, making it difficult to
explain high proportionsof the variation. Severa averaging methods were tried to reduce
the variation, and all showed a clear relationship between paired HA and distance. For
example, by averaging the paired HAs for each of the 2865 club pairs the correlation
between average paired HA and distance became0.11. By restrictingthe analysisto the
1303 pairs of teams which played each other for four seasons or more, the correlation
increased to 0.14. The pairsof clubswere separated into groupsin multiplesof 50 miles
apart and the average paired HA wascalculated for each group. The resultsare shownin
Figure 1 and clearly show increasing paired HA for increasing distance. To some extent
thiseffectisreflected in Table 3.2. One referee pointed out that three clubsin the top ten,
Plymouth, Exeter and Carlisle, are geographically isolated.
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Figure3.1. Averagepaired HA (goals) versusdistance apart of clubs.

3.6. Win/loss home advantage

In the above analysis we have used goal difference to measure a team's performance.
However, the analysis can be repeated using win (or point) margins as the measure of
performance. Although goal difference should be a more sensitive measure than wins, it
may be that HA works to produce wins rather than large margins. Replacing a team's
score by 1 for awin, 0.5 for adraw and 0 for a loss produces win marginsof 1, 0 and
-1. The analysis can be repeated exactly, but the measures obtained would now be in
terms of win margins rather than goal margins. Alternatively, using 3, 1 and 0 points



produces point marginsof 3, 0 and -3, but thisis only an exact multiple of the win or
lose case.

Using win margins produced similar results to the above, with a tendency to produce
slightly more significant results. For example the overall average HA is0.472, or nearly
0.5of awin. Theranksaf thefive clubssingled out for specia characteristics by Pollard
(1986b) now go to 4, 9, 11, 41 and 80 with a rank sum 145 now significant with
p =0.06. The ranks of the 12 London clubs (without Queen's Park Rangers) are 28,
31, 34,40, 47, 70, 72, 75, 81, 83, 91 and 93. Thisgivesarank total of 745 significant
with p=0.02. Thefact that both these have moved in the direction indicating enhanced
HA suggeststhat HA may have a greater effect on winning than on goal difference. Thus
whatever it is that produces HA tendsto operate more effectively in determining winners
rather than just larger winning margins.

3.7. Conclusion

At acompetition level, variationsin percentage of home matcheswon may arise because
of differencesin team ability aswell as variationsin HA. TocalculateHA a aclubleve,
we need to take account of team ability, by looking at the differencein home and away
performances. Least squarescan be used on the match resultsto estimate team and HA
effects. However, for a balanced competition such as English soccer, thisis equivalent
to simplecal culation methods on thefinal ladder results.

Using ten years data we have calculated HA in terms of goal and win differencefor all
94 clubsin English soccer. These showed no division effectsbut significant year effects.
There was some evidence that clubs with special facilitieshave significantly higher HA,
and that London clubs have less-than-averageHAs. There was no evidence that clubs
new to adivision haveahigher HA. It aso appeared that HA effects have moreleverage
on winning than on goa margins.

Paired HA is amore sensitive measureof HA, but individual match results are needed for
itscalculation. A definite linear relationship exists between a pair of clubs paired HA
and their distance apart.

Note: Some correspondence appeared following publication. See Bland & Bland
(1996), Clarke & Norman (1996) and Longford (1997), Clarke & Norman (1997a).



3.8. Commentary. English soccer 1991-92 to 1995-96

The ease of applying these results via a spreadsheet is demonstrated by applying the
methods to English soccer from 1991-2to 1995-6. Final ladder results are moreeasily
obtained than individual match results. In fact thefinal ladder results are archived on the
internet for every year from 1887 onwards. These were copied and read into a Microsoft
Excel spreadsheet. This spreadsheet was created using the same form as the archive,
with the above formulas used to cal cul ate two additional columns containing the «; and
hi. 1t isonly necessary to cut and paste a year's resultsfrom the archive into the Excel
file to produce the us and hs. This was done for each division and year for 1990-91 to
1995-6. Thefirst year was used as a check against previous results. The columns for
year, division, club, team rating and home advantage were then copied into a single
spreadsheet and to SAS/JMP for further analysis. The calculated HAs are incorporated
into Table 3.7 which extends Table 3.2 to include the years through to 1995-96. The
tableis sorted in aphabetical order.

In genera theresultsas reported in thischapter for the years 81-82 to 90-91 are repeated
for the years 1990-91 to 1995-6. The average HA was 0.43 goal per match. The yearly
HAs ranged from -1.1 to 2.0 goals per match, with about 18% negative. However the
average HA over 5 yearsranged from -.11 to 1.1. Analysisagain showsthat HA is not
dependant on division, nor year. However the team effect is significant (p=.0386). Of
the 10 clubs with the lowest HA, five are London clubs. Clearly the mean HA of 0.29
for the 13 London clubsis significantly lower than the mean HA of 0.44 for the 81 non-
London clubs. A surprising fact wasthe lack of consistency in the HAs from one year to
the next. The correlationsbetween HA from one year to the next are very small or even
negative, while the correlation between the average HAs for the two periods was only
0.15. This suggests that teams do not enjoy a large HA over many years, and that
opponents may quickly counteract perceived HAs. This may also be due to the promotion
and relegation system in English soccer.



TABLE 3.3. Home ground advantagesfor al teamsin English soccer, 1981-82 to 1995-96, in alphabetical order

Team 81-82 82-83 83-84 84-85 8586 86-87 8/-88 8889 89-90 9091 91-92 92-93 9394 9495 9596 | Ave
Aldershot 043 0O/6 079 093 152 086 114 075 058 0.73 0.849
Arsend 024 075 -007 103 070 004 055 -061 160 083 067 -014 -056 -0.07 0.11]0.338
Aston Villa -011 175 073 073 010 099 -092 061 021 050 087 061 039 008 0.44]0.465
Barnet 101 130 064 092 0.57]0.888
Barnsley 041 019 011 099 -019 -016 041 049 042 091 018 056 -0.09 102 044|0.379
Birmingham C.| 039 040 008 -031 035 059 022 036 075 -027 049 029 013 064 1.03]0.343
BlackburnR. 031 109 036 054 081 069 018 126 001 009 059 036 034 078 150|0.594
Blackpool 048 103 102 034 057 019 073 021 025 141 171 092 042 023 0.16]0.645
Bolton Wand. 091 074 111 119 043 033 113 093 020 027 004 078 031 116 -0.39|0.609
Bournemouth 002 100 065 132 057 060 056 09 029 109 063 015 -022 014 1.07]0.585
Bradford City 016 054 029 -009 116 029 065 036 079 046 -006 046 042 -036 0.84]0.394
Brentford -032 072 065 091 -052 024 014 066 043 -027 063 015 -040 032 0.57]0.261
Brighton & HA| 064 095 136 049 056 044 041 09 033 032 041 037 064 045 -0.03|0549
Bristol City 022 049 120 069 112 074 073 011 006 109 082 065 041 021 0.25]|0.586
Bristol Rovers | 049 113 092 082 098 042 114 -016 052 046 09% -017 010 0.77 -0.30|0.539
Burnley 013 129 097 059 002 013 054 118 004 123 031 110 192 084 0.66|0.730
Bury 098 017 -039 061 134 015 009 039 002 023 031 09 080 032 -015|0.385
Cambridge U. 086 119 046 -072 065 091 031 082 040 000 009 015 0.05 0.82 0.39]0425
Cardiff City -019 08 046 -071 007 018 063 121 -0.07 014 046 030 064 032 0.80]0.340
Carlisle United | 095 109 056 074 076 047 127 -055 108 127 051 050 010 -0.23 152]0.669
Charlton A. 126 144 126 049 061 019 050 056 016 -013 -054 015 086 052 -047( 0457
Chelsea 011 079 061 038 -015 -016 123 -042 -018 089 017 031 099 008 0.27]0.328
Chester City 018 -006 -012 043 038 -022 -0.09 107 070 009 004 033 020 0.00 0.80]0.249
Chesterfield 013 036 029 05 048 038 055 098 09 068 -009 020 030 -008 0.88]0.435
Colchester U. 052 135 138 025 084 109 -023 068 081 125 020 -0.13 048] 0.653
Coventry City 059 09 043 088 015 084 -029 -006 049 133 032 -019 039 023 0.27]0419
CreweAlex. 080 044 052 -003 047 -009 -014 018 011 037 006 105 020 023 0.16]0.289
Crystal Palace | -0.14 124 -019 024 -019 099 089 067 127 -011 -013 031 0.13 -042 -0.15|0.294
Darlington 025 -047 043 038 066 069 0.68 -0.46 000 026 -095 035 037 -043]|0.126
Derby County 106 014 111 078 -016 049 018 011 021 028 -027 -040 095 066 108]|0.415
Doncaster R. 077 050 020 037 -043 097 050 073 -019 0.18 -064 -025 010 -038 0.62]0.203
Everton 049 065 023 118 070 084 060 106 155 039 042 -054 034 068 0.16[0.583

LS



TABLE 3.3 (continued). Home ground advantagesfor al teamsin English soccer, 1981-82 to 1995-96, in alphabetical order

Team 81-82 82-83 83-84 84-85 8586 86-87 87-88 88-89 89-90 9091 91-92 92-03 9394 9495 9596 | Aver
Exeter City 131 081 -035 0./0 -003 118 054 163 118 100 131 -022 101 017 0.16]0.693
Fulham 036 014 006 019 026 -022 018 057 056 068 044 -008 -018 097 1.03]|0.331
Gillingham 081 -000 083 096 093 128 095 030 022 023 121 080 040 107 0.71]0.717
Grimsby Town | -009 124 076 059 066 009 -041 050 036 0.73 -004 015 013 071 0.44]0.388
Halifax Town 025 040 184 011 05 022 081 104 0.04 073 036 -0.75 0.468
Hartlepool U. 043 126 129 047 120 -005 -019 068 158 032 026 -008 051 097 1.03]0.645
Hereford U. 021 067 015 015 156 050 013 086 -032 077 086 065 070 0.72 0.39]0.533
Huddersfield 049 109 -034 -001 08 054 051 071 020 055 040 051 -027 041 1.21]0457
Hull City 025 058 052 046 086 039 065 067 -053 105 -010 069 032 1.00 0.38]|0479
IpswichTown | 069 005 063 058 015 049 098 067 092 023 046 041 -026 138 0.53]|0527
Leeds United 099 -026 106 094 09% 139 075 026 083 094 022 201 029 048 044]0.753
Leicester City 021 009 058 113 050 18 079 072 051 128 077 083 022 038 -0.38|0.638
Leyton Orient 05 08 083 005 029 077 104 15 006 114 063 137 123 091 1107|0827
Lincoln City 054 104 052 059 025 0.72 041 -023 032 -109 050 -010 082 0.85]0367
Liverpool -031 055 118 -062 120 049 044 006 -023 056 092 141 049 063 1.16|0.529
Luton Town 031 020 -022 133 075 079 160 144 094 08 197 010 081 0.02 0.35]0.752
Maidstone U. 131 032 0.26 0.630
Manchester C. | 054 0.60 061 0.79 -000 074 056 013 055 -011 072 -029 044 098 1110491
Manchester U. | -0.11 115 043 123 -000 094 034 067 088 056 017 016 019 0.83 0.39]|0522
MansfieldT. 030 031 102 020 047 028 036 048 102 014 011 074 -010 012 -034|0341
Middlesorough | 0.09 024 041 -011 011 028 079 039 038 037 09 111 081 021 0.33(0425
Millwall 027 136 111 09% 091 079 05 061 071 000 -013 120 0O.77 0.71 0.08| 0.661
Newcastle U. 091 049 101 078 115 059 039 039 065 000 109 092 134 113 1111|0797
Newpo 0.18 004 0.70 -0.04 012 047 113 0.371
Northampton 116 108 043 038 -025 054 027 048 -007 059 021 000 095 027 0.16]0.413
Norwich City 091 065 083 063 061 -011 018 -017 049 011 047 086 -081 098 -0.38| 0.353
Nottingham F. | -0.21 015 0.88 063 -010 084 050 017 016 089 037 -029 -023 -012 105(0.313
Notts County -011 115 003 019 030 110 064 030 061 009 017 124 118 021 0.29]|0.493
Oldham Ath. -004 -006 121 079 051 034 056 081 138 123 077 131 009 061 062]|0.675
Oxford United | -019 004 061 179 100 104 039 031 029 046 068 033 041 005 125]|0.564
Peterborough 1.02 044 147 011 097 -005 -028 013 -001 046 076 020 081 000 0.97]|046/
PlymouthArg. | 036 0.72 138 050 103 084 122 108 038 159 055 060 -013 005 0.62]0.719
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Appendix 3.1. Spurious and real home ground advantage

Consider three teams, A, B and C. Suppose that A is better than B which is better than
C, and there are no home ground advantages. Suppose that both home and away A beats
B 2-1and C 3-1, whereas B beats C 2-1. Final results would be asin Table 3.4 with the
final ladder asin Table 3.5. Obviously each team has the same home performance as
away both in terms of wins and goals.

TABLE 3.4. Fina results

Home Away team
team A B C
A - 2-1 3-1
B 1-2 - 2-1
C 1-3 1-2
TABLE 3.5. Final ladder
Home Away Home—-Away
Team | Wins | Draws | Losses | Goals | Wins | Draws | Losses | Goals | Wins | Goals
A 2 0 0 5-2 2 0 0 5-2 0 0
B 1 0 1 3-3 | 0 1 3-3 0 0
C 0 0 2 2-5 0 0 i 2-5 0 0

However, we now give C a2 goal home ground advantage so that C will perform 2 goals
better at home than anywhere else. Thus at home it will draw against A and beat B 3-2.
The results and end-of-year ladder are now as in Tables 3.6 and 3.7 respectively. The
final ladder shows that, even though only C has a HA, all teams had better results at

home than away, both in terms of winsand goal difference.

A 'naive analysis of goal difference would incorrectly conclude that each team had a
home ground advantage - A and B performing better at home than away over the season
by atotal of 2 goals, whereas C performed better by atotal of 4 goals.




TABLE 3.6. Fina resultswhen C hasa 2-goal HA

Home Away team

team A B C
A - 2-1 31
B 1-2 - 2-1
C 3-3 3-2 -

TABLE 3.7. Fina ladder when C hasa 2-goa HA

Home Away Home—-Away

Team | Wins | Draws | Losses | Goals | Wins | Draws | Losses | Goals | Wins | Goals
A 2 0 0 5-2 1 1 0 5-4 0.5 2
B 1 0 1 3-3 0 0 2 3-5 1 2
C 1 1 0 6-5 0 0 2 2-5 1.5 4




Appendix 3.2. Derivation of formula for calculation of home advantage
and team performance by using least squares

L et wj; be the winning margin for home team i against away team j, (negative if loss).
For N teams, thisgivesan N x N matrix with no diagonals. Adding acrossarow gives
the home goal difference HGD, whereas adding down a column gives the negative of
away goal difference AGD,

j=N i=N
i.e. for team/ HGDr = Ywij, AGDy =- Y wir
j=1(i¢1) l=1(l-‘/—'1)

Thussince we are merely summingall the w;; in adifferent order

=N i=N
YHGD; =- YAGD;
i=1 =1

If uj isameasureof team ability, rating or skill level etc. of team i and 4; is the home
ground advantage of team i, and e;;j is random error, then as beforein equation (3.1) we
model the winning margin by

wij =u;‘-uj+hi+eij (3.1

Since only differences of the u; are used, they are relative, and we make the arbitrary
i=N

restriction that Eu; = 0. So minimising the sums of squares of the errors subject to
i=1

this condition, we have using the usual Lagrange multiplier expression.

i=N J=N =N
Minimise S = > (wij-uj+uj-hi)2 +% Y uj
i=1 j:l(]ii) i=1

In the normal manner, partial differentiatingwith respecttouz, | =1toN, A7, | =1to N,

and A we get 2Nt 1 equations.
Jj=N i=N
ZZ(WU —uJ +uj—hp(-1) + 22(»»,'1 —uj +uJ —hj) + A=0, I=1 to N 3.2)
J=1G=D i=1(il)
J=N
S2(wrj—ur+uj—hr)(-1) =0, I=1toN (3.3)
J=1(G#)



Expanding (3.3) gives

Soaddingforl =1toN,

63

(3.4)
j=N j=N
ZWIJ' = (N-1) uy + (N-1) hJ - Zuj
J=1G#D) j=1(#D)
j=N
i.e. HGD] = Nuj + (N-1) hj + Zuj
JFl
HGDj; = Nuj + (N-1) hj (3.5)
I=N I=N I=N
ie. 2, HGD] =N Yu +(N-1) Y hi
I=1 I=1 I=1
HGD = (N-1) H (3.6)

i=N

whereH = Z hi isthetotal of al the individual team's home ground advantages.

From (3.2), substituting(3.3)eliminatesthe first summation term, so

So

-\2

I=N
> A2
I=1

—N A2

i=N
S (wil — ui + uf — hi)
i=1(i#l)
i=N i=N i=N

Swir = Ywui—  Yhi +WN-Du
i=1G=) =@ =102

—-AGDj+uj— H+ hy + (N=-1) uj

-AGD] —H+h] + Nuj (3.7)
=N ]..-:N I=N
Y —AGDy- NH + Zh[ +N Zu{
I=1 i=1 =1

I=N

Y HGD; —-(N-1)H +0
=1

0 from (3.6)



SoA =0 and (3.7) becomes
AGD] =-H+h] + Nuj (3-8)
So subtracting (3.8) from (3.5)
HGDj-AGD; =Nuj+ (N-1)hj+H—-hj— N uj
HGD;-AGD] =H* (N-2)k (3.9)

Thus Hi s calculated from (3.6), A; from (3.9) and u; from (3.5).



Appendix 3.3. Derivation of formula for calculation of home advantage
and team performance from final ladder using smple explanation

As before we model the winning margin by
wij = uj ~ uj T hj
Theerror termis neglected for simplicity. It could beincluded, and discarded later under
the assumption that it sumsto zero.
Adding acrossrow i givesthe home ground performancecf teami as

=N =N
HGD; = Zwif = 2(ui—uj+hi),

j=1G#i) J=1G#0)
j=N

= N-Dui —  Yuj + (N-Dh;
J=10G#0)

j=N
= Nu; — Zuj + (N-1) hj

J=1

Now asthe u; arerelative, and it isonly the differencethat matters, we can require that

they sum to zero.
HGD; = Nu; t(N-1); asin (3.5)from Appendix 3.2.

If we sum &l the home performancesfor the whole competition we obtain
i=N i=N i=N
Y HGD; =2 {Nujt (N-Dhi} = N-1) Y hj
1:1 l=1 l=1
= (N-1)H asin (3.6)from Appendix 2

In asimilar manner, ateam'saway performanceis obtained by adding up the negatives of
acolumn. For column j we have

i=N i=N
i=1(i#)) i=1(i#))
i=N i=N
== Yu +W-Duj - Y hi
i=1(1#) i=1(i#))
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i=N
=— Zu,‘ +Nuj — H + hj
=1

= Nuj - H T hj asin(3.8)from Appendix 3.2.

The difference between home and away performancefor any team now becomes

HGD; — AGD; Nuj + (N-1)hj —Nuj + H — hj

H +(N-2)h; asin(3.9) from Appendix 3.2.
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CHAPTER IV

COMPUTER FORECASTING OF AUSTRALIAN RULES FOOTBALL
FOR A DAILY NEWSPAPER

4.0. Abstract

An exponential smoothing technique operating on the margins of victory was used to
predict the results of Australian rules football matches for a Melbourne daily newspaper
from 1981-86 and again for a competitor in 1991-92. An initial 'quick and dirty’
program used only a factor for team ability and a common home ground advantage to
predict winning margins. Probabilities of winning were accumulated to predict a final
ladder, with a simulation to predict chances of teams finishing in any position. Changes
to the competition forced a more complicated approach, and the current version uses
several parameters which allow for ability, team/ground interaction, team interaction,
and a tendency for team ability to regress towards the mean between seasons. A power
method is used to place greater weight on the errors in closer matches, and errors across
the win-lose boundary. While simple methods were used originally, the Hooke and
Jeeves method was used in optimising the parameters of the current model. Both the
original model and the improved version performed at the level of expert tipsters.

Key words: sports, forecasting

4.1. Introduction

The major winter sport of the southern states of Australia is Australian rules football,
played between teams of 18 players on oval grounds (the same grounds used for cricket
during the summer). A match is played for four quarters, each of 25 minutes duration
plus about five minutes of extra time. Players can run with the rugby shaped ball, but it
is moved forward more quickly by kicking or punching it to a team-mate, and with no
off-side rule, the game is reasonably fast. The scoring region consists of four upright
posts. Kicking the ball between the two centre posts scores a goal worth 6 points, while
the region between either centre post and the corresponding outside post scores a
'behind’ worth 1 point. Draws are rare; a typical score might be 18 goals 12 behinds,
120 points, to 12 goals 15 behinds, 87 points, for a winning margin of 33 points. In
1981 the major competition in Australia was organised by the Victorian Football
League (VFL), in which 12 Melbourne based clubs played for 22 home and away
rounds with a final series of six matches between the top five teams.
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In common with most team sports, Australian rules football uses a ladder which
accumulates points for winning matches to rank the individual teams throughout the
year. Such methods, in which the total number of points never diminishes, have limited
use for prediction, as no account is taken of the ability of the opponent, nor of how
recently wins occurred. In adjustive methods, the level of performance above or below
that predicted is used to adjust the current rating up or down. Harville (1980), Stefani
(1977, 1980, 1987), and Stefani & Clarke (1992) give examples of adjustive least
square ratings methods applied to soccer, American football and Australian rules
football. In 1981, it was decided to predict VFL results using an adjustive scheme
similar to the Elo system used by the World Chess Federation, where a simple
exponential smoothing technique is used to adjust player ratings (Elo, 1978).

4.2. Initial program

About two months before the start of the 1981 football season, work began on
developing a computer prediction model for Australian rules football. Because of the
time constraints, a relatively simple method was used. There are many factors which
football followers believe affect performance - team ability, current form, the
opposition, team personnel, home ground advantage, weather etc. The initial program
used only a rating for each team, and a common home ground advantage. Thus, if team
i played at home to team j, the predicted winning margin P for the home team i was

P=uj+h-uy 4.1)

where u; is the rating of team i, and incorporates team ability and current form, while h
is a home ground advantage common to all teams. A negative value of P implies a win
of |P| for the away team. While the published draw always specified a nominal home
team (for the purposes, where necessary, of choice of rooms, colour of shorts etc) a few
teams actually shared grounds, and one match each week was played on the league's
own ground VFL park. For these matches there was no home ground advantage and h
was set to zero. To update the ratings a simple exponential smoothing algorithm was
used. If the actual margin of the match was w points the prediction is in error by

e=w-P 4.2)

points and u; is then increased by ae and uj decreased by ag, where « is the smoothing
constant. Thus, if the margin for the home team is greater than predicted, its rating
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would be increased, and that of its opponent decreased, and vice versa. In practice it
was decided arbitrarily to limit this change to a maximum value - if the magnitude of
the error was greater than 75 points it was reset to 75.

In many so called computer ratings, the computer may not be necessary to calculate the
ratings once the form of the algorithm is decided. The above algorithm is so simple it
can be performed on a hand calculator or even mentally. However the computer is
necessary in finding the values of the parameters that optimise performance. In this
case, we need some starting values for the ratings, and values for the smoothing
constant and the common home ground advantage. With little time to prepare the
program, some short cuts were necessary. As starting values for the ratings the
premiership points (four times the number of wins) gained by each team the previous
year were used. A short program was written in BASIC to run through the 1980 results
and calculate the number of correct winning predictions, using values of the smoothing
constant, o, of 0.0 to 0.5 in steps of 0.05, and home ground advantage, h, of 0 to 10
points in steps of 1. While the integral values of the objective function allowed for
some judgement in the final selection, the optimal values were a home ground
advantage of 7 points with an a value of 0.15.

With the parameter values decided, a cumulative relative frequency histogram of the
absolute prediction errors was charted which allowed conversion of a predicted point
margin into a probability of winning. For example, if 24% of predictions are in error by
more than 40 points, then a team predicted to win by a 40 point margin has a 12%
chance of winning by more than 80 points and a 12% chance of not winning. Thus, a
predicted winning margin of 40 points translates to an 88% chance of winning. In the
resultant computer program a five section straight line approximation joining the points
(0, 0), (5, 0.58), (15, 0.68), (40, 0.88), (65, 0.95), (L], 0.95) was used to convert margins
to winning probabilities. As the predicted probability of a team winning a match can
also be interpreted as the expected number of matches that team will win on that day, a
simple accumulation of actual wins in past matches and expected wins in future
matches was used to produce a predicted final ladder. Because the VFL use the
‘percentage’ (100 times the ratio of the total points each team scores to the total points
scored against it) to separate ties on the ladder, a separate smoothing of the points each
team scored and had scored against it each week was used in conjunction with the
margin prediction to produce a predicted score for each team in a match. These were
not printed out but accumulated to estimate the percentage at the end of the season.
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Until 1991, when a sixth team was introduced, the top five teams at the end of the
season played off in a final series. Because of the structure of this series, there is a big
advantage in finishing top at the end of the home and away matches. In turn, second
and third have a big advantage over fourth and fifth. To estimate the chances of teams
finishing the home and away series in any position a simulation was introduced. For
any unplayed matches, a uniform random number was generated. This was used in the
inverse of the margin distribution function to generate an actual winning margin for the
match. As before, the wins could now be accumulated to obtain the final ladder. Thus,
in the ladder prediction we accumulated the probability of winning each match, whereas
in the simulation we replaced this with a 0 or 1 depending on a random number. This
was repeated for 1000 years to estimate the probabilities of teams finishing in any
ladder position. Once the final series began, a separate program used the ratings from
the prediction program to calculate win probabilities for all possible matches in the
final series, which it then used to evaluate the probabilities of a range of final series
outcomes.

All the analysis was performed on a FACOM mainframe and the final program
consisted of about 600 lines of BASIC. Upon completion, the results of the program
were offered to a Melbourne daily newspaper under a consulting agreement, and so
began a six-year association. The computer's predicted winners and margins were
published each week, and the final ladder predictions a couple of times each season.

Surprisingly, in view of the quick and dirty development of the program, it performed
quite well in its first year. Clarke (1981) showed that with 99 correct winners from 132
matches its 75% correct placed it equal 22nd out of 56 tipsters. It averaged 26 points in
error, predicted 71% of matches within 36 points, and for each round after the 12th
round it predicted at least 10 out of 12 teams to finish within one place of their actual
finishing position.

Some of the experiences of this period are discussed in Clarke (1988c). Minor
adjustments to the printout were necessary to allow for the readership's level of
expertise. These ranged from referring to probabilities as percentage chances to
actually suppressing information from the printout. The original printout showed for
each team the expected result (win or loss) for each of the remaining matches, in
addition to the expected number of wins for the remainder of the season. This often
resulted in seemingly contradictory material. For example, a team's predicted results
would be shown as WWWW if it was rated a 0.75 chance to win each of its remaining
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four matches, whereas the final ladder prediction would show it was expected to win
only three (4x0.75) of its last four matches. The immediacy and nature of the forecasts
also meant the predictions were often judged harshly. The margin prediction is
technically a line which divides the possible margins into two equally likely regions.
Thus, a margin prediction of 40 points implies the team is just as likely to win by more
than 40 as it is to win by less than 40 or lose. The general public consider it as the
actual margin the computer is predicting will occur, so when the result is a win by 80
points they consider the computer has performed badly. If the above team loses, the
computer is considered to be completely wrong, whereas in fact it would have
estimated the team's chance of losing as 12%. Unfortunately, in six years the predicted
probabilities of winning were never published, whereas the margins, which are rarely
correct, were always published. At the end of the season, the final judgement by the
public of the computer's performance would be the number of correct winners for the
season. However, predicting 132 matches with roughly a 75% success rate results in a
high variability in the number of correct winners. Success by the public's usual
measure owed as much to good fortune as to good forecasting. However, the program
continued to perform so well that in spite of the simple nature of the model, it was five
years before other factors forced a rethink of its development.

4.3. Second program

In 1986 the computer program was reorganised. The VFL over the previous few years
had been modernising their draw to maximise crowds. Previously, all matches were
played on a Saturday. With the introduction of a team from outside Victoria, the league
began a move towards Sunday matches, Friday night matches, splitting rounds over
long weekends etc. A round-by-round program was no longer appropriate as it often
meant providing predictions half way through a round that were based on out of date
information. In addition, the league was making greater use of its large capacity
grounds by ground sharing schemes and even shifting popular matches after the draw
was published. Not only was an individual home ground advantage required, but also a
measure of how teams performed on grounds other than their home ground became
more important.

It was decided to change the program from a round-by-round prediction to match-by-
match. At the same time the prediction equation and updating equation were changed
and re-optimised to take into account the above and other factors.
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The prediction equation used, if team i played team j at ground k, became
P = uj+ hjk + ljj + uj - hjk 4.3)

where hjk is a ground measure of how team i performs at ground k, and Ijj is a measure
of interaction between team i and team j. lj; was introduced as it was a widely held
view of supporters that some teams always performed well (or badly) against some
other teams irrespective of their relative ladder positions.

The rating, ground and interaction measures were updated using the same method as
before, but with different smoothing constants for each measure. However, a radically
different measure of the 'error' was chosen.

In the previous formulation, a prediction of a 49 point win that resulted in an 81 point
win was in error by 32 points. The same error resulted from a 4 point prediction and a
36 point win, or a 16 point predicted loss with a 16 point win. However, the
significance of the error increases with each case. In the first example, a match
predicted as one sided was just that, in the second a predicted close win became a
comfortable one, and in the last a predicted loss was actually a win. A measure of the
error that reflected the increasing seriousness was needed. It was decided to use a
power function to reduce the relative errors of matches with large actual or predicted
margins, and to increase the weighting across the 'win-loss' boundary of zero points.
For example, the use of a square root power in the above would give errors of 9-7 = 2,
6-2 = 4, and 4-(-4) = 8 respectively. Thus, we have

e = Sgn(w).Jwi’* - Sgn(P).|PI" (4.4)
where X is the chosen power.

One other factor needed to be taken into account. At the beginning of each year,
starting values for the ratings were needed. This always caused some stress, as the
chosen values virtually selected the margins in the opening round, and the process
needed automating. The practice had arisen of simply using the ratings at the end of the
previous year, but shrinking them relative to the mean to allow for a tendency to regress
towards the mean. Thus, because of team changes, injuries and a host of other random
effects we expect, on average, the best teams to get weaker, and the weak teams to get
better. Since the ratings averaged about 70, at the beginning of each year the following
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equation would be applied.
Rating at start of year = 70+k(rating at end of previous year - 70) (4.5)

The shrinkage factor, k, was around 0.8, but as it was chosen on subjective grounds it
varied slightly from year to year. An optimal value was needed.

With the form of the method settled, but with six unknown parameters (three smoothing
constants, the power X, the start of year shrinkage factor, and one other not detailed
here) there was six years of past data on which to optimise the parameters. By this time
the program had been transferred to a PC and took about five minutes to run through six
years' data for one set of parameters and evaluate the total sum of the absolute errors.
With a possible grid of over 106 sets of parameter values, special hill climbing
techniques were necessary to find the optimum values and the Hooke and Jeeves'
method outlined in Walsh (1975) p 76 was used. Running overnight on the PC, this
gave optimal values to any desired accuracy. The average absolute error in margin
prediction was used as the objective function rather than the number of winners, as it
was more sensitive to small changes in the parameter values. It was assumed that good
predictions of winners would follow from accurate margin predictions. In addition,
after trying several alternatives, the government had finally settled on a legal gambling
system for football that involved selecting the correct winning margin band, so accurate
margins had become relatively more important to the football public.

Several parameters came out very close to the values that had previously been chosen.
The power parameter was 0.75, the main smoothing value was 0.2, with a much smaller
value for the ground factor. The interaction parameter of zero suggested that supporters
were misled in their belief in an interaction effect, and the end of season shrinkage
came out near the 0.8 that had previously been used. The suggested values were
implemented for the season 1986. It was considered not worthwhile to spend time in
developing better probability and end-of-season ladder predictions as these were rarely
published. The simulation was discarded as the results had never been published and it
slowed the running on the PC considerably.

Although the program again tipped more winners than the paper's major football writer,
at the beginning of 1987 the Sports Editor decided to dispense with the computer tip
and concentrate on human tipsters. This suggests that the client probably judged the
success of the project on different criteria from the public or the practitioner. The
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newspaper's interest in the publicity the computer tips created may overshadow the
need for accurate forecasts. In fact the major football writer of the paper was known for
his sometimes outlandish predictions, which created huge public interest. Although it is
possible in an exponential smoothing forecast to select parameters that give
conservative or controversial forecasts, this issue was never discussed with the client
and the parameters were always chosen to optimise accuracy.

The program was maintained in the vain hope of renewal in 1988 and 1989. Then, at
the beginning of 1991, one week before the start of the season, a request to supply tips
to Melbourne's other daily paper was made. By this time, the VFL in going national,
had become the Australian Football League (AFL) and the competition had increased to
15 teams including four from interstate. The program was dusted off, minor alterations
made to allow for 15 teams, 1990 data entered and run, and the 1991 draw entered.
Although there was no time to perform any re-optimising, the league had introduced a
pre-season knockout night series which could be used to test the program and allow the
ratings to adjust to a suitable level. The program predicted 12 out of 14 of these
correctly, so the season was approached with some confidence.

In fact the computer had an excellent year, beating all the paper's ten human tipsters
with an average 70.3% correct. For the first time a comparison of the program's margin
tipping accuracy with humans was possible, as the now rival paper carried margin tips
for some nine celebrities and 12 experts. The average margin of error for the celebrities
was 37.3 points, and for the experts 36.7 points, and only one of the celebrities and one
of the experts had a lower average margin of error than the computer's 35.4 points.
Clarke (1992a) has a detailed comparison of the computer's and the human tipsters'
performances and also explores reasons why the computer performed better than
humans. Interestingly, tipsters performed worst for the team they knew most about -
virtually all tipsters selected the teams they supported more often than the team won. In
tipping margins, most tipsters avoided margins close to zero, producing a distinctly bi-
modal distribution of forecasts, in contrast to the normal distribution of actual results.

Although the computer performed better than human tipsters in 1991, one might ask
why the new ‘improved version' performed worse in terms of percentage of correct
winners and average margin of error in 1991 than the original version in 1981? The
answer lies in the changing face of league football - one facet due to off-the-ground
action by administrators, another due to changing tactics on the ground. To increase
crowds, the AFL have been attempting to make the competition more even. In
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particular, salary caps and drafting of players were introduced to try and reduce the gap
between the weak and strong clubs. Their success can be judged by the relative
performance of the bottom sides in 1981 and 1991. In 1981, the bottom four sides, in
the main, only won matches against each other and, in fact the bottom two sides won
one and two matches out of 22. This made it easy to select matches in which these
teams participated, and in fact the computer selected the bottom four teams correctly,
21, 20, 19 and 19 times out of 22, or an average of 90%. Because the top teams
consistently beat the lower teams a team winning 13 matches out of 22 only finished
seventh out of 12 teams. By contrast, in 1991, the bottom two sides had three and four
wins respectively, including victories over the top and third team. The computer only
managed to get the bottom four teams correct 19, 17, 12, and 15 times, an average of
72%. The evenness of the competition was illustrated by the fact that thirteen wins out
of 22 matches was now enough to finish fifth out of 15 teams. Because of the evenness
of the competition, picking winners was much more difficult in 1991 than a decade
earlier.

Paradoxically, this evenness over the season between teams was accompanied by a one-
sidedness on the field in individual matches. Over the decade, the way football was
played had steadily changed. Play had become much faster, and teams had become
more attacking and less defensive. This had resulted in larger scores and larger
margins. In 1981, the median winning margin was 31 points with an upper quartile of
52. By 1991 these had risen to 36 and 58. At the upper end, in 1981 there were 11
matches over the 75 point margin, while in 1991 there were 23 in this category (of
these, 18 involved an interstate team, an effect not even present in 1981). Margins were
thus becoming more difficult to predict accurately. The Australian rules football tipster
is faced with a situation similar to Olympic athletes - as distances thrown or jumped
increase, they need to find better methods and improve performance just to keep the
same relative position. Here, despite the new, more difficult circumstances, the
revisions to the forecasting method have allowed the computer to perform better
relative to human tipsters than before.

However, even if the new formulation had showed no improvement over the old for
questions they both answer, it is still worthwhile as it allows the computer to answer a
new class of questions. Home ground advantage is often discussed among football
followers. To maximise crowds, the league sometimes shifts popular matches to large
capacity grounds. This often causes uproar from the fans, due to a perceived loss of a
home ground advantage. Stefani & Clarke (1991) give details of individual home
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ground advantage over a period of a decade. The methods used there compare a team'’s
home performance with their away performance against the same team. In the AFL,
where home and away matches are not balanced, this results in excluding many
matches from the analysis. There is also no attempt to measure a team's performance
on grounds other than its home ground. However, as a by-product of the computer tips,
the new formulation gives the hijk, a measure of a team's performance on all grounds.
These team/ground effects are of interest to supporters, and can be used to indicate to
administrators possible advantages and disadvantages in shifting matches, or in
scheduling finals matches on certain grounds.

4.4. Possible applications

One disappointment in the project has been that the final ladder predictions have
received little publication, and the results of the computer simulation and finals
program were never reported. If the computer can match or out-perform humans in the
relatively straight-forward task of selecting winners, it should perform even better when
complications such as differing match schedules come into play. However, there is
little chance of testing this hypothesis as the publication of even the human predictions
of these events is rare. It seems that such predictions when made are only to promote
discussion or controversy, rather than any real attempt to forecast the outcomes.
However, with the introduction of betting on ladder positions such a model could be
useful in assisting punters or bookmakers. The drawing power of games depends on the
closeness of the ladder position of the teams. Probability estimates of the likely ladder
positions of teams on the day of the matches could be used as input into computer or
human estimates of crowds to assist in the forward planning of match requirements.

Another interesting possibility is the use of the model to obtain more powerful tests of
statistical hypothesis. For example, in 1991 there was an odd number of teams, which
required a bye to be introduced for the first time. It was noticed that teams often lost
the week after the bye - and the journalists quickly dubbed it the killer bye. In fact
serious consideration was given to introducing a 'bye effect' into the prediction
equation. However the teams that lost may have been playing better teams the week
after the bye. For example, Russel (1980) discusses the preparation of a draw to
minimise carry-over effects, which arose from a football draw in which one team
played another team's previous opponent 18 out of 21 weeks. However, we could test
for a bye carry-over effect by comparing how teams performed following the bye with
the computer's prediction. Because the prediction takes into account team strength,
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ground advantage etc, a more sensitive test should result. Similar methods could be
used to quantify the effect of key players, weather, night performance etc. Even if a
formal test could not be derived, a simple non parametric argument could convince a
supporter or administrator of the existence or absence of such effects.

4.5. Conclusions

In terms of a consultancy project the study has proved quite successful. Because the
computer is predicting events only a few hours away, its performance is often judged
harshly by supporters. An objective analysis has shown the computer's performance in
predicting the winner and margins is at least as good as the human expert. However
this forecasting project is rather unusual in that the success of the project is probably
judged by the client by the publicity generated rather than the accuracy of the forecasts.

Australian rules football shares with other football codes the high degree of passion and
subjectivity supporters bring to the game. Most commentators have previous club
affiliations, and it is difficult to obtain objective opinions on football matters. Over
several years, the relatively simple computer algorithm described has provided winners
and margins with at least the accuracy of human experts. In 1991, in addition to their
major writer, the client newspaper had seven extra human tipsters and one computer tip.
However, all the experts share much the same information. Morrison & Schmittlein
(1991), using the notion of equivalent number of independent experts developed by
Clemen & Winkler (1985) show that ten experts whose forecasts show a correlation of
0.6 are equivalent to only 1.56 independent forecasts. The computer uses only the
previous match results. It does not read the papers all the tipsters read, does not hear
the rumours all the experts hear, does not peruse the team selections as all the experts
do. As such, it is likely to be more independent than the experts, and the single
computer tip may provide more extra information to followers than the many additional
human experts. Computer forecasts of sporting events provide an interesting, objective
and useful alternative to the human expert.
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4.6. Commentary. Current state of play

Since publication of the above paper, the computer predictions have gone from strength
to strength. Publication continued in The Age up to 1995. Midway through that season
Channel 7 in Adelaide began broadcasting the tips each week on their current affairs
program Today/Tonight, This has continued through 1997. In addition the Adelaide
advertiser published the tips in 1996 as a celebrity tip in conjunction with their tipping
competition.

However the major change has occurred in Melbourne. In 1996, because of the success
in The Age the previous year, the tips were again invited back to the Sun. Instead of
the bare tips being published, they were accompanied by an explanatory write up
highlighting particular aspects. Also, for the first time the estimates of HA and
probability of winning were published each week, as well as regular final ladder and
simulation predictions. The computer's predictions are used to contribute to the debate
on other football topics, such as movement of grounds and the make up of finals. This
demonstrates an increasing awareness in the general public of the importance of such
effects, and a desire for more quantitative information. In 1997 the tips moved to The
Australian Financial Review (a national paper), and the internet. The computer has
proved successful, both in terms of correct predictions and publicity generated. It has
made the transition from an interesting oddity to being seen as providing objective and
accurate 'value added' information.



CHAPTER YV

COMPUTER AND HUMAN TIPPING OF AFL FOOTBALL -
A COMPARISON OF 1991 RESULTS

5.0. Abstract

For over a decade the author has been involved in computer tipping of VFL and now
AFL football. Evidence suggests that the computer, although ignoring much
information available to human tipsters, is at least as accurate. This paper explores the
difficulty of predicting, analyses the accuracy of the computer in 1991, compares the
relative accuracy of human and computer tipping in 1991, and investigates some
reasons for limiting human performance.

5.1. Introduction

In 1981 The Sun News Pictorial began publishing the results of a computer tipping
program written by the author. This continued until 1986, when The Sun decided to
concentrate on human tipsters. Some details of this period are contained in Clarke
(1981, 1988c). In 1991 The Age published the now updated computer program tips for
winners and margins along with the predictions of winners by several experts. The Sun
meanwhile published both the predicted winners and margins for 12 experts and 12
celebrities. This allows an opportunity to compare the accuracy of the computer with
those of so called experts, and the general public.

Details of computer methods for tipping football are contained in Clarke (1988a),
Harville (1980), Stefani (1977, 1980, 1987), Stefani & Clarke (1992). The program
discussed here uses an exponential smoothing algorithm, to produce team ratings and
team/ground interaction factors for each team. Of relevance to the present paper is that
the algorithm uses only the names of the teams playing, the ground the match is played
on, and the previous final results of the matches. It ignores all other data, many of
which the average and expert follower believe is important. The computer knows
nothing of such things as team personnel (absence of key players), weather, time of day
(e.g. night matches), previous team played (e.g. bye), time since last match, etc. One
would therefore expect the humans to out-perform the computer.

79



80

5.2. Distribution of margins

Before looking at how the computer has performed, it is worth looking at how
difficult the task has become. Figure 5.1 shows the home ground margins for home
and away matches in 1991. The distribution of scores is reasonably symmetric. The
mean home ground advantage for the (nominal) home teams is 8.3 points. Note the
large spread of scores - standard deviation of over 50 points. Stefani & Clarke
(1991) show that prediction of winners in football has become more difficult in the
latter half of the eighties. In terms of margins this is even more apparent. A
comparison of 1980 and 1991 absolute margins is shown in Figure 5.2. Clearly the
proportion of large winning margins has increased. Most percentiles have increased
by 10 to 20%, with both the mean and median margins increasing by over seven
points.

— I —
I I I I I
-150 -100 -50 0 50 100 150
Quantiles
maximum  100.0% 131.00
90.0% 72.40
quartile 75.0% 44.00
median 50.0% 7.00
quartile 25.0% -27.50
10.0% -52.00
minimum 0.0% -157.00
Moments
Mean 8.3697
Std Dev 51.6123

Figure 5.1. Distribution of home team winning margins in 1991
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1980 1991
<> | |
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K>} - I
I E—
1 1 T T
0 20 40 60 80 100 120 140 160 T .
Quantiles
maximum 100.0% 152.00 maximum 100.0% 157.00
97.5% 116.70 97.5% 125.55
90.0% 77.00 90.0% 84.80
quartile 75.0% 49.75 quartile 75.0% 58.00
median 50.0% 29.00 median 50.0% 36.00
quartile 25.0% 11.00 quartile 25.0% 15.00
10.0% 5.00 10.0% 6.00
minimum 0.0% 0.00 minimum 0.0% 0.00
Moments
Mean 34.2500 Mean 41.2667
Std Dev 29.4474 Std Dev 32.0021
N 132.0000 N 165.0000

Figure 5.2. Comparison of absolute margins in 1980 and 1991

Selecting matches with the greatest margins gives a possible reason for the change.

The matches with the greatest winning margins (over 75 points) are shown in Table

5.1. Eighteen out of 21 of these matches involve an interstate team - an effect entirely
absent when the author started tipping. (In addition, the round 21 match was actually
played in Tasmania).
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TABLE 5.1. Matches resulting in a margin greater than 75 points

Home Away

Round team team Result
1 Adel Haw 86
1 WC Melb 79
2 Haw Syd 91
2 Fitz Melb -131
4 Bris Geel -102
6 Fitz Haw -157
7 Haw WC -82
7 St.K Adel 131
8 Fitz Syd -77
9 wWC Fitz 99
11 Geel Adel 84
13 WC Foot 118
13 Haw Bris 87
14 Coll Syd 99
15 Coll Adel 123
15 Syd Melb -83
17 WC Coll 81
19 Geel Bris 101
20 Bris Coll -101
21 Haw Fitz 126
23 Carl Haw -96
23 St.K Bris 120
24 Ess Haw -80

5.3. Prediction accuracy
5.3.1. Winners
In 1991 the computer correctly selected 116 winners out of 165 home and away

matches, and five out of seven finals. At just over 70% correct this is slightly better
than the decade average for a computer tip reported in Stefani & Clarke (1991).
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5.3.2. Margins

Figure 5.3 shows the relationship between the predicted and the actual margin. The fit
accounts for about 25% of the variation. Given that the prediction takes account of
team ability, current form and ground advantage there is still a large degree of
unexplained or random variation. Computer predictions, because they are predicting
the expected score, will never have the variation shown by the actual values. Figure 5.4
demonstrates this, but also gives an idea of the spread of results for predictions in given
ranges.
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Predicted margin

Summary of Linear Fit

Rsquare .2589047
Root Mean Square Error 44.59554
Mean of Response 8.357575
Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t|
Intercept 2.1448566 3.56804 0.60 0.5486
Predicted margin .89372157 .118433 7.55 0.0000

Figure 5.3. Actual margin versus predicted margin

We now look at the distribution of errors, defined as the difference between forecast and
actual home ground margin. Figure 5.5 shows the distribution of errors. Note that the mean
error is still slightly negative although not significantly so, and the median error is -5.00.
This implies that the HA is possibly not large enough - the computer may still be adjusting to
interstate teams and their large HA. The table shows the median absolute error is 30, with a
mean of 36. Thus half the time the computer is less than five goals out.
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Figure 5.4. Distribution of actual margins for ranges of predicted margins
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median 50.0% -5.00 median 50.0% 30.00
quartile 25.0% -30.50 quartile 25.0% 14.00
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minimum 0.0% -124.00 minimum 0.0% 0.00
Moments
Mean -1.4061 Mean 35.4424
Std Dev 44,5691 Std Dev 26.9177
N 165.0000 N 165.0000

Figure 5.5. Distribution of errors

5.3.3. Final ladder predictions

Although not usually published, the computer also predicts in each round the final
ladder at the end of the home and away season. Given the intricacies of the draw, this
is one area where the computer should have advantages over human tipsters.
Unfortunately, expert predictions of final ladder position are usually only published at
the beginning of the season. Figure 5.6 shows the final ladder predictions before each
of the 24 rounds. The teams are in order of actual finishing position. The computer
clearly has more trouble with the middle of the ladder rather than the very top and
bottom. Defining a prediction to be close if within one of the true final position, the
final row shows the steady improvement through the season. After 4 rounds over half
the teams are predicted closely, and by round 17 about 12 out of 15 teams are closely

predicted.
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Because ladder position can alter drastically due to just one game, it is also worth
looking at predicted final premiership points. Again, if we look at a close prediction as
within four premiership points (one game), the final row shows that from round 16
onwards the computer has closely predicted the final ladder position of almost all the

teams.
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5.4. Comparison with human tipsters

Table 5.2 shows the number of correct winners and percentage correct for all the
tipsters in The Age and The Sun. In some cases (such as leader of the Opposition)
selections from different people have been combined. Draws are counted as half
correct. For the home and away matches the computer correctly selected 116 winners
out of 165 matches, a success rate of 70.3%. Of The Age tipsters, the nearest to this
was Ron Carter with 111 or 67.3%. Only two of The Sun experts, and one of the
celebrities beat the computer, with another two celebrities choosing the same number of
winners. In interpreting a table such as this, it should be borne in mind that in selecting
165 matches, each with a probability of success of 0.7, the number of correct choices
will have a standard deviation of about 6. As the computer gives its own estimate py of

the probability of success for the prediction for match k, the mean and variance of the
number correct over the season is Y px = 121.7 and ) pk(1-px) . = 29.35, giving a

standard deviation of 5.4. Thus by the computer's own estimates it had an unlucky
year. (In fact the high value of »py is probably an indication that the probability
estimates need updating. With the general increase in margins as discussed earlier, a
predicted win of 20 points (say) implies a lesser chance of winning than it did 10 years
ago. Thus the computer is probably over estimating the chance of selected teams
winning)!. | suspect that differences between commentators in number of winners less
than about five are probably insignificant. Nevertheless, the general public don't see it
this way, and it is better to be on top of the table than on the bottom.

Table 5.2 also shows the total and average absolute errors of the margin predictions for
The Sun tipsters. Only one expert and one celebrity performed better than the
computer. (Although perhaps the computer is more intelligent than we give it credit
for, and thought it politic to come in just behind the Prime Minister).

1 Commentary: The algorithm has now been updated. Figure 5.5 shows the prediction errors are
approximately normal. The computer keeps a record of the standard deviation of the prediction errors,
which it then uses to estimate the chance of an incorrect result prediction. Dowe et al (1996) give details
of a probabilistic tipping competition, where the probability of winning is selected, and a Gaussian
competition, where the mean and variance of the signed margin is selected. The evaluation system they

use could provide an alternative measure of the comparative accuracy of the computer's estimates.
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Number | Number Percentage Total Average

Tipster tipped correct correct deviation | deviation
Computer 165 116 70.3 5848 35.4
Age experts
Ron Carter 165 111 67.3
Greg Baum 110 74 67.3
Nick Johnson 76 51 67.1
Gary Linnel 74 49.5 66.9
Martin Blake 153 102 66.7
Steve Linnel 102 67.5 66.2
Len Johnson 156 103 66.0
Penny Crisp 95 62.5 65.8
Patrick Smithers 55 36 65.5
Peter Schwab 7 35 50.0
Sun Experts
Geoff Poulter 158 115 728 * 5476 347 *
Ron Reed 158 109 69.0 5702 36.1
Ron Barassi 165 117 709 * 5898 35.8
Bruce Matthews 158 109 69.0 5611 35.5
Niall/Pierce 165 113 68.5 6333 38.4
Don Scott 165 111 67.3 6040 36.6
Tony De Bolfo 165 110 66.7 6038 36.6
Daryl Timms 165 109 66.1 6135 37.2
Crackers Keenan 165 107 64.9 5941 36.0
Michael Stevens 165 107 64.9 6170 37.4
Lou Richards 165 103 62.4 6514 39.5
Eva/Atkins/West. 158 101 61.2 5750 36.4
Sun Celebrities
Joan Kirner 165 118 715 * 5909 35.8
Bob Hawke 165 116 70.3 5839 354 *
Wynne/Meldrum 165 116 70.3 5943 36.0
David Johnston 165 113 68.5 6111 37.0
John Hewson 165 112 67.9 6019 36.5
Daryl Somers 165 111 67.3 6001 36.4
Mary Delahunty 165 110 66.7 6223 37.3
Steve Vizard 165 104 63.0 6455 39.1
Brown/Kennett 165 98 59.4 6863 41.6

Better performance than the computer
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5.4.1. Reasons for computer supremacy

Figure 5.4 shows that the distribution of the computer margin prediction is roughly the
same shape as that of the actual margins, with the same mean but a lesser variance.
This is not true of many human tipsters, who often have a distinctly bi-modal
distribution of predicted margins. There appears to be an aversion to predicting close
margins. In addition, some tipsters tend to choose multiples of 10 or 6 points for the
margins. One reason the computer may perform better than experts is that it has no
loyalties to particular teams. While no data is available on the teams followed by many
of the experts, there is evidence to suggest that tipsters are certainly influenced (to their
detriment) by the teams they follow. Figure 5.7 shows a graph of the number of times
Lou Richards selected each team and the number of wins for each team. Clearly Lou
favours Collingwood, the team he barracks for. This graph is typical of all the
celebrities. With the exception of Bob Hawke, all celebrities selected the team they
followed more often than they won, the excess ranging from 5 to 9 wins.

Lou Richards 1991 predictions

—— predicted
—— actual

number of wins

O 1 1 ) ) ) ) ) ) ) ) ) ) ) ) )

WCHa GESK Me Es CcNMAd Fo CaSy Ri Fi Br
team

Figure 5.7. Lou Richards' predicted and actual number of wins for each team
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It is well known that supporters look for any reason to convince themselves that their
team will win next week. Nevertheless it is interesting that football followers predict
most poorly the performance of the team they know most about. One reason humans
may choose poorly is that they know too much information, and they overrate the
importance of much of it. The return of a player from absence due to injury, good
training form, a perceived after effect of a bye, etc might also be given too much weight
by experts. However all the experts share much the same information. Morrison &
Schmittlein (1991), show that 10 experts whose forecasts show a correlation of 0.6 are
equivalent to only 1.56 independent forecasts. It would be interesting to look at the
correlations between the margin tips of experts, to see if the tips of those with shared
information (such as expert tipsters from The Sun), are more closely correlated within
groups than between groups.

5.5. Conclusion

An analysis has shown the computer's performance in predicting the winner and
margins in 1991 was better than the average expert or football follower. The computer
uses only the previous match results and is not influenced by publicity surrounding
particular events, nor club loyalties. As such it is likely to be more independent than
the experts, and the single computer tip may provide more extra information to
followers than the many additional human experts. Computer forecasts of sporting
events provide an interesting, objective and useful alternative to the human expert.

Acknowledgments: Some of the data used in this report was collected and computerised
by my students during an undergraduate project 'Football Tipping. My thanks to
Cameron Howell, Brad Patterson, Gabriele Sorrentino, Andrew Moar, David Thomas
and Graeme Wilson.

5.6. Commentary

While no formal studies have been undertaken since 1991, the computer has generally
remained in the upper half of the expert tipsters range. In 1995 the computer was
second with 127 winners out of all the expert tipsters in The Sun and The Age, and then
selected eight out of nine finals correctly. In 1996 it was again in the top few tipsters
with 126 winners, and selected all nine finals correctly. 1997 proved a difficult year for
all tipsters, with the computers 108 winners beating about a quarter of the expert
tipsters.



CHAPTER VI

PREDICTIONS AND HOME ADVANTAGE FOR
AUSTRALIAN RULES FOOTBALL

6.0. Abstract

In a previouspaper, it was demonstrated that distinctly different prediction methodswhen
applied to 2435 American college and professional football games resultedin essentially
the same fraction of correct selections of the winning team and essentially the same
average absolute error for predicting the margin of victory. These results are now
extended to 1446 Australian rules football games. Two distinctly different prediction
methods are applied. A least-squares method provides a set of ratings. The predicted
margin of victory in the next contest is less than the rating difference, corrected for home
ground advantage, while a0.75 power method shrinks the ratings compared with those
found by the least-squares technique and then performs predictions based on the rating
difference and home-ground advantage. Both methods operate upon past margins of
victory corrected for home advantageto obtain theratings. It is shown that both methods
perform similarly, based on the fraction of correct selectionsof the winning team and the
average absolute error for predicting the margin of victory. That is, differing predictors
using the same information tend to convergeto alimiting level of accuracy. The least
squares approach also provides estimates of the accuracy of each prediction. The home
advantageis evaluated for all teams collectively and also for individual teams. The data
permit comparisonswith other sportsin other countries. The home team appearsto have
an advantage (the visiting team has a disadvantage) due to threefactors: the visiting team
suffersfrom travel fatigue; crowd intimidation by the home team fans; lack of familiarity
with the playing conditions.

6.1. Introduction

A variety of schemes exist to rank athletes or teams so as to predict the outcome of a
subsequent competition and for seeding competitorsin atournament. These schemesare
either accumulativeor adaptive. An accumulative scheme resultsin the accumulation of
points and rankings based on those points. The point total never diminishesand may be
subject to somelimiting process. Most soccer tablesof standingsare ranked with two or
three points accruing for awin and one point for each draw. The World Cup of Skiing
uses an accumul ative system with provisionsfor limiting the total number of points.
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An adaptive scheme causes ratingsto rise or fall as performanceis above or below some
predictedlevel. For example, the World Chess Federation uses the Elo systemin which
the rating difference between each competitor and the average opponent provides an
estimatefor the number of victoriesfor each competitor. The competitor'srating changes
asafunction of the actual number of victoriescompared with that target.

Adaptive schemes areal so used to rate teamsin avariety of sports and then to predict the
outcome of the next competition. A few schemes use relatively large quantities of
offensive and defensive statistics, although most schemes operate only on the margin of
victory adjusted for home advantage (HA). The latter approach is especially efficient
where alarge number of teams are in competition or where alarge number of games are
. played. Stefani (1977, 1980, 1987) applied a least-squares (LS) rating scheme to
American college football, American professional football and American college
basketball. The method selected the correct winning team 70% of the time when applied
to 10000 games over a 10 year period and tends to provide ratings whose differences
consistently exceed the actual margin of victory of the next set of opponents. He shrank
the rating differencesto provide unbiased predictions.

In addition to the L S approach, Stefani (1987) applied three other schemes: weighted LS
with a shrinking factor, James-Stein (1981) (which automatically shrinks predictions
compared with LS) and another method (Harville's(1980)) that preshrinksratings. The
four methods were applied to acommon set of 2435 American college and professional
footbal| gameswith virtually the same accuracy for selection of the correct winning team
and nearly the same average absolute error for selection of the margin of victory. The
conclusion was that the information content of the margin of victory adjusted for HA
appeared to limit the accuracy of all four estimators with respect to the prediction of
American collegeand professiona football games.

In order to extend the conclusion, a survey of other sports was performed and it was
determined that a database was available for at least 10 seasons of Australian rules
football, including 1446 games. It is therefore the intention of this paper to apply two
different schemes to Australian rules football to determine whether the schemes aso
perform similarly while operating only on the margin of victory corrected for HA. One
scheme (Stefani's) is the LS method that shrinks predictions compared with the rating
difference, while the second method by Clarke (1981, 1988c) uses the 0.75 power of
error to pre-shrink ratingscompared with the LS so that each prediction depends on the
actual rating difference. A by-product of both schemes is HA data that permit



comparisons of Australian rulesfootball with other sports.
6.2. Australian rules football

Australian rulesfootball isa high scoring continuous-action game. There are 18 players
on each side. Thedimensions of the playing surface vary from ground to ground, but the
shapeis generally oval and longer than for soccer or rugby. There are no offsiderules;
hence, each player can quickly advance the ball down thefield by carrying it himself or
by kicking or punching the ball forward to ateam mate. If the ball is kicked between the
centre goalposts asix point ‘goal’ is scored and action returnsto the centre of the ground.
If the ball is kicked between a centre goalpost and one of the two outer goalposts, a one
point 'behind' is scored and action resumes from the goal area. A game consists of four
25 minute quarters, during which over 200 points are commonly scored.

Major professional activity in Australia began in 1896 with the formation of the Victorian
Football League (VFL), consisting originaly of teams in the greater Melbourne area.
Because one team moved to Sydney in 1982, and Brisbane and West Coast joined the
VFL in 1987, the VFL has been renamed the Australian Football League.

The season is divided into a 22 game home-away schedule followed by afive team, six
game ladder play-off, culminating in the grand final game. There are currently 14 teams
in the league. The 22 game home-away schedule does not result in an equal number of
home away pairs because of the number of teams, ground sharing and the use of a neutral
league ground.

6.3. Modelling game results

In the following, the index i represents some reference team, m represents the week of
the season and j(m) represents the index of the opponent for team i during week m. The
independent variables are i and msince j is dependent on the schedule and is completely
determined by i and m. Primary interest focuses on data for the winning margin, the
number of points scored by a team minus those scored by the opponent and on the HA.
A model for the winning marginis

e m — m
Wistmy = Rijmy T W — Wity T €iimy (6.1)

where w, . represents the winning margin for team i against opponent j in week m,

ij(m)



h

ij(m)
isthe similar rating for the opponent and e

isthe HA for teami, " isthe rating for team i using data including week m, u7,
im) 1S @Z€r0-mean random error.

6.4. Home advantage

A HA may be found so asto minimise the sum of the squared errorsfrom equation (6.1)
such that

K
J= Zzeﬁm (6.2)

i=l m=1
where there are N teams and K weeks have been completed.

There are three possible generationsof HAs: h;,,, can beinterpreted as asingleh for all

teams, as adistinct &; for each team or as adistinct value for each combination of teams.
Only the first two interpretations are used here. If asingle value is to be found, then
h, .y isinterpreted as+h if i playsat home, as-h if i playsaway or as0 if i and j play on

ij
aneutral ground or on aground that both teams use as a home ground.

6.5. Single h for all teams

It follows that the LS value of asingle h which minimises equation (6.2) for the M games
played at homeis

1 N K N K
h=_ﬂ} ; z=]wﬁf(m)+ Z Z(u}’ém—u{“) (6.3)

=l m=1
i at home i at home

In order to minimise equation (6.2) it is also necessary to select the team ratings, so that
the calculation of team ratings and HA iscoupled. The value of h can be uncoupled from
the calculation of the team ratings by adopting a suboptimal approach in which the right-
hand double summation in equation (6.3) is assumed to be zero. During a given week,
some home teams contribute positive, negative and zero values to that summation. Over
subsequent weeks, these teams shift location. Over subsequent seasons, or perhaps
during the same season, most teams will play at home and away against each opponent.
Over alarge enough collection of games, it is reasonable to assume that the right-hand
double summation in equation (6.3) is nearly zero. In that case, the calculation of h can



proceed independently from any rating generator, so that h dependsonly on the average
margin of victory by the home team.

Table 6.1 contains HA datafor seven types of competition, including Australian rules
football. The dataincludethe number of games, the fraction of gameswon by the home
team, thefraction of draws, the home-win-minus-away-winfraction, the HA h expressed
in score units (goals, points, etc.) per game, the total score per gameand the total-score-
to-home-advantageratioR. The seven types of competitionin Table6.1 are organised by
decreasing values of R. The home-win-minus-away-winfraction generally declinesasR
increases- an intuitive tendency.

TABLE6.1. Home advantage

Home Total
Home HW- | advantage | score R
Sport Games | win Draw | AW2 (h) (1) |(T/h)
Soccer: 3 European cups | 1079 [0.603 [0.198 |0.404 0.97 2.6 3
Soccer: 6 nationsP 6601 {0.485 |0.281 [0.251 0.45 2,72 6
Hockey (USA) 2840 [0.505 |0.166 [0.176 0.68 6.76 | 10

College football (USA) 1669 10.574 [0.017 ]0.165 3.71 43.0 12

Profess. football (USA)| 671 [0.574 ]0.003 [0.151 3.27 40.7 12

Australian rules football [ 1109 [0.580 |0.007 |0.167 9.8 206.5 21

Baseball (USA) 2106 [0.538 [0.000 {0.076 0.26 8.9 34

a2 HW, home win; AW, away win.
b England, Germany, Italy, Norway, Spain and Switzerland.

The datain Table 6.1 are an updated and expanded version of data collected in Stefani
(1983, 1987). The three Europe Cups (Champions Cup, Cup Winners Cup and EUFA
Cup) datafor international club competition were collected from newspaper resultsduring
Sx seasons (1981-82 and 1985-86 through 1989-90). The six nation soccer datafor club
competition within each nation was collected from soccer tables of standingsfor England,
Germany, Italy, Norway, Spain and Switzerland during two seasons (1980-81 and
1981-82). Those six nations provide a reasonable cross-section of club competition
within a given nation. Hockey data are from National Hockey League (USA/Canada)
results for four seasons (1975-76 through 1978-79) and were provided by Cleroux
(Univ. of Montreal). American college and professional football data are for four
seasons (1979-80 through 1982-83) taken from Stefani (1987). Australian rulesfootball




data are from Clarke's database of ten seasons (1980 through 1989). A total of 1446
games were played (1386 during the home-away schedules and 60 during the play-offs)
of which 1109 featured a home ground. Finally, the baseball data are for the 1982
American League and Nationa League (USA) season from the 1983 |eague yearbooks.

Authors such as Pollard (1986b) suggest a number of causes of HA (visiting team
disadvantage). Thesecauses may be placed into three groups: physiological factorssuch
as thetravel fatiguedf the visiting team; psychological factors such as crowd intimidation
by the home team fans; tactical factorssuch aslack of familiarity of the visiting team with
the playing conditions. Each competitionin Table 6.1 has a specific absolute and relative
mix of the three factors. Home advantages can be seen to rise or fall as the absolute
amount of the factorschange or as one or more factors are absent.

For exampl e, competition between European club soccer teamsfrom different nationsfor
the three European cups appearsto havethelargest HA. Onegod in threeis attributable
to the HA. The home team wins 40.4% more games than it loses. These cup matches
are generally scheduled at mid-week, with league competitionsalso being played during
the weekends. Travel is thereforeexceptionally fatiguing. It is an understatement that
interest is high and that crowd intimidationis a psychologica likelihood given the tragic
loss of life that has accompanied European cup competition. Therefore, the greatest
absoluteincidenceof fatigue and crowd intimidation correlates with the largest HA, while
alower amount of thosefactorsfor competition within each of the six European nations
generatesalower HA (travel is of shorter duration, and followersare of the same nation,
hence reducing the absolute amount of crowd intimidationin general, whilerecognisinga
few rather intenselocal rivaries). Onegod in six is attributableto the HA and the home
team wins 25.1% more gamesthan it loses.

The lowest HA in Table 6.1 occursfor professiona baseball games played in the USA.
Each team plays 81 games at home and 81 gamesaway. Travel expensesare reduced by
playing three or four consecutive games at each location and travelling for extended
periods. Travel fatigue may differentialy affect the visitingteam only for thefirst game
of aserieswhen the home team has not also returned from atrip. The majority of the HA
is attributable to crowd intimidation and lack of familiarity with the ground due to various
playing surface compositions, the location of walls and wind conditions, although lack of
familiarity would diminish in importance with successive games. The HA amounts to
one run out of each 34 scored. The hometeam wins 7.6% more than it |oses.



Professional hockey in the USA (including several Canadian teams), American college
football, American professional football and Australian rules football comprise the
remainder of Table 6.1. The home-win-minus-away-winfraction is nearly the same for
each competition, athough differences exist in the ratio R. Perhaps the relatively
compact nature of a hockey arena generates more intimidation and, therefore, a greater
amount of HA as measured by R. Conversely, most Australian rules football teams
competein the greater Melbournearea, reducing travel fatigue and balancing the mix of
team supporters. It followsthat most of the HA is attributableto lack of familiarity with
the playing conditions, since there are a variety of grounds from oval to round-shaped
and avariety of groundsizes. The HA in Australian rulesfootball creates a margin of 9.8
points per gamefor the home team which wins 16.7% more gamesthan it loses. The HA
amounts to one point in 21, since 206.5 points per game are scored.

The data in Table 6.1 support the hypothesis that there is a HA due to travel fatigue,
crowd intimidation and lack of familiarity with the playing conditions which affect the
visiting team negatively. Asthe absoluteamount of each rises, so a'sodoesthe HA. The
absenceof one or morefactorstendsto diminish the HA. No effort is made here to rank
therelativeimportancedf the threefactors.

6.6. Distinct k; for each team

If aHA isto be found for each team, then A, in equation (6.1) is interpreted as h;
when i is a home, as—h; when j is at home and as 0 when the teams play on a neutral
ground or on a ground that both teams normally consider to be a home ground. To
facilitate an LS value which minimises equation (6.2) independently of any rating
scheme, the results are considered only when two teams have a home away pair during
the home-away season. For simplicity, the value of m is not shown and the ratings are
assumed to be the same after each match. The two results may be added so that

wij=hi +uj - uj+ej (6.4a)
wii=hj +uj - u; +ej (6.4b)
djj=hi+ hj+el;; (6.4¢)

whered;; = wij t wj;, i.e. isthesum of the home team win marginswhich is the home—
away differential for each team, and el;; is the sum of the two errors. For example, if



team i wins by five points a home and then team j wins the return match by seven points
at team j's home ground, then d;; is 12 from the perspectiveof either team, i.e. each team
was 12 points more successful a home. The information contained in equation (6.4¢)
can be collected over an entire season and then an algorithm can be used to estimate the
HA of each team.

Using this method, a HA was found for each of the teams currently competing in the
Australian Football League. Table 6.2 containsthe average of the HAs from theend of
each season weighted by the number of home games that could be paired with a return
match. The notessectionidentifiesteamsin the greater Melbourne area and two groups
of teams currently sharing the same ground. The South Melbourne team moved to
Sydney at the beginning of 1982. For simplicity, the two years of South Melbourne
results are combined and listed with Sydney's eight years of results. West Coast and
Brisbane joined the league in 1987; hence, each played during only three of the 10 years.

TABLE 6.2. Home advantageby teamfor the 1980s

Home Home
Rank Team advantage | games Notes?
1 West Coast 36.8 25
2 Footscray 19.9 73 M
3 Carlton 16.3 58 M, SI
4 Essendon 13.7 72 M
5 Sydney 13:1 97
6 St Kilda 125 74 M
7 Fitzroy 10.8 64 M, SI
8 Melbourne 9.9 63 M, S2
9 Brisbane 8.9 23
10 Geelong 3.5 77
11 Hawthorn 3.7 63 M, SI
12 Collingwood 0.3 62 M
13 North Melb. -1.0 66 M,S2
14 Richmond -1.6 63 M, S2
All teams 9.8 880

a M, Greater Mebourne; S, shared homefield.



About 80% (880) of the 1109 home games could be paired. The West Coast Eagles
exhibited the largest HA. Sincethat team playsin Perth, about 3000 km (1900 miles) by
air from Melbourne, travel fatigueand crowd intimidation would affect the visiting team
more than at matchesin Melbourne, and the relatively large HA islogical. Conversely,
Melbourne, North Melbourne and Richmond share the Melbourne Cricket Ground
(MCG). The relatively minimal HAs may be explained by the minimal visiting-team
travel (except for Brishane, Sydney and West Coast), by the fact that the MCG is too
spaciousto generate as much crowd intimidation as would be possible on asmaller field
and by thefact that alarge enough number of games are played at the MCG so that the
field configuration is well known.

67 Rating systems

Home advantage can be removed from the winning margin modelled in equation (6.1) by
defining an adjusted winning margin wa,, ., such that

ij(m)

Wiy = Wisimy = Bijmy (6.5)
Two rating systems are considered, one based on LS and one based on exponential
smoothing using the 0.75 power of error. The LS rating for team i which minimises

equation (6.2) by smoothing over all K weeks of datais

T & .
uk = %;[wamm, + Wiy | (6.6)

where team i has played rn(i) games during the K weeks of the season over which the
ratings are computed. The recursiveequivaent for equation (6.6) is

1 ; -
uk ='—.{[ﬂ(l)— ™" + way +"’§K)} ©7

©on()

A similar equation can be written for team j by reversing the indicesi and j. There are
two unknownsin the two equations: the ratings « and uj;,. These equations can be

solved simultaneously to yield the LS recursive algorithmfor u".

K K- ”(j)_l K-1 K-1

W =u +W{waﬁm—[uf —ujm]} (6.8)

The adaptive term in bracesin equation (6.8) may belimited to two standard deviationsto
reducelarge rating changes resultingfrom anomal ousresults.



Unfortunately, the differences between the LS ratings tend to exceed future margins of
victory, so that a model for the margin of victory in the next game (to be played during
week K+ 1) is

Wik = By "‘L{ ;{K+l}]+erj(ﬁ'+l) (6.9)

where L is a shrinking factor between zero and one which reduces the predicted winning
margin compared with the rating difference when the rating difference is consistently
more than the subsequent winning margin. The sum of squared errorsin equation (6.9)
can be minimised by selecting L as

K
mplecomnance[waumm,(u “'(mn)]

L v ]g 6.10
sample varlance[ H}(KH; ( )

then, using previously calculated L, the predicted winning margin for the next game

becomes
~ K
Wiik+) = hrj(KH) i L[“fk - uj(KHJ] (6.11)

In summary, each L S rating is computed by equation (6.8) using previously calculated
HAs and then equation (6.11) is used for prediction using previously calculated L.

A substantially different method suggested by Clarke exponentially smooths past results
to obtain ratings which are closer together than LS ratings. Clarke used alearning set of
previous Australian rules football games. By trial-and-error he applied a 0.75 power to
the adaptive term in equation (6.8) and he found that the result was an effective pre-
shrinking of ratings whose differences are then used for prediction so that L is unity in
equation (6.11). Again by trial-and-error, Clarke determined that the result should be
multiplied by 0.2to smooth it exponentially. Therating for team i becomes

075 | _
uiK = u,.K" + 0.2{|wa,.jm| Slgn(.)-luf_-"’ 1 ,{x)|518“( )} (6.12)

where |.| denotes an absolute value operator which avoids taking the root of a negative
number and sign(.) restores the sign.

The LS and 0.75 power schemes were both applied to predict the 1446 Australian rules
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football games played during the entire decade of the 1980s. The results are summarised
in Table6.3. Thetableshowsh, L, thefraction of games correctly predicted (adraw is
considered haf correct and haf incorrect) and the average absoluteerror between the true
and predicted winning margin.

Both methods used a common home advantage h for all teams. Table 6.3 shows the
value of h used for prediction and the actual value calculated at the end of each season.
The valuefor h a theend of the 1979 season was used for the 1980 predictions; then the
average value of h from the end of the 1979 and 1980 seasons was used for the 1981
predictions. A five-year moving average was used when more than five previousvaues
of hwereavailable. Thevalueof L usedfor prediction by the LS method was calcul ated
similarly to the averaging of past valuesof h. A valueof L was calculated for the 0.75
power method but predictions assumed L was unity.

Thefraction of games correctly predicted by the LS method was higher by 0.5% (seven
gamesout of 1446), whilethe 0.75 power method had alower average absoluteerror by
0.7 points per game (32.2 compared with 32.9). Neither difference was statistically
significant. The LS method required an averageL of 0.66, whilethe 0.75 power method
exhibited an L of 0.94, indicating that the preshrunk rating difference was an unbiased
predictor of the next game.

A comparison of different prediction schemes was also made in Stefani (1987). TheLS
method predicted the correct winning team in 69.8% of 2435 American college and
professional football games with an average absolute error of 12.16 points per game.
Other predictorssuch as James-Stein were al so used, resultingin nearly the same results
as for the LS method. For example, the James-Stein predictor selected the correct
winning team in 69.8% of the games with an average absoluteerror of 12.17 points per
game.

In summary, the 1446 Australian rulesfootball predictions verify the conclusion that the
information content of the margin of victory and HA limitsthe accuracy of predictions, so
that additional accuracy most likely requiresthe use of additional data. That is, dissimilar
rating methods using the same datatend to convergeto alevel of accuracy limited by the
data and not necessarily by the structureof the agorithms.

Compared with human predictors in both Australia and the USA, the computer
predictionsperform &t the better-than-averageto expert level.



TABLE 6.3. Least squaresand 0.75 power predictionsfor Australian rulesfootball,

1980-1989
Average
h h L L Proportion| absolute
Year Games | used | computed | used | computed | correct error
Least squares

1980 138 8 1.5 0.60 0.78 0.700 29.8
1981 138 5 10.1 0.69 0.79 0.732 27.5
1982 138 7 12.6 0.72 0.73 0.700 32.9
1983 138 8 8.9 0.73 0.62 0.667 34.1
1984 138 8 9.4 0.70 0.48 0.667 324
1985 138 9 5.7 0.68 0.58 0.678 34.7
1986 138 9 11.7 0.63 0.81 0.681 35.6
1987 160 9 14.2 0.64 0.62 0.675 36.5
1988 160 9 10.0 0.62 0.54 0.641 32.9
1989 160 10 13.7 0.60 0.67 0.678 31.8

1446 | 8.2 9.8 0.66 0.66 0.681 32.9

0.75 power predictions

1980 138 8 1.5 130 0.90 0.692 29.3
1981 138 5 10.1 130 1.06 0.754 27.0
1982 138 7 12.6 130 0.97 0.670 32.6
1983 138 8 8.9 130 0.78 0.667 35.1
1984 138 8 9.4 130 0.78 0.644 31.3
1985 138 9 5.7 1.00 1.12 0.634 33.2
1986 138 9 11.7 130 100 0.659 34.9
1987 160 9 14.2 130 0.96 0.731 35.1
1988 160 9 10.0 130 0.80 0.659 32.2
1989 160 10 13.7 130D 1.04 0.647 30.8

1446 | 8.2 9.8 130 0.94 0.676 32.2




6.8. Estimating the accuracy of the predictions

The popular print mediaand many gambling establishmentsoften estimate that Team A is
a 3:1 favourite to defeat Team B; that is, Team A is 75%likely to defeat Team B. A
gambling establishment provides an estimateto divide the money bet in such away that
the gambling establishment should show a profit whether or not Team A wins. In order
to use the predictions of equation (6.11) to estimate the probability that a team should
win, it is necessary to know the probability density for equation (6.11). In Stefani
(1980,1987) a Gaussian assumption was shown to provide accurate estimates for
Americancollegefootball. The Gaussian assumption also providesaccurate estimatesfor
Australian rulesfootball.

Under the assumption that each rating is an unbiased estimate of the true rating, the
probability that team i will actually win the next game becomes the probability that the
estimated margin of victory of equation (6.11) is greater or equal to zero, since equation
(6.11) would then be an unbiased estimate of the true margin of victory. An estimate of
the standard deviation of equation (6.11) facilitatesestimation of that probability. Since
the variance of the rating for team i can be estimated by

S? = sampl evariance[wa,.j(KH) + uﬁ,{)] (6.13)
then the standard deviation of a prediction using equation (6.11) can be estimated by

S, =Y+ %" (6.14)

w

Assuming that the distributionof equation (6.11) is Gaussian, the probability that team i
will winis0.5 plus the additional integrated areadueto theratio w/S,, .

The predicted accuraciesand actual accuraciesfor the 1446 predictions are gathered into
fiveranges of predicted accuracy in Table 6.4. The actual accuraciesagree closely with
the predicted accuraciesin each of thefiverangesaswell asoverall. The overdl accuracy
was predicted to be 0.670, while the actua overall accuracy was0.681. It is noteworthy
that 51 games were predicted to have more than a0.9 probability of being correct. The
actual result was that 49 were predicted correctly, one game was drawn and one game
was incorrectly predicted.



TABLE 6.4. Predicted and actua accuraciesfor Australian Rulesfootball, 1980-1989

Predicted Actual Actual Actual
accuracy Games correct wrong accuracy
0.50 - 0.59 474 256.5 217.5 0.541
0.60 - 0.69 428 283.5 144.5 0.662
0.70 - 0.79 314 235.5 78.5 0.750
0.80 - 0.89 179 159.5 19.5 0.891
0.90 - 0.99 51 49.5 1.5 0.971
0.670 1446 984.5 461.5 0.681

6.9. Conclusions

It appears that the accuracy of a prediction depends primarily upon the information
content of the data used to construct the ratings and much less on the algorithm used to
compute the ratings, assuming that each algorithmis properly applied. That is, differing
predictorsusing the samedatatend to convergeto alimiting level of accuracy .

Home advantage appears to depend on the three negative influences upon the visiting
team: travel fatigue (a physiological effect); intimidation by home team fans (a
psychological effect); lack of familiarity with the playing conditions (a tactical effect).
The absoluteinfluence of these threefactors variesfrom sport to sport.

6.10. Commentary. Comparison of Clarke's Models 1 and 2

The exponential smoothing algorithm used above is a slightly simplified version of the
one described in Chapter IIT and used regularly for computer tipping. For example it
uses a common HA. How do program 1 and 2 as described in Chapter IIT compare?
Whilecompleterecords of al tipsactually published have not been kept, it is possibleto
regenerate the tips by using the data base of matchesdescribed in Chapter I1. In thiscase
we are not using the results of pre-season matches as was usually the casefor the actual
tip, and the final matches have not been included. However the results would not differ
markedly from those published. Table 6.5 gives the proportion correct each year, for
both models described above. Note there is some variation from year to year. Some
years are more predictablethan others, but the average correct for both modelsis about
68%. Note the averageerrorsfor Program 1 are generally positive, which indicates the
HA is not large enough. Program 2, with its automatic adjustment of ground effects



performs better in this regard. Program 2 is also slightly more accurate in margin
prediction, with an average absolute error nearly 1 point better than Program 1. Thisis
perhaps not surprising as it wasinitially optimised on absolute margin of error. However
generaly thereis not alot of difference between the two methods. These resultsarein
accord with acomparison between the methods of Stefani and Clarke.

TABLEG6.5. Proportion correct and average absolute error for Clarke's two prediction

programs
Yeax | No. of Program 1 Program 2
Games

Proportion | Averagg Averagg Proportion | Averagg Averagg

Correct Error | absolutgg Correct Error | absolutg
error eIror
80 138 0.772 -3.9 | 29.6 0.699 -3.0 290.1
81 138 0.754 3.6 27.5 0.754 3.0 275
82 138 0.692 4.1 33.4 0.678 3.1 32.7
83 138 0.645 2.7 36.3 0.659 1.0 | 35.6
84 138 0.652 1.9 32.6 0.652 0.0 31.1
85 138 0.656 -14 | 355 0.692 -0.7 334
86 138 0.659 6.6 36.4 0.659 6.6 35.4
87 160 0.719 9.8 36.1 0.694 7.8 35.5
88 160 0.653 3.7 34.1 0.653 2.1 33.1
89 160 0.647 6.3 32.0 0.647 3.6 31.0
90 161 0.643 4.1 35.2 0.668 1.1 35.0
91 172 0.715 3.2 36.2 0.709 -0.3 354
92 172 0.599 2.2 35.9 0.640 -0.7 34.7
93 157 0.685 2.1 34.0 0.678 0.2 32.5
94 174 0.670 5.6 33.9 0.652 3.8 333
95 185 0.684 0.0 34.3 0.705 -1.6 33.2
80-95 | 2467 0.677 3.2 34.0 0.677 1.6 33.1
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CHAPTER VII

CALCULATING PREMIERSHIP ODDS BY COMPUTER:
AN ANALYSIS OF THE AFL FINAL EIGHT PLAY-OFF SYSTEM

7.0. Abstract

The Australian Football League's final eight play-off system is explained and the
premiership chances of al teams are eval uated and compared with previousfinal systems.
The importance of matches, and the playing order necessary to avoid dead finals is
discussed. A computer tipping program published weekly in adaily newspaper produces
the probability of any team beating any other team on any ground. Thiswas extended to
calculate the chances of every possiblefinishing order in thefinals. The suitability and
fairnessof the play-offsisevauated under variouscriteria. The useof such aprogramto
assist in framing premiership and quinellaoddsis discussed, and inconsistencies between
bookmakers' odds on individual matches and winning the premiership highlighted.
Home ground advantage in finalsis assessed. It is shown that the knockout natureof the
finals magnifies any home advantage possessed by ateam.

Key wor ds: sport, football, finals, play-off, probabilities, odds
7.1. Introduction

Australian rules football is the major winter sport of the southern states of Australia
From a base of 12 Melbourne clubs, by 1994 the Australian Football League (AFL) had
expanded to 15 teamsincluding teamsfrom Sydney, Brisbane, Adelaideand Perth. The
season consistsof a 22 game home and away schedulefollowed by afinal series between
the top teamsculminatingin agrand final to determinethe premier team. For many years
the author has operated a computer program to predict the results of individual games
Clarke (1988c, 1991a, 1993b). The predictions are published each week in the daily
press and Clarke (1992a) shows that they compare favourably with human tipsters. In
addition to selecting the winner of any match, the computer program estimates the
chances of either team winning. Near the end of the 1992 home and away series a
program was written that would produce, at the beginning and during the final series,
each team'schance of winning the grand final. In 1994 this needed updating for the new
final eight system introduced by the AFL.

Since 1931 thefootball finalswere played under the 'Pagefinal four' system. Unlike the



normal knockout system of three matches (two semi-finals and a final) used in most
competitions with four finalists, the Page final four gives an advantage to the top teams
by introducing a bye and a double chance. The top two teams play, with the winner
gaining direct entry into the grand final by virtue of a bye the following week; theloser is
not eliminated but has a second chance by playing the winner of thelower two teams for
theright to play inthe grandfinal. Thisbecame known as 'the doublechance'. Thusthe
top two teams are advantaged by either gaining the bye or receiving the double chance.
Over the years, several variations on this theme were used as the number of teamsin the
finals was increased. In 1972 the league introduced a final five played under the
'‘Mclntyre Final Five' system (see Schwertman & Howard, (1989, 1990)) and in 1991
the AFL introduced a new finals system played between the top six teams. After some
criticism, they adjusted the system again for 1992 with the 'Mcintyre Final Six' system.
As Clarke (1993b) pointsout, thisintroduced acontroversial aspect into thefinals asthe
path a team takes, and hence its chances of winning the premiership, isdetermined by the
results of matchesin which it does not participate. This aspect was entrenched when, for
1994, the AFL introduced thefinal eight, with a series of nine finals matches over four
weeks, called the Mclintyre Final Eight system (MFS8).

Monahan & Berger (1977), in discussing the fairness of play-off structures in hockey
suggest three criteriafor measuring their suitability: maximise the probability that the
highest ranked team wins, maximise the expected number of points of the premier, and
maximise the chance the best two teams meet in thefinal. In their conclusions they point
out that in some of their proposed structures, alower-ranked team has a higher chance of
reaching the semi-final and final than a higher-ranked team, and this i s unacceptable to
players who are rewarded according to final position. In such competitions (the AFL
prize money and the following year's draft are affected by final position), the play-off
system should not be judged solely on how fairly it determines the premier, but how
fairly it determinesall positions. Thissuggests severa other criteria - the probability of a
team finishing in any position or higher should be greater than for any lower-ranked
team; the expected final position should be in order of original ranking; the probability of
a team finishing above a team of lower rank should be greater than 0.5 and should
increase as the difference in ranks increases; the probability of any two teams appearing
in the grand final should monotonically decrease as the ranks of the two teamsincreases.
To these we might add one of consistency between years - teams of the same ranking that
perform in asimilar manner in different years should finish in similar positions.



7.2. The McIntyre Final Eight system

The MF8 consists of nine matches: four qualifying finalsthe first week, two semi-finals
the second week, two preliminary finals the third week and the grand final the fourth
week. For the first three weeks, two teams are eliminated each week. The original
ladder ranking before the finals determines the draw for the first week of thefinals, and
also determines the relative position of the winnersand losers each week.

During week 1, four Qualifying finals are played: 1v8, 2v7, 3v6 and 4v5. This produces
four winners who go to the top of the ladder and four losers who go to the bottom.
Within these two groups they preserve their original ranking. Thus after week 1, we
have a new ranking of Winner 1, Winner 2, Winner 3, Winner 4, Loser 1, Loser 2,
Loser 3, Loser 4, athough in the following we will usually use the terminology of
current ranking one to eight. An example will illustrate. In 1994 the qualifying finals
were 1v8 West Coast v Collingwood, 2v7 Carlton v Melbourne, 3v6 North Melbournev
Hawthorn and 4v5 Geelong v Footscray.

MF8 week 1 matches from 1994 and resulting week 2 draw

Original ladder Team Week 1 Current Team Week 2
ranking result ranking match

1 West Coast win 1I-Winner 1  West Coast Bye
2 Carlton loss 2-Winner 2 NorthMelb Bye
3 North Melb win 3- Winner 3 Geelong Semi 2
4 Geelong win 4-Winner4  Melbourne Semi 1
5 Footscray loss 5 Loser 1 Carlton Semi 2
6 Hawthorn loss 6- Loser 2 Footscray Semi 1
7 Melbourne win 7-Loser 3 Hawthorn Eliminated
8 Collingwood loss 8- Loser 4 Collingwood  Eliminated

The bottom two teams are eliminated, and from week 2 onwards the system is a knockout
tournament with the current top two teams gaining a byein week 2. Under the old final
four, in week 2 one team has a bye straight through to the final in week 3, while two
other teams play to see which of them continues. This system is the same but in two
halves (teams currently ranked 1, 4 & 6 in one half and teams 2, 3 & 5 in the other).
Teams 1 and 2 get a bye straight through to the two preliminary finalsin week 3, while 4
& 6 and 3 & 5 play in the two semi finals to determine who joins them. In week 4 the



two winnersof the preliminary finals play in the grand final.

A feature of the MF8 is the degree to which ateam's progress depends on results in other
matches. One year team 3 could win thefirst week and not gain the bye, while another
year team 6 could win and gain the bye. Similarly team 3 could lose and be eliminated
one year whereas another year team 6 could lose but not be eliminated. Under the
assumption that all teams are equal, the chances of teams 1 to 8 gaining the bye if they
win are respectively 100%, 100%, 75%, 50%, 50%, 25%, 0% and 0%. The same list
reversed gives the chances of the teams being eliminated if they lose. Thisis thefirst
finals system where ateam's elimination has depended on other match results.

Note that the positions after the first week are symmetrical. If after thefirst week ateam
is now ranked position N, their opponent from the first week will now be in position 9N.
Put another way, a team's opponent will be asfar off the bottom as the team isfrom the
top. Itiseasily proved using this symmetry that there can be no repeat finals matches
until the grand final since respective opponentsfrom week | go into opposite halves of
the draw.

The symmetry also means that the first round opponents of the teams eliminated gain the
bye. Thisimplies these two matches were very important to the participants - the winner
gained the bye, the loser was eliminated. However it is not known beforehand which of
the matches are elimination matches as they are determined by the results in other
matches. Thusin the most perverse cases, if both 1 and 2 lose, the 3v6 and 4v5 matches
become the elimination matches with 3 and 4 eliminated if they lose and 5 and 6 gaining
the bye. On the other hand if 1 and 2 both win, these matches are virtually irrelevant, as
the winner cannot gain the bye nor the loser be eliminated. The result merely determines
in which semi-finals the four teams will play.

7.3 Premiership chances - comparison with previous systems

For the case when all teams are considered egual, the chances of winning the premiership
can be calculated easily by first principles. For teams which make the grand final the
chances of winning the premiership are 50.0%, from the preliminary finals 25.0%, and
from the semi-finals 12.5%.

Thechances at the beginning of thefinals can now be calculated asweighted averages of
these probabilities. For example teams 7 & 8 have a 50% chance of making the semi-



finals, hence a 6.25% chance of theflag. Teams 1 & 2 have a 50% chance of making the
preliminary final directly and a 50% chance of making the semi-final, to givea 18.725%
chance of being premier. The others can be calculated in asimilar way and are given in
Table 7.1 along with probabilitiesfor al previousfina systems.

Note the importance of gaining the bye. A team doubles their chance of winning by
getting direct access to the preliminary final. For teams 3 to 6 this depends as much on
the outcomes of other matches as on their own. The saying 'you make your own luck'
cannot be said to apply to the MF8. Other teams make it for you. Consider team 3.
Before thefinals they have a 15.6% chance of winning theflag. Suppose they win their
qualifying final. If 1 and 2 both win they now have a 12.5% chance; less than before.
On the other hand if 1 or 2 lose, the chances of team 3 increase to 25%. Similarly teams
4 and 5 do not increase their chances by winning the qualifying final if they do not make
the preliminary final direct. That ateam's chances could alter so dramatically from year
to year, depending on the result of athird party, may be considered by someto be aflaw
in the system.

TABLE 7.1. Premiership chancesfor MF8 and previous final systems

Team Find 4 Fina 5 Final 6 (1) Fina 6 (2) MF8
1 37.50 37.50 25.00 25.00 18.750
2 37.50 25.00 25.00 25.00 18.750
3 12.50 25.00 18.75 18.75 15.625
4 12.50 6.25 18.75 12.50 12.500
5 6.25 6.25 12.50 12.500
6 6.25 6.25 9.375
7 6.250
8 6.250

With each new system, the chances of teams 1 and 2 have been steadily eroded until they
are now exactly half of that under the final four. Team 3's chances doubled with the
introduction of the final five, but have since been eroded although they are still greater
under thefinal eight than under thefinal four. Thus even though the number of finalists
has doubled, team 3's chances have increased. Team 4's chances have enjoyed aroller
coaster ride, but have settled on exactly the same probability asfor thefinal four. Team
6's chances have increased as have teams 7 and 8. In economic terms, we have seen a
great redistribution of probability from the rich top order to the poor lower order, with the



middle class largely unaffected. Teams 7 and 8 now have as much chance of winning as
4 and 5 had under the final five system. However one should note that thisisonly 1in
16, actually less than they had at the start of the season (1 in 15 if there are 15 equal
teams). Clearly the AFL have not been interested in maximising the chance of the
highest-ranked team winning, but they have produced a system in which a team's
chancesincrease steadily with their ranking.

One consequence of the diminution of the top team's chances is that the league should
consider recognising the team who finishes at the top of the ladder before the finals,
perhaps with a minor premiership cup, since their chances of turning that position into a
premiership is now much smaller than under earlier fina systems.

7.4. Importance of matches

Football supporters know the grand final is the most important match of the year. It
would bedesirableif finals matches built up in importance, but how can we quantify this
notion of importance? Morris (1977) defines the importance of a point in tennis as the
difference in the probability of winning the match if a player wins the point and the
probability of winning the match if a player loses the point. Thus the grand final isthe
most important match at 100%, with the preliminary final at 50%. The calculations are
shown below.

Grand fina 100%-0% = 100%
Preliminary final 50% -0% = 50%
Semi-final 25% -0% = 25%
Qualifying final between 1&8 (or 2&7)

For team 1,2 25%-125% = 12.5%

For team 8,7 125%-0% = 12.5%
Qualifying final between 4&5 (or 3&6)

Dependsif 1 and 2 lose 25%- 0% = 25%

orif 1 and2win 12.5%-125% = 0%

orif 1and 2winandteam 1 playsinterstate  negative?

In general the matches are in order of increasingimportance. However as we have said,
the qualifying finals aso have importance to other teams. The definition of importance
needs extending to take thisinto account, perhaps to the total expected absolute changein
probability of all the teams. When this is done the importance of the qualifying finals



increases. Note that a win by the lower-ranked teamsin the matches 1v8, 2v7 and 3v6 is
good for the winner of the other qualifying finals and bad for the loser - so it makes those
matches much more important. For this reason, the importance of the qualifying finals
3v6 and 4v5 is more difficult to calculate, asit depends on the results of other finals.

One special case is worth discussing. In order to maximise crowd attendance and
television coverage, the finals are played at different times over a weekend. Thusitis
possible the league could schedule the match between 4 & 5 (or 3 & 6) after the other
qualifying matches. If the other qualifying matches have both gone to the higher-ranking
team, then these matches would be of zero importance, since the winner cannot make the
bye and the loser cannot be eliminated. The only factor hinging on the match is which
half of the draw the teams go into. We could even have the situation where one or even
both teams are trying to lose, to avoid the half of the draw containing specific teams. For
example, two interstate teams may already be in the half of the draw into which the
winner will go. It is highly likely matches against these interstate clubs would be
scheduled on their home grounds, a large disadvantage to any Melbourne team drawn to
play them. A 4v5 qualifying final between two Melbourne clubs could see the winning
team having to play two finals interstate to make the grand final - with the loser having
the easier draw of two gamesin Melbourne. To avoid thissituation the qualifying finals
need to be played in acertain order. The match 4v5 must be played in thefirst twofinals,
and the match 3v6 in the first three finals. The problem is equivalent to ordering the
digits 1, 2, 3, and 4 so that no digit is preceded by two or more lower numbers. The
possible orders are shown in Table 7.2. In 1994, the AFL chose the second last shown.
Note that this does not stop a final being 'dead’ in retrospect. In 1994 the 4v5 clash
between Geelong and Footscray, won by the final kick of the match, wasin fact in this
category. Neither team waseliminated, so in fact the result did not matter.

TABLE 7.2. Possible playing order of matchesto avoid ‘dead’ finals

4v5 3v6 1v8 2v7
4v5 1v8 3v6 2v7
4v5 3v6 2v7 1v8
4v5 2v7 3v6 1v8
3v6 4v5 1v8 2v7
1v8 4v5 3v6 2v7
3v6 4v5 2v7 1v8
2v7 4v5 3v6 1v8




7.5. Development of program using a word processor

Schwertman & Howard (1989, 1990) look at a probability model for the AFL Finals
series asit was played up to 1990 - a series of six games between the top five teams.
They list thefour paths that result in the fourth team winning the grand final, and the 16
paths that result in the second team winning. For the top team they say "Direct
computation of the probability that team A wins the grand final is quite involved, with
many different paths" and suggest indirect methods. The MF8 is a series of nine matches
with the extracomplication that the position of a winning team now depends not just on
their match but on the results of other matches. Clarke (1993a) gives a method for
determining all possible finishing ordersfor thefinal six, and that is extended here.

For the MF8, we wish to calculate not only the chance of each team winning the grand
final, but also some other probabilities of interest such as the chance of pairs of teams
making the grand final and the chance of each team finishing in any position. All the
probabilities would follow from the chance of all possible finishing orders. So the
problem was: "Given the original order before the finals, what is the probability of any
final finishing order?' Although in studying the fairness of the finals system it is of
interest to assume al teams are of equal ability, for the computer tip we had different
probabilities for any team beating any other. Furthermore, because the computer tipping
program takes grounds into account, the probabilities changed from week to week
depending on the grounds at which the matches were schedul ed.

Suppose we designate each team by their finishing position at the end of the home and
away matches. Using the actual results from 1994, we have a sequence of matches as
follows, where positions and teams are: | West Coast, 2 Carlton, 3 North Melbourne,
4 Geelong, 5 Footscray, 6 Hawthorn, 7 Melbourne, 8 Collingwood.

Week 1 Week 2 Week 3 Week 4
1-8 (1 wins) 4-2 (4 wins) 3-4 (4 wins) 1-4 (1 wins)
2-7 (7 wins) 5-7 (7 wins) 1-7 (1 wins)

3-6 (3 wins)
4-5 (4 Wins)

Thefinal finishing order produced by this particular sequence of results and its associated
probability is:
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14372568 pl1(1,8)p1(7,2)p1(3,6)p1(4,5)p2(4,2)p2(7,5)p3(4,3)p3(1,T)p4(1,4)  (7.1)

where pk(i.j) is the probability of team i beating team j in week k. Thereis no obvious
pattern between the final order and the probabilitiesthat produce that order. It would be
tedious in the extreme to work out &l possible29 = 512 sequencesand their probabilities.
Thefact that positions of teams depend not just on the results of their matches but on the
results of others, further complicates matters. However aword processor comes to our
aid. A modern word processor alows the copying and movement of columnsof text as
well asrows of contiguous text. Using thisfacility, the 512 lines of code that formed the
crux of the program were writtenin about 1 hour.

The method involveskeeping on the left side the 'current’ order and on the right side the
probabilities of that order arising. Each match result has a certain probability and
produces an associated change in the order. Before the final series the order is
1,2,3,4,5,6,7,8 so we have:

Order Probability
1,2,3,4,5,6,7.8 pl10

Consider the match between 4 and 5 This can have two results, so we copy the whole
row. Now if 4 beats 5 the order stays the same, so we leave the first row alone, but if 5
beats 4, 5 movesto 4th and 4 moves to 5th, so we do thisto the second row. Thisgives
us.

1,2,3,4,5,6,7,8 P10
1,2,3,5,4,6,7,8 p10)

We now want on the right side the probabilitiesof these results- i.e. p1(4,5) in thefirst
row and p1(5,4) in the second. But these arejust the numbersin the middle two columns
of the left side. Thus we can use the column copy and insert facility on the word
processor to copy them across. Thisgives:

1,2,3,4,5,6,7,8 pl(4,5)
1,2,3,5,4,6,7,8 pl(5.4)



We have added the pk()s for ease of reading, but in practice, these wereal inserted at the
end of the process. We repeat the procedure for the remaining matches. Each match
iteration results in a doubling of the number of rows with a duplication of the whole
table, the movement of columns on the left side, and the addition of another set of pks by
copying parts of columnsfrom the left to the right of the table. With column copy and
insert and global replaceit was about an hour's work to produce 512 linessimilar to (7.1)
and convert to code. In thiscase SAS was used, but other packages such as Excel could
be utilised. A SAS data set with two variables, order and probability was created, and
the above lines of code produced 512 observations. Programming and SAS procedures
could then be used to calculate any required probabilities.

In the author's original problem, the norma weekly computer tipping program was used
to provide probabilitiesfor each team beating any other, and the above program was used
both before and during thefinal seriesto predict estimated probabilitiesof teams winning
theflag or finishing the year in different positions. These predictionswereincluded with
the usual ones of winnersand margins. The program thus served its original purpose.

However the program can also be used to investigate the degree to which the MF8
satisfiesthe criteriafor fairness discussed earlier.

7.6. How fair is the MF8?

Schwertman & Howard (1990) suggest severa suitable modelsto investigate thefairness
of finals systems. Here we assume that al teams are equal. The qualifying finals in
1994 showed this is not an unreasonable model, with team 8 losing to team 1 by two
points, team 6 and team 3 drawn at full time, team 4 beating team 5 with the last kick of
the match and team 7 beating team 2 comfortably. Tables 7.3, 7.4, 7.5 and 7.6 give
some output from the program that demonstrates the MF8 performs well on the fairness
criteria. The chance of winning and the expected final position (EFP) are in order of
original ranking. In fact the chance of finishingin position j or higher isin monotonic
order of original ranking for every j. The chance of team i finishing above team j is
generaly in increasing order of j for every i, with acouple of exceptionsfor teams widely
separated in the rankings.
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TABLE 7.3. Percentage chance of teamsfinishing in any position, and expected final
position (EFP) - Equal probability model

Final position

Team 1 2 3 4 5 6 7 8 EFP
1 18.75 | 18.75 }37.50 | 0.00 | 25.00 | 0.00 | 0.00 | 0.00 | 2.94
2 18.75 | 18.75 [23.44 | 14.06 | 18.75 | 6.25 | 0.00 | 0.00 | 3.14
3 15.63 | 15.63 | 18.75 | 12.50 | 18.75 | 6.25 |12.50 | 0.00 | 3.72
4 12.50 | 12.50 | 9.38 | 15.63 | 18.75 | 6.25 |18.75 | 6.25 | 4.41
5 12.50 [ 12.50 | 6.25 | 18.75 | 6.25 |18.75 [18.75 | 6.25 | 4.56
6 9.38 | 9.38 | 3.13 | 15.63 | 6.25 | 18.75 [25.00 [12.50 | 5.19
7 6.25 ] 6.25 | 1.56 [ 10.94 | 6.25 | 18.75 |25.00 |[25.00 | 5.86
8 6.25 | 6.25 | 0.00 | 12.50 | 0.00 |25.00 { 0.00 }50.00 [ 6.19

TABLE 7.4. Percentage chance of teamsfinishing in any position or higher - Equal

probability model

Final position
Team 1 2 3 7
1 18.75 | 37.50 | 75.00 | 75.00 |100.00 | 100.00 | 100.00 | 100.00
2 18.75 | 37.50 | 60.94 | 75.00 | 93.75 |100.00 | 100.00 | 100.00
3 15.63 | 31.26 | 50.00 [ 62.50 | 81.25 | 87.50 | 100.00 | 100.00
4 12.50 | 25.00 | 34.38 | 50.00 | 68.75 | 75.00 | 93.75 | 100.00
S 12.50 | 25.00 | 31.25 | 50.00 | 56.25 | 75.00 | 93.75 | 100.00
6 9.38 | 18.75 | 21.88 | 37.50 | 43.75 | 62.50 | 87.50 |100.00
7 6.25 | 12.50 | 14.06 | 25.00 | 31.25 | 50.00 | 75.00 | 100.00
8 6.25 | 12.50 | 12.50 | 25.00 | 25.00 | 50.00 | 50.00 | 100.00




TABLE 7.5. Percentage chance of team i (row) finishing above team j (column) - Equal
probability model

Team j

Team i 1 2 3 4 5 6 7 8
00.00 | 60.16 | 65.23 | 70.51 | 70.51 | 75.78 | 81.25 | 82.81
39.84 | 00.00 | 62.89 | 70.51 | 70.51 | 78.13 | 82.81 | 81.25
34.77 | 37.11 | 00.00 | 66.80 | 66.80 | 70.31 | 76.56 | 75.78
29.49 | 29.49 | 33.20 | 00.00 | 57.81 | 65.23 | 72.07 | 72.07
29.49 | 29.49 | 33.20 | 42.19 | 00.00 | 65.23 | 72.07 | 72.07
24.22 | 21.88 | 29.69 | 34.77 | 34.77 | 00.00 | 67.58 | 68.36
18.75 | 17.19 | 23.44 | 27.93 | 27.93 | 32.42 | 00.00 | 66.41
17.19 | 18.75 | 24.22 | 27.93 | 27.93 | 31.64 | 33.59 | 00.00
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The chance of grand finals between the teams in various positions is shown in Table 7.6,
and isroughly in accord with the sum of the teams rankings. A grand final between 1 &
2 is the most likely result, although it only has about a 1 in 8 chance of occurring,
compared with 1 in 2 under the old final four system. The chance of a grand final
between 2 & 3 isrelatively low because of the high probability they will end up in the
same half of thedraw. Note also that two grand finals are impossible - between 2 & 8
and 1 & 7. However this did not stop the National Sportsbook from offering odds of
100-1 on a Collingwood-Carlton grand final, and 50-1 on a West Coast-Melbourne grand
final in the week preceding the qualifying finalsin 1994,

TABLE 7.6. Percentage chance of pairsof teams playing in grand final - Equal
probability model

Team 2 3 4 S 6 7 8

1 14.1 8.6 5.1 5.1 1.6 3.1
2 3.9 5.1 5.1 6.3 3.1

3 5.5 5.5 3.1 3.1 1.6
4 3.1 2.3 2.0 2.0
d 2.3 2.0 2.0
6 0.8 2.3
7 1.6




7.7. Comparison of bookmakers and computer's odds

It isinteresting to see the extent to which bookmakers odds reflect the intricaciesof the
finalsdraw. The head to head oddsfor thefirst match along with the premiership team
and quinella (the two teams that play in the grand final) odds offered by the National
Sportsbook as published in The Melbourne Herald Sun, September 10, 1994 are given in
Tables 7.7-7.9. Odds of a/b are converted to percentage chances as 100*b/(b+a). As
these usually sum to more than 100 due to the bookmaker's percentage, adjusted chances
which are proportional but sum to 100 are shown. For comparison the head to head
chances as estimated by the computer tipping program and the consequent premiership
and quinellachances are aso given.

It is clear the Sportsbook odds often do not reflect the intricaciesof the MF8. Although
Sportsbook give North Melbourne a greater chance of winning the first match (63% as
against 56% by the computer), they are given less chance (16% as against 19%) of
winning the premiership. This apparently underestimates their chance of gaining the
double chance. Geelong is treated in the same way. Although Melbourneis given less
chance of winning the first match than Hawthorn, they have the same chance of winning
theflag, completely discounting Hawthorn'spossible bye or doublechance.

TABLE 7.7. Comparativechancesaf winning first match

Computer Sportsbook
Team chances Odds Chances | Adjusted
WC 80.00 1/5 83.33 76.16
Carl 55.70 4/9 69.23 63.27
NthM 55.50 4/9 69.23 63.27
Geel 56.50 1/2 66.67 60.93
Foot 43.50 11/8 42.10 38.48
Haw 44.50 11/8 42.10 38.48
Méeb 44.30 614 40.00 36.56
Coll 20.00 3/1 25.00 22.85
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TABLE 7.8. Comparativepremiershipchances

Computer Sportsbook
Team chances Odds Chances | Adjusted
WC 29.80 7-4 30.76 25.53
Carl 24.51 9-4 36.36 30.18
NthM 19.41 4-1 20.00 16.60
Geel 11.52 7-1 12.50 10.38
Foot 7.15 14-1 6.67 5.54
Haw 4.06 16-1 5.88 4.88
Melb 2.61 16-1 5.88 4.88
Coll 0.94 40-1 2.43 2.02
Total 100.00 120.18 100.00

TABLE 7.9. Computer chances and Sportsbook odds on quinellas

Team | WC Carl | NthM | Geel | Foot [ Haw | Melb | Coll
WC 29.02 [19.38 | 9.59 | 6.57 | 1.92 1,22
Carl 7-4 2.59 | 380 | 2.64 | 3.37 | 1.72

NthM 7-2 10-1 424 | 3.12 | 2.22 | 1.75 | 0.34
Geel | 10-1 8-1 8-1 2.07 | 095 | 1.04 [ 0.30
Foot | 16-1 16-1 [ 25-1 | 50-1 0.64 | 0.64 | 0.19
Haw [ 20-1 20-1 | 33-1 | 40-1 |100-1 0.32 | 0.22
Melb | 50-1 50-1 | 50-1 | 66-1 |200-1 |200-1 0.14
Coll | 80-1 | 100-1 | 100-1 | 125-1 [200-1 |200-1 [250-1 | 0O.14

The quinellas aso show inconsistencies. An obvious case is the Carlton-Collingwood
and West Coast-Melbournequinellas. These are both impossible, yet are not only given
odds but are shown at shorter odds than many possible quinellas. The Carlton-North
quinellais also misquoted. Tables7.6 and 7.9 show thisto be quite unlikely, due to the
high probability of team 3 and 4 ending up in the same half. A more detailed analysis
shows that team 2 and 3 will only end up in opposite halvesif in week 1, team 1 wins
and 2 and 3 both lose, or team 1 loses and 2 and 3 both win. Using the adjusted
Sportsbook odds on thisoccurring from Table 7.7 we obtain a probability after week 1 of
only 0.2 that a Carlton-North grand final will still be possible. Either two or four
matches will still have tofall the correct way for the grand final to eventuate. The odds of



10-1 are thus extremely poor and overestimatethe chance of this particular grand final.
In asimilar way, the extradifficulty of obtaining a West Coast-Hawthorn quinellaover a
West Coast-Carlton quinellathat is shown in both Table 7.6 and Table 7.9 is not reflected
in the Sportsbook odds.

7.8. Home advantage

There are two large capacity Melbourne grounds on which finals have been traditionally
played, theMCG and Waverley Park. However, finalsin thefirst three weeksinvolving
interstate teams are likely to be played at their home venue. Since the MCG and
Waverley are shared as home grounds by several Melbourne teams, there is a
considerable home advantage (HA) e ement in thefinals. Stefani & Clarke (1991, 1992)
have calculated home ground advantages in home and away matchesin AFL football.
The computer program devel oped here can also be used to quantify HA in thefinals. By
altering the venuesfor matches in a particular week, the effect on ateam's premiership
chances can be evaluated. Table 7.10 shows the final program's estimated chances of
winning the premiership using the weekly computer tipping program's probabilities of
winning each match under various venue assumptions. The first column shows the
program's calculated premiership chances if all matches are played at the MCG, the
second with matchesinvolving West Coast moved to West Coast the first three weeks,
and the third with all matchesin thefirst three weeks played at Waverley. In general this
shows amultiplier effect if teams play several matches a home. Thus a team that wins
10% more matches at home may win 30% more premiershipsif all matchesare played at
home.

The effects are quite dramatic. West Coast's chances amost double by having the
preliminary matches a home, although their average chance of winning at the West coast
is'only' 47% higher than at the MCG. By movingall preliminary matchesto Waverley,
Hawthorn's chance increases by 31% although their average chance of winning at
Waverley is only 11% higher than the MCG. Similarly Melbourne's chance would
reduce to 67% although their average chance of winning at Waverley is 89% of their
chance at the MCG. While one could argue about the magnitude of individual home
effect, the general point is that, because of the knockout nature of the finals series,
individual home ground effects are magnified when considering the chances of winning
the premiership.



TABLE 7.10. Premiership percentage chancesif matchesin thefirst three weeksat
different grounds

West Coast at

All matches at | West Coast, | All matches at

Team the MCG others at MCG | Waverley Park
WC 16.83 29.74 17.50
Carl 24.71 24.43 27.79
NthM 22.15 20.03 20.23
Geel 14.39 11.37 10.58
Foot 9.03 7.09 10.96
Haw 317 349 7.55
Melb 5.25 2.61 3.53
Coll 1.87 0.94 1.87

7.9. Conclusion

In football, subjective judgements are often used to rate team chances of winning the
premiership. These often tend to reflect the relative strengths of the teams, and ignore the
current ladder position. With the complicated structure now in placefor the finals series,
a mathematical analysis using a simple model can shed light on the chance of teams
winning or finishing in any position, given their original or current ranking in the final
series. One aspect of mathematicsis recognition of patterns. In this case, there was no
obvious pattern between the final order and the probabilities that produced that order.
However, there was a pattern in the way these orders and probabilities were built up
when individual matches were considered. The functions of aword processor could be
used to exploit this pattern to write the required equations and subsequent computer code.
The code generated was flexible enough to handle many different models.

It isimportant to investigate how asport'sdraw operates, rather than complaining when a
specific unforseen case arises. Teams cannot be blamed when they 'exploit’ weaknesses
in the rules of a competition that organisers have allowed to creep in. There are many
criteriathat afinal series should satisfy. For many competitions the relative chances of
teams finishing in any position, not just first, should be considered. The MF8 passes
most of thetests given here. The higher ateam finishes at the end of the home and away
matches, the greater their chances of being the premier team, the greater their chances of
finishing in any position or higher, the higher their final expected position, and the



greater their chances of finishing above lower teams. However two major flaws exist.
The first is that a team's chances depend so much on matches in which it does not
participate, which resultsin alack of consistency from year to year. There seemsllittle,
other than a new system, that the AFL could do to redress this. The other major
weakness that may need to be addressed is the possible lack of importance of the
qualifying finals between 4 & 5 and 3 & 6. It seems a great pity that a final would
degenerate into a 'dead' match, or worse still a farce where both teams were trying to
lose. The AFL must always schedule these matches early so the chance of the winner
making the preliminary final direct or to avoid elimination exists to give the teams
incentive. Of course matches will still often be dead in retrospect, as occurred in 1994.
Because of the greatly reduced chances of ateam winning the flag from top position, the
league should consider recognising the leader after the home and away matches by a
minor premier cup.

Itisalso clear that acomputer program, such asdetailed here, could be useful in assisting
with framing the odds for premierships and quinellas under a system as complicated as
the MF8.

7.10. Commentary. Increasing influence of HA in finals

Since this paper was written the home ground advantage in finals has continued to have a
strong influence. Asinterstate teams grow in number and strength, morefinalsinclude a
home ground factor. In 1996, due to the presence of Essendon and North Melbourne
(both if which have the MCG as home ground), and three interstate sides, each of the
ninefinalsincluded exactly one team playing on their home ground. All ninefinalswere
won by the team with the HA.

7.11. Commentary. Quantifying the effect of AFL decisions on the home
and away draw

All sports are affected by the overall rules of the competition. The previous paper
quantified the effectsof the variousfinal systems. The models discussed in the thesis can
also be used to quantify AFL decisions that affect the home and away draw. The League
along with individual clubs makes many decisions affecting the running of the
competition. These are often based on financial aspects such as to maximise crowds or
television exposure, but they also affect teams' chances of successin the competition.
They rangefrom relatively minor changes such as moving the venue of a single match or



moving the home ground of a club for an entire season, through to decisions having
major ramifications such as organising an unbalanced draw. What effect do these have
on ateam'schances? In the past these have not been quantified. The remainder of this
chapter shows how some of these aspects can be investigated.

7.11.1. Change of venue

By using the estimated ground effects developed by the computer tipping program, the
effects of changing venues on the chance of teams winning can be evaluated. The AFL
often move particular matches. This may beto allow for anticipated large crowds, or the
poor state of the surface of a particular ground or for other reasons. Sometimesit is done
with the approval of the affected clubs, but often against their wishes. Clubs will often
citetheloss of their HA as areason against the move, but never isthis quantified. It now
can be.

For example, supposeit is mooted that the 1996 round 14 Footscray-Melbourne match be
moved from the M CG to Footscray. In fact severa of Melbourne's home matches have
been moved, to leave the MCG free for matches expected to draw large crowds. As at
round 11, 1996, the computer rated Melbourne at 52.2 and Footscray 56.2. However the
ground effect for Melbourne at the MCG was 1.8, and for Footscray -6.8. Thusthe HA
to Melbourne at the MCG was 1.8 + 6.8. At the Whitten oval it was 9.9 + 0.4 to
Footscray. Thus, using equation 4.3, at the MCG the expected result is a 3.6 point win
to Melbourne, whereas at Footscray it is 14.3 win to Footscray. In terms of percentage
chances, this changes Melbourne from a 53% chance to a 38% chance. Thus the change
of venue resulted in a decrease of 15% in Melbourne's chances of winning. If this was
repeated over 11 home matches it would be almost two extralosses by the club.

A similar analysis can be performed for a team that changes its home ground permanently.
In 1993 St Kilda moved from Moorabbin where they enjoyed one of the highest HAs of
12.5 (compared with an average of -0.5 for the other teams) to Waverley Park where they
had a negative ground effect (-4.8 at the end of 1995, compared with the average for the
other teams of 0). By the methods of the previous paragraph the change cost them on
average over 17 pointseach home match, or a decrease in percentage chance of winning
of about 15%. This results in an expected decrease in the number of winsin their 11
home matches of 1.7. While this may not seem alot, in 1993, athough finishing 12th,
they were only two wins behind Adelaide who finished 5th. In 1995, an extra 1.5 wins
would have taken them from 14th to at least 9th on thefinal ladder. Itisclear the moveto



Waverley has been costly to St. Kilda in terms of its on-field success.
7.11.2 Fairness of draw - average strength of opponents

A major drawback of the League competition is that the draw is not balanced. It is
unbalanced with respect to strength of opposition (each team plays a different set of
opponents twice) and with respect to grounds (teams play adifferent number of matches
on their home grounds). While the general public recognise thisisinequitable, again it
has never been quantified in a proper manner. At the very most a football writer may
tabulate the number of times each team plays a weak team, or afinalist from the previous
season, but never isit done at the end of a season when the true strengths of the teamsis
better able to be estimated. This unfairness will not necessarily even out over the years.
For example at one time the draw was made on the basis that the top teams in one year
played each other twicethefollowing year. Thusthere was an ongoing biasin the draw.

Itisrelatively smplein principle to quantify the unfairnessof the draw after the season.
An analysis such as performed in section 2.14 gives team rating and HAs. Unlike other
measures such as final ladder positions or percentage, these are independent of the
toughness of the draw. Summing the ratings of the opponents of each team gives a
measure of the difficulty of the draw for that team. Thisisequivalent to the approach of
(Leake, 1976) who suggested the average rating of opponents as a measure of schedule
difficulty. The home ground advantage of opponents could also be included as this
contributes to the draw difficulty. However there are problems with this approach.
Since the good teams do not play themselves, they will appear to have an easier draw
than the others. Thuseven in a balanced competition this method would give a measure
of unbalance. For this reason we need to subtract the average strength of the opponents.
Thus we are measuring the excess strength of the actual opponents over the average
strength of all possible opposition. Thisisequivalent to adding a proportion of ateam's
own rating to account for the above bias.

If the measure of team ability in an N team competition isu;, i = 1toN, where Zu; =0,
then opponent j will exceed the average strength of all possible opponents of team i by



Summing thisfor all opponentsisameasure of thetotal strength of opposition to teami.
While we could use the us derived earlier, or better till u; + 0.5 hi, there are advantages
in using a measure that the general football follower would understand. For this reason,
percentage, which Figure 2.4 showed was highly correlated with «; + 0.5 hi, may be a
good choice.

A well understood measure of ateams ability isfinal ladder position. Thisincorporates
both team ability and some measure of HA. Unfortunately it also includes a component
due to the factor we are measuring - draw difficulty, but we bear with thisin theinterests
of having asimple measure. Whileit would be more accurate to use (say) the regression
estimates of ateam's ability rather than ladder ranking, the latter has the advantage of
being understood by the average administrator and supporter. Table 7.11 was obtained
using the ladder ranking at the end of the year. Because alow number indicates a high
ranking and strong opposition, a negative total indicates the draw was more difficult than
average, a positive number easier than average. Note that during the years 80 to 86 all
teams had a balanced draw. In other years, the difference between highest and lowest is
generally about 35. Thisis clearly asignificant amount, particularly for two teamsin a
similar position on the ladder, where the difference cannot be attributed to the different
rankings of the two teams. For example in 1988, Geelong, one position on the ladder
ahead of Richmond, had a more difficult draw by 36 ranking points. That is the
equivalent of playing the top three teamsinstead of the bottom three teams. In the same
year West Coast finished one spot above Melbourne with the same number of wins.
However Melbourne's draw was 29 ranking points harder than West Coast. A similar
draw could have given Melbourne three extra wins and put them second on the ladder.
(They actually did win their way through to the grand final). In 1995, the two teams with
the hardest draw, Melbourne and Collingwood both missed the final eight by one game,
even though they had better percentages than Footscray who finished seventh and
Brisbane who finished eighth. Again the differencein their draw difficulty could easily
account for the difference. It isclear that the degree of imbalance that existsin the draw
is enough to have a significant effect on the final ladder outcomes. Individual clubs
should also look at their draw difficulty in assessing the measure of success they have
achieved through the year.

Clearly the draw difficulty does not even out through the years. Richmond and Sydney
appear to have had along run of good draws, while Carlton has had along run of more
difficult draws. Many AFL clubs have criticised the level of financial support given to
Sydney. They have also, it appears, received support from the schedule.
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7.11.3 Fairness of home and away draw - as assessed by the
computer prediction

In this section we demonstrate how the computer prediction program can be used to
obtain another estimate of the effect of the draw on the success of clubs. This gives a
measure of the effect in ladder positions. Particular goasfor clubswould be to make the
finals, make the grand final and win the premiership. Any sporting competition is
designed to produce a winner, and the rules should ensure the expected final positions
reflect the abilities of the participants. Theladder prediction model described in section
4.2.1 provides a perfect tool to investigatethis. Given the ratings of each team and the
draw it provides the expected finishing position of all teams. Thiscan be compared with
theratings. Thisisdemonstrated with adetailed look at 1995.

The computer prediction program was used to predict the 1995 results using the initial
ratings derived from the previousyear. Theratingsof each team at the end of each round
were recorded and plotted. This showed that the rating of ateam is certainly not constant
over ayear, that teams have periods of good and poor form. (To ensurethiswas not just
an apparent affect becausetheinitia rating wasin error, the average rating was cal cul ated
for each team and the program run again with these ratings as the initial ratings. Most
teams still showed the same general pattern - astherating isin effect a smoothed average,
theinitia ratings only affect the first few week's ratings). Figures7.1aand 7.1 b show
the week by week ratings of a couple of teams aong with their average rating. Clearly
Collingwood has played the last half of the of the season much better than thefirst half,
while Brisbane has made a tremendous improvement from about Round 15 onwards.
Many of these graphsareinterestingin their own right, and could be used to investigate
the effects of changes, such asinjury to star players, changesof coach etc. For example,
the Brisbane coach announced his decision to retire a the end of the year about Round
15. In the round 15 match, Brisbane overcame a 45 point deficit a three quarter timeto
beat Hawthorn by 7 points. The victory was put down to the visiting team wilting in the
heat, but the effects were obviously seen for the remainder of the year. Brisbane'srating
shows a steady rise from that point and they made the finals for the first time.
Hawthorn's ratings decreased just as steadily, and they finished second last, missing the
finalsfor thefirst timein since 1981. While such a spectacular change in fortune can be
picked up by other means, graphs such as these can be used to study a team's form.
Their advantage is they have alowed for ability of opposition and HA. Currently
winning and losing streaks are often used, but these are affected to a great degree by
quality of opposition.
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We cannot expect a draw to be balanced for this change of form for different teams.
Always some teams will be lucky and play opposition when they are down on form or
missing star players. However it should be balanced for average ability. The average
ratings for the year were used as initial ratings for the computer predictions. (That
actually increased the predicted number of winnersfor the home and away matchesfor
the year from 127 to 134, and reduced the margin of error from 32.6 points to 31.2
points. This gives a measure of the value of the unknown information, average form
level, at the start of the year.) Thefinal ladder predictions assume current form and HAs
for the remainder of the year, so the computer predictions before round 1 of the final
ladder can be used to estimate the expected finishing positions of each team. In a
perfectly balanced competition balanced for quality of oppositionand HA, the expected
final ladder would be roughly in the same order as u+ 0.5k, Variationsfrom this reflect
unfairness in the draw. The expected ladder produced by the program, along with the
team ratings and HAs are given in Table 7.12.

Note the predicted order isin good agreement with the fair order. However teams that
have done better than fair are Geelong, Essendon, Richmond and Hawthorn. Those that
have done worse are West Coast, North Melbourne, Melbourne and Footscray .

Some of these results are consistent with the previous results on draw difficulty. The
two teams with the easiest draws both do better than expected and Melbourne with ahard
draw does worse. Again, there are probably competing effects here. Some can be
attributed to their poor ground effect at the MCG. The mgjor difference is that the
previous was based on actual ladder position whereas this method used average rating for
the year.



TABLE7.12. Expected final ladder for 1995, with team ratings and HAs shown

Predicted Premier. Fair

order Team points | Percentage| u« h u+ 0.5h order
1 Car 60 130.5 92.6 14.3 99.8 1
2 Geel 60 125.6 86.9 | 10.7 92.3 3
3 WC 56 122.5 82.3 | 225 93.6 2
4 Ess 56 118.2 84.8 3.5 86.6 5
5 Nth 52 115.7 89.0 -0.6 88.7 4
6 Rich 48 106.7 76.4 2.6 77.7 7
7 Meb 48 102.9 77.3 3.1 78.9 6
8 Coall 40 96.6 71.1 1.2 71.7 8
9 Haw 40 95.8 65.8 5.3 68.5 10
10 Foot 40 95.4 66.5 8.9 71.0 9
11 Adel 40 93.7 58.8 16.7 67.2 11
12 Svd 40 93.2 63.2 3.9 65.2 12
13 Bris 36 89.3 55.9 [ 185 65.2 13
14 Frem 36 88.5 54.0 | 14.2 61.1 14
15 StK 32 83.8 57.9 -4.8 55.5 15
16 Fitz 20 64.6 36.3 [-115 30.6 16

7.11.4. Using simulation to measure the efficiency of the draw

Of course the actual ladder positions will be due to someextent on random variation. We
might wish to investigate the extent to which the final ladder position is affected by
random variation. A season of football has alarge random element, and most supporters
recognisethat luck plays some part in the success of their club. Also club successis not
alinear function of ladder position. For example, obviousy two seconds would not be
equivalent to afirst and third. For both these reasonsiit is appropriate to look at the
probabilities of teams achieving certain goals. In racquet sports, for instance, this has
resulted in the concept of efficiency of scoring systems, where the length of matchesis
traded off against the probability of the better player winning.

Whileit is outside the scope of thisthesisto investigatealternatives, we do want to give
an idead theeffectsof random variation on thefinal ladder. The simulation discussed in
section 4.2.1 will give us an indication of its extent. Table 7.13 is the result of



simulating the 1995 season 1000 times using the average rating for the teams as initial
ratings. The table shows the number of seasons the team finished in the given position.
While the most likely position was generally closeto the ranking based on x * 0.54 given
in Table 7.12, the probability of this was often quite low. The table shows the huge
variation possible in a season of football and demonstrates the dangers in putting too
much emphasis on the final ladder position as a measure of the team's performance. Itis
possible for aimost any team to finish anywhere from last to first due to the random
effects. Therange within which ateam was an 80% chance to fall within was about four
positions for the very best and worst teams, up to about 10 positions for some of the
middle teams. This dependence on chance can be demonstrated by |ooking at individual
matches. In round 9, Adelaide beat Hawthorn 9.06 to 7.16 by two points. Had just one
of Hawthorn's 16 behinds been a goal, Hawthorn's final ladder position would have
been three places higher and Adelaide 4 places lower. In contrast, the »; and k; for those
teams as developed in section 2.14 would have hardly altered at all. For this reason,
measures as suggested in this thesis are a more accurate reflection of a team's
performance through the season.



TABLE 7.13. Chancesin 1000 of ending in any position after home and away matches

Position

Team 1 2 3 4 5 6 7 8 9 10|11 |12 13|14 ]| 15] 16
Adelaide 21 10 13} 31| 50| 54| 68| 83| 107 93| 112} 90| 110] 101| 63| 13
Carlton 302|218 136 113] 83) 63| 35| 26| 11 6 3 41 O 0| O 0
Collingwood 10] 15] 29] 36| 55| 60| 87)] 73] 109| 87| 105 93| 90| 95| 48 8
Essendon 107 | 145] 163 | 151 123| 81| 76| 51| 40| 11| 18] 13] 10 9 2 0
Fitzroy 0] O 0f O 0 0| O 1 2 1 3 9| 14| 44| 145] 781
Footscray 3| 5| 21| 39| 36| 66] 93] 86[102| 99113L07] 95| 71| 53] 11
Geelong 236|185( 1/0] 121 93] 59| 52| 31| 22| 11 71 5] 6 2 O] O
Hawthorn 2| 13| 27] 44] 50| 70| 781110 78]107] 91]103| 76| 76| 61| 14
Melbourne 18] 38| 53| 68| 82| 106] 98| 98| 95| 91| 66| 59| 59| 49| 18] 2
Nth Melbourne | 103| 114 | 124 | 114 | 125] 104] 88| 66| 41| 43| 33] 21| 9 9] 5| 1
Richmond 26] 53| 73] 90| 11/7]| 114| 95| 110 79| 91| 37| 46| 30 24| 14| 1
Sydney 41 6| 15| 2| 36| 59| 59| 8| 99| 87| 114] 110] 104] 104| 76] 20
St Kilda 1 2 4 7| 12| 18] 21| 30| 63| 62| 88]102| 116| 152{ 241| 81
Brisbane 1| 4 10{ 16| 24| 36] 48] 56| 68{100| 102| 102] 147] 126] 137| 23
West Coast 1841 189] 156 139 91| 77| 63| 32 25| 18| 14| 5[ 5 1 1] O
Fremantle 11 3 6] 9] 23] 33] 39| 62| 59| 93| 94| 131] 129| 137] 136]| 45

el



CHAPTER VIII

WHEN TO RUSH A BEHIND IN AUSTRALIAN RULESFOOTBALL: A
DYNAMIC PROGRAMMING APPROACH

8.0. Abstract

In Australian rules football, points are scored when the ball passes over the goa line.
Six points are awarded for a 'goa’, when the ball passes between the two centre posts
and one point for a 'behind', when the ball passes between a centre post and an adjacent
outer post. After a behind, the defending team has a free kick from the goal line. It
may be worthwhile, particularly in the closing stages of a game, for a defending team
voluntarily to concede a behind, by themselves passing the ball between the two outer
posts, either to avert the possibility of an imminent goal or to increase the probability of
scoring a goa themselves. A dynamic programming model is used to analyse this
Situation.

Keywor ds: sports, dynamic programming, Australian rulesfootball
8.1. Introduction

When a game between two teams nears the end of the scheduled time, it may be
advantageous for a team, particularly if it is losing, to change its strategy. A well
known exampleisthat of ‘pullingthe goali€' in ice hockey, treated by Washburn (1991)
in a paper which demonstrates how a dynamic programming formulation can take
account of all possible policies and not restrict consideration to a subset, as previous
papers had done. End game tacticsin other sports have been analysed, for example by
Clarke & Norman (1998b) on cricket and by Kohler (1982) on darts.

In this paper we consider the end game in Australian rules football, the major winter
sport of the southern states of Australia, played between teams of 18 players on oval
grounds (the same grounds used for cricket during the summer). A match is played in
four quarters, each of 20 minutes plus about 10 minutesof extratime. Playerscan run
with the rugby-shaped ball, but it is moved forward more quickly by kicking or
punching it to a team-mate, and with no off-side rule, the game is fast. The scoring
region consists of four upright posts. Kicking the ball between the two centre posts
scores a goal worth six points, while the region between either centre post and the
corresponding outside post scores a 'behind’ worth one point. A ‘rushed' behind is



scored by a defender kicking, punching or carrying the ball over his own goal line,
conceding a point in the hope of a possible territorial advantage. Draws are rare: a
typical score might be anything between 50 and 150 points.

A particular feature of the closing stagesof amatch played under Australianrulesisthe
decision by a defender whether or not to rush abehind. A defender might prefer to give
away one point for a rushed behind to eliminate the possibility of the attacking team
scoring a goal (six points), particularly when the scores are fairly close and a goal
scored by the attacking team would win the game for them. After a rushed behind, the
defending team also gains the advantage of possession with a kick from the goal line.
However, the wisdom of rushing a behind might depend on the time left until the end of
the match. What might be sensible with an hour left might not be wise in the closing
minutes.

8.2. Descriptionof modd

We propose a simple model which is intended to capture the essential features of the
game, particularly in regard to the decision whether or not to rush a behind. Such a
model may be useful in generating and testing ideas before practical trials. Tofix ideas,
suppose we (our team) play up the ground, which we divide into seven parts, numbered
asshownin Figure 8.1.

kick af 30&‘

move ovr kick

move ox rash a behind

Figure8.1. Tactical choicesin amodel of Australian rulesfootball



We try to move the ball into areas 6 and 7 in which we can attempt to kick a goal. k°
and k;' are the probabilities of scoring 6 (for agoal) or 1 (for abehind) from areai (i = 6
or 7), (k°+ k' =k;). If agoal is scored (+6), the ball is bounced on the centre spot in
area4. If abehind isscored (+1) or akick at goal misses completely (no score) or the
defending side rush a behind (-1) the defending side kicks from the goal area and has
possession in area 3 with probability .

When a team moves the ball, generally forward, it may maintain or gain ground (one
areaat atime) and keep or lose possession with the following probabilities:

Di keep ball, gain ground

D2 keep ball, maintain ground

D3 lose ball, maintain ground

Pa lose ball, gain ground.
pi+p2tpstpy=1 and normaly p;< p, andps <pa.

We take it that each of these transitions takes place between stages - decision epochs
occurring at constant time intervals throughout the duration of the match.

To facilitate analysis, we suppose that a team will always move the ball in areas 2, 3,4
and 5, and will always kick for goal when in area 7. In area 6 the team may either
move the ball or kick for goal. In area 1 the team may either move the ball or rush a
behind.

Let f.(s, p, 1) be the probability of our winning the game, with » stages remaining,
when our team leads by s points and we have the ball in areap, under an optimal policy.
Optimal here means maximising the probability of winning the game. Similarly, let
Ja(s, P, 2) be the probability of our winning the game, with »n stages remaining, when
our team leads by s and the opposing team hasthe ball in areap. Suppose also that the
probabilities{ p},{ k} and = are the same for both teams.

Then fy(s,.,1)=1ifs>0
=0ifs<0

fals, Py 1) = pifui(s, p+1, 1)
+ pafua(s, p, 1)
+ Pafuai(s, P,2)
+ pafni(s, p+1,2) forp=2,3,4,5



£, 7, 1) = ke {0.5,.,(s46, 4, 1) + 0.5f,.,(s46, 4, 2)}
+ k' {(1-mYfa(s+1, 5, 1) + 7y (s+1, 5, 2))
+ (1 = k){(1-m)f 1 (s, 5, 1) + My (s, 5, 2)}

fu(s, 6,1) = max{ move: pify.i(s, 7, 1) + .4 pafy(s, 7, 2)
kick:ke® {0.5f,.1(s+6, 4, D+...+7f,1(s5, 5,2)}}

Ja(s, 1, 1) = max { move:pf,. (s, 2, D)+ ...+ pafp(s, 2, 2)
rush: mf,. (s-1, 3, 1) +(1-m)f,.1(s-1, 3, 2) }

f(s,p, 2) =1-f(-s+1, 6-p, 1) by symmetry, for
The probability that we win when they havethe ball in areap and we lead by s
= the probability that they win when we have the ball in area 6-p and they lead by s
= 1-probability that wetie or win when we have the ball in area 6-p and they lead by s
=1 - probability that we win when we have the ball in area 6-p and they lead by s-1

8.3. Initial reaults

A short computer program was written in BASIC to evaluate f,(s, p, 1) and f,(s, p, 2)
for-251 s 1 25andp = 1to 7 for successive values of n. The following parameter

values were assumed:
p1=03 =107 r=0.7
p=04 k'=03
p3=0.1 k=05
py =0.2 k=02

Although calculations were carried out for » = 1 to 50, the main purpose of the program
run was to confirm that appropriate behaviour occurred at small values of » (near the
end of the match). Table 8.1 shows when to rush a behind, indicated by a tick,
depending on the score difference and the number of stages left. A tick indicatesthat in
area 1, adefending team will increase its chances of winning by rushing a behind rather
than moving the ball. For example, with ten stages left, a team which is two points
ahead should rush a behind, a team which is one point ahead should not. Not
surprisingly, when ateam is up to four points behind, it can be worthwhilefor it to rush
a behind if there are enough stages left for it to have a chance of moving the ball the
length of the ground and scoring a goal. At five points behind, this tactic is not



worthwhile, as the point given up through the rushed behind makes it impossible to do
better than tie.

When ateam is between two and six pointsin front, it can be worthwhilefor it to rush a
behind because even if the opposing team gain the ball from the goal line kick-off, they
are further away from the goal line and less likely to score a goal. When scores are
level, it is sometimes worthwhile to rush a behind, despite the one point penalty; thisis
aconsequence of the objective, to maximise the probability of winning.

Instead of maximising the probability of winning, a team may wish to maximise the
probability of not losing. It would be surprising for a player to rush a behind in the
closing stages of a match if the scores were level. No further calculations are needed
for the probability of our not losing a match when we have the ball in areap and we
lead by s = the probability that we win the match when we have the ball in areap and
weleadbyst 1.

84. Checkingthemodd

Any operational research model should be checked to ensure that it conformsin areal
situation. In this case we need to check the realism of our model of the Australian rules
game. Thedivision of the ground into seven areas enables us to mimic the centre spot
bounce (area 4) and the possession possibilities following a kick from the goal area
(areas 3and 5). Areas 1 and 7 are defined by the areas in which a defending team may
rush a behind and an attacking team must try for agoal. Areas 2 and 6 represent the
areain which ateam has a choice whether to kick for agoal or to move further towards
its target goal. The transitions are limited, but they conform to real life: teams rarely
move the ball backwards.

It is more difficult to validate the probabilities we have assumed, athough they are
derived from along term study of the game. Obviously, the probabilities { p), 7 and
{k) will vary from team to team, from match to match and even during a match. We
believe that the chosen values are fit for an exploratory study. A check on their
appropriateness, albeit limited, may be made by comparing the results derived from the
model applied to the entire game with the kind of resultsthat occur in practice.
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A transition matrix for the four possible policies (moveor kick for goal in area 6, move
or rush a behind in area 1) is given in Table 8.2. Each entry in the table is the
probability of moving from the state identified by the row name, under the decision
specified (if any), to the state identified by the column heading.

The steady state probabilitiesfor possession by our team are shown in Table 8.3. Each
entry in the tableis the probability that our team, following the policy identified by the
column heading, will be, at any stage, in the area specified by the row name. Thus if
we aways movein area 1 (and do not rush a behind) and movein area 6 (and do not
kick for goal), we shall bein area 1, with possession, 2.3% of the time. Each column
sumsto 0.5, as each team has possession haf the time.

TABLE 8.3. Steady state probabilities under four stationary policies

Area Move/Move | Move/Kick | Rush/Kick | Rush/Move
1 0.023 0.000 0.000 0.013
2 0.057 0.043 0.043 0.048
3 0.100 0.134 0.134 0.113
4 0.124 0.151 0.151 0.132
5 0.104 0.129 0.129 0.112
6 0.069 0.043 0.043 0.064
7 0.023 0.000 0.000 0.019

In amatch lasting, say, 100 minutes, it would be quite typical for each team to run with
the ball about half the time and to make about 200 kicks and 100 hand passes.
(Statistics on the number of kicks and hand passes are published as a matter of routine
in the sports pages of Australian newspapers). Thus we might envisage stages in the
model to occur at 5 second intervals, with 1200 stagesin the match.

We now compute the expected scores under each of the four policies. In the
move/move policy, we arein area 7 for 0.023x1200 = 28 stages and in half of these
(k;° = 0.5) we scoreagoal. We have a probability of 0.2 of scoring abehind. Thusthe
expected number of goals we score is 14 and the expected number of behinds is 6,
making an expected score of 90. In the move/kick and rush/kick strategies, we are in
area 6 for .043x1200 = 52 stages and score an expected 10 goals and 15 behinds,
making a total score of 75 points. In the rush/move strategy, we are in area 7 for
0.019x1200 = 23 stages and score an expected 11 goals and 5 behinds. Our opponents



arein area 7 for 0.013x1200 = 16 stages and thus concede an expected 16 behinds, so
that our total scoreis 87 points.

These scores are typical of those occurring in actual play and confirm that a 5-second
interval between stagesis reasonable. They aso help to confirm the reasonableness of
theinitial probability estimates.

8.5. A suggested changein scoring

The results of Table 8.1 suggest that if the objective is simply to maximise the
probability of winning, it may be worthwhilefor teamsto rush a behind for many score
differencesand at many stages of the game. However, if such astrategy were generally
adopted, it would change the nature of the game. Theinitial resultsshown in Table 8.1
are thus relevant to the view held by some commentators that "teams seem to have
adopted the attitude that it is preferableto give up one point to eliminate the possibility
of conceding agoa (six points) ... reinforced ... by the belief that one pointis asmall
price to pay for possession’. Mike Sheahan of the Herald Sun suggests a three point
penalty for a rushed behind (Sheahan, 1996). This suggestion was adopted in the
computer program with the results shown in Table 8.4.

For small values of n (near the end of the game) the effect of increasing the penalty
from one point to three is to reduce, in a simple way, the blocks of score differences
whereit is worthwhileto rush a behind: if it is worthwhileto rush a behind if the score
difference is between L and U and incur a one point penalty, then it is worthwhile to
rush a behind if the score difference is between L+2 and U and incur a three point
penalty. For n > 7 thisis not dwaysexactly the case, largely becauseof the longer term -
effects of the differencein penalty pointsincurred. Generaly, the three point penalty
has a more | asting deterrent effect.

8.6. Possbleextensons

When the attacking team scores a behind, the ball is kicked into play from behind the
goal line by the defending team. In the model this possession by the defending team
has not been considered a possible state: only possessionson thefield of play have been
counted.



Sometimes it is not clear who has possession. After a kick, a player may fumble and
drop the ball, after which both teams may struggle for possession. 'Possession in
dispute' could be a possible extension of the state description.

As well as running with the ball, a player may play the ball by kicking or handballing
(punching) it. A possible extension to the model isto alow ateam to move the ball
either within its present area (running or handballing) or to the next forward area
(kicking). In trying to move the ball further forward there would be a greater risk of
losing possession.

An obvious extension would be allow for differences in team capabilities. 1t would be
surprising if the two teams were equally competent in all areas and hence had the same
values of { p),{k) and m. Thereisclearly scope for a sensitivity analysisto investigate
the dependence of tactical choices on these probability values. Finaly, it would be
simple to incorporate differing probabilities of winning possession from the centre
circle bounce.

8.7. Conclusons

A computer program has been used to determine optimal end-game strategies for the
decision whether or not to rush a behind, and to consider the possible effect of a change
in the associated penalty. Theinitial results support the view that it is often to ateam's
advantage to concede a point through a rushed behind in order to obtain the probable
advantage of possession. The main objection to such a policy isthat it runs counter to
the spirit of the game. Australian rules football is an attacking game and a rushed
behind isakind of ‘own goal’ with perhaps an inappropriate penalty. Just asin soccer, a
deliberate hand ball to stop a certain goal is now penalised more severely than by a
simple penalty kick, maybe in Australian rules a different kind of penalty is needed
than a simple one-point penalty.

Further Reading: Readers interested in the subject matter of this paper will find
material of interest in Clarke (1993b) and Norman (1995).
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CHAPTER IX

TEST STATISTICS

9.1. Introduction

With origins that can be traced back to the 13th century, the first set of rules for cricket
were written in 1744. One hundred years later, on September 24-25 1844, Canada
played the USA at St George's Cricket Club Ground, Manhattan, New York. The game
had spread from England throughout the British Empire and beyond. Cricket is now
administered by the International Cricket Council, and matches between countries of a
suitable standard are called Test Matches and are usually scheduled as 30 hours of play
over five days. About 250 Tests were played between 1877 and 1935, but with the
expansion in the number of Test playing countries a similar number were played in the
1980s. Currently, nine Test match playing countries (England, Australia, West Indies,
India, Pakistan, Sri Lanka, New Zealand, South Africa, and Zimbabwe) play irregular
series against each other consisting of between one and six Tests. While the major
interest for statisticians is Test cricket, many official matches scheduled to be played
over at least three days are deemed First-Class and these constitute the majority of
cricket records. The domestic competitions of countries with Test status, of which the
English County Cricket Championship is the best known, are in this category.

Cricket is played between two teams of 11 players on large oval shaped grounds of
various sizes. The main action takes place in the centre of the ground on a grass pitch
22 yards long and about six feet wide. A wicket consisting of three stumps forms a
target for the bowlers at each end of the pitch. Unlike pitchers in baseball, bowlers are
not allowed to throw but use a stiff arm action to deliver the ball on the run, and usually
bounce the ball off the pitch before it reaches the batsman. Batsmen play in pairs, one
at each end, and score a run each time they run the length of the pitch, thus changing
ends. A line on the pitch about three feet in front of each wicket is known as the crease,
and a batsman is dismissed if he fails to ground his bat or part of his body over the
crease before the fielding side hit the corresponding wicket with the ball. There is no
foul area, and the batsmen do not have to run when they hit the ball. A long hit may
give batsmen time for up to four runs, while hitting the ball to the boundary
automatically scores four, and over the boundary on the full scores six. The many
means of dismissal include being bowled (the ball hitting the wicket), Leg Before
Wicket or LBW (the ball hitting the batsman's legs when it would otherwise have hit
the wicket), caught (a fielder catching the ball off the bat), and run out (failing to make
an attempted run). Bowlers bowl balls in sets of six called overs, with alternate overs
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bowled by different bowlers from opposite ends. A team's innings ends when 10
wickets have fallen, (leaving one batsmen not dismissed or not out) or the captain
'declares' the innings closed (leaving two batsmen not out).

In the traditional form of the game, each team has two innings, and a match is played
over a fixed maximum period of two to five days. In most domestic round robin
competitions first innings points would be given for the team leading after each team
has batted once, but outright victory is the major goal. This is achieved by obtaining a
higher total score than the opponent obtains in two completed innings. In Test cricket,
since only outright victory counts as a win, the losing team generally must be dismissed
twice to get a result. This means games lasting five days often end in a draw (i.e., are
unfinished). The famous 'Timeless Test' (England v South Africa, Durban, 1939)
scheduled to be played to the finish, was abandoned and declared a draw on the tenth
day of play because the England team had to board its ship home. Cricket uses a tie to
distinguish the extremely rare event when two teams finish on the same score after all
four innings have been completed. To overcome the high frequency of draws, and
generally improve spectator interest, a one-day form of the game was introduced in the
1960s. Each team has only one innings in which they each face a maximum number of
balls (usually 300) over a total of about six hours playing time. While less tactically
subtle, failing severe interruption by the weather a decision is always achieved.

The difficulty of scoring runs depends very much on the quality of the pitch, which
varies greatly from match to match and generally deteriorates during a match. Thus,
while 300 may be a respectable score in a Test innings, the highest team score in a Test
match was 952 for 8 wickets by Sri Lanka against India in 1997, while the lowest was
26 by New Zealand against England in 1955. A typical scorecard for one innings as
usually published in the daily press or cricketing almanacs contains a list for each
batsman in batting order with their total score, the method of dismissal and the bowler
responsible. Note the bowler is still credited with taking the wicket even if the batsman
is caught. For each bowler, the number of overs bowled, the number of maidens (overs
which were not scored off), the total runs scored off their bowling and the number of
wickets taken is given. Also included is the team score when each batsman was
dismissed. This allows the calculation of the partnership - the total score made while
each pair of batsmen were batting. The batting order is usually determined by ability,
with the first six being recognised batsmen and the last four players selected for their
bowling. Milestones for batsmen are the multiples of 50, in particular a century. For
bowlers, five wickets in an innings or 10 in a match are more difficult achievements.
While the traditional scoresheet used by officials has more information, such as a
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batsman's individual scoring shots, it is a non trivial task to reconstruct a ball-by-ball
account of the match from the score sheets. Since official score sheets are usually only
available from the particular association running the match, and these may not be
archived, almost all analysis is done from published scorecards. (Officials actually
burned the official score book used for the historic 1960 first ever tied Test). Some
televised matches use computer systems that keep ball-by-ball data, including where on
the ground the ball was hit, but such data is not freely available.

Table 9.1. shows a typical Test career record, that of English all rounder lan Botham.

TABLE 9.1. Test career record of lan Botham

M | NO Runs HS Ave 100 50 Ct St
Batting 102 161 6 5200 208 3354 14 22 120 -

Balls M R W Ave Best 5 10 SR Econ
Bowling 21815 788 10878 383 28.40 8-34 27 4 56.9 2.99

There is a lack of symmetry in the scorecard information which is reflected in the career
records. For a bowler, we know how many balls he bowled (Balls), runs allowed (R)
and wickets taken (W). For a batsman, we are told runs scored (Runs) and whether he
lost his wicket or not, but are not told how many balls he faced. So for bowlers, we can
calculate a 'strike rate' equal to the number of balls bowled per wicket taken (SR =
Balls/W), but cannot calculate the run rate (Runs/Balls) for batsmen. Only in recent
years has balls faced by the batsman been collected, but it is rarely published in the
newspapers. Even if balls faced by each batsman is published, it is impossible to
reconstruct balls faced by a particular partnership. In the same way, the number of
maiden overs gives some distributional information about bowlers which is not
available for batsmen. Recent scorecards sometimes show the number of fours and
sixes hit by batsmen, but a bowlers figures are never broken up in this way.

Like all sports, changes to rules require some care when statistics from different eras
are compared. While an over is now standardised as six balls, Australia used eight ball
overs for sixty years prior to 1978. The rules for LBW have undergone several
modifications, and the definition of a no ball and wide may alter from series to series,
or from Test to one-day cricket. The treatment of sundries (no balls, wides and leg byes
and byes) has also changed over the years. For example, no balls are now debited to a
bowler's figures, but this was not always the case. In some competitions, a no ball has
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been credited as two runs, whereas traditionally it has been worth one run. It has
recently been suggested to discontinue counting a wide as a ball faced by batsmen.
This seems reasonable, since a wide by definition is a ball impossible to hit.

While earlier publications (Haygarth, 1862-1885, 1925) detail the history of cricket for
each season from 1746, Wisden Cricketers Almanack, (Engel, 1997) has been the
traditional Bible of cricket statistics since its first publication in 1864. Each annual
edition contains statistics from the previous English domestic season, plus full
scorecards of every Test match played around the world during the year, and coverage
of cricket in 40 different countries. Over 40,000 first-class matches have been played,
and the maintenance and publication of their records is a major aim of the Association
of Cricket Statisticians and Historians (ACS). The association publishes a quarterly
journal, The Cricket Statistician, containing non-technical articles on cricket statistics.
All ACS scorecards are gradually being transferred to Criclnfo, a fan-based
organisation which aims to provide cricket scores and records via the World Wide Web.
Further details on both these organisations and several similar ones can be obtained
from the web. While such organisations provide cricket statistics, the capabilities of
their memberships to perform analyses of a technical nature are limited. Thus, while a
huge number of statistics and records are collected and published, there is little attempt
at any serious statistical analysis.

Cricket has the distinction of being the first sport used for the illustration of statistics.
In Primer in Statistics, Elderton and Elderton (1909), used individual scores of batsmen
to illustrate frequency distributions and elementary statistics. Elderton (1927) used
scores of batsmen to illustrate the exponential distribution, and Wood (1941)
investigated the idea of consistency. These efforts resulted in Wood (1945) and
Elderton (1945) reading separate papers at the same meeting of the Royal Statistical
Society. These papers have some claim as the first full quantitative papers applying
statistics to sport. The papers are accompanied by 17 pages of discussion,
demonstrating the great interest generally created by papers in sport. Yet in spite of this
interest, the topics raised were ignored in the professional statistical literature for over
thirty years. In contrast to baseball, few papers in the professional literature analyse
cricket, and two rarely examine the same topic. This allows us the luxury of looking in
some detail at virtually all the published material using statistics in cricket.
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9.2. Distribution of scores

The distribution of batting scores was first discussed by Elderton and Elderton (1909).
Graphs of a batsman's scores were used to illustrate skewed distributions. While no
formula was given a theoretical graph that could only be that of the negative
exponential distribution is shown. Elderton (1927) formalises this by using the same
scores to illustrate the Pearson Type X or negative exponential distribution. If a
batsman scores only singles and his probability of dismissal is constant his scores
should follow a geometric distribution, the discrete equivalent to the negative
exponential. Elderton (1945) obtains a reasonable fit of the geometric distribution to
the individual scores over three years of four early cricketers. Wood (1945) takes this
further and compares the scores and several statistics of several groups and many
individual batsmen with that expected using the geometric distribution. Although no
significance tests are used, the fit is generally fair. However, the number of ducks and
scores less than five is less than predicted while the number of centuries is greater than
expected suggesting that the probability of dismissal is not constant. Cricket folklore
says batsmen are more prone to dismissal early in their innings, perhaps get nervous or
careful when their score reaches ninety, and tire or hit out later in their innings. In fact
there are several reasons why scores should not be exactly geometric. The score does
not increment by one, but advances by jumps of usually 1, 2, 3, 4, or 6. As well as
changing throughout an innings, one would certainly expect the probability of dismissal
to change from innings to innings, depending on the quality of the pitch, or the
opposition.  Wood raises the possibility that the discrepancies are the result of
combining two or more geometric distributions and investigates this by looking at
batsmen's scores over several years both individually and in combination. He finds that
while combining several geometric progressions will understate the expected number of
zeros and centuries, the effect is small and does not explain the discrepancy with the
observed scores.

Other authors argue that because the chance of dismissal varies throughout an innings,
and from one innings to another, the negative binomial distribution may describe the
number of runs scored in completed innings. Using data from Wood for three batsmen,
and data for three contemporary batsmen, Reep et al. (1971) found only one batsman's
scores in each set were approximately negative binomial. Pollard (1977) applies a chi-
square goodness of fit test to Elderton's data and finds the geometric distribution
performs slightly better than the negative binomial. However, both fitted distributions
have higher variances than the empirical data. Pollard et al. (1977) claim the excess of
high scores will not be present if partnerships are investigated, as several partners may
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be dismissed while a player is making a high score. They obtain a good fit of the
negative binomial to all partnerships for a team in the English County championships.
On the other hand, Croucher (1979) found a negative binomial failed to fit the total
number of runs for each completed Australian partnership in 82 England Australia
Tests.

In the papers of Elderton and Wood, we first come across a continuing problem in
cricket - how to handle the not out scores (i.e., scores by batsmen who are not
dismissed). While Elderton and Elderton (1909) added the next score to a previous not
out score, these early papers generally treated not outs as completed innings. Kimber
and Hansford (1993) looked at the empirical discrete hazard and smoothed empirical
hazards of the Test, first class and one-day international scores of several batsmen, and
compared them with the constant hazard expected for the geometric distribution. For
most batsmen, the region from 0 to 5 runs is higher than expected. However, they
found no compelling evidence that the hazard is not otherwise constant and concluded
that the tail of the score distribution for a batsman is roughly geometric.

Many arguments against the geometric distribution for scores do not apply to the
number of balls a batsman faces. This count certainly increments by one. A batsman
can alter the degree of risk he takes, in order to play each ball with the same chance of
dismissal. Early in the innings he is just content to survive, whereas later when he is
settled he will take risks in order to score. Similarly, on a bad pitch or against good
opposition he may play more carefully, and adjust his scoring rate to keep roughly the
same risk of dismissal. For these reasons, Clarke (1991) suggested the distribution of
the number of balls faced by a batsman in an innings may be geometric. Unfortunately,
in the past the number of balls faced has not been regularly published or even kept by
scorers. However, using ball by ball data for Australian batsmen from all matches in
the 1989-90 one day series involving Australia, Pakistan and Sri Lanka, he failed to
obtain a better fit for balls faced than scores. All 60 innings of the top Australian
batsmen were combined, and the distribution of both the number of balls faced and
scores were compared to the geometric distribution using the Kolmogorov Test. Both
scores and balls faced had p values of about 0.2. Strangely, the results for scores
tended to be the reverse of those found in Test cricket; the number of very low values
and very high values was less than expected for both scores and balls. The limited
nature of one-day cricket obviously produces a distribution of scores different from the
traditional game.
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Because teams generally play under similar conditions throughout a match, a strong
positive correlation between performances in a match may be expected. However,
various investigations have failed to produce much evidence of this correlation.
Elderton (1945) tabulated the scores of two pairs of county championship opening
batsmen, using intervals of 10 runs, and by visual inspection found no correlation
between their scores. Croucher (1982b) calculated the correlation for each team
between twenty five pairs of completed innings in Tests between Australia and
England. He found zero correlation for Australia, and a non-significant negative
correlation for England. Testing a belief held by fans that long partnerships are
generally followed by short ones Croucher (1979) found some evidence to the contrary,
that partnerships following century partnerships tend to be longer than usual.

The distribution of scores is important as it affects the appropriateness of other
statistics. Kimber and Hansford (1993) question the use of the batting average. This is
defined as the total number of runs scored divided by the number of times the batsman
has been dismissed. Thus, runs scored in innings in which the batter has not been
dismissed are included in the numerator, but the denominator does not count those
innings. Because of the handling of not outs, many cricket fans have a certain unease
with the current statistic as it appears to give inflated averages - a player may have an
average larger than his greatest score. Since more than 10% of scores are not outs, it is
an important statistical issue. Kimber and Hansford demonstrated that the batting
average has the desirable property of consistency irrespective of the censoring
mechanism for not out scores only if the distribution of scores is geometric. Since this
is not the case exactly, they claimed the batting average does not estimate the
population mean. Applying the methods of survival analysis, they defined a non-
parametric alternative which effectively distributes the not out scores using the
empirical distribution of any higher scores. A parametric adjustment is needed when
the batsman's highest score is not out, as there is no empirical information on his
chances of dismissal above that score. The method has the disadvantage of needing re-
calculation from scratch with each new score. They calculated the new average for
several batsmen and also suggested other statistics such as selected centiles. They
finally recommended a slight alteration to the career statistics of batsmen, by including
with the number of 50s and 100s the percentage of 50s and 100s inflated for not outs.
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Elderton and Elderton (1909) used the standard deviation of scores as a measure of
consistency, with zero implying perfect consistency. By contrast, because the mean and
standard deviation of the geometric distribution are (roughly) equal for a large mean,
Wood suggested using the coefficient of variation (CV) (multiplied by 100) as a
measure of consistency, with the closer to 100, the more consistent a batsman. In his
analysis, Wood found CVs as low as 96 and as high as 139, but mainly in the range
100-109. Pollard (1977) claimed a high CV indicates a batsman has problems early,
but scores runs more easily later in the innings. Using a model where the number of
balls faced was geometric, while the score off each ball had any unspecified alternative
distribution, Clarke (1991, 1994) showed that perfectly consistent batsmen will have
CVs greater than 100, and that perfectly consistent batsmen with different scoring
distributions off each ball will have different CVs. Thus it is not possible to have a
single measure (CV closeness to 100 as proposed by Wood) which indicates perfect
consistency for all batsmen. Still, the regular publication of the standard deviation or
CV of scores would assist fans in judging the consistency of batsmen. Analogous
questions on the distribution and consistency of runs and wickets for bowlers have not
been analysed in the literature.

9.3. Rating players

The major system of rating players is the Deloitte ratings which were created by
Deloitte, Haskins and Sells in 1987. After several mergers, they are now called the
Coopers & Lybrand ratings. The system rates the current Test form in both batting and
bowling for all international players with ratings updated after each Test match. The
algorithm supposedly takes into account the playing conditions, the strength of
opposition, and the results of the match. However, these are estimated objectively from
the details in a typical summary score sheet. The ratings have been backdated to the
late seventies.

Because of its proprietary nature, it is difficult to obtain details of the algorithm, and
even more difficult to get details of the statistical work behind its derivation.
Berkmann (1990) contains a few pages of description of the algorithm, along with
ratings for all players from the 1980s. A rating is worked out for each performance
(defined for the purposes of calculating the ratings as an innings for a batsman, and 30
runs conceded for a bowler), combined to give a player rating for each Test, which is
then smoothed with past ratings to produce a new rating. The statistics used to calculate
a batsman’s rating are runs scored, whether not out or out, the team score, wickets
fallen, and the match result. The opposition bowling strength is also used but this is
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estimated from the statistics. For bowlers, the statistics used are runs conceded, wickets
taken (including which batsmen), balls bowled per wicket (strike rate), runs conceded
per ball, team scores and match result. The ratings take a player's basic statistic (e.qg.,
runs scored or wickets taken) and multiplies it by a series of factors depending on
whether the performance is above or below average with respect to playing conditions.
For example, a batsman's runs are increased if the pitch is ‘difficult’, as measured by the
ratio of the number of runs per wicket in the match to the average of 31 found in
previous Test matches.

A major point of contention is that the algorithm rewards performances of players on
the winning side in a match more than in drawn or lost matches. Thus, above average
players on the winning side are given a bonus, while below average players on the
losing side are penalised. Ted Dexter, one of the initiators of the scheme, said “the
pleasant surprises include ... the considerable accuracy of the ratings when used to
compare the relative strengths of the Test playing countries” (Berkmann, 1990, page
iii).  This is hardly surprising for an algorithm that gives a greater rating to a
performance on a winning team. Also the rating is not symmetrical with respect to
batsmen and bowlers. A bowler’s strike rate is included in the calculation, but not a
batsman's scoring rate. Similarly, the overall opposition bowling strength is taken into
account for batsmen, but opposition batting strength is not used for bowlers.
Nevertheless, the ratings seem to have gained some acceptance by cricket followers.
However, the need for some proper analysis of the scheme is evident. For example, a
simulation could be used to investigate the effect playing on good and poor teams has
on ratings of players of similar calibre. The effect of batting against good and poor
bowling sides should also be analysed. Surprisingly, alternatives based on models of
how Test cricket is played have not been proposed.

The Deloittes ratings are only applied to Test cricket. Johnston (1992) and Johnston et
al. (1992, 1993) looked at a method of rating players in one-day cricket in which
traditional statistics are not as relevant. A quick score of 30 may be more valuable than
a slow century; three wickets in the last over is of no more value than a maiden. By
comparing the actual number of runs each ball with the optimal given by a dynamic
programming formulation, both a batsman's and a bowler's contribution could be
measured in a radically different way to normal methods. The context in which events
occurred becomes important. Johnston et al. (1993) gave ratings for each player in a
one-day series. One difficulty confronting the acceptance of the system is its need for
ball-by-ball data. However, with the growing use of computer-assisted scoring, such
methods become more viable.
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9.4. Tactics

Some quantitative work has been done in the area of tactics. The limited nature of the
innings in one-day cricket creates a trade-off between run rate and loss of wickets.
Traditional tactics suggest an innings starts cautiously, with teams scoring slowly and
preserving wickets. The run rate steadily increases, until near the end of the innings
there is often a frenzy of runs scored and wickets fallen. Clarke (1988) analysed this by
setting up a dynamic programming model with the stage the number of balls to go in
the innings. The model assumed all batsmen were of the same ability, and the
probability of dismissal on each ball depended only on the run rate. For the first
innings, the states were the number of wickets to have fallen, and the objective function
was the number of runs scored in the remainder of the innings. In the second innings,
the state was the number of wickets and the number of runs to go, and the objective
function was the probability of exceeding the opponent's score.

Under the assumed relationship between run rate and dismissal probabilities
(necessitated by a lack of data), Clarke’s results suggested that teams should score more
quickly early in the innings - in fact, at any stage they should score at a slightly greater
rate than the expected rate for the remainder of the innings. Such tactics have become
more accepted recently, and in particular used by the current World champions, Sri
Lanka. Johnston (1992) later showed the recommendations were valid under a range of
relationships between run rate and dismissal probabilities. Clarke and Norman (1995,
1997a, 1997b) have extended the models to allow for batsmen of unequal ability. Near
the end of an innings in Test or one-day cricket, two batsmen of widely different ability
will often refuse a possible run early in the over to protect the weaker batsman from the
strike. They investigated the point in the over and in the innings when this tactic is
optimal with respect to different objective functions.

The way batsmen are dismissed has received some attention. For example Croucher
(1982a) analysed dismissals in the 96 Australia - England Test matches between 1946-
80. He investigated the various types of dismissal with respect to batting position and
location (England or Australia). About 20% of batsmen 1 to 7 are bowled, but this
increases steadily to nearly 38% for number 11. The LBW dismissal rate is about 14%
for batsmen 1 to 8 but much less for batsmen 9 to 11. In contrast the percentage of
batsmen caught is reasonably constant. A thorough investigation of modes of dismissal
would be interesting and could find application to vary tactics in different countries.
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9.5. Umpiring decisions

An area that has received some attention is the contentious one of umpire bias. Only
recently has the traditional practice of the home country providing both umpires for
Test matches been modified. Because the rule is quite complicated, LBW is the most
subjective type of dismissal and often creates controversy. For the period 1877 to 1980,
Sumner and Mobley (1981) found significantly fewer LBW dismissals against home
teams than visiting teams in India, Pakistan, and South Africa, but not in Australia.
Croucher (1982a) found that, while on average about 12% of batsmen are dismissed
LBW, this percentage varied from 10.6% in Australia to 14.0% in England. This could
be due to the different behaviour of pitches in England and Australia. However when
subdivided by team, LBW rates for England were fairly constant at 11.6% and 12.0% in
Australia and England, but for Australia varied from 9.5% in Australia to 15.4% in
England. This could be due to umpire bias, or Australian batsmen not adjusting to
conditions. Breaking batsmen into two categories, 1-5 and 6-11, the frequency of LBW
decisions showed a dependence of location and category for Australian batsmen but not
for English. One interpretation of this is that umpires give decisions against top order
batsmen but square the account against lower order batsmen.

Crowe and Middeldorp (1996) used logistic regression to compare LBW rates in Test
matches played in Australia for visitors and Australians for the period 1977-1994. The
odds of an LBW dismissal are defined as the ratio of LBW dismissals to all dismissals
by other means. A logistic model was used to fit the logarithm of the odds for a series
of matches to a linear expression using indicator variables for the various countries.
Separate models were fitted using only the top six batsmen and all batsmen. An initial
model found a significant difference for LBW rates for visiting teams and Australia.
Since there was no evidence of the odds for countries changing over time, nor of
Australia’s odds changing depending on opponent, the overall odds for each country
were calculated and compared with the common odds for Australia. For both the top
six batsmen and all batsmen, only three of the seven countries that had visited Australia
during the period (England, Sri Lanka and South Africa) had significantly
proportionally more LBW dismissals than Australia. For example the odds ratio for
England was 1.7, with a 95% confidence interval of 1.2 to 2.5. Interestingly India,
whose captain had complained of umpire bias, had an odds ratio of only 1.059, barely
greater than the expected value of 1 if there was no bias. Of course, as Crowe and
Middeldorp point out, other factors such as a difference in playing style, more
experience on home wickets or different tactics could account for the results.
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9.6. Rain interruption in one-day cricket

Because of the limited number of balls in one-day cricket and the requirement that a
result has to be achieved if at all possible, allowance has to be made for rain
interruption. For example, if the innings of the team batting second is shortened
because of rain, the target score for victory has to be reduced to compensate for the
reduced number of overs. Various formulae to adjust the target score have been tried
with varying degrees of success. These rules appear to be developed ad hoc by
administrators and rarely are based on a proper quantitative study. They are used until
a particular situation arises which makes a mockery of the rule, which is then replaced.
For example, in one World Cup semi-final, South Africa, who had a reasonable chance
of achieving their target when rain interrupted, were then required to face one ball and
score 22 runs to win when play resumed.

Using a dynamic programming formulation to investigate tactics as described earlier,
Clarke (1988) produced a table giving the number of runs a team could expect to make
in the remainder of the innings, depending on the number of wickets fallen and the
number of balls to go. For the second innings, the analysis gave the probability of
scoring the required number of runs, again depending on the number of wickets fallen
and the number of balls to go. He suggested the tables could be used to evaluate the
effectiveness of rain interruption rules, so that teams would have the same chance of
winning after the interruption that they had prior to the rain. He showed that the rule
current at the time, where the second team had to score at the same rate for the
shortened number of overs, was highly advantageous to the team batting second.

Duckworth and Lewis (1996) and Duckworth (1997) produced a method using tables
similar to Clarke's first innings table, but which were derived from past statistics. They
treated balls to go and wickets remaining as run-scoring resources, and fitted an
exponential decay model for the average number of runs scored to past data. The
resulting function used to give a measure of the proportion of these combined resources
available at any stage of the innings. Targets are adjusted depending on the proportion
lost due to rain. For example, suppose a team chasing 250 has lost two wickets after ten
overs when a rain interruption reduces their available overs from 50 to 40. The table
shows at the time of the interruption they had 77.6% of resources left, but on
resumption had 68.2% left. They lost 9.4% so their target is reduced by 9.4% of 250 or
24 runs. The method can be applied to interruptions at any stage of a match. The
system allows the calculation at any stage of the second innings of the score the batting
side needs to win the match if abandoned at that point. This allows a team and the
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spectators to gauge the match run by run and wicket by wicket. This system was first
used in international competitions in Zimbabwe in 1996, and is being used for domestic
competitions in England in 1997.

A by-product of the system could be a better method of declaring the winning margin in
one-day matches. Margins in one-day matches are still given using traditional
measures of runs if won by the team batting first or wickets if won by the team batting
second. These can be quite misleading. For example, a team batting second that scores
the winning run on the last ball of the innings may be credited with a 6 wicket victory.
This sounds comfortable, when in fact the team had used virtually all their resources.
The method could also be investigated to provide alternative tie-breaking procedures in
one-day round-robin tournaments.

9.7. Sundries

In 1981, in response to a request for data for a simulation study of batting order in one-
day cricket, a student of the author received a firm refusal from a high ranking
Australian cricket administrator which included " Any analysis that you suggest would
be wholly hypothetical, and of no value...the analysis would only be greeted by scorn
by those with a proper understanding of cricket. The inherent essence of cricket is its
unpredictability; and an attempt to reverse this .. is something | would not personally
encourage.” With the increasing use of science in sport, one hopes this view is not
widely held today. Cricket administrators now clearly seek assistance from academics
to solve management problems that are not peculiar to cricket (Johnston, 1992; Willis
and Armstrong, 1993; Willis, 1994; Wright, 1991, 1992).

The history of rain interruption rules suggest they are less reluctant to seek their help
with on field and other problems. Few first class competitions have the luxury of
allowing 5 days play as in test matches. Consequently, in a high proportion of these
matches, neither team achieves an outright victory. In domestic round robin
tournaments, the relative allocation of points for first innings and outright victory
varies, and administrators have experimented with bonus points for fast batting or
penetrative bowling. Rarely are these experiments based on, nor their effectiveness
judged by, statistical studies. Bosi (1976) investigated the effect of the introduction of
bonus points in county cricket. He claimed that a significant change in the correlation
in ladder position using the traditional and new methods shows the rule alteration
affected the way cricket was played.
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However, statisticians should play a major role in developing rules, not just evaluating
their effect after the fact. The problem of allocating points for unfinished matches
should be investigated, with possibly some of the methods used for one day matches
applied. There is currently discussion in cricket about the publication of a world
ranking of Test teams. Wisden publish their own table (Engel, 1977, p19), based on
each country scoring 2 points for winning a series and 1 for drawing, but the system
does not take into account margin of victory nor home advantage. With countries
playing intermittent series of different lengths, statisticians should investigate and
recommend suitable ranking systems before cricket administrators decide on something
inappropriate. Similarly, player evaluations should not be considered resolved, and
rivals to the Cooper and Lybrand rating should be developed.

Cricket is highly variable. Clarke (1994) showed that with roughly geometric
partnership score distributions, purely random variations give rise to team scores
ranging from 100 to 500 in Test cricket. Johnston (1992) simulated one-day cricket
using optimal batting rate policies and obtained scores ranging from 75 to 322. A game
with so much variation provides ample scope for statisticians to assist participants,
administrators and supporters to separate real effects from random noise.

However, topics that have proved fruitful areas of research in other sports have been
largely ignored in cricket. While the difficulty of winning a Test series on foreign soil
is recognised, home ground advantage has not been thoroughly studied. Pollard (1986)
quoted home advantage in cricket county championships to be 56.1%, excluding drawn
games. Because in domestic competitions some teams play on pitches that regularly
produce results, and outright wins are rewarded more than first innings wins, Clarke
(1986) showed that some teams not only win a greater proportion of the points awarded
on their home ground, but compete for a greater number of points than other teams.
Such a system would never be tolerated in other sports.

Surprisingly few alternative statistics have been suggested. Cricket fans seem to be
satisfied with dividing the traditional ones into categories. So, a batsman is still judged
by his average, although this may also be given against a particular country or at a
particular ground. With the introduction of one-day cricket, strike rate, economy rate,
and run rate have also become popular and the articles mentioned here have made
several suggestions for alternative statistics. With these statistics currently being
measured over the life of a player, the use of moving averages could be used to measure
current form. There may be advantages in combining the statistics in various ways.
For example Kimber (1993) compared bowling statistics using scatterplots, while
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Ganesalingam et al. (1994) applied multivariate analysis techniques to classify players
as batsmen, all-rounders, or bowlers. Such studies could suggest further statistics or
indices to be used in evaluation of players and selection of teams.

9.8. Conclusion

In spite of a huge collection of statistics on cricket dating back over two hundred years,
little attempt at serious analysis has appeared in the professional literature. Of all the
sports in this text, cricket has the distinction of having statistics that stretch back the
longest, the first use of sport in a statistics text to illustrate statistical principles, the first
full quantitative paper, and yet probably the fewest serious papers analysing the
statistics in the professional literature. It is surprising that more statistical analysis has
not been undertaken. Many questions in cricket could be investigated using relatively
elementary statistical techniques. Is one team better than another? Is one batsman
better than another? Does the rate of dismissal vary?

A large number of papers have been written about baseball - best batting order, value of
player, measurement of hot streaks etc. Similar research could be done in cricket. One
of the neglected areas calling for study is bowling. When thanking Elderton, (Wood,
1945) said "At last a great statistician has discovered what is, | believe, the richest field
of statistical material left untilled. | have scratched over its surface, but other
statisticians will find in it materials for all sorts of statistical experiments, particularly
in the bowling analyses™. This statement is still valid today.



CHAPTER X

ANOTHER LOOK AT THE 1985/86
SHEFFIELD SHIELD COMPETITION CRICKET RESULTS

10.1. Introduction

This article aims to show how a simple analysis of competition results can yield
valuable insights into team performance and competition rules. While the analysis has
been done on the Sheffield Shield, similar analysis could be performed on any other
cricket or sporting competition. While this simple analysis uses only the outcome of the
matches (first innings win, outright or draw), similar calculations using wickets, runs or
runs per wicket could be performed.

In the 1985/86 Sheffield Shield competition, the team leading on the first innings
gained four points with eight points for an outright win. The results of the 1985/86
competition are shown below in Table 10.1.

TABLE 10.1. Results of the 1985/86 Sheffield Shield competition

Outright First innings Total

Team wins wins points
NSW 4 6 56
Qld 4 5.5 54
Vic 2 8 48
WA 2 6.5 42
SA 2 3 25
Tas 0 1 4

The two top teams, NSW and Qld, played in the final at Sydney which was drawn but
NSW won the Shield because of its top position. While NSW performed best under the
rules of the competition, this may not necessarily indicate that NSW was the best team
under all scoring systems and ground allocations. To determine how well each state
performed, a more critical analysis of the results is appropriate. Here we analyse the
year's results in various ways and suggest alternative methods of allocating points.
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10.2. First innings win - outright win weighting

In the 1985/86 season a first innings victory gained four points, and outright victory
gained another eight points. In the past, other weightings have been used to give
greater rewards to an outright victory such as four for a first-innings and 16 for an
outright. In fact this weighting can be changed drastically without altering the above -
order. Keeping first innings points at four, outright points can come down as low as
five and go up as high as you like and the above order will be preserved. But the
scoring system has again been changed for the 1986/87 season. (Note: For 1987/98, a
team earns four points for an outright win and two for leading on the first innings.
However, any team that is beaten outright after leading on the first innings, loses its
first-innings points. In addition teams who do not bowl the required number of overs
may be penalised points.)

10.3. Home ground advantage

A greater insight into the year's results can be achieved by looking at where each team
gained its victories. Table 10.2 shows the points won/lost in each match.

The home team is shown at the top of the table and the away team down the side. The
entry shows the number of points won by the home team and the number of points won
by the away team. Thus 8-4 in the SA column/Tas row tells us SA (home team) gained
eight points for the outright, although Tasmania won first innings points.

Table 10.2 allows us to easily see a team's home and away performance, or compare

two teams' performances against other teams. The table shows that:

* None of the top four teams lost outright at home.

» When the top four teams played each other only three times out of 12 did the away
side gain first innings points.

e Teams are far more likely to win at home (146 points) than when they are away (86
points).

» With 52 points being won in Sydney, the NSW ground is far more likely to produce
an outright result than is the MCG at which only 20 points were won.

From these findings, we see that a side is given a huge advantage when the final is
played at its home ground. Even if the final was decided on first innings points, the
home side would have a 75 per cent chance of winning based on 1985/86 results. By
insisting that the visiting (second placed) side win outright to win, the Shield organisers
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are virtually giving the Shield to the top side.

TABLE 10.2. Points won/lost in each match.

Home Team Total

points

NSW | Qld Vic WA SA Tas away

Away For- | For- | For- | For- | For- | For- Ag-For

Team Ag Ag Ag Ag Ag Ag

NSW - 0-4 4-0 12-0 40 0-4 20-8
Qld 4-0 - 4-0 4-0 0-12 | 0-12 12-24
Vic 8-4 4-0 - 0-4 4-8 0-12 16-28
WA 12-0 2-2 4-0 - 0-4 0-4 18-10
SA 12-0 | 12-0 4-0 4-0 - 0-12 32-12
Tas 12-0 | 12-0 4-0 12-0 8-4 - 48-4

Total points | 48-4 | 30-6 200 32-4 | 16-28 | 0-44 146-86

at home

Table 10.3 illustrates the point by showing the total number of points awarded in
matches each team played at home and away and the percentage of those points each
team gained. It shows that:

* The four top teams gained the majority of their home game points - over 80 per cent
for each of the top four teams and over 90 per cent for Victoria and NSW.

e The greatest number of points came from games played in NSW where 52 points
were scored from a possible 60 points available.

e The least number of points came from games played in Victoria, where only 20
points were scored and all by the home side.

* Games played in NSW produced almost 50 per cent more home points than those
played in Queensland and at least 20 per cent more home points than games played
in any other State.

* In matches played away from home those involving Victoria and SA produced the
most points and those involving NSW the least points.

e Both Victoria and Queensland gained more than 60 per cent of the points scored in
their away matches whereas NSW gained only 30 per cent.
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The above analysis shows quite clearly that there is a large home ground advantage in
the Sheffield Shield competition. This advantage is in two parts. The first allows a
team to perform better on its home ground than away - such an advantage is inherent in
the game and while it appears to be greater for some teams than others, that is not a
problem. It is up to each team to learn to successfully exploit the idiosyncrasies of their
home ground. The second is more insidious - for successful exploitation of this home
ground advantage, some teams are rewarded more than others. This type of home
ground advantage is inherent in the scoring system and administrators should work
towards its removal.

It is clear that NSW finished on top of the table because they exploited a home ground
where outright victories were the norm. At the other grounds, perhaps because of flat
pitches or loss of time due to rain, outrights were far less common. These teams were
put at a severe disadvantage because of the scoring system used. It should be noted that
if groundsmen wish to assist their teams, they should prepare pitches which will
produce outrights. That way, their team will be playing for zero or 12 rather than zero
or four points. Similarly, captains would be better off agreeing to declare their first
innings closed at 0-0 and so make a first innings win an outright win. (This is not as
outlandish as it seems. A similar happening occurred in a Victorian Cricket Association
match when the teams declared their first innings closed at 2-69 and 3-69, allowing
time for one side to gain an outright.)

TABLE 10.3. Comparison of points won at home and away

Points won at home matches Points won at away matches

Both Home team Both Away

Home teams x100 Away teams team x100

Team team combined | /combined team combined | /combined
NSW 48 52 92% 8 28 29%
Qld 30 36 83% 24 36 67%
Vic 20 20 100% 28 44 64%
WA 32 36 89% 10 28 36%
SA 16 44 36% 12 44 27%
Tas 0 44 0% 4 52 8%
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10.4. Overcoming home ground advantage

It is obviously the organiser's responsibility to choose scoring methods which reduce
the present home ground advantage. Two methods are suggested.

1. Sharing points for undecided outrights. This method treats undecided outrights in
the same manner as undecided first innings points. The Queensland/WA match resulted
in the four first innings points being split 2-2 as the two first innings were not
completed. If outrights were treated the same way, the eight outright points would be
split between the two teams in the event of the match being drawn. This would mean
that every match resulted in the awarding of twelve points, and in 1986 would have
resulted in the following final Shield table.

TABLE 10.4. Shield table resulting if points for undecided outrights shared.

Team Points
Queensland 78
NSW 76
Victoria 76
WA 70
SA 44
Tasmania 16

2. Using point difference. In deciding the point allocation for games administrators
influence the way the game is played. Rewards are given for outcomes that correspond
to some ideal behaviour winning on the first innings or outright. For example, in the
past, to encourage attractive play, bonus batting points have been given for scoring
quickly. Now, while winning matches is behaviour that should be rewarded, it also is
true that not losing matches should also be encouraged. A team is not penalised for
losing matches outright. In Test cricket, the quality of not losing matches is important -
teams sometimes fight for several days just to avoid defeat. In the present Shield
competition, such a fight would not be rewarded. A team receives exactly the same
number of points if it loses or draws. A simple way to incorporate rewards for not
losing (or penalties for losing) is to award points as present but determine the table on
points difference: points won less points lost.
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Such a table is easily made up by referring back to Table 10.2. For example, NSW total
points gained is 48+8 = 56, total points lost 4 + 20 = 24. Doing this for each team gives
the Table 10.5

TABLE 10.5. Final Shield table using point difference

Team For Against Difference
Queensland 54 18 36
NSW 56 24 32
Victoria 48 16 32
WA 42 22 20
SA 28 60 -32
Tasmania 4 92 -88

This gives a final order of Queensland on top with NSW and Victoria equal second.
Note that NSW has dropped in the order because it lost more matches than Victoria and
Queensland. Now while negative numbers are difficult to work with, it can be shown
that this system is exactly the same as allocating outright points equally between two
drawn teams. This system produces the same order as the method outlined in the
previous section. In fact, the points under the previous system are always 60 + half the
above differences.

The previous method of allocating outright points equally between drawn teams not
only goes some way to reducing home ground advantage, but also rewards teams for
not losing matches.

10.5. Alternative method

While it is not suggested as a method for determining a Shield winner, this alternative
method does shed some light on the year's results, and is useful in looking at how well a
particular State performed.

Consider each pair of matches that two teams play against each other, say SA and
NSW. In one match SA beat NSW on the first innings, in the second NSW beat SA on
first innings and outright. Clearly, NSW has performed better than SA. We would say
that pair of matches shows NSW should finish higher than SA. On the other hand, in
the two Queensland Victoria matches, both teams had one first innings victory each -
that pair tells us nothing about the relative merits of Queensland and Victoria. Thus
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each pair of matches either gives us an ordering of the two teams or is inconclusive.
The only combination which produces an arguable result is where one side has won
both first innings points, but lost one on outright, as was the case with NSW and
Victoria. Under last season's scoring system that would count as inconclusive (eight
points each), although most observers would probably say that NSW had the better of
Victoria. For any other combination, it is beyond dispute which team had the better of
the other, independently of whatever decisions are made regarding relative merits of
first innings and outright points. Working through the 15 pairs of matches we obtain
the following:

NSW -Qld NSW above Qld 8-0
NSW -SA  NSW above SA 16-0
NSW -Tas NSW above Tas 12-4
NSW - Vic  arguable 8-8 - see above
NSW - WA inconclusive 12-12
Qld - SA Qld above SA 24-0
Qld - Tas Qld above Tas 24-0
Qld - Vic inconclusive 4-4

Qld - WA Qld below WA 2-6
SA - Tas SA above Tas 20-4
SA - Vic SA below Vic 4-12
SA - WA SA below WA 0-8
Tas - Vic Tas below Vic 0-16
Tas - WA Tas below WA 0-8
Vic - WA Vic above WA 8-0

We are now looking for an order which preserves as many of these relationships as
possible. Clearly, Tasmania is on the bottom, as it is below all other teams. Next is SA
as it is above only Tasmania. Continuing in this way, we obtain the following order,
which surprisingly is consistent with all the above results.

NSW, Vic, WA, Qld, SA, Tas

Surprisingly, Queensland drops to fourth on the table. Its effort in defeating both
Tasmania and SA by outrights twice, which counts so much in last season's system,
here only confirms that it is better than both SA and Tasmania. However, Queensland's
performance against the other top teams is poor - 48 of its 54 points come from the SA
and Tasmania matches. This method tends to judge top teams more on how they
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perform against each other rather than how they perform against weaker teams. Would
we judge the relative merits of West Indies and England on how well they beat the
United States, or how they perform against each other?

10.6. Conclusion

NSW is to be congratulated on winning the 1985/86 Sheffield Shield. Given a set of
conditions for the running of any competition, good teams will play to maximise their
score. However, it is clear that there are many methods of evaluating a team'’s
performance. Team managers and supporters should not uncritically accept the final
finishing order as some absolute measure. Looking at results in various ways can point
coaches and captains to areas requiring improvement - e.g. NSW performances away,
Victoria's need to get outrights on its home ground and Queensland's performance
against top sides. Of course, such observations can be tempered with a more detailed
knowledge of individual matches, such as interruptions by rain, and absence of Test
players.

Administrators also can learn from analysis and work towards devising points systems
that minimise unfair advantages to some teams and reward preferred outcomes. In the
Shield competition, home ground advantage and lack of penalties for losing matches
should be areas of concern.

The above analysis has been performed on the 1985/86 results only. Previous years
results also could be analysed to see if the above results are normal or a one-off
aberration.

While the above analysis has been done on the Sheffield Shield, a similar analysis could
be performed on District cricket or any other cricket or sporting competition and
provide useful insights to players and administrators.

Acknowledgments: My thanks go to Peter Spence, development manager for The
Australian Cricket Board, for his comments on an earlier draft of this article.
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10.7. Commentary

While this article was written some time ago, its conclusions still remain valid.
Hopkins (1997b) used the points raised as the basis for a newspaper article. A
summary of the last six years shield data reveals the home team won 60.2% of the
points. Table 10.6 shows the breakup between points won at home and points won
away. Clearly most teams enjoyed a large home advantage. For example SA won 61%
of the points at their home venue against only 21% at the away venues. However they
have also over the six years had nearly 30 more points awarded at their home ground
than Queensland - virtually a one point per game unfair advantage. The away results
show this cannot be attributed to an attacking style of play. The methods of Chapters Il
and 111 could be applied to this data, although more complicated models may need to be
used to allow for the variation in the number of points allocated per match.

TABLE 10.6. Comparison of points won at home and away for seasons

91/92 to 96/97
Points won at home matches Points won at away matches

Both Home team Both Away

Home teams x100 Away teams team x100

Team team combined | /combined team combined | /combined
NSW 96.0 156.3 61.4% 71.8 167.8 42.8%
Qld 94.0 135.5 68.8% 60.0 154.0 39.0%
Vic 100.0 164.1 60.9% 30.0 146.3 20.5%
WA 61.0 130.8 46.6% 62.0 133.9 46.3%
SA 95.9 149.9 64.0% 45.0 131.0 34.4%
Tas 88.3 150.3 58.7% 84.0 155.0 54.2%

535.2 888.0 60.2%




CHAPTER XI

DYNAMIC PROGRAMMING IN ONE-DAY CRICKET -
OPTIMAL SCORING RATES

11.0. Abstract

Using a dynamic programming formulation, an analysis is presented of the innings of
the team which bats first (here referred to as the first innings) and the innings of the
team which bats second (here referred to as the second innings). This allows a
calculation, at any stage of the innings, of the optimal scoring rate, along with an
estimate of the total number of runs to be scored (in the first innings) or the chance of
winning (in the second innings). The analysis is used to shed some light on possible
batting tactics (in terms of the best run rate at any stage of the innings), to quantify the
effects of selecting extra batsmen in a side, and to suggest a method for the
development of alternative measures of player performance. Results suggest that
scoring rates should be more uniform than at present, and that the team batting second
has an advantage. Possible extensions to the model are discussed.

Key words: cricket, dynamic programming, sport

11.1. Introduction

The application of OR techniques in general, and dynamic programming (DP) in
particular, to problems in sport is growing. Sphicas & Ladany (1976) and Hayes &
Norman (1984) are just two examples of using a DP analysis to assist participants in the
development of tactics. However, cricket seems to have escaped this notice, the few
papers on cricket generally being descriptive in nature. Pollard (1977) gives a summary
of the statistical work on cricket up to 1977. More recently, Croucher (1982b)
compares dismissals of Australian and English batsmen, while Clarke (1986a) uses a
simple statistical analysis of cricket data to investigate the effects of home-ground
advantage in cricket. However, lacking in the literature is the application of OR
techniques to assist the cricketer with tactics. This seems strange given the role Britain
and the Commonwealth have played in the origins and continued practice of both OR
and cricket.

The ball-by-ball nature of cricket makes it particularly suitable for a DP analysis. This
is especially true for the one-day game. In this paper we present a DP formulation of
both the first and the second innings of one-day cricket. This allows a calculation, at
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any stage of the innings, of the optimal scoring rate, along with an estimate of the total
number of runs to be scored (in the case of the first innings) or the chance of winning
(in the second innings). The results are used to suggest optimal batting tactics in terms
of the best run rate at any stage of the innings, to quantify the effects of selecting extra
batsmen in a side, and could be used to develop alternative measures of player
performance. It is also shown that the side batting second has an advantage.

11.2. The problem

In one-day or limited-over cricket, each team has to score as many runs as possible off a
limited number of overs, the team scoring the most runs winning the match. The
innings finishes when the batting side loses 10 wickets or when the bowling side
completes its allotted overs. In international matches in Australia, each innings is
restricted to 50 overs of six balls each, with no bowler allowed to bowl more than 10
overs. In practice, the second innings also finishes if the batting side passes the other
team'’s score. Thus, while the object of the team batting first is to score as many runs as
possible, the object of the team batting second is to score at least as many runs as the
first team scored. There are also restrictions on field placings, and various rules to cope
with shortened matches owing to rain interruption.

At each stage of the innings, a batsman has to decide how fast to score. An increase in
the rate of scoring entails taking greater risks, with a consequent increase in the chance
of losing wickets. Loss of wickets increases the chance of the innings finishing
prematurely, and so decreases the total score. The basic problem confronting a batting
side is how to trade off an increased scoring rate with the possible loss of wickets. As
in most sports, there are widely held beliefs on the correct strategy. In one-day cricket,
a common strategy is to bat slowly during the early part of the innings, keeping wickets
in hand. This usually allows a steady increase in the scoring rate, and often results in a
last-minute orgy of runs and wickets during the final part of the innings. Analogous
tactics by 12-hour runners might find them walking for the first 11 hours to conserve
energy for a final sprint.

11.3. Run rate

For each ball, ignoring such things as no balls, runouts and overthrows, a batsman can
either lose his wicket without scoring or keep his wicket while scoring 0 to 6 runs.
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Let pg be the probability of dismissal.
Let py be the probability of scoring x runs, x = 0-6, where

py+ 2P, =1 (11.1)

0<x<6

These ps depend on the skill and batting style of the batsman, the state of the ball, the
bowler, the run rate, etc. Apart from the run rate, these factors will be ignored for the
time being. The run rate/ball r is the expected number of runs scored off each ball, and

IS given by
r=2.(xp)=1 (11.2)

0<x<6

To increase the run rate, a batsman will attempt to alter the distribution of the number of
runs per ball, e.g. increase p4 while reducing pg. This would normally also increase pg,
the probability of dismissal. As run rate is usually discussed in terms of run rate per
over, we shall use R = 6r.

11.4. First-innings formulation

For the first innings, let the stage n be the number of balls to go and the state i be the
wickets in hand (i.e. the number of batsmen still to be dismissed). Let fy(i) be the
maximum expected score under an optimal policy in the remaining n balls, with i
wickets in hand. Note the important principle: no matter what the actual score, batsmen
should be maximising the expected score in the remaining part of the innings. Each
ball, a batsman either goes out and the team has one less ball and one less wicket in
hand, or scores x runs and does not go out, so the team has one less ball to go and the
same number of wickets in hand. Since he should choose R to maximise the expected
score in the remaining n balls, we have

fn(l) = MRaX{pd fn—l(i _1) + z px (X + fn—l(l))}

= Max{p, f,.,(i -+ B+ @ p,)f,.() } (11.3)

using equations (11.1) and (11.2).
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Since the innings finishes when there are either no more balls to be bowled or no
wickets in hand, we get the boundary conditions

fo(i)=0for i = 0-10
f,(0)=0  for n = 0-300.

11.4.1. Evaluation of dismissal probabilities

For the first-innings formulation, we need only determine pg, the probability of
dismissal, as a function of the run rate R. It is generally accepted that pg is an
increasing function of R. Thus if a batsman attempts to score at two runs per over, he
might have a 1% chance of dismissal each ball, whereas if he scores at 12 runs per over,
he might have a 50% chance of dismissal. These probabilities might be estimated after
a match by analysing the data, or before a match by expert opinion. In this case it is
usually easier to determine 1/pq, the average number of balls faced before dismissal.
Thus a 1% chance of dismissal implies facing on average 100 balls, whereas a 50%

chance of dismissal implies on average facing only two balls. By looking at the
expected score of a batsman or partnership, we can place further restrictions on pq. By

scoring at an expected rate of R per over for an average of 1/pq balls, the average score
before dismissal is R/(6pg). It is generally accepted that this is also a decreasing
function of R for R >0. In the above examples, average scores would be 33.3 and 4 for
scoring rates of 2 per over and 12 per over. Thus any estimates of pg derived from
either expert opinion or statistical analysis should be adjusted to conform with this

property.

For example, in the second final of the Benson & Hedges World Series Cricket played
at Sydney on 11th February 1987, the six recognised English batsmen scored a total of
153 runs in 232 balls. Thus, at an average rate of 4 runs/over, a wicket was lost for
each 39 balls. The seven recognised Australian batsmen averaged 3.4 runs/over for a
wicket every 48 balls. In this manner, and using the property described above, we
might guesstimate the figures shown in Table 11.1 for a reasonably difficult pitch.

11.4.2. Computation and results

Equations (11.3) can be solved by computer, calculating first f1(i) for all i =1, 2,... 10,
then fa(i), etc. A short program in interpreted BASIC takes about 45 minutes to run on
an IBM XT. The output from the program gives the optimal action (the recommended
run rate) and the value (total expected score in the remainder of the innings) for each
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stage and state (i.e. for each number of balls to go and wickets in hand). A selection is

shown in Table 11.2.

TABLE 11.1. Dismissal probabilities

Scoring Average Probability Average
rate in number of | of dismissal | score before
runs/over balls faced each ball dismissal
(R) (1/pa) (Pa) (R/6pa)
0 300 0.003 0
1 250 0.004 42
2 100 0.010 33
3 60 0.017 30
4 40 0.025 27
5 28 0.038 23
6 20 0.050 20
7 15 0.067 18
8 10 0.100 13
9 7 0.143 11
10 4 0.250
11 3 0.333
12 2 0.500

11.4.3. Discussion

Since a team of 11 players must have at least five players who can bowl, plus a wicket-
keeper, usually five players are selected solely for their batting ability. However,
depending on the batting expertise of the bowlers and wicket-keeper, a team usually has
at least six and sometimes eight or nine good batsmen. We assume here that if a team
bats to number 7 (say), the first seven partnerships are the only ones that contribute to
the score. In this case Table 11.2 shows the expected score to be 174 and the optimal
scoring rate at the start of the match to be greater than the average scoring rate of
174/50 = 3.5. This is true no matter how many batsmen are in the team. Thus if it is
assumed the team bat to number 10, the expected score is now 222, although the initial
scoring rate is 5 per over. This holds at virtually all stages of the innings, and still holds
if different pitch characteristics are tried (i.e. if the relationship between pq and R is

altered). This suggests that teams should try to score slightly faster than they expect
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their average rate for the rest of the innings to be, and if wickets are lost, slow up, rather
than the current practice of scoring slower than average and speeding up if wickets are
not lost. Thus the generally accepted view of scoring slowly at the beginning of the
innings is not optimal under this model.

TABLE 11.2. Optimal run rate and expected score in remainder of innings under
optimal policy

Optimal run rate

Overs Wickets in hand
to go 2 4 5 6 7 8 9 10
1 9 12 12 12 12 12 12 12
5 6 8 9 9 9 9 11 11
10 4 7 7 7 8 8 9 9
20 3 5 5 6 6 7 7 7
25 3 4 5 5 5 6 7 7
30 2 4 4 5 5 5 6 6
40 2 3 4 4 4 5 5 5
50 1 3 3 3 4 4 4 5

Expected score in remaining balls

Overs Wickets in hand
to go 2 4 5 6 7 8 9 10
1 9 12 12 12 12 12 12 12
5 27 39 42 45 47 49 51 53
10 38 59 67 73 77 82 85 88
20 49 83 96 107 117 126 134 141
25 53 91 106 119 131 142 152 160
30 56 97 114 129 142 155 166 176
40 60 106 126 144 160 175 189 202
50 63 113 135 155 174 191 207 222

Can we develop a simple rule for batsmen to follow? With 300 balls to go and seven
recognised batsmen left, a team can afford to lose a wicket every 43 balls. Table 11.1
gives 4 as the nearest run rate with this dismissal probability, and Table 11.2 confirms
this as the optimal run rate. Similarly, with 25 overs to go and five batsmen left, the
batting team should aim to lose a wicket every five overs or 30 balls. Table 11.1 shows
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this is a run rate of about 5, which is again confirmed by Table 11.2 as being the
optimal rate. This appears to hold also for tables derived using different dismissal
probabilities, and could form the basis of a reasonable heuristic. The optimal run rate at
any stage is the one that on average results in a wicket in the next x balls, where x is the
ratio of the number of balls to go and the wickets in hand. Thus, for example, teams
that bat to number 10 should begin the innings at a scoring rate that would, on average,
lose a wicket in five overs.

Table 11.2 also allows the advantages of an extra batsman to be evaluated. By batting
to number 8 rather than 7, a team could expect to increase its score from 174 to 191. If
the advantage of an extra batsman or long batting tail is to be realised, an increased
scoring rate is necessary right from the beginning of an innings. Table 11.2 highlights
the folly of preserving wickets for a last-minute orgy of runs. The advantage of wickets
in hand is minimal as the innings reaches the end. For example, five overs to go and six
wickets in hand rather than four only results in an increase in expected runs from 39 to
45,

These comments hold not just for 'difficult’ pitches. Under this model, the penalties for
slow early batting in terms of foregone runs can be large for very good pitches. For
example, in a one-day match against India on 7th September 1986, Australia scored 250
for 3, including a world-record opening partnership of 212 from 260 balls. However, an
analysis similar to the above shows a score of over 350 should have been achieved. (In
the second innings, India reached 251 for 3 off only 44 overs.)

Table 11.2 can also be used to compare the relative merits of alternative scores. For
example, is it better to be 1 for 50 or 3 for 80 after 25 overs? Assuming a team bats to
number 7, 1 for 50 should realise another 119 runs for a total of 169, whereas 3 for 80
should realise another 91 runs for a total of 171, marginally better. This allows the
contribution of a batsman or partnership to a team to be assessed. Thus an opening
partnership of 50 in 25 overs has actually decreased the expected score from 174 to 169.
However, should the next partnership score 26 in the next five overs, they have
increased the potential score from 169 to 76 + 96 = 172. Similar arguments could be
applied to bowling performances. This method could be developed to produce
measures of performance that reflect a player's contribution to team performance better
than the currently used averages and run rate.
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11.5. Second-innings formulation

When the second team bats, they know the total scored by the first team. If the first
team scores 174 (say), the second team wins if it scores at least 175. For the second
innings we wish to maximise the probability of achieving a certain score, and so need to
introduce s, the number of runs to go, into the state.

Each ball, a batsman either goes out with probability pq and the team still has s runs to
score with one less wicket in hand and one less ball, or he scores x runs with probability
px and so the team has s - x runs to score with one less ball to go and the same number

of wickets in hand.

Thus if P(s, i) is the probability, under an optimal policy, of scoring at least another s
runs with i wickets in hand and n balls to go,

P, () = ng{pd PLGi-D+ Y pP (- x,i)} (11.4)

0<x<6

Since the second team wins when it has no more runs to score, but loses if it still has
runs to score when there are no more balls to go or it has no more wickets in hand, we
have the boundary conditions

Pn(0,i)=1 forn=0-300,i=0-10
Po(s, 1) =0 for s=1 to Smax, 1 =0-10
Pn(s,0) =0 for n=1-300, s =1 t0 Smax

11.5.1. Computation and results

For the first-innings problem, we saw that the actual distribution of the number of runs
scored per ball is not required, only the average. For the second innings this is not so.
However, apart from the last couple of overs, it is the average run rate rather than how
these runs are scored that is important. Hence in this analysis, to reduce the
computational load, only two values of x (0 and a) are allowed for each run rate. For
each ball a batsman is either dismissed, or is not dismissed and scores 0 or a runs. Thus
only pg, po, and pa are non-zero. Once pq is given, provided a sensible value of a is
chosen, pp and py can be determined by the equations (11.1) and (11.2), which give pa
= R/6a and pg = 1- pa -Pd-
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The second-innings equations can then be solved. A maximum value of s must be
chosen (say 300), and is evaluated for s=1 and each value of i, then for s=2...300, then
the values of Py(s, i) can be calculated, etc. The program had to be streamlined and
compiled before it would run in about 10 hr on an IBM XT. The output now runs to
thousands of pages, as for each ball (1-300) and each wicket in hand (1-10) we have for
each number of runs to go (0-300) the chance of winning and the optimal run rate. For
illustration, selected output in Table 11.3 shows the probability of winning at the start
of the innings, i.e. with 300 balls to go.

TABLE 11.3. Probability of scoring a further s runs with 300 balls to go

Wickets in hand
S 2 4 5 6 7 8 9 10

100 |0.200 [0.638 |0.805 [0.907 |0.961 |0.985 |[0.995 |0.998
125 10.094 [0.432 |0.622 [0.776 |0.881 |0.942 |0.975 |0.990
150 0.042 [0.262 [0.430 [0.600 |0.743 |0.848 |[0.917 |0.958
175 10.016 [0.137 |0.257 [0.403 |0.555 |0.691 [0.799 |0.878
200 |0.006 |0.065 |0.137 [0.241 |0.367 |[0.502 |0.629 [0.739
220 |0.002 |0.031 |0.073 [0.140 |0.234 [0.348 |0.471 |0.591
225 0.002 [0.025 |0.061 [0.120 |0.206 |[0.312 |0.431 [0.551
250 [0.000 [0.009 |0.024 [0.053 |0.101 [0.170 |0.258 |0.359
275 |0.000 |0.003 [0.008 |0.020 |0.043 [0.079 |0.132 [0.200
300 |0.000 |0.001 |0.003 |0.007 |0.017 |[0.034 |0.061 |0.100

11.5.2. Discussion

The comments made on the first innings in general also apply to the second, but the
evaluation of team position, or contribution of batsmen or partnerships, would now be
reflected in a change in the probability of winning rather than runs scored.

Note that the second team has an inherent advantage. If the first team score their
expected maximum of 174, at the beginning of their innings the second team has a
0.555 chance of scoring 175 if they also bat to number 7. This is assuming both teams
have full knowledge of the state of the wicket, i.e. the value of the pgs. In practice, the
first team would begin their innings with much less knowledge of the state of the wicket
than the second. This would increase the advantage to the second team.
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Output from the analysis could also be used to evaluate the effect of rain-interruption
rules. Suppose, after the first innings is completed, rain causes a delay necessitating a
reduction in the second innings to 20 overs. What is a fair target for the second team?
A commonly used rule is that they should score at the same rate as the first team. If the
first scored 174 (at a rate of 174/50 = 3.48 runs/over), this would give a target of
3.48*20 = 69.6 or 70 runs for the second team. However, a similar output to Table 11.3
with 120 balls to go shows the second team would have a probability of 0.974 of
reaching that target, clearly an unacceptable advantage.

11.6. Extensions

The model we have chosen is a simple one. Cricket followers could easily suggest
areas where it does not conform to reality. For example, many teams may bat during
the first innings with a second-innings strategy in that they wish to maximise their
chance of reaching some preconceived total. Other variables could be taken into
account provided the effects could be quantified. For example, by altering the dismissal
and scoring probabilities with respect to n, we can take account of different bowlers and
ball deterioration. This involves no change in the formulation, and is easily
incorporated in the program. In a similar way, by varying the probabilities with i, we
could take account of different batsmen (or more correctly partnerships) without
altering the basic formulation.

To account properly for different batsmen, we could introduce both i and j into the state,
being the strike and non-strike batsmen. For the first five balls of an over, (i, j) would
change to (j, i) when an odd number of runs were scored, remain (i, j) when an even
number of runs were scored, and become (max(i,j) + I, j) when a batsman was dismissed
without scoring or crossing, etc. For the final ball of the over, the transition (i, j) to (j, 1)
due to the change of bowling ends would be superimposed on any other changes. The
extra complication of such a model might be justified when evaluating tactics at the end
of an innings, particularly with one free-scoring batsman and one poor batsman. For
example, should the better batsman take a single?

Other extensions, such as allowing the dismissal probabilities to vary with time at the
crease, involve including this factor as a state variable, and result in large increases in
computing time.
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11.7. Conclusion

Previously, cricket has escaped the attention of OR analysts. The model presented here
shows that currently accepted tactics in one-day cricket may be incorrect. Batting sides
should score more quickly in the early part of their innings. There is also evidence that
teams should choose to bat second when they win the toss.

The model could also be used by selectors to quantify the effects of including extra
batsmen in a team, used by coaches, captains and commentators (or bookmakers) to
provide better measures of how teams are performing during the match, assist in
evaluating different rules for deciding winners in rain-interrupted matches, and develop
measures of player performance that better reflect the demands of one-day cricket.

More complicated models could be developed, allowing for different player
characteristics. Such models could be used to investigate optimal tactics near the end of
an innings, the effects of different batting orders, etc.

There is plenty of scope for operational research on applications in cricket. The major
problem likely to be encountered is data collection. Official score sheets of matches
contain little information of a ball-by-ball nature, and the information recorded even
varies from scorer to scorer. However, the development of computer scoring methods
should solve this. One proposal, CRICKETSTAT, Croucher (1987) developed in
Australia, records 11 pieces of information for each ball. When such systems are
common, operational researchers will have few excuses for not using their skills to
assist cricketers.
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11.8. Commentary. Testing of heuristic

This chapter suggested a simple heuristic that could be used by batsmen to approximate
the optimal run rate. The suggested heuristic selects the run rate that will result in all
wickets being lost as near as possible to the end of the 50th over, i.e. a wicket loss
every (balls to go / wickets in hand) balls. For instance if there are 120 balls (20 overs)
remaining in the innings and six wickets in hand then the heuristic suggests losing a
wicket every 120/6=20 balls. Table 11.1 shows that the run rate that would result in the
loss of a wicket in as close to 20 balls as possible is six runs per over. Therefore if there
were 120 balls remaining in the innings and six wickets in hand the heuristic suggests a
run rate of six runs per over, the same rate as given by Table 11.2.

In Johnston et al. (1992) we investigated the sensitivity of the heuristic to changes in
the model.

The heuristic's validity was first tested by comparing the run rates suggested by the
heuristic with those calculated by the DP formulation. Table 11.1 was extended to
include run rates in increments of 0.5 per over, and the algorithm used to produce the
optimal run rate and expected score. Table 11.4 shows the difference between the run
rates recommended by the heuristic and the DP solution. The two run rates never vary
by more than 0.5 runs per over.

Another test of the heuristic's ability is to compare the expected innings scores of teams
scoring at heuristic run rates with the expected innings scores of teams scoring at DP
run rates. In this case, the maximum difference (in runs) in the expected scores
between the heuristic and DP was 0.3 runs. The closeness of the expected innings
scores under the DP formulation and heuristic confirms the conclusion that the heuristic
is a valid method of selecting near optimal run rates.

Although all the comparisons between the heuristic and DP formulation shown here
have been made under the one relationship between run rate and probability of
dismissal (that given in Table 11.1), several other relationships have been tested with
almost identical results. The maximum difference between the totals under the two
policies was less than four runs.



TABLE 11.4. Graphical comparison of DP and heuristic run rates
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Overs
to go

Wickets in hand

1 2 3 4 5

6

10

10

15

20

25

30

35

40

45

50

a blank indicates agreement

+: the heuristic is 0.5 runs/over above the optimal
- . the heuristic is 0.5 runs/over below the optimal




CHAPTER XII

DYNAMIC PROGRAMMING IN CRICKET -
PROTECTING THE WEAKER BATSMAN

12.0. Abstract

A simple dynamic programming model of cricket is presented. The state is the facing
batsmen and the number of runs on offer. The decision is whether to run or not, with
the objective to maximise the chance the better batsman is on strike at the start of the
next over. The model is solved analytically to find the optimal policy and the value of
the objective function. The simple initial model is extended to a more realistic one
requiring no further calculations and a numerical example is given. An alternative
optimality criterion is investigated and we demonstrate that trying to put the better
batsman on strike at the start of the over does not necessarily maximise the expected
duration of the partnership. This alternative objective function is investigated
numerically, and it is shown that the better batsman should generally run if possible off

the second last or last ball of the over.

Key words: sports, cricket, dynamic programming, Markov processes

12.1. Introduction

There are several examples where a dynamic programming (DP) formulation has the
potential to assist the sports person with decision making. Norman (1995) in giving
one example of an application of DP in each sport lists 10 papers. There have been few
applications of DP in cricket, which is surprising as the ball by ball nature of the game
should lend itself to this structure. Clarke (1988b) uses a DP formulation to advise on
optimal run rates in both the first and second innings, and Johnston (1992), Johnston et
al. (1992, 1993) use the first innings formulation to provide measures of a batsman's
performance. There may, of course, be several possible optimality criteria depending
on the different stages of a cricket match. In the first innings batsmen are generally
trying to maximise the expected number of runs, but they may prefer to maximise the
probability of achieving a certain number of runs. The team batting last is usually
trying to maximise the probability of achieving the opponent's score. However, in test
cricket, teams may often be just trying to avoid a loss. In this case they may wish to
avoid finishing in a certain state (team dismissed) with runs being immaterial. In other

situations teams may wish to bat for as long as possible. For example, in the fourth test
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between Australia and the West Indies played on the 29th April to 3rd May 1995, in
Australia's first innings on the third day, Steve Waugh was the last batsman dismissed
for 200. His partners, after the last specialist batsman was dismissed, made 6, 8, 23, 0
and 3 not out. While runs were still important, some commentators made the point that
it was also important to occupy the crease for as long as possible, to give the pitch time

to break up and so assist the Australian spinner.

The above situation, where a top order batsman is paired with a batsman of lesser
ability, often arises towards the end of an innings. In cricket, the facing batsman
changes whenever an odd number of runs is scored, and also at the completion of each
six ball over. The bowling team wish to bowl to the weaker batsman and will often set
deep fields to concede a single to the good batsman early in the over. The good
batsman in turn will sometimes decline to take the single, in the hope of protecting the
weaker batsman for a few balls and taking a run nearer the end of the over. The desired
result is to take a single off the last ball, so the better batsman is again on strike at the
beginning of the next over. In most such situations runs are still important, but in other
cases runs are immaterial except in that they allow the batsmen to change ends.
Describing the last session of play in the famous drawn test between Australia and the
West Indies in 1961, Lunn (1993) says

But with half an hour to go Mackay was no longer the only person who
thought he could do it. Taking just a single off the last ball of almost every
over (eight ball overs in those days) he faced almost every ball instead of
Kline. No attempt to score other than this. ... The last ball of the second last
over: Mackay scores a single to face the last over against the fastest man in
the world, giant Wes Hall.

In this case Mackay would clearly bat out the last over without taking a run. But in the
second last over, if he wants to maximise the chance that he will be on strike for the
final Wes Hall over, should he wait until the last ball before taking a single? We look
here at a simple DP model to analyse this end play strategy - i.e. maximise the
probability that the weaker batsman finishes the over on strike, so that after the change
of ends he will be protected from the strike for the beginning of the new over. We leave

until later discussion on whether this is a sensible objective function.
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12.2. The model

Suppose you have two batsmen whom we will refer to as G and B for Good and Bad,
although they can be any two batsmen of different abilities such as Greg Chappel and
Bruce Reid. We assume each batsman can score zero, one (more correctly hit a stroke
for which he has the opportunity to run a single,) or be dismissed. (While this initial
model is obviously not realistic it is presented for simplicity. We will see that it can be
extended with no further calculations to something more realistic). For the good
batsman these occur with probability pg, p1 and pq, and for the bad batsman ¢, g1 and
gd. Let p=1-p4=po+p1, g=1-q9d=qo + q1 and p>g since the poor batsman has a
greater chance of dismissal. There are nine wickets down, so once a batsman is

dismissed the innings is Ended (E).

Since the batsmen have to decide whether to take the runs on offer or not, consider the
situation after a ball is bowled but before a run is taken. The stage n is the number of
balls still to be bowled in the over. There are five possible states S, ¢ {GO, G1, B0, B1,
E } representing the facing batsman and the runs on offer. Note that because the epoch
in which the state is defined and decision is made is after the ball is bowled, stage 0
refers to the last ball of the over and stage 5 to the first ball in a six ball over. The only
decisions occur at G1 and B1 and are whether the batsmen take the run on offer YES
(Y) or not NO (N).

The transition diagram is shown in Figure 12.1.

The transition probabilities are easily calculated provided we ignore complicating

factors such as runouts. Thus for example at G1, if the good batsman refuses the run, he
will be on strike for the next ball and so after it is bowled there will be a probability pg

of no run on offer (so with probability pg the next state is GO). Similarly, with
probability p; the next state is G1 and with probability pq the next state is E. Exactly
the same transition probabilities arise if the state is B1 and the batsmen take the run.
Thus in the transition diagram all lines entering GO have probability pg, all entering G1
have probability p1, all entering BO are ¢gg, and all entering B1 are ¢;. Those lines
entering E from GO, G1(N) and B1(Y) have probability pg, those from B0, B1(N) and
G1(Y) have probability ¢4.
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Figure 12.1. Transition diagram

We wish to maximise the chance that at the end of the over the bad batsman will be on
strike. Note there is no need to consider in any special way the change of ends at the
end of the over. The batsmen wish to maximise for each over the chance that the bad
batsman finishes the over on strike. Whether they succeed or not, they have exactly the

same problem in the following over.

Let £,(S;) be the probability under an optimal policy of ending the over with the bad
batsman on strike when in state S, with n balls to go.

Initial conditions. For the last ball of the over, the bad batsman will not run, and the
good batsman will definitely run if possible, so any of the states B0, B1, and G1 will put
the bad batsman on strike at the end of the over. Thus

Jo(GO) = fo(E) =0

fo(BO) =fo(B1) =fo(Gl) =1 (12.1)



Functional Equations: In general

£.(S,)= Max D prob(S, > S, )fi\(S,,) forn=1,2, ...

admissible

decisions  S»1€1G0,G1,B0,B1,E}

where admissible decisions are defined in Figure 12.1.

In the particular cases this becomes

State E: fn(E) =fu—1(E) L fu(E) =fo(E) =0

State GO:  fu(GO) = pofn-1(GO) + p1f-1(G1) + pafu-1(E)

= Pofn-1(GO) + p1 fu-1(G1)

State B0:  fu(BO) = qofu-1(BO) + g1 fu-1(B1)

State G1:  f,(G1) =MAX {

YES : £,(BO0)

=MAXINO - /,(G0)

State Bl:  f,(BI) =MAX {

YES : £,(GO)

~MAXNO - £,(B0)

So fa(Gl) =f,(B1) for n=1,2... from (12.5) & (12.6),
and if optimal decision is YES at G1 then it is NO at B1 and vice versa.

YES : q0./n-1(BO) + q1.fp-1(B1)
NO : pofn-1(GO) + p1 fn-1(G1)

from (12.3), (12.4)

YES : pofn-1(GO) + p1 fu-1(G1)
NO : g0 fu-1(B0) + g1 pu-1(B1)
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(12.2)

(12.3)

(12.4)

(12.5)

(12.6)

(12.7)

This is a sensible result. Since runs are not important, clearly if it is optimal for the

good batsman to change ends at some stage, it is optimal for the bad batsman not to

change ends at the same stage. From now we will refer to the optimal policy as simply

YES or NO, meaning the decision at G1 only, as B1 is implied to be the opposite.
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12.3. Model solution

This model is completely solvable analytically. The appendix shows that the values of

the objective functions can be calculated in a closed form for all stages and states.

Case 1: 1f g <p; the optimal decision is NO for all » > 0. The better batsman should

obtain and remain on strike for the whole over and only run off the last ball. In this

case  f(GD) =f(GO)=fB)=pr py
HBO) =g0lg+ Lo @ -

Case 2: If ¢ > p; there is a stage N>1, below which the decision at G1 is YES, and for
n > N the optimal decision is NO. Thus there will always be a number of balls to go in
the over (which may be greater than 6 or 8), before which the optimal strategy is to
protect the weaker batsman, and after which the optimal strategy is to put the weaker

batsman on strike. N is given by the smallest integer satisfying the inequality

1[” q)

pl}

Forn =1,23,..N-1, £,(G0) =

_ qn)

Jn(G1) =fu(BO) = fu(B1) = ¢".

Forn=N,N+l,..  /(GO)=/,(G1)=/,Bl) =L p](po ~q")
q

fu(BO) = go"NgN+ (qo"‘N—p”‘N> fN(GO).

q0 —p
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12.4. Prior probabilities

It could be argued that probabilities before a given ball is bowled would be more useful.

These are easily obtained by weighting the above state probabilities with the chances of

them arising. Thus if we let F,,(G) and F,(B) be the probabilities of finishing in the

required state with G and B facing before the nth last ball of the over is bowled we have
Fn,(B) =q0.f1-1(B0) +q1 fr-1(B1) = f,(B0) from equation (12.4)
Similarly F,(G) = f,(GO).

Thus although in the above formulation the stage n only goes to 5, it is useful to
calculate f5(GO) and f5(B0) as they give the probabilities before the beginning of the

over.

12.5. Extension

With no further calculations this model can be extended by considering the state GO to
be the good batsman facing and a score of zero or a boundary (four or six) is made, so
no decision on running can be made; G1 that there are 1, 2, 3 runs or a 4 all run on offer
so that a decision on running is possible; and the decision to be made is NO to 'run' an
even number (quotes because it includes not taking any runs when 1 is on offer) or YES

run an odd number of runs. These decisions could be rephrased as NO don't change
ends and YES change ends. Thus pg becomes the probability of a score of 0, 4

(boundary) or 6, p; becomes the probability of a score of 1, 2, 3 or 4 all run, and pq
remains the probability of dismissal. Similar states and probabilities apply for the bad
batsman. The state E can be thought of as the partnership ending rather than the innings

ending. The above model and results are then directly applicable.

12.6. Discussion

The probabilities pg etc should be estimable from scoresheets when batsmen are taking
all available runs. The optimal strategy can then be calculated. This is done in the
example following. However some of the ramifications of the above seem quite
interesting and can be used to make general statements irrespective of the scoring

profiles of the batsmen.
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For example, equation 12.7 says that if at any stage, one batsman takes an odd number
of runs, at the same stage the other batsman should take an even number of runs. Thus

the policy of taking all the runs is never optimal. (Except of course whenp =¢ ).

If g > p; then the model says that there is always some value N balls to go (admittedly N
may be greater than 5) where the optimal strategy changes from NO in one ball to YES
for the next. Now if N is greater than 5 this implies the weak batsman will never be
protected from the strike (in fact he should be given it). At any stage in the over the
good batsman will put the weak on strike if possible, and for the rest of the over the
weaker batsman will stay on strike. Note this only occurs when pj is so low that it is
highly unlikely that the good batsman will ever be able to put the bad batsman back on
strike. This seems unlikely to occur in practice. (It also suggests that we should
perhaps look at other objective functions, such as minimise the proportion of times we

are in a given state, or maximise the chance of not finishing in State E).

However if N is any number less than 6, the results confirm what is done in practice. It
implies that at some stage in the over the optimal decision changes from NO (protect the
weak batsman) to YES (put the weak batsman on strike). This is the common strategy
used but has an interesting implication when the bad batsman is on strike at the
beginning of the over. It implies the bad batsman if on strike should change ends if
possible, only to again change ends the next ball if possible. Table 12.1 gives the
optimal policy for the good and bad batsman when N=3. If the bad batsman is on strike,
he should change ends if possible with 3 balls to go. In this case the good batsman will
be on strike and should now also immediately change ends if possible with two balls to

go. This would probably be criticised by commentators.

TABLE 12.1. Optimal strategies for the case N=3.

Ball of over | Balls to go n Good Bad batsman
Batsman
1 5 No Yes
2 4 No Yes
3 3 No Yes
4 2 Yes No
5 1 Yes No
6 0 Yes No
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12.6.1. Example

In the World cup match between SA and Australia on 26th Feb 1992, for two batsmen
we had from the official score sheets:

Steve Waugh - 1311121114121111112, 27 runs from 51 balls

Bruce Reid - 1211 - 5 runs from 10 balls.

Although Bruce Reid was not out, we might give him an honorary dismissal and from

these figures estimate the probabilities as follows.
Steve Waugh:  pq=1/51=0.02,

p1 = probability of 1,2 or 3 =18/51 =0.35,

po = probability of 0, 4 or 6 =32/51 =0.63
Bruce Reid: qqa=1/10=0.1,

q1=4/10=0.4,

qo0=5/10=0.5

Now ¢ = 0.9 > p; = 0.35, N> 1In(0.08/0.35)/In(0.63/0.9)= 4.14, so N = 5. Thus if on
strike at the beginning of the over, Steve Waugh should only take an even number of
runs for the first ball, but an odd number thereafter. If Reid is on strike he should take
an odd number of runs for the first ball, but an even number thereafter. If Waugh is on

strike at the start of the over then the chance of Reid finishing the over on strike is given

by

D
Po—4q
If Reid starts the over on strike his chance of finishing on strike is

F6(B) = f6(B0) = gog>+ q1 f5(G0) = 0.550

Fe(G) = f6(GO) = pf5(GO) = p (7, —¢°) =0.624

The optimal policy to put Reid on strike very early is here caused by the high
probability of Waugh scoring zero. If we alter pg to 0.35 and p1 to 0.63, we get N =3,
and the optimal strategy would revert to that given in Table 12.1. The new values of
Reid finishing on strike become 0.740 and 0.626. Note how the probability of success
alters depending on the good batsman's distribution of probability. Two batsmen could
have the same average and run rate, but the one that has a higher probability of scoring
runs rather than boundaries is the more flexible and may be a better batsman with lower
order players. Maybe more extensive statistics on cricketers should be published. This
has also been suggested in the context of measuring consistency by Clarke (1991b;
1994c¢).
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12.7. An alternative criterion of optimality

By providing a counter example we show that attempting to put the better batsman on
strike at the start of the over does not necessarily maximise the expected duration of the

partnership.

Consider a Markov chain where the states are B, G and E being the facing batsman
when a ball is bowled and the partnership Ended. If the policy is NO (for the good
batsman, implying YES for the bad batsman), then we have using the probabilities as

before of a good and bad batsman scoring runs, the following transition matrix.

B(% q, %\\
PN = GL 0 p de
EX0O 0 1

For example, for the good batsman, the probability of not being dismissed is po + p1 = p,

which as he does not run is the probability of the good batsman being on strike next ball.

If the policy is YES we get the following transition matrix.

B(q 0 qc/\
Py= GLpl Po de
EXO O 1

Then using the example given above with Waugh and Reid, we have

(05 04 0.1) (09 0 01)
PN=L0 0.98 0.02J and PY:LO.Z»S 0.63 0.02J
0o 0 1 o 0 1

This gives, for the optimal policy of NO for the first ball and YES for the last 5 balls a

(0.550 0.040 0.410)
transition matrix for the over of PP} =LO.624 0.097 0.279J
0 0 1

Note the answers 0.550 and 0.624 agree with that given above for the bad batsman

ending the over on strike.
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Alternatively, if we look at a strategy of the good batsman running if possible only off

the last ball, i.e. NO from the first 5 balls and YES from the last ball, we get a transition
(0.283 0.458 0.259)

matrix for the over of PP = {0.3 16 0.569 0.1 14J
0 0 1

This certainly gives much lower probabilities of the bad batsman ending the over on
strike. It also (not surprisingly) gives lower probabilities of the partnership ending by
the end of the over. Our hope was these would be cancelled out by the higher chance of
the partnership ending earlier because the bad batsman has a higher probability of facing

up to the next over.

However, by swapping the first and second columns to allow for the change of ends at
the completion of the over, we now have a transition matrix where the stage is an over
and the states are the batsmen on strike at the beginning of the over. This gives for the

optimal policy

(0.040 0.550 0410\  (0.458 0.283 0.259
L0.097 0.624 0.279J and L0.569 0316 0.114J for the other policy.
0 0 1 0 0 1

The expected number of times in each state can be calculated by applying normal

methods for absorbing Markov chains. The fundamental matrix gives for the two cases

[1.222 1.788) [3.264 1.349)

0316 3.123) and 2719 2.587)° Again, the smaller numbers in the first column

show the optimal strategy clearly produces a much lower expected number of times the
bad batsman is on strike at the beginning of the new over. However, the expected

number of completed overs the partnership will last is given by summing the rows to

give
[3.011\ q [4.613\ Thus th . . | ; L
: t t it t
3.439) and | . o ) us the second case gives longer expected partnership times,

whoever is facing the first over, than the previous optimal policy. These calculations
can be repeated for each of the seven possible policies and are shown in Table 12.2.
This shows that to optimise the length of the partnership the good batsman should run
on the fifth ball, although there is little difference in the two options of running on the
fifth or sixth ball.
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TABLE 12.2. Expected number of completed overs partnership lasts if good batsman
runs on ball n

Facing batsman at n

beginning of over 1 2 3 4 5 6 Never
Bad 2.573 | 3.011 | 3.545 | 4.145 | 4.629 | 4.613 | 3.892
Good 2.960 | 3.439 | 4.050 | 4.753 | 5.325 | 5.306 | 4.447

The best policy under the criteria of maximising the expected number of completed
overs was investigated numerically in this manner for a range of values. Using
SAS/IML the optimal ball on which the good batsman should run was calculated for
each value of pg, g4 = 0.01 to 0.10 in steps of 0.01, pq < gd; po, go = 0.1 to 0.9 in steps of
0.1. In 65% of these cases the optimal strategy was to run off the last ball, 32% the
second last ball with the remaining 3% of cases giving the 4th ball. Thus the simple
strategy of the good batsman getting off the strike if possible on the second last or last
ball of the over, and the bad batsman doing the same off the first four balls, generally

optimises the expected number of completed overs the partnership will last.

12.8. Conclusion

A simple DP model was set up to solve a specific and very limited problem. The model
can be solved completely analytically, and the solution used to suggest a suitable
strategy for every over except the last. In practice, the model is probably deficient in a
couple of respects. The fielding side often set widespread fields to the good batsman
early in the over to encourage a single, and bring the field in later in the over to prevent
the batsmen taking a single. In this case the values of pg etc would depend on the stage
n as well as the state. The model would still possibly be soluble analytically, and
certainly numerically. However the model can also suggest reasons why some
cricketers' scoring profile could make them more suited than others to certain situations
such as playing with tail-enders. Commentators often comment on the ability (or lack of

it) of a player at rotating the strike, but commonly kept statistics do not measure this.

It is clear that minimising the exposure of the weaker batsman to the first ball of the new
over is not necessarily the appropriate objective function. It does not necessarily
minimise his exposure to the strike, the chance of the partnership ending within a certain
number of balls, or maximise the number of balls until the partnership is broken. The

optimal strategy to maximise the number of completed overs for the partnership can be
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found numerically, and usually requires the better batsman running an odd number of

runs if possible on the second last or last ball of the over.

The ball by ball nature of cricket makes it particularly suitable for a DP approach.
Clarke & Norman (1997c) have constructed several other models using alternative
objective functions such as maximising the expected number of runs in the remainder of
the innings, which take into account the number of runs, run rate, the number of wickets
down and the change of ends between overs. Such models could be used to assist with

end play strategies in both the first and second innings.

Note: An earlier version of this paper was presented at the 13th ASOR conference in
Canberra, 1995.
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Appendix 12.1.

The functional equations (12.1) to (12.6) can be solved to obtain analytical solutions.

Theorem 1. If there is some stage n for which the optimal decision is NO, then it is also

NO for the previous stage n + 1.

Proof: If decision is NO at n then from (12.5)
fn(GO) > £,(BO) (12.8)
and fn(G1) =£,(GO) = f,,(B1) (12.9)

Then f,+1(GO0) — f+1(B0)
=P0/n(GO) + p1fu(G1) — qo /u(BO) — g1 fu(BI)  from (12.3) and (12.4)
> po fn(GO) + p1f(GO) — g0 f(GO) — g1 f(GO) from (12.8) and (12.9)
=(po tp1—q0—q1 )/n(GO)
=(r —q) fu(GO)
> (0 since p>gq

ie. fr+1 (GO) > £,+1(B0) and by (12.5) the optimal decision at n+1 is NO. u

Consider the stage n=1

J1B0)  =q0/0(BO) + q1fo(B1) from (12.4)
=qo+tq; from(12.1)

=q (12.10)
J1(GO) = po fo(GO) + p1fo(G1) from (12.3)
=p; from (1) (12.11)
So using (12.5), if ¢ > p; then decision is YES and f1(G1) =g¢q
and if ¢ <p; then decision is NO and f1(G1) = p;. (12.12)

We thus have two cases.



Case 1: q < p;

From (12.12) and Theorem 1, decision is always NO and so forn > 1
fn(G1)  =£,(GO) from (12.5)
= p0fn-1(GO) + p1 fp-1 (G1) from (12.3)
=(po + p1) f2-1(GO) from above
= p /n-1(GO)
= p"1 £1(GO)
= p™1p; from (12.11)
fu(B1)  =£(G0)= p*lp; from (12.6)
/n(BO) = qo fu-1(BO) + g1 fp-1(B1) from (12.4)
= q0/n-1(B0) + g1 p"-2 p; from above

qlpl( n-1 n—l)
qgo-p\1° P

=qo"1q+

Case 2: q >py
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From (12.10) decision at n=1 is YES and f1(G1) =¢. Let n =N be the first time the

decision is NO, then for n = 1,2,... N-1 the decision is YES and
fa(Gl)  =f,(B0)=f,(B1) forn=1,2,..N-1 from (12.5)
Soforn=1to N
m(BO)  =qofn-1(BO) + g1fp-1(B1) from (12.4)
= q0./n-1(BO) + ¢1 fn-1(BO)
=q /n-1(BO)
= ¢*fn-2(B0)....= ¢" fo(BO)
= q}’l
So by (12.13), forn=1, 2.....N-1,
Mm(GL)  =1u(BO) = fp(BI) = g"

Now £i(GO) =piby (12.11)
So Sn(GO) = po fn-1(GO) + p1 f-1(G1)
= p0 /n-1(GO) + p1 ¢! by (12.15)
p1

= po—q (po*—q") forn=1,2,3...., N by induction

(12.13)

(12.14)

(12.15)

(12.16)
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Now, since N is smallest n for which decision at G1 is NO, we have from (12.5)

MGO) > /M(BO)

ppo—lq oV =g > ¢V from (12.14), (12.16)
p1poN—pi f]N > Po f]N* qNJrl where sign reverses if pg < g
Cpipe > o+ p1) ¢ ™!
=-94q"
PO ‘N r—9q
0 >
T
ln%q
N > 2 where sign reverses back if pg < ¢
In—
q
1 4d—Pd
= - Pl 12.17
-4
Now forn=N, N+ 1,... (i.e. n>N ), decision is NO
So f(GO)  =f,(B1)=1,(G1) by (12.5), (12.6) (12.18)
But /(GO) = po fn-1(GO) + p1 fn-1(G1) by (12.3)
= po fu-1(GO) + p1 £,-1(GO) by (12.18) if n—1>N
=(po+p1)fr-1(GO) if n>N+1
= p"N fM(GO) (12.19)
OR Jm+MGO) = p™ fM(GO)
SO 12(GO) =71,(B1)=/1,(Gl)= p”—Nl%lq (poN — g™N) for n> N(12.20)
Pl
OR JintNGO) = NBUZm+MGL)=p™ ) " (poN —g™) for m > 0(12.21)

Jn(BO) = qofn-1(BO) + q1fp-1(B1) from (12.4)
= qofn-1(B0) + q1p" N1 fi(GO)

n-N N n— 7n—N.
+ — 0
70 @' =" GO)
for n=N+1, N+2, ... (12.22)

OR S (B0) = o™ N+ 2 (o™ ) M(GO) for m > 0.

0]

So we have an analytic solution for f,(GO0), 1,(G1), f,(B0) and f,(B1) for all n.



CHAPTER XIlI

TO RUN OR NOT?
SOME DYNAMIC PROGRAMMING MODELS IN CRICKET

13.0. Abstract

In cricket, particularly near the end of an innings, batsmen of different abilities need to
manage the rate at which they score runs. Either batsman can choose to bat aggressively
or defensively, which alters their chance of scoring runs and being dismissed. Since
they change ends when they score a run and at the end of an over, by scoring an odd or
even number of runs the two batsmen also determine which of them will face the next
ball. It may be worthwhile to refuse a run to keep the slower or lower scoring batsman
from the strike. Some dynamic programming models are developed which could be

used to maximise the total number of runs scored.

Key words: sports, cricket, dynamic programming, Markov processes

13.1. Introduction

A cricket team usually consists of six specialist batsmen, a wicket keeper and four
specialist bowlers. Two players from the batting side are at the wicket together, one
facing the bowler and the other at the non strikers end. As the batting ability of the
wicket keeper and the bowlers may vary from good to terrible, near the end of an
innings a good batsman often finds himself with a poor batsman as a partner. The facing
batsman changes whenever an odd number of runs is scored, and also at the completion
of each six ball over. The batsmen are then often faced with the possibility of
sacrificing a possible run to avoid the weaker batsman being placed on strike. Batsmen
also need to decide whether they should attempt to score quickly, which will tend to
produce more fours that do not require a change of ends but does involve greater risk of

dismissal, or play more slowly and cautiously.

Because of the ball by ball nature of cricket, dynamic programming (DP) is the natural
choice to analyse cricket. Surprisingly there are few papers using this technique to
analyse cricket tactics. In cricket, in the first innings a team will generally want to
maximise the number of runs scored, while the team batting last will want to maximise
the chance of passing the first team's score. However depending on the state of the

game, other optimality criteria are possible. For example a team trying to obtain a draw
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may wish to maximise the time an innings takes. Clarke & Norman (1998a) look at
possible strategies to maximise innings length with two batsmen of different abilities at
the crease. Here we look at some possible models to assist in maximising the number of

runs scored with batsmen of different abilities.

Clarke (1988b) used a DP formulation to investigate the optimal run rates in one day
cricket. Scoring rates from 1 to 12 per over were allowed. To solve the DP
formulations, the probability of dismissal and the scoring profile for the various run
rates were required. However such data is very difficult to obtain. For example, while
it is generally recognised that on a particular pitch to score more quickly involves taking
a greater risk of dismissal, when analysed over many matches the data suggests the
reverse. This is due to confounding variables. On good pitches and against weak
attacks, batsman score quickly and at low risk, while on difficult pitches and good
bowling the scoring rate drops while the rate of dismissal goes up. However by using a
relationship between dismissal rates and run rate that seemed reasonable and at least
satisfied certain logical criteria (such as monotonic increasing) this paper derived some
useful criteria. Johnston (1992) later showed some of these criteria were valid under a
range of possible relationships. It is in this vein we present the following models.
While data to implement them in detail may be difficult or impossible to obtain, it is
hoped that by using such models some general conclusions valid under a wide range of

scoring profiles might be found.

Here we relax the restriction that all batsmen are of equal ability. This implies batsmen
have to consider the effects of different run rates on the chances of the weaker or slower
scoring batsman being put on strike. It also raises the possibility of batsmen refusing

possible runs.

13.2. Model 1

We begin by looking at a model where batsmen have the opportunity to take runs and
need to decide whether to take the maximum possible, or one less to put a certain
batsman on strike. For the moment we ignore the change of ends at the completion of

an over.

A team consists of 11 batsmen designated by i =1—11. Let j =0 to 6 be an index that

defines the scoring possibilities of a batsman, namely 0, 1, 2, 3, 4 (all run), 4
(boundary), 6. Then batsman i can score these runs with probability pijo, Pii....... Pig or



be dismissed with probability pjg. If a batsman is dismissed, assume the next batsman

comes in and takes strike at the same end. (In fact this is not always the case).

Define j*, jodd, Jeven as below and also shown in Table 13.1.

J* is the number of runs available j* =] for j#5,
=j-1for j=5.

Jodd is the maximum number of runs taken if batsmen always change ends if possible.
Then Jodd =Jj*-1if j=2,4,

= J* otherwise.
Jeven 18 the maximum number of runs taken if batsmen never change ends.
Then jeyen =j*-1if j=1,3,

= J* otherwise.

TABLE 13.1. Number of runs scored off single ball.

Index j No of Runs Jodd Jeven
on offer j*
0 0 0 0
1 1 1 0
2 2 1 2
3 3 3 2
4 4 (Run) 3 4
5 4 (Boundary) 4 4
6 6 6 6

We can now set up a DP model. Define the state to be (i, k, j) where i is the batsman on
strike, K is the batsman at the other end and j is the index of the number of runs on offer
after the ball is bowled and there are n more balls to be bowled. If the number of either
batsman is 12 the innings is completed. Thusi=1to 12,k=1to 12 (i [1k),j=0to 6.

Note there is no need to consider dismissal as a special state. Let | = max (i,k) + 1 be the
next batsmen in. Then if (say) state is (i,k,2) and the batsmen run a two, then before the

next ball is bowled i will be on strike with k at the other end. So after the next ball is
bowled, there will be j runs on offer (state (i,k,j)) with probability pjj, or i will have
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been dismissed with probability pijqg, so | will be facing and there will be no runs on offer
(state (1,k,0)).

Define the value function f,(i,k,j) = total expected number of runs in the remainder of

the innings after the ball is bowled and with n more balls to go.

The decisions are YES, Change ends, take jodd number of runs or
NO, Do not change ends, take jeyen number of runs.
Note that a decision is only necessary when jeven # jodd; 1.€. for j =1, 2, 3, 4.

The transition probabilities are easily evaluated. If the current state is (i,k,j ) and

decision is No, batsmen will not change ends, so i will still be on strike for the next ball,
and will score J runs with probability pjj or be dismissed with probability pjq. Thus state

(i,k,j ) (i,k,j ) with probability pjj, and state (i,k,j )< (1,k,0)) with probability pig. If
current state is (i,k,j) and decision is Yes, batsmen will change ends, so k will be on
strike next ball, and will score j runs with probability pxj or be dismissed with
probability pkd. Thus state (i,k,j)& (k,i,j) with probability pkj and state (i,k,j )& (1,i,0)
with probability pkg.

The functional equations then become

[YES: s +20 pyfo skl i)+ Py (11,0)
f(ikj) =MAX ! _ ‘ o (13.1)
[NO Jeven +Z plj fn—l(l’k7j)+pid fn—l(l’k’o)
i

YES: j. +f(ki0
= MAX %“ 4 ) (13.2)
: +f.(1,k,0)

Jeven
Note that for j = 0, 5 and 6 the option of changing ends is not available so the No choice
is always taken. A more detailed derivation of these equations is given in Appendix
13.1. Equation (13.2) makes sense. If batsmen decide to change ends, they get jodq runs,
and are then in exactly the same position as if they had been at opposite ends and had no

runs available. Similarly if they decide not to change ends.

For the last ball the batsmen will take all the runs, and when the 12th batsman is needed

the innings is ended. This results in initial conditions
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folikj)  =j* i=1-11,k=1-11,j=0-6 (13.3)

fi(12,kj) =fi,12))=0 foralli=1-11,k=1-11,]=0-6 (13.4)

In keeping with the example in Hastings (1973, p 100) we could define the state to be
(1,k) and Fnp(i,k) = expected number of runs before a ball is bowled, with n balls to go.

Then

Pk = 3, pijfs (Pkir+ piaTa(k0) (13.5)

Hastings calls (i,k,]) and (i,k) primary and secondary states.
From (13.1) and (13.5) it follows that

Fn(ilk)  =fa(ik,0) (13.6)
13.3. Simplifying results

Several simplifying results are given in Appendix 13.2. We show that the optimal
decision for any odd j is the same. Similarly for even j. Thus we need only discuss the
two cases when | is odd (1,3) orj is even (2,4). For each facing batsman the policy
can be stated as an ordered pair (-,7) taking the values (Yes, Yes), (Yes, No), (No, Yes)
or (No, No), where the first string represents the decision when j is 1 or 3, and the
second when | is 2 or 4. We then show that (No, Yes) is never optimal. This can also
be argued from common sense grounds. If batsmen refuse a run to keep batsman k
from the strike, they would certainly not at the same stage refuse a run to put batsman k

on strike.

So we have only three possible policies for each facing batsman, (No, No), (Yes, Yes)
and (Yes, No). These three policies could be stated as

(a) keep the strike batsman i on strike

(b) put the opposite batsman K on strike; and

(c) take all the runs on offer.

We next show that an optimal decision of Yes for (i,kK) when j is odd []an optimal
decision of No for (k,i) when j is even (and vice versa.) This simply shows that if (a)

above is optimal for one batsmen, (b) is optimal for the other. If (c) is optimal for one
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batsman it is also optimal for the other. Thus we can make table 13.2.showing the

relationship between optimal policy at stage n for state (i,k) and state (k,i).

TABLE 13.2. Relationship between policies

Optimal decision for Optimal decision for Combined Policy
State (i,k) State (ki)
(Yes, Yes) (No, No) keep k on strike
(Yes, No) (Yes, No) take all runs
(No, No) (Yes, Yes) keep i on strike

Note that the first and third are mirror images of each other; they are both putting a
particular batsman on strike. The middle one is taking all possible runs. Note also for
two even batsmen, the only possible optimal policy is (Yes, No) 'take all the runs' as

otherwise the symmetry would result in a contradiction.

Thus, the problem is much simplified. For a given pair of batsmen instead of a Yes/No
decision for each of two possibilities for the facing batsman at each of four possible runs
= 44 =16 policies, there are only three possible policies (take all runs, keep i on strike,
keep k on strike). If we group batsmen as 'recognised batsmen' or 'duffers' we only need

to determine the optimal policy when a recognised batsman and a duffer are together.
13.4. Some analytic results

It is possible to generate some analytic results. Details are in Appendix 13.3. A

summary follows.

With one ball to go optimal policies are
(Yes, Yes) Keep k on strike if Mk > Hj +1
(No, No) Keep i on strike if Mk < Mj—1
(Yes, No) Take all runs if Mi—1 < pk < Mitl

where lj = ; J*pij 1s the mean run rate of batsman i.

These policies make sense and could be argued from first principles. Thus if a non
strike batsman has a run rate greater than one more than the batsman on strike, it is

worth sacrificing a run to put him on strike for the last ball. If the run rates are within
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one of each other, all the runs would be taken.

The question to be answered, is how far back into the over do these optimal polices
remain. While the optimal policies can not be found analytically for all values of n, we

can find recurrence formula for the value function under particular polices. Thus if for
Hi—1 < Pk < Mj+1 and the batsmen take all the runs for all n, we get

Fr(i,K) = 4 + piu Fny 1 (K0) + pie Fpy .1(LK)+ pidFp .1(LK)

where pjy= Pi1 + Pi3 = probability batsman i will score an uneven number of runs, and

Pie = Pio T Pi2 T Pia + Pis + Pi¢ = probability batsman will score an even number of runs.
Similarly, for [j > pk +1 if the batsmen attempt to keep k from the strike for all n,
Fn(i,K) = ie + (1-pid) Fn-1(1,K) + pidFn-1(1,K)

F(kii) = tu T Prr Fno1 (1K) + prn Py (KD + prgFroi (L)

where e = Pjj Jeven = mean scoring rate if batsman i always takes jeyen runs and
Hiy= 2. Pij Jodd = mean scoring rate if batsman i always takes jodd runs.
Pir =Pi1 T Pi2 T Pi3 t Pia = probability batsmen will be able to run something
Pin = Pio + Pi5 T Pig = probability batsman will not be able to run.

These expressions can be solved recursively. Thus we could generate the expected

number of runs if batsmen consistently follow certain strategies.

However, for the last wicket, when | = 12, some progress can be made analytically. In
this case F,_;(1,i), F,_;(1,k) are zero, the recursion equations can be solved, and although

complicated, closed expressions can be found for F(i,K) .

Note also that several performance measures such as pjr naturally arise. These are

currently not kept on cricketers. However it is sometimes said that a particular cricketer
is adept at batting with tail enders, or is good at rotating the strike. If this is due to his
scoring profile, such ability may be indicated by a high pjr , which is the probability the

batsman will have a choice of changing or keeping the strike.
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13.5. Model 2

The extension to allow for change of ends at the end of each 6 ball over follows simply

with a slightly more complex notation.

Let fmn (i,k,j) be the expected number of runs with m overs to go, N more balls to go in

the over (after the ball is bowled), j runs on offer, m=0,1,... n=0-5.

Let Fmn (1,K) be the expected number of runs with m overs and n balls in the over to go

(before the ball is bowled), m=0,1,... n=1-6.

Forn=1to 5: Similar to the previous section we have

L [ . . .
fin (k) =MAX |YES: jyq + 2By frny (KibJ) + Py (LLO)  (13.7)
4 i
tNO : jeven + Z pij fm,nfl (i’k’ J) + pid fm,nfl (Lk,O)
J

For j =0, 5 & 6 there is no choice, only the No option is available.

Of special importance is j = 0, which gives

fin(i k,0) = Zpij fons (5K 3) + Py font (LK,0) (13.8)
j
SO
fmn(ikj) = MAX [YES: jo + fun (k,i,0) (13.9)
NO: Jeven + fm,n (l,k,O)

For n=0: Last ball of the over so change ends if runs are even, overs go down by one

fmo(ikj) = MAX {YES: g + DBy s (kD) + Py fs K0)  (13.10)
NO: jeven + zpk] fm—l,S (k’|7.l) + pkd fm—l,S (L’I’O)

and again: f_, (i,k,0) = Zpkj foos (L) + P fors (1i,0) (13.11)

so  fmo(ikj)=MAX [YES: j. + f., (k.i0) (13.12)
NO: + .0 (,k,0)

JCVCI‘I
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The relationship between Fy, n (1,K) and fy,  (1,k,0) is

Forn=1to5:  F,, (k) = 2 p; funy (LK) + Py ot (LK,0) (13.13)
i
= £, (i,k 0)
Forn=6: F., (Lk) = > p; fos (K, 0) + Py fus (LKO) (13.14)
j
= fm+1,0 (k,i,())

or fo (Lk,0) = Fo i (k1)

So that at the end of the over only the fyn(i,k,0) matrix becomes the transpose of
Fmn(i,K) matrix. This also makes sense as between the stage fr, o (after the last ball of
the mth over is bowled) and Fp,_1 6 (before the first ball of the m-1th over is bowled)

there is a change of ends due to the end of over.

Most of the general results of the previous model still hold. Thus there are still basically

only two decisions for each pair of batsmen for each ball.
13.5.1. Computer implementation

A computer program has been written to implement Equations 13.7 and 13.10 of Model
2. The various probabilities required could be estimated from standard score sheets, as
these always show the number of runs for each scoring shot and usually show the total
number of balls faced. They may not differentiate between a four all run and a
boundary. We only take a very simple case for illustration here. We assume there are
two types of batsmen, batsmen 1 to 7 are recognised and 8 to 11 are duffers with scoring
probabilities as shown in Table 13.3. Then the basic program will produce the expected
number of runs in the remainder of the innings before the ball is bowled and the optimal
strategy after the ball is bowled for as far back in the innings as required. For example,
from ball by ball data developed by Johnston (1992) from the 1989 Australia, Pakistan
and Sri Lanka one day series in Australia we have the runs scored by batsmen at each
position. For the Australian batsmen batting at 1 to 7, of 2819 balls faced 113 fours
were scored. This gives the probability of a four at just on 4%. For 8-11 batsmen 50
balls faced produced one four to give a 2% chance. Now in this series the Australians
were well on top, so the weaker batsmen did not bat very often. Hence some adjustment
of their probabilities was necessary to produce sensible figures. For example the

probability of scoring a 0 was increased to at least the level of the recognised batsmen,
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as this seems a reasonable assumption. This produced the probabilities in Table 13.3.

TABLE 13.3. Scoring profile of batsmen

Batsmen Pd Po P1 P2 P3 P4 P5 P6 U
Recognised [0.02 [0.50 [0.32 ]0.10 [{0.02 [0.00 ][0.04 ]0.00 [0.74
Duffer 0.06 [0.52 [0.32 [0.08 [0.00 [0.00 |0.02 ]0.00 ]0.56

Note this gives an average run rate for recognised batsmen of 0.74, so if they bat
through a one day innings of 300 balls they should score about 224. In fact, the printout
for 300 balls to go with 1 and 2 batting gives an expected score of 207.3. This is less
than 224 due to the possibility that the slower scoring of the batsmen 8-11 will be
needed, or worse still the team dismissed before 50 overs. By repeating with one fewer
or one more extra batsmen, the effect on expected score of selection decisions to choose
extra batsmen could be evaluated. The model could be used by media to give estimates
of expected score and effects of dismissals. For example, with 299 balls to go and
batsman 2&3 at the crease the expected score reduces to 195.5, so a first ball duck costs
the team about 12 runs.  Johnston et al. (1993) use this approach for the basis of a

player performance measure in one day cricket.

We give in Table 13.4 a sample output with 10 overs, 0 balls to go. Thus the decisions

are for the last ball of the eleventh last over, and the expected runs for the last 10 overs.

The strategies give us the runs that should be taken off the last ball of the 11th last over.
The batsmen should generally take all the runs, except if a recognised batsman is
batting with the number 11 batsman. In this case they should put the number 11 bat on
strike, so the recognised batsman will be on strike at the beginning of the next over.
The transpose of the numbers give us the expected score in the last 10 overs. Thus at
the beginning of the 10th last over, if say 4 and 5 are in they can expect to score another
44.2 runs. On the other hand if 4 and 11 are in they can expect 15.5 runs if 4 is facing
and 14.4 if 11 is facing. The table can be used to estimate the value of wickets in hand.
For example it is worth roughly 18 runs (41.7- 23.9 ) to have 6 & 7 batting rather than 8

and 9 with 10 overs to go.
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TABLE 13.4. Expected score and optimal strategy with 10 overs to go

Facing Non strike batsman

batsman | 1 2 3 4 5 6 7 8 9 10 | 11
1 444 (444 (444 |44.2 |43.4 |41.1 |34.6 (31.1 (247 | 144
YN [YN [YN |[YN |[YN |YN |YN [YN [YN |YY
2 44.4 44.4 144.4 [44.2 (434 |41.1 |34.6 |31.1 |24.7 |144
YN YN [YN [YN |[YN |YN |YN |YN |YN |YY
3 44.4 |144.4 44.4 1442 |43.4 [41.1 |34.6 |31.1 (247 |14.4
YN [YN YN [YN [YN |[YN |YN |YN |YN [YY
4 44.4 (444 (444 442 (43.4 |41.1 |34.6 |31.1 |24.7 | 144
YN [YN |YN YN [YN [YN |YN |YN |YN |YY
5 442 (442 (442 |44.2 43.4 [41.1 |34.6 |31.1 |24.7 | 144
YN [YN [YN |YN YN [YN |[YN |YN |YN |YY
6 43.4 |43.4 |434 (434 |434 41.1 |34.6 |31.1 [24.7 | 144
YN |[YN [YN |YN |YN YN [YN |YN [YN |YY
7 41.1 |41.1 [41.1 [41.1 |41.1 [41.1 34.6 [31.1 |24.7 |14.4
YN [YN [YN |[YN |[YN |YN YN |YN |YN [YY

8 34.8 |34.8 |34.8 [34.8 [34.8 [34.8 |34.8 239 [17.3 |9.1
YN [YN [YN |[YN |YN |[YN |YN YN [YN |YN

9 31.5 |31.5 |31.5 [31.5 [31.5 |31.5 |31.5 |23.9 17.3 |9.1
YN [YN [YN |[YN |[YN |YN |YN [YN YN |YN

10 254 1254 (254 |254 |254 (254|254 |17.3 (173 9.1
YN |[YN [YN |[YN |[YN [YN |[YN |YN |YN YN

11 15.5 [15.5 [15.5 |15.5 [15.5 (155|155 (9.1 |[9.1 |O9.1
NN [NN |[NN [NN |NN |NN NN [YN [YN |YN
13.6. Model 3

In addition to deciding whether to take all possible runs, a batsman may have choices in
the sort of stroke he plays. For example, when a recognised batsman is paired with a
duffer, fielding sides sometimes have deep set fields to encourage the good batsman to
take a single. In this case a batsman may decide to gently stroke the ball to a deep set
fielder for a certain single and sometimes a two, with almost no risk of being dismissed.
On the other hand he may decide to belt the ball in the hope of beating the fielder for a

boundary. This shot carries a greater risk of dismissal, but also a greater chance that no
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run will be scored. A batsman may also just wish to avoid dismissal and block the ball,
a shot that rarely scores a run. Superimposed on these shots are the decisions whether to
run all the available runs or not.

Thus we let the state (i,k) be the two batsman, i facing the bowler, and define as before
Fmn (1,k) the expected number of runs under optimal policy with m overs and n balls in
the over to go m = 1,2,... n=1-6,. There are now five decisions, to Block, Stroke or Hit,

and for each of the latter two to take all the runs or not. The model is similar to the
previous except that we have different pjj for each type of shot.

It is difficult to progress very far analytically with this model, but simple to solve
numerically via a basic program. This allows the number of recognised batsmen to be
altered. It is difficult to obtain estimates of the pjj as it is not known from score sheets
what type of stroke a batsman is trying to play. One could perhaps split up an innings
into sections. For example, in one day matches where teams do not lose a lot of wickets,
it could be assumed that batsmen were trying to thrash the ball in the last few overs.
Here we take probabilities similar to that we had before for the recognised batsman as
equivalent to stroking, and adjust the others up and down as necessary for blocking and
hitting. This gives the probabilities in Table 13.5.

TABLE 13.5. Scoring profile for batsmen when blocking, stroking and hitting

Probabilities

Batsmen Shot | Pd Po P1 P2 P3 P4 Ps Pe6 U

Recognised |[Block | 0.01 | 0.99 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00

Stroke | 0.02 | 0.50 | 0.34 | 0.14 | 0.00 | 0.00 | 0.00 | 0.00 | 0.62

Hit 0.10 1 0.30 | 0.30 | 0.20 [ 0.00 | 0.00 | 0.10 | 0.00 | 1.10

Duffer Block [ 0.06 | 0.94 | 0.00 { 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00

Stroke | 0.10 | 0.40 | 0.40 | 0.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.60

Hit 0.30 | 0.30 | 0.20 | 0.10 | 0.00 | 0.00 | 0.10 | 0.00 | 0.80

The program was run with 7 recognised batsmen for 300 balls. This gave an expected
score at the beginning of the match as 181. Some sample output for 19 balls to go is
shown in Tables 6 and 7. The expected score shows that if they still have two
recognised batsmen at the crease they can expect to score about a run a ball. However
this drops to under 8 if number 11 is batting. In the above strategy output, the first letter

indicates the type of shot, and the others whether to take all the runs or not as previously
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used. Thus in this case they should always take all the runs. When recognised batsmen
are batting with 10 and 11 they should stroke, otherwise hit. Presumably this is because
of the greater chance of getting a single if they stroke, and so protecting 10 and 11 from
the strike at the beginning of the next over. Duffers should stroke when playing with
duffers. When playing with a recognised batsman, number 8 should hit, 9 & 10 stroke,
and 11 block.

While the strategy here is a little complicated, it is possible that by studying the output
for a range of values some general principals may be enunciated. For example, for the
above scoring profile, for all stages the only time batsmen should refuse a run is to

protect batsman 11 from the strike.

This output would apply for one day cricket when the number of balls remaining is
known; in test cricket the length of the match is unknown. However 300 balls to go
would represent a good approximation for test cricket, at least certainly in the cases
when a duffer is at the crease. In this case the optimal strategy is for both batsman to
stroke the ball, and to take all the runs except when 11 is at the crease. In this case they
should refuse runs as necessary to keep the recognised batsman on strike for the first 4
balls of an over, take all the runs on the 5th and refuse runs to put the bad bat on strike
for the last ball of the over.

13.7. Conclusion

DP models are useful in analysing optimal strategies in cricket. The common practice of
refusing runs to protect weaker batsmen from the strike has been shown to be sensible
under certain conditions. Clearly more work needs to be done before these models can
be generally applied. The optimal strategies for a range of batsmen scoring profiles
need to be determined to see if any general recommendations can be made. The models
might also be extended to a second innings formulation. However this involves the
addition of the number of runs to go to the state variable, and usually increases the

computational requirements to an unacceptable level.



TABLE 13.6. Expected score with 19 balls to go.

21(

Facing Non strike batsman
batsman | 1 2 3 4 5 6 7 8 9 10 11

1 209 | 209] 20.8| 20.5| 19.8| 182 | 151 | 140| 11.9| 8.0

2 20.9 209] 20.8] 20.5) 19.8| 182 ] 15.1| 140] 11.9| 8.0

3 20.9 | 20.9 20.8 | 20.5] 19.8| 182 15.1] 14.0| 119] 8.0

4 20.8 | 20.8 | 20.8 20.5| 19.8| 182 | 15.1| 140| 119 8.0

5 20.5| 20.5] 20.5| 20.5 19.8] 182 15.1| 14.0| 119| 8.0

6 19.8 ] 19.8] 19.8| 19.8| 19.8 1821 15.1] 140] 11.9| 8.0

7 182 ] 182] 182 | 18.2| 18.2] 18.2 15.1] 140] 11.9] 8.0

8 15.0| 15.0] 150 15.0| 15.0] 15.0| 15.0 11.0| 89| 5.2

9 13.9] 139 139 139] 139] 139 139] 11.0 89| 5.2

10 117 117 117 117 11.7] 11.7] 11.7] 89| 89 52

11 7.5 7.5 75| 751 75 75| 75] 52| 52] 52

TABLE 13.7. Optimal strategy with 19 balls to go
Facing Non strike batsman
batsma 1 2 5 6 7 8 9 10 11

n
1 HYN |HYN |HYN [HYN |HYN [HYN |HYN [HYN |[SYN |SYN
2 HYN HYN |HYN |HYN |HYN [HYN [HYN [HYN [SYN |SYN
3 HYN |HYN HYN |HYN |HYN [HYN [HYN [HYN [SYN |SYN
4 HYN |HYN |HYN HYN |HYN |[HYN [HYN |[HYN [SYN |SYN
5 HYN |HYN |HYN [HYN HYN |HYN |HYN [HYN |SYN [SYN
6 HYN |HYN |HYN |HYN |HYN HYN |HYN [HYN [SYN |[SYN
7 HYN |HYN |HYN |HYN [HYN |[HYN HYN |HYN |SYN |[SYN
8 HYN |HYN [HYN [HYN [HYN |HYN |HYN SYN |[SYN |SYN
9 SYN |SYN [SYN |SYN [SYN |[SYN |SYN |SYN SYN |SYN
10 SYN |[SYN [SYN [SYN |SYN |SYN |SYN |SYN [SYN SYN
11 BYN |BYN |BYN |BYN [BYN [BYN [BYN |SYN [SYN |SYN
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Appendix 13.1. Derivation of functional equations for Model 1

Forj=0,35, 6:

No decision to be made, no change of ends, so i is still on strike next ball

fn(i,k,j) =j*+ JZ Pijfn-1 (i,k.J) + pid fn-1 (1,k,0) (13.15)
Forj=1,3:

{Yes: J*"‘Z Py f (k1,1 + Pt (Li0)
j

fn(i,k.J) =MAX | (13.17)
[NO : J *_1+Z pij fnfl(ia kaj)+ pid fn—l(l’ k’O)
i

Yes: j*  +f (k.i,0)
- MAX : . (13.18)
No: j*-1 +f (i,k,0)

Yes: j*  +F (ki)
~ MAX : _ (13.19)
No: j*-1 +F(.k)

Forj=2,4:

[YGS: j*_l"'z Py fn—l(k’i’j)+ pkdfn—l(l’i’o)
i

fn(i,k,j =MAX 13.20
(kD lNO: i* +Z B fn—l(i’kﬂj)_'_ Pig fn—l(Lk’O) ( :
i

Yes: j*-1 + f (k,i,0)
~ MAX : _ (13.21)
No: j* +f(k0)

Yes: j*—1 +F,(k,i)
~ MAX : _ (13.22)
No: j* +FE(k)
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Appendix 13.2. Proof of theorems for Model 1

Theorem 1: Optimal decisions for all odd (even) values are the same. i.e. the optimal
policy for some odd j is the same as for any other odd j. Similarly for even j.

This follows trivially from (13.2)

e.g. Ifthe decision is Yes for some odd j

Then jodd + fa(k,1,0) > Jeven t+ fn(i,k,0)
T Rki0) > -1+ Tik0)

0 fn(kaho) >—1+ fn(hk,o)
O J * fn(kalvo) > jl*_l + fn(lak;O)
0 jlodd + fn(kaivo) > jleven + fn(i,k,o) ifj' is odd
so Yes is optimal for j [ |

Thus we need only discuss the two cases when | is odd (1,3) or j is even (2,4).

Thus for each facing batsman the policy can be stated as an ordered pair (-,") taking the
values (Yes, Yes), (Yes, No), (No, Yes) or (No, No), where the first string represents the

decision when j is (1 or 3), and second when | is (2 or 4).

Theorem 2 : A policy of (No, Yes) is never optimal.

If decision at odd j is No, then for odd j we have from (13.2)
Jeven T fn(1,k,0) > jodd *+ fn(k,i,0)
O R =1+ (i k,0) > + frk,i,0)
[] fn(i,k,0) > 1+ f(k,i,0)

So for even j :

jeven + fn(i,k,()) = J* + fn(i,k,O)
> j* +1 + fy(k,i,0) from above
>j* —1 + fn(k,i,0)
= jodd *+ fn(k,i,0)

So optimal decision for even is No from (13.2). u
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Theorem 3: An optimal decision of Yes for (i,k,j) when j is odd /7an optimal decision of
No for (k,i,j )when j is even (and vice versa.)

eg.

If optimal decision is Yes for odd j

Then jodd + fn(k,1,0) > jeven *+ fn(i,k,0) from (2)
e jF4faki,0)  >j*—1+fa(ik,0)
0 fr(k,i0) > —1 + (i ,k,0)

So for even j:
JF+faki,0) > jF =1 +fa(i,k,0)
i.e. jeven + fn(k,i,O) > Jodd + fn(i,k,O)

1 optimal decision is No for state (k,i,j) when j is even.

Similarly, for a decision of No for odd j, > becomes < in above

71 decision is Yes for state (k,i,j) when j is even.



Appendix 13.3. Some Analytic results for Model 1
First Stage: n=1

With one ball to go:

From (13.1) ko) =0+ pijfo(iki) +pig o (k.0

- ; Pij i* + pig0 from (13.3)
= Hi

This is the mean run rate for batsman 1.
(Note that equation 13.2 [1f(i,k,5) =4 + pj and f1(i,k,6) = 6 + )

. o YES jua + s
For other J, from (13.2) f(i,k)) = MAX {NO L +a
If j iseven: Decisionis Yes if  jodd + Mk > Jeven T Mi
ie j*—1+Hk >J*+Hi
ie. Mk >Hit+1
and No if Mk <pHjt+1

If j is odd: Decision is Yes ifj* + > ¥ —1 + yj
ie. Mk~ Hi-1
and No if Mk <Hi-l

So for n =1 optimal policies are  (Yes, Yes) if  px > Hj+1
(No,No) if Wk <Hi-l

(Yes,No) if pi-1 <pg<pitl

214

The question to be answered is how far back into the over do these optimal policies

remain. Our feeling is that you could not extend this to all values purely based on g

and [j, but that it would depend on pg,p1 ...etc, or more particularly p, and pe. Is there

a formula that gives N = least number of balls to go when this policy is no longer

optimal?
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Special Case (Yes, No) decision - take all runs on offer
Consider case when decision is (Yes, No) for n=1
Le. Hi—I<pk<pi +1

This is the case when batsmen take all the runs and is the same for the batsman at the
other end.

fa(ikg)  =j* +f1(ki,0) if j is odd from (13.2)
= j* +fa(i.k,0) if j even

fa(i,k,0) =0+ ; Pij fn-1(LK. )+ pid fr_1(1.k,0) from (13.1)
= 2 Pij 0%+ in g (k1L0) 3+ 3 pij 4 Ty 1(1K,0) 3+ pid fn1 (Lk,0),

where Y means sum over odd j =1,3 and ) means sumoverevenj =0,2,4,5,6
€

u
= 44+ Piy fr1(k,,0) + pie Fr_1 (1,K,0)+ pidfp_1(1,k,0)
where pj, =Pj; + Pi3 = probability batsmen will score an odd number of runs, and
Pie = Pio ™ Pi2 * Pi4 T Pis * Pie
= probability batsman will score an even number of runs.
(Pig * Piu+Pie=1)

This expression can be solved recursively.
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Special Case (No, No) decision - Keep batsman k off strike

Consider case when decision is (No, No) when state is (i,k). Then decision is (Yes,Yes)

when state is (k,i). The batsmen are trying to keep batsman k from the strike. This is
the case forn=11if py <p;—1. 1.e. hj>pg + 1

Assume this is true forn=1,2,...N.
Then from (13.2) f(1,K.}) = Jeven T fr(i,k,0) forn=1,2,..N

From (13.1) fo(i,k,0) = JZloij fa1(LkJ) + pig fa1(1,k,0)
= Z plj {jeven + fn_l(l,k,O)} + p|d fn_l(l,k,O),
= i T (1-Pjg)fn_1(1,k,0) + pigfy_1(1.k,0)

where Hie = 2. Pij Jeven = mean score if batsmen always stay at same end.

Similarly  f(k,i,j) =jodd + f(1,k,0) if j=1to4
= jodd + f(k,1,0) if j=0,5,6

From (13.1) fn(k,1.0) = X Pyj { Jodd *+ fn-1(1K.0)} + X Py {odd * fo-1(K1,0)} + Pyg (11.0)

where ) means sum over the ] where it is possible to take runs j = 1,2,3,4, and )
r n

means sum over the j where it is not possible to take runs j =0,5,6.

=X Pijodd T X Py Fo-1(K.0) + X Py fn1 (ki ,0)+ Pig Fr-1(11,0),
=ty T Prr fr1(1,K,0) + pn fo_1 (K1,0)+ pygfn_1(11,0)

wheresy = Y’ Pij jodd = mean score if batsmen always change ends if possible
Pir=pPi1 + Pi2 + Pi3 T Pis = probability batsmen will be able to run something
Pin = Pio + Pis + Pic = probability batsman will not be able to run.

(Pid + Pir +Pin=1)

This expression can be solved recursively.



CHAPTER XIV

ASSESSING PLAYER PERFORMANCE IN ONE DAY CRICKET USING
DYNAMIC PROGRAMMING

14.0. Abstract

A dynamic programming formulation is used to develop a method of calculating the
contribution, in runs, made by each player to the team's score in a game of one-day
cricket. The advantages of such measures over the currently used statistics are outlined
as well as their possible use to choose 'man of the match' award winners, to rank the best
batsmen and bowlers and to aid selectors of one-day sides. Possible extensions to this
work are also discussed.

Key words: dynamic programming, sport, cricket, computer ratings

14.1. Introduction

There has always been great interest in the ranking of individual and team
achievements; from the richest ten people or the top ten companies in the world, to the
listing of the poorest and the least taxed countries in the world. Comparisons of this
type have carried over to the sporting arena. For instance, in tennis, players' ranking
will help determine their seeding for tournaments and thus affect their chance of
success, and in golf a high world ranking allows automatic entry to many of the top
tournaments. Being on top of the ranking list for any of the major sports also gives an
individual immediate access to remuneration from advertisement, product endorsement
and appearance money.

Although Deloittes (1988) has developed a rating system for test cricketers, in one-day
cricket there is no such system. This paper describes the use of dynamic programming
to develop a new measure of player performance. The model developed calculates the
contribution to the team in runs by each player in a one-day match.

These ratings could be used to determine the 'best' players for the interest of the general
public, to determine the player to receive the player of the match award, as well as to
assist team selectors.

217
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14.2. The problem

Limited-over or one-day cricket is played by two teams of eleven players. Each team
has 50 six-ball overs from which to score as many runs as possible. The innings of each
team is terminated either when the 50 overs is completed or when 10 wickets have been
lost, with the team that scores the most runs being the winner. Batsmen must therefore
score as many runs as possible within the constraints of the number of overs to be
bowled and the number of wickets to be lost. There is a constant trade-off between fast
scoring rates and the risk of losing wickets.

The most common statistic kept on one-day batsmen is their average, or runs scored per
dismissal, which is the same statistic used for test cricketers where the time factor is of
less importance. Another statistic kept on one-day batsmen is the strike rate or runs
scored per 100 balls faced. While these measures, as tabled in Dundas (1991), give an
indication of how many runs were scored and how quickly, the stage of the innings at
which runs were scored is not considered. The statistics kept on bowlers, bowling
average or runs conceded per wickets taken and strike rate or balls bowled per wickets
taken, as tabled in Dundas (1991), suffer the same problem. None of these statistics
take account of the constraints that are present in the game of one-day cricket.

For example, four runs off one over by a batsman may be an excellent result in the first
over of the innings, but a poor result from the last over. Similarly a wicket by a bowler
off the last ball of the innings is no more value than a maiden ball, whereas a wicket off
the first ball of the innings significantly decreases the expected score of the batting side.
A measure of player performance is needed that takes account of the number of runs
scored, the speed of scoring and the stage of the innings that the scoring took place.

14.3. Model formulation

Clarke (1988b) developed the dynamic programming formulation for the first innings in
one-day cricket which is being used in this paper to calculate the performance measures.
This formulation calculates the optimal run rate (the rate that will lead to the largest
expected score in the remainder of the innings) and the expected score in the remainder
of the innings at each stage and state of an innings. The functional equation is shown as
equation 14.1.
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fi) = Max{p, £, (i =)+ B + (L= py) f, 1(0) (14.1)
where i = wickets in hand, i = 0 to 10.

n = balls to go, n =0 to 300.

fa(i) = expected score with n balls to go and i wickets in hand.
pd = probability of dismissal per ball.

R =runs per over.

Using a standard relationship between R and pq , each fu(i) can be calculated. The
actual number of runs scored at each stage and state of the innings can then be
compared to the expected scores and a measure of how many extra runs each player has
contributed can be calculated. For the batsman facing when there are n balls to go and i
wickets in hand, the expected score in the remainder of the innings is fy(i). After that
ball, the expected score is the score off that ball plus the expected score in the remaining
n-1 balls. This is given by fy.1(i) if no wicket fell, or f,.1(i-1) if a wicket fell. Thus the

contribution of the batsman to the score is given by:

No Wicket Loss: score off that ball + f,-1(i) - (i)

Wicket Loss: score off that ball + f-1(i-1) - fu(i)

For the bowler of that ball, the contribution to his team's performance would be the
negative of the above.

For instance if the expected score in the remainder of the innings with 200 balls to go
and 5 wickets in hand is fogg(5) =120.00 and the expected score in the remainder of the

innings with 199 balls to go and 5 wickets in hand is f1g99(5) =119.20, then the batsman
on strike when 200 balls remain in the innings must score 0.8 runs for the side to have
the same expected innings score. If the batsman scores 2 runs in this situation then he
has advanced his team's expected innings score by 1.2 runs. In this case the batsman's
performance measure would increase by 1.2 and the bowler's measure would decrease
by 1.2. All performance measures start at zero at the beginning of the innings and
increase or decrease as each ball is bowled.
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Because the measures for bowlers and batsmen are essentially the same (extra runs over
what is expected) they can be added and so the performance measures for each player in
a match is the sum of his batting and bowling performance measures in each innings.

Although equation 14.1 was developed for the first innings of a one-day cricket match,
it has been used for both the first and second innings in this paper. This is due to the
complication involved in using a model for the second innings where teams are not
attempting to maximise the score, as in the first innings, but are attempting to score
more runs than the team that batted first. The dynamic programming model therefore
has another state variable which is the score that must be made in the remainder of the
innings to win the match. In addition, the second innings formulation involves
calculating the effect each player had on their sides probability of winning (instead of
the effect on the expected score). Therefore each of the measures obtained from the two
innings would not be in the same units and could not be directly compared. This
diminishes the relevance of the performance measures generated.

14.4. Data collection

The calculation of the values of fy(i) using equation 14.1 requires that the relationship
between R and pg be determined. Although a season's data was used in an attempt to
determine the actual relationship that existed between R and pqg, it was not possible to
isolate the effect R had on pq from all of the other factors, and therefore the relationship

used had to be determined in some other way.

It was decided to develop a relationship between R and pg which was 'fair'. In other
words a relationship which when used to calculate performance measures did not favour
batsmen over bowlers or vice-versa. Each player could then be measured against a
known standard. This is common to the current practice where no account is taken of
the standard of the opposition, the pitch or the ground dimensions. Several relationships
were developed and used to calculate the performance measures on actual matches. The
relationship that performed best in producing measures that agreed with a subjective

appraisal of performance was chosen and is shown in Table 14.1. In addition to the
probability of dismissal pq for each run rate the average number of balls faced before

dismissal 1/pg and the expected partnership size (1/pq ) (R/6) are given for that run rate.
With these values, if batsmen choose the optimal run rate at each stage of the innings
the expected score would be 215.
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TABLE 14.1. Relationship between R and pq used to solve equation 14.1

Average
number of balls | Expected
faced before | partnership
Run Rate Pd dismissal size
1.0 0.005 200.0 33.3
1.5 0.008 127.8 31.9
2.0 0.011 91.7 30.6
2.5 0.014 70.0 29.2
3.0 0.018 55.6 27.8
3.5 0.022 45.2 26.4
4.0 0.027 37.5 25.0
4.5 0.032 315 23.6
5.0 0.038 26.7 22.2
5.5 0.044 22.7 20.8
6.0 0.051 19.4 19.4
6.5 0.060 16.7 18.1
7.0 0.070 14.3 16.7

14.5. Results

In order to calculate performance measures for a match the following data must be
available for each ball bowled: batsman, bowler and result (e.g. batsman number 3,
bowler number 2, no dismissal and 4 runs scored). Unfortunately official score sheets
do not keep such data and therefore a computer program was written enabling the
information contained on scoresheets to be transformed to the required form and saved

to a 'match file' for later use. Another computer program was written to perform the
dynamic programming calculations and calculate the f(i) values.

The output from these two programs (the match file and the fy(i) values) are then used
as input to a third program which performed all of the performance measure calculations
as detailed above. All programs were written in the programming language of Turbo

Pascal 5.0 on an IBM personal computer. The calculations involved in the programs are
simple ones and since the values of fy(i) used are the same for every innings and need

only be calculated once, the program could be run in real time (i.e. as the match is being
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played). Therefore the performance measure of each player could be shown each ball,
as they increase or decrease, and the expected score of the team could be displayed as
the innings progresses. The 1989/90 Benson & Hedges series of one-day matches
played in Australia between Australia, Sri Lanka and Pakistan has been used to
illustrate the use of the performance measures.

Table 14.2 shows the performance measures for all of the players in the match played in
Melbourne on 26/12/89 between Australia and Sri Lanka. Australia won this match by
scoring 5 for 228 to Sri Lanka's all out for 198.

There are several cases where players have performed at a similar standard according to
the usual measures, but received quite different performance measures. For instance
O'Donnell (57 runs off 60 balls not out, performance measure 10.73) has performed
better in terms of the current statistics then Ranatunga (55 runs off 70 balls,
performance measure 14.32). The reason for Ranatunga's performance measure being
greater than O'Donnell’s is that Ranatunga’s innings took place between overs 15 and 41
while O'Donnell's innings took place between overs 34 and 49. At the end of the
innings, when O'Donnell was batting, Australia still had 5 wickets in hand. The wickets
in hand constraint thus becomes less relevant (as the innings ends after 50 overs
regardless of the number of wickets lost), and therefore the model expects O'Donnell to
score quickly. On the other hand Sri Lanka lost wickets regularly, so Ranatunga could
not afford to score as quickly.

The bowlers J.Ratnayeke (1/47 from 9 overs) and R.Ratnayake (1/43 from 9.5 overs)
have recorded very similar figures however their performance measures are quite
different (-8.28 and 1.65 respectively). This is due to the stage of the innings at which
the bowlers bowled their overs. J.Ratnayeke bowled most of his overs very early in the
innings (overs 2, 4, 6, 8, 10, 12, 14, 43 and 45) when the expectation on batsmen is not
as great as later in the innings. R.Ratnayake bowled his overs closer to the end of the
innings, when the expectation on batsmen (and therefore the reward to bowlers when
runs are not scored) is greater. He bowled overs 11, 13, 15, 17, 19, 21, 40, 42, 47 and
49. These two examples show how the current statistics do not take into account the
constraints involved in the game of one-day cricket.



TABLE 14.2. Performance measures for match on 26/12/89
First Innings - Australia batting

Performance
Batsman Runs Balls measure
M.Taylor 11 25 -10.1
G.Marsh 38 82 2.9
D.Boon 11 19 -7.8
D.Jones* 85 89 34.9
A.Border 11 15 -5.6
S.Waugh 5 7 -7.8
S.O'Donnell* 57 60 10.7
Extras 4 4.0
Performance
Bowler Overs Wickets Runs measure
G.Labrooy 9 0 40 -11.0
J.Ratnayeke 9 1 47 -8.3
R.Ratnayake 9.5 1 43 1.7
A.Ranatunga 10 3 41 10.3
E.DeSilva 10 0 42 -11.1
A.Gurusinha 1 0 9 -2.9
Run Quts - 0 - 0.0

* = not out
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TABLE 14.2 (cont). Performance measures for match on 26/12/89
Second Innings - Sri Lanka batting

Performance
Batsman Runs Balls measure
R.Mahanama 36 67 -0.9
M.Samarasekera 30 50 0.8
A.Ranatunga 95 70 14.3
P.DeSilva 9 10 -6.2
S.Jayasuriya 3 5 -10.1
A.Gurusinha 22 40 -4.9
H.Tillekeratne 11 23 -12.2
J.Ratnayeke 0 2 -4.9
E.DeSilva 13 17 0.9
G.Labrooy * 6 -1.3
R.Ratnayake 0 -12.5
Extras 7.0
Performance
Bowler Overs Wickets Runs measure
M.Hughes 9.2 2 41 6.1
G.Campbell 10 0 36 -8.1
S.O'Donnell 4 36 19.1
S.Waugh 1 26 1.1
P.Taylor 10 2 36 7.8
A.Border 3 0 17 -4.3
Run Quts - 1 - 8.5

* = not out
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The results from the match shown in Table 14.2 are presented in a summarised form in
Table 14.3.

TABLE 14.3. Player performance summary for match on 26/12/89

Batting Bowling Total
performance | performance | performance
Player measure measure measure

D.Jones 34.90 34.90
S.O'Donnell 10.73 19.05 29.78
A.Ranatunga 14.32 10.31 24.63
P.Taylor 7.79 7.79
M.Hughes 6.07 6.07
G.Marsh 2.86 2.86
M.Samarasekera 0.84 0.84
R.Mahanama -0.93 -0.93
P.DeSilva -6.24 -6.24
S.Waugh -1.77 1.07 -6.70
A.Gurusinha -4.91 -2.87 -7.78
D.Boon -7.83 -7.83
G.Campbell -8.14 -8.14
A.Border -5.58 -4.31 -9.89
M.Taylor -10.05 -10.05
S.Jayasuriya -10.13 -10.13
E.DeSilva 0.92 -11.07 -10.15
R.Ratnayake -12.45 1.65 -10.80
H.Tillekeratne -12.21 -12.21
G.Labrooy -1.31 -11.01 -12.32
J.Ratnayeke -4.90 -8.28 -13.18
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The performance measures suggest that there were three players whose performance
was well above the others, Dean Jones (performance measure of 34.90), Simon
O'Donnell (29.78) and A.Ranatunga (24.63). The 'man of the match' award which is
presented to the player that the commentators feel was the best player for that match
was given to Simon O'Donnell who was selected as the second best player by the
performance measures. Of course the adjudicators may have included an allowance for
fielding that the performance measure ignores. It is of interest that it was in fact
O'Donnell who ran out the Sri Lankan batsman, which Table 14.2 shows cost Sri Lanka
another 8.5 runs.

The measures for the complete 1989/90 Benson & Hedges Series have been calculated
and Tables 14.4 and 14.5 show the top ten ranked batsmen and bowlers respectively,
ranked in terms of average performance measure per innings. Only batsmen facing
more than 100 balls and bowlers who have bowled more than 100 balls are included in
these tables.

14.6. Further work

The current statistics kept on players do not allow for the varying dimensions of
grounds or the ease or difficulty of batting on certain pitches. This is also the case with
the performance measures. Currently the performance measures are all calculated using
a single relationship between R and pg. This relationship results in the expected score
with 300 balls to go and 10 wickets in hand being 215. For a pitch that is very difficult
(or very easy) to score on this may be unacceptable and produce measures where all the
batsmen have high negative (positive) measures and all the bowlers have the reverse.
This makes it difficult to compare performances in different matches. In common with
current measures, we have here used the average measure over a series of matches to
hopefully even out any injustices. This could be overcome at the expense of greater
complication by using a different relationship for matches played on different pitches
that reflects better the expected innings score on that pitch. Alternatively the deviation
of each player's performance measure from the average measure of his team members
for the innings would result in a performance measure that takes into account the
standard of the pitch and the opposition and allow for a relative comparison of team
members who played in different matches.
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TABLE 14.4. Top 10 batsmen ranked by average batting performance measure

Average

Batsman Country Matches measure
D.Jones Australia 9 15.42
A.Ranatunga Sri Lanka 6 10.03
T.Moody Australia 6 9.94
W.Akram Pakistan 6 9.79
D.Boon Australia 3 6.99
A.Border Australia 9 4.22
M.Taylor Australia 9 4.10
S.Malik Pakistan 6 3.21
G.Marsh Australia 4 2.96

TABLE 14.5. Top 10 bowlers ranked by average bowling performance measure

Average

Bowler Country Matches measure
S.O'Donnell Australia 9 10.69
T.Alderman Australia 8 9.94
C.Rackermann | Australia 7 4.72
P.Taylor Australia 8 4.39
P.DeSilva Sri Lanka 3 2.68
M.Hughes Australia 4 2.65
W.Akram Pakistan 7 1.24
G.Campbell Australia 6 0.65
A.Border Australia 5 -0.08
A.Gurusinha Sri Lanka 4 -2.38
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Although the model assumes that each team is made up of 10 batsmen of equal
standard, this is never the case. Generally a team has specialist batsmen, a wicket
keeper and specialist bowlers. Therefore when there are only specialist bowlers left to
bat, batsmen place more emphasis on not losing a wicket (since these batsmen will not
score many runs) than the dynamic programming formulation allows for, as it assumes
that the batsmen still to bat are of equal standard with the batsmen at the crease. An
adjustment to the model could be made to allow for this at the expense of increased
complication.

14.7. Conclusion

This paper outlines a method of using a dynamic programming formulation to calculate
performance measures for players involved in the game of one-day cricket. The
measures represent a player's contribution to the expected score of the team, and better
reflect the constraints involved than the measures currently used by automatically
allowing for the stage and state of the game when runs are scored and wickets taken.
They allow the performance of batsmen and bowlers to be compared directly.

While this measure is an improvement on the current statistics kept on one-day
cricketers it does have its limitations that must be considered. The measure takes no
account of the fielding ability of players which is a very important part of the one-day
game. The measure treats all performance on an individual level whereas cricket is a
team game and this must be considered when selecting the best representative team.
However all of the limitations of the method outlined apply equally well to the current
measures such as batting and bowling averages and run and strike rate.

It is hoped that this new method of calculating performance measures will be used by
commentators to determine the 'man of the match’, by selectors to help with selecting
the strongest team and for fans of the game with listings of the best one-day players in
the world.



CHAPTER XV

CONCLUSION

What have | shown? Sport abounds with untested assertions. Carlton were unlucky not
to make the finals. West Coast has a huge home advantage. Essendon had a bad draw
this year. Geelong is a two to one chance tomorrow. The Mclintyre final eight is a
terrible play-off system. Wickets in hand are important at the end of one day innings.
Runs should be sacrificed to protect a weak batsman. This thesis has shown how
mathematical models can provide quantitative evidence relevant to such statements.

Performance measurement is best derived from a mathematical model. Whether we are
measuring tactics, team performance, home advantage or the competition rules as a
whole, measures should be based on a model of the system. Different performances can
then be judged against a standard model. For example, a model that includes a
performance measure and a home advantage allows the performance of two teams
against a common opponent on different grounds to be compared. A model with set
probabilities of teams in different positions winning facilitates the comparison of two
different finals systems. Only through a model that allows for team goals can
individual performance be correctly measured.

This thesis has investigated the application of mathematical models in sport. | have
looked at applications in football and cricket, with particular emphasis on tactics and
measuring performance. Performance measurement in these team sports has been
applied at three levels, the individual player, the team, and the competition structure in
which they compete. The importance of variability has been a recurring theme in my
work, and this has resulted in an analysis of home advantage. The implementation of
these ideas has been demonstrated by their use in a forecasting model which compares
favourably to the expert tipsters and has received wide media coverage.

In broad terms the early chapters on football discuss measurement of team ratings and
home advantage. For home ground advantage, the ad hoc measure of percentage of
matches won by home team is shown to depend not only on home ground advantage but
the spread of ability or average performance levels on a neutral ground of the teams. In
addition, this measure is inappropriate for individual teams, as it makes no allowance
for the quality of team and opposition. The measures demonstrated here depend on
fitting a mathematical model to the match results, usually by least squares. It shows
that models
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incorporating individual home advantages provide a significantly better fit over the
common home advantage models previously used. The thesis has extended the
measurement of a common home advantage to methods for measuring individual home
advantages and paired home advantages. For the first time individual home advantage
of Australian rules and English soccer clubs have been published. While the main
purpose has been the calculation of home advantages, rather than the investigation of
such causes, | have demonstrated a significant 'isolation’ factor. The applicability of the
suggested models has been shown by their use in forecasting Australian rules with an
accuracy comparable to the expert tipsters.

All sports competitions take place under a framework of some overall competition
rules. These are designed to produce a winner, or ladder order, or some other measure
of overall success for the individual teams. The thesis investigates the performance of
particular football and cricket competitions and finals systems, and show that in most
cases the systems are not balanced for strength of opposition or home advantage, and
that some teams are disadvantaged by competition rules.

The latter part of the thesis investigates the use of mathematical models for tactics. For
the first time DP models in cricket are used to determine optimal strategies under a
range of models and objective functions. The use of such models as the basis for player
performance ratings that reward players for their contribution to team goals is
demonstrated.

The major contributions of each chapter to the overall themes of the thesis are detailed
below.

Chapter | gives an overview of the use of Operational Research methods in sport, with
particular emphasis on the areas in which | have been involved. This places most of my
work in a backdrop of the work being done at the time.

Chapter Il introduces Australian rules football, and investigates the problem of
estimating team performance measures and home advantage in a competition which is
neither balanced for strength of opposition nor home grounds. It discusses the
drawbacks of the usual measures, and calculates home advantages of individual clubs
by using various techniques. It shows:
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The quality of opposition can be allowed for by looking at the paired HA. These
clearly show an isolation factor.

The individual HAs for all clubs are calculated in alternative ways. An ordering of
the clubs by HA clearly shows an isolation effect with interstate clubs heading the
table and inner city Melbourne clubs bringing up the rear.

There was evidence for MCG teams and teams playing for the first season on a new
ground having a lower than average HA.

Investigation of models of varying complexity shows that the use of models more
detailed than those incorporating only a common home advantage is justified.

Chapter 111 investigates special techniques for calculating team ratings and HAs in

balanced competitions by investigating 15 years of English Association football
data. It shows:

The previous method used in the literature of calculating HA for competitions is
unsuitable for individual teams.

The existence of a spurious HA, due to the HA of all other teams, when home and
away performances of a particular team are compared.

Fitting a model allowing for ability and individual HA by least squares to
individual match results is equivalent to a simple method based on the end of year
ladder.

The individual HAs in goals per match of all 94 clubs for the 15 years 1980-81 to
1994-95 are calculated. Analysis of these show no division effects but significant
year effects and reasonable evidence that clubs do not have a common HA. There
was evidence of an 'isolation effect' with three of the top 10 clubs being particularly
isolated, and many London clubs with low HAs.

The isolation hypothesis was confirmed by showing a definite linear relationship
between a pair of clubs paired HA and their distance apart.

Chapter 1V gives a case study showing an implementation of the above methods for
computer forecasting. It shows:

Automated forecasting systems using variations of the models discussed in earlier
chapters can be successfully applied to Australian rules football.

A simple program using a pre calculated common home advantage and exponential
smoothing to produce team ratings was used to provide forecasts for the media for
several years.

An ‘improved' program used an extension of individual home advantages and a
power method to measure error.
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Chapter V looks at the absolute and relative performance of the computer model of
Chapter IV by analysing in detail its performance in 1991. It shows

e The computer performed in 1991 better than most expert tipsters in predicting
winners and margins.

* Unlike the computer, humans are biased toward their own team, and generally do
not select enough close margins.

Chapter VI combines the previous chapters by looking at some international
comparisons for both forecasting and home advantage.

» A comparison of HA in several international and national competitions including
soccer, American and Australian football and baseball, showed HA varied with the
amounts of the three factors normally suggested as causes of HA.

» The performance of radically different automated systems applied to the same data
tend to be similar. This suggests that the accuracy is limited by the data content,
and more data rather than improved methods is necessary to make progress.

Chapter VII looks at the measurement of the fairness of competition rules under which
teams compete. By assuming all teams are equal, or have probability of victory and
HA as developed by the computer models of Chapter IV it shows:

» The computers estimates of ground effects and errors of prediction can be used to
evaluate the effect of a change of venue on a team's chances of winning .

e The AFL draw is unfair, and the imbalance does not appear to even out over the
years.

» Ladder positions at the end of home and away matches are affected by up to 10
places by randomness.

* The Macintyre final eight system passes most tests of fairness. However the chance
of two teams meeting in the grand final is not in order of their combined ladder
position. Moreover a lack of consistency from year to year on a team's path to the
finals increases the effects of randomness.

» Bookmakers odds do not reflect the intricacies of the AFL finals draw.

» The knockout structure of the finals increases the effect of home advantage.
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Chapter VIII uses a DP approach to investigate the correct tactics near the end of a
game in a commonly occurring situation in Australian rules. Since individual
players should make decisions that maximise some goal for his team, a knowledge
of the correct strategy is sometimes important in assessing the effect of competition
rules.

e A simple Markov model is set up by dividing the ground into seven areas, with
strategies depending on the area. The model is checked by investigating steady
state probabilities and estimated scores during a match.

» It is often advantageous, depending on the score difference and the time remaining
in the match, to concede a behind.

» The effects on the optimal strategy due to a proposed rule change are shown.

Chapter IX gives a comprehensive literature survey of cricket.

Chapter X shows the importance of HA and competition rules applies equally in
cricket. By analysing the Sheffield Shield results it shows:

* HA exists in cricket. Most teams win most of the points allocated on their home
grounds.

e The competition rules create an unfair home advantage. Some teams have many
more points allocated on their home grounds.

» Two suggested scoring methods of partly overcoming the problem always produce
the same rank ordering of teams at the end of the year.

Chapter XI continues the theme of tactical evaluation and applies a DP formulation to
one day cricket to investigate optimal run rate. In the first recorded application of
Operational Research methods to cricket, both a first and second innings formulation
are solved numerically, and the implications for competition rules and player
performance measures are noted. The model assumes all batsmen are of the same
ability. It shows

» Contrary to current practice the optimal run rate is always faster than the expected
average rate for the remainder of the innings.

* A heuristic gives a good outcome under a range of relationships between probability
of dismissal and scoring rates. Batsmen should score at the rate which would see
their last wicket fall at the end of the final over.

» The results can be applied to selection decisions and player evaluation.

e The current rain interruption rules are unfair. The model could be used to develop
fairer rules.
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Chapter XII investigates a DP model applicable to a common situation in test cricket
with batsmen of two different abilities. Should they refuse a possible run in order to
protect the weaker batsmen? It shows:

A model minimising the chance of the weaker batsman being on strike at the start of
the next over is solvable analytically.

Trying to put the better batsman on strike at the start of the over does not
necessarily maximise the expected duration of the partnership.

To maximise the expected duration of the partnership the better batsman should
generally run if possible off the second last or last ball of the over.

Chapter XIII develops further DP models that extend those of Chapters XI and XII to
allow for batsmen of different ability and scoring profiles where the objective function
is to maximise the number of runs. It shows

Various relationships and symmetry can reduce the complexity of models where the
states are the facing and non facing batsmen and the number of runs on offer.
Numerical solutions of such models can be used to advise batsmen on tactics near
the end of an innings.

The practice of refusing runs to protect the weaker batsman is sensible under certain
conditions.

Chapter XIV shows how the models of the previous three chapters could be used for
player performance measures that reflect a players contribution to the team goals.

The first innings dynamic programming formulation of Chapter XI is used to
develop an innovative method of calculating the contribution, in runs, made by
batsmen and bowlers to the team's score in a game of one-day cricket.

Data from a one day series was used to apply the method to all players. Tables of
the measure are given and compared with the usual statistics.
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Where to from here? Beginning from 1996, | have been a collaborator in the collection
of player statistics from AFL matches. The statistics have been collected from video
and live, and consist of better quality data than has been collected previously. Rather
than just tally the number of possessions and disposals, they have been rated for quality.
Possessions are rated as to difficulty of obtaining, and kicks and handballs have been
categorised as long or short, effective or not. The quality and power of the statistics is
such they have obtained widespread publicity on both radio and television, (Hopkins
(1996), Wright (1996) and are purchased by most clubs to assist in training and
planning tactics against opponents. The data is being analysed to determine the
contribution of each performance statistic to winning performance, with a view to
developing a player rating based on the statistics. Further work will involve analysis of
the data to determine if home ground advantage manifests itself in the number of
possessions or quality of possession and disposal. It will also be of interest to
determine if incorporation of this data can improve the computer predictions.
Alternatively the methods demonstrated for predicting final scores could be applied to
the secondary data itself, to predict the style of game that will be played. Since the data
has some coding which places the action in broad areas of the field, it will also find a
use in improving the Markov decision model of football. Late in 1997, discussions
began with the Victorian Institute of Sport on extending this data collection into other
sports, particularly cricket. This will overcome the lack of ball by ball data which
hampers much of the work in this area. A closer look at HA in cricket can be
undertaken, and many of the possible investigations outlined in Chapter IX may
become feasible.

Research results need to be brought to the attention of possible users. In sport these are
players, administrators and fans. The publication in the popular media of the computer
predictions for Australian rules football has been discussed in the thesis. During 1997,
the analysis of the football statistics discussed above were the basis of a weekly article
in the Australian Financial Review (e.g., Hopkins, 1997a). Late in 1997, with the end
of the football season, these articles were extended to other sports. Hopkins (1997b,
1997c, 1997d, 1997e, 1997f) are examples that have discussed my research work in
cricket, golf and soccer. This coverage will continue and hopefully extend to other
sports and other researchers.

In the last 20 years the applications of mathematical modelling to sport has increased
significantly. However there are still many problems which will yield to contributions
from Operational Researchers and Statisticians. A continuing challenge is to
demonstrate to players, administrators and supporters that modellers have a continuing
role in measuring and improving sports performance.
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