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Preface 
 
This thesis is submitted under Swinburne University Policy for the Degree of Doctor of 
Philosophy, Regulation 4.2, Admission to candidature for thesis by publication.  This 
allows for  
 

"thesis by publication on the basis of research which has been carried out 
prior to admission by candidature and which has been published, normally in 
texts or refereed publications.  Only those publications not previously 
submitted by the applicant for a degree in any tertiary institution may be 
included in support of the application for candidature and in the Candidates 
thesis.  In such cases the...Candidate must produce a significant body of 
work on an integrated theme that will comprise the thesis.  This thesis would 
normally include a substantial introduction showing the relevance of the 
publications to development of the theme, plus a series of publications and 
any necessary linking commentary.  All publications must be appropriately 
identified and referenced and the contributions of the Candidate to each 
publication must be clearly specified." 

 
From my work in applications in sport over many years, I have selected for this thesis 
some of the papers relating to performance measurement in football (including 
Australian rules and English soccer), and cricket.  Most of the football work relates to 
measurement of home advantage and forecasting match results.  The football work has 
the advantage from an operational research viewpoint that it is heavily based on real 
data, and has also been implemented to the degree that the results have been regularly 
published in the popular media.  The work on performance measurement and tactics in 
cricket makes up the second part of the thesis and uses the traditional OR technique of 
dynamic programming.  I toyed with the idea of using my work on squash and 
badminton, which also falls in the general theme, but thought the thesis already long 
enough. 
 
In this thesis each chapter usually comprises one publication.  This has meant some 
repetition, as there is some commonality in literature surveys and game descriptions in 
various papers.  However it has the advantage that each chapter is self contained and 
may be read in isolation.  The content of each publication is as it originally appeared, 
but with style changes to create uniformity of presentation throughout the thesis.  This 
necessitated some superficial changes.  All headings, tables, figures and equations have 
been renumbered using the chapter number as a prefix.  The style of referencing has 
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been standardised, and the references consolidated in the bibliography at the end of the 
thesis.  In a very few cases notation has been changed and tables and figures given a 
more descriptive caption.   
 
A commentary section which details later developments or further work has been added 
at the end of some chapters. 
 
The following lists the publications used in each chapter, states if they were refereed, 
and specifies the candidates input to co-authored papers. 
 
Chapter I.  Written specifically for the thesis. 
 
Chapter II.  The early part of this chapter is based loosely on Stefani, R. T., & Clarke, 

S. R. (1991), Australian rules football during the 1980s. ASOR Bulletin, 10(3), 11-
15. The paper evolved from a 50% contribution by Professor Stefani and a 50% 
contribution from myself.  In Chapter II, I have repeated all the analysis on 16 years 
of data.   

 
 The latter part of the chapter is from Clarke, S. R. (1997a), Home ground advantage 

in the Australian Football League, 1980-85, a paper presented at the APORS 
conference 1997, Melbourne. 

 
Chapter III.  Clarke, S. R., & Norman, J. M. (1995), Home ground advantage of 

individual clubs in English soccer. The Statistician, 44, 509-521.  Refereed.  The 
conception of this paper resulted from joint collaboration.  Professor Norman 
assisted with the collection of data, which I computerised and analysed.  I wrote the 
first draft of the paper, but Professor Norman assisted with following drafts and 
provided the necessary local knowledge.   

 
 The commentary material is based on Clarke, S. R. (1996b), Home advantages in 

balanced competitions - English soccer 1990-1996. In N. de Mestre (Ed.), 
Mathematics and Computers in Sport (pp. 111-116). Gold Coast, Qld.: Bond 
University.  

 
Chapter IV.  Clarke, S. R. (1993), Computer forecasting of Australian rules football for 

a daily newspaper. Journal  of the Operational Research Society, 44(8), 753-759.  
Refereed. 
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Chapter V.  Clarke, S. R. (1992), Computer and human tipping of AFL football - a 
comparison of 1991 results. In N. de Mestre (Ed.), Mathematics and Computers in 
Sport  (pp. 81-93). Gold Coast, Qld: Bond University. 

 
Chapter VI.  Stefani, R. T., & Clarke, S. R. (1992), Predictions and home advantage for 

Australian rules football. Journal of Applied Statistics, 19(2), 251-261.  Refereed.  
This paper resulted from joint discussions over several years on computer tipping 
and home advantage.  I provided the data and my computer methods for the 
Australian rules analysis, Professor Stefani provided the least squares method as 
well as the data and results for the other sports.   

 
Chapter VII.  Clarke, S. R. (1996a), Calculating premiership odds by computer - an 

analysis of the AFL final eight play-off system. Asia Pacific Journal of Operational 
Research, 13(1), 89-104.  Refereed.  The commentary is based on my own work not 
yet submitted. 

 
Chapter VIII.  Clarke, S. R., & Norman, J. M. (1998b), When to rush a behind in 

Australian rules football: a dynamic programming approach. Journal of the 
Operational Research Society, in press.  Refereed.  In terms of input this paper is 
the complement of Chapter III.  The conception of the paper resulted from joint 
collaboration.  The development of the model was a joint exercise, but Professor 
Norman wrote the computer implementation and the first draft of the paper.  I 
assisted with further development of the model and the paper, and provided the 
necessary local knowledge. 

 
Chapter IX.  Clarke, S. R. (1997b), Test Statistics. In J. Bennet (Ed.), Statistics in Sport. 

Edward Arnold (to appear).  This is a slightly reduced version of the material to be 
published in the text.  Several figures and tables extracted from published works 
and required for the text have been omitted here. 

 
Chapter X.  Clarke, S. R. (1986), Another look at the 1985/86 Sheffield Shield 

competition cricket results. Sports Coach, 10(3), 16-19. 
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Chapter XI.  Clarke, S. R. (1988), Dynamic Programming in one day cricket - Optimal 
scoring rates. Journal of the Operational Research Society, 39(4), 331-337.  
Refereed. 

 
 The commentary is based on Johnston, M. I., Clarke, S. R., & Noble, D. H. (1992), 

An analysis of scoring policies in one day cricket. In N. de Mestre (Ed.), 
Mathematics and Computers in Sport (pp. 71-80). Gold Coast, Qld: Bond 
University.  I wrote this paper based on joint development of my original idea by all 
authors.  Mr Johnston wrote all the necessary computer programs. 

 
Chapter XII.  Clarke, S. R., & Norman, J. M. (1998a), Dynamic programming in 

cricket: Protecting the weaker batsman. Asia Pacific Journal of Operational 
Research, in press.  Refereed.  I developed the models and paper with the continued 
assistance of Professor Norman's help and advice. 

 
Chapter XIII.  Clarke, S. R., & Norman, J. M. (1997c), To run or not?  Some Dynamic 

Programming models in cricket. In R. L. Jenson & I. R. Johnson (Eds.), 
Proceedings of the Twenty-Sixth Annual Meeting of the Western Decision Sciences 
Institute (pp. 744-746). Hawaii: Decision Sciences Institute.  The full paper, which 
appears here, was refereed.  The above is a shorter version published in the 
proceedings as is the practice at this conference.  I developed Models 1 and 2 along 
with the necessary computer programs.  Professor Norman developed Model 3 
along with the necessary computer programs.  I wrote the first draft of the paper.  
Both authors provided assistance and advice to the other in the development of the 
models and the paper.   

 
Chapter XIV.  Johnston, M. I., Clarke, S. R., & Noble, D. H. (1993), Assessing player 

performance in one-day Cricket using dynamic programming. Asia-Pacific Journal 
of Operational Research, 10, 45-55.  Refereed.  I wrote the paper based on joint 
development of my original idea by all authors.  Mr Johnston wrote all the 
necessary computer programs. 

 
Chapter XV.    Written specifically for the thesis. 
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Abstract 
 
This thesis investigates problems of performance modelling in sport.  Mathematical 
models are used to evaluate the performance of individuals, teams, and the competition 
rules under which they compete.  The thesis comprises a collection of papers on 
applications of modelling to Australian rules football, soccer and cricket.  Using 
variations of the model wij = ui  + hi - uj  + eij  where wij  is the home team winning 
margin when home team i plays away team j, ui  is a team rating, hi is an individual 
ground effect and eij  is random error, the evaluation of team home ground advantage 
effect (HA) is studied in detail.  Data from the Australian Football League and English 
Association Football for 1980 to 1995 are investigated.  The necessity of individual 
team HAs is demonstrated.  The usual methods of calculating HA for competitions is 
shown to be inappropriate for individual teams.  The existence of a spurious HA when 
home and away performances are compared is discussed.  For a balanced competition, 
fitting the above model by least squares is equivalent to a simple calculator method 
using only data from the final ladder.  A method of calculating HA by pairing matches 
is demonstrated.  Tables of HA and paired HA in terms of points/game for each year are 
given.  The resultant HAs for both Australian rules football and soccer are analysed.  
Clearly there is an isolation effect, where teams that are isolated geographically have 
large HAs.  For English soccer, the paired HA is shown to be linearly related to the 
distance between club grounds.  As an application of these methods, the development 
and implementation of a computer tipping program used to forecast Australian rules 
football by rating teams is described.  The need for ground effects for each team and 
ground, and the use of heuristic methods to optimise the program is discussed.  The 
accuracy of the prediction model and its implementation by publication in the media is 
discussed.  International comparisons show prediction methods are limited by the data.  
Methods for evaluating the fairness of the League draw and the finals systems are 
given.  The thesis also investigates the use of dynamic programming to optimise tactics 
in football and cricket.  The thesis develops tables giving the optimal run rate and the 
expected score or probability of winning at any stage of a one-day cricket innings.  
They show a common strategy in one-day cricket to be non-optimal, and a heuristic is 
developed that is near optimal under a range of parameter variations.  A range of 
dynamic programming models are presented, allowing for batsmen of different abilities 
and various objective functions.  Their application to performance modelling are shown 
by developing a radically different performance measure for one day cricket, and 
applying it to a one-day series. 



 CHAPTER I 1 

INTRODUCTION AND LITERATURE REVIEW 
 
 
1.1.  Introduction 
 
Would Casperov have beaten Casablanka?  Was John Coleman better than Gary Ablett?  
Is Greg Norman a better golfer than Nick Faldo?  Is Dean Jones the best one-day 
cricketer?  Which is the best golf hole?  Is Essendon a better football team than 
Collingwood?  Is the final 8 system better than the final 6?  To answer these questions 
you need criteria.   
 
In most sporting competitions there is a major criterion that teams or individuals are 
judged on - win the premiership, win the tournament, score as much as you can.  
However other statistics and measures of performance are also used as they presumably 
affect the likelihood of the desired outcome, or the way in which it is achieved.  The 
weight of a boxer is worth documenting because it is known that this affects markedly 
his punching power, whereas his shoe size should be of little interest as it is of no 
relevance to his chance of winning or his method of winning.  For a golfer, the average 
length of drive is recorded as it is thought to influence his chance of winning.  However 
too often such statistics are measured in isolation of other factors (out of context).  For 
example the putting ability of a golfer may be measured by the number of putts.  
However while a small number of putts could indicate the golfer is a good putter, it 
could also indicate a good chipper so his putts are generally from a shorter distance.   
 
Similarly the average score for a one day cricketer is usually recorded.  However a 
large score, scored at a slow rate, may be detrimental to the team.  Thus not only should 
the size of scores be measured, but the rate of scoring.  But again, while obviously a 
large score at a fast rate is optimal, what are the offsets.  How do we compare a small 
score at a fast rate and a large score at a slow rate?  How do these interact?  Either may 
be appropriate at different stages of a game.  Modelling the game can assist by 
providing a much more subtle measure of performance. 
 
In many sporting competitions there are three levels at which decisions are taken that 
reflect on the outcome.  The individual player, the team they play for and the 
competition in which the individual or team participates.  Performance measurement 
should be driven by some model of the system, and reflect what the player or team or 
competition is trying to achieve.  Thus, in team events, individual player performance 
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measures should reflect the extent to which they contribute to team goals.  The best 
interests of the team are then achieved by the player simply optimising his performance 
measure.   
 
The performance of a set of rules for a competition can also be measured.  A 
competition is generally designed to produce a winner or order of merit.  It can be 
measured by the degree to which this order of merit corresponds to some desired order.  
For example the effects of different lengths of matches in racquet sports on the chances 
of the best player winning has been studied in the literature.  Similarly, one day cricket 
matches are often decided by the application of rain interruption rules.  The fairness of 
these rules in preserving a team's chances of winning can be measured through 
modelling.  In multi-team competitions, while the order of merit a team achieves may 
be the primary measure of its success, there may be other factors that combine to 
produce the teams success.  For example, in most team sports it is recognised that team 
ability and home advantage (HA) are important.  Modelling is necessary to separate out 
the importance of these various effects to individual teams.  The competition rules can 
then be judged on the degree to which these traits are rewarded or allowed for.   
 
While one linking theme of my research is performance measurement through 
modelling, a second is measuring variability.  Almost all current performance measures 
in sport are averages or sums.  Yet it is widely recognised that consistency (or 
variability) is a major determinant of sporting success.  However there are virtually no 
commonly kept statistics in major sports that measure variability.  Once a modelling 
approach is taken, because variability is such an important determinant of success, 
many measures of variability will naturally arise.  Thus HA is a natural measure to 
apply to football teams as it explains the variability in their performance from home to 
away.   
 
1.2.  Why sport? 
 
When I first began research into sport, a perception existed that something so much fun 
could not be a serious pursuit.  However the application area has become acceptable, 
and I no longer have to justify working in sport.   A radio interviewer once accused me 
of wasting government money by indulging in such frivolous activity.  Just in case there 
are still some doubters, it is perhaps worthwhile to reiterate some of the reasons why 
sport is a worthwhile area for the application of mathematical modelling. 
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• Sport is important to a large proportion of the population.  Many people spend a 
great part of their lives playing, watching, discussing or thinking about sport.  This 
interest is not limited to one socio-economic group but encompasses all income and 
education levels.  A quick look at any daily newspaper will illustrate the extent to 
which sport dominates large sections of the media.   

• Sport is big business.  For example, the American Football league sold its 1990 
rights to TV for $1.25 billion.  Although still well behind the USA, with the 
introduction of sophisticated marketing methods, sports like cricket, football and 
tennis are becoming big money earners in Australia.  Over the years Governments 
and industry have capitalised on the commercial aspects of sport so that it is now a 
multi billion dollar industry, and probably rivals traditional sectors.  Its importance 
to economies and reputation is illustrated by the fervour with which cities compete 
for the honour of holding the Olympic games.   

• Most importantly, sport abounds with problems to tackle.  Administrators, selectors, 
coaches and players continually make decisions which could be assisted by 
analysis.  Every sport has its golden rules which are often untested.  Many sports 
collect reams of statistics, which are often left unanalysed.  Every fan continually 
makes conjectures which are unproven.  Many of these problems are amenable to 
analysis by statistical and operational research techniques. 

• Sport has become an acceptable, and even encouraged, area of publication.  Mottley 
(1954) first suggested the use of OR techniques in sport, and the publication in the 
mid 1970's of Machol, Ladany, & Morrison (1976) as a special issue of 
Management Science, and )Ladany & Machol (1977) based on previously published 
articles on strategy showed the many possibilities for quantitative research in sport.  
As researchers have tackled problems and published solutions, the realisation has 
grown on learned societies and journals that members and readers are interested in 
these applications, not only because of the techniques used but also because they 
share the general public's inherent interest in sport.  The problem and its solution is 
of major interest, not just the solution technique.   

• Many professional societies, and some journals, now have special sections devoted 
to applications in sport.  To give three examples, the American Statistical Society 
has a special interest section in sport, The Royal Statistical Society has a regular 
section in its Series D journal focusing on sport, and the Australian Mathematical 
Society have a biennial conference on mathematics and computers in sport. 

• Because many papers are problem oriented, the area is truly inter disciplinary.  
Papers on mathematical modelling in sport appear in mathematics, operational 
research, computing, statistics, psychology, engineering and even sports science 
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journals.   
• Finally sport is a great source of problems for teaching.  Because of their interest in 

the problems, because they have a stake in the answers, students will question 
techniques and methods used if the application is in sport.  They see quantitative 
methods as being useful in solving real problems. 

 
Since this thesis is a selection of my work in the area of sports modelling and 
performance measurement, I will give a review of that work.  In doing so I will 
highlight some of the themes that have characterised my work and by association an 
overview of operational research work in related areas.   
 
1.3.  Scoring in racquet sports 
 
Clarke & Norman (1979), my first paper, resulted from an investigation with John 
Norman on squash.  This began my interest in applications in sport and the paper 
illustrated three important aspects of modelling in sport.  The first was measurement 
based on a mathematical model.  Players and commentators would often complain that 
the English scoring system resulted in longer games than the American system, but 
these observations were based on subjective feelings rather than any analysis.  It would 
have been possible to tackle this problem by collecting data on actual matches.  
However Schutz (1970) had developed a mathematical model for tennis and applied it 
to various scoring systems in tennis.  Schutz & Kinsey (1977) applied the method to 
squash, and assuming players had a constant probability of winning a rally, investigated 
the average length of a match under both scoring systems.  However they were unable 
to solve the model for the mean and standard deviation of the length of the game and 
hence resorted to simulation.  We were able to set up recurrence relations for the 
probability of winning and the mean and variance of the number of rallies left in the 
match, to solve the problem numerically.  (In retrospect, the paper would have been 
better titled numerical results). 
 
These results showed the importance of randomness and variation.  The work to some 
extent quantified the importance of randomness or luck in squash, by giving tables that 
showed the probability the better player won the match.  Randomness exists in all  
sporting contests but its effects are rarely quantified.  In this case the effects were felt 
not only in which player won, but the length of the game.  The mean length of the two 
games was much the same - it was the variance of the English game that was much 
larger.  The perception of participants that games under the English scoring system 
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were longer was really based not on the average length but the extremes.  This is a 
second important theme in most of my work - the variation in sport and the effects of 
randomness.   
 
The third issue was tactics.  In English scoring a player makes a decision at 8-8 to play 
to 9 or 10.  As a player should make the choice which maximises their probability of 
winning, we needed to solve this simple preliminary problem before tackling the main 
point of the paper.  Our results were to some extent anti intuitive.  The more likely a 
person was to lose the next point, the greater the advantage in choosing to play to 9 
rather than 10.  There are many opportunities in sport to analyse tactics, and some of 
my work has gone down this path.  In Clarke (1979) I extended the model to allow for 
each player to have different probabilities of winning their serve, and looked in detail at 
tie point decisions in both English and American squash.  Clarke & Norman (1978) put 
the results of the tie breaker research to the attention of squash players and 
administrators.  It is important that results of such research be brought not only to other 
researchers through the professional journals, but also to players and followers of the 
game.  Finally, as I stated above, examples from sport are great motivation for students.  
Clarke (1984, 1985a, 1985b) were the first of several of my papers designed to bring 
this idea to the attention of teachers. 
 
Many researchers have subsequently investigated the effects of different scoring 
systems in racquet sports on the chances of players winning and the mean and variance 
of the length of matches, for example Croucher (1982c, 1986), Pollard (1983), Riddle 
(1988).  The problem has now been solved analytically, as distinct from the numerical 
solutions we found.   Miles (1984) related the probability of winning to the mean length 
of the match through the concept of efficiency.  Tennis commentators often talk about 
important points, and this concept of importance was first given a mathematical 
definition by Morris (1977).  Pollard (1986a) performed an extensive study of sports 
scoring systems, in particular investigating the concept of 'important points' and 
efficiency.  Because a sports scoring system is attempting to find the better of two 
players, the results found more general application in hypothesis testing in Pollard 
(1992).  On a different tack, Wright (1988) extended the model in squash to allow for 
different probabilities of winning a point depending on the side of the court to which 
the player is serving.   
 
The research output of papers in this area also illustrates a problem perhaps more 
common to sport than other application areas.  In most topic or application areas, 
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researchers concentrate on a technique or application area and build up a knowledge of 
the literature and previous work over many years.  Papers in sport are often 'one off'.  
Because of their own involvement in sport, a researcher will independently analyse a 
problem unaware of previous work.  Since papers are published in a wide range of 
journals, a literature search solely in the researchers field will fail to bring up relevant 
papers.  Because of this, problems often reappear in the literature with little recognition 
of previous work.  For example, Alexander, McClements, & Simmons (1988), Brooks 
& Hughston (1988) and Simmons (1989)  all revisit tie point strategy without 
recognition of much of the previous work. 
 
1.4.  Dynamic programming in cricket 
 
In analysing squash and tennis scoring systems, the method involved defining the state 
of the match as the score.  By finding a relationship between the value of the required 
measure (probability of winning, mean and variance of number of rallies in the 
remainder of the match etc.) in the state before a rally was played, to its value in 
surrounding states reached after the point was played, it was possible to start at the end 
of the match when the values were known and work backwards to the beginning or any 
intermediate score.  This is only dynamic programming (DP) without the decisions, and 
it was a natural progression to use DP in sporting applications. Its suitability in sporting 
applications had been proposed by Bellman (1977) and there are now many examples 
where a DP formulation has the potential to assist the sports person with decision 
making.  Norman (1995) in giving one example of an application of DP in each sport 
lists 10 papers.  Sphicas & Ladany (1976) use it to extend the static strategy developed 
in an earlier paper, Sphicas, Humes, & Ladany (1975), by allowing the optimal aiming 
line in the long jump to depend on the jumps already taken.  Norman (1985) used DP in 
a simple decision problem on whether to serve hard or soft at tennis, and Hayes & 
Norman (1984) is an interesting study on optimal route choice in orienteering.  
Recently Clarke & Norman (1997b, 1998b) have applied the technique to Australian 
rules football for the first time (see Chapter VIII).  However the method had 
surprisingly not been applied to cricket, although Thomas (1978) had used cricket to 
illustrate a Markov problem in a student exercise (see also White (1993, p177-179).  
 
In spite of the interest in cricket, and the availability of extensive statistics, there has 
been surprisingly little research on cricket (see Chapter IX for a literature review).  
Elderton (1945) and Wood (1945) in two of the earliest articles using quantitative 
methods in sport, investigate the measurement of consistency and the distribution of 
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cricket scores.  Elderton notes that if a score is equally likely to advance by one 
whatever the score, cricket scores should follow a geometric distribution.  However he 
then denies the inherent variability this implies by defining a consistent batsman as one 
with a zero variance.  Wood more correctly in my view, suggests that as the scores of 
consistent batsmen should follow the geometric distribution, a perfectly consistent 
batsmen should have a coefficient of variation of scores of 100.  Although the record of 
meeting shows a lively discussion, the issue was not taken up in the literature.  In 
Clarke (1991b, 1994c) I use an improved model that assumes for each ball a constant 
probability of dismissal.  This idea is at the heart of most of my cricket models, and 
produces a geometric distribution for the number of balls faced rather than the score.  A 
distribution of scores off each ball then produces coefficients of variation greater than 
100, so that different batsmen, each perfectly consistent but with different distribution 
of scores off each ball, can have different coefficients of variation.  These papers also 
suggest several other measures of performance for batsmen.   
 
Croucher (1979, 1982b) is typical of the occasional papers on cricket in statistics 
journals.  These often show up interesting points by standard statistical analysis of 
results.  However the OR literature is strangely devoid of cricket applications.  Willis 
(1994), Willis & Armstrong (1993) and Wright (1991, 1992) are more recent papers but 
apply to scheduling matches and umpires, and are not concerned with the game per se.   
 
The ball by ball nature of cricket lends itself to analysis by DP.  In Clarke (1988b), I 
used a DP model to investigate optimal strategies for both first and second innings.  In 
the first innings, the formulation maximised the expected number of runs in the 
remainder of the innings.  This gave an optimal run rate and expected score in the 
remainder of the innings depending on the number of wickets in hand.  The second 
innings is a final value problem, and maximises the probability of achieving more runs 
than the opposition.  This gave the optimal run rate and the probability of achieving 
more runs than the opposition depending on the number of wickets in hand and the 
number of runs to go.  While a relationship between probability of dismissal and 
scoring rate had to be assumed,  Johnston (1992) later showed the results were valid 
over a wide range of relationships.  This work also followed up a suggestion made in 
Clarke (1988b) and developed the first innings formulation into a radically different 
performance measure for individual players.  This measure successfully combined the 
twin needs in one day cricket of scoring big and scoring fast by allocating to each 
player the excess scored each ball over the optimal given by the DP formulation.  
Details and some results are given in Johnston et al. (1992, 1993).  The method ensures 
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that a player's performance measure is consistent with team goals, and a player will 
maximise his measure by maximising his team's chance of winning.   
 
The above models all assume batsmen are of equal ability.  This restriction has been 
removed in several models which investigate a range of possible objective functions, 
some applicable to test cricket.  Clarke & Norman (1995b, 1998a) investigate the 
problem of putting the weaker batsman on strike at the end of the over, so the better 
batsman is on strike at the beginning of the new over.  The model is soluble analytically 
and could form a useful teaching example.  However, while it produces optimal 
strategies to achieve the objective, the paper also shows this does not necessarily 
minimise the weaker batsman's exposure to the strike. Clarke & Norman (1997c) 
maximise the expected score in the remainder of the innings.  In both these papers the 
decision is made after the ball is bowled and the batsman decides whether to take all the 
runs or not.  The second also looks at a model where the batsman can also decide on his 
type of stroke.  The applications of DP to cricket forms Chapters XI to XIV of this 
thesis. 
 
1.5.  Home advantage 
 
In  Clarke (1986a) , I looked at the problem of HA in cricket (see chapter X).  That 
paper showed that in Australian cricket, most states won more than 50% of their 
matches at home, and all state teams performed better at home than away.  However, 
because some grounds were more likely to produce outright results which carried more 
points than first inning victories, many more points were allocated for matches on some 
grounds than others.  Thus the final year ladder was distorted by this unfair advantage 
carried by some states.  Alternative methods of ranking the states were investigated.   
 
The phenomena of HA has long been recognised by sports fans and has  been the basis 
of considerable study since the seventies.  In the first detailed study, Schwartz & 
Barsky (1977)  found the percentage of matches won by the home team to be 53% in 
pro baseball, 60% in pro football, 64% in ice hockey and 64% in college basketball.  
They advanced three explanations for HA, learning factors, travel factors and crowd 
factors.  Various studies have subsequently looked at the importance of these factors.   
 
1.  Learning factors:  These cover ground familiarity etc.  Pollard (1986b) found the 
percentage of wins for soccer teams with the smallest and largest playing surfaces, the 
team playing on artificial turf, and teams with large capacity grounds did not differ 
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significantly from other teams in the League.  Barnett & Hilditch (1993), using more 
refined analysis, showed soccer teams playing on artificial surface enjoyed a higher HA 
than the remaining teams.  This finding was supported by Clarke & Norman (1995). 
 
2.  Travel factors:  These generally are a disadvantage to the visiting team and cover 
physical and mental fatigue, and disruption of routine due to travel.  Both Schwartz & 
Barsky (1977) and Pollard (1986b) point out that as travel has become easier and 
progressed from train to air over a long period the HA has remained constant.  Schwartz 
& Barsky (1977) argued that as the season progresses, travel effects should accumulate 
and HA increase.  However they found no consistent evidence of this, and this has been 
repeated in later studies by Courneya & Carron (1991) and Pace & Carron (1992).  In 
similar multiple regression studies in baseball and hockey, they found that travel factors 
such as distance, number of time zones crossed, direction of travel, time between 
games, number of successive games at home, and length of visitors road trip accounted 
for less than 1.5% of the variation in win-loss outcome.  Snyder & Purdy (1985) found 
the HA was 64.7% when visiting basketball teams travelled less than 200 miles, but 
84.6% when they travelled more than 200 miles.  On the other hand Pollard (1986b) 
found in soccer that in both cases the HA was 64.3%. 
 
3.  Crowd factors:  This includes social support for the home team and possible referee 
bias.  Schwartz & Barsky (1977) attributed HA in the main to audience support.  They 
claimed in baseball that increments in attendance can directly enhance the home team's 
chances of winning.  Dowie (1982) argued that the HA is common across four soccer 
divisions where average crowd size varies by a factor of ten.  Pollard (1986b) 
concurred, and also used the constancy of HA over the pre war and post war period 
when crowds halved as further evidence of a lack of influence of absolute crowd size on 
HA.  Pollard (1986b) also used the constancy of HA across divisions to discount crowd 
density, which ranges from 20% in Division 4 to 70% in Division 1 as a factor in HA.  
Clarke & Norman (1994) support this finding although Bland & Bland (1996) disputed 
the claim.  However Schwartz & Barsky (1977) found the home team's winning 
percentage increased with increasing crowd density, and Neville et al. (1996) found HA 
varying significantly across divisions in a manner related to mean attendance. 
 
As can be seen from the above selection, most of this research is documented in the 
sports science and psychology literature, and uses in my view inappropriate measures.   
Courneya & Carron (1992) give a comprehensive review of this work.  In the section 
where they survey the 'what' of HA, (the relationship between game location and 
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outcome), 16 studies are listed, covering at various levels sports such as baseball, 
hockey, US football, basketball and soccer, and all but one with the home win 
percentage listed.   Other measures such as points per game are not investigated in any 
of these studies.  Pollard (1986b) is typical of the approach in that HA is measured as 
the number of games won by teams playing at home expressed as a percentage of all 
games played.  However modelling shows the probability that the home team wins 
depends not only on the HA but the difference between team performance levels and 
the variability of results.  Thus the percentage of home wins in a competition depends 
on the range of performance levels in the group as well as the HA. Snyder & Purdy 
(1985) show the limitations of the usual approach, when in looking at a university 
basketball competition they found division 2 teams won only 40% of their home 
matches against division 1 teams.  This implies the quality of opposition effect 
overshadowed the HA effect.  Gayton, Mathews, & Nickless (1987) also make this 
concession, when they exclude from their study teams that make a clean sweep of the 
finals because, "as Baumeister & Steinhilber (1984) note, the home court advantage is 
not likely to appear when one team is far superior to the other."  Because the quality of 
teams differ, we must allow for differences in ability and measure HA by comparing a 
team's home and away performance.  Thus HAs, particularly of individual clubs, can 
only be investigated properly through the use of models that incorporate the 
performance level of the teams as well as a HA.  
 
Such work was being undertaken, but by researchers whose primary interest was in 
forecasting sporting contests.  To do this successfully they had to measure HA.  
Although Harville (1980) gave estimates of just over two points per game with standard 
errors of about 0.4 of a point for the common HA in NFL for each year from 1971 to 
1977, and Stefani (1980) quotes a three point HA for college and a two point HA for 
pro football, both these papers are ignored by Courneya & Carron (1992) in their 
literature review.  
 
1.6.  Computer forecasting of sport results 
 
There are several models that can be used in modelling results of games between two 
teams.  To facilitate discussion we give some that are common in the literature.  Let wij 
be the winning margin when the home team i plays away team j in match k.  Note that 
wij  could be a 1,0 or similar win/loss variable, but it is more usual to use a goal or point 
margin.  Let ui be a rating for team i.  This summarises a team's level of performance, 
their ability or form, and is modelled as either a fixed or random effect.  Let eij be a 
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random error, usually assumed to be zero mean. 
 
Model 1.   wij = ui - uj + eij   (1.1) 
 
Since j  and k are dependent through the match schedule, j is more correctly specified 
as j(k), but I will normally not specify k in the models.  This model allows for no HA.  
As such there is no need to use home and away to differentiate between teams, and 
some writers use winning and losing team.  Since (1.1) is clearly only soluble to within 
an additive constant, an extra condition such as the average rating is 100 or zero is 
necessary.   
 
Model 2.   wij = ui + h - uj  + eij    (1.2) 
 
where h is a common HA and includes all that is advantageous for a team playing at 
home and disadvantageous for a team playing away.  The team rating ui  now is 
interpreted as a measure of the performance of team i on a neutral ground.  Since in 
some competitions not all matches are played on the home ground of one of the teams, 
h is often interpreted as 0, +h  or -h depending on whether the kth match is played on a 
neutral ground, or the home ground of team i or team j.  In some cases the approach 
taken is to pre calculate HA, and adjust the match results for HA.  Model 1 can then be 
fitted to the adjusted results.   
 
Most of the literature before work in which I was involved used models such as the 
above.  One of the advances of the work in this thesis is the use of models that allow for 
different teams to have different HAs.   
 
Model  3.   wij = ui  + hi  - uj  + eij    (1.3) 
 
where hi  includes all that is advantageous for team i playing at home and 
disadvantageous for any other team playing at i's home ground.  This allows for 
different HAs for each team.   
 
This model was suggested by Stefani & Clarke (1992) as a special case of  
 
Model  4.   wij = ui  + hij  - uj + eij    (1.4) 
 
where hij  is the paired HA between team i and j.  This includes all that is advantageous 
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to the home team and disadvantageous to the away team when team i plays team j.   
 
In actually fitting these models to an N team competition, there will be N team ratings, 
and the models are usually fitted using a matrix of dummy variables.  Let w  be an m x 
1 column vector of the m match results, e  an m x 1 column vector of the m match 
errors, r a column vector of the N team ratings and a number of HAs depending on the 
model.  A  is a selection matrix, where ak,i is +1 if team i is the home team for the kth 
match, ak,j  = -1 if team j is the away team and 0 otherwise, and similar selection 
coefficients for the his.  We then have  
 
 w   = A r  + e    (1.5) 
 
Standard least squares theory shows the value of r that minimises the sums of squares 
of the errors eTe  satisfies the equations  
 
 (A TA )r  = A Tw    (1.6) 
 
In this case, the matrix A TA  is singular and we need to add the restriction Σui = 0.  
This is accomplished using the Lagrange multiplier technique and minimising 
eTe + λ Σui .  This results in extra terms being added to the equations represented by 
(1.5).  (In solving the above we are finding estimates of the true model values.  I have 
not used the usual notation to differentiate parameters and their estimates, as it usually 
obvious from the context, and only complicates the notation.)   
 
All of the above models can be used at the end of a season to rate a team's performance 
or calculate HAs.  This is sometimes called a bit misleadingly prediction, as we can use 
it to predict (albeit an event that has already occurred) the match results based on the 
ratings.  Perhaps it would be better called match fitting.  Alternatively, the ratings can 
be calculated or estimated on an ongoing basis, and used to forecast future match 
results.  Unfortunately this is also often called prediction.   
 
While there had been sporting computer predictions and ratings published in the 
American media since the 1940s, their methods were proprietary.  Leake (1976) gave 
details of a least squares rating system for college football, which he showed is 
analogous to an electrical circuit.  The method takes no account of HA.  The two 
pioneers in computer tipping are Stefani and Harville.  Stefani began forecasting 
American college and professional football in 1970 and published details of his least 
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squares method in Stefani (1977).  He used least squares to obtain ratings (and hence 
predictions) on college and pro football teams and college basketball.  He claimed 72% 
accuracy for college football, 68% for pro football and 69% for basketball.  His method 
used (1.1) with i and j being the winning and losing team.  The least squares solution of 
(1.5) is r = (ATA)-1ATw.  He used the extra criterion average rating equals 100 to 
ensure ATA was non singular.  In his case (120 teams) the matrix was too large to 
invert, but by investigating the form of ATA  he showed that the least squares solution 
gives a team's rating as their average winning margin plus the average rating of their 
opponents.  This can be solved iteratively provided a step is taken to avoid cycling.  
Note that with this method a team's rating will change, even though they do not play, 
due to the change in the rating of teams they previously played.  For basketball, as the 
schedule often changes, a simpler method was developed where only ratings of teams 
that have played are changed.  By making some approximations he arrived at the 
formula for updating ratings based on a match result of rnew = rold + 

1
n+1 (error in previous forecast) , where n is the number of matches a team has played.  

This is similar to exponential smoothing with a smoothing parameter that is high at the 
beginning of the season and low at the end.  In a study of half a pro football season, 
Stefani claimed "essentially the same accuracy" as the iterative method.   
 
In Stefani (1980), he extends his method to include a common HA.  By approximating 
for a large number of games, h becomes the average of home team points minus the 
away team points.  The win margin is adjusted by removing the HA, and then the 
previous procedure carried out on the adjusted margins.  Because he found his expected 
margin of victory greater than the actual he reduced the predicted margins by a factor L, 
so his prediction model is wij = h + L*(ri - rj).  Again L was chosen to minimise the 

sum of squares of errors and was about .67 for pro football and .75 for college football.  
In the case where the number of games used to determine each team's rating is the 
same, a team's rating will only change due to the outcome of its most recent game.  The 

updating equation he derived is rnew = rold + 
m-1

 mn-1 (error in prediction) , where n is the 

number of games the team has played and m is the number of games its opponent has 
played.  In this case the necessary calculations are simple enough to be processed on a 
calculator.  Stefani claimed improved accuracy both in terms of correct winners and 
average absolute error.  As it affects my approach, it is interesting to note that although 
much analysis is performed to find equations that minimise sums of squares of errors, 
some heuristic models still need to be used, and the accuracy of the predictions is 
judged by the mean absolute deviation, not the variance, of the errors. 
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Harville (1977, 1980) described using mixed linear models to predict scores in 
American National Football League (NFL).  He used Model 2 but whereas the common 
HA is a fixed effect, the performance levels are random effects which change between 
seasons following a first order auto regressive process.  Maximum likelihood 
procedures are used and the resultant equations solved using numerical iteration, 
Kalman filtering and smoothing algorithms.  The method is applied to seven years of 
NFL data obtaining the correct winner 70.93% of the time.  He also showed the method 
is slightly less accurate than the betting line as measured by number correct, average 
absolute error, and average squared error.  Accuracy is generally better than Stefani, 
both in percentage correct and absolute average error.  However the method obviously 
requires more computing power.  Harville suggested the accuracy might be improved 
by allowing the weekly performance levels to be correlated.  This would place 
increased emphasis on more recent games.  However when this model was fitted he 
found no evidence of improvement.  He also suggested that in using the method for 
rating, large margins should be truncated to avoid teams 'running up points'.   
 
There are some problems with the above approaches as they apply to prediction of 
Australian rules football.  The very large margins that can occur in Australian rules, and 
prediction errors of well over 100 points puts doubt on least squares as the optimising 
goal.  In sport, proportion correct and mean absolute deviation are the usual measures 
of accuracy used, so it is preferable to optimise these.  Although least squares theory 
can produce exact equations, simplifying assumptions often need to be made to enable 
solution.  It is significant, I believe, that Stefani's methods were developed for regular 
publication, and from 1971 appeared in the Fort Wirth Star - Telegram.  When tips need 
to be provided regularly, with little time between matches predicted and those already 
played on which the predictions are based, ease of computation is an important 
consideration.  For these reasons I used a heuristic approach.  In a subsequent review of 
his methods, Stefani (1987) suggested the simpler method of updating only the ratings 
of teams that play is not only computationally efficient but more accurate.  With all 
ratings being adjusted, some untypical results tend to ripple through the ratings of all 
teams.  In comparing his methods with those of Harville, Stefani finds little difference 
in the accuracy.  
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1.7.  Application to Australian rules football  
 
In 1980, following a student project, I became interested in computer tipping of 
Australian rules football.  The development of this work is outlined in several papers 
and is discussed in Chapters IV to VI of the thesis.  The results from the program have 
been published in the daily press from 1981 to 1986, and from 1990 to 1996.  They are 
currently published in newspapers in both Victoria and South Australia, and broadcast 
weekly on TV in South Australia.  This led to joint work with one of the pioneers of 
computer tipping, Ray Stefani.   
 
In designing a prediction model for Australian rules to compete with human tipsters, 
my approach, outlined in Clarke (1981), followed the lead of Stefani in producing 
ratings that could be updated after each match rather than computed from scratch.  
Since his least squares methods ultimately ended up with updating equations similar to 
that used by Elo (1978) for rating chess players, it was decided to use exponential 
smoothing methods.  Model 2 was used with a common HA.  Because of the large 
margins possible in Australian rules, the model allowed truncation as suggested by 
Harville (1980).  In Clarke (1988a, 1988c) an improved method, developed in 1986, 
was described.  This used an extension of Model 3 which allowed a ground/team effect 
in addition to several other effects and used a power method to gradually reduce the 
effect of large margins and errors.  The parameters were optimised by minimising the 
absolute average error.  The methods and output are described in detail in Chapter IV of 
the thesis.  This thesis shows that extremely simple exponential smoothing methods can 
be used in Australian rules football to provide team ratings and measures of HA that 
can be used to predict match results with an accuracy comparable to the expert tipster   
Stefani & Clarke (1992) found this method and Stefani's least squares method gave 
similar results when applied to 1446 Australian football matches from 1980 to 1989.  
The least squares method had slightly more correct predictions, while not surprisingly 
my method had a smaller absolute average error.  Neither difference was statistically 
significant.  (see Chapter VI). 
 
1.8.  Home advantage of individual clubs 
 
In investigating the reasons for HA, researchers still tend to look at an overall 
competition.  For example, to investigate the effects of travel on HA, two competitions 
would be investigated, one with a lot of travel and one with little.  However this is very 
inefficient.  Within a competition some teams would travel a lot, others little.  If the 
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individual HAs of teams could be calculated, then these could be related to the travel 
those individual teams have to undergo.   
 
The researchers involved in computer tipping were also looking at HA.  Stefani & 
Clarke (1991, 1992) used Model 3 and 4 to investigate individual HAs and paired HAs 
in Australian rules.  This work is the first time in the literature individual HAs have 
been calculated.  Clarke & Norman (1995a) used Model 3 and 4 to investigate 
individual and paired HAs in English soccer.  Kuk (1995), Dixon & Coles (1996) and 
Dixon & Robinson (1996) are later papers that use models incorporating HA in soccer 
prediction models. 
 
Harville & Smith (1994) were also investigating individual HAs.  They defined home 
court advantage as the net effect of several factors that may have a (generally positive) 
effect on the play of the home team, and a (generally negative) effect on the play of the 
visiting team.  They fitted models equivalent to 1, 2 and 3 to college basketball.  They 
pointed out that Model 2 implies the expected difference between two teams on a 
neutral court is halfway between the expected differences on their own home courts.  
Model 3 implies the expected difference on a neutral court is the same as the difference 
in the expected differences between them and a common opponent on that team's home 
court.  They defined home court advantage as the expected difference in score in a 
game played by a team on its home court minus the expected difference in the score 
played by the same team on a neutral court against the same opponent.  In Model 1 this 
is zero, in Model 2 this is h and in Model 3 this is hi.  They discuss various estimable 

functions that reflect performance level, among them the expected overall performance 
level in relation to the average, .5 (2ui + hi - (1/n)(Σ(2ui  + hi )) = ui  + .5hi - (1/n)(Σhi).  
By looking at the marginal difference in the sums of squares between the models, they 
find strong evidence for a common HA, and some evidence for different HAs, but also 
that the practical difference is not great.  Clarke (1997a) uses a similar method to show 
significant evidence of different HAs in Australian rules.  Stefani & Clarke (1991, 
1992) had already shown the size of these differences to be practically important.  My 
contributions to quantifying HA is discussed in Chapters II, III and VI of the thesis. 
 
1.9.  Teaching applications 
 
I have always believed the area of sport is excellent for motivating students at all levels 
and for making the study of mathematics, operational research and statistics more 
interesting.  Several authors have taken up this theme, for example Croucher (1984, 
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1994) and Townend (1984) .  In Clarke (1984, 1985a, 1985b, 1986b, 1988a, 1992b, 
1994b, 1995), Tobin & Clarke (1993) and Clarke & Handley (1994), I have presented 
much of my material in a form suitable for teachers.   
 
1.10.  Thesis structure 
 
This thesis investigates performance measurement in sport through mathematical 
modelling.   
 
This chapter gives an overview of my and others contribution to modelling in sport.  In 
Chapter II data from Australian rules football from 1980 to 1995 is investigated.  When 
measuring a team's success, the necessity of modelling HA is demonstrated, and 
problems of HA in an unbalanced competition discussed.  The existence of different 
HAs for different teams is demonstrated, and paired and individual HAs for Australian 
football teams tabulated and analysed.  Chapter III develops special methods of 
calculating HA and team ratings for balanced competitions.  Using 15 years of English 
soccer data, HAs for all clubs are calculated and analysed.  Chapter IV demonstrates the 
applicability of the methods used by describing a computer tipping program used to rate 
teams and measure HA.  Chapter V compares the accuracy of the computer with that of 
human tipsters.  Chapter VI combines both HA and computer forecasting by comparing 
different forecasting methods and making some international comparisons of HA.  In 
Chapter VII we begin to look at the performance of the competition structures within 
which teams compete.  We first analyse the performance of a finals system, and then 
demonstrate how the results of the computer tipping program can be used to quantify 
the effects of administration decisions and evaluate the fairness of an unbalanced draw.  
Chapter VIII introduces the use of DP to analyse a tactical situation in football.  
Chapter IX begins the work on cricket by giving a complete literature review.  Chapter 
X shows that many of the problems discussed in Chapters II to VII have their 
counterpart in cricket, and that competition rules can give an unfair HA.  Chapter XI 
develops a DP formulation to optimise first and second innings strategy in one day 
cricket.  Chapters XII and XIII extend this in various ways to allow for batsmen of 
differing abilities and alternative objective functions.  Chapter XIV demonstrates how 
the DP models can be used to measure performance by developing a player rating.  
Chapter XV summarises the findings of the thesis. 
 



CHAPTER I1 

HOME GROUND ADVANTAGE IN 
THE AUSTRALIAN FOOTBALL LEAGUE 1980-95 

2.0. Abstract 

In this chapter we raise some of the issues concerning home advantage (HA) in 

Australian rules football. We first look at traditional measures of HA as applied to whole 

competitions, such as percentage of games won, and alternative measures such as 

average margin of victory for the home team. We investigate the stability of these 

measures from year to year and throughout the season. We then look at individual HAS 

for each team. Two alternative methods of calculating these are investigated. The first is 

through paired matches, which operates independently of rating teams and does give 

more detailed information on HA, but is wasteful of data. The second uses all the data, 

and also gives team ratings as well as HAS. We then investigate the HAS obtained, and 

look at variations and possible causes or groupings of HA. Finally we look at the overall 

significance of various models, and show that the models are a significant improvement 

over previous models assuming a common HA. 

2.1. Introduction 

The major winter sport of the southern states of Australia is Australian rules football. 

The game is played with a rugby shaped ball between teams of 18 players on oval 

grounds of different sizes (the same grounds used for cricket during the summer). A 

match is played for four quarters, and when time on for play interruptions is added these 

each last for about 30 minutes. While the major method of moving the ball is by kicking, 

players can also punch the ball and run with it provided they bounce or touch it to the 

ground every 15 metres. Players running with the ball can be tackled by the opposition. 

For infringements of the rules, a free kick is awarded, which allows the recipient some 

time to dispose of the ball without being tackled by an opponent. A free kick is also 

given for a mark, awarded when a player catches a kick before the ball first touches the 

ground or another player. One of the great spectacles of the game is a player soaring over 

his opponents to take an overhead mark. Over the last 20 years, increasing use of 

handball and the option to play on after a mark or free kick combined with no off-side 

rule has meant the game has developed into a very fast flowing game requiring lots of 

running by players. The scoring region consists of four upright posts. Kicking the ball 

between the two centre posts scores a goal worth six points, while the region between 



either centre post and the corresponding outside post scores a behind worth one point. 

Draws are rare. A typical score might be 18 goals 12 behinds 120 points to 12 goals 15 

behinds 87 points for a winning margin of 33 points. Ladder position is in order of 

premiership points (four for a win and two for a draw) with ties decided on percentage 

(100 x total points for I total points against). The top teams at the end of the home and 

away draw play off in a final series to determine the premier team. 

The major competition in Australian rules, organised by the Victorian Football League 

(VFL), began in 1897 with 14 rounds between eight Victorian based clubs. By 1925 the 

competition consisted of 12 Victorian clubs, and it was still in that form in 1980 when the 

data for this study begins. With the exception of Geelong (Go Cats) all clubs were based 

in metropolitan Melbourne. The competition began to go national in 1982 with the 

movement of the South Melbourne club to Sydney. The administration of the 

competition was transferred to the Australian Football League (AFL) in 1990, and by 

1995 the competition had grown to 16 teams including five interstate clubs. For the 1996 

season, the entrance of another interstate club and planned mergers between Victorian 

clubs transformed the competition yet again. The competition receives a huge following 

both in terms of spectator and media interest. For example, each Friday, one Melbourne 

daily paper, The Sun News Pictorial, has a 12 page centre lift out in addition to several 

back pages devoted to AFL pre match coverage. Interstate matches are covered live on 

free to air TV, with replays of Melbourne matches. One of the cable pay TV operators 

has a channel expressly devoted to AFL coverage. Important matches are regularly 

attended by over 60,000 spectators. 

The ultimate aim of a season of football is to win the premiership, or at least finish as 

high on the ladder as possible. Teams measure their success by ladder position. 

However final ladder position as a measure of team ability is tempered by the degree to 

which the draw is unfair. Russel (1980) discusses the problem of carry over effects due 

to a team continually playing the previous opponent of the same team. The problem arose 

from one team in the VFL draw having the same carry over effect in 21 of its 22 matches. 

However the unfairness of the draw goes much deeper. The VFL and AFL competitions 

have traditionally been unbalanced in quality of opposition. For instance, from 1926 

through to 1967 (with the exception of some disruption in the forties due to the war) the 

draw consisted of 18 rounds between 12 clubs. Thus each team played some teams 

twice, and others once. From 1970 to 1986 there were 22 rounds and each team played 

each other twice, but with new teams in 1987 the opponent balance was again lost. Thus 

it may well be that some teams are playing against much stronger average competition 



than others. While this is recognised in general by fans and administrators, it is never 

quantified. 

A major determinant of the difficulty of a draw for a particular team is the grounds that 

matches are played on. It is accepted by sports followers that most teams enjoy a HA. 

Matches on home grounds are more likely to be won than matches on away grounds. It 

is important for the draw to be balanced in terms of home and away games. While 

traditionally each team has played half its matches away and half at home, to maximise 

crowds it has become common to share grounds and move matches to large capacity 

grounds. While non-Victorian teams currently play half their matches on their home 

ground, the Victorian sides do not. We will show there is no semblance of ground 

balance in the current competition. 

Since the draw is not fair on all teams, it is important that we look at measures of team 

success other than ladder position. As a major determinant of fairness, we will also look 

in detail at HA. All football followers recognise the importance of a home ground 

advantage, but never before this work has the actual advantage of individual teams in 

points been published. In particular, while it is recognised that individual teams have 

larger HAS than others, these effects are rarely quantified. One reason is probably the 

difficulty to assess HA because the draw is not balanced for either ability of opponent nor 

home and away matches. 

In this chapter we look first at the HA of the competition as a whole using traditional 

measures. We then investigate the HA of individual clubs and the joint HA of pairs of 

clubs, and investigate whether these more complicated models are justified. 

Data have been collected on an on going basis for all AFL football matches from 1980 

onwards. The data consist of year, round number, home team, away team, ground, 

home score in goals and behinds and away score in goals and behinds. The data were 

originally collected on a weekly basis from daily newspapers and football records for the 

purpose of forecasting match results. A subset of home and away matches from 1980 to 

1995 inclusive was used for the analysis in this paper. Rodgers & Browne (1996) was 

used as the authority for results and grounds. 



2.2. HAS of the nominal home team 

In the league draw, irrespective of where the match is played, the first named team is 

nominated as the home team. The usual measure of HA used in the literature is 

percentage of wins by the home team. Table 2.1 shows the percentage of losses draws 

and wins by the nominal home team. It has possibly shown some increase over the 

years. Over the 16 years 2361 matches resulted in 1345 wins for the home side with 

another 18 matches drawn. Counting a draw as half a win this gives 57.3 % wins for the 

home side. The table also shows how the number of matches has varied with the 

addition of new clubs and changes to the number of rounds played each year. 

TABLE 2.1. Match results and HA in points ratio for the nominal home team for each 

year 1980 - 1995 

Year 

80 

8 1 

82 

8 3 

84 

8 5 

86 

87 

8 8 

89 

90 

9 1 

92 

93 

94 

95 

80-95 

Total 

games 

132 

132 

132 

132 

132 

132 

132 

154 

154 

154 

154 

165 

165 

150 

165 

176 

2361 

Win 

% 

54.5 

54.5 

54.5 

53.8 

55.3 

54.5 

58.3 

60.4 

60.4 

61.0 

59.1 

56.4 

55.2 

56.7 

60.6 

55.7 

57.1 

Draw 

% 

2.3 

0.0 

0.8 

0.0 

0.0 

0.8 

0.0 

1.3 

0.6 

0.6 

0.0 

1.2 

1.2 

0.7 

0.6 

1.7 

0.8 

Loss 

% 

43.2 

45.5 

44.7 

46.2 

44.7 

44.7 

41.7 

38.3 

39.0 

38.3 

40.9 

42.4 

43.6 

42.7 

38.8 

42.6 

42.2 

HA in 

points 

1.3 

8.8 

10.6 

5.7 

5.1 

6.0 

11.0 

12.7 

8.8 

11.9 

8.1 

8.4 

8.1 

8.7 

11.0 

4.1 

8.2 

Total 

Points 

210.0 

199.8 

224.2 

2 12.2 

205.8 

21 1.0 

203.5 

209.3 

195.1 

189.1 

200.1 

205.2 

207.3 

210.2 

188.9 

188.8 

203.2 

Ratio of 

total 

points to 

HA 

161.2 

22.7 

21.2 

37.3 

40.6 

35.4 

18.5 

16.5 

22.1 

15.9 

24.9 

24.6 

25.7 

24.3 

17.2 

46.0 

24.8 



Since the percentage of home wins depends on the variation in the performance level of 

the teams as well as their HA, it is not a good measure to compare HAS between 

competitions, or even seasons. An alternative measure is the average margin of victory 

by the home team. To make comparisons across competitions and sports this can be 

standardised by comparing it to the total number of points scored in a match. Table 2.1 

also gives the average winning margin of the nominal home team (HA in points), the 

average total points scored in a match and the ratio (the average number or points scored 

for every point attributable to HA). The table shows that HA is quite variable from year 

to year, but that over 16 years it averaged 8.2 points a game or about one point in every 

25. 

There are probably two competing effects at work here. One is the introduction of 

interstate clubs; we will see later they tend to have high HAS. On the other hand, a 

smaller proportion of games are actually played on a home ground. In Melbourne many 

grounds are shared, so what is nominally a home match for a particular club may in fact 

be on a neutral ground. 

2.3. Changes in ground usage due to ground rationalisation 

One of the reasons given for HA is ground familiarity. This can be obtained by training 

at a ground or playing at the ground. The current names of the training grounds of the 

clubs for the period 1980 to 1995 are listed in Table 2.2. We have used the current 

names where the names of the venues have changed, but the actual venues have not 

changed. In the same way we use Sydney to refer to South Melbourne, and AFL to refer 

to VFL. 

However, in the AFL competition, teams do not necessarily play home matches on their 

training grounds. Over the years the AFL has sought to maximise crowd attendance by 

moving clubs from small capacity grounds to sharing larger grounds. The League also 

built their own ground, Waverley Park. It became available for regular use from 1970, 

and the League required all clubs to play some home matches there. The league has also 

attempted to maximise the use of the MCG. This has meant a steady erosion of the 

traditional home ground where a team plays and trains. 
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TABLE 2.2. Training grounds and home grounds of all clubs for period 1980-1995 

The changes over the years are best illustrated by comparing the first and last years of the 

period under study. For a typical year in the early sixties, prior to the introduction of 

Waverley Park and the beginnings of ground sharing, each team played all its home 

matches at its training ground, so each ground was used by only one team for home 

matches. In 1980, the first year in the period we are studying, the training grounds of 

Hawthorn (7) and Richmond (10) were not used for matches. These teams used Optus 

Oval and the MCG respectively as their home ground. However Waverley Park was 

used by all 12 teams for some home matches. Apart from Waverley, Optus Oval and the 

MCG were the only shared grounds, with each shared by two clubs. With the exception 

of the matches at Waverley Park, each team played all its home matches on its home 

ground. 

Team 

Adelaide 

Carlton 

Collingwood 

Essendon 

Fitzroy 

Footscray 

Geelong 

Hawthorn 

Melbourne 

Nth Melbourne 

Richmond 

Sydney 

S tKilda 

Brisbane 

West Coast 

Fremantle 

Training ground 

Football Park, 9 1-95 

Optus Oval 

Victoria Park 

Windy Hill 

Junction Oval 

and many others 

Whitten Oval 

Kardinia Park 

Glenferrie Oval 

MCG 

Arden St. 

Richmond CG 

Lakeside Oval 80-8 1, 

Sydney CG 82-95 

Moorabbin Oval 80-92, 

Waverley Park 93-95 

Carrara 87-92, 

Brisbane CG 93-95 

Subiaco Oval, 87-95 

Fremantle, 95 

Home ground 

Football Park, 9 1-95 

Optus Oval 

Victoria Park 80-93, MCG 94-95 

Windy Hill 80-9 1, MCG 92-95 

Junction Oval 80-84, Victoria Park 85-86, 

Optus Oval 87-93, Whitten Oval, 94-95 

Whitten Oval 

Kardinia Park 

Optus Oval 80-9 1, 

Waverley Park 92-95 

MCG 

Arden St 80-84, MCG 85-95 

MCG 

Lakeside Oval 80-8 1, 

Sydney CG 82-95 

Moorabbin, 80-92 

Waverley Park 93-95 

Carrara Gold Coast 87-92, 

Brisbane CG 93-95 

Subiaco Oval, 87-95 

Subiaco Oval, 95 



By 1995 the pattern had become much more confusing. Training grounds no longer used 

for home matches included those of Essendon, Hawthorn, Nth Melbourne, Richmond 

and Fitzroy. Five clubs (Melbourne, Richmond, Nth Melbourne, Essendon and 

Collingwood) played the majority of their home matches at the MCG, but another three 

clubs played some home matches there. This resulted in other matches being moved 

away, usually to Optus Oval. Most of the MCG tenants had to play some home matches 

at Optus Oval, so even traditional owners Melbourne, who train at the MCG, were now 

one of six clubs to play some home matches at Optus Oval. Fitzroy played home matches 

at four different grounds, including the first ever match at Canberra. West Coast and 

Fremantle shared the WACA and Subiaco. Hawthorn and StKilda shared Waverley, but 

two other clubs also played a home match there. Only Adelaide, Sydney and Brisbane 

had the traditional pattern of a unique non shared ground for all their home matches. 

2.4. Actual home grounds 

Clearly, in the AFL, it is arguable which is the home ground of some teams. Teams play 

their home matches on a variety of grounds, which may or may not be their training 

grounds. In other cases, because of ground sharing, teams may play away matches on 

grounds other than their home ground several times. For example in 1995 with five 

teams sharing the MCG, a team could play five away matches at the MCG. With such a 

program, a team could become very familiar with grounds other than their home ground. 

For this study, the home ground of a team for a particular year was defined as the ground 

on which the team played the most home matches. For example, in 1995 Collingwood 

played three home matches at Victoria Park, their training ground, but eight at the MCG. 

The MCG was therefore defined as their home ground. In all cases this resulted in the 

same ground as that officially recognised by the AFL. The resulting home grounds are 

given in Table 2.2. Most clubs have been very stable, only moving to the MCG or 

Waverley. Fitzroy is the exception, with four home grounds. 

The above definition does mean that some games which may carry a large HA are not 

classified as played on a home ground. One case would be the Collingwood games 

played at Victoria Park mentioned above. Another example is West coast. They play 

about four home matches each year at the WACA, which because of the travel involved 

for visiting clubs would carry a large HA. Yet these would not be classed as a home 

ground on the above criteria. These matches, played on neither teams 'home' ground 

nevertheless may give one side a significant HA. Similarly, many 'home' matches are 



actually played on neutral grounds. An example would be any match between MCG 

cotenants. To check on actual HA, a team was categorised as having a perceived 

advantage if the match was played on their home ground or training ground or other 

ground with which they could be expected to have a HA. Thus Collingwood have a 

perceived advantage in any matches played at Victoria Park in seasons when this was not 

their home ground. Similarly West Coast and Fremantle have a perceived advantage in 

any matches played at the WACA or Subiaco. Matches were then discarded as neutral if 

neither or both teams had a perceived advantage. Table 2.3 gives the results and average 

HA for the remaining matches. These give a better reflection of the actual HA that exists 

in Australian rules than Table 2.1. 

The percent of games won by the 'home' teams has generally increased and in almost all 

cases the ratio of points to margin has decreased. Most of this is probably due to the 

introduction of interstate teams. For example, counting a draw as 0.5 of a win, in the 

seven years prior to the introduction of two more interstate teams in 1987 the win 

percentage for home teams averaged 56.6%. The nine years following averaged 60.5%. 

This difference was significant at the 5% level (p=0.017). The drop in points scored at 

the end of 1993 is attributable to a change in the length of the quarters and time off 

definitions which reduced the effective playing time. While this would presumably also 

cause a slight decrease in the average home winning margins, this effect has been ignored 

in the analysis in this thesis. 

To sum up in 16 years of Australian rules football, 1869 matches carried a perceived HA. 

Of these the advantaged team won 1094 and drew another 15. Counting a draw as half a 

win this amounts to 59.3%. In terms of margins the average win for the home team was 

just under 10 points per game, or just under one point advantage in every 21 points 

scored. 



TABLE 2.3. Match results and HA in points ratio for the team with the perceived HA for 

each year 1980 - 1995 

2.5. HA throughout the season 

Year 

80 

8 1 

82 

8 3 

84 

85 

8 6 

87 

8 8 

89 

90 

9 1 

92 

93 

94 

95 

ALL 

We can also look at the percentage of wins and HA in points throughout the season. 

Table 2.4 reorganises the data in Table 2.3 by combining the 16 years of data in groups 

of four or five weeks, so the table shows the monthly progression of scoring and the 

HA. Also included is a column showing the WinIDraw percentage, where draws are 

counted as 0.5 of a win. Scoring is somewhat lower in the last three months of the 

season as the weather deteriorates. There is some evidence for a lower HA in the first 

five rounds of the season, at least in terms of point margin and ratio of margin to points 

scored, but there is no consistent pattern of an increase or decrease in HA through the 

remainder of the year. Thus it may be an advantage for teams to play away matches 

against important opponents at the beginning of the season. 

Total 

games 

107 

102 

104 

106 

103 

100 

100 

119 

117 

121 

118 

130 

134 

131 

135 

142 

1869 

Win 

% 

57.0 

54.9 

56.7 

55.7 

59.2 

52.0 

58.0 

62.2 

61.5 

64.5 

60.2 

59.2 

53.0 

60.3 

62.2 

57.7 

58.5 

Draw 

% 

2.8 

0.0 

1.0 

0.0 

0.0 

1.0 

0.0 

1.7 

0.9 

0.8 

0.0 

1.5 

1.5 

0.8 

0.7 

0.0 

0.8 

Loss 

% 

40.2 

45.1 

42.3 

44.3 

40.8 

47.0 

42.0 

36.1 

37.6 

34.7 

39.8 

39.2 

45.5 

38.9 

37.0 

42.3 

40.7 

HA in 

points 

3.4 

10.3 

12.9 

8.9 

10.5 

5.6 

11.7 

13.7 

12.0 

14.4 

9.6 

12.0 

5.3 

10.9 

11.4 

4.8 

9.8 

Total 

points 

210.5 

199.4 

226.6 

214.7 

205.3 

212.7 

205.5 

212.0 

194.4 

187.9 

201.6 

204.7 

208.6 

208.5 

189.6 

187.7 

203.7 

Ratio 

of total 

points to 

HA 

62.2 

19.4 

17.5 

24.1 

19.6 

38.1 

17.6 

15.5 

16.1 

13 .O 

21.1 

17.1 

39.4 

19.1 

16.6 

39.1 

20.8 



TABLE 2.4. Match results and HA in points ratio for the team with the perceived HA for 

each stage of season 

2.6. Paired HA 

Round 

1-5 

6-9 

10-13 

14-17 

18plus 

Total 

A team may win more of its home matches simply because it is better than the teams it 

plays there. When we investigate HA of individual clubs, we need to balance for ability. 

One way to do this is to consider matches in pairs. We have seen that about 80% of the 

games involve a perceived home team situation. Most of those involve a return match 

with the same team, and about 80% of those also involve a perceived HA. The two 

results together give us a measure of the joint HA between the two teams. This can be 

estimated without the need for estimating performance levels by adding the two results. 

For Model 1.4 we had 

Wij = U i  + hij - U j  + eij 

Total 

games 

423 

331 

335 

331 

449 

1869 

For the return match 

and so adding we obtain 

Win 

% 

57.2 

58.0 

61.8 

57.1 

58.8 

58.5 

wij + wji = hij + hji + error 

where hij + hji can be thought of as a paired HA. (Note that if we revert to model 2, 

where hij = h i ,  the paired HA becomes hi + hj, the sum of the individual HAS of the 

Draw 

% 

1.2 

0.9 

0.6 

0.9 

0.4 

0.8 

Loss 

% 

41.6 

41.1 

37.6 

42.0 

40.8 

40.7 

Win/ 

Draw 

% 

57.8 

58.5 

62.1 

57.6 

59.0 

58.9 

HA in 

points 

7.6 

9.6 

11.2 

9.6 

10.7 

9.8 

Total 

points 

211.8 

205.3 

199.5 

199.2 

201.5 

203.7 

Ratio 

of total 

points 

to HA 

27.9 

20.2 

17.7 

20.7 

18.8 

20.8 



two teams). By assuming this remains constant over several years, we can average over 

several years to reduce the error. Table 2.5 gives the number of pairs for each pair of 

teams (top half) and the average paired HA (bottom half). Note that in a perfectly 

balanced competition such as English soccer, each pair would occur 16 times. Here 

some clubs have many more pairs than others. For example, Sydney (team 1 I), which 

has never shared a ground, and as an interstate club was not required to share Waverley 

Park, generally has more pairs than others. Some values need to be treated with caution, 

as they are based on only a few pairs. For example, the largest paired advantage in the 

table is GeelongIAdelaide at 147 points. However this is based on only two pairs. 

Nevertheless it is interesting to note that in 1996, Geelong lost by 64 points in Adelaide 

but won by 35 points at Geelong - a turn around of 99 points. We should treat Fremantle 

(team 15) figures with extreme caution as they are only based on a single pair. 

Some inferences can be drawn from the table. Most of the interstate clubs have large 

paired HAS with other teams, and virtually all the values over 40 points involve Adelaide, 

Brisbane or West coast. There are a few negatives in the table, and nearly all involve 

Victorian clubs. 



TABLE 2.5. Mean paired HA for each team and number of pairs for the years 1980 to 1995 

Team 

Adel 

Car 

Coll 

Ess 

Fitz 

Foot 

Gee1 

Haw 

Melb 

NthM 

Rich 

Syd 
StK 

Bris 

WC 

Frem 

Ess 

1 

7 

6 

16.7 

28.2 

3.7 

0.8 

11.0 

11.4 

-10.5 

39.1 

18.3 

18.5 

56.5 

39.0 

Adel 

48.0 

24.5 

72.0 

62.0 

61.0 

147.0 

-34.0 

22.5 

44.5 

-18.0 

-16.0 

68.7 

5.3 

67.5 

Fitz 

2 

2 

6 

9 

25.8 

31.2 

14.8 

4.7 

-18.8 

20.6 

12.6 

13.2 

50.4 

47.7 

9.0 

Car 

2 

-31.2 

32.3 

7.5 

22.1 

21.4 

-23.3 

-4.6 

23.6 

43.4 

19.3 

-4.9 

42.6 

61.5 

Coll 

2 

5 

24.2 

27.8 

39.3 

-1.4 

21.9 

-29.6 

17.5 

42.4 

9.5 

36.3 

-9.3 

57.8 

Foot 

2 

8 

8 

9 

8 

39.9 

22.7 

27.1 

-14.5 

33.5 

25.6 

4.4 

-7.5 

27.7 

33.0 

Geel 

2 

8 

9 

7 

9 

8 

2.6 

32.4 

-14.1 

-7.6 

-5.5 

51.6 

28.4 

15.8 

42.0 

Haw 

2 

3 

7 

6 

4 

9 

8 

14.6 

30.4 

-33.6 

19.8 

-2.4 

48.8 

-2.0 

Melb 

2 

5 

8 

8 

6 

7 

9 

7 

27.7 

24.3 

9.4 

43.8 

40.4 

NthM 

2 

8 

4 

7 

6 

6 

8 

10 

3 

1.4 

-9.5 

8.9 

26.3 

30.3 

Rich 

3 

8 

5 

8 

9 

6 

7 

9 

5 

9.8 

31.2 

60.7 

11.0 

-2.0 

Syd 
3 

11 

11 

10 

13 

11 

13 

9 

12 

11 

12 

23.8 

33.0 

74.5 

41.0 

StK 

3 

7 

7 

7 

10 

10 

9 

7 

5 

10 

6 

12 

32.0 

66.8 

Bris 

3 

5 

3 

2 

5 

6 

5 

5 

6 

4 

6 

6 

5 

53.2 

WC 

4 

6 

4 

6 

3 

6 

5 

4 

5 

3 

5 

4 

4 

Frem 

1 

1 

1 

1 

1 

1 



2.7. Individual HAS 

There are several ways these paired HAS can be manipulated to produce measures of 

individual team HA. A simple averaging is illuminating although as we shall see needs to 

be treated with some caution. Table 2.6 gives the averages of the above figures, for each 

team. We have also given the average margin of each team in their home matches and the 

average margin in their away matches. These are simple measures the average supporter 

would understand, particularly soccer followers as they are analogous to home and away 

goal difference. Because we have included only those matches which can be paired, the 

average paired HA is the difference in the two columns. Note the high average paired 

HA of all the interstate teams except for Sydney. 

TABLE 2.6. Average of the paired HA for each team from 1980 to 1995 

Team 

Adelaide 

Carlton 

Collingwood 

Essendon 

Fitzroy 

Footscray 

Geelong 

Hawthorn 

Melbourne 

Nth Melbourne 

Richmond 

Sydney 

StKilda 

Brisbane 

West Coast 

Fremantle 

AU 

Number 

of pairs 

3 3 

8 5 

8 5 

94 

93 

105 

108 

90 

8 3 

87 

90 

139 

102 

66 

64 

6 

1330 

Average 

home 

margin 

15.0 

28.8 

13.8 

26.8 

2.0 

0.9 

19.9 

28.4 

-1.8 

6.8 

-4.2 

0.8 

-7.5 

-6.7 

34.6 

24.0 

9.7 

Average 

away 

margin 

-21.7 

8.5 

-1.1 

6.6 

-17.4 

-21.8 

2.4 

19.4 

-18.4 

-1.1 

-17.3 

-16.0 

-29.2 

-39.9 

-8.7 

-3.0 

-9.7 

Average 

Paired 

HA 

36.8 

20.4 

14.9 

20.2 

19.4 

22.7 

17.4 

8.9 

16.5 

7.9 

13.1 

16.8 

21.7 

33.1 

43.3 

27.0 

19.5 



The above paired HAS include a component due to the other teams' HAS. This increases 

the apparent HA of each team by including a component due to the HA of all the other 

teams. This spurious HA can be explained by the following simplistic argument. Each 

pair of matches gives us an estimate of hi + hj for the two teams i, j. By averaging these 

pairs for team i, we obtain an estimate of hi + h, where h is the average of the hj. We 

need to remove h to get back to our estimate of hi. Stefani & Clarke (1991) give one 

method using an iterative procedure. An alternative is to use regression. The individual 

hi can be estimated using general linear methods to find a least squares fit. While this 

could be done with the 220 averages of Table 2.5, it is better to use the original 664 

individual pairs. While the actual estimates do not differ much, the second method gives 

greater weight to those averages based on more matches, and tends to produce more 

significant results. The REG procedure from SASISTAT was used to obtain the 

estimates given in Table 2.7. Perhaps not surprisingly given the comments above, the 

figures are quite similar to those obtained by subtracting from the average paired HAS 

given in Table 2.6 their overall average of 9.7. 

The figures are consistent with those given in Stefani & Clarke (1992) which covered the 

years 1980-89, and their comments on the relative mix of travel, especially across time 

zones, crowd intimidation, and lack of familiarity with the playing conditions in regard to 

international comparisons apply here. It is logical that West Coast should benefit from 

the distances travelled by other teams, across two time zones. In addition, Western 

Australia and South Australia are traditional Australian rules states, and matches played in 

those states are in front of one sided capacity crowds. Note that all interstate clubs with 

the exception of Sydney have a large HA. The biggest four HAS all belong to interstate 

clubs. Fremantle is not significant due to there being only a few pairs, but the value is 

still large. Travel between Sydney and Melbourne involves no time zone changes. As 

Sydney is the one interstate team that was actually formed by relocating a Melbourne club 

to a traditionally non Australian rules city, the crowd support at matches in which Sydney 

plays is much less one sided than for other interstate teams. Some other teams have 

above average HAS, specifically Footscray, StKilda, Essendon and Carlton. While this 

is probably in line with most supporters' perceptions, other parts of the table are not. 

Geelong is in the lower half on the table, while Collingwood is thirteenth. The supposed 

intimidation effect of the Collingwood supporters at Victoria Park does not appear to 

show up in the figures. 



The negative HA of North Melbourne is also surprising. Although not significantly 

different from zero, it is nevertheless interesting that over 16 years a team should average 

two points worse at home than away. Previously the only negative HAS reported were 

by Baumeister & Steinhilber (1984) in the context of deciding matches in finals series of 

baseball and basketball, but Gayton et al. (1987) failed to replicate in ice hockey and 

Benjafield & Liddel(1989) limited it to teams with an expectation of winning. The table 

lends weight to ground familiarity as a cause for HA. The bottom three teams have for 

most of the period all played on shared grounds on which they do not train. Thus they 

do not gain familiarity with the playing ground during training, and other teams gain 

more familiarity than usual by playing more away matches at the ground. Significantly 

the bottom five teams on the table all currently play on a shared ground. 

TABLE 2.7. Individual HAS of all teams in points per game based on paired matches for 

the years 1980- 1995, in order of decreasing HA 

Team 

West Coast 

Adelaide 

Brisbane 

Fremantle 

Footscray 

S tKilda 

Essendon 

Carlton 

Fitzroy 

Geelong 

Sydney 

Melbourne 

Collingwood 

Richmond 

Hawthorn 

Nth Melbourne 

HA 

Estimate 

33.5 

25.2 

23.4 

18.3 

12.9 

12.6 

10.9 

10.2 

9.9 

8.0 

7.9 

5.6 

5.2 

2.3 

-0.5 

-2.0 

Standard 

Error 

7.0 

9.7 

6.9 

22.6 

5.5 

5.6 

5.8 

6.1 

5.9 

5.4 

4.8 

6.2 

6.1 

6.0 

6.0 

6.1 

p value 

for 

HA=O 

0.00 

0.01 

0.00 

0.42 

0.02 

0.02 

0.06 

0.09 

0.09 

0.14 

0.10 

0.37 

0.40 

0.70 

0.93 

0.74 



2.8. Using linear regression analysis on individual match results 

The above method is quite wasteful of data. To allow for team ability we paired the data, 

so only those matches that can be paired are used, and this results in discarding 44% of 

the matches. This limits its use on a yearly basis, as many of the teams would only have 

a few pairs. An alternative is to fit a model with team and HA effects to the original 

match results for each year separately. We could use any of the Models 1, 2 or 3, or 

variations could be used. For example, you could allow for different hs for different 

grounds. Thus Collingwood could be allowed a different h for Victoria Park as against 

the MCG, or West coast a different value for the WACA and Subiaco. This could be 

used to possibly differentiate travel effects from ground effects. In all these cases, no 

data is wasted as even a match on a neutral ground contributes toward determining the us. 

Figure 2.1 gives a sample regression output for 1995. In this case we have used Model 3 

which allows for individual HAS, and used the actual home ground for that year as 

defined in section 2.4. Note the root mean square error is 39 points so football is very 

unpredictable. None of the HAS are significantly different from zero. This is due to the 

large error and the small number of matches played on each home ground. Again we 

need to look across seasons to obtain enough data to make reasonable observations about 

differences in HA. Nevertheless the us and hs are generally in line with that expected. 

The top teams have large us, the interstate teams generally large HAS. The correlation 

between the us and premiership points is 0.83, and between the us and percentage is 

0.93. The better correlation with percentage is not surprising, as premiership points can 

be very dependent on a few close wins. 



The SAS System 

Model: MODEL1 
NOTE: Restrictions have been applied to parameter estimates. 
NOTE: No intercept in model. R-square is redefined. 
Dependent Variable: MARGIN 

Analysis of Variance 
Sum of Mean 

Source DF Squares Square F Value Prob>F 

Model 31 150750.24391 4862.91109 3.092 0.0001 
Error 145 228022.75609 1572.57073 
U Total 176 378773.00000 

Root MSE 39.65565 R-square 0.3980 
Dep Mean 4.10795 Adj R-sq 0.2693 
C.V. 965.33814 

Parameter Estimates 
Parameter Standard T for HO: 

Variable DF Estimate Error Parameter=O Prob > ] T I  
UO 1 -31.444878 
U1 1 26.205001 
U2 1 -1.646862 
U3 1 26.925728 
U4 1 -40.973561 
U 5 1 -2.340900 
U 6 1 26.167461 
U7 1 -8.320901 
U 8 1 3.829991 
U9 1 22.525549 
U10 1 0.912430 
U11 1 -4.379118 
U12 1 -15.250602 
U13 1 -11.118884 
U14 1 6.591798 
U15 1 2.317748 
H 0 1 28.698837 
H 1 1 4.905900 
H2 1 5.599304 
H3 1 -7.534129 
H4 1 -13.420776 
H 5 1 -5.950555 
H 6 1 -4.916018 
H7 1 8.716675 
H 8 1 -6.615524 
H 9 1 -22.089570 
HI0 1 6.985185 
HI1 1 7.992999 
H12 1 -6.804360 
H13 1 19.880955 
H14 1 26.939111 
H15 1 -14.528699 
RESTRICT -1 -2.556173-14 

Figure 2.1. SAS output obtained from regression procedure fitting a team rating and 

individual HA to 1995 margin results 



Since teams have traditionally played half their matches at home we might use ui + 0.5 hi 

as a measure of a team's success through the year. This is in line with Harville & Smith 

(1994) who suggests an equivalent measure for a team's overall performance level in 

relation to the average performance level. This measure has a correlation of 0.90 with 

premiership points and 0.98 with percentage. Figure 2 shows a scatter plot of percentage 

against ui + 0.5 hi and demonstrates the extremely close fit. Thus the uj and hi together 

give a good measure of a team's overall success through the year, but separately give a 

measure of how much contribution the effects of team ability and HA made. It also 

suggests that percentage is a better measure of a team's average performance level than 

premiership points. 

Figure 2.2. Percentage versus ui + 0.5 hi for 1995 
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The HAS for each club for each year obtained by this method are given in Table 2.8. 

Again the averages are roughly in line with those previously obtained, and most of the 

comments made in regard to the average paired HAS apply here. Three of the interstate 

teams have the largest average HAS. Sydney is the exception. Note in the early years 

after their move they had a high HA, but this has diminished, possibly as teams got used 

to travel. Note the very low HAS of teams that have shared the MCG for many years. 

Melbourne, Richmond and North Melbourne are all in the lower third of the table. 

I I I I I I I 
-50.0 -30.0 -10.0 10.0 20.0 30.0 

Rating +0.5 HA 



TABLE 2.8. Home advantages for all clubs in the AFL 1980-1995 

Team 

Adel 

Bris 

WC 

Foot 

Car 

StK 

Coll 

Syd 
ESS 

Fitz 

Gee1 

Melb 

Haw 

Rich 

NthM 

Frem 

All - 

Year 

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 

46 34 44 29 29 

-11 33 39 43 -5 45 48 30 20 

42 21 38 -2 17 17 12 -15 27 

15 17 12 34 28 25 26 10 12 19 -50 29 7 20 33 -6 

13 5 39 33 -11 -3 12 17 32 -6 -6 20 16 -2 48 5 

-2 7 15 -16 8 6 20 38 17 33 25 13 11 8 -10 -7 

-11 29 11 32 11 -33 6 -9 21 17 25 32 -2 8 13 6 

36 5 17 9 5 15 6 28 -18 10 2 -4 4 34 -18 8 

5 11 10 15 7 32 -2 31 8 17 -13 23 -19 -14 29 -8 

9 12 -3 35 6 -10 28 28 29 -8 15 9 -5 2 -10 -13 

-3 28 27 -40 20 -5 22 17 -28 25 15 3 14 24 7 -5 

-10 15 -9 12 -4 18 20 3 5 -15 21 -18 7 37 1 -7 

25 -12 19 -28 9 30 -9 8 20 24 -24 10 -12 -12 1 9 

-5 -4 -6 -10 14 -9 8 -0 14 12 17 -17 -13 -12 28 7 

-17 2 21 28 23 -23 2 -10 12 -3 53 -3 -31 -35 18 -22 

-15 

4 10 13 9 10 4 12 14 13 14 9 10 5 11 12 2 

80-95 

36 

27 

17 

14 

13 

10 

10 

9 

8 

8 

8 

5 

4 

1 

1 

-15 

9.3 



2.9. Further analysis of individual HAS 

Do different teams have different HAS or are the above differences due to random 

variation? Table 2.8 provides data that can be analysed by normal statistical methods. 

The year to year variation in HA for individual teams is very large, and little faith could 

be placed on individual values. Nevertheless, some may be of interest to administrators 

and supporters. For example, why did Footscray, after a decade of consistently high 

positive HAS, have a huge -50 in 1990? StKilda, after its move to Waverley in 1993, 

had three consecutive HAS all less than they had enjoyed in any of the preceding nine 

years. Some aspects have been investigated in more detail below. 

2.9.1. Team and year effects 

The data were analysed in various ways using the general linear models. With HA as the 

dependant variable a model for all the data with a year and team effect was highly 

significant (p=0.036). The year effect was insignificant (p=0.83) but the team effect was 

highly significant (p=0.002). (Removing the single Fremantle observation resulted in 

virtually no change.) This is clear evidence that in Australian rules the HAS of all teams 

are not the same. 

2.9.2. Interstate teams 

The cause of this difference can be traced to the interstate clubs. If the same model is 

fitted to the years 1980 to 1986 (before the introduction of Brisbane and West coast) the 

model as a whole is not significant, and the team effect has a p  value of 0.57. However 

when fitted to the years 1987 to 1995, the overall model was significant at p = 0.04 and 

the team effects at p=0.01. When the data were split into two groups, Victorian and 

interstate, the 178 Victorian values had a mean HA of 7.7 with standard deviation of 

17.6. The 38 interstate values had a mean of 17.5 with a standard deviation of 19.8. 

The differences in standard deviation were statistically insignificant, allowing an equal 

variances t test which showed the differences in the mean for the two groups was 

significant with p=0.003. Note that the differences are not just statistically significant, 

but of practical significance. The average HA of the interstate teams is more than double 

the Victorian clubs. 



2.9.3. MCG teams 

One reason advanced for HA is ground familiarity. Since the MCG is played on by many 

clubs, other teams will also be familiar with the ground, and the home team's advantage 

will be reduced. To investigate if teams sharing the MCG had a different HA than other 

teams the interstate teams were removed. Since they have a higher HA than average, and 

none use the MCG, their inclusion would invalidate the results. This analysis was 

therefore restricted to the Victorian clubs only. The 49 HA values for clubs in the 

seasons they used the MCG as a home had a mean of 1.4, the other 129 values for 

Victorian clubs had mean of 10.0. The difference was significant at p=0.002. 

2.9.4. New Ground effect 

When clubs change ground, they would be less familiar with their new ground and hence 

should have a lower HA. Table 2.1 shows that Victorian clubs changed grounds to 

another Victorian venue eight times. The eight HAS for the first season at the new 

grounds had a mean -2.9. The other 170 seasons by Victorian clubs had a mean of 8.2. 

The difference was marginally significant (p=0.08). This effect could be confounded 

with the effect shown in the previous section, as three of the moves were to the MCG. 

2.10. Significance of various models 

While the above analysis suggests that teams have different HAS, they may occur in 

groups. For example, we may only need one HA for interstate teams, one for MCG 

teams and one for other teams. Harville & Smith (1994) test the significance of Models 1 

through 3 by successively fitting the models and testing if the incremental improvement is 

significant. They find that while including a common HA in Model 2 is highly 

significant, the gains made by the extra complication of including individual HAS gained 

some improvement but this was not significant. One of the improvements they suggested 

was to group teams. We adopt this approach here, and also test two incremental models 

between models 2 and 3. In the first of these extra models (model 2a) we allow a 

different but common HA for all interstate teams (hi) to the Victorian teams (hv), while in 

the second (model 2b) we allow a common HA for the MCG teams (hm). Because we 

are interested primarily in the interstate effect, in this section we only consider the years 

91 to 95, and all games at Subiaco and the WACA are classed as home games. The 

process is explained in detail for 1995, and then summary results are given for all years 

199 1 - 1995. In keeping with Harville, the notation Sib represents the difference between 



the residual sum of squares obtained by fitting model i and j respectively - i.e. the extra 

sum of squares explained by fitting Model j over that obtained by fitting Model i. Table 

2.9 shows the marginal sums of squares explained by progressively fitting the models. 

An F ratio can be formed to test if the model is a significant improvement over the 

previous model using the final residual mean square (these are the values given in the 

table). More correctly, the marginal sums of squares can be totalled to test any required 

hypothesis. Suppose we wish to test whether Model 2 is a significant improvement over 

Model 1. The improvement in the sum of squares gained by fitting the extra parameter in 

model 2 is 2634.1. The residual sum of squares is 10547.8+11.2+10794.9+223567.5 = 

244921.4 with 1+1+1+13+145 = 150 degrees of freedom. This gives an F statistic of 

1.6, in this case not significant. To test if Model 3 is an improvement over Model 2, the 

extra 15 parameters of Model 3 contribute 10547.8+11.2+10794.9=21353.9 for a mean 

square of 1423.6. Compared to the error mean square of 1541.8 this gives an F value of 

0.92, clearly insignificant. 

The various hypotheses are relatively simple to implement with PROC REG in SAS. We 

simply start of with the most complicated Model 3 and progressively restrict groups of 

the hs to be equal, and request the relevant tests of hypothesis. For example to test 

Model 3 against Model 2 we request the hypothesis test ho=hl=h2=h3=h4=h5=hb= 

h7=hg=h9=hlo=hll=hl2=h13=h14=h15. To test Model 2 against Model 1 we put a 

restriction ho=hl=h2=h3=h4=h~=h~=h7=h8=h~=hlo=hl 1=h12 =hl 3=h14=h15 and test the 

hypothesis ho=O. 

On the basis of 1995 only, there is strong evidence for Model 1 and 2a, somewhat 

marginal evidence for Model 2 and no evidence for the other models. While it is 

surprising that Model 2 is not significant, note from Table 2.3 that 1995 had one of the 

lowest HAS in terms of points for all years. Other years may yield a different result. The 

results of the analysis for each model for the years 91 to 95 is now discussed in detail. 



TABLE 2.9. Marginal significance of various models for the year 1995 

Model 1: Model 1 alone is highly significant, with a p  value < 0.0001 each year. There 

is no doubt there are differences in the mean level of team performances. 

Source 

Model I 

Model 21 

Model 2: Model 2 proved to be significant in most years. Table 2.10 gives the 

significance of the improvement for Model 2 over Model 1 (ie for the hypothesis test 

h=O), the R-square value (i.e. the percentage of variation in the margins explained by the 

model) and the estimated value of the common HA for each year and its standard error. 

TABLE 2.10. Model 2 results for the years 1991 -95 

Degrees 

of 

freedom 

15 

Model 2b 

Residual 

Total 

Marginal Sum of 

squares 

SS1 = 131217.4 .OO 

.19 

Mean 

square 

8747.8 

2634.1 

145 

176 

F P  
5.7 

1.7 1 SS211 = 2634.1 

223567.5 

378773.0 

1541.8 



Clearly Model 2 is significant and its place as the standard model is justified by these 

results. Note the estimated values for the common HA are all within one standard error 

of those given in Table 2.3, which suggests that the simple methods used there do give a 

reasonable estimate of a common HA. The model generally explains about 40% of the 

variation in results, which again illustrates the large variation present in Australian rules. 

Model 2a: The inclusion of a different HA for interstate teams is generally significant. 

Table 2.1 1 gives the significance of the improvement for Model 2a over Model 2 (ie for 

the hypothesis test hi = hv), the R-square value and the estimated value of the common 

HAS for interstate and Victorian teams. With three of the five years significant there is 

strong evidence for the interstate teams having a different HA to Victorian clubs. 

However there are still large errors in the estimates and averages over several years need 

to be taken to obtain accurate estimates. 1994 is atypical with the estimate for Victorian 

clubs slightly higher than interstate clubs. Nevertheless the table as a whole is conclusive 

evidence that some clubs do have higher HAS than others, and that a more complicated 

model than a common HA is justified. 

TABLE 2.1 1. Model 2a results for the years 199 1-95 

Model 2b: The evidence for a different HA for the MCG and other Victorian clubs is 

somewhat inconclusive. The p values for 1991 through to 1995 for the improvement in 

Model 2b over Model 2a were 0.05, 0.1 1, 0.50, 0.77, and 0.93, which suggests that 

while a difference may have existed it has disappeared in recent years. 

Year 

1991 

1992 

1993 

1994 

1995 

Model 3: There is weak evidence for an improvement in Model 3 over Model 2. The 

respective p values are 0.5 1, 0.29, 0.11, 0.25 and 0.54. While none individually are 

significant, taken as a group they provide some evidence for improvement. However all 

of this improvement can be put down to the gains made by the simpler Model 2a. (The p 

values for the improvement of Model 3 over 2a are 0.52, 0.77, 0.30, 0.20, and 0.93, 

p for 

Ho: hi=hv 

0.296 

0.006 

0.016 

0.759 

0.008 

R2 

0.45 

0.45 

0.44 

0.37 

0.38 

hi 

19.4 

27.4 

31.1 

10.0 

21.2 

se(hi) 

8.6 

8.2 

8.6 

8.0 

7.1 

h v 

7.2 

-3.6 

3.6 

13.2 

-5.3 

se(hv) 

5.1 

5.0 

4.8 

4.9 

4.9 



which show no tendency towards significance). However not a great deal is lost by 

using Model 3 in place of Model 2. The adjusted R2 value, which adjusts R2 making 

allowances for the number of parameters in the model, is generally slightly higher for 

Model 3. 

Summary: The above results suggest that based on the results in 1991 to 1995, while a 

common HA or separate HAS for interstate and Victorian teams is justified, further 

increasing the number of distinct HAS is not. Other groupings may be possible. For 

example it may be advantageous to remove Sydney from the group of interstate teams, as 

they are much less isolated than the others in the group. There may also be justification 

for singling out Victorian sides such as Footscray, whose calculated HAS appear to 

confirm their long held reputation for a large HA. Of course, one way of deciding 

possible candidates for groupings is to fit a model with unique HAS for each team and 

further investigate their similarities and differences. For this reason alone it is worth 

persevering with Model 3. 

2.11. Conclusion 

The AFL competition is not balanced with respect to quality of opposition nor HA. The 

added complication of ground sharing makes it difficult to calculate team ratings and HA. 

All measures of HA vary greatly from year to year. Over the period 1980 to 1995 the 

team with a perceived HA won approximately 59% of the matches. This is made up of 

two distinct periods. Prior to 1987 the home win percentage was 56%, but this increased 

to 60% after the introduction of new interstate teams in 1987. However a better measure 

is the average winning margin of the home team, which was just short of 10 points. 

Although this is not adjusted for ability of opposition, it gives similar yearly values to 

fitting a regression model with a common HA. Quality of opposition can also be allowed 

for by looking at the paired HA, but several years data is necessary to obtain reasonable 

averages. These clearly show an isolation factor, with virtually all paired HAS over 40 

points involving Adelaide, Brisbane or West Coast. There are various methods for 

extracting individual HAS from the paired values, but care must be taken to allow for a 

spurious HA caused by the HA of the opposition. However when this is done an 

ordering of the clubs by HA clearly shows an isolation effect. West Coast, Adelaide, 

Brisbane and Fremantle head the table with HAS over 20 points. Melbourne, 

Collingwood, Richmond, Hawthorn and Nth Melbourne, all inner city Melbourne clubs, 

bring up the rear. Over the 16 years, Nth Melbourne had a negative HA (-2 points). 

Regression analysis was used to calculate individual HAS for each year. Detailed 



analysis of these showed that the team effect was highly significant. There is strong 

evidence that this is due to the interstate teams having a different HA to the others. There 

was also evidence for MCG teams and teams playing for the first season on a new 

ground having a lower than average HA. By investigating models of varying 

complexity, it is clearly shown that the use of models more detailed than those 

incorporating only a common HA is justified. While unique HAS for all clubs may not be 

necessary, in the AFL competition they are at least as accurate as using a common HA. 

The optimum appears to be somewhere in between, with perhaps a different HA for 

interstate teams from the others. 

The analysis has clearly shown that different clubs have different HAS. This allows an 

investigation of the effects of differences in travel, crowd and familiarity factors. This 

could previously only be done by comparing competitions between different sports or 

grades. 



CHAPTER I11 

HOME GROUND ADVANTAGE OF INDIVIDUAL CLUBS 
IN ENGLISH SOCCER 

3.0. Abstract 

Least squares is used to fit a model to the individual match results in English football and 

produce a home ground advantage effect for each team in addition to a team rating. We 

show that for a balanced competition this is equivalent to a simple calculator method 

using only data from the final ladder. The existence of a spurious home advantage is 

discussed. Home advantages for all teams in the English Football league from 1981-82 

to 1990-91 are calculated, and some reasons for their differences investigated. A paired 

home advantage is defined and shown to be linearly related to the distance between club 

grounds. 

Key words: football statistics, home ground advantage, soccer, performance 

measures, least squares. 

3.1. Introduction 

The existence of a home advantage (HA) in most sports is now well documented. 

Courneya & Carron (1992) give a summary of the work done on HAS. They made the 

point that future research should be directed to the causes of HA rather than document its 

existence. However this requires the calculation of the HAS of individual clubs, so 

differences can be related to the playing characteristics of the clubs. Pollard (1986b) 

quantified HA (in a competition where each team plays an equal number of matches at 

home and away) as the number of games won by teams playing at home expressed as a 

percentage of all games played, with 50% indicating no HA. Although this method is 

acceptable when averages over a whole competition are taken, it is obviously inadequate 

when the performance of individual clubs is studied. Here a team may win more (or less) 

than 50% at home because it is a relatively strong (or weak) team. Snyder & Purdy 

(1985) show the limitations of this approach, when in looking at a universities basketball 

competition they found that division 2 teams won only 40% of their home matches 

against division 1 teams. This implies that the quality of opposition effect overshadowed 

the HA effect. Because the quality of teams differ, we must allow for differences in 

ability and measure HA by comparing a team's home and away performance (See also 

Harville & Smith (1994).) 



TABLE 3.1. End of season ladder for Division 1, 1986-87 

H, home; A, away; W, win; D, Draw; L, Loss; f, goals for; a, goals against; GD, goal difference;h, Home advantage; u, team rating. 

TEAM 

Everton 

Liverpool 

Tottenham Hotsp. 

Arsenal 

Norwich City 

Wimbledon 

Luton Town 

Nottingham Forest 

Watford 

Coventry City 

Manchester United 

Southampton 

Sheffield Wed 

Chelsea 

West Ham United 

Queens P. Rangers 

Newcastle United 

Oxford United 

Charlton Athletic 

Leicester City 

Manchester City 

Aston Villa 

Total 

HW HD HL Hf Ha HGD AW AD AL Af Aa AGD GD Pnts h u 

16 4 1 4 9  11 38 10 4 7 27 20 7 45 86 0.84 0.92 
15 3 3 43 16 27 8 5 8 29 26 3 30 77 0.49 0.76 
14 3 4 40 14 26 7 5 9 28 29 - 1 25 71 0.64 0.57 
12 5 4 31 12 19 8 5 8 27 23 4 23 70 0.04 0.82 
9 10 2 27 20 7 8 7  6 26 31 -5 2 68 -0.1 1 0.42 

11 5 5 32 22 10 8 4 9 25 28 -3 7 66 -0.06 0.5 1 
14 5 2 29 13 16 4 7 10 18 32 -14 2 66 0.79 -0.03 
12 8 1 36 14 22 6 3 12 28 37 -9 13 65 0.84 0.20 
12 5 4 38 20 18 6 4 11 29 34 -5 13 63 0.44 0.40 
14 4 3 35 17 18 3 8 10 15 28 -13 5 63 0.84 0.01 
13 3 5 38 18 20 1 11 9 14 27 - 13 7 56 0.94 0.01 
11 5 5 44 24 20 3 5 13 25 44 -19 1 52 1.24 -0.28 
9 7 5 39 24 15 4 6 11 19 35 -16 - 1 52 0.84 -0.12 
8 6 7 30 30 0 5 7 9 23 34 -1 1 -1 1 52 -0.16 0.15 

10 4 7 33 28 5 4 6 1 1  19 39 -20 - 15 52 0.54 -0.29 
9 7 5 31 27 4 4 4 1 3  17 37 -20 -16 50 0.49 -0.29 

10 4 7 33 29 4 2 7 1 2  14 36 -22 -18 47 0.59 -0.38 
8 8 5 30 25 5 3 5 1 3  14 44 -30 -25 46 1.04 -0.77 
7 7 7 26 22 4 4 4 1 3  19 33 -14 -10 44 0.19 -0.00 
9 7 5 39 24 15 2 2 17 15 52 -37 -22 42 1.89 -1.12 
8 6 7 28 24 4 0 9 12 8 33 -25 -2 1 39 0.74 -0.53 
7 7 7 25 25 0 1 5  15 20 54 -34 -34 36 0.99 -0.95 

297 -297 14.14 0.00 



Table 3.1 shows a typical ladder (division 1, 1986) as published for English soccer, with 

the addition of two extra columns to be explained later. Sports followers have long 

recognised the importance of a HA, and soccer tables have traditionally separated a 

team's home and away performance. At the bottom of the table, Aston Villa, under the 

definition of percentage of games or points scored at home, could be construed as having 

no HA. Counting a draw as 0.5 of a win, they have won exactly 10.5 or 50% of games 

at home and scored exactly 50% of the goals in their home matches. However, this is 

largely due to their low team ability relative to their opponents. The away matches can be 

used to allow for team ability, and we see that Aston Villa have won only 3.5 of their 

away matches and scored 34 fewer goals than their opponents. A supporter might say 

that over the season they enjoyed a 10.5-3.5=7 game and a 0-(-34)=34 goal HA. 

Virtually all teams, irrespective of ability, have a HA when measured in this way. 

However, we shall show that this includes the HA of all the other teams, and so 

overestimates the true individual HA effect. It is not generally appreciated that each team 

with a 'real' home ground advantage automatically gives each other team in the 

competition a 'spurious' or apparent HA. This is best demonstrated by a simple example 

which is given in Appendix 3.1. 

3.2. Modelling team ability and home advantage 

To estimate HA correctly we need to model for the ability of team. We use a model 

similar to that used by Stefani (1983, 1987), Stefani & Clarke (1992), and Clarke 

(1993b) that has proved successful in predicting match results. The winning margin wij 

in a match between team i and team j played at the home ground of team i is modelled as 

where ui is a measure of team i's ability, hi is a measure of team i's HA and eij is a zero 

mean random error. We assume that the ui and hi are constant throughout the season. 

The wij can be measured either in 'win margin' (1, 0 or -1 depending on whether the 

home team won, drew or lost) or goals margin. The second case is usually followed in 

prediction models, and that is the method we prefer here as it is more sensitive to HA. 

For example a team that wins 3-0 at home and wins 2-1 away shows no HA if win 

margins are used, but shows a 2 goal advantage if goal margins are used. 



This model, with the additional constraint that the ui (being relative) sum to zero, can be 

fitted to the individual match results with a standard regression package by using dummy 

variables for the us (1 if a team is home, -1 if the team is away and 0 for the other teams) 

and hs (1 for the home team and 0 for the others). In this case the REG procedure from 

SAS 6.08 gave the values for u and h shown in the last two columns of Table 3.1. The 

overall model was significant at the 0.0 1 % level, with R2 = 0.19. The low value of R2 

reflects the high variability in soccer, and for the other seasons analysed increased with 

the unevenness of the season. Each u had a standard error of 0.33 and the hs a standard 

error of 0.49. A Q-Q plot of the residuals indicated they were normally distributed, 

which was confirmed with a Shapiro-Wilk test of normality statistic of 0.99 (p=0.63). A 

plot of the residuals against predicted values showed no evidence of heteroskedasticity. 

Alternatively, the Lagrange multiplier technique can be used to derive the values of ui and 

hi that minimise the sums of the squares of the errors. This is shown in Appendix 3.2. 

Surprisingly, the equations derived only use simple arithmetic on information contained 

in the end of year ladder. Thus, provided that the draw is balanced, instead of using 

complicated regression procedures on the individual match results, ability and HA effects 

are easily found by using only a calculator and data obtained from the final ladder. 

The procedure is as follows. Given a season's results in an N team competition, where 

each team plays the other N-1 teams once at home and once away, we can obtain 

measures ui and hi that describe each team's level of performance on a neutral ground and 

their home ground advantage. 

(a) H = C hi = C HGDi I (N-1) is the total of all the individual teams' HAS, i.e. H is 

the total of the team's HGD column, divided by N-1. In the ladder of Table 3.1, H = 

297121 = 14.14. 

(b) For each team, the HA hi = (HGDi - AGDi - H) l(N-2), i.e. for each team, their 

HA is the difference in their home and away goal difference, less the total of all the 
teams' HAS, all divided by (N-2). For example for Everton hl= (38-7-14.14)120 = 

16.86120 = 0.84, and for Aston Villa h22 = {0 - (-34) -14.14}120 = 0.99. 

(c) For each team, the ability measure ui = {HGDi - (N-1) hi )IN. In Everton's case 

ul = (38-2 1x0.84)122 = 0.92, and for Aston Villa u22 = (0-21x0.99)/22 = -0.95. 

These equations could be explained quite simply to a layman by replacing each match 

result in the usual home and away grid with the expected or model result and using 

simple addition. This derivation is given in Appendix 3.3. 



The source of the spurious HA is now clearly shown in (b) above. The difference in a 
team's home and away performance is given by (N-2)hi + Chi. The difference is made 

up of one component due to that individual team's HA, and a second due to the total of all 

the teams' HAS. Thus, although a team does better at home than away, this may be due 

to the collective advantage enjoyed by the other teams. 

The final two columns of Table 3.1 show the results for 1986 division 1. Although all 

teams do better at home than away, the sum of the HAS of all teams is 14.14 goals. 

Teams with 14 goals or less difference in their home and away performance will 

consequently have a negative HA. For Norwich, Wimbledon and Chelsea their better 

home than away performances are spurious and due entirely to the HA of the other teams. 

The us have a range of about 2, so their difference has a range of about 4, whereas the hs 

have a range of about 1.4. This implies that in equation (3.1) ability is about three times 

more important than HA in determining goal difference. For the above ladder, the 

correlation between actual ladder position and the ladder position determined by ui + khi 

is best for k of about 0.5. As u affects a team's performance every match, and h only for 

half the matches, this is perhaps not unexpected. 

3.3. Data and results 

Data were collected for all English soccer matches from season 1981-82 to season 1990- 

91, comprising 920 teams and 20,306 matches. The Official Football Association 

Yearbook published by Penguin contains a summary of the previous year's match results 

and final ladders for each division. Individual results were entered and a computer 

program used to produce the end of year ladders, which were checked with those 

published. This often showed up about a 1% error rate in the actual match results (i.e. 

about three results per year per division were incorrectly reported). Results were checked 

with the newspapers if necessary until agreement with the ladder was obtained. All 

computing work was performed with SAS. 

The home teams won 9894 (48.7%) and drew another 5415 (26.7%) of their matches. 

Of the total 54,378 goals the home team scored 32,556 or 59.9%, which is very close to 

but just under the percentage of wins 48.7 + 0.5x26.7 = 62.1%. This may suggest that 

HA factors are slightly better at producing wins than larger margins. The proportion of 

wins, draws and losses was remarkably consistent across divisions, with a chi square 

test for independence of results and division producing a p  value of 0.949. 



However, our main interest here is in calculating individual HAS. Using the methods 

shown above, the HAS were calculated for all teams playing from 198 1-82 to 1990-91, 

and are given in Table 3.2. Table 3.2 is sorted in order of decreasing average HA, which 

is shown in the last column. By looking at the HAS of individual clubs we may discover 

the mechanism behind HA. 

3.4. Discussion 

The results show that a team's HA is quite variable from year to year and that in some 

years some teams have a negative HA. In fact 126 of 920 or about 14% are negative - in 

any one division in any year about 3 teams actually have a negative HA. Because of the 

inherent variation in soccer matches, an average over several years is necessary to obtain 

a reasonable measure of HA. 

On average the home ground advantage is worth just over 0.5 of a goal, and that is 

amazingly constant over the divisions (0.521, 0.529, 0.529, 0.533 for divisions 1 to 4). 

The general linear models framework was used to perform various analysis-of-variance 

(ANOVA) tests which indicated that the year is significant, division is not, and 

differences between the clubs were only borderline significant. For example a test on all 

the data, 920 values, gave for year effect p = 0.014, division effect p = 0.990 and club 

effect p = 0.085. The residuals passed the usual tests for normality, and the ~2 value 

for this model was 14% so there is a large variation in HA. The following is clear from 

these results. 

(a) There is no division effect. This is in contrast with the results of Pollard (1986b) and 

seems to negate crowd factor as a cause of HA. 

(b) There is a highly significant year effect. The HA is about 10% higher than average in 

1982, 1983 and 1985 seasons, and 10% lower in 1981, 1987 and 1989. 

(c) There is some evidence for a significant club effect, but this is not conclusive. 

Certainly the club effect is weaker than the year effect. 



TABLE 3.2. Home ground advantages for all teams in English soccer, 

198 1-82 to 1990-91, in order of decreasing average home advantage 

1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 
0.36 0.72 1.38 0.50 1.03 0.84 1.22 1.08 0.38 1.59 
0.43 0.76 0.79 0.93 1.52 0.86 1.14 0.75 0.58 0.73 

1.31 0.32 
0.31 0.20 -0.22 1.33 0.75 0.79 1.60 1.44 0.94 0.89 
1.31 0.81 -0.35 0.70 -0.03 1.18 0.54 1.63 1.18 1.00 
0.99 -0.26 1.06 0.94 0.96 1.39 0.75 0.26 0.83 0.94 
0.21 0.09 0.58 1.13 0.50 1.89 0.79 0.72 0.51 1.28 
0.49 0.65 0.23 1.18 0.70 0.84 0.60 1.06 1.55 0.39 
0.95 1.09 0.56 0.74 0.76 0.47 1.27 -0.55 1.08 1.27 
0.52 1.35 1.38 0.25 0.84 1.09 -0.23 0.68 0.81 
0.27 1.36 1.11 0.96 0.91 0.79 0.56 0.61 0.71 0.00 
0.91 0.74 1.11 1.19 0.43 0.33 1.13 0.93 0.20 0.27 
1.24 0.75 0.73 -0.02 1.35 1.24 -0.13 0.33 0.49 1.22 
0.56 0.86 0.83 0.05 0.29 0.77 1.04 1.59 0.06 1.14 
0.89 1.12 0.29 1.65 0.34 0.68 0.13 0.32 0.86 0.87 
1.41 0.84 0.43 1.38 1.25 0.49 0.71 0.11 -0.01 0.44 
0.43 1.26 1.29 0.47 1.20 -0.05 -0.19 0.68 1.58 0.32 
0.02 1.00 0.65 1.32 0.57 0.60 0.56 0.90 0.29 1.09 
0.44 1.00 1.08 0.38 0.76 0.79 0.89 0.81 0.42 0.37 
1.21 1.62 0.52 0.69 1.39 1.06 -0.18 0.91 -0.14 -0.27 
0.49 1.13 0.92 0.82 0.98 0.42 1.14 -0.16 0.52 0.46 

-0.04 -0.06 1.21 0.79 0.51 0.34 0.56 0.81 1.38 1.23 
0.52 1.50 1.15 0.39 0.51 0.54 0.70 0.84 0.06 0.44 
0.30 0.22 0.88 1.02 0.47 1.09 0.36 0.13 0.36 1.77 
0.81 -0.00 0.88 0.96 0.93 1.28 0.95 0.30 0.22 0.23 
0.39 1.35 0.93 0.34 1.34 0.50 0.27 1.13 0.08 0.14 
0.22 0.49 1.20 0.69 1.12 0.74 0.73 0.11 0.06 1.09 
0.64 0.95 1.36 0.49 0.56 0.44 0.41 0.90 0.33 0.32 
0.91 0.49 1.01 0.78 1.15 0.59 0.39 0.39 0.65 0.00 
1.11 -0.11 1.11 1.14 0.86 0.99 0.08 0.08 0.56 0.50 
1.26 1.44 1.26 0.49 0.61 0.19 0.50 0.56 0.16 -0.13 
0.48 1.03 1.02 0.34 0.57 0.19 0.73 0.21 0.25 1.41 
0.08 1.27 0.56 0.96 0.11 0.04 0.64 0.80 1.25 0.50 
0.13 1.29 0.97 0.59 0.02 0.13 0.54 1.18 0.04 1.23 
1.11 -0.16 0.61 0.55 1.62 0.47 0.50 -0.09 0.93 0.59 

-0.11 1.15 0.43 1.23 -0.00 0.94 0.34 0.67 0.88 0.56 
0.25 0.40 1.84 0.11 0.56 0.22 0.81 1.04 0.04 0.73 

-0.19 0.04 0.61 1.79 1.00 1.04 0.39 0.31 0.29 0.46 
0.54 0.91 0.88 0.14 1.43 1.01 0.23 -0.19 0.34 0.23 
0.08 0.36 1.06 0.20 0.70 0.41 1.14 0.89 0.81 -0.18 
0.44 0.65 0.68 0.58 0.90 0.54 0.39 -0.17 1.01 0.41 
0.69 0.05 0.63 0.58 0.15 0.49 0.98 0.67 0.92 0.23 
0.31 1.09 0.36 0.54 0.81 0.69 0.18 1.26 0.01 0.09 
0.13 0.36 0.29 0.56 0.48 0.38 0.55 0.98 0.90 0.68 
0.59 0.90 0.43 0.88 0.15 0.84 -0.29 -0.06 0.49 1.33 
1.04 0.35 0.96 -0.04 1.34 0.68 -0.14 0.48 0.15 0.41 
0.48 0.49 0.79 0.02 1.11 0.18 -0.01 0.91 0.45 0.77 
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49 
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76 
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Aver 

Wigan 
Hull 
Carnbr 
PVale 
Wrexh 
Psmth 
Heref 
Cryst 
Wolve 
Linco 
North 
Hudde 
Bradf 
Aston 
Readi 
Watfo 
Mansf 
Scarb 
Grims 
MancC 
NottC 
Peter 
Derby 
Norwi 
Swind 
NottF 
Tranm 
Totte 
WBA 
Newpo 
Donca 
Barns 
Bury 
Liver 
Sunde 
Chels 
Middl 
ShefW 
Fulha 
Brent 
Crewe 
Cardi 
Binni 
Darli 

TABLE 3.2. (Continued) 

1981 1982 1983 1984 1985 1986 1987 
0.24 0.75 -0.07 1.03 0.70 0.04 0.55 
0.57 -0.05 0.38 0.91 1.16 0.38 0.27 
0.25 0.58 0.52 0.46 0.86 0.39 0.65 
0.86 1.19 0.46 -0.72 0.65 0.91 0.31 

-0.02 -0.24 1.02 0.70 0.79 -0.12 0.95 
0.21 1.41 0.06 0.65 0.79 -0.05 0.81 
1.04 -0.09 0.26 -0.06 0.56 0.74 0.50 
0.21 0.67 0.15 0.15 1.56 0.50 0.13 

-0.14 1.24 -0.19 0.24 -0.19 0.99 0.89 
1.04 0.79 0.78 0.19 -0.43 -0.23 0.27 
0.54 1.04 0.52 0.59 0.25 0.72 
1.16 1.08 0.43 0.38 -0.25 0.54 0.27 
0.49 1.09 -0.34 -0.01 0.86 0.54 0.51 
0.16 0.54 0.29 -0.09 1.16 0.29 0.65 

-0.11 1.75 0.73 0.73 0.10 0.99 -0.92 
0.63 0.72 1.38 -0.63 0.16 0.74 0.18 
0.71 1.20 0.38 0.63 0.85 0.44 -0.13 
0.30 0.31 1.02 0.20 0.47 0.28 0.36 

0.86 
-0.09 1.24 0.76 0.59 0.66 0.09 -0.41 
0.54 0.60 0.61 0.79 -0.00 0.74 0.56 

-0.11 1.15 0.03 0.19 0.30 1.10 0.64 
1.02 0.44 1.47 0.11 0.97 -0.05 -0.28 
1.06 0.14 1.11 0.78 -0.16 0.49 0.18 
0.91 0.65 0.88 0.63 0.61 -0.11 0.18 
0.36 0.67 0.20 1.15 0.56 -0.22 0.51 

-0.21 0.15 0.88 0.63 -0.10 0.84 0.50 
-0.11 0.44 -0.07 1.29 -0.25 -0.09 1.22 
0.14 1.90 0.18 -0.52 0.50 0.64 0.39 
0.04 0.55 0.63 0.83 0.60 -0.01 0.60 
0.18 0.04 0.70 -0.04 0.12 0.47 1.13 
0.77 0.50 0.20 0.37 -0.43 0.97 0.50 
0.41 0.19 0.11 0.99 -0.19 -0.16 0.41 
0.98 0.17 -0.39 0.61 1.34 0.15 0.09 

-0.31 0.55 1.18 -0.62 1.20 0.49 0.44 
-0.11 0.60 0.78 -0.17 0.46 0.09 0.14 
0.11 0.79 0.61 0.38 -0.15 -0.16 1.23 
0.09 0.24 0.41 -0.11 0.11 0.28 0.79 
0.01 -0.26 0.51 0.48 0.25 0.84 -0.03 
0.36 0.14 0.06 0.19 0.26 -0.22 0.18 

-0.32 0.72 0.65 0.91 -0.52 0.24 0.14 
0.80 0.44 0.52 -0.03 0.47 -0.09 -0.14 

-0.19 0.86 0.46 -0.71 0.07 0.18 0.63 
0.39 0.40 0.08 -0.31 0.35 0.59 0.22 
0.25 -0.47 0.43 0.38 0.66 0.69 0.68 
0.18 -0.06 -0.12 0.43 0.38 -0.22 -0.09 
0.72 0.12 0.33 0.79 0.51 -0.06 0.23 
0.45 0.66 0.64 0.52 0.59 0.51 0.47 

1990 
0.83 
0.59 
1.05 
0.00 
0.59 
0.46 
0.69 
0.77 

-0.1 1 
0.41 
0.32 
0.59 
0.55 
0.46 
0.50 
0.68 

-0.59 
0.14 
0.59 
0.73 

-0.1 1 
0.09 
0.46 
0.28 
0.11 

-0.04 
0.89 
0.27 
0.78 
0.37 

0.18 
0.91 
0.23 
0.56 
0.50 
0.89 
0.37 
0.00 
0.68 

-0.27 
0.37 
0.14 

-0.27 
0.00 
0.09 

-0.33 
0.50 

Aver 
0.507 
0.494 
0.490 
0.488 
0.480 
0.479 
0.473 
0.469 
0.467 
0.463 
0.462 
0.460 
0.460 
0.460 
0.460 
0.459 
0.458 
0.458 
0.452 
0.443 
0.441 
0.430 
0.428 
0.421 
0.418 
0.416 
0.390 
0.389 
0.372 
0.371 
0.370 
0.359 
0.359 
0.358 
0.332 
0.329 
0.31 1 
0.296 
0.279 
0.279 
0.264 
0.262 
0.257 
0.256 
0.241 
0.236 
0.198 
0.528 



3.4.1 Special Clubs 

Pollard (1986b) singled out five clubs for special attention when looking at the effect of 

local conditions: Bristol Rovers and Halifax (small pitch), Manchester City and Carlisle 

(large pitch), Queen's Park Rangers (artificial turf). Pollard found that the points gained 

at home were not significantly different for these clubs. However, as we argued above, 

this would be affected greatly by the relative strengths of those clubs. Table 3.2 shows 

that most of them are in the top third - with ranks 9, 16,21, 37 and 68 in a table with 94 

values. A rank sum test gives R = 151 which has a p value of 0.076 which is some 

evidence that these teams have a higher-than-average HA. 

What can we conclude about the 13 London clubs - Millwall (ranked 1 I), Leyton Orient 

(14), Queen's Park Rangers (16), Charlton (30), West Ham (41), Arsenal (48), Crystal 

Palace (56), Watford (64), Tottenham (76), Chelsea (84), Fulham (86), Brentford (88) 

and Wimbledon (94)? Because of their proximity we might expect them to have low 

HAS, and there are four in the bottom 11 rankings. Again, a rank sum test gives R = 708 

with a p  value of 0.161. Since Queen's Park Rangers has already been singled out as 

having special properties that may give it a large HA, it might be argued that we should 

exclude it in this analysis. Doing this gives R = 692 which has a p value of 0.072. So 

again there is some evidence that the London clubs have a lower than average HA. 

Barnett & Hilditch (1993) looked specifically at the effect of artificial pitch on HA. Table 

3.2 confirms their findings of an artificial pitch effect. Queen's Park Rangers from 1981- 

82 to 1987-88, Luton from 1985-86 to 1989-90, Oldham from 1986-87 to 1990-91 and 

Preston from 1986-87 to 1990-91 all had artificial pitches. The 22 seasons played on an 

artificial pitch had a mean HA of 0.889, compared with 0.5 19 for the other 898 seasons - 

significant at the 0.1% level. As this may be due to a year or team effect, including type 

of pitch along with year, division and club in an ANOVA test showed that the type of 

pitch was significant at the 1% level ( p  = 0.0013). 

3.4.2 HA versus time in division 

A possible reason often advanced for HA is the home team's familiarity with the 'quirks' 

of their home ground. Alternatively we could argue that the visiting teams are unfamiliar 

with the home team's facility. If this was so we would expect the HA to be greatest 

when a team is new to the division. To test this the current length of time continuously in 

the division for all teams was calculated. The results were the reverse of that expected, 



with a small non significant positive correlation between HA and years in division. 

Perhaps when teams are new to the competition the opposition put effort into 

counteracting their peculiarities, but relax this effort after they (mistakenly) believe that 

they are familiar with the opposition. To make sure this was not due to a year effect, 

averages by year and continuous time in divisions were looked at and the results 

confirmed the finding. For 0 or 1 years in the division, most of the averages were below 

the yearly average, whereas for 2 to 3 years in the division, most of the averages were 

above the yearly averages. Contrary to expectation, the teams that are new or have been 

in the division for only one year do not appear to have higher-than-average HAS. 

3.5. Paired home advantage 

The arguments advanced earlier for going from a competition level to a club level can be 

extended one stage further. Just as the competition level HA is an average of the HAS of 

all the clubs, so an individual club's HA is an average of its paired HA with all the other 

clubs it plays. For example, suppose that the HA is due entirely to distance travelled. A 

particular club would travel a short distance to some clubs (with no HA) and a long 

distance to others (with a consequently large HA). As its HA is an average of these it 

would have an average HA and the effect of distance would be lost. Thus the HA of one 

club is really the average of all its paired HAS with the HAS of the other clubs removed. 

It includes matches with nearby clubs, far clubs etc and so to some extent averages out 

the effects (of distance, crowd etc). Can we obtain a more refined measure by looking at 

the paired HA? 

Stefani & Clarke (1992) state that the home ground advantage can be thought of as hg. 

For each pair of teams the difference in home and away matches - in our previous 

notation wij + wji which is equivalent to hi + hj - gives a measure of this for each year. 

Note that we need the actual match results for this - it cannot be calculated from the 

ladder. For our data, this gave 10153 match pairs, played between 2865 club pairs, with 

an average of 1.057 paired HA. This agrees with the previous estimate that a HA is 

worth about 0.5 of a goal, as the paired HA incorporates two individual HAS. However, 

the values are highly variable, ranging from -7 to +11. 

To investigate whether distance had an effect, the grid coordinates of the home ground of 

each club on a map were estimated and the straight line distance between each pair 

calculated. The correlation between distance and HA was 0.07 - this is very small but 

because of the great number of observations is highly significant with p = 0.0001. The 



low correlation is due to the high variation in the individual data, making it difficult to 

explain high proportions of the variation. Several averaging methods were tried to reduce 

the variation, and all showed a clear relationship between paired HA and distance. For 

example, by averaging the paired HAS for each of the 2865 club pairs the correlation 

between average paired HA and distance became 0.1 1. By restricting the analysis to the 

1303 pairs of teams which played each other for four seasons or more, the correlation 

increased to 0.14. The pairs of clubs were separated into groups in multiples of 50 miles 

apart and the average paired HA was calculated for each group. The results are shown in 

Figure 1 and clearly show increasing paired HA for increasing distance. To some extent 

this effect is reflected in Table 3.2. One referee pointed out that three clubs in the top ten, 

Plymouth, Exeter and Carlisle, are geographically isolated. 

0 50 100 150 200 250 300 350 400 
Distance apart (miles) 

Figure 3.1. Average paired HA (goals) versus distance apart of clubs. 

3.6. Winnoss home advantage 

In the above analysis we have used goal difference to measure a team's performance. 

However, the analysis can be repeated using win (or point) margins as the measure of 

performance. Although goal difference should be a more sensitive measure than wins, it 

may be that HA works to produce wins rather than large margins. Replacing a team's 

score by 1 for a win, 0.5 for a draw and 0 for a loss produces win margins of 1, 0 and 

-1. The analysis can be repeated exactly, but the measures obtained would now be in 

terms of win margins rather than goal margins. Alternatively, using 3, 1 and 0 points 



produces point margins of 3, 0 and -3, but this is only an exact multiple of the win or 

lose case. 

Using win margins produced similar results to the above, with a tendency to produce 

slightly more significant results. For example the overall average HA is 0.472, or nearly 

0.5 of a win. The ranks of the five clubs singled out for special characteristics by Pollard 

(1986b) now go to 4, 9, 11, 41 and 80 with a rank sum 145 now significant with 

p = 0.06. The ranks of the 12 London clubs (without Queen's Park Rangers) are 28, 

3 1, 34, 40, 47, 70, 72, 75, 81, 83, 91 and 93. This gives a rank total of 745 significant 

with p = 0.02. The fact that both these have moved in the direction indicating enhanced 

HA suggests that HA may have a greater effect on winning than on goal difference. Thus 

whatever it is that produces HA tends to operate more effectively in determining winners 

rather than just larger winning margins. 

3.7. Conclusion 

At a competition level, variations in percentage of home matches won may arise because 

of differences in team ability as well as variations in HA. To calculate HA at a club level, 

we need to take account of team ability, by looking at the difference in home and away 

performances. Least squares can be used on the match results to estimate team and HA 

effects. However, for a balanced competition such as English soccer, this is equivalent 

to simple calculation methods on the final ladder results. 

Using ten years' data we have calculated HA in terms of goal and win difference for all 

94 clubs in English soccer. These showed no division effects but significant year effects. 

There was some evidence that clubs with special facilities have significantly higher HA, 

and that London clubs have less-than-average HAS. There was no evidence that clubs 

new to a division have a higher HA. It also appeared that HA effects have more leverage 

on winning than on goal margins. 

Paired HA is a more sensitive measure of HA, but individual match results are needed for 

its calculation. A definite linear relationship exists between a pair of clubs' paired HA 

and their distance apart. 

Note: Some correspondence appeared following publication. See Bland & Bland 

(1996), Clarke & Norman (1996) and Longford (1997), Clarke & Norman (1997a). 



3.8. Commentary. English soccer 1991-92 to 1995-96 

The ease of applying these results via a spreadsheet is demonstrated by applying the 

methods to English soccer from 1991-2 to 1995-6. Final ladder results are more easily 

obtained than individual match results. In fact the final ladder results are archived on the 

internet for every year from 1887 onwards. These were copied and read into a Microsoft 

Excel spreadsheet. This spreadsheet was created using the same form as the archive, 

with the above formulas used to calculate two additional columns containing the ui and 

hi. It is only necessary to cut and paste a year's results from the archive into the Excel 

file to produce the us and hs. This was done for each division and year for 1990-91 to 

1995-6. The first year was used as a check against previous results. The columns for 

year, division, club, team rating and home advantage were then copied into a single 

spreadsheet and to SASIJMP for further analysis. The calculated HAS are incorporated 

into Table 3.7 which extends Table 3.2 to include the years through to 1995-96. The 

table is sorted in alphabetical order. 

In general the results as reported in this chapter for the years 8 1-82 to 90-9 1 are repeated 

for the years 1990-91 to 1995-6. The average HA was 0.43 goal per match. The yearly 

HAS ranged from -1.1 to 2.0 goals per match, with about 18% negative. However the 

average HA over 5 years ranged from -. 1 1 to 1.1. Analysis again shows that HA is not 

dependant on division, nor year. However the team effect is significant (p=.0386). Of 

the 10 clubs with the lowest HA, five are London clubs. Clearly the mean HA of 0.29 

for the 13 London clubs is significantly lower than the mean HA of 0.44 for the 8 1 non- 

London clubs. A surprising fact was the lack of consistency in the HAS from one year to 

the next. The correlations between HA from one year to the next are very small or even 

negative, while the correlation between the average HAS for the two periods was only 

0.15. This suggests that teams do not enjoy a large HA over many years, and that 

opponents may quickly counteract perceived HAS. This may also be due to the promotion 

and relegation system in English soccer. 



TABLE 3.3. Home gound advantages for all teams in English soccer, 1981-82 to 1995-96, in alphabetical order 

Team 
Aldershot 
Arsenal 
Aston Villa 
Barnet 
Barnsley 
BirminghamC. 
Blackburn R. 
Blackpool 
Boltonwand. 
Bournemouth 
Bradfordcity 
Brentford 
Brighton&HA 
Bristol City 
Bristol Rovers 
Burnley 
Bury 
CambridgeU. 
Cardiff City 
CarlisleUnited 
Charlton A. 
Chelsea 
Chester City 
Chesterfield 
Colchester U. 
Coventrycity 
Crewe Alex. 
Crystal Palace 
Darlington 
Derby County 
Doncaster R. 
Everton 

VI 
4 

81-82 82-83 83-84 84-85 85-86 86-87 87-88 88-89 89-90 90-91 91-92 92-93 93-94 94-95 95-96 
0.43 0.76 0.79 0.93 1.52 0.86 1.14 0.75 0.58 0.73 
0.24 0.75 -0.07 1.03 0.70 0.04 0.55 -0.61 1.60 0.83 0.67 -0.14 -0.56 -0.07 0.11 

-0.11 1.75 0.73 0.73 0.10 0.99 -0.92 0.61 0.21 0.50 0.87 0.61 0.39 0.08 0.44 
1.01 1.30 0.64 0.92 0.57 

0.41 0.19 0.11 0.99 -0.19 -0.16 0.41 0.49 0.42 0.91 0.18 0.56 -0.09 1.02 0.44 
0.39 0.40 0.08 -0.31 0.35 0.59 0.22 0.36 0.75 -0.27 0.49 0.29 0.13 0.64 1.03 
0.31 1.09 0.36 0.54 0.81 0.69 0.18 1.26 0.01 0.09 0.59 0.36 0.34 0.78 1.50 
0.48 1.03 1.02 0.34 0.57 0.19 0.73 0.21 0.25 1.41 1.71 0.92 0.42 0.23 0.16 
0.91 0.74 1.11 1.19 0.43 0.33 1.13 0.93 0.20 0.27 0.04 0.78 0.31 1.16 -0.39 
0.02 1.00 0.65 1.32 0.57 0.60 0.56 0.90 0.29 1.09 0.63 0.15 -0.22 0.14 1.07 
0.16 0.54 0.29 -0.09 1.16 0.29 0.65 0.36 0.79 0.46 -0.06 0.46 0.42 -0.36 0.84 

-0.32 0.72 0.65 0.91 -0.52 0.24 0.14 0.66 0.43 -0.27 0.63 0.15 -0.40 0.32 0.57 
0.64 0.95 1.36 0.49 0.56 0.44 0.41 0.90 0.33 0.32 0.41 0.37 0.64 0.45 -0.03 
0.22 0.49 1.20 0.69 1.12 0.74 0.73 0.11 0.06 1.09 0.82 0.65 0.41 0.21 0.25 
0.49 1.13 0.92 0.82 0.98 0.42 1.14 -0.16 0.52 0.46 0.96 -0.17 0.10 0.77 -0.30 
0.13 1.29 0.97 0.59 0.02 0.13 0.54 1.18 0.04 1.23 0.31 1.10 1.92 0.84 0.66 
0.98 0.17 -0.39 0.61 1.34 0.15 0.09 0.39 0.02 0.23 0.31 0.90 0.80 0.32 -0.15 
0.86 1.19 0.46 -0.72 0.65 0.91 0.31 0.82 0.40 0.00 0.09 0.15 0.05 0.82 0.39 

-0.19 0.86 0.46 -0.71 0.07 0.18 0.63 1.21 -0.07 0.14 0.46 0.30 0.64 0.32 0.80 
0.95 1.09 0.56 0.74 0.76 0.47 1.27 -0.55 1.08 1.27 0.51 0.50 0.10 -0.23 1.52 
1.26 1.44 1.26 0.49 0.61 0.19 0.50 0.56 0.16 -0.13 -0.54 0.15 0.86 0.52 -0.47 
0.11 0.79 0.61 0.38 -0.15 -0.16 1.23 -0.42 -0.18 0.89 0.17 0.31 0.99 0.08 0.27 
0.18 -0.06 -0.12 0.43 0.38 -0.22 -0.09 1.07 0.70 0.09 0.04 0.33 0.20 0.00 0.80 
0.13 0.36 0.29 0.56 0.48 0.38 0.55 0.98 0.90 0.68 -0.09 0.20 0.30 -0.08 0.88 
0.52 1.35 1.38 0.25 0.84 1.09 -0.23 0.68 0.81 1.25 0.20 -0.13 0.48 
0.59 0.90 0.43 0.88 0.15 0.84 -0.29 -0.06 0.49 1.33 0.32 -0.19 0.39 0.23 0.27 
0.80 0.44 0.52 -0.03 0.47 -0.09 -0.14 0.18 0.11 0.37 0.06 1.05 0.20 0.23 0.16 

-0.14 1.24 -0.19 0.24 -0.19 0.99 0.89 0.67 1.27 -0.11 -0.13 0.31 0.13 -0.42 -0.15 
0.25 -0.47 0.43 0.38 0.66 0.69 0.68 -0.46 0.00 0.26 -0.95 0.35 0.37 -0.43 
1.06 0.14 1.11 0.78 -0.16 0.49 0.18 0.11 0.21 0.28 -0.27 -0.40 0.95 0.66 1.08 
0.77 0.50 0.20 0.37 -0.43 0.97 0.50 0.73 -0.19 0.18 -0.64 -0.25 0.10 -0.38 0.62 
0.49 0.65 0.23 1.18 0.70 0.84 0.60 1.06 1.55 0.39 0.42 -0.54 0.34 0.68 0.16 

Aver ' 
0.849 
0.338 
0.465 
0.888 
0.379 
0.343 
0.594 
0.645 
0.609 
0.585 
0.394 
0.261 
0.549 
0.586 
0.539 
0.730 
0.385 
0.425 
0.340 
0.669 
0.457 
0.328 
0.249 
0.435 
0.653 
0.419 
0.289 
0.294 
0.126 
0.415 
0.203 
0.583 



TABLE 3.3 (continued). Home ground advantages for all teams in English soccer, 1981-82 to 1995-96, in alphabetical order 

Team 
Exeter City 
F~lham 
Gillingham 
GrimsbyTown 
HalifaxTown 
HartlepoolU. 
Hereford U. 
Huddersfield 
Hull City 
IpswichTown 
Leeds United 
LeicesterCity 
LeytonOrient 
Lincoln City 
Liverpool 
Luton Town 
Maidstone U. 
Manchester C. 
ManchesterU. 
Mansfield T. 
Middlesbrough 
Millwall 
Newcastle U. 
Newpo 
Northampton 
NorwichCity 
NottinghamF. 
NottsCounty 
Oldham Ath. 
Oxfordunited 
Peterborough 
PlymouthArg. 

Wl 
00 

81-82 82-83 83-84 84-85 85-86 86-87 87-88 88-89 89-90 90-91 91-92 92-93 93-94 94-95 95-96 
1.31 0.81 -0.35 0.70 -0.03 1.18 0.54 1.63 1.18 1.00 1.31 -0.22 1.01 0.17 0.16 
0.36 0.14 0.06 0.19 0.26 -0.22 0.18 0.57 0.56 0.68 0.44 -0.08 -0.18 0.97 1.03 
0.81 -0.00 0.88 0.96 0.93 1.28 0.95 0.30 0.22 0.23 1.21 0.80 0.40 1.07 0.71 

-0.09 1.24 0.76 0.59 0.66 0.09 -0.41 0.50 0.36 0.73 -0.04 0.15 0.13 0.71 0.44 
0.25 0.40 1.84 0.11 0.56 0.22 0.81 1.04 0.04 0.73 0.36 -0.75 
0.43 1.26 1.29 0.47 1.20 -0.05 -0.19 0.68 1.58 0.32 0.26 -0.08 0.51 0.97 1.03 
0.21 0.67 0.15 0.15 1.56 0.50 0.13 0.86 -0.32 0.77 0.86 0.65 0.70 0.72 0.39 
0.49 1.09 -0.34 -0.01 0.86 0.54 0.51 0.71 0.20 0.55 0.40 0.51 -0.27 0.41 1.21 
0.25 0.58 0.52 0.46 0.86 0.39 0.65 0.67 -0.53 1.05 -0.10 0.69 0.32 1.00 0.38 
0.69 0.05 0.63 0.58 0.15 0.49 0.98 0.67 0.92 0.23 0.46 0.41 -0.26 1.38 0.53 
0.99 -0.26 1.06 0.94 0.96 1.39 0.75 0.26 0.83 0.94 0.22 2.01 0.29 0.48 0.44 
0.21 0.09 0.58 1.13 0.50 1.89 0.79 0.72 0.51 1.28 0.77 0.88 0.22 0.38 -0.38 
0.56 0.86 0.83 0.05 0.29 0.77 1.04 1.59 0.06 1.14 0.63 1.37 1.23 0.91 1.07 
0.54 1.04 0.52 0.59 0.25 0.72 0.41 -0.23 0.32 -1.09 0.50 -0.10 0.82 0.85 

-0.31 0.55 1.18 -0.62 1.20 0.49 0.44 0.06 -0.23 0.56 0.92 1.41 0.49 0.63 1.16 
0.31 0.20 -0.22 1.33 0.75 0.79 1.60 1.44 0.94 0.89 1.97 0.10 0.81 0.02 0.35 

1.31 0.32 0.26 
0.54 0.60 0.61 0.79 -0.00 0.74 0.56 0.13 0.55 -0.11 0.72 -0.29 0.44 0.98 1.11 

-0.11 1.15 0.43 1.23 -0.00 0.94 0.34 0.67 0.88 0.56 0.17 0.16 0.19 0.83 0.39 
0.30 0.31 1.02 0.20 0.47 0.28 0.36 0.48 1.02 0.14 0.11 0.74 -0.10 0.12 -0.34 
0.09 0.24 0.41 -0.11 0.11 0.28 0.79 0.39 0.38 0.37 0.96 1.11 0.81 0.21 0.33 
0.27 1.36 1.11 0.96 0.91 0.79 0.56 0.61 0.71 0.00 -0.13 1.20 0.77 0.71 0.08 
0.91 0.49 1.01 0.78 1.15 0.59 0.39 0.39 0.65 0.00 1.09 0.92 1.34 1.13 1.11 
0.18 0.04 0.70 -0.04 0.12 0.47 1.13 
1.16 1.08 0.43 0.38 -0.25 0.54 0.27 0.48 -0.07 0.59 0.21 0.00 0.95 0.27 0.16 
0.91 0.65 0.88 0.63 0.61 -0.11 0.18 -0.17 0.49 0.11 0.47 0.86 -0.81 0.98 -0.38 

-0.21 0.15 0.88 0.63 -0.10 0.84 0.50 0.17 0.16 0.89 0.37 -0.29 -0.23 -0.12 1.05 
-0.11 1.15 0.03 0.19 0.30 1.10 0.64 0.30 0.61 0.09 0.17 1.24 1.18 0.21 0.29 
-0.04 -0.06 1.21 0.79 0.51 0.34 0.56 0.81 1.38 1.23 0.77 1.31 0.09 0.61 0.62 
-0.19 0.04 0.61 1.79 1.00 1.04 0.39 0.31 0.29 0.46 0.68 0.33 0.41 0.05 1.25 
1.02 0.44 1.47 0.11 0.97 -0.05 -0.28 0.13 -0.01 0.46 0.76 0.20 0.81 0.00 0.97 
0.36 0.72 1.38 0.50 1.03 0.84 1.22 1.08 0.38 1.59 0.55 0.60 -0.13 0.05 0.62 

Aver 
0.693 
0.331 
0.717 
0.388 
0.468 
0.645 
0.533 
0.457 
0.479 
0.527 
0.753 
0.638 
0.827 
0.367 
0.529 
0.752 
0.630 
0.491 
0.522 
0.341 
0.425 
0.661 
0.797 
0.37 1 
0.413 
0.353 
0.313 
0.493 
0.675 
0.564 
0.467 
0.719 





Appendix 3.1. Spurious and real home ground advantage 

Consider three teams, A, B and C. Suppose that A is better than B which is better than 

C, and there are no home ground advantages. Suppose that both home and away A beats 

B 2- 1 and C 3- 1, whereas B beats C 2- 1. Final results would be as in Table 3.4 with the 

final ladder as in Table 3.5. Obviously each team has the same home performance as 

away both in terms of wins and goals. 

TABLE 3.4. Final results 

TABLE 3.5. Final ladder 

Home 

team 

A 

B 

C 

However, we now give C a 2 goal home ground advantage so that C will perform 2 goals 

better at home than anywhere else. Thus at home it will draw against A and beat B 3-2. 

The results and end-of-year ladder are now as in Tables 3.6 and 3.7 respectively. The 

final ladder shows that, even though only C has a HA, all teams had better results at 

home than away, both in terms of wins and goal difference. 

A 'naive' analysis of goal difference would incorrectly conclude that each team had a 

home ground advantage - A and B performing better at home than away over the season 

by a total of 2 goals, whereas C performed better by a total of 4 goals. 

Away team 

A 
- 

1-2 

1-3 

B 

2- 1 
- 

1-2 

C 

3- 1 

2- 1 
- 



TABLE 3.6. Final results when C has a 2-goal HA 

TABLE 3.7. Final ladder when C has a 2-goal HA 

Home 

team 

A 

B 

C 

Away team 

A 
- 

1-2 

3-3 

B 

2- 1 
- 

3 -2 

C 

3- 1 

2- 1 
- 



Appendix 3.2. Derivation of formula for calculation of home advantage 

and team performance by using least squares 

Let wij be the winning margin for home team i against away team j, (negative if loss). 

For N teams, this gives an N x N matrix with no diagonals. Adding across a row gives 

the home goal difference HGD, whereas adding down a column gives the negative of 

away goal difference AGD, 
j=N i=N 

i.e. for team I HGDz = CWU, AGDI =-  CW~Z 
j= 1 ('j#Z) i= 1 (i#Z) 

Thus since we are merely summing all the wg in a different order 

If ui is a measure of team ability, rating or skill level etc. of team i and hi is the home 

ground advantage of team i, and eij is random error, then as before in equation (3.1) we 

model the winning margin by 

Since only differences of the ui are used, they are relative, and we make the arbitrary 
i=N 

restriction that C U ~  = 0. So minimising the sums of squares of the errors subject to 
i= 1 

this condition, we have using the usual Lagrange multiplier expression. 

i=N j=N i=N 
Minimise S =  x ( w i j - u i + u j - h i ) 2  + h C u i  

i= 1 j= 1 ('j#i) i= 1 

In the normal manner, partial differentiating with respect to uz, I = 1 to N, hz, I = 1 to N, 

and h we get 2N + 1 equations. 



j=N j=N 
Expanding (3.3) gives x w  Ij = (N- 1 )  UI  + (N- I )  h~ - C u j  

j= 1 ('#I) j= 1 (j#I) 

So adding for I = 1 to N,  

HGD = (N-1) H ( 3 . 6 )  

i=N 
where H = hi is the total of all the individual team's home ground advantages. 

i= 1 

From (3.2),  substituting (3 .3)  eliminates the first summation term, so 

= 0 from (3.6) 



So h = 0 and (3.7) becomes 

AGDI = - H + h z  + N U ]  

So subtracting (3.8) from (3.5) 

HGDI-AGDI = N u z + ( N - l ) h ~ + H - h l - N u ]  

HGDz - AGDI = H + (N-2) h~ 

Thus H i s  calculated from (3.6), hi from (3.9) and ui from (3.5). 



Appendix 3.3. Derivation of formula for calculation of home advantage 

and team performance from final ladder using simple explanation 

As before we model the winning margin by 

wij = ui - uj + hi 

The error term is neglected for simplicity. It could be included, and discarded later under 

the assumption that it sums to zero. 

Adding across row i gives the home ground performance of team i as 

j=N j=N 
HGDi = C w i j  = C ( U i -  U j +  h i ) ,  

j= 1 (jgi) j= 1 (j#i) 

Now as the ui are relative, and it is only the difference that matters, we can require that 

they sum to zero. 

HGDi =  NU^ + (N-1) hi as in (3.5) from Appendix 3.2. 

If we sum all the home performances for the whole competition we obtain 

- - .  
HGDi   NU^ + (N-1)h i )  = (N-1) h i  

i= 1 i= 1 i= 1 

= (N-1) H as in (3.6) from Appendix 2 

In a similar manner, a team's away performance is obtained by adding up the negatives of 

a column. For column j we have 

AGDj = C - w i j  = ( -u i  + u j  - h i  ) 
i= 1 (i#j) i= 1 (i#j) 



= Nuj - H + hj as in (3.8) from Appendix 3.2. 

The difference between home and away performance for any team now becomes 

= H + (N-2) hi as in (3.9) from Appendix 3.2. 
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COMPUTER FORECASTING OF AUSTRALIAN RULES FOOTBALL  
FOR A DAILY NEWSPAPER 

 
 
4.0.  Abstract 
 
An exponential smoothing technique operating on the margins of victory was used to 
predict the results of Australian rules football matches for a Melbourne daily newspaper 
from 1981-86 and again for a competitor in 1991-92.  An initial 'quick and dirty' 
program used only a factor for team ability and a common home ground advantage to 
predict winning margins.  Probabilities of winning were accumulated to predict a final 
ladder, with a simulation to predict chances of teams finishing in any position.  Changes 
to the competition forced a more complicated approach, and the current version uses 
several parameters which allow for ability, team/ground interaction, team interaction, 
and a tendency for team ability to regress towards the mean between seasons.  A power 
method is used to place greater weight on the errors in closer matches, and errors across 
the win-lose boundary.  While simple methods were used originally, the Hooke and 
Jeeves method was used in optimising the parameters of the current model.  Both the 
original model and the improved version performed at the level of expert tipsters. 
 
 Key words:  sports, forecasting 
 
4.1.  Introduction 
 
The major winter sport of the southern states of Australia is Australian rules football, 
played between teams of 18 players on oval grounds (the same grounds used for cricket 
during the summer).  A match is played for four quarters, each of 25 minutes duration 
plus about five minutes of extra time.  Players can run with the rugby shaped ball, but it 
is moved forward more quickly by kicking or punching it to a team-mate, and with no 
off-side rule, the game is reasonably fast.  The scoring region consists of four upright 
posts.  Kicking the ball between the two centre posts scores a goal worth 6 points, while 
the region between either centre post and the corresponding outside post scores a 
'behind' worth 1 point.  Draws are rare; a typical score might be 18 goals 12 behinds, 
120 points, to 12 goals 15 behinds, 87 points, for a winning margin of 33 points.  In 
1981 the major competition in Australia was organised by the Victorian Football 
League (VFL), in which 12 Melbourne based clubs played for 22 home and away 
rounds with a final series of six matches between the top five teams.   
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In common with most team sports, Australian rules football uses a ladder which 
accumulates points for winning matches to rank the individual teams throughout the 
year.  Such methods, in which the total number of points never diminishes, have limited 
use for prediction, as no account is taken of the ability of the opponent, nor of how 
recently wins occurred.  In adjustive methods, the level of performance above or below 
that predicted is used to adjust the current rating up or down.  Harville (1980), Stefani 
(1977, 1980, 1987), and Stefani & Clarke (1992) give examples of adjustive least 
square ratings methods applied to soccer, American football and Australian rules 
football.  In 1981, it was decided to predict VFL results using an adjustive scheme 
similar to the Elo system used by the World Chess Federation, where a simple 
exponential smoothing technique is used to adjust player ratings (Elo, 1978). 
 
4.2.  Initial program 
 
About two months before the start of the 1981 football season, work began on 
developing a computer prediction model for Australian rules football.  Because of the 
time constraints, a relatively simple method was used.  There are many factors which 
football followers believe affect performance - team ability, current form, the 
opposition, team personnel, home ground advantage, weather etc.  The initial program 
used only a rating for each team, and a common home ground advantage.  Thus, if team 
i played at home to team j, the predicted winning margin P for the home team i was  
 
 P = ui + h - uj  (4.1) 
 
where ui is the rating of team i, and incorporates team ability and current form, while h 
is a home ground advantage common to all teams.  A negative value of P implies a win 
of |P| for the away team.  While the published draw always specified a nominal home 
team (for the purposes, where necessary, of choice of rooms, colour of shorts etc) a few 
teams actually shared grounds, and one match each week was played on the league's 
own ground VFL park.  For these matches there was no home ground advantage and h  
was set to zero.  To update the ratings a simple exponential smoothing algorithm was 
used.  If the actual margin of the match was w points the prediction is in error by  
 
 e = w - P  (4.2) 
 
points and ui  is then increased by αe and uj decreased by αe, where α is the smoothing 
constant.  Thus, if the margin for the home team is greater than predicted, its rating 
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would be increased, and that of its opponent decreased, and vice versa.  In practice it 
was decided arbitrarily to limit this change to a maximum value - if the magnitude of 
the error was greater than 75 points it was reset to 75. 
 
In many so called computer ratings, the computer may not be necessary to calculate the 
ratings once the form of the algorithm is decided.  The above algorithm is so simple it 
can be performed on a hand calculator or even mentally.  However the computer is 
necessary in finding the values of the parameters that optimise performance.  In this 
case, we need some starting values for the ratings, and values for the smoothing 
constant and the common home ground advantage.  With little time to prepare the 
program, some short cuts were necessary.  As starting values for the ratings the 
premiership points (four times the number of wins) gained by each team the previous 
year were used.  A short program was written in BASIC to run through the 1980 results 
and calculate the number of correct winning predictions, using values of the smoothing 
constant, α, of 0.0 to 0.5 in steps of 0.05, and home ground advantage, h, of 0 to 10 
points in steps of 1.  While the integral values of the objective function allowed for 
some judgement in the final selection, the optimal values were a home ground 
advantage of 7 points with an α value of 0.15. 
 
With the parameter values decided, a cumulative relative frequency histogram of the 
absolute prediction errors was charted which allowed conversion of a predicted point 
margin into a probability of winning.  For example, if 24% of predictions are in error by 
more than 40 points, then a team predicted to win by a 40 point margin has a 12% 
chance of winning by more than 80 points and a 12% chance of not winning.  Thus, a 
predicted winning margin of 40 points translates to an 88% chance of winning.  In the 
resultant computer program a five section straight line approximation joining the points 
(0, 0), (5, 0.58), (15, 0.68), (40, 0.88), (65, 0.95), (�, 0.95) was used to convert margins 
to winning probabilities.  As the predicted probability of a team winning a match can 
also be interpreted as the expected number of matches that team will win on that day, a 
simple accumulation of actual wins in past matches and expected wins in future 
matches was used to produce a predicted final ladder.  Because the VFL use the 
'percentage' (100 times the ratio of the total points each team scores to the total points 
scored against it) to separate ties on the ladder, a separate smoothing of the points each 
team scored and had scored against it each week was used in conjunction with the 
margin prediction to produce a predicted score for each team in a match.  These were 
not printed out but accumulated to estimate the percentage at the end of the season. 
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Until 1991, when a sixth team was introduced, the top five teams at the end of the 
season played off in a final series.  Because of the structure of this series, there is a big 
advantage in finishing top at the end of the home and away matches.  In turn, second 
and third have a big advantage over fourth and fifth.  To estimate the chances of teams 
finishing the home and away series in any position a simulation was introduced.  For 
any unplayed matches, a uniform random number was generated.  This was used in the 
inverse of the margin distribution function to generate an actual winning margin for the 
match.  As before, the wins could now be accumulated to obtain the final ladder.  Thus, 
in the ladder prediction we accumulated the probability of winning each match, whereas 
in the simulation we replaced this with a 0 or 1 depending on a random number.  This 
was repeated for 1000 years to estimate the probabilities of teams finishing in any 
ladder position.  Once the final series began, a separate program used the ratings from 
the prediction program to calculate win probabilities for all possible matches in the 
final series, which it then used to evaluate the probabilities of a range of final series 
outcomes.   
 
All the analysis was performed on a FACOM mainframe and the final program 
consisted of about 600 lines of BASIC.  Upon completion, the results of the program 
were offered to a Melbourne daily newspaper under a consulting agreement, and so 
began a six-year association.  The computer's predicted winners and margins were 
published each week, and the final ladder predictions a couple of times each season.   
 
Surprisingly, in view of the quick and dirty development of the program, it performed 
quite well in its first year.  Clarke (1981) showed that with 99 correct winners from 132 
matches its 75% correct placed it equal 22nd out of 56 tipsters.  It averaged 26 points in 
error,  predicted 71% of matches within 36 points, and for each round after the 12th 
round it predicted at least 10 out of 12 teams to finish within one place of their actual 
finishing position. 
 
Some of the experiences of this period are discussed in Clarke (1988c).  Minor 
adjustments to the printout were necessary to allow for the readership's level of 
expertise.  These ranged from referring to probabilities as percentage chances to 
actually suppressing information from the printout.  The original printout showed for 
each team the expected result (win or loss) for each of the remaining matches, in 
addition to the expected number of wins for the remainder of the season.  This often 
resulted in seemingly contradictory material.  For example, a team's predicted results 
would be shown as WWWW if it was rated a 0.75 chance to win each of its remaining 



 71

four matches, whereas the final ladder prediction would show it was expected to win 
only three (4x0.75) of its last four matches.  The immediacy and nature of the forecasts 
also meant the predictions were often judged harshly.  The margin prediction is 
technically a line which divides the possible margins into two equally likely regions.  
Thus, a margin prediction of 40 points implies the team is just as likely to win by more 
than 40 as it is to win by less than 40 or lose.  The general public consider it as the 
actual margin the computer is predicting will occur, so when the result is a win by 80 
points they consider the computer has performed badly.  If the above team loses, the 
computer is considered to be completely wrong, whereas in fact it would have 
estimated the team's chance of losing as 12%.  Unfortunately, in six years the predicted 
probabilities of winning were never published, whereas the margins, which are rarely 
correct, were always published.  At the end of the season, the final judgement by the 
public of the computer's performance would be the number of correct winners for the 
season.  However, predicting 132 matches with roughly a 75% success rate results in a 
high variability in the number of correct winners.  Success by the public's usual 
measure owed as much to good fortune as to good forecasting.  However, the program 
continued to perform so well that in spite of the simple nature of the model, it was five 
years before other factors forced a rethink of its development. 
 
4.3.  Second program 
 
In 1986 the computer program was reorganised.  The VFL over the previous few years 
had been modernising their draw to maximise crowds.  Previously, all matches were 
played on a Saturday.  With the introduction of a team from outside Victoria, the league 
began a move towards Sunday matches, Friday night matches, splitting rounds over 
long weekends etc.  A round-by-round program was no longer appropriate as it often 
meant providing predictions half way through a round that were based on out of date 
information.  In addition, the league was making greater use of its large capacity 
grounds by ground sharing schemes and even shifting popular matches after the draw 
was published.  Not only was an individual home ground advantage required, but also a 
measure of how teams performed on grounds other than their home ground became 
more important.   
 
It was decided to change the program from a round-by-round prediction to match-by-
match.  At the same time the prediction equation and updating equation were changed 
and re-optimised to take into account the above and other factors.   
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The prediction equation used, if team i played team j at ground k, became 
 
 P = ui + hik + Iij + uj - hjk  (4.3) 
 
where hik  is a ground measure of how team i performs at ground k, and Iij  is a measure 
of interaction between team i and team j.  Iij  was introduced as it was a widely held 
view of supporters that some teams always performed well (or badly) against some 
other teams irrespective of their relative ladder positions.   
 
The rating, ground and interaction measures were updated using the same method as 
before, but with different smoothing constants for each measure.  However, a radically 
different measure of the 'error' was chosen. 
 
In the previous formulation, a prediction of a 49 point win that resulted in an 81 point 
win was in error by 32 points.  The same error resulted from a 4 point prediction and a 
36 point win, or a 16 point predicted loss with a 16 point win.  However, the 
significance of the error increases with each case.  In the first example, a match 
predicted as one sided was just that, in the second a predicted close win became a 
comfortable one, and in the last a predicted loss was actually a win.  A measure of the 
error that reflected the increasing seriousness was needed.  It was decided to use a 
power function to reduce the relative errors of matches with large actual or predicted 
margins, and to increase the weighting across the 'win-loss' boundary of zero points.  
For example, the use of a square root power in the above would give errors of 9-7 = 2, 
6-2 = 4, and 4-(-4) = 8 respectively.  Thus, we have  
 
 e = Sgn(w).|w|x - Sgn(P).|P|x  (4.4) 
 
where x is the chosen power.   
 
One other factor needed to be taken into account.  At the beginning of each year, 
starting values for the ratings were needed.  This always caused some stress, as the 
chosen values virtually selected the margins in the opening round, and the process 
needed automating.  The practice had arisen of simply using the ratings at the end of the 
previous year, but shrinking them relative to the mean to allow for a tendency to regress 
towards the mean.  Thus, because of team changes, injuries and a host of other random 
effects we expect, on average, the best teams to get weaker, and the weak teams to get 
better.  Since the ratings averaged about 70, at the beginning of each year the following 
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equation would be applied. 
 
 Rating at start of year = 70+k(rating at end of previous year - 70) (4.5) 
 
The shrinkage factor, k, was around 0.8, but as it was chosen on subjective grounds it 
varied slightly from year to year.  An optimal value was needed. 
 
With the form of the method settled, but with six unknown parameters (three smoothing 
constants, the power x, the start of year shrinkage factor, and one other not detailed 
here) there was six years of past data on which to optimise the parameters.  By this time 
the program had been transferred to a PC and took about five minutes to run through six 
years' data for one set of parameters and evaluate the total sum of the absolute errors.  
With a possible grid of over 106 sets of parameter values, special hill climbing 
techniques were necessary to find the optimum values and the Hooke and Jeeves' 
method outlined in Walsh (1975) p 76 was used.  Running overnight on the PC, this 
gave optimal values to any desired accuracy.  The average absolute error in margin 
prediction was used as the objective function rather than the number of winners, as it 
was more sensitive to small changes in the parameter values.  It was assumed that good 
predictions of winners would follow from accurate margin predictions.  In addition, 
after trying several alternatives, the government had finally settled on a legal gambling 
system for football that involved selecting the correct winning margin band, so accurate 
margins had become relatively more important to the football public.   
 
Several parameters came out very close to the values that had previously been chosen.  
The power parameter was 0.75, the main smoothing value was 0.2, with a much smaller 
value for the ground factor.  The interaction parameter of zero suggested that supporters 
were misled in their belief in an interaction effect, and the end of season shrinkage 
came out near the 0.8 that had previously been used.  The suggested values were 
implemented for the season 1986.  It was considered not worthwhile to spend time in 
developing better probability and end-of-season ladder predictions as these were rarely 
published.  The simulation was discarded as the results had never been published and it 
slowed the running on the PC considerably. 
 
Although the program again tipped more winners than the paper's major football writer, 
at the beginning of 1987 the Sports Editor decided to dispense with the computer tip 
and concentrate on human tipsters.  This suggests that the client probably judged the 
success of the project on different criteria from the public or the practitioner.  The 
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newspaper's interest in the publicity the computer tips created may overshadow the 
need for accurate forecasts.  In fact the major football writer of the paper was known for 
his sometimes outlandish predictions, which created huge public interest.  Although it is 
possible in an exponential smoothing forecast to select parameters that give 
conservative or controversial forecasts, this issue was never discussed with the client 
and the parameters were always chosen to optimise accuracy. 
 
The program was maintained in the vain hope of renewal in 1988 and 1989.  Then, at 
the beginning of 1991, one week before the start of the season, a request to supply tips 
to Melbourne's other daily paper was made.  By this time, the VFL in going national, 
had become the Australian Football League (AFL) and the competition had increased to 
15 teams including four from interstate.  The program was dusted off, minor alterations 
made to allow for 15 teams, 1990 data entered and run, and the 1991 draw entered.  
Although there was no time to perform any re-optimising, the league had introduced a 
pre-season knockout night series which could be used to test the program and allow the 
ratings to adjust to a suitable level.  The program predicted 12 out of 14 of these 
correctly, so the season was approached with some confidence. 
 
In fact the computer had an excellent year, beating all the paper's ten human tipsters 
with an average 70.3% correct.  For the first time a comparison of the program's margin 
tipping accuracy with humans was possible, as the now rival paper carried margin tips 
for some nine celebrities and 12 experts.  The average margin of error for the celebrities 
was 37.3 points, and for the experts 36.7 points, and only one of the celebrities and one 
of the experts had a lower average margin of error than the computer's 35.4 points.  
Clarke (1992a) has a detailed comparison of the computer's and the human tipsters' 
performances and also explores reasons why the computer performed better than 
humans.  Interestingly, tipsters performed worst for the team they knew most about - 
virtually all tipsters selected the teams they supported more often than the team won.  In 
tipping margins, most tipsters avoided margins close to zero, producing a distinctly bi-
modal distribution of forecasts, in contrast to the normal distribution of actual results.   
 
Although the computer performed better than human tipsters in 1991, one might ask 
why the new 'improved version' performed worse in terms of percentage of correct 
winners and average margin of error in 1991 than the original version in 1981?  The 
answer lies in the changing face of league football - one facet due to off-the-ground 
action by administrators, another due to changing tactics on the ground.  To increase 
crowds, the AFL have been attempting to make the competition more even.  In 



 75

particular, salary caps and drafting of players were introduced to try and reduce the gap 
between the weak and strong clubs.  Their success can be judged by the relative 
performance of the bottom sides in 1981 and 1991.  In 1981, the bottom four sides, in 
the main, only won matches against each other and, in fact the bottom two sides won 
one and two matches out of 22.  This made it easy to select matches in which these 
teams participated, and in fact the computer selected the bottom four teams correctly, 
21, 20, 19 and 19 times out of 22, or an average of 90%.  Because the top teams 
consistently beat the lower teams a team winning 13 matches out of 22 only finished 
seventh out of 12 teams.  By contrast, in 1991, the bottom two sides had three and four 
wins respectively, including victories over the top and third team.  The computer only 
managed to get the bottom four teams correct 19, 17, 12, and 15 times, an average of 
72%.  The evenness of the competition was illustrated by the fact that thirteen wins out 
of 22 matches was now enough to finish fifth out of 15 teams.  Because of the evenness 
of the competition, picking winners was much more difficult in 1991 than a decade 
earlier. 
 
Paradoxically, this evenness over the season between teams was accompanied by a one-
sidedness on the field in individual matches.  Over the decade, the way football was 
played had steadily changed.  Play had become much faster, and teams had become 
more attacking and less defensive.  This had resulted in larger scores and larger 
margins.  In 1981, the median winning margin was 31 points with an upper quartile of 
52.  By 1991 these had risen to 36 and 58.  At the upper end, in 1981 there were 11 
matches over the 75 point margin, while in 1991 there were 23 in this category (of 
these, 18 involved an interstate team, an effect not even present in 1981).  Margins were 
thus becoming more difficult to predict accurately.  The Australian rules football tipster 
is faced with a situation similar to Olympic athletes - as distances thrown or jumped 
increase, they need to find better methods and improve performance just to keep the 
same relative position.  Here, despite the new, more difficult circumstances, the 
revisions to the forecasting method have allowed the computer to perform better 
relative to human tipsters than before. 
 
However, even if the new formulation had showed no improvement over the old for 
questions they both answer, it is still worthwhile as it allows the computer to answer a 
new class of questions.  Home ground advantage is often discussed among football 
followers.  To maximise crowds, the league sometimes shifts popular matches to large 
capacity grounds.  This often causes uproar from the fans, due to a perceived loss of a 
home ground advantage.  Stefani & Clarke (1991) give details of individual home 
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ground advantage over a period of a decade.  The methods used there compare a team's 
home performance with their away performance against the same team.  In the AFL, 
where home and away matches are not balanced, this results in excluding many 
matches from the analysis.  There is also no attempt to measure a team's performance 
on grounds other than its home ground.  However, as a by-product of the computer tips, 
the new formulation gives the hik, a measure of a team's performance on all grounds.  
These team/ground effects are of interest to supporters, and can be used to indicate to 
administrators possible advantages and disadvantages in shifting matches, or in 
scheduling finals matches on certain grounds. 
 
4.4.  Possible applications 
 
One disappointment in the project has been that the final ladder predictions have 
received little publication, and the results of the computer simulation and finals 
program were never reported.  If the computer can match or out-perform humans in the 
relatively straight-forward task of selecting winners, it should perform even better when 
complications such as differing match schedules come into play.  However, there is 
little chance of testing this hypothesis as the publication of even the human predictions 
of these events is rare.  It seems that such predictions when made are only to promote 
discussion or controversy, rather than any real attempt to forecast the outcomes.  
However, with the introduction of betting on ladder positions such a model could be 
useful in assisting punters or bookmakers.  The drawing power of games depends on the 
closeness of the ladder position of the teams.  Probability estimates of the likely ladder 
positions of teams on the day of the matches could be used as input into computer or 
human estimates of crowds to assist in the forward planning of match requirements. 
 
Another interesting possibility is the use of the model to obtain more powerful tests of 
statistical hypothesis.  For example, in 1991 there was an odd number of teams, which 
required a bye to be introduced for the first time.  It was noticed that teams often lost 
the week after the bye - and the journalists quickly dubbed it the killer bye.  In fact 
serious consideration was given to introducing a 'bye effect' into the prediction 
equation.  However the teams that lost may have been playing better teams the week 
after the bye.  For example, Russel (1980) discusses the preparation of a draw to 
minimise carry-over effects, which arose from a football draw in which one team 
played another team's previous opponent 18 out of 21 weeks.  However, we could test 
for a bye carry-over effect by comparing how teams performed following the bye with 
the computer's prediction.  Because the prediction takes into account team strength, 
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ground advantage etc, a more sensitive test should result.  Similar methods could be 
used to quantify the effect of key players, weather, night performance etc.  Even if a 
formal test could not be derived, a simple non parametric argument could convince a 
supporter or administrator of the existence or absence of such effects. 
 
4.5.  Conclusions 
 
In terms of a consultancy project the study has proved quite successful.  Because the 
computer is predicting events only a few hours away, its performance is often judged 
harshly by supporters.  An objective analysis has shown the computer's performance in 
predicting the winner and margins is at least as good as the human expert.  However 
this forecasting project is rather unusual in that  the success of the project is probably 
judged by the client by the publicity generated rather than the accuracy of the forecasts.  
 
Australian rules football shares with other football codes the high degree of passion and 
subjectivity supporters bring to the game.  Most commentators have previous club 
affiliations, and it is difficult to obtain objective opinions on football matters.  Over 
several years, the relatively simple computer algorithm described has provided winners 
and margins with at least the accuracy of human experts.  In 1991, in addition to their 
major writer, the client newspaper had seven extra human tipsters and one computer tip.  
However, all the experts share much the same information.  Morrison & Schmittlein 
(1991), using the notion of equivalent number of independent experts developed by 
Clemen & Winkler (1985) show that ten experts whose forecasts show a correlation of 
0.6 are equivalent to only 1.56 independent forecasts.  The computer uses only the 
previous match results.  It does not read the papers all the tipsters read, does not hear 
the rumours all the experts hear, does not peruse the team selections as all the experts 
do.  As such, it is likely to be more independent than the experts, and the single 
computer tip may provide more extra information to followers than the many additional 
human experts.  Computer forecasts of sporting events provide an interesting, objective 
and useful alternative to the human expert. 
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4.6.  Commentary.  Current state of play 
 
Since publication of the above paper, the computer predictions have gone from strength 
to strength.  Publication continued in The Age up to 1995.  Midway through that season 
Channel 7 in Adelaide began broadcasting the tips each week on their current affairs 
program Today/Tonight,  This has continued through 1997.  In addition the Adelaide 
advertiser published the tips in 1996 as a celebrity tip in conjunction with their tipping 
competition.   
 
However the major change has occurred in Melbourne.  In 1996, because of the success 
in The Age the previous year, the tips were again invited back to the Sun.  Instead of 
the bare tips being published, they were accompanied by an explanatory write up 
highlighting particular aspects.  Also, for the first time the estimates of HA and 
probability of winning were published each week, as well as regular final ladder and 
simulation predictions.  The computer's predictions are used to contribute to the debate 
on other football topics, such as movement of grounds and the make up of finals.  This 
demonstrates an increasing awareness in the general public of the importance of such 
effects, and a desire for more quantitative information.  In 1997 the tips moved to The 
Australian Financial Review (a national paper), and the internet.  The computer has 
proved successful, both in terms of correct predictions and publicity generated.  It has 
made the transition from an interesting oddity to being seen as providing objective and 
accurate 'value added' information.   
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COMPUTER AND HUMAN TIPPING OF AFL FOOTBALL -  
A COMPARISON OF 1991 RESULTS 

 
 
5.0.  Abstract 
 
For over a decade the author has been involved in computer tipping of VFL and now 
AFL football.  Evidence suggests that the computer, although ignoring much 
information available to human tipsters, is at least as accurate.  This paper explores the 
difficulty of predicting, analyses the accuracy of the computer in 1991, compares the 
relative accuracy of human and computer tipping in 1991, and investigates some 
reasons for limiting human performance. 
 
5.1.  Introduction 
 
In 1981 The Sun News Pictorial began publishing the results of a computer tipping 
program written by the author.  This continued until 1986, when The Sun decided to 
concentrate on human tipsters.  Some details of this period are contained in Clarke 
(1981, 1988c).  In 1991 The Age published the now updated computer program tips for 
winners and margins along with the predictions of winners by several experts.  The Sun 
meanwhile published both the predicted winners and margins for 12 experts and 12 
celebrities.  This allows an opportunity to compare the accuracy of the computer with 
those of so called experts, and the general public. 
 
Details of computer methods for tipping football are contained in Clarke (1988a), 
Harville (1980), Stefani (1977, 1980, 1987), Stefani & Clarke (1992).  The program 
discussed here uses an exponential smoothing algorithm, to produce team ratings and 
team/ground interaction factors for each team.  Of relevance to the present paper is that 
the algorithm uses only the names of the teams playing, the ground the match is played 
on, and the previous final results of the matches.  It ignores all other data, many of 
which the average and expert follower believe is important.  The computer knows 
nothing of such things as team personnel (absence of key players), weather, time of day 
(e.g. night matches), previous team played (e.g. bye), time since last match, etc.  One 
would therefore expect the humans to out-perform the computer. 
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5.2.  Distribution of margins 
 

Before looking at how the computer has performed, it is worth looking at how 
difficult the task has become.  Figure 5.1 shows the home ground margins for home 
and away matches in 1991.  The distribution of scores is reasonably symmetric.   The 
mean home ground advantage for the (nominal) home teams is 8.3 points. Note the 
large spread of scores - standard deviation of over 50 points.   Stefani & Clarke 
(1991) show that prediction of winners in football has become more difficult in the 
latter half of the eighties.  In terms of margins this is even more apparent.  A 
comparison of 1980 and 1991 absolute margins is shown in Figure 5.2.  Clearly the 
proportion of large winning margins has increased.  Most percentiles have increased 
by 10 to 20%, with both the mean and median margins increasing by over seven 
points. 
 

-150 -100 -50 0 50 100 150

 
  Quantiles 

maximum 100.0%  131.00 
  90.0%   72.40 
quartile 75.0%   44.00 
median 50.0%    7.00 
quartile 25.0%  -27.50 
  10.0%  -52.00 
minimum 0.0% -157.00 

  Moments 
Mean    8.3697 
Std Dev   51.6123 
 

Figure 5.1.  Distribution of home team winning margins in 1991 
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   1980     1991 

0 20 40 60 80 100 120 140 160
0 20 40 60 80 100 120 140 160

 
Quantiles 
maximum 100.0%  152.00 maximum 100.0%  157.00 
  97.5%  116.70   97.5%  125.55 
  90.0%   77.00   90.0%   84.80 
quartile 75.0%   49.75 quartile 75.0%   58.00 
median 50.0%   29.00 median 50.0%   36.00 
quartile 25.0%   11.00 quartile 25.0%   15.00 
  10.0%    5.00   10.0%    6.00 
minimum 0.0%    0.00 minimum 0.0%    0.00 

 
Moments  
Mean   34.2500 Mean   41.2667 
Std Dev   29.4474 Std Dev   32.0021 
N  132.0000 N  165.0000 
 

Figure 5.2.  Comparison of absolute margins in 1980 and 1991 
 
Selecting matches with the greatest margins gives a possible reason for the change.  
The matches with the greatest winning margins (over 75 points) are shown in Table 
5.1.  Eighteen out of 21 of these matches involve an interstate team - an effect entirely 
absent when the author started tipping. (In addition, the round 21 match was actually 
played in Tasmania). 
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TABLE 5.1.  Matches resulting in a margin greater than 75 points 
 

 
Round 

Home 
team 

Away 
team 

 
Result 

 1 Adel Haw   86 
 1 WC Melb   79 
 2 Haw Syd   91 
 2 Fitz Melb -131 
 4 Bris Geel -102 
 6 Fitz Haw -157 
 7 Haw WC  -82 
 7 St.K Adel  131 
 8 Fitz Syd  -77 
 9 WC Fitz   99 
11 Geel Adel   84 
13 WC Foot  118 
13 Haw Bris   87 
14 Coll Syd   99 
15 Coll Adel  123 
15 Syd Melb  -83 
17 WC Coll   81 
19 Geel Bris  101 
20 Bris Coll -101 
21 Haw Fitz  126 
23 Carl Haw  -96 
23 St.K Bris  120 
24 Ess Haw  -80 

 
5.3.  Prediction accuracy 
 

5.3.1.  Winners 
 
In 1991 the computer correctly selected 116 winners out of 165 home and away 
matches, and five out of seven finals.  At just over 70% correct this is slightly better 
than the decade average for a computer tip reported in Stefani & Clarke (1991).  
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5.3.2.  Margins 
 
Figure 5.3 shows the relationship between the predicted and the actual margin.  The fit 
accounts for about 25% of the variation.  Given that the prediction takes account of 
team ability, current form and ground advantage there is still a large degree of 
unexplained or random variation.  Computer predictions, because they are predicting 
the expected score, will never have the variation shown by the actual values.  Figure 5.4 
demonstrates this, but also gives an idea of the spread of results for predictions in given 
ranges. 
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 Summary of Linear Fit 
Rsquare .2589047 
Root Mean Square Error 44.59554 
Mean of Response 8.357575 

 Parameter Estimates 
Term  Estimate Std Error t Ratio Prob>|t| 
Intercept  2.1448566 3.56804   0.60 0.5486 
Predicted margin  .89372157 .118433   7.55 0.0000 

 
Figure 5.3.  Actual margin versus predicted margin 

 
We now look at the distribution of errors, defined as the difference between forecast and 
actual home ground margin.  Figure 5.5 shows the distribution of errors.  Note that the mean 
error is still slightly negative although not significantly so, and the median error is -5.00.  
This implies that the HA is possibly not large enough - the computer may still be adjusting to 
interstate teams and their large HA.  The table shows the median absolute  error is 30, with a 
mean of 36.  Thus half the time the computer is less than five goals out. 
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Predicted home margin   Actual Home margin 

-80 -60 -40 -20 0 20 40 60 80 100

-150 -100 -50 0 50 100 150

 

-80 -60 -40 -20 0 20 40 60 80 100

-150 -100 -50 0 50 100 150

 

-80 -60 -40 -20 0 20 40 60 80 100

-150 -100 -50 0 50 100 150

 

-80 -60 -40 -20 0 20 40 60 80 100

-150 -100 -50 0 50 100 150

 
 

Figure 5.4.  Distribution of actual margins for ranges of predicted margins 
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  actual errors    absolute errors 

-100 -50 0 50 100 0 10 20 30 40 50 60 70 80 90 100 120

 
 
Quantiles 
maximum 100.0%  117.00 maximum 100.0%  124.00 
  90.0%   57.40   90.0%   73.40 
quartile 75.0%   29.00 quartile 75.0%   51.00 
median 50.0%   -5.00 median 50.0%   30.00 
quartile 25.0%  -30.50 quartile 25.0%   14.00 
  10.0%  -59.00   10.0%    6.00 
minimum 0.0% -124.00 minimum 0.0%    0.00 
 
Moments 
Mean   -1.4061  Mean   35.4424 
Std Dev   44.5691  Std Dev   26.9177 
N  165.0000  N  165.0000 
 

Figure 5.5.  Distribution of errors 
 

 
5.3.3.  Final ladder predictions 

 
Although not usually published, the computer also predicts in each round the final 
ladder at the end of the home and away season.  Given the intricacies of the draw, this 
is one area where the computer should have advantages over human tipsters.  
Unfortunately, expert predictions of final ladder position are usually only published at 
the beginning of the season.  Figure 5.6 shows the final ladder predictions before each 
of the 24 rounds.  The teams are in order of actual finishing position.  The computer 
clearly has more trouble with the middle of the ladder rather than the very top and 
bottom.  Defining a prediction to be close if within one of the true final position, the 
final row shows the steady improvement through the season.  After 4 rounds over half 
the teams are predicted closely, and by round 17 about 12 out of 15 teams are closely 
predicted. 
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Because ladder position can alter drastically due to just one game, it is also worth 
looking at predicted final premiership points.  Again, if we look at a close prediction as 
within four premiership points (one game), the final row shows that from round 16 
onwards the computer has closely predicted the final ladder position of almost all the 
teams. 
 
 
       | 
       | 
    15 +    s s s s f f f f f f f f f f f f f f f f f f f f B 
 P     | 
 o  14 +    R R f f B B B B B B B B B B B B B B B B B B B B f 
 s     | 
 i  13 +    f f R B R R s R R R R s s R s R R s s R R R R R R 
 t     | 
 i  12 +    B B B R s s R s s s s R R s R s s R R s s s s s s 
 o     | 
 n  11 +    G G F F F F F F F F F C C F F A F F c c F c A c c 
       | 
    10 +    F F G G S N N A A A C F F C C F A c F F A A c F F 
       | 
     9 +    S M S S N A S G G C G A A c A M c A A A c F F A A 
       | 
     8 +    A S A M A S A N c c A c c A M C M M C C C M C N N 
       | 
     7 +    W c E A c c c c N G c G N M c c C C M M N C N C C 
       | 
     6 +    M E M N G G G S C N N N G N N N N E N E E E M M E 
       | 
     5 +    c W c c M M C H S S S M M G G E E N E S M S E E M 
       | 
     4 +    E A N E C H M C M E M S H H H G G S S N S N S S S 
       | 
     3 +    N N W W E C E M H M E H S E E H H H H H H G G G G 
       | 
     2 +    C H C C W E H E E H H E E S S S S G G G G H H H H 
       | 
     1 +    H C H H H W W W W W W W W W W W W W W W W W W W W 
       | 
       ---+---------+---------+---------+---------+---------+-- 
 ROUND    0         5        10        15        20        25 
 
number >1   1   1 
position away 9 1 9 1 6 7 6 7 3 6 5 5 5 8 8 6 4 2 3 3 2 2 2 0 0 
 
number >1 1 1   1 1   1     
game away 0 1 9 1 0 9 0 9 5 6 3 6 5 5 7 3 4 4 1 2 1 1 0 0 0  
 
Chart symbol is the first letter of the team name 
 

Figure  5.6.  Predicted final position by round  
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5.4.  Comparison with human tipsters 
 
Table 5.2 shows the number of correct winners and percentage correct for all the 
tipsters in The Age and The Sun.  In some cases (such as leader of the Opposition) 
selections from different people have been combined.  Draws are counted as half 
correct.  For the home and away matches the computer correctly selected 116 winners 
out of 165 matches, a success rate of 70.3%.  Of The Age tipsters, the nearest to this 
was Ron Carter with 111 or 67.3%.  Only two of The Sun experts, and one of the 
celebrities beat the computer, with another two celebrities choosing the same number of 
winners.  In interpreting a table such as this, it should be borne in mind that in selecting 
165 matches, each with a probability of success of 0.7, the number of correct choices 
will have a standard deviation of about 6.  As the computer gives its own estimate pk of 
the probability of success for the prediction for match k, the mean and variance of the 
number correct over the season is ∑pk  = 121.7  and ∑pk(1-pk) . = 29.35, giving a 

standard deviation of 5.4.  Thus by the computer's own estimates it had an unlucky 
year.  (In fact the high value of  ∑pk  is probably an indication that the probability 

estimates need updating.  With the general increase in margins as discussed earlier, a 
predicted win of 20 points (say) implies a lesser chance of winning than it did 10 years 
ago.  Thus the computer is probably over estimating the chance of selected teams 
winning)1.  I suspect that differences between commentators in number of winners less 
than about five are probably insignificant.  Nevertheless, the general public don't see it 
this way, and it is better to be on top of the table than on the bottom.   
 
Table 5.2 also shows the total and average absolute errors of the margin predictions for 
The Sun tipsters.  Only one expert and one celebrity performed better than the 
computer.  (Although perhaps the computer is more intelligent than we give it credit 
for, and thought it politic to come in just behind the Prime Minister).   

                                                 
1  Commentary:  The algorithm has now been updated.  Figure 5.5 shows the prediction errors are 

approximately normal.  The computer keeps a record of the standard deviation of the prediction errors, 

which it then uses to estimate the chance of an incorrect result prediction.  Dowe et al (1996) give details 

of a probabilistic tipping competition, where the probability of winning is selected, and a Gaussian 

competition, where the mean and variance of the signed margin is selected.  The evaluation system they 

use could provide an alternative measure of the comparative accuracy of the computer's estimates. 



 

 

88

TABLE 5.2.  Accuracy of The Age and The Sun tipsters 
 

 
Tipster 

Number 
tipped 

Number 
correct 

Percentage 
correct 

Total 
deviation 

Average 
deviation 

Computer 165 116 70.3 5848 35.4 
Age experts      
Ron Carter 165 111 67.3   
Greg Baum 110  74 67.3   
Nick Johnson 76  51 67.1   
Gary Linnel 74 49.5 66.9   
Martin Blake 153 102 66.7   
Steve Linnel 102 67.5 66.2   
Len Johnson 156 103 66.0   
Penny Crisp 95 62.5 65.8   
Patrick Smithers 55 36 65.5   
Peter Schwab 7 3.5 50.0   
Sun Experts      
Geoff Poulter 158 115 72.8    * 5476 34.7   *
Ron Reed 158 109 69.0 5702 36.1 
Ron Barassi 165 117 70.9    * 5898 35.8 
Bruce Matthews 158 109 69.0 5611 35.5 
Niall/Pierce 165 113 68.5 6333 38.4 
Don Scott 165 111 67.3 6040 36.6 
Tony De Bolfo 165 110 66.7 6038 36.6 
Daryl Timms 165 109 66.1 6135 37.2 
Crackers Keenan 165 107 64.9 5941 36.0 
Michael Stevens 165 107 64.9 6170 37.4 
Lou Richards 165 103 62.4 6514 39.5 
Eva/Atkins/West. 158 101 61.2 5750 36.4 
Sun Celebrities      
Joan Kirner 165 118 71.5    * 5909 35.8 
Bob Hawke 165 116 70.3 5839 35.4   *
Wynne/Meldrum 165 116 70.3 5943 36.0 
David Johnston 165 113 68.5 6111 37.0 
John Hewson 165 112 67.9 6019 36.5 
Daryl Somers 165 111 67.3 6001 36.4 
Mary Delahunty 165 110 66.7 6223 37.3 
Steve Vizard 165 104 63.0 6455 39.1 
Brown/Kennett 165 98 59.4 6863 41.6 

*  Better performance than the computer 
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5.4.1.  Reasons for computer supremacy 
 
Figure 5.4 shows that the distribution of the computer margin prediction is roughly the 
same shape as that of the actual margins, with the same mean but a lesser variance.  
This is not true of many human tipsters, who often have a distinctly bi-modal 
distribution of predicted margins.  There appears to be an aversion to predicting close 
margins.  In addition, some tipsters tend to choose multiples of 10 or 6 points for the 
margins.  One reason the computer may perform better than experts is that it has no 
loyalties to particular teams.  While no data is available on the teams followed by many 
of the experts, there is evidence to suggest that tipsters are certainly influenced (to their 
detriment) by the teams they follow.  Figure 5.7 shows a graph of the number of times 
Lou Richards selected each team and the number of wins for each team.  Clearly Lou 
favours Collingwood, the team he barracks for.  This graph is typical of all the 
celebrities.  With the exception of Bob Hawke, all celebrities selected the team they 
followed more often than they won, the excess ranging from 5 to 9 wins. 
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Figure 5.7.  Lou Richards' predicted and actual number of wins for each team 
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It is well known that supporters look for any reason to convince themselves that their 
team will win next week.  Nevertheless it is interesting that football followers predict 
most poorly the performance of the team they know most about.  One reason humans 
may choose poorly is that they know too much information, and they overrate the 
importance of much of it.  The return of a player from absence due to injury, good 
training form, a perceived after effect of a bye, etc might also be given too much weight 
by experts.  However all the experts share much the same information.  Morrison & 
Schmittlein (1991), show that 10 experts whose forecasts show a correlation of 0.6 are 
equivalent to only 1.56 independent forecasts.  It would be interesting to look at the 
correlations between the margin tips of experts, to see if the tips of those with shared 
information (such as expert tipsters from The Sun), are more closely correlated within 
groups than between groups. 
 
5.5.  Conclusion 
 
An analysis has shown the computer's performance in predicting the winner and 
margins in 1991 was better than the average expert or football follower.  The computer 
uses only the previous match results and is not influenced by publicity surrounding 
particular events, nor club loyalties.  As such it is likely to be more independent than 
the experts, and the single computer tip may provide more extra information to 
followers than the many additional human experts.  Computer forecasts of sporting 
events provide an interesting, objective and useful alternative to the human expert. 
 
Acknowledgments:  Some of the data used in this report was collected and computerised 
by my students during an undergraduate project 'Football Tipping'.  My thanks to 
Cameron Howell, Brad Patterson, Gabriele Sorrentino, Andrew Moar, David Thomas 
and Graeme Wilson.   
 
5.6.  Commentary 
 
While no formal studies have been undertaken since 1991, the computer has generally 
remained in the upper half of the expert tipsters range.  In 1995 the computer was 
second with 127 winners out of all the expert tipsters in The Sun and The Age, and then 
selected eight out of nine finals correctly.  In 1996 it was again in the top few tipsters 
with 126 winners, and selected all nine finals correctly.  1997 proved a difficult year for 
all tipsters, with the computers 108 winners beating about a quarter of the expert 
tipsters.   
 



CHAPTER VI 

PREDICTIONS AND HOME ADVANTAGE FOR 
AUSTRALIAN RULES FOOTBALL 

6.0. Abstract 

In a previous paper, it was demonstrated that distinctly different prediction methods when 

applied to 2435 American college and professional football games resulted in essentially 

the same fraction of correct selections of the winning team and essentially the same 

average absolute error for predicting the margin of victory. These results are now 

extended to 1446 Australian rules football games. Two distinctly different prediction 

methods are applied. A least-squares method provides a set of ratings. The predicted 

margin of victory in the next contest is less than the rating difference, corrected for home 

ground advantage, while a 0.75 power method shrinks the ratings compared with those 

found by the least-squares technique and then performs predictions based on the rating 

difference and home-ground advantage. Both methods operate upon past margins of 

victory corrected for home advantage to obtain the ratings. It is shown that both methods 

perform similarly, based on the fraction of correct selections of the winning team and the 

average absolute error for predicting the margin of victory. That is, differing predictors 

using the same information tend to converge to a limiting level of accuracy. The least 

squares approach also provides estimates of the accuracy of each prediction. The home 

advantage is evaluated for all teams collectively and also for individual teams. The data 

permit comparisons with other sports in other countries. The home team appears to have 

an advantage (the visiting team has a disadvantage) due to three factors: the visiting team 

suffers from travel fatigue; crowd intimidation by the home team fans; lack of familiarity 

with the playing conditions. 

6.1. Introduction 

A variety of schemes exist to rank athletes or teams so as to predict the outcome of a 

subsequent competition and for seeding competitors in a tournament. These schemes are 

either accumulative or adaptive. An accumulative scheme results in the accumulation of 

points and rankings based on those points. The point total never diminishes and may be 

subject to some limiting process. Most soccer tables of standings are ranked with two or 

three points accruing for a win and one point for each draw. The World Cup of Skiing 

uses an accumulative system with provisions for limiting the total number of points. 



An adaptive scheme causes ratings to rise or fall as performance is above or below some 

predicted level. For example, the World Chess Federation uses the Elo system in which 

the rating difference between each competitor and the average opponent provides an 

estimate for the number of victories for each competitor. The competitor's rating changes 

as a function of the actual number of victories compared with that target. 

Adaptive schemes are also used to rate teams in a variety of sports and then to predict the 

outcome of the next competition. A few schemes use relatively large quantities of 

offensive and defensive statistics, although most schemes operate only on the margin of 

victory adjusted for home advantage (HA). The latter approach is especially efficient 

where a large number of teams are in competition or where a large number of games are 

. played. Stefani (1977, 1980, 1987) applied a least-squares (LS) rating scheme to 

American college football, American professional football and American college 

basketball. The method selected the correct winning team 70% of the time when applied 

to 10000 games over a 10 year period and tends to provide ratings whose differences 

consistently exceed the actual margin of victory of the next set of opponents. He shrank 

the rating differences to provide unbiased predictions. 

In addition to the LS approach, Stefani (1987) applied three other schemes: weighted LS 

with a shrinking factor, James-Stein (198 1) (which automatically shrinks predictions 

compared with LS) and another method (Harville's (1980)) that preshrinks ratings. The 

four methods were applied to a common set of 2435 American college and professional 

football games with virtually the same accuracy for selection of the correct winning team 

and nearly the same average absolute error for selection of the margin of victory. The 

conclusion was that the information content of the margin of victory adjusted for HA 

appeared to limit the accuracy of all four estimators with respect to the prediction of 

American college and professional football games. 

In order to extend the conclusion, a survey of other sports was performed and it was 

determined that a database was available for at least 10 seasons of Australian rules 

football, including 1446 games. It is therefore the intention of this paper to apply two 

different schemes to Australian rules football to determine whether the schemes also 

perform similarly while operating only on the margin of victory corrected for HA. One 

scheme (Stefani's) is the LS method that shrinks predictions compared with the rating 

difference, while the second method by Clarke (1981, 1988c) uses the 0.75 power of 

error to pre-shrink ratings compared with the LS so that each prediction depends on the 

actual rating difference. A by-product of both schemes is HA data that permit 



comparisons of Australian rules football with other sports. 

6.2. Australian rules football 

Australian rules football is a high scoring continuous-action game. There are 18 players 

on each side. The dimensions of the playing surface vary from ground to ground, but the 

shape is generally oval and longer than for soccer or rugby. There are no offside rules; 

hence, each player can quickly advance the ball down the field by carrying it himself or 

by kicking or punching the ball forward to a team mate. If the ball is kicked between the 

centre goalposts a six point 'goal' is scored and action returns to the centre of the ground. 

If the ball is kicked between a centre goalpost and one of the two outer goalposts, a one 

point 'behind' is scored and action resumes from the goal area. A game consists of four 

25 minute quarters, during which over 200 points are commonly scored. 

Major professional activity in Australia began in 1896 with the formation of the Victorian 

Football League (VFL), consisting originally of teams in the greater Melbourne area. 

Because one team moved to Sydney in 1982, and Brisbane and West Coast joined the 

VFL in 1987, the VFL has been renamed the Australian Football League. 

The season is divided into a 22 game home-away schedule followed by a five team, six 

game ladder play-off, culminating in the grand final game. There are currently 14 teams 

in the league. The 22 game home-away schedule does not result in an equal number of 

home away pairs because of the number of teams, ground sharing and the use of a neutral 

league ground. 

6.3. Modelling game results 

In the following, the index i represents some reference team, m represents the week of 

the season and j(m) represents the index of the opponent for team i during week m. The 

independent variables are i and m since j is dependent on the schedule and is completely 

determined by i and m. Primary interest focuses on data for the winning margin, the 

number of points scored by a team minus those scored by the opponent and on the HA. 

A model for the winning margin is 

where wij(,, represents the winning margin for team i against opponent j in week m, 



hi,,, is the HA for team i, P is the rating for team i using data including week m, u;,, 

is the similar rating for the opponent and ei(,, is a zero-mean random error. 

6.4. Home advantage 

A HA may be found so as to minimise the sum of the squared errors from equation (6.1) 

such that 

where there are N teams and K weeks have been completed. 

There are three possible generations of HAS: hi,,, can be interpreted as a single h for all 

teams, as a distinct hi for each team or as a distinct value for each combination of teams. 

Only the first two interpretations are used here. If a single value is to be found, then 
hV(,, is interpreted as + h if i plays at home, as -h if i plays away or as 0 if i and j play on 

a neutral ground or on a ground that both teams use as a home ground. 

6.5. Single h for all teams 

It follows that the LS value of a single h which minimises equation (6.2) for the M games 

played at home is 

L i  at home i at home _I 

In order to minimise equation (6.2) it is also necessary to select the team ratings, so that 

the calculation of team ratings and HA is coupled. The value of h can be uncoupled from 

the calculation of the team ratings by adopting a suboptimal approach in which the right- 

hand double summation in equation (6.3) is assumed to be zero. During a given week, 

some home teams contribute positive, negative and zero values to that summation. Over 

subsequent weeks, these teams shift location. Over subsequent seasons, or perhaps 

during the same season, most teams will play at home and away against each opponent. 

Over a large enough collection of games, it is reasonable to assume that the right-hand 

double summation in equation (6.3) is nearly zero. In that case, the calculation of h can 



proceed independently from any rating generator, so that h depends only on the average 

margin of victory by the home team. 

Table 6.1 contains HA data for seven types of competition, including Australian rules 

football. The data include the number of games, the fraction of games won by the home 

team, the fraction of draws, the home-win-minus-away-win fraction, the HA h expressed 

in score units (goals, points, etc.) per game, the total score per game and the total-score- 

to-home-advantage ratio R. The seven types of competition in Table 6.1 are organised by 

decreasing values of R. The home-win-minus-away-win fraction generally declines as R 

increases - an intuitive tendency. 

TABLE 6.1. Home advantage 

a HW, home win; AW, away win. 

b England, Germany, Italy, Norway, Spain and Switzerland. 

The data in Table 6.1 are an updated and expanded version of data collected in Stefani 

(1983, 1987). The three Europe Cups (Champions Cup, Cup Winners Cup and EUFA 

Cup) data for international club competition were collected from newspaper results during 

six seasons (1981-82 and 1985-86 through 1989-90). The six nation soccer data for club 

competition within each nation was collected from soccer tables of standings for England, 

Germany, Italy, Norway, Spain and Switzerland during two seasons (1980-81 and 

1981-82). Those six nations provide a reasonable cross-section of club competition 

within a given nation. Hockey data are from National Hockey League (USAICanada) 

results for four seasons (1975-76 through 1978-79) and were provided by Cleroux 

(Univ. of Montreal). American college and professional football data are for four 

seasons (1979-80 through 1982-83) taken from Stefani (1987). Australian rules football 



data are from Clarke's database of ten seasons (1980 through 1989). A total of 1446 

games were played (1386 during the home-away schedules and 60 during the play-offs) 

of which 1109 featured a home ground. Finally, the baseball data are for the 1982 

American League and National League (USA) season from the 1983 league yearbooks. 

Authors such as Pollard (1986b) suggest a number of causes of HA (visiting team 

disadvantage). These causes may be placed into three groups: physiological factors such 

as the travel fatigue of the visiting team; psychological factors such as crowd intimidation 

by the home team fans; tactical factors such as lack of familiarity of the visiting team with 

the playing conditions. Each competition in Table 6.1 has a specific absolute and relative 

mix of the three factors. Home advantages can be seen to rise or fall as the absolute 

amount of the factors change or as one or more factors are absent. 

For example, competition between European club soccer teams from different nations for 

the three European cups appears to have the largest HA. One goal in three is attributable 

to the HA. The home team wins 40.4% more games than it loses. These cup matches 

are generally scheduled at mid-week, with league competitions also being played during 

the weekends. Travel is therefore exceptionally fatiguing. It is an understatement that 

interest is high and that crowd intimidation is a psychological likelihood given the tragic 

loss of life that has accompanied European cup competition. Therefore, the greatest 

absolute incidence of fatigue and crowd intimidation correlates with the largest HA, while 

a lower amount of those factors for competition within each of the six European nations 

generates a lower HA (travel is of shorter duration, and followers are of the same nation, 

hence reducing the absolute amount of crowd intimidation in general, while recognising a 

few rather intense local rivalries). One goal in six is attributable to the HA and the home 

team wins 25.1 % more games than it loses. 

The lowest HA in Table 6.1 occurs for professional baseball games played in the USA. 

Each team plays 81 games at home and 8 1 games away. Travel expenses are reduced by 

playing three or four consecutive games at each location and travelling for extended 

periods. Travel fatigue may differentially affect the visiting team only for the first game 

of a series when the home team has not also returned from a trip. The majority of the HA 

is attributable to crowd intimidation and lack of familiarity with the ground due to various 

playing surface compositions, the location of walls and wind conditions, although lack of 

familiarity would diminish in importance with successive games. The HA amounts to 

one run out of each 34 scored. The home team wins 7.6% more than it loses. 



Professional hockey in the USA (including several Canadian teams), American college 

football, American professional football and Australian rules football comprise the 

remainder of Table 6.1. The home-win-minus-away-win fraction is nearly the same for 

each competition, although differences exist in the ratio R. Perhaps the relatively 

compact nature of a hockey arena generates more intimidation and, therefore, a greater 

amount of HA as measured by R. Conversely, most Australian rules football teams 

compete in the greater Melbourne area, reducing travel fatigue and balancing the mix of 

team supporters. It follows that most of the HA is attributable to lack of familiarity with 

the playing conditions, since there are a variety of grounds from oval to round-shaped 

and a variety of ground sizes. The HA in Australian rules football creates a margin of 9.8 

points per game for the home team which wins 16.7% more games than it loses. The HA 

amounts to one point in 21, since 206.5 points per game are scored. 

The data in Table 6.1 support the hypothesis that there is a HA due to travel fatigue, 

crowd intimidation and lack of familiarity with the playing conditions which affect the 

visiting team negatively. As the absolute amount of each rises, so also does the HA. The 

absence of one or more factors tends to diminish the HA. No effort is made here to rank 

the relative importance of the three factors. 

6.6. Distinct hi for each team 

If a HA is to be found for each team, then hii(,, in equation (6.1) is interpreted as hi 

when i is at home, as -hj when j is at home and as 0 when the teams play on a neutral 

ground or on a ground that both teams normally consider to be a home ground. To 

facilitate an LS value which minimises equation (6.2) independently of any rating 

scheme, the results are considered only when two teams have a home away pair during 

the home-away season. For simplicity, the value of m is not shown and the ratings are 

assumed to be the same after each match. The two results may be added so that 

where dij = wij + wji, i.e. is the sum of the home team win margins which is the home- 

away differential for each team, and elij is the sum of the two errors. For example, if 



team i wins by five points at home and then team j wins the return match by seven points 

at team j's home ground, then dq is 12 from the perspective of either team, i.e. each team 

was 12 points more successful at home. The information contained in equation (6 .4~)  

can be collected over an entire season and then an algorithm can be used to estimate the 

HA of each team. 

Using this method, a HA was found for each of the teams currently competing in the 

Australian Football League. Table 6.2 contains the average of the HAS from the end of 

each season weighted by the number of home games that could be paired with a return 

match. The notes section identifies teams in the greater Melbourne area and two groups 

of teams currently sharing the same ground. The South Melbourne team moved to 

Sydney at the beginning of 1982. For simplicity, the two years of South Melbourne 

results are combined and listed with Sydney's eight years of results. West Coast and 

Brisbane joined the league in 1987; hence, each played during only three of the 10 years. 

TABLE 6.2. Home advantage by team for the 1980s 

a M, Greater Melbourne; S, shared home field. 

14 Richmond 

All teams 

-1.6 

9.8 

63 

880 

M, S2 



About 80% (880) of the 1109 home games could be paired. The West Coast Eagles 

exhibited the largest HA. Since that team plays in Perth, about 3000 km (1900 miles) by 

air from Melbourne, travel fatigue and crowd intimidation would affect the visiting team 

more than at matches in Melbourne, and the relatively large HA is logical. Conversely, 

Melbourne, North Melbourne and Richmond share the Melbourne Cricket Ground 

(MCG). The relatively minimal HAS may be explained by the minimal visiting-team 

travel (except for Brisbane, Sydney and West Coast), by the fact that the MCG is too 

spacious to generate as much crowd intimidation as would be possible on a smaller field 

and by the fact that a large enough number of games are played at the MCG so that the 

field configuration is well known. 

6.7. Rating systems 

Home advantage can be removed from the winning margin modelled in equation (6.1) by 
defining an adjusted winning margin waU(,, such that 

Two rating systems are considered, one based on LS and one based on exponential 

smoothing using the 0.75 power of error. The LS rating for team i which minimises 

equation (6.2) by smoothing over all K weeks of data is 

where team i has played n(i) games during the K weeks of the season over which the 

ratings are computed. The recursive equivalent for equation (6.6) is 

A similar equation can be written for team j by reversing the indices i and j. There are 
two unknowns in the two equations: the ratings u" and u:,,. These equations can be 

solved simultaneously to yield the LS recursive algorithm for ulK . 

The adaptive term in braces in equation (6.8) may be limited to two standard deviations to 

reduce large rating changes resulting from anomalous results. 



Unfortunately, the differences between the LS ratings tend to exceed future margins of 

victory, so that a model for the margin of victory in the next game (to be played during 

week K+ 1) is 

where L is a shrinking factor between zero and one which reduces the predicted winning 

margin compared with the rating difference when the rating difference is consistently 

more than the subsequent winning margin. The sum of squared errors in equation (6.9) 

can be minimised by selecting L as 

K K  sample covarian~e[wa,(,+,,,(~ - uj(,+,,)] 
L= 

sample variance[ui K K I  - u,,,+,, 

then, using previously calculated L, the predicted winning margin for the next game 

becomes 

+ij(K+l) = 'ij(K+l) + L[ u. : - 'j(K+l) " 1 
In summary, each LS rating is computed by equation (6.8) using previously calculated 

HAS and then equation (6.1 1) is used for prediction using previously calculated L. 

A substantially different method suggested by Clarke exponentially smooths past results 

to obtain ratings which are closer together than LS ratings. Clarke used a learning set of 

previous Australian rules football games. By trial-and-error he applied a 0.75 power to 

the adaptive term in equation (6.8) and he found that the result was an effective pre- 

shrinking of ratings whose differences are then used for prediction so that L is unity in 

equation (6.11). Again by trial-and-error, Clarke determined that the result should be 

multiplied by 0.2 to smooth it exponentially. The rating for team i becomes 

where 1.1 denotes an absolute value operator which avoids taking the root of a negative 

number and sign(.) restores the sign. 

The LS and 0.75 power schemes were both applied to predict the 1446 Australian rules 



football games played during the entire decade of the 1980s. The results are summarised 

in Table 6.3. The table shows h, L, the fraction of games correctly predicted (a draw is 

considered half correct and half incorrect) and the average absolute error between the true 

and predicted winning margin. 

Both methods used a common home advantage h for all teams. Table 6.3 shows the 

value of h used for prediction and the actual value calculated at the end of each season. 

The value for h at the end of the 1979 season was used for the 1980 predictions; then the 

average value of h from the end of the 1979 and 1980 seasons was used for the 1981 

predictions. A five-year moving average was used when more than five previous values 

of h were available. The value of L used for prediction by the LS method was calculated 

similarly to the averaging of past values of h. A value of L was calculated for the 0.75 

power method but predictions assumed L was unity. 

The fraction of games correctly predicted by the LS method was higher by 0.5% (seven 

games out of 1446), while the 0.75 power method had a lower average absolute error by 

0.7 points per game (32.2 compared with 32.9). Neither difference was statistically 

significant. The LS method required an average L of 0.66, while the 0.75 power method 

exhibited an L of 0.94, indicating that the preshrunk rating difference was an unbiased 

predictor of the next game. 

A comparison of different prediction schemes was also made in Stefani (1987). The LS 

method predicted the correct winning team in 69.8% of 2435 American college and 

professional football games with an average absolute error of 12.16 points per game. 

Other predictors such as James-Stein were also used, resulting in nearly the same results 

as for the LS method. For example, the James-Stein predictor selected the correct 

winning team in 69.8% of the games with an average absolute error of 12.17 points per 

game. 

In summary, the 1446 Australian rules football predictions verify the conclusion that the 

information content of the margin of victory and HA limits the accuracy of predictions, so 

that additional accuracy most likely requires the use of additional data. That is, dissimilar 

rating methods using the same data tend to converge to a level of accuracy limited by the 

data and not necessarily by the structure of the algorithms. 

Compared with human predictors in both Australia and the USA, the computer 

predictions perform at the better-than-average to expert level. 



TABLE 6.3. Least squares and 0.75 power predictions for Australian rules football, 

1980- 1989 

Year Games 

Least squares 

h 

used 

1980 

1981 

1982 

1983 

1984 

1985 

1986 

1987 

1988 

1989 

h 

computed 

138 

138 

138 

138 

138 

138 

138 

160 

160 

160 

1446 

0.75 power predictions 

L 

used 

8 

5 

7 

8 

8 

9 

9 

9 

9 

10 

8.2 

L 

computed 

8 

5 

7 

8 

8 

9 

9 

9 

9 

10 

8.2 

1.5 

10.1 

12.6 

8.9 

9.4 

5.7 

11.7 

14.2 

10.0 

13.7 

9.8 

1980 

198 1 

1982 

1983 

1984 

1985 

1986 

1987 

1988 

1989 

1.5 

10.1 

12.6 

8.9 

9.4 

5.7 

11.7 

14.2 

10.0 

13.7 

9.8 

138 

138 

138 

138 

138 

138 

138 

160 

160 

160 

1446 

Proportion 

correct 

0.60 

0.69 

0.72 

0.73 

0.70 

0.68 

0.63 

0.64 

0.62 

0.60 

0.66 

0.78 

0.79 

0.73 

0.62 

0.48 

0.58 

0.8 1 

0.62 

0.54 

0.67 

0.66 

1 .OO 

1 .OO 

1 .OO 

1 .OO 

1 .OO 

1 .OO 

1 .OO 

1 .OO 

1 .OO 

1 .OO 

1 .OO 

Average 

absolute 

error 

0.700 

0.732 

0.700 

0.667 

0.667 

0.678 

0.68 1 

0.675 

0.641 

0.678 

0.68 1 

0.90 

1.06 

0.97 

0.78 

0.78 

1.12 

1 .OO 

0.96 

0.80 

1.04 

0.94 

29.8 

27.5 

32.9 

34.1 

32.4 

34.7 

35.6 

36.5 

32.9 

3 1.8 

32.9 

0.692 

0.754 

0.670 

0.667 

0.644 

0.634 

0.659 

0.73 1 

0.659 

0.647 

0.676 

29.3 

27.0 

32.6 

35.1 

31.3 

33.2 - 
34.9 

35.1 

32.2 

30.8 

32.2 



6.8. Estimating the accuracy of the predictions 

The popular print media and many gambling establishments often estimate that Team A is 

a 3: 1 favourite to defeat Team B; that is, Team A is 75% likely to defeat Team B. A 

gambling establishment provides an estimate to divide the money bet in such a way that 

the gambling establishment should show a profit whether or not Team A wins. In order 

to use the predictions of equation (6.11) to estimate the probability that a team should 

win, it is necessary to know the probability density for equation (6.1 1). In Stefani 

(1980,1987) a Gaussian assumption was shown to provide accurate estimates for 

American college football. The Gaussian assumption also provides accurate estimates for 

Australian rules football. 

Under the assumption that each rating is an unbiased estimate of the true rating, the 

probability that team i will actually win the next game becomes the probability that the 

estimated margin of victory of equation (6.1 1 ) is greater or equal to zero, since equation 

(6.11) would then be an unbiased estimate of the true margin of victory. An estimate of 

the standard deviation of equation (6.1 1) facilitates estimation of that probability. Since 

the variance of the rating for team i can be estimated by 

2 Si = sample variance[wa,,,+,, + u:,,] 

then the standard deviation of a prediction using equation (6.1 1) can be estimated by 

Assuming that the distribution of equation (6.1 1) is Gaussian, the probability that team i 
will win is 0.5 plus the additional integrated area due to the ratio G/S,. 

The predicted accuracies and actual accuracies for the 1446 predictions are gathered into 

five ranges of predicted accuracy in Table 6.4. The actual accuracies agree closely with 

the predicted accuracies in each of the five ranges as well as overall. The overall accuracy 

was predicted to be 0.670, while the actual overall accuracy was 0.681. It is noteworthy 

that 5 1 games were predicted to have more than a 0.9 probability of being correct. The 

actual result was that 49 were predicted correctly, one game was drawn and one game 

was incorrectly predicted. 



TABLE 6.4. Predicted and actual accuracies for Australian Rules football, 1980-1989 

6.9. Conclusions 

It appears that the accuracy of a prediction depends primarily upon the information 

content of the data used to construct the ratings and much less on the algorithm used to 

compute the ratings, assuming that each algorithm is properly applied. That is, differing 

predictors using the same data tend to converge to a limiting level of accuracy . 

Home advantage appears to depend on the three negative influences upon the visiting 

team: travel fatigue (a physiological effect); intimidation by home team fans (a 

psychological effect); lack of familiarity with the playing conditions (a tactical effect). 

The absolute influence of these three factors varies from sport to sport. 

6.10. Commentary. Comparison of Clarke's Models 1 and 2 

The exponential smoothing algorithm used above is a slightly simplified version of the 

one described in Chapter I11 and used regularly for computer tipping. For example it 

uses a common HA. How do program 1 and 2 as described in Chapter I11 compare? 

While complete records of all tips actually published have not been kept, it is possible to 

regenerate the tips by using the data base of matches described in Chapter 11. In this case 

we are not using the results of pre-season matches as was usually the case for the actual 

tip, and the final matches have not been included. However the results would not differ 

markedly from those published. Table 6.5 gives the proportion correct each year, for 

both models described above. Note there is some variation from year to year. Some 

years are more predictable than others, but the average correct for both models is about 

68%. Note the average errors for Program 1 are generally positive, which indicates the 

HA is not large enough. Program 2, with its automatic adjustment of ground effects 



performs better in this regard. Program 2 is also slightly more accurate in margin 

prediction, with an average absolute error nearly 1 point better than Program 1. This is 

perhaps not surprising as it was initially optimised on absolute margin of error. However 

generally there is not a lot of difference between the two methods. These results are in 

accord with a comparison between the methods of Stefani and Clarke. 

TABLE 6.5. Proportion correct and average absolute error for Clarke's two prediction 

programs 

Year 

80 

8 1 

8 2 

8 3 

84 

85 

8 6 

No. of 

Games 

138 

138 

138 

138 

138 

138 

138 

Program 1 

Proportion 

Correct 

0.772 

0.754 

0.692 

0.645 

0.652 

0.656 

0.659 

Program 2 

Proportion 

Correct 

0.699 

0.754 

0.678 

0.659 

0.652 

0.692 

0.659 

Average 

Error 

-3.9 

3.6 

4.1 

2.7 

1.9 

-1.4 

6.6 

Average 

absolute 

error 

29.6 

27.5 

33.4 

36.3 

32.6 

35.5 

36.4 

Average 

Error 

-3.0 

3.0 

3.1 

1.0 

0.0 

-0.7 

6.6 

Average 

absolute 

error 

29.1 

27.5 

32.7 

35.6 

31.1 

33.4 

35.4 



CHAPTER VII 

CALCULATING PREMIERSHIP ODDS BY COMPUTER: 
AN ANALYSIS OF THE AFL FINAL EIGHT PLAY-OFF SYSTEM 

7.0. Abstract 

The Australian Football League's final eight play-off system is explained and the 

premiership chances of all teams are evaluated and compared with previous final systems. 

The importance of matches, and the playing order necessary to avoid dead finals is 

discussed. A computer tipping program published weekly in a daily newspaper produces 

the probability of any team beating any other team on any ground. This was extended to 

calculate the chances of every possible finishing order in the finals. The suitability and 

fairness of the play-offs is evaluated under various criteria. The use of such a program to 

assist in framing premiership and quinella odds is discussed, and inconsistencies between 

bookmakers' odds on individual matches and winning the premiership highlighted. 

Home ground advantage in finals is assessed. It is shown that the knockout nature of the 

finals magnifies any home advantage possessed by a team. 

Key words: sport, football, finals, play-off, probabilities, odds 

7.1. Introduction 

Australian rules football is the major winter sport of the southern states of Australia. 

From a base of 12 Melbourne clubs, by 1994 the Australian Football League (AFL) had 

expanded to 15 teams including teams from Sydney, Brisbane, Adelaide and Perth. The 

season consists of a 22 game home and away schedule followed by a final series between 

the top teams culminating in a grand final to determine the premier team. For many years 

the author has operated a computer program to predict the results of individual games 

Clarke (1988c, 1991a, 1993b). The predictions are published each week in the daily 

press and Clarke (1992a) shows that they compare favourably with human tipsters. In 

addition to selecting the winner of any match, the computer program estimates the 

chances of either team winning. Near the end of the 1992 home and away series a 

program was written that would produce, at the beginning and during the final series, 

each team's chance of winning the grand final. In 1994 this needed updating for the new 

final eight system introduced by the AFL. 

Since 193 1 the football finals were played under the 'Page final four' system. Unlike the 



normal knockout system of three matches (two semi-finals and a final) used in most 

competitions with four finalists, the Page final four gives an advantage to the top teams 

by introducing a bye and a double chance. The top two teams play, with the winner 

gaining direct entry into the grand final by virtue of a bye the following week; the loser is 

not eliminated but has a second chance by playing the winner of the lower two teams for 

the right to play in the grand final. This became known as 'the double chance'. Thus the 

top two teams are advantaged by either gaining the bye or receiving the double chance. 

Over the years, several variations on this theme were used as the number of teams in the 

finals was increased. In 1972 the league introduced a final five played under the 

'McIntyre Final Five' system (see Schwertman & Howard, (1989, 1990)) and in 1991 

the AFL introduced a new finals system played between the top six teams. After some 

criticism, they adjusted the system again for 1992 with the 'McIntyre Final Six' system. 

As Clarke (1993b) points out, this introduced a controversial aspect into the finals as the 

path a team takes, and hence its chances of winning the premiership, is determined by the 

results of matches in which it does not participate. This aspect was entrenched when, for 

1994, the Am, introduced the final eight, with a series of nine finals matches over four 

weeks, called the McIntyre Final Eight system (MF8). 

Monahan & Berger (1977), in discussing the fairness of play-off structures in hockey 

suggest three criteria for measuring their suitability: maximise the probability that the 

highest ranked team wins, maximise the expected number of points of the premier, and 

maximise the chance the best two teams meet in the final. In their conclusions they point 

out that in some of their proposed structures, a lower-ranked team has a higher chance of 

reaching the semi-final and final than a higher-ranked team, and this is unacceptable to 

players who are rewarded according to final position. In such competitions (the AFL 

prize money and the following year's draft are affected by final position), the play-off 

system should not be judged solely on how fairly it determines the premier, but how 

fairly it determines all positions. This suggests several other criteria - the probability of a 

team finishing in any position or higher should be greater than for any lower-ranked 

team; the expected final position should be in order of original ranking; the probability of 

a team finishing above a team of lower rank should be greater than 0.5 and should 

increase as the difference in ranks increases; the probability of any two teams appearing 

in the grand final should monotonically decrease as the ranks of the two teams increases. 

To these we might add one of consistency between years - teams of the same ranking that 

perform in a similar manner in different years should finish in similar positions. 



7.2. The McIntyre Final Eight system 

The MF8 consists of nine matches: four qualifying finals the first week, two semi-finals 

the second week, two preliminary finals the third week and the grand final the fourth 

week. For the first three weeks, two teams are eliminated each week. The original 

ladder ranking before the finals determines the draw for the first week of the finals, and 

also determines the relative position of the winners and losers each week. 

During week 1, four Qualifying finals are played: lv8,2v7,3v6 and 4v5. This produces 

four winners who go to the top of the ladder and four losers who go to the bottom. 

Within these two groups they preserve their original ranking. Thus after week 1, we 

have a new ranking of Winner 1, Winner 2, Winner 3, Winner 4, Loser 1, Loser 2, 

Loser 3, Loser 4, although in the following we will usually use the terminology of 

current ranking one to eight. An example will illustrate. In 1994 the qualifying finals 

were lv8 West Coast v Collingwood, 2v7 Carlton v Melbourne, 3v6 North Melbourne v 

Hawthorn and 4v5 Geelong v Footscray. 

MF8 week 1 matches from 1994 and resulting week 2 draw 

Original ladder 

ranking 

1 

2 

3 

4 

5 

6 

7 

8 

Team 

West Coast 

Carlton 

North Melb 

Geelong 

Footscray 

Hawthorn 

Melbourne 

Collingwood 

Week 1 Current 

result ranking 

win 1- Winner 1 

loss 2- Winner 2 

win 3- Winner 3 

win 4- Winner 4 

loss 5- Loser 1 

loss 6- Loser 2 

win 7- Loser 3 

loss 8- Loser 4 

Team 

West Coast 

North Melb 

Geelong 

Melbourne 

Carlton 

Footscray 

Hawthorn 

Collingwood 

Week 2 

match 

Bye 

Bye 
Semi 2 

Semi 1 

Semi 2 

Semi 1 

Eliminated 

Eliminated 

The bottom two teams are eliminated, and from week 2 onwards the system is a knockout 

tournament with the current top two teams gaining a bye in week 2. Under the old final 

four, in week 2 one team has a bye straight through to the final in week 3, while two 

other teams play to see which of them continues. This system is the same but in two 

halves (teams currently ranked 1, 4 & 6 in one half and teams 2, 3 & 5 in the other). 

Teams 1 and 2 get a bye straight through to the two preliminary finals in week 3, while 4 

& 6 and 3 & 5 play in the two semi finals to determine who joins them. In week 4 the 



two winners of the preliminary finals play in the grand final. 

A feature of the MF8 is the degree to which a team's progress depends on results in other 

matches. One year team 3 could win the first week and not gain the bye, while another 

year team 6 could win and gain the bye. Similarly team 3 could lose and be eliminated 

one year whereas another year team 6 could lose but not be eliminated. Under the 

assumption that all teams are equal, the chances of teams 1 to 8 gaining the bye if they 

win are respectively loo%, loo%, 75%, 50%, 50%, 25%, 0% and 0%. The same list 

reversed gives the chances of the teams being eliminated if they lose. This is the first 

finals system where a team's elimination has depended on other match results. 

Note that the positions after the first week are symmetrical. If after the first week a team 

is now ranked position N, their opponent from the first week will now be in position 9N. 

Put another way, a team's opponent will be as far off the bottom as the team is from the 

top. It is easily proved using this symmetry that there can be no repeat finals matches 

until the grand final since respective opponents from week I go into opposite halves of 

the draw. 

The symmetry also means that the first round opponents of the teams eliminated gain the 

bye. This implies these two matches were very important to the participants - the winner 

gained the bye, the loser was eliminated. However it is not known beforehand which of 

the matches are elimination matches as they are determined by the results in other 

matches. Thus in the most perverse cases, if both 1 and 2 lose, the 3v6 and 4v5 matches 

become the elimination matches with 3 and 4 eliminated if they lose and 5 and 6 gaining 

the bye. On the other hand if 1 and 2 both win, these matches are virtually irrelevant, as 

the winner cannot gain the bye nor the loser be eliminated. The result merely determines 

in which semi-finals the four teams will play. 

7.3. Premiership chances - comparison with previous systems 

For the case when all teams are considered equal, the chances of winning the premiership 

can be calculated easily by first principles. For teams which make the grand final the 

chances of winning the premiership are 50.0%, from the preliminary finals 25.0%, and 

from the semi-finals 12.5%. 

The chances at the beginning of the finals can now be calculated as weighted averages of 

these probabilities. For example teams 7 & 8 have a 50% chance of making the semi- 



finals, hence a 6.25% chance of the flag. Teams 1 & 2 have a 50% chance of making the 

preliminary final directly and a 50% chance of making the semi-final, to give a 18.725% 

chance of being premier. The others can be calculated in a similar way and are given in 

Table 7.1 along with probabilities for all previous final systems. 

Note the importance of gaining the bye. A team doubles their chance of winning by 

getting direct access to the preliminary final. For teams 3 to 6 this depends as much on 

the outcomes of other matches as on their own. The saying 'you make your own luck' 

cannot be said to apply to the MF8. Other teams make it for you. Consider team 3. 
Before the finals they have a 15.6% chance of winning the flag. Suppose they win their 

qualifying final. If 1 and 2 both win they now have a 12.5% chance; less than before. 

On the other hand if 1 or 2 lose, the chances of team 3 increase to 25%. Similarly teams 

4 and 5 do not increase their chances by winning the qualifying final if they do not make 

the preliminary final direct. That a team's chances could alter so dramatically from year 

to year, depending on the result of a third party, may be considered by some to be a flaw 

in the system. 

TABLE 7.1. Premiership chances for MF8 and previous final systems 

With each new system, the chances of teams 1 and 2 have been steadily eroded until they 

are now exactly half of that under the final four. Team 3's chances doubled with the 

introduction of the final five, but have since been eroded although they are still greater 

under the final eight than under the final four. Thus even though the number of finalists 

has doubled, team 3's chances have increased. Team 4's chances have enjoyed a roller 

coaster ride, but have settled on exactly the same probability as for the final four. Team 

6's chances have increased as have teams 7 and 8. In economic terms, we have seen a 

great redistribution of probability from the rich top order to the poor lower order, with the 

Team 

1 

2 

3 

4 

5 

6 

7 

8 

Final 4 

37.50 

37.50 

12.50 

12.50 

Final 5 

37.50 

25.00 

25.00 

6.25 

6.25 

Final 6 (1) 

25.00 

25.00 

18.75 

18.75 

6.25 

6.25 

Final 6 (2) 

25.00 

25.00 

18.75 

12.50 

12.50 

6.25 

MF8 

18.750 

18.750 

15.625 

12.500 

12.500 

9.375 

6.250 

6.250 



middle class largely unaffected. Teams 7 and 8 now have as much chance of winning as 

4 and 5 had under the final five system. However one should note that this is only 1 in 

16, actually less than they had at the start of the season (1 in 15 if there are 15 equal 

teams). Clearly the AFL have not been interested in maximising the chance of the 

highest-ranked team winning, but they have produced a system in which a team's 

chances increase steadily with their ranking. 

One consequence of the diminution of the top team's chances is that the league should 

consider recognising the team who finishes at the top of the ladder before the finals, 

perhaps with a minor premiership cup, since their chances of turning that position into a 

premiership is now much smaller than under earlier final systems. 

7.4. Importance of matches 

Football supporters know the grand final is the most important match of the year. It 

would be desirable if finals matches built up in importance, but how can we quantify this 

notion of importance? Morris (1977) defines the importance of a point in tennis as the 

difference in the probability of winning the match if a player wins the point and the 

probability of winning the match if a player loses the point. Thus the grand final is the 

most important match at loo%, with the preliminary final at 50%. The calculations are 

shown below. 

Grand final 100%-0% 

Preliminary final 50% -0% 

Semi-final 25% -0% 

Qualifying final between 1 &8 (or 2&7) 

For team 1,2 25% - 12.5% 

For team 8,7 12.5% - 0% 

Qualifying final between 4825 (or 3&6) 

Depends if 1 and 2 lose 25%- 0% 

or if 1 and 2 win 12.5%-12.5% 

or if 1 and 2 win and team 1 plays interstate 

= 25% 

= 0% 

negative? 

In general the matches are in order of increasing importance. However as we have said, 

the qualifying finals also have importance to other teams. The definition of importance 

needs extending to take this into account, perhaps to the total expected absolute change in 

probability of all the teams. When this is done the importance of the qualifying finals 



increases. Note that a win by the lower-ranked teams in the matches lv8,2v7 and 3v6 is 

good for the winner of the other qualifying finals and bad for the loser - so it makes those 

matches much more important. For this reason, the importance of the qualifying finals 

3v6 and 4v5 is more difficult to calculate, as it depends on the results of other finals. 

One special case is worth discussing. In order to maximise crowd attendance and 

television coverage, the finals are played at different times over a weekend. Thus it is 

possible the league could schedule the match between 4 & 5 (or 3 & 6) after the other 

qualifying matches. If the other qualifying matches have both gone to the higher-ranking 

team, then these matches would be of zero importance, since the winner cannot make the 

bye and the loser cannot be eliminated. The only factor hinging on the match is which 

half of the draw the teams go into. We could even have the situation where one or even 

both teams are trying to lose, to avoid the half of the draw containing specific teams. For 

example, two interstate teams may already be in the half of the draw into which the 

winner will go. It is highly likely matches against these interstate clubs would be 

scheduled on their home grounds, a large disadvantage to any Melbourne team drawn to 

play them. A 4v5 qualifying final between two Melbourne clubs could see the winning 

team having to play two finals interstate to make the grand final - with the loser having 

the easier draw of two games in Melbourne. To avoid this situation the qualifying finals 

need to be played in a certain order. The match 4v5 must be played in the first two finals, 

and the match 3v6 in the first three finals. The problem is equivalent to ordering the 

digits 1, 2, 3, and 4 so that no digit is preceded by two or more lower numbers. The 

possible orders are shown in Table 7.2. In 1994, the AFL chose the second last shown. 

Note that this does not stop a final being 'dead' in retrospect. In 1994 the 4v5 clash 

between Geelong and Footscray, won by the final kick of the match, was in fact in this 

category. Neither team was eliminated, so in fact the result did not matter. 

TABLE 7.2. Possible playing order of matches to avoid 'dead' finals 



7.5. Development of program using a word processor 

Schwertman & Howard (1989, 1990) look at a probability model for the AFL Finals 

series as it was played up to 1990 - a series of six games between the top five teams. 

They list the four paths that result in the fourth team winning the grand final, and the 16 

paths that result in the second team winning. For the top team they say "Direct 

computation of the probability that team A wins the grand final is quite involved, with 

many different paths" and suggest indirect methods. The MF8 is a series of nine matches 

with the extra complication that the position of a winning team now depends not just on 

their match but on the results of other matches. Clarke (1993a) gives a method for 

determining all possible finishing orders for the final six, and that is extended here. 

For the MF8, we wish to calculate not only the chance of each team winning the grand 

final, but also some other probabilities of interest such as the chance of pairs of teams 

making the grand final and the chance of each team finishing in any position. All the 

probabilities would follow from the chance of all possible finishing orders. So the 

problem was: "Given the original order before the finals, what is the probability of any 

final finishing order?" Although in studying the fairness of the finals system it is of 

interest to assume all teams are of equal ability, for the computer tip we had different 

probabilities for any team beating any other. Furthermore, because the computer tipping 

program takes grounds into account, the probabilities changed from week to week 

depending on the grounds at which the matches were scheduled. 

Suppose we designate each team by their finishing position at the end of the home and 

away matches. Using the actual results from 1994, we have a sequence of matches as 

follows, where positions and teams are: I West Coast, 2 Carlton, 3 North Melbourne, 

4 Geelong, 5 Footscray, 6 Hawthorn, 7 Melbourne, 8 Collingwood. 

Week 1 Week 2 Week 3 Week 4 

1-8 (1 wins) 4-2 (4 wins) 3-4 (4 wins) 1-4 (1 wins) 

2-7 (7 wins) 5-7 (7 wins) 1-7 (1 wins) 

3-6 (3 wins) 

4-5 (4 Wins) 

The final finishing order produced by this particular sequence of results and its associated 

probability is: 



where pk(i j) is the probability of team i beating team j in week k. There is no obvious 

pattern between the final order and the probabilities that produce that order. It would be 

tedious in the extreme to work out all possible 29 = 512 sequences and their probabilities. 

The fact that positions of teams depend not just on the results of their matches but on the 

results of others, further complicates matters. However a word processor comes to our 

aid. A modern word processor allows the copying and movement of columns of text as 

well as rows of contiguous text. Using this facility, the 5 12 lines of code that formed the 

crux of the program were written in about 1 hour. 

The method involves keeping on the left side the 'current' order and on the right side the 

probabilities of that order arising. Each match result has a certain probability and 

produces an associated change in the order. Before the final series the order is 

1,2,3,4,5,6,7,8 so we have: 

Order Probability 

Consider the match between 4 and 5 This can have two results, so we copy the whole 

row. Now if 4 beats 5 the order stays the same, so we leave the first row alone, but if 5 

beats 4, 5 moves to 4th and 4 moves to 5th, so we do this to the second row. This gives 

us: 

We now want on the right side the probabilities of these results - i.e. p1(4,5) in the first 

row and p1(5,4) in the second. But these are just the numbers in the middle two columns 

of the left side. Thus we can use the column copy and insert facility on the word 

processor to copy them across. This gives: 



We have added the pk()s for ease of reading, but in practice, these were all inserted at the 

end of the process. We repeat the procedure for the remaining matches. Each match 

iteration results in a doubling of the number of rows with a duplication of the whole 

table, the movement of columns on the left side, and the addition of another set of pks by 

copying parts of columns from the left to the right of the table. With column copy and 

insert and global replace it was about an hour's work to produce 512 lines similar to (7.1) 

and convert to code. In this case SAS was used, but other packages such as Excel could 

be utilised. A SAS data set with two variables, order and probability was created, and 

the above lines of code produced 5 12 observations. Programming and SAS procedures 

could then be used to calculate any required probabilities. 

In the author's original problem, the normal weekly computer tipping program was used 

to provide probabilities for each team beating any other, and the above program was used 

both before and during the final series to predict estimated probabilities of teams winning 

the flag or finishing the year in different positions. These predictions were included with 

the usual ones of winners and margins. The program thus served its original purpose. 

However the program can also be used to investigate the degree to which the MF8 

satisfies the criteria for fairness discussed earlier. 

7.6. How fair is the MF8? 

Schwertman & Howard (1990) suggest several suitable models to investigate the fairness 

of finals systems. Here we assume that all teams are equal. The qualifying finals in 

1994 showed this is not an unreasonable model, with team 8 losing to team 1 by two 

points, team 6 and team 3 drawn at full time, team 4 beating team 5 with the last kick of 

the match and team 7 beating team 2 comfortably. Tables 7.3, 7.4, 7.5 and 7.6 give 

some output from the program that demonstrates the MF8 performs well on the fairness 

criteria. The chance of winning and the expected final position (EFP) are in order of 

original ranking. In fact the chance of finishing in position j or higher is in monotonic 

order of original ranking for every j. The chance of team i finishing above team j is 

generally in increasing order of j for every i, with a couple of exceptions for teams widely 

separated in the rankings. 



TABLE 7.3. Percentage chance of teams finishing in any position, and expected final 

position (EFP) - Equal probability model 

TABLE 7.4. Percentage chance of teams finishing in any position or higher - Equal 

probability model 



TABLE 7.5. Percentage chance of team i (row) finishing above team j (column) - Equal 

probability model 

The chance of grand finals between the teams in various positions is shown in Table 7.6, 

and is roughly in accord with the sum of the teams' rankings. A grand final between 1 & 

2 is the most likely result, although it only has about a 1 in 8 chance of occurring, 

compared with 1 in 2 under the old final four system. The chance of a grand final 

between 2 & 3 is relatively low because of the high probability they will end up in the 

same half of the draw. Note also that two grand finals are impossible - between 2 & 8 

and 1 & 7. However this did not stop the National Sportsbook from offering odds of 

100-1 on a Collingwood-Carlton grand final, and 50-1 on a West Coast-Melbourne grand 

final in the week preceding the qualifying finals in 1994. 

TABLE 7.6. Percentage chance of pairs of teams playing in grand final - Equal 

probability model 



7.7. Comparison of bookmakers' and computer's odds 

It is interesting to see the extent to which bookmakers' odds reflect the intricacies of the 

finals draw. The head to head odds for the first match along with the premiership team 

and quinella (the two teams that play in the grand final) odds offered by the National 

Sportsbook as published in The Melbourne Herald Sun, September 10, 1994 are given in 

Tables 7.7-7.9. Odds of a h  are converted to percentage chances as 100*b/(b+a). As 

these usually sum to more than 100 due to the bookmaker's percentage, adjusted chances 

which are proportional but sum to 100 are shown. For comparison the head to head 

chances as estimated by the computer tipping program and the consequent premiership 

and quinella chances are also given. 

It is clear the Sportsbook odds often do not reflect the intricacies of the MF8. Although 

Sportsbook give North Melbourne a greater chance of winning the first match (63% as 

against 56% by the computer), they are given less chance (16% as against 19%) of 

winning the premiership. This apparently underestimates their chance of gaining the 

double chance. Geelong is treated in the same way. Although Melbourne is given less 

chance of winning the first match than Hawthorn, they have the same chance of winning 

the flag, completely discounting Hawthorn's possible bye or double chance. 

TABLE 7.7. Comparative chances of winning first match 

Melb 

Coll 

44.30 

20.00 

36.56 

22.85 

614 

31 1 

40.00 

25.00 



TABLE 7.8. Comparative premiership chances 

TABLE 7.9. Computer chances and Sportsbook odds on quinellas 

The quinellas also show inconsistencies. An obvious case is the Carlton-Collingwood 

and West Coast-Melbourne quinellas. These are both impossible, yet are not only given 

odds but are shown at shorter odds than many possible quinellas. The Carlton-North 

quinella is also misquoted. Tables 7.6 and 7.9 show this to be quite unlikely, due to the 

high probability of team 3 and 4 ending up in the same half. A more detailed analysis 

shows that team 2 and 3 will only end up in opposite halves if in week 1, team 1 wins 

and 2 and 3 both lose, or team 1 loses and 2 and 3 both win. Using the adjusted 

Sportsbook odds on this occurring from Table 7.7 we obtain a probability after week 1 of 

only 0.2 that a Carlton-North grand final will still be possible. Either two or four 

matches will still have to fall the correct way for the grand final to eventuate. The odds of 



10-1 are thus extremely poor and overestimate the chance of this particular grand final. 

In a similar way, the extra difficulty of obtaining a West Coast-Hawthorn quinella over a 

West Coast-Carlton quinella that is shown in both Table 7.6 and Table 7.9 is not reflected 

in the Sportsbook odds. 

7.8. Home advantage 

There are two large capacity Melbourne grounds on which finals have been traditionally 

played, the MCG and Waverley Park. However, finals in the first three weeks involving 

interstate teams are likely to be played at their home venue. Since the MCG and 

Waverley are shared as home grounds by several Melbourne teams, there is a 

considerable home advantage (HA) element in the finals. Stefani & Clarke (1991, 1992) 

have calculated home ground advantages in home and away matches in AFL football. 

The computer program developed here can also be used to quantify HA in the finals. By 

altering the venues for matches in a particular week, the effect on a team's premiership 

chances can be evaluated. Table 7.10 shows the final program's estimated chances of 

winning the premiership using the weekly computer tipping program's probabilities of 

winning each match under various venue assumptions. The first column shows the 

program's calculated premiership chances if all matches are played at the MCG, the 

second with matches involving West Coast moved to West Coast the first three weeks, 

and the third with all matches in the first three weeks played at Waverley. In general this 

shows a multiplier effect if teams play several matches at home. Thus a team that wins 

10% more matches at home may win 30% more premierships if all matches are played at 

home. 

The effects are quite dramatic. West Coast's chances almost double by having the 

preliminary matches at home, although their average chance of winning at the West coast 

is 'only' 47% higher than at the MCG. By moving all preliminary matches to Waverley, 

Hawthorn's chance increases by 31% although their average chance of winning at 

Waverley is only 11% higher than the MCG. Similarly Melbourne's chance would 

reduce to 67% although their average chance of winning at Waverley is 89% of their 

chance at the MCG. While one could argue about the magnitude of individual home 

effect, the general point is that, because of the knockout nature of the finals series, 

individual home ground effects are magnified when considering the chances of winning 

the premiership. 



TABLE 7.10. Premiership percentage chances if matches in the first three weeks at 

different grounds 

7.9. Conclusion 

In football, subjective judgements are often used to rate team chances of winning the 

premiership. These often tend to reflect the relative strengths of the teams, and ignore the 

current ladder position. With the complicated structure now in place for the finals series, 

a mathematical analysis using a simple model can shed light on the chance of teams 

winning or finishing in any position, given their original or current ranking in the final 

series. One aspect of mathematics is recognition of patterns. In this case, there was no 

obvious pattern between the final order and the probabilities that produced that order. 

However, there was a pattern in the way these orders and probabilities were built up 

when individual matches were considered. The functions of a word processor could be 

used to exploit this pattern to write the required equations and subsequent computer code. 

The code generated was flexible enough to handle many different models. 

It is important to investigate how a sport's draw operates, rather than complaining when a 

specific unforseen case arises. Teams cannot be blamed when they 'exploit' weaknesses 

in the rules of a competition that organisers have allowed to creep in. There are many 

criteria that a final series should satisfy. For many competitions the relative chances of 

teams finishing in any position, not just first, should be considered. The MF8 passes 

most of the tests given here. The higher a team finishes at the end of the home and away 

matches, the greater their chances of being the premier team, the greater their chances of 

finishing in any position or higher, the higher their final expected position, and the 



greater their chances of finishing above lower teams. However two major flaws exist. 

The first is that a team's chances depend so much on matches in which it does not 

participate, which results in a lack of consistency from year to year. There seems little, 

other than a new system, that the AFL could do to redress this. The other major 

weakness that may need to be addressed is the possible lack of importance of the 

qualifying finals between 4 & 5 and 3 & 6. It seems a great pity that a final would 

degenerate into a 'dead' match, or worse still a farce where both teams were trying to 

lose. The AFL must always schedule these matches early so the chance of the winner 

making the preliminary final direct or to avoid elimination exists to give the teams 

incentive. Of course matches will still often be dead in retrospect, as occurred in 1994. 

Because of the greatly reduced chances of a team winning the flag from top position, the 

league should consider recognising the leader after the home and away matches by a 

minor premier cup. 

It is also clear that a computer program, such as detailed here, could be useful in assisting 

with framing the odds for premierships and quinellas under a system as complicated as 

the MF8. 

7.10. Commentary. Increasing influence of HA in finals 

Since this paper was written the home ground advantage in finals has continued to have a 

strong influence. As interstate teams grow in number and strength, more finals include a 

home ground factor. In 1996, due to the presence of Essendon and North Melbourne 

(both if which have the MCG as home ground), and three interstate sides, each of the 

nine finals included exactly one team playing on their home ground. All nine finals were 

won by the team with the HA. 

7.11. Commentary. Quantifying the effect of AFL decisions on the home 
and away draw 

All sports are affected by the overall rules of the competition. The previous paper 

quantified the effects of the various final systems. The models discussed in the thesis can 

also be used to quantify AFL decisions that affect the home and away draw. The League 

along with individual clubs makes many decisions affecting the running of the 

competition. These are often based on financial aspects such as to maximise crowds or 

television exposure, but they also affect teams' chances of success in the competition. 

They range from relatively minor changes such as moving the venue of a single match or 



moving the home ground of a club for an entire season, through to decisions having 

major ramifications such as organising an unbalanced draw. What effect do these have 

on a team's chances? In the past these have not been quantified. The remainder of this 

chapter shows how some of these aspects can be investigated. 

7.11.1. Change of venue 

By using the estimated ground effects developed by the computer tipping program, the 

effects of changing venues on the chance of teams winning can be evaluated. The AFL 

often move particular matches. This may be to allow for anticipated large crowds, or the 

poor state of the surface of a particular ground or for other reasons. Sometimes it is done 

with the approval of the affected clubs, but often against their wishes. Clubs will often 

cite the loss of their HA as a reason against the move, but never is this quantified. It now 

can be. 

For example, suppose it is mooted that the 1996 round 14 Footscray-Melbourne match be 

moved from the MCG to Footscray. In fact several of Melbourne's home matches have 

been moved, to leave the MCG free for matches expected to draw large crowds. As at 

round 1 1, 1996, the computer rated Melbourne at 52.2 and Footscray 56.2. However the 

ground effect for Melbourne at the MCG was 1.8, and for Footscray -6.8. Thus the HA 

to Melbourne at the MCG was 1.8 + 6.8. At the Whitten oval it was 9.9 + 0.4 to 

Footscray. Thus, using equation 4.3, at the MCG the expected result is a 3.6 point win 

to Melbourne, whereas at Footscray it is 14.3 win to Footscray. In terms of percentage 

chances, this changes Melbourne from a 53% chance to a 38% chance. Thus the change 

of venue resulted in a decrease of 15% in Melbourne's chances of winning. If this was 

repeated over 11 home matches it would be almost two extra losses by the club. 

A similar analysis can be performed for a team that changes its home ground permanently. 

In 1993 St Kilda moved from Moorabbin where they enjoyed one of the highest HAS of 

12.5 (compared with an average of -0.5 for the other teams) to Waverley Park where they 

had a negative ground effect (-4.8 at the end of 1995, compared with the average for the 

other teams of 0). By the methods of the previous paragraph the change cost them on 

average over 17 points each home match, or a decrease in percentage chance of winning 

of about 15%. This results in an expected decrease in the number of wins in their 11 

home matches of 1.7. While this may not seem a lot, in 1993, although finishing 12th, 

they were only two wins behind Adelaide who finished 5th. In 1995, an extra 1.5 wins 

would have taken them from 14th to at least 9th on the final ladder. It is clear the move to 



Waverley has been costly to St. Kilda in terms of its on-field success. 

7.11.2 Fairness of draw - average strength of opponents 

A major drawback of the League competition is that the draw is not balanced. It is 

unbalanced with respect to strength of opposition (each team plays a different set of 

opponents twice) and with respect to grounds (teams play a different number of matches 

on their home grounds). While the general public recognise this is inequitable, again it 

has never been quantified in a proper manner. At the very most a football writer may 

tabulate the number of times each team plays a weak team, or a finalist from the previous 

season, but never is it done at the end of a season when the true strengths of the teams is 

better able to be estimated. This unfairness will not necessarily even out over the years. 

For example at one time the draw was made on the basis that the top teams in one year 

played each other twice the following year. Thus there was an ongoing bias in the draw. 

It is relatively simple in principle to quantify the unfairness of the draw after the season. 

An analysis such as performed in section 2.14 gives team rating and HAS. Unlike other 

measures such as final ladder positions or percentage, these are independent of the 

toughness of the draw. Summing the ratings of the opponents of each team gives a 

measure of the difficulty of the draw for that team. This is equivalent to the approach of 

(Leake, 1976) who suggested the average rating of opponents as a measure of schedule 

difficulty. The home ground advantage of opponents could also be included as this 

contributes to the draw difficulty. However there are problems with this approach. 

Since the good teams do not play themselves, they will appear to have an easier draw 

than the others. Thus even in a balanced competition this method would give a measure 

of unbalance. For this reason we need to subtract the average strength of the opponents. 

Thus we are measuring the excess strength of the actual opponents over the average 

strength of all possible opposition. This is equivalent to adding a proportion of a team's 

own rating to account for the above bias. 

If the measure of team ability in an N team competition is ui, i = 1 to N, where Cui = 0, 

then opponent j will exceed the average strength of all possible opponents of team i by 

Z U i  
j t i  - -Ui u. -- Ui =u,+- 5--- N- 1 ' N-1 N- 1 



Summing this for all opponents is a measure of the total strength of opposition to team i. 

While we could use the us derived earlier, or better still ui + 0.5 hi, there are advantages 

in using a measure that the general football follower would understand. For this reason, 

percentage, which Figure 2.4 showed was highly correlated with ui + 0.5 hi, may be a 

good choice. 

A well understood measure of a teams ability is final ladder position. This incorporates 

both team ability and some measure of HA. Unfortunately it also includes a component 

due to the factor we are measuring - draw difficulty, but we bear with this in the interests 

of having a simple measure. While it would be more accurate to use (say) the regression 

estimates of a team's ability rather than ladder ranking, the latter has the advantage of 

being understood by the average administrator and supporter. Table 7.11 was obtained 

using the ladder ranking at the end of the year. Because a low number indicates a high 

ranking and strong opposition, a negative total indicates the draw was more difficult than 

average, a positive number easier than average. Note that during the years 80 to 86 all 

teams had a balanced draw. In other years, the difference between highest and lowest is 

generally about 35. This is clearly a significant amount, particularly for two teams in a 

similar position on the ladder, where the difference cannot be attributed to the different 

rankings of the two teams. For example in 1988, Geelong, one position on the ladder 

ahead of Richmond, had a more difficult draw by 36 ranking points. That is the 

equivalent of playing the top three teams instead of the bottom three teams. In the same 

year West Coast finished one spot above Melbourne with the same number of wins. 

However Melbourne's draw was 29 ranking points harder than West Coast. A similar 

draw could have given Melbourne three extra wins and put them second on the ladder. 

(They actually did win their way through to the grand final). In 1995, the two teams with 

the hardest draw, Melbourne and Collingwood both missed the final eight by one game, 

even though they had better percentages than Footscray who finished seventh and 

Brisbane who finished eighth. Again the difference in their draw difficulty could easily 

account for the difference. It is clear that the degree of imbalance that exists in the draw 

is enough to have a significant effect on the final ladder outcomes. Individual clubs 

should also look at their draw difficulty in assessing the measure of success they have 

achieved through the year. 

Clearly the draw difficulty does not even out through the years. Richmond and Sydney 

appear to have had a long run of good draws, while Carlton has had a long run of more 

difficult draws. Many AFL clubs have criticised the level of financial support given to 

Sydney. They have also, it appears, received support from the schedule. 





7.11.3 Fairness of home and away draw - as assessed by the 
computer prediction 

In this section we demonstrate how the computer prediction program can be used to 

obtain another estimate of the effect of the draw on the success of clubs. This gives a 

measure of the effect in ladder positions. Particular goals for clubs would be to make the 

finals, make the grand final and win the premiership. Any sporting competition is 

designed to produce a winner, and the rules should ensure the expected final positions 

reflect the abilities of the participants. The ladder prediction model described in section 

4.2.1 provides a perfect tool to investigate this. Given the ratings of each team and the 

draw it provides the expected finishing position of all teams. This can be compared with 

the ratings. This is demonstrated with a detailed look at 1995. 

The computer prediction program was used to predict the 1995 results using the initial 

ratings derived from the previous year. The ratings of each team at the end of each round 

were recorded and plotted. This showed that the rating of a team is certainly not constant 

over a year, that teams have periods of good and poor form. (To ensure this was not just 

an apparent affect because the initial rating was in error, the average rating was calculated 

for each team and the program run again with these ratings as the initial ratings. Most 

teams still showed the same general pattern - as the rating is in effect a smoothed average, 

the initial ratings only affect the first few week's ratings). Figures 7. l a  and 7. l b  show 

the week by week ratings of a couple of teams along with their average rating. Clearly 

Collingwood has played the last half of the of the season much better than the first half, 

while Brisbane has made a tremendous improvement from about Round 15 onwards. 

Many of these graphs are interesting in their own right, and could be used to investigate 

the effects of changes, such as injury to star players, changes of coach etc. For example, 

the Brisbane coach announced his decision to retire at the end of the year about Round 

15. In the round 15 match, Brisbane overcame a 45 point deficit at three quarter time to 

beat Hawthorn by 7 points. The victory was put down to the visiting team wilting in the 

heat, but the effects were obviously seen for the remainder of the year. Brisbane's rating 

shows a steady rise from that point and they made the finals for the first time. 

Hawthorn's ratings decreased just as steadily, and they finished second last, missing the 

finals for the first time in since 198 1. While such a spectacular change in fortune can be 

picked up by other means, graphs such as these can be used to study a team's form. 

Their advantage is they have allowed for ability of opposition and HA. Currently 

winning and losing streaks are often used, but these are affected to a great degree by 

quality of opposition. 



Figure 7. la. Weekly ratings of Brisbane during 1995 
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We cannot expect a draw to be balanced for this change of form for different teams. 

Always some teams will be lucky and play opposition when they are down on form or 

missing star players. However it should be balanced for average ability. The average 

ratings for the year were used as initial ratings for the computer predictions. (That 

actually increased the predicted number of winners for the home and away matches for 

the year from 127 to 134, and reduced the margin of error from 32.6 points to 31.2 

points. This gives a measure of the value of the unknown information, average form 

level, at the start of the year.) The final ladder predictions assume current form and HAS 

for the remainder of the year, so the computer predictions before round 1 of the final 

ladder can be used to estimate the expected finishing positions of each team. In a 

perfectly balanced competition balanced for quality of opposition and HA, the expected 

final ladder would be roughly in the same order as u+ 0.5h. Variations from this reflect 

unfairness in the draw. The expected ladder produced by the program, along with the 

team ratings and HAS are given in Table 7.12. 

Note the predicted order is in good agreement with the fair order. However teams that 

have done better than fair are Geelong, Essendon, Richmond and Hawthorn. Those that 

have done worse are West Coast, North Melbourne, Melbourne and Footscray. 

Some of these results are consistent with the previous results on draw difficulty. The 

two teams with the easiest draws both do better than expected and Melbourne with a hard 

draw does worse. Again, there are probably competing effects here. Some can be 

attributed to their poor ground effect at the MCG. The major difference is that the 

previous was based on actual ladder position whereas this method used average rating for 

the year. 



TABLE 7.12. Expected final ladder for 1995, with team ratings and HAS shown 

7.11.4. Using simulation to measure the efficiency of the draw 

Of course the actual ladder positions will be due to some extent on random variation. We 

might wish to investigate the extent to which the final ladder position is affected by 

random variation. A season of football has a large random element, and most supporters 

recognise that luck plays some part in the success of their club. Also club success is not 

a linear function of ladder position. For example, obviously two seconds would not be 

equivalent to a first and third. For both these reasons it is appropriate to look at the 

probabilities of teams achieving certain goals. In racquet sports, for instance, this has 

resulted in the concept of efficiency of scoring systems, where the length of matches is 

traded off against the probability of the better player winning. 
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While it is outside the scope of this thesis to investigate alternatives, we do want to give 

an idea of the effects of random variation on the final ladder. The simulation discussed in 

section 4.2.1 will give us an indication of its extent. Table 7.13 is the result of 
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simulating the 1995 season 1000 times using the average rating for the teams as initial 

ratings. The table shows the number of seasons the team finished in the given position. 

While the most likely position was generally close to the ranking based on u + 0.5h given 

in Table 7.12, the probability of this was often quite low. The table shows the huge 

variation possible in a season of football and demonstrates the dangers in putting too 

much emphasis on the final ladder position as a measure of the team's performance. It is 

possible for almost any team to finish anywhere from last to first due to the random 

effects. The range within which a team was an 80% chance to fall within was about four 

positions for the very best and worst teams, up to about 10 positions for some of the 

middle teams. This dependence on chance can be demonstrated by looking at individual 

matches. In round 9, Adelaide beat Hawthorn 9.06 to 7.16 by two points. Had just one 

of Hawthorn's 16 behinds been a goal, Hawthorn's final ladder position would have 

been three places higher and Adelaide 4 places lower. In contrast, the ui and hi for those 

teams as developed in section 2.14 would have hardly altered at all. For this reason, 

measures as suggested in this thesis are a more accurate reflection of a team's 

performance through the season. 



TABLE 7.13. Chances in 1000 of ending in any position after home and away matches 
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CHAPTER VIII 

WHEN TO RUSH A BEHIND IN AUSTRALIAN RULES FOOTBALL: A 
DYNAMIC PROGRAMMING APPROACH 

8.0. Abstract 

In Australian rules football, points are scored when the ball passes over the goal line. 

Six points are awarded for a 'goal', when the ball passes between the two centre posts 

and one point for a 'behind', when the ball passes between a centre post and an adjacent 

outer post. After a behind, the defending team has a free kick from the goal line. It 

may be worthwhile, particularly in the closing stages of a game, for a defending team 

voluntarily to concede a behind, by themselves passing the ball between the two outer 

posts, either to avert the possibility of an imminent goal or to increase the probability of 

scoring a goal themselves. A dynamic programming model is used to analyse this 

situation. 

Key words: sports, dynamic programming, Australian rules football 

8.1. Introduction 

When a game between two teams nears the end of the scheduled time, it may be 

advantageous for a team, particularly if it is losing, to change its strategy. A well 

known example is that of 'pulling the goalie' in ice hockey, treated by Washburn (1991) 

in a paper which demonstrates how a dynamic programming formulation can take 

account of all possible policies and not restrict consideration to a subset, as previous 

papers had done. End game tactics in other sports have been analysed, for example by 

Clarke & Norman (1998b) on cricket and by Kohler (1982) on darts. 

In this paper we consider the end game in Australian rules football, the major winter 

sport of the southern states of Australia, played between teams of 18 players on oval 

grounds (the same grounds used for cricket during the summer). A match is played in 

four quarters, each of 20 minutes plus about 10 minutes of extra time. Players can run 

with the rugby-shaped ball, but it is moved forward more quickly by kicking or 

punching it to a team-mate, and with no off-side rule, the game is fast. The scoring 

region consists of four upright posts. Kicking the ball between the two centre posts 

scores a goal worth six points, while the region between either centre post and the 

corresponding outside post scores a 'behind' worth one point. A 'rushed' behind is 



scored by a defender kicking, punching or carrying the ball over his own goal line, 

conceding a point in the hope of a possible territorial advantage. Draws are rare: a 

typical score might be anything between 50 and 150 points. 

A particular feature of the closing stages of a match played under Australian rules is the 

decision by a defender whether or not to rush a behind. A defender might prefer to give 

away one point for a rushed behind to eliminate the possibility of the attacking team 

scoring a goal (six points), particularly when the scores are fairly close and a goal 

scored by the attacking team would win the game for them. After a rushed behind, the 

defending team also gains the advantage of possession with a kick from the goal line. 

However, the wisdom of rushing a behind might depend on the time left until the end of 

the match. What might be sensible with an hour left might not be wise in the closing 

minutes. 

8.2. Description of model 

We propose a simple model which is intended to capture the essential features of the 

game, particularly in regard to the decision whether or not to rush a behind. Such a 

model may be useful in generating and testing ideas before practical trials. To fix ideas, 

suppose we (our team) play up the ground, which we divide into seven parts, numbered 

as shown in Figure 8.1. 

-- 
move or rash a behind 

Figure 8.1. Tactical choices in a model of Australian rules football 



We try to move the ball into areas 6 and 7 in which we can attempt to kick a goal. k" 

and kil are the probabilities of scoring 6 (for a goal) or 1 (for a behind) from area i (i = 6 

or 7), (kp + kil = ki). If a goal is scored (+ti), the ball is bounced on the centre spot in 

area 4. If a behind is scored (+I) or a kick at goal misses completely (no score) or the 

defending side rush a behind (-1) the defending side kicks from the goal area and has 

possession in area 3 with probability IT. 

When a team moves the ball, generally forward, it may maintain or gain ground (one 

area at a time) and keep or lose possession with the following probabilities: 

pl keep ball, gain ground 

p2 keep ball, maintain ground 

p3 lose ball, maintain ground 

p4 lose ball, gain ground. 

P I +  p2 + p3 + p4 = 1, and normally pl < p2 and p3 < p4. 

We take it that each of these transitions takes place between stages - decision epochs 

occurring at constant time intervals throughout the duration of the match. 

To facilitate analysis, we suppose that a team will always move the ball in areas 2, 3 , 4  

and 5, and will always kick for goal when in area 7. In area 6 the team may either 

move the ball or kick for goal. In area 1 the team may either move the ball or rush a 

behind. 

Let fn(s, p ,  1) be the probability of our winning the game, with n stages remaining, 

when our team leads by s points and we have the ball in areap, under an optimal policy. 

Optimal here means maximising the probability of winning the game. Similarly, let 

fn(s, p, 2) be the probability of our winning the game, with n stages remaining, when 

our team leads by s and the opposing team has the ball in area p. Suppose also that the 

probabilities {p}, {k} and n are the same for both teams. 

Then fo(s, . ,1) = 1 if s > 0 
= O i f s I O  

fn(s, P, 1) =plfn-l(s, p+l ,  1) 

+ ~2fn-1(~, P, 1) 

+ pafn-l(s, P 32) 
+ P&-~(s, p+l ,  2) forp  = 2 , 3 , 4 , 5  



fn(s, 6 ,1) = max{ move: plf,-,(s, 7, 1) + ...+p4fn-,( S, 7 ,2)  

k i~k :k6~  {0.5fn.l(~+6, 4, l)+...+@n.l(~, 5,2)} } 

f,(s, 1, 1) = max { m~ve:plf,-~(s, 2, 1)+ ...+PB~~-~(s, 2,2) 

rush: 7tfnn.l(~-l, 3, 1) + ( l - ~ > f ~ - ~ ( ~ - l ,  3 ,2)  ) 

fn(s, p, 2) = 1 - f,(-s+l, 6-p, 1) by symmetry, for 

The probability that we win when they have the ball in area p and we lead by s 

= the probability that they win when we have the ball in area 6-p and they lead by s 

= 1-probability that we tie or win when we have the ball in area 6-p and they lead by s 

= 1 - probability that we win when we have the ball in area 6-p and they lead by s-1 

8.3. Initial results 

A short computer program was written in BASIC to evaluate f,(s, p ,  1) and fn(s, p,  2) 

for -25 I s I 25 and p = 1 to 7 for successive values of n. The following parameter 

values were assumed: 

Although calculations were carried out for n = 1 to 50, the main purpose of the program 

run was to confirm that appropriate behaviour occurred at small values of n (near the 

end of the match). Table 8.1 shows when to rush a behind, indicated by a tick, 

depending on the score difference and the number of stages left. A tick indicates that in 

area 1, a defending team will increase its chances of winning by rushing a behind rather 

than moving the ball. For example, with ten stages left, a team which is two points 

ahead should rush a behind, a team which is one point ahead should not. Not 

surprisingly, when a team is up to four points behind, it can be worthwhile for it to rush 

a behind if there are enough stages left for it to have a chance of moving the ball the 

length of the ground and scoring a goal. At five points behind, this tactic is not 



worthwhile, as the point given up through the rushed behind makes it impossible to do 

better than tie. 

When a team is between two and six points in front, it can be worthwhile for it to rush a 

behind because even if the opposing team gain the ball from the goal line kick-off, they 

are further away from the goal line and less likely to score a goal. When scores are 

level, it is sometimes worthwhile to rush a behind, despite the one point penalty; this is 

a consequence of the objective, to maximise the probability of winning. 

Instead of maximising the probability of winning, a team may wish to maximise the 

probability of not losing. It would be surprising for a player to rush a behind in the 

closing stages of a match if the scores were level. No further calculations are needed 

for the probability of our not losing a match when we have the ball in area p and we 

lead by s = the probability that we win the match when we have the ball in areap and 

weleadbys  + 1. 

8.4. Checking the model 

Any operational research model should be checked to ensure that it conforms in a real 

situation. In this case we need to check the realism of our model of the Australian rules 

game. The division of the ground into seven areas enables us to mimic the centre spot 

bounce (area 4) and the possession possibilities following a kick from the goal area 

(areas 3 and 5). Areas 1 and 7 are defined by the areas in which a defending team may 

rush a behind and an attacking team must try for a goal. Areas 2 and 6 represent the 

area in which a team has a choice whether to kick for a goal or to move further towards 

its target goal. The transitions are limited, but they conform to real life: teams rarely 

move the ball backwards. 

It is more difficult to validate the probabilities we have assumed, although they are 

derived from a long term study of the game. Obviously, the probabilities {p) ,  n and 

{k)  will vary from team to team, from match to match and even during a match. We 

believe that the chosen values are fit for an exploratory study. A check on their 

appropriateness, albeit limited, may be made by comparing the results derived from the 

model applied to the entire game with the kind of results that occur in practice. 







A transition matrix for the four possible policies (move or kick for goal in area 6, move 

or rush a behind in area 1) is given in Table 8.2. Each entry in the table is the 

probability of moving from the state identified by the row name, under the decision 

specified (if any), to the state identified by the column heading. 

The steady state probabilities for possession by our team are shown in Table 8.3. Each 

entry in the table is the probability that our team, following the policy identified by the 

column heading, will be, at any stage, in the area specified by the row name. Thus if 

we always move in area 1 (and do not rush a behind) and move in area 6 (and do not 

kick for goal), we shall be in area 1, with possession, 2.3% of the time. Each column 

sums to 0.5, as each team has possession half the time. 

TABLE 8.3. Steady state probabilities under four stationary policies 

In a match lasting, say, 100 minutes, it would be quite typical for each team to run with 

the ball about half the time and to make about 200 kicks and 100 hand passes. 

(Statistics on the number of kicks and hand passes are published as a matter of routine 

in the sports pages of Australian newspapers). Thus we might envisage stages in the 

model to occur at 5 second intervals, with 1200 stages in the match. 

We now compute the expected scores under each of the four policies. In the 

move/move policy, we are in area 7 for 0.023~1200 = 28 stages and in half of these 

(k76 = 0.5) we score a goal. We have a probability of 0.2 of scoring a behind. Thus the 

expected number of goals we score is 14 and the expected number of behinds is 6, 

making an expected score of 90. In the movekick and msh/kick strategies, we are in 

area 6 for .043x1200 = 52 stages and score an expected 10 goals and 15 behinds, 

making a total score of 75 points. In the rushlmove strategy, we are in area 7 for 

0.019~1200 = 23 stages and score an expected 1 1 goals and 5 behinds. Our opponents 



are in area 7 for 0.013~1200 = 16 stages and thus concede an expected 16 behinds, so 

that our total score is 87 points. 

These scores are typical of those occurring in actual play and confirm that a 5-second 

interval between stages is reasonable. They also help to confirm the reasonableness of 

the initial probability estimates. 

8.5. A suggested change in scoring 

The results of Table 8.1 suggest that if the objective is simply to maximise the 

probability of winning, it may be worthwhile for teams to rush a behind for many score 

differences and at many stages of the game. However, if such a strategy were generally 

adopted, it would change the nature of the game. The initial results shown in Table 8.1 

are thus relevant to the view held by some commentators that "teams seem to have 

adopted the attitude that it is preferable to give up one point to eliminate the possibility 

of conceding a goal (six points) ... reinforced ... by the belief that one point is a small 

price to pay for possession". Mike Sheahan of the Herald Sun suggests a three point 

penalty for a rushed behind (Sheahan, 1996). This suggestion was adopted in the 

computer program with the results shown in Table 8.4. 

For small values of n (near the end of the game) the effect of increasing the penalty 

from one point to three is to reduce, in a simple way, the blocks of score differences 

where it is worthwhile to rush a behind: if it is worthwhile to rush a behind if the score 

difference is between L and U and incur a one point penalty, then it is worthwhile to 

rush a behind if the score difference is between L+2 and U and incur a three point 

penalty. For n > 7 this is not always exactly the case, largely because of the longer term 

effects of the difference in penalty points incurred. Generally, the three point penalty 

has a more lasting deterrent effect. 

8.6. Possible extensions 

When the attacking team scores a behind, the ball is kicked into play from behind the 

goal line by the defending team. In the model this possession by the defending team 

has not been considered a possible state: only possessions on the field of play have been 

counted. 



Sometimes it is not clear who has possession. After a kick, a player may fumble and 

drop the ball, after which both teams may struggle for possession. 'Possession in 

dispute' could be a possible extension of the state description. 

As well as running with the ball, a player may play the ball by kicking or handballing 

(punching) it. A possible extension to the model is to allow a team to move the ball 

either within its present area (running or handballing) or to the next forward area 

(kicking). In trying to move the ball further forward there would be a greater risk of 

losing possession. 

An obvious extension would be allow for differences in team capabilities. It would be 

surprising if the two teams were equally competent in all areas and hence had the same 
values of {p), {k) and n. There is clearly scope for a sensitivity analysis to investigate 

the dependence of tactical choices on these probability values. Finally, it would be 

simple to incorporate differing probabilities of winning possession from the centre 

circle bounce. 

8.7. Conclusions 

A computer program has been used to determine optimal end-game strategies for the 

decision whether or not to rush a behind, and to consider the possible effect of a change 

in the associated penalty. The initial results support the view that it is often to a team's 

advantage to concede a point through a rushed behind in order to obtain the probable 

advantage of possession. The main objection to such a policy is that it runs counter to 

the spirit of the game. Australian rules football is an attacking game and a rushed 

behind is a kind of 'own goal' with perhaps an inappropriate penalty. Just as in soccer, a 

deliberate hand ball to stop a certain goal is now penalised more severely than by a 

simple penalty kick, maybe in Australian rules a different kind of penalty is needed 

than a simple one-point penalty. 

Further Reading: Readers interested in the subject matter of this paper will find 

material of interest in Clarke (1993b) and Norman (1995). 





 CHAPTER IX 144 
 

TEST STATISTICS 
 
 
9.1.  Introduction 
 
With origins that can be traced back to the 13th century, the first set of rules for cricket 
were written in 1744.  One hundred years later, on September 24-25 1844, Canada 
played the USA at St George's Cricket Club Ground, Manhattan, New York.  The game 
had spread from England throughout the British Empire and beyond.  Cricket is now 
administered by the International Cricket Council, and matches between countries of a 
suitable standard are called Test Matches and are usually scheduled as 30 hours of play 
over five days. About 250 Tests were played between 1877 and 1935, but with the 
expansion in the number of Test playing countries a similar number were played in the 
1980s. Currently, nine Test match playing countries (England, Australia, West Indies, 
India, Pakistan, Sri Lanka, New Zealand, South Africa, and Zimbabwe) play irregular 
series against each other consisting of between one and six Tests.  While the major 
interest for statisticians is Test cricket, many official matches scheduled to be played 
over at least three days are deemed First-Class and these constitute the majority of 
cricket records.  The domestic competitions of countries with Test status, of which the 
English County Cricket Championship is the best known, are in this category. 
 
Cricket is played between two teams of 11 players on large oval shaped grounds of 
various sizes. The main action takes place in the centre of the ground on a grass pitch 
22 yards long and about six feet wide.  A wicket consisting of three stumps forms a 
target for the bowlers at each end of the pitch.  Unlike pitchers in baseball, bowlers are 
not allowed to throw but use a stiff arm action to deliver the ball on the run, and usually 
bounce the ball off the pitch before it reaches the batsman.  Batsmen play in pairs, one 
at each end, and score a run each time they run the length of the pitch, thus changing 
ends.  A line on the pitch about three feet in front of each wicket is known as the crease, 
and a batsman is dismissed if he fails to ground his bat or part of his body over the 
crease before the fielding side hit the corresponding wicket with the ball.  There is no 
foul area, and the batsmen do not have to run when they hit the ball.  A long hit may 
give batsmen time for up to four runs, while hitting the ball to the boundary 
automatically scores four, and over the boundary on the full scores six.  The many 
means of dismissal include being bowled (the ball hitting the wicket), Leg Before 
Wicket or LBW (the ball hitting the batsman's legs when it would otherwise have hit 
the wicket), caught (a fielder catching the ball off the bat), and run out (failing to make 
an attempted run).  Bowlers bowl balls in sets of six called overs, with alternate overs 
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bowled by different bowlers from opposite ends.  A team's innings ends when 10 
wickets have fallen, (leaving one batsmen not dismissed or not out) or the captain 
'declares' the innings closed (leaving two batsmen not out). 
 
In the traditional form of the game, each team has two innings, and a match is played 
over a fixed maximum period of two to five days.  In most domestic round robin 
competitions first innings points would be given for the team leading after each team 
has batted once, but outright victory is the major goal.  This is achieved by obtaining a 
higher total score than the opponent obtains in two completed innings.  In Test cricket, 
since only outright victory counts as a win, the losing team generally must be dismissed 
twice to get a result.  This means games lasting five days often end in a draw (i.e., are 
unfinished).  The famous 'Timeless Test' (England v South Africa, Durban, 1939) 
scheduled to be played to the finish, was abandoned and declared a draw on the tenth 
day of play because the England team had to board its ship home.  Cricket uses a tie to 
distinguish the extremely rare event when two teams finish on the same score after all 
four innings have been completed.  To overcome the high frequency of draws, and 
generally improve spectator interest, a one-day form of the game was introduced in the 
1960s.  Each team has only one innings in which they each face a maximum number of 
balls (usually 300) over a total of about six hours playing time.  While less tactically 
subtle, failing severe interruption by the weather a decision is always achieved.   
 
The difficulty of scoring runs depends very much on the quality of the pitch, which 
varies greatly from match to match and generally deteriorates during a match.  Thus, 
while 300 may be a respectable score in a Test innings, the highest team score in a Test 
match was 952 for 8 wickets by Sri Lanka against India in 1997, while the lowest was 
26 by New Zealand against England in 1955.  A typical scorecard for one innings as 
usually published in the daily press or cricketing almanacs contains a list for each 
batsman in batting order with their total score, the method of dismissal and the bowler 
responsible.  Note the bowler is still credited with taking the wicket even if the batsman 
is caught.  For each bowler, the number of overs bowled, the number of maidens (overs 
which were not scored off), the total runs scored off their bowling and the number of 
wickets taken is given.  Also included is the team score when each batsman was 
dismissed.  This allows the calculation of the partnership - the total score made while 
each pair of batsmen were batting.  The batting order is usually determined by ability, 
with the first six being recognised batsmen and the last four players selected for their 
bowling.  Milestones for batsmen are the multiples of 50, in particular a century.  For 
bowlers, five wickets in an innings or 10 in a match are more difficult achievements. 
While the traditional scoresheet used by officials has more information, such as a 
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batsman's individual scoring shots, it is a non trivial task to reconstruct a ball-by-ball 
account of the match from the score sheets.  Since official score sheets are usually only 
available from the particular association running the match, and these may not be 
archived, almost all analysis is done from published scorecards.  (Officials actually 
burned the official score book used for the historic 1960 first ever tied Test). Some 
televised matches use computer systems that keep ball-by-ball data, including where on 
the ground the ball was hit, but such data is not freely available.   
 
Table 9.1. shows a typical Test career record, that of English all rounder Ian Botham. 
 

TABLE 9.1.  Test career record of Ian Botham  
 

 M I NO Runs HS Ave 100 50 Ct St 
Batting 102 161 6 5200 208 33.54 14 22 120 - 

           
 Balls M R W Ave Best 5 10 SR Econ 

Bowling 21815 788 10878 383 28.40 8-34 27 4 56.9 2.99 
 
There is a lack of symmetry in the scorecard information which is reflected in the career 
records.  For a bowler, we know how many balls he bowled (Balls), runs allowed (R) 
and wickets taken (W).  For a batsman, we are told runs scored (Runs) and whether he 
lost his wicket or not, but are not told how many balls he faced.  So for bowlers, we can 
calculate a 'strike rate' equal to the number of balls bowled per wicket taken (SR = 
Balls/W), but cannot calculate the run rate (Runs/Balls) for batsmen.  Only in recent 
years has balls faced by the batsman been collected, but it is rarely published in the 
newspapers.  Even if balls faced by each batsman is published, it is impossible to 
reconstruct balls faced by a particular partnership.  In the same way, the number of 
maiden overs gives some distributional information about bowlers which is not 
available for batsmen.  Recent scorecards sometimes show the number of fours and 
sixes hit by batsmen, but a bowlers figures are never broken up in this way. 
 
Like all sports, changes to rules require some care when statistics from different eras 
are compared.  While an over is now standardised as six balls, Australia used eight ball 
overs for sixty years prior to 1978.  The rules for LBW have undergone several 
modifications, and the definition of a no ball and wide may alter from series to series, 
or from Test to one-day cricket.  The treatment of sundries (no balls, wides and leg byes 
and byes) has also changed over the years.  For example, no balls are now debited to a 
bowler's figures, but this was not always the case.  In some competitions, a no ball has 



 147

been credited as two runs, whereas traditionally it has been worth one run.  It has 
recently been suggested to discontinue counting a wide as a ball faced by batsmen.  
This seems reasonable, since a wide by definition is a ball impossible to hit. 
 
While earlier publications (Haygarth, 1862-1885, 1925) detail the history of cricket for 
each season from 1746, Wisden Cricketers Almanack, (Engel, 1997) has been the 
traditional Bible of cricket statistics since its first publication in 1864.  Each annual 
edition contains statistics from the previous English domestic season, plus full 
scorecards of every Test match played around the world during the year, and coverage 
of cricket in 40 different countries.  Over 40,000 first-class matches have been played, 
and the maintenance and publication of their records is a major aim of the Association 
of Cricket Statisticians and Historians (ACS).  The association publishes a quarterly 
journal, The Cricket Statistician, containing non-technical articles on cricket statistics.  
All ACS scorecards are gradually being transferred to CricInfo, a fan-based 
organisation which aims to provide cricket scores and records via the World Wide Web.  
Further details on both these organisations and several similar ones can be obtained 
from the web. While such organisations provide cricket statistics, the capabilities of 
their memberships to perform analyses of a technical nature are limited.  Thus, while a 
huge number of statistics and records are collected and published, there is little attempt 
at any serious statistical analysis.   
 
Cricket has the distinction of being the first sport used for the illustration of statistics.  
In Primer in Statistics, Elderton and Elderton (1909), used individual scores of batsmen 
to illustrate frequency distributions and elementary statistics.  Elderton (1927) used 
scores of batsmen to illustrate the exponential distribution, and Wood (1941) 
investigated the idea of consistency.  These efforts resulted in Wood (1945) and 
Elderton (1945) reading separate papers at the same meeting of the Royal Statistical 
Society.  These papers have some claim as the first full quantitative papers applying 
statistics to sport.  The papers are accompanied by 17 pages of discussion, 
demonstrating the great interest generally created by papers in sport.  Yet in spite of this 
interest, the topics raised were ignored in the professional statistical literature for over 
thirty years.  In contrast to baseball, few papers in the professional literature analyse 
cricket, and two rarely examine the same topic.  This allows us the luxury of looking in 
some detail at virtually all the published material using statistics in cricket. 
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9.2.  Distribution of scores 
 
The distribution of batting scores was first discussed by Elderton and Elderton (1909).  
Graphs of a batsman's scores were used to illustrate skewed distributions.  While no 
formula was given a theoretical graph that could only be that of the negative 
exponential distribution is shown.  Elderton (1927) formalises this by using the same 
scores to illustrate the Pearson Type X or negative exponential distribution.  If a 
batsman scores only singles and his probability of dismissal is constant his scores 
should follow a geometric distribution, the discrete equivalent to the negative 
exponential.  Elderton (1945) obtains a reasonable fit of the geometric distribution to 
the individual scores over three years of four early cricketers.  Wood (1945) takes this 
further and compares the scores and several statistics of several groups and many 
individual batsmen with that expected using the geometric distribution.  Although no 
significance tests are used, the fit is generally fair.  However, the number of ducks and 
scores less than five is less than predicted while the number of centuries is greater than 
expected suggesting that the probability of dismissal is not constant.  Cricket folklore 
says batsmen are more prone to dismissal early in their innings, perhaps get nervous or 
careful when their score reaches ninety, and tire or hit out later in their innings.  In fact 
there are several reasons why scores should not be exactly geometric.  The score does 
not increment by one, but advances by jumps of usually 1, 2, 3, 4, or 6.  As well as 
changing throughout an innings, one would certainly expect the probability of dismissal 
to change from innings to innings, depending on the quality of the pitch, or the 
opposition.  Wood raises the possibility that the discrepancies are the result of 
combining two or more geometric distributions and investigates this by looking at 
batsmen's scores over several years both individually and in combination.  He finds that 
while combining several geometric progressions will understate the expected number of 
zeros and centuries, the effect is small and does not explain the discrepancy with the 
observed scores.   
 
Other authors argue that because the chance of dismissal varies throughout an innings, 
and from one innings to another, the negative binomial distribution may describe the 
number of runs scored in completed innings.  Using data from Wood for three batsmen, 
and data for three contemporary batsmen, Reep et al. (1971) found only one batsman's 
scores in each set were approximately negative binomial.  Pollard (1977) applies a chi-
square goodness of fit test to Elderton's data and finds the geometric distribution 
performs slightly better than the negative binomial.  However, both fitted distributions 
have higher variances than the empirical data.  Pollard et al. (1977) claim the excess of 
high scores will not be present if partnerships are investigated, as several partners may 
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be dismissed while a player is making a high score.  They obtain a good fit of the 
negative binomial to all partnerships for a team in the English County championships.  
On the other hand, Croucher (1979) found a negative binomial failed to fit the total 
number of runs for each completed Australian partnership in 82 England Australia 
Tests.   
 
In the papers of Elderton and Wood, we first come across a continuing problem in 
cricket - how to handle the not out scores (i.e., scores by batsmen who are not 
dismissed).  While Elderton and Elderton (1909) added the next score to a previous not 
out score, these early papers generally treated not outs as completed innings.  Kimber 
and Hansford (1993) looked at the empirical discrete hazard and smoothed empirical 
hazards of the Test, first class and one-day international scores of several batsmen, and 
compared them with the constant hazard expected for the geometric distribution.  For 
most batsmen, the region from 0 to 5 runs is higher than expected.  However, they 
found no compelling evidence that the hazard is not otherwise constant and concluded 
that the tail of the score distribution for a batsman is roughly geometric.  
 
Many arguments against the geometric distribution for scores do not apply to the 
number of balls a batsman faces.  This count certainly increments by one.  A batsman 
can alter the degree of risk he takes, in order to play each ball with the same chance of 
dismissal.  Early in the innings he is just content to survive, whereas later when he is 
settled he will take risks in order to score.  Similarly, on a bad pitch or against good 
opposition he may play more carefully, and adjust his scoring rate to keep roughly the 
same risk of dismissal.  For these reasons, Clarke (1991) suggested the distribution of 
the number of balls faced by a batsman in an innings may be geometric.  Unfortunately, 
in the past the number of balls faced has not been regularly published or even kept by 
scorers.   However, using ball by ball data for Australian batsmen from all matches in 
the 1989-90 one day series involving Australia, Pakistan and Sri Lanka, he failed to 
obtain a better fit for balls faced than scores.  All 60 innings of the top Australian 
batsmen were combined, and the distribution of both the number of balls faced and 
scores were compared to the geometric distribution using the Kolmogorov Test.  Both 
scores and balls faced had p values of about 0.2.  Strangely, the results for scores 
tended to be the reverse of those found in Test cricket; the number of very low values 
and very high values was less than expected for both scores and balls.  The limited 
nature of one-day cricket obviously produces a distribution of scores different from the 
traditional game.  
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Because teams generally play under similar conditions throughout a match, a strong 
positive correlation between performances in a match may be expected.  However, 
various investigations have failed to produce much evidence of this correlation.  
Elderton (1945) tabulated the scores of two pairs of county championship opening 
batsmen, using intervals of 10 runs, and by visual inspection found no correlation 
between their scores.  Croucher (1982b) calculated the correlation for each team 
between twenty five pairs of completed innings in Tests between Australia and 
England.  He found zero correlation for Australia, and a non-significant negative 
correlation for England. Testing a belief held by fans that long partnerships are 
generally followed by short ones Croucher (1979) found some evidence to the contrary, 
that partnerships following century partnerships tend to be longer than usual.   
 
The distribution of scores is important as it affects the appropriateness of other 
statistics.  Kimber and Hansford (1993) question the use of the batting average.  This is 
defined as the total number of runs scored divided by the number of times the batsman 
has been dismissed.  Thus, runs scored in innings in which the batter has not been 
dismissed are included in the numerator, but the denominator does not count those 
innings.  Because of the handling of not outs, many cricket fans have a certain unease 
with the current statistic as it appears to give inflated averages - a player may have an 
average larger than his greatest score.  Since more than 10% of scores are not outs, it is 
an important statistical issue.  Kimber and Hansford demonstrated that the batting 
average has the desirable property of consistency irrespective of the censoring 
mechanism for not out scores only if the distribution of scores is geometric.  Since this 
is not the case exactly, they claimed the batting average does not estimate the 
population mean.  Applying the methods of survival analysis, they defined a non-
parametric alternative which effectively distributes the not out scores using the 
empirical distribution of any higher scores.  A parametric adjustment is needed when 
the batsman's highest score is not out, as there is no empirical information on his 
chances of dismissal above that score.  The method has the disadvantage of needing re-
calculation from scratch with each new score.  They calculated the new average for 
several batsmen and also suggested other statistics such as selected centiles.  They 
finally recommended a slight alteration to the career statistics of batsmen, by including 
with the number of 50s and 100s the percentage of 50s and 100s inflated for not outs.   
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Elderton and Elderton (1909) used the standard deviation of scores as a measure of 
consistency, with zero implying perfect consistency.  By contrast, because the mean and 
standard deviation of the geometric distribution are (roughly) equal for a large mean, 
Wood suggested using the coefficient of variation (CV) (multiplied by 100) as a 
measure of consistency, with the closer to 100, the more consistent a batsman.  In his 
analysis, Wood found CVs as low as 96 and as high as 139, but mainly in the range 
100-109.  Pollard (1977) claimed a high CV indicates a batsman has problems early, 
but scores runs more easily later in the innings.  Using a model where the number of 
balls faced was geometric, while the score off each ball had any unspecified alternative 
distribution, Clarke (1991, 1994) showed that perfectly consistent batsmen will have 
CVs greater than 100, and that perfectly consistent batsmen with different scoring 
distributions off each ball will have different CVs.  Thus it is not possible to have a 
single measure (CV closeness to 100 as proposed by Wood) which indicates perfect 
consistency for all batsmen.  Still, the regular publication of the standard deviation or 
CV of scores would assist fans in judging the consistency of batsmen.  Analogous 
questions on the distribution and consistency of runs and wickets for bowlers have not 
been analysed in the literature.   
 
9.3.  Rating players 
 
The major system of rating players is the Deloitte ratings which were created by 
Deloitte, Haskins and Sells in 1987.  After several mergers, they are now called the 
Coopers & Lybrand ratings.  The system rates the current Test form in both batting and 
bowling for all international players with ratings updated after each Test match.  The 
algorithm supposedly takes into account the playing conditions, the strength of 
opposition, and the results of the match.  However, these are estimated objectively from 
the details in a typical summary score sheet.  The ratings have been backdated to the 
late seventies. 
 
Because of its proprietary nature, it is difficult to obtain details of the algorithm, and 
even more difficult to get details of the statistical work behind its derivation.  
Berkmann (1990) contains a few pages of description of the algorithm, along with 
ratings for all players from the 1980s.  A rating is worked out for each performance 
(defined for the purposes of calculating the ratings as an innings for a batsman, and 30 
runs conceded for a bowler), combined to give a player rating for each Test, which is 
then smoothed with past ratings to produce a new rating. The statistics used to calculate 
a batsman’s rating are runs scored, whether not out or out, the team score, wickets 
fallen, and the match result.  The opposition bowling strength is also used but this is 
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estimated from the statistics.  For bowlers, the statistics used are runs conceded, wickets 
taken (including which batsmen), balls bowled per wicket (strike rate), runs conceded 
per ball, team scores and match result.  The ratings take a player's basic statistic (e.g., 
runs scored or wickets taken) and multiplies it by a series of factors depending on 
whether the performance is above or below average with respect to playing conditions.  
For example, a batsman's runs are increased if the pitch is 'difficult', as measured by the 
ratio of the number of runs per wicket in the match to the average of 31 found in 
previous Test matches.   
 
A major point of contention is that the algorithm rewards performances of players on 
the winning side in a match more than in drawn or lost matches.  Thus, above average 
players on the winning side are given a bonus, while below average players on the 
losing side are penalised.  Ted Dexter, one of the initiators of the scheme, said “the 
pleasant surprises include ... the considerable accuracy of the ratings when used to 
compare the relative strengths of the Test playing countries” (Berkmann, 1990, page 
iii).  This is hardly surprising for an algorithm that gives a greater rating to a 
performance on a winning team.  Also the rating is not symmetrical with respect to 
batsmen and bowlers.  A bowler’s strike rate is included in the calculation, but not a 
batsman's scoring rate.  Similarly, the overall opposition bowling strength is taken into 
account for batsmen, but opposition batting strength is not used for bowlers.  
Nevertheless, the ratings seem to have gained some acceptance by cricket followers. 
However, the need for some proper analysis of the scheme is evident.  For example, a 
simulation could be used to investigate the effect playing on good and poor teams has 
on ratings of players of similar calibre.  The effect of batting against good and poor 
bowling sides should also be analysed.  Surprisingly, alternatives based on models of 
how Test cricket is played have not been proposed. 
 
The Deloittes ratings are only applied to Test cricket.  Johnston (1992) and Johnston et 
al. (1992, 1993) looked at a method of rating players in one-day cricket in which 
traditional statistics are not as relevant.  A quick score of 30 may be more valuable than 
a slow century; three wickets in the last over is of no more value than a maiden.  By 
comparing the actual number of runs each ball with the optimal given by a dynamic 
programming formulation, both a batsman's and a bowler's contribution could be 
measured in a radically different way to normal methods.  The context in which events 
occurred becomes important.  Johnston et al. (1993) gave ratings for each player in a 
one-day series.  One difficulty confronting the acceptance of the system is its need for 
ball-by-ball data.  However, with the growing use of computer-assisted scoring, such 
methods become more viable.  
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9.4.  Tactics 
 
Some quantitative work has been done in the area of tactics.  The limited nature of the 
innings in one-day cricket creates a trade-off between run rate and loss of wickets.  
Traditional tactics suggest an innings starts cautiously, with teams scoring slowly and 
preserving wickets.  The run rate steadily increases, until near the end of the innings 
there is often a frenzy of runs scored and wickets fallen.  Clarke (1988) analysed this by 
setting up a dynamic programming model with the stage the number of balls to go in 
the innings.  The model assumed all batsmen were of the same ability, and the 
probability of dismissal on each ball depended only on the run rate.  For the first 
innings, the states were the number of wickets to have fallen, and the objective function 
was the number of runs scored in the remainder of the innings.  In the second innings, 
the state was the number of wickets and the number of runs to go, and the objective 
function was the probability of exceeding the opponent's score. 
 
Under the assumed relationship between run rate and dismissal probabilities 
(necessitated by a lack of data), Clarke’s results suggested that teams should score more 
quickly early in the innings - in fact, at any stage they should score at a slightly greater 
rate than the expected rate for the remainder of the innings.  Such tactics have become 
more accepted recently, and in particular used by the current World champions, Sri 
Lanka.  Johnston (1992) later showed the recommendations were valid under a range of 
relationships between run rate and dismissal probabilities.  Clarke and Norman (1995, 
1997a, 1997b) have extended the models to allow for batsmen of unequal ability.  Near 
the end of an innings in Test or one-day cricket, two batsmen of widely different ability 
will often refuse a possible run early in the over to protect the weaker batsman from the 
strike.  They investigated the point in the over and in the innings when this tactic is 
optimal with respect to different objective functions. 
 
The way batsmen are dismissed has received some attention.  For example Croucher 
(1982a) analysed dismissals in the 96 Australia - England Test matches between 1946-
80.  He investigated the various types of dismissal with respect to batting position and 
location (England or Australia).  About 20% of batsmen 1 to 7 are bowled, but this 
increases steadily to nearly 38% for number 11.  The LBW dismissal rate is about 14% 
for batsmen 1 to 8 but much less for batsmen 9 to 11.  In contrast the percentage of 
batsmen caught is reasonably constant.  A thorough investigation of modes of dismissal 
would be interesting and could find application to vary tactics in different countries.   
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9.5.  Umpiring decisions 
 
An area that has received some attention is the contentious one of umpire bias.  Only 
recently has the traditional practice of the home country providing both umpires for 
Test matches been modified. Because the rule is quite complicated, LBW is the most 
subjective type of dismissal and often creates controversy. For the period 1877 to 1980, 
Sumner and Mobley (1981) found significantly fewer LBW dismissals against home 
teams than visiting teams in India, Pakistan, and South Africa, but not in Australia.  
Croucher (1982a) found that, while on average about 12% of batsmen are dismissed 
LBW, this percentage varied from 10.6% in Australia to 14.0% in England.  This could 
be due to the different behaviour of pitches in England and Australia.  However when 
subdivided by team, LBW rates for England were fairly constant at 11.6% and 12.0% in 
Australia and England, but for Australia varied from 9.5% in Australia to 15.4% in 
England.  This could be due to umpire bias, or Australian batsmen not adjusting to 
conditions.  Breaking batsmen into two categories, 1-5 and 6-11, the frequency of LBW 
decisions showed a dependence of location and category for Australian batsmen but not 
for English.  One interpretation of this is that umpires give decisions against top order 
batsmen but square the account against lower order batsmen. 
 
Crowe and Middeldorp (1996) used logistic regression to compare LBW rates in Test 
matches played in Australia for visitors and Australians for the period 1977-1994.  The 
odds of an LBW dismissal are defined as the ratio of LBW dismissals to all dismissals 
by other means.  A logistic model was used to fit the logarithm of the odds for a series 
of matches to a linear expression using indicator variables for the various countries.  
Separate models were fitted using only the top six batsmen and all batsmen.  An initial 
model found a significant difference for LBW rates for visiting teams and Australia.  
Since there was no evidence of the odds for countries changing over time, nor of 
Australia's odds changing depending on opponent, the overall odds for each country 
were calculated and compared with the common odds for Australia.  For both the top 
six batsmen and all batsmen, only three of the seven countries that had visited Australia 
during the period (England, Sri Lanka and South Africa) had significantly 
proportionally more LBW dismissals than Australia.  For example the odds ratio for 
England was 1.7, with a 95% confidence interval of 1.2 to 2.5.  Interestingly India, 
whose captain had complained of umpire bias, had an odds ratio of only 1.059, barely 
greater than the expected value of 1 if there was no bias.  Of course, as Crowe and 
Middeldorp point out, other factors such as a difference in playing style, more 
experience on home wickets or different tactics could account for the results. 
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9.6.  Rain interruption in one-day cricket 
 
Because of the limited number of balls in one-day cricket and the requirement that a 
result has to be achieved if at all possible, allowance has to be made for rain 
interruption.  For example, if the innings of the team batting second is shortened 
because of rain, the target score for victory has to be reduced to compensate for the 
reduced number of overs.  Various formulae to adjust the target score have been tried 
with varying degrees of success.  These rules appear to be developed ad hoc by 
administrators and rarely are based on a proper quantitative study.  They are used until 
a particular situation arises which makes a mockery of the rule, which is then replaced.  
For example, in one World Cup semi-final, South Africa, who had a reasonable chance 
of achieving their target when rain interrupted, were then required to face one ball and 
score 22 runs to win when play resumed.   
 
Using a dynamic programming formulation to investigate tactics as described earlier, 
Clarke (1988) produced a table giving the number of runs a team could expect to make 
in the remainder of the innings, depending on the number of wickets fallen and the 
number of balls to go.  For the second innings, the analysis gave the probability of 
scoring the required number of runs, again depending on the number of wickets fallen 
and the number of balls to go.  He suggested the tables could be used to evaluate the 
effectiveness of rain interruption rules, so that teams would have the same chance of 
winning after the interruption that they had prior to the rain.  He showed that the rule 
current at the time, where the second team had to score at the same rate for the 
shortened number of overs, was highly advantageous to the team batting second. 
 
Duckworth and Lewis (1996) and Duckworth (1997) produced a method using tables 
similar to Clarke's first innings table, but which were derived from past statistics.  They 
treated balls to go and wickets remaining as run-scoring resources, and fitted an 
exponential decay model for the average number of runs scored to past data.  The 
resulting function used to give a measure of the proportion of these combined resources 
available at any stage of the innings.  Targets are adjusted depending on the proportion 
lost due to rain.  For example, suppose a team chasing 250 has lost two wickets after ten 
overs when a rain interruption reduces their available overs from 50 to 40.  The table 
shows at the time of the interruption they had 77.6% of resources left, but on 
resumption had 68.2% left.  They lost 9.4% so their target is reduced by 9.4% of 250 or 
24 runs.  The method can be applied to interruptions at any stage of a match.  The 
system allows the calculation at any stage of the second innings of the score the batting 
side needs to win the match if abandoned at that point.  This allows a team and the 
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spectators to gauge the match run by run and wicket by wicket.  This system was first 
used in international competitions in Zimbabwe in 1996, and is being used for domestic 
competitions in England in 1997.   
 
A by-product of the system could be a better method of declaring the winning margin in 
one-day matches.  Margins in one-day matches are still given using traditional 
measures of runs if won by the team batting first or wickets if won by the team batting 
second.  These can be quite misleading.  For example, a team batting second that scores 
the winning run on the last ball of the innings may be credited with a 6 wicket victory.  
This sounds comfortable, when in fact the team had used virtually all their resources.  
The method could also be investigated to provide alternative tie-breaking procedures in 
one-day round-robin tournaments. 
 
9.7.  Sundries 
 
In 1981, in response to a request for data for a simulation study of batting order in one-
day cricket, a student of the author received a firm refusal from a high ranking 
Australian cricket administrator which included " Any analysis that you suggest would 
be wholly hypothetical, and of no value...the analysis would only be greeted by scorn 
by those with a proper understanding of cricket.  The inherent essence of cricket is its 
unpredictability; and an attempt to reverse this .. is something I would not personally 
encourage."  With the increasing use of science in sport, one hopes this view is not 
widely held today.  Cricket administrators now clearly seek assistance from academics 
to solve management problems that are not peculiar to cricket (Johnston, 1992; Willis 
and Armstrong, 1993; Willis, 1994; Wright, 1991, 1992).   
 
The history of rain interruption rules suggest they are less reluctant to seek their help 
with on field and other problems.  Few first class competitions have the luxury of 
allowing 5 days play as in test matches.  Consequently, in a high proportion of these 
matches, neither team achieves an outright victory.  In domestic round robin 
tournaments, the relative allocation of points for first innings and outright victory 
varies, and administrators have experimented with bonus points for fast batting or 
penetrative bowling.  Rarely are these experiments based on, nor their effectiveness 
judged by, statistical studies.  Bosi (1976) investigated the effect of the introduction of 
bonus points in county cricket.  He claimed that a significant change in the correlation 
in ladder position using the traditional and new methods shows the rule alteration 
affected the way cricket was played. 
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However, statisticians should play a major role in developing rules, not just evaluating 
their effect after the fact. The problem of allocating points for unfinished matches 
should be investigated, with possibly some of the methods used for one day matches 
applied.  There is currently discussion in cricket about the publication of a world 
ranking of Test teams.  Wisden publish their own table (Engel, 1977, p19), based on 
each country scoring 2 points for winning a series and 1 for drawing, but the system 
does not take into account margin of victory nor home advantage.  With countries 
playing intermittent series of different lengths, statisticians should investigate and 
recommend suitable ranking systems before cricket administrators decide on something 
inappropriate.  Similarly, player evaluations should not be considered resolved, and 
rivals to the Cooper and Lybrand rating should be developed.   
 
Cricket is highly variable.  Clarke (1994) showed that with roughly geometric 
partnership score distributions, purely random variations give rise to team scores 
ranging from 100 to 500 in Test cricket.  Johnston (1992) simulated one-day cricket 
using optimal batting rate policies and obtained scores ranging from 75 to 322.  A game 
with so much variation provides ample scope for statisticians to assist participants, 
administrators and supporters to separate real effects from random noise. 
 
However, topics that have proved fruitful areas of research in other sports have been 
largely ignored in cricket.  While the difficulty of winning a Test series on foreign soil 
is recognised, home ground advantage has not been thoroughly studied.  Pollard (1986) 
quoted home advantage in cricket county championships to be 56.1%, excluding drawn 
games.  Because in domestic competitions some teams play on pitches that regularly 
produce results, and outright wins are rewarded more than first innings wins, Clarke 
(1986) showed that some teams not only win a greater proportion of the points awarded 
on their home ground, but compete for a greater number of points than other teams.  
Such a system would never be tolerated in other sports.   
 
Surprisingly few alternative statistics have been suggested.  Cricket fans seem to be 
satisfied with dividing the traditional ones into categories.  So, a batsman is still judged 
by his average, although this may also be given against a particular country or at a 
particular ground.  With the introduction of one-day cricket, strike rate, economy rate, 
and run rate have also become popular and the articles mentioned here have made 
several suggestions for alternative statistics.  With these statistics currently being 
measured over the life of a player, the use of moving averages could be used to measure 
current form.  There may be advantages in combining the statistics in various ways.  
For example Kimber (1993) compared bowling statistics using scatterplots, while 
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Ganesalingam et al. (1994) applied multivariate analysis techniques to classify players 
as batsmen, all-rounders, or bowlers.  Such studies could suggest further statistics or 
indices to be used in evaluation of players and selection of teams.   
 
9.8.  Conclusion 
 
In spite of a huge collection of statistics on cricket dating back over two hundred years, 
little attempt at serious analysis has appeared in the professional literature. Of all the 
sports in this text, cricket has the distinction of having statistics that stretch back the 
longest, the first use of sport in a statistics text to illustrate statistical principles, the first 
full quantitative paper, and yet probably the fewest serious papers analysing the 
statistics in the professional literature.  It is surprising that more statistical analysis has 
not been undertaken.  Many questions in cricket could be investigated using relatively 
elementary statistical techniques.  Is one team better than another?  Is one batsman 
better than another?  Does the rate of dismissal vary?   
 
A large number of papers have been written about baseball - best batting order, value of 
player, measurement of hot streaks etc.  Similar research could be done in cricket.  One 
of the neglected areas calling for study is bowling.  When thanking Elderton, (Wood, 
1945) said "At last a great statistician has discovered what is, I believe, the richest field 
of statistical material left untilled.  I have scratched over its surface, but other 
statisticians will find in it materials for all sorts of statistical experiments, particularly 
in the bowling analyses".  This statement is still valid today.   
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ANOTHER LOOK AT THE 1985/86  
SHEFFIELD SHIELD COMPETITION CRICKET RESULTS 

 
 
10.1.  Introduction 
 
This article aims to show how a simple analysis of competition results can yield 
valuable insights into team performance and competition rules. While the analysis has 
been done on the Sheffield Shield, similar analysis could be performed on any other 
cricket or sporting competition. While this simple analysis uses only the outcome of the 
matches (first innings win, outright or draw), similar calculations using wickets, runs or 
runs per wicket could be performed. 
 
In the 1985/86 Sheffield Shield competition, the team leading on the first innings 
gained four points with eight points for an outright win. The results of the 1985/86 
competition are shown below in Table 10.1. 
 

TABLE 10.1.  Results of the 1985/86 Sheffield Shield competition  
 

 
Team 

Outright  
wins 

First innings 
wins 

Total 
points 

NSW 4 6 56 
Qld 4 5.5 54 
Vic 2 8 48 
WA 2 6.5 42 
SA 2 3 25 
Tas 0 1 4 

 
The two top teams, NSW and Qld, played in the final at Sydney which was drawn but 
NSW won the Shield because of its top position.  While NSW performed best under the 
rules of the competition, this may not necessarily indicate that NSW was the best team 
under all scoring systems and ground allocations. To determine how well each state 
performed, a more critical analysis of the results is appropriate. Here we analyse the 
year's results in various ways and suggest alternative  methods  of  allocating points. 
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10.2.  First innings win - outright win weighting 
 
In the 1985/86 season a first innings victory  gained four points, and outright  victory 
gained another eight points.  In the past, other weightings have been used to give 
greater rewards to an outright victory such as four for a first-innings and 16 for an 
outright.  In fact this weighting can be changed drastically without altering the above -
order.  Keeping first innings points at four, outright points can come down as low as 
five and go up as high as you like and the above order will be preserved.  But the 
scoring system has again been changed for the 1986/87 season.  (Note:  For 1987/98, a 
team earns four points for an outright win and two for leading on the first innings.  
However, any team that is beaten outright after leading on the first innings, loses its 
first-innings points. In addition teams who do not bowl the required number of overs 
may be penalised points.) 
 
10.3.  Home ground advantage 
 
A greater insight into the year's results can be achieved by looking at where each team 
gained its victories.  Table 10.2 shows the points won/lost in each match. 
 
The home team is shown at the top of the table and the away team down the side.  The 
entry shows the number of points won by the home team and the number of points won 
by the away team.  Thus 8-4 in the SA column/Tas row tells us SA (home team) gained 
eight points for the outright, although Tasmania won first innings points. 
 
Table 10.2 allows us to easily see a team's home and away performance, or compare 
two teams' performances against other teams.  The table shows that: 
• None of the top four teams lost outright at home. 
• When the top four teams played each other only three times out of 12 did the away 

side gain first innings points.  
• Teams are far more likely to win at home (146 points) than when they are away (86 

points). 
• With 52 points being won in Sydney, the NSW ground is far more likely to produce 

an outright result than is the MCG at which only 20 points were won. 
 
From these findings, we see that a side is given a huge advantage when the final is 
played at its home ground.  Even if the final was decided on first innings points, the 
home side would have a 75 per cent chance of winning based on 1985/86 results.  By 
insisting that the visiting (second placed) side win outright to win, the Shield organisers 
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are virtually giving the Shield to the top side. 
 

TABLE 10.2.  Points won/lost in each match. 
 

 Home Team Total 
  

NSW 
 

Qld 
 

Vic 
 

WA 
 

SA 
 

Tas 
points 
away 

Away  
Team 

For-
Ag 

For-
Ag 

For-
Ag 

For-
Ag 

For-
Ag 

For-
Ag 

Ag-For 

NSW - 0-4 4-0 12-0 40 0-4 20-8 
Qld 4-0 - 4-0 4-0 0-12 0-12 12-24 
Vic 8-4 4-0  - 0-4 4-8 0-12 16-28 
WA 12-0 2-2 4-0 - 0-4 0-4 18-10 
SA 12-0 12-0 4-0 4-0  - 0-12 32-12 
Tas 12-0 12-0 4-0 12-0 8-4  - 48-4 

Total points 
 at home 

48-4 30-6 200 32-4 16-28 0-44 146-86 

 
Table 10.3 illustrates the point by showing the total number of points awarded in 
matches each team played at home and away and the percentage of those points each 
team gained.  It shows that: 
 
• The four top teams gained the majority of their home game points - over 80 per cent 

for each of the top four teams and over 90 per cent for Victoria and NSW. 
• The greatest number of points came from games played in NSW where 52 points 

were scored from a possible 60 points available. 
• The least number of points came from games played in Victoria, where only 20 

points were scored and all by the home side. 
• Games played in NSW produced almost 50 per cent more home points than those 

played in Queensland and at least 20 per cent more home points than games played 
in any other State. 

• In matches played away from home those involving Victoria and SA produced the 
most points and those involving NSW the least points. 

• Both Victoria and Queensland gained more than 60 per cent of the points scored in 
their away matches whereas NSW gained only 30 per cent.  
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The above analysis shows quite clearly that there is a large home ground advantage in 
the Sheffield Shield competition.  This advantage is in two parts.  The first allows a 
team to perform better on its home ground than away - such an advantage is inherent in 
the game and while it appears to be greater for some teams than others, that is not a 
problem.  It is up to each team to learn to successfully exploit the idiosyncrasies of their 
home ground.  The second is more insidious - for successful exploitation of this home 
ground advantage, some teams are rewarded more than others.  This type of home 
ground advantage is inherent in the scoring system and administrators should work 
towards its removal. 
 
It is clear that NSW finished on top of the table because they exploited a home ground 
where outright victories were the norm. At the other grounds, perhaps because of flat 
pitches or loss of time due to rain, outrights were far less common. These teams were 
put at a severe disadvantage because of the scoring system used. It should be noted that 
if groundsmen wish to assist their teams, they should prepare pitches which will 
produce outrights. That way, their team will be playing for zero or 12 rather than zero 
or four points. Similarly, captains would be better off agreeing to declare their first 
innings closed at 0-0 and so make a first innings win an outright win. (This is not as 
outlandish as it seems. A similar happening occurred in a Victorian Cricket Association 
match when the teams declared their first innings closed at 2-69 and 3-69, allowing 
time for one side to gain an outright.) 
 

TABLE 10.3.  Comparison of points won at home and away 
 

 Points won at home matches Points won at away matches 
 
 

Team 

 
Home 
team 

Both  
teams 

combined 

Home team
 x100 

/combined

 
Away 
team 

Both  
teams 

combined 

Away 
team x100 
/combined

NSW 48 52 92% 8 28 29% 
Qld 30 36 83% 24 36 67% 
Vic 20 20 100% 28 44 64% 
WA 32 36 89% 10 28 36% 
SA 16 44 36% 12 44 27% 
Tas 0 44 0% 4 52 8% 
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10.4.  Overcoming home ground advantage 
 
It is obviously the organiser's responsibility to choose scoring methods which reduce 
the present home ground advantage. Two methods are suggested. 
 
1. Sharing points for undecided outrights.  This method treats undecided outrights in 
the same manner as undecided first innings points. The Queensland/WA match resulted 
in the four first innings points being split 2-2 as the two first innings were not 
completed. If outrights were treated the same way, the eight outright points would be 
split between the two teams in the event of the match being drawn. This would mean 
that every match resulted in the awarding of twelve points, and in 1986 would have 
resulted in the following final Shield table. 
 

TABLE 10.4.  Shield table resulting if points for undecided outrights shared. 
 

Team Points 
Queensland 78 

NSW 76 
Victoria 76 

WA 70 
SA 44 

Tasmania 16 
 
2. Using point difference.  In deciding the point allocation for games administrators 
influence the way the game is played.  Rewards are given for outcomes that correspond 
to some ideal behaviour  winning on the first innings or outright.  For example, in the 
past, to encourage attractive play, bonus batting points have been given for scoring 
quickly. Now, while winning matches is behaviour that should be rewarded, it also is 
true that not losing matches should also be encouraged.  A team is not penalised for 
losing matches outright. In Test cricket, the quality of not losing matches is important - 
teams sometimes fight for several days just to avoid defeat. In the present Shield 
competition, such a fight would not be rewarded. A team receives exactly the same 
number of points if it loses or draws. A simple way to incorporate rewards for not 
losing (or penalties for losing) is to award points as present but determine the table on 
points difference: points won less points lost. 
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Such a table is easily made up by referring back to Table 10.2.  For example, NSW total  
points gained is 48+8 = 56, total points lost 4 + 20 = 24.  Doing this for each team gives 
the Table 10.5 

 
TABLE 10.5.  Final Shield table using point difference 

 
Team For Against Difference 

Queensland 54 18 36 
NSW 56 24 32 

Victoria 48 16 32 
WA 42 22 20 
SA 28 60 -32 

Tasmania 4 92 -88 
 
This gives a final order of Queensland on top with NSW and Victoria equal second.  
Note that NSW has dropped in the order because it lost more matches than Victoria and 
Queensland.  Now while negative numbers are difficult to work with, it can be shown 
that this system is exactly the same as allocating outright points equally between two 
drawn teams.  This system produces the same order as the method outlined in the 
previous section.  In fact, the points under the previous system are always 60 + half the 
above differences. 
 
The previous method of allocating outright points equally between drawn teams not 
only goes some way to reducing home ground advantage, but also rewards teams for 
not losing matches. 
 
10.5.  Alternative method 
 
While it is not suggested as a method for determining a Shield winner, this alternative 
method does shed some light on the year's results, and is useful in looking at how well a 
particular State performed. 
 
Consider each pair of matches that two teams play against each other, say SA and 
NSW.  In one match SA beat NSW on the first innings, in the second NSW beat SA on 
first innings and outright.  Clearly, NSW has performed better than SA.  We would say 
that pair of matches shows NSW should finish higher than SA.  On the other hand, in 
the two Queensland Victoria matches, both teams had one first innings victory each - 
that pair tells us nothing about the relative merits of Queensland and Victoria.  Thus 
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each pair of matches either gives us an ordering of the two teams or is inconclusive. 
The only combination which produces an arguable result is where one side has won 
both first innings points, but lost one on outright, as was the case with NSW and 
Victoria.  Under last season's scoring system that would count as inconclusive (eight 
points each), although most observers would probably say that NSW had the better of 
Victoria. For any other combination, it is beyond dispute which team had the better of 
the other, independently of whatever decisions are made regarding relative merits of 
first innings and outright points.  Working through the 15 pairs of matches we obtain 
the following: 
 

NSW - Qld NSW above Qld 8-0  
NSW - SA  NSW above SA 16-0  
NSW - Tas NSW above Tas 12-4  
NSW - Vic arguable 8-8 - see above 
NSW - WA inconclusive 12-12 
Qld - SA Qld above SA 24-0 
Qld - Tas Qld above Tas 24-0 
Qld - Vic  inconclusive 4-4 
Qld - WA Qld below WA 2-6 
SA - Tas SA above Tas 20-4 
SA - Vic SA below Vic 4-12 
SA - WA SA below WA 0-8 
Tas - Vic Tas below Vic 0-16 
Tas - WA Tas below WA 0-8 
Vic - WA Vic above WA 8-0  

 
We are now looking for an order which preserves as many of these relationships as 
possible. Clearly, Tasmania is on the bottom, as it is below all other teams.  Next is SA 
as it is above only Tasmania.  Continuing in this way, we obtain the following order, 
which surprisingly is consistent with all the above results. 
 
 NSW, Vic, WA, Qld, SA, Tas 
 
Surprisingly, Queensland drops to fourth on the table.  Its effort in defeating both 
Tasmania and SA by outrights twice, which counts so much in last season's system, 
here only confirms that it is better than both SA and Tasmania.  However, Queensland's  
performance against the other top teams is poor - 48 of its 54 points come from the SA 
and Tasmania matches. This method tends to judge top teams more on how they 
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perform against each other rather than how they perform against weaker teams.  Would 
we judge the relative merits of West  Indies and England on how well they beat the 
United States, or how they perform against each other? 
 
10.6.  Conclusion 
 
NSW is to be congratulated on winning the 1985/86 Sheffield Shield.  Given a set of 
conditions for the running of any competition, good teams will play to maximise their 
score.  However, it is clear that there are many methods of evaluating a team's 
performance.  Team managers and supporters should not uncritically accept the final 
finishing order as some absolute measure.  Looking at results in various ways can point 
coaches and captains to areas requiring improvement - e.g. NSW performances away, 
Victoria's need to get outrights on its home ground and Queensland's performance 
against top sides.  Of course, such observations can be tempered with a more detailed 
knowledge of individual matches, such as interruptions by rain, and absence of Test 
players. 
 
Administrators also can learn from analysis and work towards devising points systems 
that minimise unfair advantages to some teams and reward preferred outcomes.  In the 
Shield competition,   home   ground advantage and lack of penalties for losing matches 
should be areas of concern. 
 
The above analysis has been performed on the 1985/86 results only.  Previous years 
results also could be analysed to see if the above results are normal or a one-off 
aberration. 
 
While the above analysis has been done on the Sheffield Shield, a similar analysis could 
be performed on District cricket or any other cricket or sporting competition and 
provide useful insights to players and administrators. 
 
Acknowledgments:  My thanks go to Peter Spence, development manager for The 
Australian Cricket Board, for his comments on an earlier draft of this article. 
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10.7.  Commentary 
 
While this article was written some time ago, its conclusions still remain valid.  
Hopkins (1997b) used the points raised as the basis for a newspaper article.  A 
summary of the last six years shield data reveals the home team won 60.2% of the 
points.  Table 10.6 shows the breakup between points won at home and points won 
away.  Clearly most teams enjoyed a large home advantage.  For example SA won 61% 
of the points at their home venue against only 21% at the away venues.  However they 
have also over the six years had nearly 30 more points awarded at their home ground 
than Queensland - virtually a one point per game unfair advantage.  The away results 
show this cannot be attributed to an attacking style of play.  The methods of Chapters II 
and III could be applied to this data, although more complicated models may need to be 
used to allow for the variation in the number of points allocated per match. 
 

TABLE 10.6.  Comparison of points won at home and away for seasons 
 91/92 to 96/97   

 
 Points won at home matches Points won at away matches 
 
 

Team 

 
Home 
team 

Both  
teams 

combined 

Home team
 x100 

/combined

 
Away 
team 

Both  
teams 

combined 

Away 
team x100 
/combined

NSW 96.0 156.3 61.4% 71.8 167.8 42.8% 
Qld 94.0 135.5 68.8% 60.0 154.0 39.0% 
Vic 100.0 164.1 60.9% 30.0 146.3 20.5% 
WA 61.0 130.8 46.6% 62.0 133.9 46.3% 
SA 95.9 149.9 64.0% 45.0 131.0 34.4% 
Tas 88.3 150.3 58.7% 84.0 155.0 54.2% 

 535.2 888.0 60.2%    
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DYNAMIC PROGRAMMING IN ONE-DAY CRICKET -  
OPTIMAL SCORING RATES 

 
 

11.0.  Abstract 
 
Using a dynamic programming formulation, an analysis is presented of the innings of 
the team which bats first (here referred to as the first innings) and the innings of the 
team which bats second (here referred to as the second innings).  This allows a 
calculation, at any stage of the innings, of the optimal scoring rate, along with an 
estimate of the total number of runs to be scored (in the first innings) or the chance of 
winning (in the second innings).  The analysis is used to shed some light on possible 
batting tactics (in terms of the best run rate at any stage of the innings), to quantify the 
effects of selecting extra batsmen in a side, and to suggest a method for the 
development of alternative measures of player performance.  Results suggest that 
scoring rates should be more uniform than at present, and that the team batting second 
has an advantage.  Possible extensions to the model are discussed. 
 
 Key words:  cricket, dynamic programming, sport 
 
11.1.  Introduction 
 
The application of OR techniques in general, and dynamic programming (DP) in 
particular, to problems in sport is growing.  Sphicas & Ladany (1976) and Hayes & 
Norman (1984) are just two examples of using a DP analysis to assist participants in the 
development of tactics.  However, cricket seems to have escaped this notice, the few 
papers on cricket generally being descriptive in nature.  Pollard (1977) gives a summary 
of the statistical work on cricket up to 1977.  More recently, Croucher (1982b) 
compares dismissals of Australian and English batsmen, while Clarke (1986a) uses a 
simple statistical analysis of cricket data to investigate the effects of home-ground 
advantage in cricket.  However, lacking in the literature is the application of OR 
techniques to assist the cricketer with tactics.  This seems strange given the role Britain 
and the Commonwealth have played in the origins and continued practice of both OR 
and cricket. 
 
The ball-by-ball nature of cricket makes it particularly suitable for a DP analysis.  This 
is especially true for the one-day game.  In this paper we present a DP formulation of 
both the first and the second innings of one-day cricket.  This allows a calculation, at 
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any stage of the innings, of the optimal scoring rate, along with an estimate of the total 
number of runs to be scored (in the case of the first innings) or the chance of winning 
(in the second innings).  The results are used to suggest optimal batting tactics in terms 
of the best run rate at any stage of the innings, to quantify the effects of selecting extra 
batsmen in a side, and could be used to develop alternative measures of player 
performance.  It is also shown that the side batting second has an advantage. 
 
11.2.  The problem 
 
In one-day or limited-over cricket, each team has to score as many runs as possible off a 
limited number of overs, the team scoring the most runs winning the match.  The 
innings finishes when the batting side loses 10 wickets or when the bowling side 
completes its allotted overs.  In international matches in Australia, each innings is 
restricted to 50 overs of six balls each, with no bowler allowed to bowl more than 10 
overs.  In practice, the second innings also finishes if the batting side passes the other 
team's score.  Thus, while the object of the team batting first is to score as many runs as 
possible, the object of the team batting second is to score at least as many runs as the 
first team scored.  There are also restrictions on field placings, and various rules to cope 
with shortened matches owing to rain interruption. 
 
At each stage of the innings, a batsman has to decide how fast to score.  An increase in 
the rate of scoring entails taking greater risks, with a consequent increase in the chance 
of losing wickets.  Loss of wickets increases the chance of the innings finishing 
prematurely, and so decreases the total score.  The basic problem confronting a batting 
side is how to trade off an increased scoring rate with the possible loss of wickets.  As 
in most sports, there are widely held beliefs on the correct strategy.  In one-day cricket, 
a common strategy is to bat slowly during the early part of the innings, keeping wickets 
in hand.  This usually allows a steady increase in the scoring rate, and often results in a 
last-minute orgy of runs and wickets during the final part of the innings.  Analogous 
tactics by 12-hour runners might find them walking for the first 11 hours to conserve 
energy for a final sprint. 
 
11.3.  Run rate 
 
For each ball, ignoring such things as no balls, runouts and overthrows, a batsman can 
either lose his wicket without scoring or keep his wicket while scoring 0 to 6 runs. 
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 Let pd  be the probability of dismissal. 
 Let px be the probability of scoring x runs, x = 0-6, where 
 
 pd + px =1

0≤ x ≤6
∑  (11.1) 

 
These ps depend on the skill and batting style of the batsman, the state of the ball, the 
bowler, the run rate, etc.  Apart from the run rate, these factors will be ignored for the 
time being.  The run rate/ball r is the expected number of runs scored off each ball, and 
is given by 
 r = (x.px ) = 1

0≤ x≤6
∑  (11.2) 

 
To increase the run rate, a batsman will attempt to alter the distribution of the number of 
runs per ball, e.g.  increase p4 while reducing p0.  This would normally also increase pd, 
the probability of dismissal.  As run rate is usually discussed in terms of run rate per 
over, we shall use R = 6r. 
 
11.4.  First-innings formulation 
 
For the first innings, let the stage n be the number of balls to go and the state i be the 
wickets in hand (i.e. the number of batsmen still to be dismissed).  Let fn(i) be the 
maximum expected score under an optimal policy in the remaining n balls, with i 
wickets in hand.  Note the important principle: no matter what the actual score, batsmen 
should be maximising the expected score in the remaining part of the innings.  Each 
ball, a batsman either goes out and the team has one less ball and one less wicket in 
hand, or scores x runs and does not go out, so the team has one less ball to go and the 
same number of wickets in hand.  Since he should choose R to maximise the expected 
score in the remaining n balls, we have 
 

 fn(i) = Max
R

pd fn−1(i −1) + px (x + fn −1(i))
0≤ x ≤6
∑⎧ 

⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

  

 
  = Max

R
pd fn−1(i −1) + R

6 + (1 − pd ) fn−1(i){ } (11.3) 

 
using equations (11.1) and (11.2). 
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Since the innings finishes when there are either no more balls to be bowled or no 
wickets in hand, we get the boundary conditions 
 
  f0(i)=0 for i = 0-l0 
  fn(0)=0 for n = 0-300. 
 

11.4.1.  Evaluation of dismissal probabilities 
 
For the first-innings formulation, we need only determine pd, the probability of 
dismissal, as a function of the run rate R.  It is generally accepted that pd is an 
increasing function of R.  Thus if a batsman attempts to score at two runs per over, he 
might have a 1% chance of dismissal each ball, whereas if he scores at 12 runs per over, 
he might have a 50% chance of dismissal.  These probabilities might be estimated after 
a match by analysing the data, or before a match by expert opinion.  In this case it is 
usually easier to determine 1/pd, the average number of balls faced before dismissal.  
Thus a 1% chance of dismissal implies facing on average 100 balls, whereas a 50% 
chance of dismissal implies on average facing only two balls.  By looking at the 
expected score of a batsman or partnership, we can place further restrictions on pd.  By 
scoring at an expected rate of R per over for an average of 1/pd balls, the average score 
before dismissal is R/(6pd).  It is generally accepted that this is also a decreasing 
function of R for R >0.  In the above examples, average scores would be 33.3 and 4 for 
scoring rates of 2 per over and 12 per over.  Thus any estimates of pd derived from 
either expert opinion or statistical analysis should be adjusted to conform with this 
property. 
 
For example, in the second final of the Benson & Hedges World Series Cricket played 
at Sydney on 11th February 1987, the six recognised English batsmen scored a total of 
153 runs in 232 balls.  Thus, at an average rate of 4 runs/over, a wicket was lost for 
each 39 balls.  The seven recognised Australian batsmen averaged 3.4 runs/over for a 
wicket every 48 balls.  In this manner, and using the property described above, we 
might guesstimate the figures shown in Table 11.1 for a reasonably difficult pitch. 
 

11.4.2.  Computation and results 
 
Equations (11.3) can be solved by computer, calculating first f1(i) for all i = 1, 2,...  10, 
then f2(i), etc.  A short program in interpreted BASIC takes about 45 minutes to run on 
an IBM XT.  The output from the program gives the optimal action (the recommended 
run rate) and the value (total expected score in the remainder of the innings) for each 
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stage and state (i.e. for each number of balls to go and wickets in hand).  A selection is 
shown in Table 11.2. 
 

TABLE 11.1.  Dismissal probabilities 
 

Scoring  
rate in 

runs/over 
(R) 

Average 
number of 
balls faced 

(1/pd) 

Probability 
of dismissal 

each ball  
(pd) 

 Average 
score before 

dismissal 
(R/6pa) 

0 300 0.003 0 
1 250 0.004 42 
2 100 0.010 33 
3 60 0.017 30 
4 40 0.025 27 
5 28 0.038 23 
6 20 0.050 20 
7 15 0.067 18 
8 10 0.100 13 
9 7 0.143 11 

10 4 0.250 7 
11 3 0.333 6 
12 2 0.500 4 

 
 11.4.3.  Discussion 

 
Since a team of 11 players must have at least five players who can bowl, plus a wicket-
keeper, usually five players are selected solely for their batting ability.  However, 
depending on the batting expertise of the bowlers and wicket-keeper, a team usually has 
at least six and sometimes eight or nine good batsmen.  We assume here that if a team 
bats to number 7 (say), the first seven partnerships are the only ones that contribute to 
the score.  In this case Table 11.2 shows the expected score to be 174 and the optimal 
scoring rate at the start of the match to be greater than the average scoring rate of 
174/50 = 3.5.  This is true no matter how many batsmen are in the team.  Thus if it is 
assumed the team bat to number 10, the expected score is now 222, although the initial 
scoring rate is 5 per over.  This holds at virtually all stages of the innings, and still holds 
if different pitch characteristics are tried (i.e. if the relationship between pd and R is 
altered).  This suggests that teams should try to score slightly faster than they expect 
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their average rate for the rest of the innings to be, and if wickets are lost, slow up, rather 
than the current practice of scoring slower than average and speeding up if wickets are 
not lost.  Thus the generally accepted view of scoring slowly at the beginning of the 
innings is not optimal under this model. 
 

TABLE 11.2.  Optimal run rate and expected score in remainder of innings under 
optimal policy 

 
   Optimal run rate    

Overs   Wickets in hand    
to go 2 4 5 6 7 8 9 10 

1 9 12 12 12 12 12 12 12 
5 6 8 9 9 9 9 11 11 

10 4 7 7 7 8 8 9 9 
20 3 5 5 6 6 7 7 7 
25 3 4 5 5 5 6 7 7 
30 2 4 4 5 5 5 6 6 
40 2 3 4 4 4 5 5 5 
50 1 3 3 3 4 4 4 5 

 
  Expected score in remaining balls   
Overs   Wickets in hand    
to go 2 4 5 6 7 8 9 10 

1 9 12 12 12 12 12 12 12 
5 27 39 42 45 47 49 51 53 

10 38 59 67 73 77 82 85 88 
20 49 83 96 107 117 126 134 141 
25 53 91 106 119 131 142 152 160 
30 56 97 114 129 142 155 166 176 
40 60 106 126 144 160 175 189 202 
50 63 113 135 155 174 191 207 222 

 
Can we develop a simple rule for batsmen to follow? With 300 balls to go and seven 
recognised batsmen left, a team can afford to lose a wicket every 43 balls.  Table 11.1 
gives 4 as the nearest run rate with this dismissal probability, and Table 11.2 confirms 
this as the optimal run rate.  Similarly, with 25 overs to go and five batsmen left, the 
batting team should aim to lose a wicket every five overs or 30 balls.  Table 11.1 shows 
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this is a run rate of about 5, which is again confirmed by Table 11.2 as being the 
optimal rate.  This appears to hold also for tables derived using different dismissal 
probabilities, and could form the basis of a reasonable heuristic.  The optimal run rate at 
any stage is the one that on average results in a wicket in the next x balls, where x is the 
ratio of the number of balls to go and the wickets in hand.  Thus, for example, teams 
that bat to number 10 should begin the innings at a scoring rate that would, on average, 
lose a wicket in five overs. 
 
Table 11.2 also allows the advantages of an extra batsman to be evaluated.  By batting 
to number 8 rather than 7, a team could expect to increase its score from 174 to 191.  If 
the advantage of an extra batsman or long batting tail is to be realised, an increased 
scoring rate is necessary right from the beginning of an innings.  Table 11.2 highlights 
the folly of preserving wickets for a last-minute orgy of runs.  The advantage of wickets 
in hand is minimal as the innings reaches the end.  For example, five overs to go and six 
wickets in hand rather than four only results in an increase in expected runs from 39 to 
45. 
 
These comments hold not just for 'difficult' pitches.  Under this model, the penalties for 
slow early batting in terms of foregone runs can be large for very good pitches.  For 
example, in a one-day match against India on 7th September 1986, Australia scored 250 
for 3, including a world-record opening partnership of 212 from 260 balls.  However, an 
analysis similar to the above shows a score of over 350 should have been achieved.  (In 
the second innings, India reached 251 for 3 off only 44 overs.) 
 
Table 11.2 can also be used to compare the relative merits of alternative scores.  For 
example, is it better to be 1 for 50 or 3 for 80 after 25 overs? Assuming a team bats to 
number 7, 1 for 50 should realise another 119 runs for a total of 169, whereas 3 for 80 
should realise another 91 runs for a total of 171, marginally better.  This allows the 
contribution of a batsman or partnership to a team to be assessed.  Thus an opening 
partnership of 50 in 25 overs has actually decreased the expected score from 174 to 169.  
However, should the next partnership score 26 in the next five overs, they have 
increased the potential score from 169 to 76 + 96 = 172.  Similar arguments could be 
applied to bowling performances.  This method could be developed to produce 
measures of performance that reflect a player's contribution to team performance better 
than the currently used averages and run rate. 



 

 

175

11.5.  Second-innings formulation 
 
When the second team bats, they know the total scored by the first team.  If the first 
team scores 174 (say), the second team wins if it scores at least 175.  For the second 
innings we wish to maximise the probability of achieving a certain score, and so need to 
introduce s, the number of runs to go, into the state. 
 
Each ball, a batsman either goes out with probability pd and the team still has s runs to 
score with one less wicket in hand and one less ball, or he scores x runs with probability 
px  and so the team has s - x runs to score with one less ball to go and the same number 
of wickets in hand. 
 
Thus if P(s, i) is the probability, under an optimal policy, of scoring at least another s 
runs with i wickets in hand and n balls to go, 
 

 Pn (s,i) = Max
R

pd Pn−1 (s,i − 1) + pxPn −1(s − x, i)
0 ≤x ≤ 6
∑⎧ 

⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

 (11.4) 

 
Since the second team wins when it has no more runs to score, but loses if it still has 
runs to score when there are no more balls to go or it has no more wickets in hand, we 
have the boundary conditions 
 
  Pn(0, i) = 1  for n = 0 - 300, i = 0 - 10 
  P0(s, i) = 0  for  s = 1  to smax, i = 0 - 10 
  Pn(s, 0) = 0  for  n = 1 - 300, s = 1 to smax  
 

 11.5.1.  Computation and results 
 
For the first-innings problem, we saw that the actual distribution of the number of runs 
scored per ball is not required, only the average.  For the second innings this is not so.  
However, apart from the last couple of overs, it is the average run rate rather than how 
these runs are scored that is important.  Hence in this analysis, to reduce the 
computational load, only two values of x (0 and a) are allowed for each run rate.  For 
each ball a batsman is either dismissed, or is not dismissed and scores 0 or a runs.  Thus 
only pd, p0, and pa  are non-zero.  Once pd is given, provided a sensible value of a is 
chosen, p0 and pa   can be determined by the equations (11.1) and (11.2), which give pa  
= R/6a  and p0 = 1- pa -pd. 
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The second-innings equations can then be solved.  A maximum value of s must be 
chosen (say 300), and is evaluated for s=1 and each value of i, then for s=2...300, then 
the values of P2(s, i) can be calculated, etc.  The program had to be streamlined and 
compiled before it would run in about 10 hr on an IBM XT.  The output now runs to 
thousands of pages, as for each ball (1-300) and each wicket in hand (1-10) we have for 
each number of runs to go (0-300) the chance of winning and the optimal run rate.  For 
illustration, selected output in Table 11.3 shows the probability of winning at the start 
of the innings, i.e. with 300 balls to go. 
 

TABLE 11.3.  Probability of scoring a further s runs with 300 balls to go 
 

 Wickets in hand 
s 2 4 5 6 7 8 9 10 

100 0.200 0.638 0.805 0.907 0.961 0.985 0.995 0.998 
125 0.094 0.432 0.622 0.776 0.881 0.942 0.975 0.990 
150 0.042 0.262 0.430 0.600 0.743 0.848 0.917 0.958 
175 0.016 0.137 0.257 0.403 0.555 0.691 0.799 0.878 
200 0.006 0.065 0.137 0.241 0.367 0.502 0.629 0.739 
220 0.002 0.031 0.073 0.140 0.234 0.348 0.471 0.591 
225 0.002 0.025 0.061 0.120 0.206 0.312 0.431 0.551 
250 0.000 0.009 0.024 0.053 0.101 0.170 0.258 0.359 
275 0.000 0.003 0.008 0.020 0.043 0.079 0.132 0.200 
300 0.000 0.001 0.003 0.007 0.017 0.034 0.061 0.100 

 
 11.5.2.  Discussion 

 
The comments made on the first innings in general also apply to the second, but the 
evaluation of team position, or contribution of batsmen or partnerships, would now be 
reflected in a change in the probability of winning rather than runs scored. 
 
Note that the second team has an inherent advantage.  If the first team score their 
expected maximum of 174, at the beginning of their innings the second team has a 
0.555 chance of scoring 175 if they also bat to number 7.  This is assuming both teams 
have full knowledge of the state of the wicket, i.e.  the value of the pds.  In practice, the 
first team would begin their innings with much less knowledge of the state of the wicket 
than the second.  This would increase the advantage to the second team. 
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Output from the analysis could also be used to evaluate the effect of rain-interruption 
rules.  Suppose, after the first innings is completed, rain causes a delay necessitating a 
reduction in the second innings to 20 overs.  What is a fair target for the second team? 
A commonly used rule is that they should score at the same rate as the first team.  If the 
first scored 174 (at a rate of 174/50 = 3.48 runs/over), this would give a target of 
3.48*20 = 69.6 or 70 runs for the second team.  However, a similar output to Table 11.3 
with 120 balls to go shows the second team would have a probability of 0.974 of 
reaching that target, clearly an unacceptable advantage. 
 
11.6.  Extensions 
 
The model we have chosen is a simple one.  Cricket followers could easily suggest 
areas where it does not conform to reality.  For example, many teams may bat during 
the first innings with a second-innings strategy in that they wish to maximise their 
chance of reaching some preconceived total.  Other variables could be taken into 
account provided the effects could be quantified.  For example, by altering the dismissal 
and scoring probabilities with respect to n, we can take account of different bowlers and 
ball deterioration.  This involves no change in the formulation, and is easily 
incorporated in the program.  In a similar way, by varying the probabilities with i, we 
could take account of different batsmen (or more correctly partnerships) without 
altering the basic formulation. 
 
To account properly for different batsmen, we could introduce both i and j into the state, 
being the strike and non-strike batsmen.  For the first five balls of an over, (i, j) would 
change to (j, i) when an odd number of runs were scored, remain (i, j) when an even 
number of runs were scored, and become (max(i,j) + l, j) when a batsman was dismissed 
without scoring or crossing, etc.  For the final ball of the over, the transition (i, j) to (j, i) 
due to the change of bowling ends would be superimposed on any other changes.  The 
extra complication of such a model might be justified when evaluating tactics at the end 
of an innings, particularly with one free-scoring batsman and one poor batsman.  For 
example, should the better batsman take a single? 
 
Other extensions, such as allowing the dismissal probabilities to vary with time at the 
crease, involve including this factor as a state variable, and result in large increases in 
computing time. 
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11.7.  Conclusion 
 
Previously, cricket has escaped the attention of OR analysts.  The model presented here 
shows that currently accepted tactics in one-day cricket may be incorrect.  Batting sides 
should score more quickly in the early part of their innings.  There is also evidence that 
teams should choose to bat second when they win the toss. 
 
The model could also be used by selectors to quantify the effects of including extra 
batsmen in a team, used by coaches, captains and commentators (or bookmakers) to 
provide better measures of how teams are performing during the match, assist in 
evaluating different rules for deciding winners in rain-interrupted matches, and develop 
measures of player performance that better reflect the demands of one-day cricket. 
 
More complicated models could be developed, allowing for different player 
characteristics.  Such models could be used to investigate optimal tactics near the end of 
an innings, the effects of different batting orders, etc. 
 
There is plenty of scope for operational research on applications in cricket.  The major 
problem likely to be encountered is data collection.  Official score sheets of matches 
contain little information of a ball-by-ball nature, and the information recorded even 
varies from scorer to scorer.  However, the development of computer scoring methods 
should solve this.  One proposal, CRICKETSTAT, Croucher (1987) developed in 
Australia, records 11 pieces of information for each ball.  When such systems are 
common, operational researchers will have few excuses for not using their skills to 
assist cricketers. 
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11.8.  Commentary.  Testing of heuristic 
 
This chapter suggested a simple heuristic that could be used by batsmen to approximate 
the optimal run rate.  The suggested heuristic selects the run rate that will result in all 
wickets being lost as near as possible to the end of the 50th over, i.e. a wicket loss 
every (balls to go / wickets in hand) balls. For instance if there are 120 balls (20 overs) 
remaining in the innings and six wickets in hand then the heuristic suggests losing a 
wicket every 120/6=20 balls.  Table 11.1 shows that the run rate that would result in the 
loss of a wicket in as close to 20 balls as possible is six runs per over. Therefore if there 
were 120 balls remaining in the innings and six wickets in hand the heuristic suggests a 
run rate of six runs per over, the same rate as given by Table 11.2.   
 
In Johnston et al. (1992)  we investigated the sensitivity of the heuristic to changes in 
the model.   
 
The heuristic's validity was first tested by comparing the run rates suggested by the 
heuristic with those calculated by the DP formulation.  Table 11.1 was extended to 
include run rates in increments of 0.5 per over, and the algorithm used to produce the 
optimal run rate and expected score.  Table 11.4 shows the difference between the run 
rates recommended by the heuristic and the DP solution.  The two run rates never vary 
by more than 0.5 runs per over.   
 
Another test of the heuristic's ability is to compare the expected innings scores of teams 
scoring at heuristic run rates with the expected innings scores of teams scoring at DP 
run rates.  In this case, the maximum difference (in runs) in the expected scores 
between the heuristic and DP was 0.3 runs.  The closeness of the expected innings 
scores under the DP formulation and heuristic confirms the conclusion that the heuristic 
is a valid method of selecting near optimal run rates. 
 
Although all the comparisons between the heuristic and DP formulation shown here 
have been made under the one relationship between run rate and probability of 
dismissal (that given in Table 11.1), several other relationships have been tested with 
almost identical results.  The maximum difference between the totals under the two 
policies was less than four runs. 
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TABLE 11.4.  Graphical comparison of DP and heuristic run rates 
 
Overs Wickets in hand 
to go   1 2 3 4 5 6 7 8 9 10 

1           
5  +         
10   + +       
15 -    +      
20     +      
25           
30  -        + 
35 -   - -     + 
40  -         
45   - -       
50           

 :  a blank indicates agreement 
 + :  the heuristic is 0.5 runs/over above the optimal 
 - :  the heuristic is 0.5 runs/over below the optimal 
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DYNAMIC PROGRAMMING IN CRICKET -  
PROTECTING THE WEAKER BATSMAN 

 
 
12.0.  Abstract 
 
A simple dynamic programming model of cricket is presented.  The state is the facing 
batsmen and the number of runs on offer.  The decision is whether to run or not, with 
the objective to maximise the chance the better batsman is on strike at the start of the 
next over.  The model is solved analytically to find the optimal policy and the value of 
the objective function.  The simple initial model is extended to a more realistic one 
requiring no further calculations and a numerical example is given.  An alternative 
optimality criterion is investigated and we demonstrate that trying to put the better 
batsman on strike at the start of the over does not necessarily maximise the expected 
duration of the partnership.  This alternative objective function is investigated 
numerically, and it is shown that the better batsman should generally run if possible off 
the second last or last ball of the over. 
 

Key words:  sports, cricket, dynamic programming, Markov processes 
 

12.1.  Introduction 
 
There are several examples where a dynamic programming (DP)  formulation has the 
potential to assist the sports person with decision making.  Norman (1995) in giving 
one example of an application of DP in each sport lists 10 papers.  There have been few 
applications of DP in cricket, which is surprising as the ball by ball nature of the game 
should lend itself to this structure. Clarke (1988b) uses a DP formulation to advise on 
optimal run rates in both the first and second innings, and Johnston (1992), Johnston et 
al. (1992, 1993) use the first innings formulation to provide measures of a batsman's 
performance.  There may, of course, be several possible optimality criteria depending 
on the different stages of a cricket match.  In the first innings batsmen are generally 
trying to maximise the expected number of runs, but they may prefer to maximise the 
probability of achieving a certain number of runs.  The team batting last is usually 
trying to maximise the probability of achieving the opponent's score. However, in test 
cricket, teams may often be just trying to avoid a loss.  In this case they may wish to 
avoid finishing in a certain state (team dismissed) with runs being immaterial.  In other 
situations teams may wish to bat for as long as possible.  For example, in the fourth test 
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between Australia and the West Indies played on the 29th April to 3rd May 1995, in 
Australia's first innings on the third day, Steve Waugh was the last batsman dismissed 
for 200.  His partners, after the last specialist batsman was dismissed, made 6, 8, 23, 0 
and 3 not out.  While runs were still important, some commentators made the point that 
it was also important to occupy the crease for as long as possible, to give the pitch time 
to break up and so assist the Australian spinner.   
 
The above situation, where a top order batsman is paired with a batsman of lesser 
ability, often arises towards the end of an innings.  In cricket, the facing batsman 
changes whenever an odd number of runs is scored, and also at the completion of each 
six ball over.  The bowling team wish to bowl to the weaker batsman and will often set 
deep fields to concede a single to the good batsman early in the over.  The good 
batsman in turn will sometimes decline to take the single, in the hope of protecting the 
weaker batsman for a few balls and taking a run nearer the end of the over.  The desired 
result is to take a single off the last ball, so the better batsman is again on strike at the 
beginning of the next over.  In most such situations runs are still important, but in other 
cases runs are immaterial except in that they allow the batsmen to change ends.  
Describing the last session of play in the famous drawn test between Australia and the 
West Indies in 1961, Lunn (1993)  says  
 

But with half an hour to go Mackay was no longer the only person who 
thought he could do it.  Taking just a single off the last ball of almost every 
over (eight ball overs in those days) he faced almost every ball instead of 
Kline.  No attempt to score other than this.  ...  The last ball of the second last 
over: Mackay scores a single to face the last over against the fastest man in 
the world, giant Wes Hall.   

 
In this case Mackay would clearly bat out the last over without taking a run.  But in the 
second last over, if he wants to maximise the chance that he will be on strike for the 
final Wes Hall over, should he wait until the last ball before taking a single?  We look 
here at a simple DP model to analyse this end play strategy - i.e. maximise the 
probability that the weaker batsman finishes the over on strike, so that after the change 
of ends he will be protected from the strike for the beginning of the new over.  We leave 
until later discussion on whether this is a sensible objective function.   
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12.2.  The model 
 
Suppose you have two batsmen whom we will refer to as G and B for Good and Bad, 
although they can be any two batsmen of different abilities such as Greg Chappel and 
Bruce Reid.  We assume each batsman can score zero, one (more correctly hit a stroke 
for which he has the opportunity to run a single,) or be dismissed.  (While this initial 
model is obviously not realistic it is presented for simplicity.  We will see that it can be 
extended with no further calculations to something more realistic).  For the good 
batsman these occur with probability p0, p1 and pd, and for the bad batsman q0, q1 and 
qd .  Let  p = 1-pd = p0 + p1,  q = 1- qd = q0 + q1 and p>q since the poor batsman has a 
greater chance of dismissal.  There are nine wickets down, so once a batsman is 
dismissed the innings is Ended (E).  
 
Since the batsmen have to decide whether to take the runs on offer or not, consider the 
situation after a ball is bowled but before a run is taken.  The stage n is the number of 
balls still to be bowled in the over.  There are five possible states Sn ε {G0, G1, B0, B1, 
E } representing the facing batsman and the runs on offer.  Note that because the epoch 
in which the state is defined and decision is made is after the ball is bowled, stage 0 
refers to the last ball of the over and stage 5 to the first ball in a six ball over.  The only 
decisions occur at G1 and B1 and are whether the batsmen take the run on offer YES 
(Y) or not NO (N).   
 
The transition diagram is shown in Figure 12.1. 
 
The transition probabilities are easily calculated provided we ignore complicating 
factors such as runouts.  Thus for example at G1, if the good batsman refuses the run, he 
will be on strike for the next ball and so after it is bowled there will be a probability p0 
of no run on offer (so with probability p0 the next state is G0).  Similarly, with 
probability p1 the next state is G1 and with probability pd the next state is E.  Exactly 
the same transition probabilities arise if the state is B1 and the batsmen take the run.  
Thus in the transition diagram all lines entering G0 have probability p0, all entering G1 
have probability p1, all entering B0 are q0, and all entering B1 are q1.  Those lines 
entering E from G0, G1(N) and B1(Y) have probability pd, those from B0, B1(N) and 
G1(Y) have probability qd. 
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Figure 12.1.  Transition diagram 
 
We wish to maximise the chance that at the end of the over the bad batsman will be on 
strike.  Note there is no need to consider in any special way the change of ends at the 
end of the over.  The batsmen wish to maximise for each over the chance that the bad 
batsman finishes the over on strike.  Whether they succeed or not, they have exactly the 
same problem in the following over. 
 
Let fn(Sn) be the probability under an optimal policy of ending the over with the bad 
batsman on strike when in state Sn with n balls to go.   
 
Initial conditions:  For the last ball of the over, the bad batsman will not run, and the 
good batsman will definitely run if possible, so any of the states B0, B1, and G1 will put 
the bad batsman on strike at the end of the over.  Thus 
 f0(G0) = f0(E) = 0 
 f0(B0) = f0(B1) = f0(G1) = 1 (12.1) 
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Functional Equations:  In general 
 
 fn(Sn ) = Max

admissible
decisions

prob(
Sn−1ε{G 0,G1,B0,B1,E}

∑ Sn → Sn−1 ) fn−1(Sn−1 ) for n = 1, 2, ... 

where admissible decisions are defined in Figure 12.1. 
 
In the particular cases this becomes 
 
State E: fn(E) = fn–1(E) � fn(E) = f0(E) = 0 (12.2) 
 
State G0: fn(G0)  = p0 fn–1(G0) + p1 fn–1(G1) + pdfn–1(E) 
 
  = p0 fn–1 (G0) + p1 fn–1(G1) (12.3) 
 
State B0: fn(B0)  = q0 fn–1(B0) + q1 fn–1(B1) (12.4)  
 

State G1: fn(G1)  = MAX 
⎩
⎨
⎧YES : q0 fn–1(B0) + q1 fn–1(B1)
NO  : p0 fn–1(G0) + p1 fn–1(G1)   

   

    = MAX 
⎩
⎨
⎧YES : fn(B0) 
NO  : fn(G0)  from (12.3),  (12.4) (12.5) 

 

State B1: fn(B1)  = MAX 
⎩
⎨
⎧YES : p0 fn–1(G0) + p1 fn–1(G1) 
NO  : q0 fn–1(B0) + q1 pn–1(B1)   

   

    = MAX 
⎩
⎨
⎧YES : fn(G0) 
NO  : fn(B0)    (12.6) 

 
 So      fn(G1)  = fn(B1) for  n = 1, 2... from (12.5) & (12.6),  
and if optimal decision is YES at G1 then it is NO at B1 and vice versa.  (12.7) 
   
This is a sensible result.  Since runs are not important, clearly if it is optimal for the 
good batsman to change ends at some stage, it is optimal for the bad batsman not to 
change ends at the same stage.  From now we will refer to the optimal policy as simply 
YES or NO, meaning the decision at G1 only, as B1 is implied to be the opposite. 
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12.3.  Model solution 
 
This model is completely solvable analytically.  The appendix shows that the values of 
the objective functions can be calculated in a closed form for all stages and states. 
 
Case 1:  If q ≤ p1  the optimal decision is NO for all n > 0.  The better batsman should 
obtain and remain on strike for the whole over and only run off the last ball.  In this 
case  fn(G1)  = fn(G0) = fn(B1) = pn-1 p1   

 
 fn(B0)  = q0n-1q +  

q1 p1
q0–p (q0

n–1 – pn–1) . 

 
Case 2: If q > p1  there is a stage N≥1, below which the decision at G1 is YES, and for 
n ≥ N the optimal decision is NO.  Thus there will always be a number of balls to go in 
the over (which may be greater than 6 or 8), before which the optimal strategy is to 
protect the weaker batsman, and after which the optimal strategy is to put the weaker 
batsman on strike.  N is given by the smallest integer satisfying the inequality 
 

      n >
ln

p − q
p1

⎛ 
⎝ 
⎜ ⎞ 

⎠ 

ln p0

q
⎛ 
⎝ 
⎜ ⎞ 

⎠ 

.  

 

 For n  = 1,2,3,...N-1, fn(G0) =
p1

p0 − q
p0

n − qn( )  

     fn(G1) = fn(B0) = fn(B1) = qn. 

 

 For n = N, N+1, ... fn(G0) = fn(G1) = fn(B1)  =
pn− N p1

p0 − q
p0

N − qN( )  

     fn(B0)  = q0n−Ν qΝ +  
q1

q0 –p (q0
n–N – pn–N)  fN(G0) . 
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12.4.  Prior probabilities 
 

It could be argued that probabilities before a given ball is bowled would be more useful.  

These are easily obtained by weighting the above state probabilities with the chances of 

them arising.  Thus if we let Fn(G) and Fn(B) be the probabilities of finishing in the 

required state with G and B facing before the nth last ball of the over is bowled we have  

   Fn(B) = q0 fn-1(B0) +q1 fn-1(B1) = fn(B0) from equation (12.4)  

Similarly   Fn(G) = fn(G0). 

 
Thus although in the above formulation the stage n only goes to 5, it is useful to 
calculate f6(G0) and f6(B0) as they give the probabilities before the beginning of the 
over. 
 
12.5.  Extension   
 
With no further calculations this model can be extended by considering the state G0 to 
be the good batsman facing and a score of zero or a boundary (four or six) is made, so 
no decision on running can be made; G1 that there are 1, 2, 3 runs or a 4 all run on offer 
so that a decision on running is possible; and the decision to be made is NO to 'run' an 
even number (quotes because it includes not taking any runs when 1 is on offer) or YES 
run an odd number of runs.  These decisions could be rephrased as NO don't change 
ends and YES change ends.  Thus p0 becomes the probability of a score of 0, 4 
(boundary) or 6, p1 becomes the probability of a score of 1, 2, 3 or  4 all run,  and pd 
remains the probability of dismissal.  Similar states and probabilities apply for the bad 
batsman.  The state E can be thought of as the partnership ending rather than the innings 
ending.  The above model and results are then directly applicable.   
 
12.6.  Discussion 
 
The probabilities p0 etc should be estimable from scoresheets when batsmen are taking 
all available runs.  The optimal strategy can then be calculated.  This is done in the 
example following.  However some of the ramifications of the above seem quite 
interesting and can be used to make general statements irrespective of the scoring 
profiles of the batsmen. 
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For example, equation 12.7 says that if at any stage, one batsman takes an odd number 
of runs, at the same stage the other batsman should take an even number of runs.  Thus 
the policy of taking all the runs is never optimal.  (Except of course when p  = q ). 
 
If q > p1 then the model says that there is always some value N balls to go (admittedly N 
may be greater than 5) where the optimal strategy changes from NO in one ball to YES 
for the next.  Now if N is greater than 5 this implies the weak batsman will never be 
protected from the strike (in fact he should be given it).  At any stage in the over the 
good batsman will put the weak on strike if possible, and for the rest of the over the 
weaker batsman will stay on strike.  Note this only occurs when p1 is so low that it is 
highly unlikely that the good batsman will ever be able to put the bad batsman back on 
strike.  This seems unlikely to occur in practice.  (It also suggests that we should 
perhaps look at other objective functions, such as minimise the proportion of times we 
are in a given state, or maximise the chance of not finishing in State E).   
 
However if N is any number less than 6, the results confirm what is done in practice.  It 
implies that at some stage in the over the optimal decision changes from NO (protect the 
weak batsman) to YES (put the weak batsman on strike).  This is the common strategy 
used but has an interesting implication when the bad batsman is on strike at the 
beginning of the over.  It implies the bad batsman if on strike should change ends if 
possible, only to again change ends the next ball if possible.  Table 12.1 gives the 
optimal policy for the good and bad batsman when N=3.  If the bad batsman is on strike, 
he should change ends if possible with 3 balls to go.  In this case the good batsman will 
be on strike and should now also immediately change ends if possible with two balls to 
go.  This would probably be criticised by commentators. 
 

TABLE 12.1.  Optimal strategies for the case N=3. 
 

Ball of over Balls to go n Good 
Batsman 

Bad batsman 

1 5 No Yes 
2 4 No Yes 
3 3 No Yes 
4 2 Yes No 
5 1 Yes No 
6 0 Yes No 
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12.6.1.  Example 
 
In the World cup match between SA and Australia on 26th Feb 1992, for two batsmen 
we had from the official score sheets: 
 Steve Waugh - 1311121114121111112, 27 runs from 51 balls 
 Bruce Reid - 1211 - 5 runs from 10 balls. 
 
Although Bruce Reid was not out, we might give him an honorary dismissal and from 
these figures estimate the probabilities as follows. 
 Steve Waugh:   pd = 1/51 = 0.02,  
    p1 = probability of 1, 2 or 3 = 18/51 = 0.35,  
    p0 = probability of 0, 4 or 6 = 32/51 = 0.63 
 Bruce Reid:   qd = 1/10 = 0.1,  
    q1 = 4/10 = 0.4,  
    q0 = 5/10 = 0.5 
 
Now q = 0.9 > p1 = 0.35, N >  ln(0.08/0.35)/ln(0.63/0.9)= 4.14, so N  = 5.  Thus if on 
strike at the beginning of the over, Steve Waugh should only take an even number of 
runs for the first ball, but an odd number thereafter.  If Reid is on strike he should take 
an odd number of runs for the first ball, but an even number thereafter.  If Waugh is on 
strike at the start of the over then the chance of Reid finishing the over on strike is given 
by  

 F6(G) = f6(G0) = pf5(G0) = p
p1

p0 − q
( p0

5 − q5)  = 0.624 

If Reid starts the over on strike his chance of finishing on strike is  
 F6(B) = f6(B0) = q0q5+ q1 f5(G0) = 0.550  
 
The optimal policy to put Reid on strike very early is here caused by the high 
probability of Waugh scoring zero.  If we alter p0 to 0.35 and p1 to 0.63, we get N = 3, 
and the optimal strategy would revert to that given in Table 12.1.  The new values of 
Reid finishing on strike become 0.740 and 0.626. Note how the probability of success 
alters depending on the good batsman's distribution of probability.  Two batsmen could 
have the same average and run rate, but the one that has a higher probability of scoring 
runs rather than boundaries is the more flexible and may be a better batsman with lower 
order players.  Maybe more extensive statistics on cricketers should be published.  This 
has also been suggested in the context of measuring consistency by Clarke (1991b; 
1994c). 
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12.7.  An alternative criterion of optimality  
 
By providing a counter example we show that attempting to put the better batsman on 
strike at the start of the over does not necessarily maximise the expected duration of the 
partnership. 
 
Consider a Markov chain where the states are B, G and E being the facing batsman 
when a ball is bowled and the partnership Ended.  If the policy is NO (for the good 
batsman, implying YES for the bad batsman), then we have using the probabilities as 
before of a good and bad batsman scoring runs, the following transition matrix. 
 

  PN = 
B
G
E

q0 q1 qd

0 p pd

0 0 1

⎛ 

⎝ 

⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  

 
For example, for the good batsman, the probability of not being dismissed is p0 + p1 = p, 
which as he does not run is the probability of the good batsman being on strike next ball. 
 
If the policy is YES we get the following transition matrix. 
 

  PY = 
B
G
E

q 0 qd

p1 p0 pd

0 0 1

⎛ 

⎝ 

⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  

 
Then using the example given above with Waugh and Reid, we have  
 

  PN = 
0.5 0.4 0.1
0 0.98 0.02
0 0 1

⎛ 

⎝ 

⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  and  PY = 

0.9 0 0.1
0.35 0.63 0.02

0 0 1

⎛ 

⎝ 

⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  

 
This gives, for the optimal policy of NO for the first ball and YES for the last 5 balls a  
 

transition matrix for the over of  PN
1PY

5 =
0.550 0.040 0.410
0.624 0.097 0.279

0 0 1

⎛ 

⎝ 

⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  

 
Note the answers 0.550 and 0.624 agree with that given above for the bad batsman 
ending the over on strike. 



 191

 
Alternatively, if we look at a strategy of the good batsman running if possible only off 
the last ball, i.e.  NO from the first 5 balls and YES from the last ball, we get a transition 

matrix for the over of  PN
5 PY

1 =
0.283 0.458 0.259
0.316 0.569 0.114

0 0 1

⎛ 

⎝ 

⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  

 
This certainly gives much lower probabilities of the bad batsman ending the over on 
strike.  It also (not surprisingly) gives lower probabilities of the partnership ending by 
the end of the over.  Our hope was these would be cancelled out by the higher chance of 
the partnership ending earlier because the bad batsman has a higher probability of facing 
up to the next over. 
 
However, by swapping the first and second columns to allow for the change of ends at 
the completion of the over, we now have a transition matrix where the stage is an over 
and the states are the batsmen on strike at the beginning of the over.  This gives for the 
optimal policy  
 

 
0.040 0.550 0.410
0.097 0.624 0.279

0 0 1

⎛ 

⎝ 

⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  and 

0.458 0.283 0.259
0.569 0.316 0.114

0 0 1

⎛ 

⎝ 

⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  for the other policy. 

 
The expected number of times in each state can be calculated by applying normal 
methods for absorbing Markov chains.  The fundamental matrix gives for the two cases   
 

1.222 1.788
0.316 3.123

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
 and 

3.264 1.349
2.719 2.587

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
.  Again, the smaller numbers in the first column 

show the optimal strategy clearly produces a much lower expected number of times the 
bad batsman is on strike at the beginning of the new over.  However, the expected 
number of completed overs the partnership will last is given by summing the rows to 
give  
 

3.011
3.439

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
 and 

4.613
5.306

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
.  Thus the second case gives longer expected partnership times, 

whoever is facing the first over, than the previous optimal policy.  These calculations 
can be repeated for each of the seven possible policies and are shown in Table 12.2.  
This shows that to optimise the length of the partnership the good batsman should run 
on the fifth ball, although there is little difference in the two options of running on the 
fifth or sixth ball.   



 192

TABLE 12.2.  Expected number of completed overs partnership lasts if good batsman 
runs on ball n 

 
Facing batsman at    n    
 beginning of over 1 2 3 4 5 6 Never

Bad 2.573 3.011 3.545 4.145 4.629 4.613 3.892 
Good 2.960 3.439 4.050 4.753 5.325 5.306 4.447 

 
The best policy under the criteria of maximising the expected number of completed 
overs was investigated numerically in this manner for a range of values.  Using 
SAS/IML the optimal ball on which the good batsman should run was calculated for 
each value of pd, qd = 0.01 to 0.10 in steps of 0.01, pd < qd; p0, q0 = 0.1 to 0.9 in steps of 
0.1.  In 65% of these cases the optimal strategy was to run off the last ball, 32%  the 
second last ball with the remaining 3% of cases giving the 4th ball.  Thus the simple 
strategy of the good batsman getting off the strike if possible on the second last or last 
ball of the over, and the bad batsman doing the same off the first four balls, generally 
optimises the expected number of completed overs the partnership will last. 
 
12.8.  Conclusion 
 
A simple DP model  was set up to solve a specific and very limited problem.  The model 
can be solved completely analytically, and the solution used to suggest a suitable 
strategy for every over except the last.  In practice, the model is probably deficient in a 
couple of respects.  The fielding side often set widespread fields to the good batsman 
early in the over to encourage a single, and bring the field in later in the over to prevent 
the batsmen taking a single.  In this case the values of p0 etc would depend on the stage 
n as well as the state.  The model would still possibly be soluble analytically, and 
certainly numerically.  However the model can also suggest reasons why some 
cricketers' scoring profile could make them more suited than others to certain situations 
such as playing with tail-enders.  Commentators often comment on the ability (or lack of 
it) of a player at rotating the strike, but commonly kept statistics do not measure this.   
 
It is clear that minimising the exposure of the weaker batsman to the first ball of the new 
over is not necessarily the appropriate objective function.  It does not necessarily 
minimise his exposure to the strike, the chance of the partnership ending within a certain 
number of balls, or maximise the number of balls until the partnership is broken.  The 
optimal strategy to maximise the number of completed overs for the partnership can be 
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found numerically, and usually requires the better batsman running an odd number of 
runs if possible on the second last or last ball of the over. 
 
The ball by ball nature of cricket makes it particularly suitable for a DP approach.  
Clarke & Norman (1997c) have constructed several other models using alternative 
objective functions such as maximising the expected number of runs in the remainder of 
the innings, which take into account the number of runs, run rate, the number of wickets 
down and the change of ends between overs.  Such models could be used to assist with 
end play strategies in both the first and second innings.   
 
Note:  An earlier version of this paper was presented at the 13th ASOR conference in 
Canberra, 1995.   
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Appendix 12.1. 
 
The functional equations (12.1) to (12.6) can be solved to obtain analytical solutions. 
 
Theorem 1. If there is some stage n for which the optimal decision is NO, then it is also 
NO for the previous stage n + 1. 
 
Proof: If decision is NO at n then from (12.5) 
  fn(G0) > fn(B0) (12.8) 
 and  fn(G1) = fn(G0) = fn(B1) (12.9) 
 
Then fn+1(G0) – fn+1(B0) 
 = p0 fn(G0) + p1fn(G1) – q0 fn(B0) – q1 fn(B1)  from (12.3) and (12.4) 
 ≥ p0 fn(G0) + p1fn(G0) – q0 fn(G0) – q1 fn(G0) from (12.8) and (12.9) 
 = (p0 + p1 – q0 – q1 )fn(G0)  
 = (p – q) fn(G0) 
 >  0   since   p > q 
ie. fn+1 (G0) > fn+1(B0) and by (12.5)  the optimal decision at n+1 is NO.   
 
Consider the stage n= 1 
 f1(B0)  = q0 f0(B0) + q1f0(B1)  from (12.4) 
  = q0 + q1   from (12.1) 
  = q (12.10) 
 f1(G0)  = p0 f0(G0) + p1 f0(G1)  from (12.3) 
  = p1   from (1) (12.11) 
So using (12.5), if q > p1  then decision is YES and f1(G1) = q  
                  and if q  ≤ p1  then decision is NO and f1(G1) = p1. (12.12) 
 
We thus have two cases. 
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Case 1:  q ≤  p1   

 

From (12.12) and Theorem 1, decision is always NO  and so for n ≥ 1 
 fn(G1)  =fn(G0)  from (12.5) 
  =  p0 fn-1(G0) + p1 fn-1 (G1)  from (12.3) 
  =(p0 + p1 ) fn-1(G0)    from above 
  =  p fn-1(G0)  
   =  pn-1 f1(G0) 
   =  pn-1 p1  from (12.11) 
 fn(B1)  = fn(G0) =  pn-1 p1   from (12.6)  
 fn(B0)  = q0 fn-1(B0) + q1 fn-1(B1)  from (12.4) 
  = q0 fn-1(B0) + q1 pn-2 p1  from above 

  = q0n-1q +  
q1 p1
q0 –p (q0

n–1 – pn–1)    

 
Case 2:  q > p1  

 
From (12.10)  decision at n=1 is YES and f1(G1) = q.  Let n = N  be the first time the 
decision is NO, then for n = 1,2,... N–1 the decision is YES and  
 fn(G1)  = fn(B0) = fn(B1) for n = 1,2,...N-1  from (12.5) (12.13) 
So for n = 1 to N  
 fn(B0)  = q0 fn–1(B0) +  q1fn-1(B1)  from (12.4) 
  = q0 fn–1(B0) + q1 fn-1(B0) 
  = q fn–1(B0) 
  = q2fn–2(B0)....= qn f0(B0) 
  = qn (12.14) 
So by (12.13), for n = 1, 2.....N-1, 
 fn(G1)  = fn(B0) = fn(B1) = qn (12.15) 
Now  f1(G0)   = p1 by  (12.11) 
So fn(G0) = p0 fn-1(G0) + p1 fn-1(G1) 
  = p0 fn-1(G0) + p1 qn-1   by (12.15) 

  =  
p1

p0 –q (p0n – qn)  for n = 1, 2, 3...., N by induction (12.16) 
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Now, since  N  is smallest n for which decision at G1 is NO, we have from (12.5) 
  
 fN(G0)  > fN(B0) 

         
p1 

p0–q  [p0N – qN]  >  qN  from (12.14), (12.16) 

          p1 p0 N – p1 qN  > p0 qN – qN+1 where sign reverses if p0 < q 
                     �p1p0N  > (p0 + p1) qN –qN+1 
  = (p – q) qN 

                     �(
p0
q  )N   >  

p–q
p1

  

 N  >  
ln

p–q
p1

ln
p0
q

    where sign reverses back if p0 < q  

  = 
ln

qd–pd
p1

ln
p0

1–qd

  (12.17) 

 
Now for n = N, N + 1,... (i.e. n ≥ N  ),  decision is NO 
So fn(G0) = fn(B1) = fn(G1) by (12.5), (12.6) (12.18) 
But fn(G0) = p0 fn–1(G0) + p1 fn–1(G1) by (12.3) 
  = p0 fn–1(G0) + p1 fn–1(G0) by (12.18) if n–1≥N   
  = (p0 + p1) fn–1(G0)  if  n ≥ N + 1 
  = pn–N fN(G0) (12.19) 
OR               fm+N(G0) = pm fN(G0) 

so   fn(G0)  = fn(B1) = fn(G1)= pn–N 
p1

p0–q  (p0N – qΝ)  for n > N(12.20)  

OR               fm+N(G0) =fm+N(B1)=fm+N(G1)= pm 
p1

p0 q  (p0N – qΝ) for m > 0(12.21)  

    
 fn(B0)  = q0fn-1(B0) +  q1fn-1(B1)  from (12.4) 
  = q0fn-1(B0) +  q1pn-N-1 fN(G0)   

  = q0
n–NqN +  

q1
q0 –p (q0

n–N – pn–N)  fN(G0)   

  for n = N+1, N+2, ... (12.22) 

OR  fm+N(B0) = q0
m qN +  

q1
q0 –p (q0

m – pm)  fN(G0) for m > 0. 

 
So we have an analytic solution for  fn(G0), fn(G1), fn(B0) and fn(B1) for all n. 
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TO RUN OR NOT?  
SOME DYNAMIC PROGRAMMING MODELS IN CRICKET 

 
 
13.0.  Abstract   
 
In cricket, particularly near the end of an innings, batsmen of different abilities need to 
manage the rate at which they score runs.  Either batsman can choose to bat aggressively 
or defensively, which alters their chance of scoring runs and being dismissed.  Since 
they change ends when they score a run and at the end of an over, by scoring an odd or 
even number of runs the two batsmen also determine which of them will face the next 
ball.  It may be worthwhile to refuse a run to keep the slower or lower scoring batsman 
from the strike.  Some dynamic programming models are developed which could be 
used to maximise the total number of runs scored.   
 
 Key words:  sports, cricket, dynamic programming, Markov processes 
 
13.1.  Introduction 
 
A cricket team usually consists of six specialist batsmen, a wicket keeper and four 
specialist bowlers.  Two players from the batting side are at the wicket together, one 
facing the bowler and the other at the non strikers end.  As the batting ability of the 
wicket keeper and the bowlers may vary from good to terrible, near the end of an 
innings a good batsman often finds himself with a poor batsman as a partner.  The facing 
batsman changes whenever an odd number of runs is scored, and also at the completion 
of each six ball over.  The batsmen are then often faced with the possibility of 
sacrificing a possible run to avoid the weaker batsman being placed on strike.  Batsmen 
also need to decide whether they should attempt to score quickly, which will tend to 
produce more fours that do not require a change of ends but does involve greater risk of 
dismissal, or play more slowly and cautiously. 
 
Because of the ball by ball nature of cricket, dynamic programming (DP) is the natural 
choice to analyse cricket.  Surprisingly there are few papers using this technique to 
analyse cricket tactics.  In cricket, in the first innings a team will generally want to 
maximise the number of runs scored, while the team batting last will want to maximise 
the chance of passing the first team's score.  However depending on the state of the 
game, other optimality criteria are possible.  For example a team trying to obtain a draw 
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may wish to maximise the time an innings takes.  Clarke & Norman (1998a) look at 
possible strategies to maximise innings length with two batsmen of different abilities at 
the crease.  Here we look at some possible models to assist in maximising the number of 
runs scored with batsmen of different abilities. 
 
Clarke (1988b) used a DP formulation to investigate the optimal run rates in one day 
cricket.  Scoring rates from 1 to 12 per over were allowed.  To solve the DP 
formulations, the probability of dismissal and the scoring profile for the various run 
rates were required.  However such data is very difficult to obtain.  For example, while 
it is generally recognised that on a particular pitch to score more quickly involves taking 
a greater risk of dismissal, when analysed over many matches the data suggests the 
reverse.  This is due to confounding variables.  On good pitches and against weak 
attacks, batsman score quickly and at low risk, while on difficult pitches and good 
bowling the scoring rate drops while the rate of dismissal goes up.  However by using a 
relationship between dismissal rates and run rate that seemed reasonable and at least 
satisfied certain logical criteria (such as monotonic increasing) this paper derived some 
useful criteria.  Johnston (1992) later showed some of these criteria were valid under a 
range of possible relationships.  It is in this vein we present the following models.  
While data to implement them in detail may be difficult or impossible to obtain, it is 
hoped that by using such models some general conclusions valid under a wide range of 
scoring profiles might be found.   
 
Here we relax the restriction that all batsmen are of equal ability.  This implies batsmen 
have to consider the effects of different run rates on the chances of the weaker or slower 
scoring batsman being put on strike.  It also raises the possibility of batsmen refusing 
possible runs.   
 
13.2.  Model 1 
 
We begin by looking at a model where batsmen have the opportunity to take runs and 
need to decide whether to take the maximum possible, or one less to put a certain 
batsman on strike.  For the moment we ignore the change of ends at the completion of 
an over.   
 
A team consists of 11 batsmen designated by i = 1 – 11.   Let j = 0 to 6 be an index that 
defines the scoring possibilities of a batsman, namely  0, 1, 2, 3, 4 (all run), 4 
(boundary), 6.  Then batsman i can score these runs with probability  pi0, pi1.......pi6 or 
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be dismissed with probability  pid.  If a batsman is dismissed, assume the next batsman 
comes in and takes strike at the same end.  (In fact this is not always the case).   
 
Define j*, jodd,  jeven as below and also shown in Table 13.1.    
 
j*  is the number of runs available  j* = j  for  j ≠ 5,  
       = j –1 for  j = 5. 
 
jodd is the maximum number of runs taken if batsmen always change ends if possible. 
    Then   jodd  = j* – 1 if  j = 2, 4,  
       = j* otherwise. 
 
jeven  is the maximum number of runs taken if batsmen never change ends.    
    Then jeven = j* – 1 if  j = 1, 3,  
       = j* otherwise. 
 

TABLE 13.1.  Number of runs scored off single ball. 
 

Index j No of Runs 
on offer  j* 

jodd jeven 

0 0 0 0 
1 1 1 0 
2 2 1 2 
3 3 3 2 
4 4 (Run) 3 4 
5 4 (Boundary) 4 4 
6 6 6 6 

 
We can now set up a DP model.  Define the state to be (i, k, j) where i  is the batsman on 
strike, k is the batsman at the other end and j is the index of the number of runs on offer 
after the ball is bowled and there are n more balls to be bowled.  If the number of either 
batsman is 12 the innings is completed.  Thus i = 1 to 12, k = 1 to 12 (i � k) , j = 0 to 6.   
 
Note there is no need to consider dismissal as a special state.  Let l = max (i,k) + 1 be the 
next batsmen in.  Then if (say) state is (i,k,2) and the batsmen run a two, then before the 
next ball is bowled i will be on strike with k at the other end.  So after the next ball is 
bowled, there will be j  runs on offer (state (i,k,j)) with probability pij, or i will have 
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been dismissed with probability pid, so l will be facing and there will be no runs on offer 
(state (l,k,0)).   
 
Define the value function fn(i,k,j) = total expected number of runs in the remainder of 

the innings after the ball is bowled and with n more balls to go. 
 
The decisions are  YES, Change ends, take  jodd number of runs or 
    NO,  Do not change ends, take  jeven number of runs. 
Note that a decision is only necessary when jeven ≠  jodd; i.e. for  j  = 1, 2, 3, 4. 
 
The transition probabilities are easily evaluated.  If the current state is (i,k,j ) and 
decision is No, batsmen will not change ends, so i will still be on strike for the next ball, 
and will score j runs with probability pij or be dismissed with probability pid.  Thus state 
(i,k,j )∅ (i,k,j ) with probability pij, and state (i,k,j )∅ (l,k,0)) with probability pid.  If 
current state is (i,k,j) and decision is Yes, batsmen will change ends, so k will be on 
strike next ball, and will score j runs with probability pkj or be dismissed with 
probability pkd.  Thus state (i,k,j)∅ (k,i,j) with probability pkj and state (i,k,j )∅ (l,i,0) 
with probability pkd. 
 
The functional equations then become 
 

       fn(i,k,j)  = MAX   

YES :   jodd  +
j

∑ pkj fn–1 k, i, j( )+ pkd fn–1 l,i,0( )

NO :   jeven +
j

∑ pij fn–1 i,k, j( ) + pid fn–1 l,k,0( )

⎧ 

⎨ 
⎪ 

⎩ ⎪ 
 (13.1) 

 

 = MAX  
YES :    jodd  + fn k,i,0( )
NO :     jeven + fn i, k,0( )

⎧ 
⎨ 
⎩ 

 (13.2) 

 
Note that for j = 0, 5 and 6 the option of changing ends is not available so the No choice 
is always taken.  A more detailed derivation of these equations is given in Appendix 
13.1. Equation (13.2) makes sense.  If batsmen decide to change ends, they get jodd runs, 
and are then in exactly the same position as if they had been at opposite ends and had no 
runs available.   Similarly if they decide not to change ends. 
 
For the last ball the batsmen will take all the runs, and when the 12th batsman is needed 
the innings is ended.  This results in initial conditions 
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 f0(i,k,j)  = j*,  i = 1–11, k = 1–11, j = 0–6 (13.3) 
 
 fn(12,k,j)  = fn(i,12,j) = 0  for all i = 1–11, k = 1–11, j = 0–6 (13.4) 

 
In keeping with the example in Hastings (1973, p 100) we could define the state to be 
(i,k) and Fn(i,k) = expected number of runs before a ball is bowled, with n  balls to go.  

Then 
 
 Fn(i,k)  = 

6
∑
j=0

  pij fn–1 (i,k,j)+ pid fn-1(l,k,0)  (13.5) 

 
Hastings calls (i,k,j) and (i,k) primary and secondary states.   
From (13.1) and (13.5) it follows that  
 
 Fn(i,k)  = fn(i,k,0)  (13.6) 

 
13.3.  Simplifying results 
 
Several simplifying results are given in Appendix 13.2.  We show that the optimal 
decision for any odd j is the same.  Similarly for even j.  Thus we need only discuss the 
two cases when  j  is odd (1,3) or j  is even (2,4).  For each facing batsman the policy 
can be stated as an ordered pair (.,.) taking the values (Yes, Yes), (Yes, No), (No, Yes) 
or (No, No), where the first string represents the decision when j  is 1 or 3, and the 
second when j  is 2 or 4.  We then show that (No, Yes) is never optimal.  This can also 
be argued from common sense grounds.   If batsmen refuse a run to keep batsman k  
from the strike, they would certainly not at the same stage refuse a run to put batsman k  
on strike.   
 
So we have only three possible policies for each facing batsman, (No, No), (Yes, Yes) 
and (Yes, No).  These three policies could be stated as   
 (a)  keep the strike batsman i on strike 
 (b) put the opposite batsman k on strike; and  
 (c) take all the runs on offer. 
 
We next show that an optimal decision of Yes for (i,k) when j  is odd � an optimal 
decision of No for (k,i) when j is even (and vice versa.)  This simply shows that if (a) 
above is optimal for one batsmen, (b) is optimal for the other.  If (c) is optimal for one 
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batsman it is also optimal for the other.  Thus we can make table 13.2.showing the 
relationship between optimal policy at stage n  for state (i,k) and state (k,i). 

 
TABLE 13.2.  Relationship between policies  

 
Optimal decision for 

State (i,k) 
Optimal decision for 

State (k,i) 
Combined Policy 

(Yes, Yes) (No, No) keep k on strike 
(Yes, No) (Yes, No) take all runs 
(No, No) (Yes, Yes) keep i on strike 

 
Note that the first and third are mirror images of each other; they are both putting a 
particular batsman on strike.   The middle one is taking all possible runs.  Note also for 
two even batsmen, the only possible optimal policy is (Yes, No) 'take all the runs' as 
otherwise the symmetry would result in a contradiction.  
 
Thus, the problem is much simplified.  For a given pair of batsmen instead of a Yes/No 
decision for each of two possibilities for the facing batsman at each of four possible runs 
= 44 =16 policies, there are only three possible policies (take all runs, keep i  on strike, 
keep k on strike).  If we group batsmen as 'recognised batsmen' or 'duffers' we only need 
to determine the optimal policy when a recognised batsman and a duffer are together.  
 
13.4.  Some analytic results 
 
It is possible to generate some analytic results.  Details are in Appendix 13.3.  A 
summary follows. 
 
With one ball to go optimal policies are 
  (Yes, Yes)  Keep k on strike if µk > µi +1 
  (No, No)  Keep i on strike if  µk < µi –1 
  (Yes, No)  Take all runs if   µi–1 < µk < µi+1 

where µi  =  ∑
j
  j*pij   is the mean run rate of batsman i.   

 
These policies make sense and could be argued from first principles.   Thus if a non 
strike batsman has a run rate greater than one more than the batsman on strike, it is 
worth sacrificing a run to put him on strike for the last ball.  If the run rates are within 
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one of each other, all the runs would be taken.   
 
The question to be answered, is how far back into the over do these optimal polices 
remain.  While the optimal policies can not be found analytically for all values of n, we 
can find recurrence formula for the value function under particular polices.  Thus if for 
µi–1 < µk < µi+1 and the batsmen take all the runs for all n, we get  
 
Fn(i,k) = μi + piu Fn -1(k,i) + pie Fn -1(i,k)+ pidFn -1(l,k)   

 
where piu= pi1 + pi3 = probability batsman i  will score an uneven number of runs, and  
pie = pi0 + pi2 + pi4 + pi5 + pi6 = probability batsman will score an even number of runs. 

 
Similarly,  for µi  > µk  +1 if the batsmen attempt to keep k from the strike for all n, 
  
Fn(i,k) = μie + (1-pid) Fn–1(i,k) + pidFn–1(l,k)   

 
Fn(k,i)  =  μku + pkr Fn–1(i,k) + pkn Fn–1(k,i)+ pkdFn–1(l,i)   
where μie = ∑ pij jeven = mean scoring rate if batsman i always takes jeven runs and  
 μiu = ∑ pij jodd = mean scoring rate if batsman i always takes jodd runs.  
 pir =pi1 + pi2 + pi3 + pi4 = probability batsmen will be able to run something 
 pin = pi0 + pi5 + pi6 = probability batsman will not be able to run. 

 
These expressions can be solved recursively.  Thus we could generate the expected 
number of runs if batsmen consistently follow certain strategies.   
 
However, for the last wicket, when l = 12, some progress can be made analytically.  In 
this case Fn–1(l,i), Fn–1(l,k) are zero, the recursion equations can be solved, and although 
complicated, closed expressions can be found for Fn(i,k) .   

 
Note also that several performance measures such as pir naturally arise.  These are 
currently not kept on cricketers.  However it is sometimes said that a particular cricketer 
is adept at batting with tail enders, or is good at rotating the strike. If this is due to his 
scoring profile, such ability may be indicated by a high pir , which is the probability the 
batsman will have a choice of changing or keeping the strike.  
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13.5.  Model 2 
 
The extension to allow for change of ends at the end of each 6 ball over follows simply 
with a slightly more complex notation.   
 
Let fm,n (i,k,j) be the expected number of runs with m overs to go, n more balls to go in 
the over  (after the ball is bowled), j runs on offer, m=0,1,... n=0-5.   
 
Let Fm,n (i,k) be the expected number of runs with m overs and n balls in the over to go 
(before the ball is bowled), m=0,1,... n=1–6. 
 
For n=1 to 5: Similar to the previous section we have 
 

fm,n(i,k,j) = MAX 

  

YES : jodd +  pkj  fm,n –1 k,i, j( ) +  pkd fm,n –1 L, i,0( )
j

∑

NO : jeven +  pij  fm ,n–1 i,k, j( ) +  pid fm,n –1 L,k,0( )
j

∑

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

 (13.7) 

For j = 0, 5 & 6 there is no choice, only the No option is available. 
 
Of special importance is j = 0, which gives  

fm,n(i,k,0) = 
  
 pij

j
∑  fm ,n–1 i,k, j( ) +  pid  fm, n–1 L,k,0( )     (13.8) 

 
so 
  fm,n(i,k,j)  =  MAX  YES : jodd +  fm,n  k, i,0( )

NO : jeven +  fm,n i,k,0( )
⎧ 
⎨ 
⎩ 

      (13.9) 

 
For n=0: Last ball of the over so change ends if runs are even, overs go down by one 
 

 fm,0(i,k,j) = MAX 

  

YES : jodd +  pij∑  fm –1, 5 i,k, j( ) +  pid fm –1,5 L, k,0( )
NO : jeven +  pkj∑  fm –1, 5 k, i, j( ) +  pkd  fm –1,5 L,i,0( )

⎧ 
⎨ 
⎩ 

   (13.10) 

 
and again:   fm,0  (i,k,0) =  pkj∑  fm –1,5 k, i, j( ) +  pkd  fm –1,5 L,i,0( )   (13.11) 

 
so fm,0(i,k,j) = MAX  YES : jodd +  fm,0  k,i,0( )

NO : jeven +  fm,0 i,k,0( )
⎧ 
⎨ 
⎩ 

    (13.12) 
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The relationship between Fm,n (i,k) and fm,n (i,k,0) is 
 

For n=1 to 5: 

  

Fm ,n i,k( ) =  pij
j

∑  fm,n–1 i,k, j( ) +  pid  fm, n–1 L,k,0( )

=  fm, n i, k, 0( )

  (13.13) 

 
For n=6: 

  

Fm ,6 i,k( ) =  pij
j

∑  fm ,5 i,k, j( ) +  pid  fm ,5 L, k,0( )

=  fm +1,0 k, i,0( )

   (13.14) 

  or fm,0  (i,k,0) =  Fm –1,6 (k, i) 

 
So that at the end of the over only the fm,n(i,k,0) matrix becomes the transpose of 
Fm,n(i,k) matrix.  This also makes sense as between the stage fm,0 (after the last ball of 
the mth over is bowled) and Fm–1,6 (before the first ball of the m-1th over is bowled) 
there is a change of ends due to the end of over. 
 
Most of the general results of the previous model still hold. Thus there are still basically 
only two decisions for  each pair of batsmen for each ball.   
 
 13.5.1.  Computer implementation 
 
A computer program has been written to implement Equations 13.7 and 13.10 of Model 
2.  The various probabilities required could be estimated from standard score sheets, as 
these always show the number of runs for each scoring shot and usually show the total 
number of balls faced.  They may not differentiate between a four all run and a 
boundary.   We only take a very simple case for illustration here.  We assume there are 
two types of batsmen, batsmen 1 to 7 are recognised and 8 to 11 are duffers with scoring 
probabilities as shown in Table 13.3.  Then the basic program will produce the expected 
number of runs in the remainder of the innings before the ball is bowled and the optimal 
strategy after the ball is bowled for as far back in the innings as required. For example, 
from ball by ball data developed by Johnston (1992) from the 1989 Australia, Pakistan 
and Sri Lanka one day series in Australia we have the runs scored by batsmen at each 
position.  For the Australian batsmen batting at 1 to 7, of 2819 balls faced 113 fours 
were scored.  This gives the probability of a four at just on 4%.  For 8-11 batsmen 50 
balls faced produced one four to give a 2% chance.  Now in this series the Australians 
were well on top, so the weaker batsmen did not bat very often.  Hence some adjustment 
of their probabilities was necessary to produce sensible figures.  For example the 
probability of scoring a 0 was increased to at least the level of the recognised batsmen, 
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as this seems a reasonable assumption.  This produced the probabilities in Table 13.3. 
 

TABLE 13.3.  Scoring profile of batsmen 
 

Batsmen pd p0 p1 p2 p3 p4 p5 p6 μ 
Recognised 0.02 0.50 0.32 0.10 0.02 0.00 0.04 0.00 0.74 
Duffer 0.06 0.52 0.32 0.08 0.00 0.00 0.02 0.00 0.56 

 
Note this gives an average run rate for recognised batsmen of 0.74, so if they bat 
through a one day innings of 300 balls they should score about 224.  In fact, the printout 
for 300 balls to go with 1 and 2 batting gives an expected score of 207.3.  This is less 
than 224 due to the possibility that the slower scoring of the batsmen 8-11 will be 
needed, or worse still the team dismissed before 50 overs.  By repeating with one fewer 
or one more extra batsmen, the effect on expected score of selection decisions to choose 
extra batsmen could be evaluated.  The model could be used by media to give estimates 
of expected score and effects of dismissals.  For example, with 299 balls to go and 
batsman 2&3 at the crease the expected score reduces to 195.5, so a first ball duck costs 
the team about 12 runs.    Johnston et al. (1993)  use this approach for the basis of a 
player performance measure in one day cricket. 
 
We give in Table 13.4 a sample output with 10 overs, 0 balls to go.  Thus the decisions 
are for the last ball of the eleventh last over, and the expected runs for the last 10 overs.   
 
The strategies give us the runs that should be taken off the last ball of the 11th last over.  
The batsmen should generally take all the runs, except if a recognised batsman is 
batting with the number 11 batsman.  In this case they should put the number 11 bat on 
strike, so the recognised batsman will be on strike at the beginning of the next over.  
The transpose of the numbers give us the expected score in the last 10 overs.  Thus at 
the beginning of the 10th last over, if say 4 and 5 are in they can expect to score another 
44.2 runs.  On the other hand if 4 and 11 are in they can expect 15.5 runs if 4 is facing 
and 14.4 if 11 is facing.  The table can be used to estimate the value of wickets in hand.  
For example it is worth roughly 18 runs (41.7- 23.9 ) to have 6 & 7 batting rather than 8 
and 9 with 10 overs to go.   
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TABLE 13.4.  Expected score and optimal strategy with 10 overs to go 
 

Facing  Non strike batsman 
batsman 1 2 3 4 5 6 7 8 9 10 11 

1  44.4
YN 

44.4
YN 

44.4
YN 

44.2
YN 

43.4
YN 

41.1
YN 

34.6
YN 

31.1
YN 

24.7
YN 

14.4
YY 

2 44.4
YN 

 44.4
YN 

44.4
YN 

44.2
YN 

43.4
YN 

41.1
YN 

34.6
YN 

31.1
YN 

24.7
YN 

14.4
YY 

3 44.4
YN 

44.4
YN 

 44.4
YN 

44.2
YN 

43.4
YN 

41.1
YN 

34.6
YN 

31.1
YN 

24.7
YN 

14.4
YY 

4 44.4
YN 

44.4
YN 

44.4
YN 

 44.2
YN 

43.4
YN 

41.1
YN 

34.6
YN 

31.1
YN 

24.7
YN 

14.4
YY 

5 44.2
YN 

44.2
YN 

44.2
YN 

44.2
YN 

 43.4
YN 

41.1
YN 

34.6
YN 

31.1
YN 

24.7
YN 

14.4
YY 

6 43.4
YN 

43.4
YN 

43.4
YN 

43.4
YN 

43.4
YN 

 41.1
YN 

34.6
YN 

31.1
YN 

24.7
YN 

14.4
YY 

7 41.1
YN 

41.1
YN 

41.1
YN 

41.1
YN 

41.1
YN 

41.1
YN 

 34.6
YN 

31.1
YN 

24.7
YN 

14.4
YY 

8 34.8
YN 

34.8
YN 

34.8
YN 

34.8
YN 

34.8
YN 

34.8
YN 

34.8
YN 

 23.9
YN 

17.3
YN 

9.1 
YN 

9 31.5
YN 

31.5
YN 

31.5
YN 

31.5
YN 

31.5
YN 

31.5
YN 

31.5
YN 

23.9
YN 

 17.3
YN 

9.1 
YN 

10 25.4
YN 

25.4
YN 

25.4
YN 

25.4
YN 

25.4
YN 

25.4
YN 

25.4
YN 

17.3
YN 

17.3
YN 

 9.1 
YN 

11 15.5
NN 

15.5
NN 

15.5
NN 

15.5
NN 

15.5
NN 

15.5
NN 

15.5
NN 

9.1 
YN 

9.1 
YN 

9.1 
YN 

 

 
13.6.  Model 3 
 
In addition to deciding whether to take all possible runs, a batsman may have choices in 
the sort of stroke he plays.  For example, when a recognised batsman is paired with a 
duffer, fielding sides sometimes have deep set fields to encourage the good batsman to 
take a single.  In this case a batsman may decide to gently stroke the ball to a deep set 
fielder for a certain single and sometimes a two, with almost no risk of being dismissed.  
On the other hand he may decide to belt the ball in the hope of beating the fielder for a 
boundary.  This shot carries a greater risk of dismissal, but also a greater chance that no 
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run will be scored.  A batsman may also just wish to avoid dismissal and block the ball, 
a shot that rarely scores a run.  Superimposed on these shots are the decisions whether to 
run all the available runs or not.   
 
Thus we let the state (i,k) be the two batsman, i facing the bowler, and define as before  
Fm,n (i,k) the  expected number of runs under optimal policy with m overs and n balls in 
the over to go m = 1,2,... n=1–6,.  There are now five decisions, to Block, Stroke or Hit, 
and for each of the latter two to take all the runs or not.  The model is similar to the 
previous except that we have different pij for each type of shot.   
 
It is difficult to progress very far analytically with this model, but simple to solve 
numerically via a basic program.  This allows the number of recognised batsmen to be 
altered.  It is difficult to obtain estimates of the pij as it is not known from score sheets 
what type of stroke a batsman is trying to play.  One could perhaps split up an innings 
into sections.  For example, in one day matches where teams do not lose a lot of wickets, 
it could be assumed that batsmen were trying to thrash the ball in the last few overs.  
Here we take probabilities similar to that we had before for the recognised batsman as 
equivalent to stroking, and adjust the others up and down as necessary for blocking and 
hitting.  This gives the probabilities in Table 13.5.   

 
TABLE 13.5.  Scoring profile for batsmen when blocking, stroking and hitting 

 
  Probabilities 

Batsmen Shot pd p0 p1 p2 p3 p4 p5 p6 μ 
Recognised Block 0.01 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
 Stroke 0.02 0.50 0.34 0.14 0.00 0.00 0.00 0.00 0.62 
 Hit 0.10 0.30 0.30 0.20 0.00 0.00 0.10 0.00 1.10 
Duffer Block 0.06 0.94 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
 Stroke 0.10 0.40 0.40 0.10 0.00 0.00 0.00 0.00 0.60 
 Hit 0.30 0.30 0.20 0.10 0.00 0.00 0.10 0.00 0.80 
 
The program was run with 7 recognised batsmen for 300 balls.  This gave an expected 
score at the beginning of the match as 181.  Some sample output for 19 balls to go is 
shown in Tables 6 and 7.  The expected score shows that if they still have two 
recognised batsmen at the crease they can expect to score about a run a ball.  However 
this drops to under 8 if number 11 is batting.  In the above strategy output, the first letter 
indicates the type of shot, and the others whether to take all the runs or not as previously 
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used.  Thus in this case they should always take all the runs.  When recognised batsmen 
are batting with 10 and 11 they should stroke, otherwise hit.  Presumably this is because 
of the greater chance of getting a single if they stroke, and so protecting 10 and 11 from 
the strike at the beginning of the next over.  Duffers should stroke when playing with 
duffers. When playing with a recognised batsman, number 8 should hit, 9 & 10 stroke, 
and 11 block.   
 
While the strategy here is a little complicated, it is possible that by studying the output 
for a range of values some general principals may be enunciated.  For example, for the 
above scoring profile, for all stages the only time batsmen should refuse a run is to 
protect batsman 11 from the strike.   
 
This output would apply for one day cricket when the number of balls remaining is 
known; in test cricket the length of the match is unknown.  However 300 balls to go 
would represent a good approximation for test cricket, at least certainly in the cases 
when a duffer is at the crease.  In this case the optimal strategy is for both batsman to 
stroke the ball, and to take all the runs except when 11 is at the crease.  In this case they 
should refuse runs as necessary to keep the recognised batsman on strike for the first 4 
balls of an over, take all the runs on the 5th and refuse runs to put the bad bat on strike 
for the last ball of the over.  
 
13.7.  Conclusion   
 
DP models are useful in analysing optimal strategies in cricket.  The common practice of 
refusing runs to protect weaker batsmen from the strike has been shown to be sensible 
under certain conditions.   Clearly more work needs to be done before these models can 
be generally applied.  The optimal strategies for a range of batsmen scoring profiles 
need to be determined to see if any general recommendations can be made.  The models 
might also be extended to a second innings formulation.  However this involves the 
addition of the number of runs to go to the state variable, and usually increases the 
computational requirements to an unacceptable level.   
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TABLE 13.6.  Expected score with 19 balls to go. 
 
Facing Non strike batsman 

batsman 1 2 3 4 5 6 7 8 9 10 11 
1  20.9 20.9 20.8 20.5 19.8 18.2 15.1 14.0 11.9 8.0 
2 20.9  20.9 20.8 20.5 19.8 18.2 15.1 14.0 11.9 8.0 
3 20.9 20.9  20.8 20.5 19.8 18.2 15.1 14.0 11.9 8.0 
4 20.8 20.8 20.8 20.5 19.8 18.2 15.1 14.0 11.9 8.0 
5 20.5 20.5 20.5 20.5 19.8 18.2 15.1 14.0 11.9 8.0 
6 19.8 19.8 19.8 19.8 19.8 18.2 15.1 14.0 11.9 8.0 
7 18.2 18.2 18.2 18.2 18.2 18.2 15.1 14.0 11.9 8.0 
8 15.0 15.0 15.0 15.0 15.0 15.0 15.0 11.0 8.9 5.2 
9 13.9 13.9 13.9 13.9 13.9 13.9 13.9 11.0  8.9 5.2 
10 11.7 11.7 11.7 11.7 11.7 11.7 11.7 8.9 8.9  5.2 
11 7.5 7.5 7.5 7.5 7.5 7.5 7.5 5.2 5.2 5.2 

 
 

TABLE 13.7.  Optimal strategy with 19 balls to go 
 

Facing Non strike batsman 
batsma

n 
1 2 3 4 5 6 7 8 9 10 11 

1  HYN HYN HYN HYN HYN HYN HYN HYN SYN SYN 
2 HYN  HYN HYN HYN HYN HYN HYN HYN SYN SYN 
3 HYN HYN  HYN HYN HYN HYN HYN HYN SYN SYN 
4 HYN HYN HYN  HYN HYN HYN HYN HYN SYN SYN 
5 HYN HYN HYN HYN  HYN HYN HYN HYN SYN SYN 
6 HYN HYN HYN HYN HYN  HYN HYN HYN SYN SYN 
7 HYN HYN HYN HYN HYN HYN  HYN HYN SYN SYN 
8 HYN HYN HYN HYN HYN HYN HYN  SYN SYN SYN 
9 SYN SYN SYN SYN SYN SYN SYN SYN  SYN SYN 
10 SYN SYN SYN SYN SYN SYN SYN SYN SYN  SYN 
11 BYN BYN BYN BYN BYN BYN BYN SYN SYN SYN   
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Appendix 13.1.  Derivation of functional equations for Model 1 
 
For j = 0, 5, 6:  
 
No decision to be made, no change of ends, so i is still on strike next ball  
 
fn(i,k,j)  = j* +  ∑

j
  pijfn-1 (i,k,j) + pid fn-1 (l,k,0) (13.15) 

 
So  fn(i,k,0)  =   ∑

j
  pijfn-1 (i,k,j) + pid fn-1 (l,k,0) = Fn(i,k)  (13.16) 

 
For j = 1, 3:  
 

fn(i,k,j)   = MAX   

Yes :   j * +
j

∑ pkj fn–1 k, i, j( )+ pkd fn –1 l, i,0( )

No :   j * –1+
j

∑ pij fn–1 i, k, j( )+ pid fn–1 l, k,0( )

⎧ 

⎨ 
⎪ 

⎩ ⎪ 
 (13.17) 

 

 = MAX  
Yes :    j *      + fn k,i,0( )
No :     j * –1 + fn i,k,0( )

⎧ 
⎨ 
⎩ 

 (13.18) 

 

 = MAX  
Yes :    j *      + Fn k, i( )
No :     j * –1 + Fn i,k( )

⎧ 
⎨ 
⎩ 

 (13.19) 

For j = 2, 4: 
 

fn(i,k,j)  = MAX   

Yes :   j *−1 +
j

∑ pkj fn–1 k,i, j( )+ pkd fn –1 l,i,0( )

No :   j *      +
j

∑ pij fn –1 i,k, j( ) + pid fn–1 l,k,0( )

⎧ 

⎨ 
⎪ 

⎩ ⎪ 
 (13.20) 

 

 = MAX  
Yes :    j * –1 + fn k,i,0( )
No :     j *      + fn i,k,0( )

⎧ 
⎨ 
⎩ 

 (13.21) 

 

 = MAX  
Yes :    j * –1 + Fn k, i( )
No :     j *      + Fn i,k( )

⎧ 
⎨ 
⎩ 

 (13.22) 
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Appendix 13.2.  Proof of theorems for Model 1 
 
Theorem 1:  Optimal decisions for all odd (even) values are the same.  i.e. the optimal 
policy for some odd j is the same as for any other odd j.   Similarly for even j.   
 
This follows trivially from (13.2) 
 
e.g. If the decision is Yes for some odd j 
 
 Then   jodd + fn(k,i,0) >  jeven + fn(i,k,0)  
 �     j* + fn(k,i,0) > j* –1 + fn(i,k,0)  
 �    fn(k,i,0) > –1 + fn(i,k,0)  
 �    j '* + fn(k,i,0) > j'*–1 + fn(i,k,0)  
 �   j'odd + fn(k,i,0) > j'even + fn(i,k,0)  if j' is odd 
 
so Yes is optimal for j'         
 
Thus we need only discuss the two cases when  j  is odd (1,3) or j is even (2,4).    
 
Thus for each facing batsman the policy can be stated as an ordered pair (.,.) taking the 
values (Yes, Yes), (Yes, No), (No, Yes) or (No, No), where the first string represents the 
decision when j  is (1 or 3), and second when  j  is (2 or 4). 
 
Theorem 2 :  A policy of (No, Yes) is never optimal. 
 
If decision at odd j is No, then for odd j we have from (13.2) 
  jeven + fn(i,k,0)  > jodd + fn(k,i,0) 
 � j* –1 + fn(i,k,0)  > j* + fn(k,i,0) 
 �    fn(i,k,0)  > 1 + fn(k,i,0) 
 
So for even j : 
 
  jeven + fn(i,k,0)  = j* + fn(i,k,0)  
     > j* +1 + fn(k,i,0) from above 
     >j* –1 + fn(k,i,0) 
     = jodd + fn(k,i,0) 
 So optimal decision for even is No from (13.2).     
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Theorem 3: An optimal decision of Yes for (i,k,j) when j  is odd � an optimal decision of 
No for (k,i,j )when j is even  (and vice versa.) 
 
eg. If optimal decision is Yes for odd j  
 
 Then  jodd + fn(k,i,0)  >  jeven + fn(i,k,0)  from (2) 
 i.e.    j* + fn(k,i,0)  > j* –1 + fn(i,k,0)  
 �     fn(k,i,0)  > –1 + fn(i,k,0)   
 
 So for even j: 
  j* + fn(k,i,0)  > j* –1 + fn(i,k,0)  
 i.e. jeven + fn(k,i,0)  > jodd  + fn(i,k,0)  
 � optimal decision is No for state (k,i,j) when j  is even. 
 
 Similarly, for a decision of No for odd j,  > becomes < in above 
 � decision is Yes for state (k,i,j) when j  is even.    
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Appendix 13.3.  Some Analytic results for Model 1 
 
First Stage:  n=1 
 
With one ball to go: 
 
From (13.1) f1(i,k,0)  = 0 + ∑

j
  pij f0(i,k,j) +pid f0 (l,k,0) 

 
         =  ∑

j
  pij j* + pid0  from (13.3) 

         = µi 
 
This is the mean run rate for batsman  i. 
 
(Note that equation  13.2 � f1(i,k,5) = 4 + µi  and f1(i,k,6) = 6 + µi) 
 

For other  j, from (13.2)  f1(i,k,j) = MAX 
YES  jodd   +  μk

NO  jeven  +  μ i

⎧ 
⎨ 
⎩ 

 

 
If  j  is even: Decision is Yes if jodd + µk  >  jeven + µi 
     i.e.  j* –1 + µk  > j* + µi 
     i.e.            µk  > µi + 1 
    and No if   µk  < µi + 1 

 
If j  is odd: Decision is Yes if j* + µk  > j* –1 + µi 
     i.e.    µk  > µi –1 
    and No if   µk  < µi –1 

 
So for n = 1 optimal policies are (Yes, Yes) if µk  > µi +1 
      (No, No) if µk  < µi –1 
      (Yes, No) if      µi–1  < µk < µi+1 
 
The question to be answered is how far back into the over do these optimal policies 
remain.  Our feeling is that you could not extend this to all values purely based on µk 
and µi, but that it would depend on p0,p1 ...etc, or more particularly pu and pe.  Is there 

a formula that gives N = least number of balls to go when this policy is no longer 
optimal?   
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Special Case (Yes, No) decision - take all runs on offer 
 
Consider case when decision is (Yes, No) for  n = 1 
 
  i.e. µi – 1 < µk < µi  +1 
 
This is the case when batsmen take all the runs and is the same for the batsman at the 
other end. 
 
  fn(i,k,j)  = j* + fn–1(k,i,0)  if  j  is odd  from (13.2) 
  = j* + fn(i,k,0)   if  j  even 
 
  fn(i,k,0)  = 0 +  ∑

j
 pij  fn-1(i,k,j)+ pid fn–1(l,k,0)   from (13.1)  

 
  = ∑

u
 pij {j* + fn–1(k,i,0) } + ∑

e
 pij {j* + fn–1(i,k,0) }+ pid fn–1 (l,k,0), 

 
where  ∑

u
  means sum over odd j  = 1,3  and  ∑

e
  means sum over even j  = 0, 2, 4, 5, 6 

   = μi + piu fn–1(k,i,0) + pie fn–1(i,k,0)+ pidfn–1(l,k,0)   
where  piu = pi1 + pi3 = probability batsmen will score an odd number of runs, and 
   pie  = pi0 + pi2 + pi4 + pi5 + pi6  

  = probability batsman will score an even number of runs. 
(pid + piu + pie = 1 ) 

 
This expression can be solved recursively. 
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Special Case (No, No) decision - Keep batsman k off strike 
 
Consider case when decision is (No, No) when state is (i,k).  Then decision is (Yes,Yes) 
when state is (k,i).  The batsmen are trying to keep batsman k from the strike.  This is 
the case for n = 1 if µk < µi – 1.  i.e. µi > µk + 1 

 
Assume this is true for n = 1,2,...N. 
 
Then from (13.2) fn(i,k,j) = jeven + fn(i,k,0)  for n = 1,2,...N 

 
From (13.1) fn(i,k,0)  =  ∑

j
 pij fn–1(i,k,j) + pid fn–1(l,k,0) 

    = ∑ pij {jeven +  fn–1(i,k,0)} + pid fn–1(l,k,0), 
     = μie + (1-pid)fn–1(i,k,0) + pidfn–1(l,k,0)   

 
where μie = ∑ pij jeven = mean score if batsmen always stay at same end.  

 
Similarly fn(k,i,j)  = jodd + fn(i,k,0)  if  j = 1 to 4 
    = jodd + fn(k,i,0)  if  j = 0,5,6 

 
From (13.1) fn(k,i,0) = ∑

r
 pkj { jodd + fn–1(i,k,0)} + ∑

n
 pkj {jodd + fn–1(k,i,0)} + pkd (l,i,0) 

 
where  ∑

r
  means sum over the j where it is possible to take runs j = 1,2,3,4, and  ∑

n
  

means sum over the j where it is not possible to take runs j =0,5,6. 
 
   = ∑ pkj jodd + ∑

r
 pkj  fn–1(i,k,0) +  ∑

n
 pkj fn–1(k,i ,0)+ pkd fn–1(l,i,0), 

  = μku + pkr fn–1(i,k,0) + pkn fn–1(k,i,0)+ pkdfn–1(l,i,0)   

 
 whereμiu = ∑ pij jodd = mean score if batsmen always change ends if possible 

  pir=pi1 + pi2 + pi3 + pi4 = probability batsmen will be able to run something 
  pin = pi0 + pi5 + pi6 = probability batsman will not be able to run. 
  (pid + pir + pin = 1 )   
 
This expression can be solved recursively. 
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ASSESSING PLAYER PERFORMANCE IN ONE DAY CRICKET USING 
DYNAMIC PROGRAMMING 

 
 
14.0.  Abstract  
 
A dynamic programming formulation is used to develop a method of calculating the 
contribution, in runs, made by each player to the team's score in a game of one-day 
cricket.  The advantages of such measures over the currently used statistics are outlined 
as well as their possible use to choose 'man of the match' award winners, to rank the best 
batsmen and bowlers and to aid selectors of one-day sides.  Possible extensions to this 
work are also discussed. 
 
 Key words:  dynamic programming, sport, cricket, computer ratings 
 
14.1.  Introduction 
 
There has always been great interest in the ranking of individual and team 
achievements; from the richest ten people or the top ten companies in the world, to the 
listing of the poorest and the least taxed countries in the world.  Comparisons of this 
type have carried over to the sporting arena.  For instance, in tennis, players' ranking 
will help determine their seeding for tournaments and thus affect their chance of 
success, and in golf a high world ranking allows automatic entry to many of the top 
tournaments.  Being on top of the ranking list for any of the major sports also gives an 
individual immediate access to remuneration from advertisement, product endorsement 
and appearance money. 
Although Deloittes (1988) has developed a rating system for test cricketers, in one-day 
cricket there is no such system.  This paper describes the use of dynamic programming 
to develop a new measure of player performance.  The model developed calculates the 
contribution to the team in runs by each player in a one-day match. 
 
These ratings could be used to determine the 'best' players for the interest of the general 
public, to determine the player to receive the player of the match award, as well as to 
assist team selectors. 
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14.2.  The problem 
 
Limited-over or one-day cricket is played by two teams of eleven players.  Each team 
has 50 six-ball overs from which to score as many runs as possible.  The innings of each 
team is terminated either when the 50 overs is completed or when 10 wickets have been 
lost, with the team that scores the most runs being the winner.  Batsmen must therefore 
score as many runs as possible within the constraints of the number of overs to be 
bowled and the number of wickets to be lost.  There is a constant trade-off between fast 
scoring rates and the risk of losing wickets. 
 
The most common statistic kept on one-day batsmen is their average, or runs scored per 
dismissal, which is the same statistic used for test cricketers where the time factor is of 
less importance.  Another statistic kept on one-day batsmen is the strike rate or runs 
scored per 100 balls faced.  While these measures, as tabled in Dundas (1991), give an 
indication of how many runs were scored and how quickly, the stage of the innings at 
which runs were scored is not considered.  The statistics kept on bowlers, bowling 
average or runs conceded per wickets taken and strike rate or balls bowled per wickets 
taken, as tabled in Dundas (1991), suffer the same problem.  None of these statistics 
take account of the constraints that are present in the game of one-day cricket. 
 
For example, four runs off one over by a batsman may be an excellent result in the first 
over of the innings, but a poor result from the last over.  Similarly a wicket by a bowler 
off the last ball of the innings is no more value than a maiden ball, whereas a wicket off 
the first ball of the innings significantly decreases the expected score of the batting side.  
A measure of player performance is needed that takes account of the number of runs 
scored, the speed of scoring and the stage of the innings that the scoring took place. 
 
14.3.  Model formulation 
 
Clarke (1988b) developed the dynamic programming formulation for the first innings in 
one-day cricket which is being used in this paper to calculate the performance measures.  
This formulation calculates the optimal run rate (the rate that will lead to the largest 
expected score in the remainder of the innings) and the expected score in the remainder 
of the innings at each stage and state of an innings.  The functional equation is shown as 
equation 14.1. 
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 fn(i) = Max

R
pd fn−1(i −1) + R

6 + (1 − pd ) fn −1(i){ } (14.1) 

 
where  i  = wickets in hand, i = 0 to 10. 
  n  = balls to go, n = 0 to 300. 

  fn(i) = expected score with n balls to go and i wickets in hand. 
  pd  = probability of dismissal per ball. 

  R  = runs per over. 
 
Using a standard relationship between R and pd , each fn(i) can be calculated.  The 
actual number of runs scored at each stage and state of the innings can then be 
compared to the expected scores and a measure of how many extra runs each player has 
contributed can be calculated.  For the batsman facing when there are n balls to go and i 
wickets in hand, the expected score in the remainder of the innings is fn(i).  After that 
ball, the expected score is the score off that ball plus the expected score in the remaining 
n-1 balls.  This is given by fn-1(i) if no wicket fell, or fn-1(i-1) if a wicket fell.  Thus the 
contribution of the batsman to the score is given by: 
 
No Wicket Loss: score off that ball + fn-1(i) - fn(i) 
 
Wicket Loss:  score off that ball + fn-1(i-1) - fn(i) 
 
For the bowler of that ball, the contribution to his team's performance would be the 
negative of the above.   
 
For instance if the expected score in the remainder of the innings with 200 balls to go 
and 5 wickets in hand is f200(5) =120.00 and the expected score in the remainder of the 
innings with 199 balls to go and 5 wickets in hand is f199(5) =119.20, then the batsman 
on strike when 200 balls remain in the innings must score 0.8 runs for the side to have 
the same expected innings score.  If the batsman scores 2 runs in this situation then he 
has advanced his team's expected innings score by 1.2 runs.  In this case the batsman's 
performance measure would increase by 1.2 and the bowler's measure would decrease 
by 1.2.  All performance measures start at zero at the beginning of the innings and 
increase or decrease as each ball is bowled.   
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Because the measures for bowlers and batsmen are essentially the same (extra runs over 
what is expected) they can be added and so the performance measures for each player in 
a match is the sum of his batting and bowling performance measures in each innings. 
 
Although equation 14.1 was developed for the first innings of a one-day cricket match, 
it has been used for both the first and second innings in this paper.  This is due to the 
complication involved in using a model for the second innings where teams are not 
attempting to maximise the score, as in the first innings, but are attempting to score 
more runs than the team that batted first.  The dynamic programming model therefore 
has another state variable which is the score that must be made in the remainder of the 
innings to win the match.  In addition, the second innings formulation involves 
calculating the effect each player had on their sides probability of winning (instead of 
the effect on the expected score).  Therefore each of the measures obtained from the two 
innings would not be in the same units and could not be directly compared.  This 
diminishes the relevance of the performance measures generated. 
 
14.4.  Data collection 
 
The calculation of the values of fn(i) using equation 14.1 requires that the relationship 
between R and pd  be determined.  Although a season's data was used in an attempt to 
determine the actual relationship that existed between R and pd, it was not possible to 
isolate the effect R had on pd from all of the other factors, and therefore the relationship 
used had to be determined in some other way. 
 
It was decided to develop a relationship between R and pd which was 'fair'.  In other 
words a relationship which when used to calculate performance measures did not favour 
batsmen over bowlers or vice-versa.  Each player could then be measured against a 
known standard.  This is common to the current practice where no account is taken of 
the standard of the opposition, the pitch or the ground dimensions.  Several relationships 
were developed and used to calculate the performance measures on actual matches.  The 
relationship that performed best in producing measures that agreed with a subjective 
appraisal of performance was chosen and is shown in Table 14.1.  In addition to the 
probability of dismissal pd for each run rate the average number of balls faced before 
dismissal 1/pd  and the expected partnership size (1/pd ) (R/6) are given for that run rate.  
With these values, if batsmen choose the optimal run rate at each stage of the innings 
the expected score would be 215.  
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TABLE 14.1.  Relationship between R and pd used to solve equation 14.1 
 

 
 
 

Run Rate 

 
 
 

pd  

Average 
number of balls 

faced before 
dismissal 

 
Expected 

partnership 
size 

1.0 0.005  200.0  33.3 
1.5 0.008  127.8  31.9 
2.0 0.011  91.7  30.6 
2.5 0.014  70.0  29.2 
3.0 0.018  55.6  27.8 
3.5 0.022  45.2  26.4 
4.0 0.027  37.5  25.0 
4.5 0.032  31.5  23.6 
5.0 0.038  26.7  22.2 
5.5 0.044  22.7  20.8 
6.0 0.051  19.4  19.4 
6.5 0.060  16.7  18.1 
7.0 0.070  14.3  16.7 

 
14.5.  Results 
 
In order to calculate performance measures for a match the following data must be 
available for each ball bowled: batsman, bowler and result (e.g. batsman number 3, 
bowler number 2, no dismissal and 4 runs scored).  Unfortunately official score sheets 
do not keep such data and therefore a computer program was written enabling the 
information contained on scoresheets to be transformed to the required form and saved 
to a 'match file' for later use.  Another computer program was written to perform the 
dynamic programming calculations and calculate the fn(i) values. 
 
The output from these two programs (the match file and the fn(i) values) are then used 
as input to a third program which performed all of the performance measure calculations 
as detailed above.  All programs were written in the programming language of Turbo 
Pascal 5.0 on an IBM personal computer.  The calculations involved in the programs are 
simple ones and since the values of fn(i) used are the same for every innings and need 
only be calculated once, the program could be run in real time (i.e. as the match is being 
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played).  Therefore the performance measure of each player could be shown each ball, 
as they increase or decrease, and the expected score of the team could be displayed as 
the innings progresses.  The 1989/90 Benson & Hedges series of one-day matches 
played in Australia between Australia, Sri Lanka and Pakistan has been used to 
illustrate the use of the performance measures. 
 
Table 14.2 shows the performance measures for all of the players in the match played in 
Melbourne on 26/12/89 between Australia and Sri Lanka.  Australia won this match by 
scoring 5 for 228 to Sri Lanka's all out for 198. 
 
There are several cases where players have performed at a similar standard according to 
the usual measures, but received quite different performance measures.  For instance 
O'Donnell (57 runs off 60 balls not out, performance measure 10.73) has performed 
better in terms of the current statistics then Ranatunga (55 runs off 70 balls, 
performance measure 14.32).  The reason for Ranatunga's performance measure being 
greater than O'Donnell's is that Ranatunga's innings took place between overs 15 and 41 
while O'Donnell's innings took place between overs 34 and 49.  At the end of the 
innings, when O'Donnell was batting, Australia still had 5 wickets in hand.  The wickets 
in hand constraint thus becomes less relevant (as the innings ends after 50 overs 
regardless of the number of wickets lost), and therefore the model expects O'Donnell to 
score quickly.  On the other hand Sri Lanka lost wickets regularly, so Ranatunga could 
not afford to score as quickly.   
 
The bowlers J.Ratnayeke (1/47 from 9 overs) and R.Ratnayake (1/43 from 9.5 overs) 
have recorded very similar figures however their performance measures are quite 
different (-8.28 and 1.65 respectively).  This is due to the stage of the innings at which 
the bowlers bowled their overs.  J.Ratnayeke bowled most of his overs very early in the 
innings (overs 2, 4, 6, 8, 10, 12, 14, 43 and 45) when the expectation on batsmen is not 
as great as later in the innings.  R.Ratnayake bowled his overs closer to the end of the 
innings, when the expectation on batsmen (and therefore the reward to bowlers when 
runs are not scored) is greater.  He bowled overs 11, 13, 15, 17, 19, 21, 40, 42, 47 and 
49.  These two examples show how the current statistics do not take into account the 
constraints involved in the game of one-day cricket.   
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TABLE 14.2.  Performance measures for match on 26/12/89 
First Innings - Australia batting 

 
 

Batsman 
 

Runs 
 

Balls 
Performance 

measure 
M.Taylor 11  25 -10.1 
G.Marsh 38  82 2.9 
D.Boon 11  19 -7.8 
D.Jones*  85  89 34.9 
A.Border  11  15 -5.6 
S.Waugh 5   7 -7.8 
S.O'Donnell* 57  60 10.7 
Extras   4  4.0 

 
 

 
Bowler 

 
Overs 

 
Wickets 

 
Runs 

Performance 
measure 

G.Labrooy 9 0 40 -11.0 
J.Ratnayeke 9 1 47 -8.3 
R.Ratnayake 9.5 1 43 1.7 
A.Ranatunga 10 3 41 10.3 
E.DeSilva 10 0 42 -11.1 
A.Gurusinha 1 0 9 -2.9 
Run Outs - 0 - 0.0 

* = not out 
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TABLE 14.2 (cont).  Performance measures for match on 26/12/89 
Second Innings - Sri Lanka batting 

 
 

Batsman 
 

Runs 
 

Balls 
Performance 

measure 
R.Mahanama  36  67 -0.9 
M.Samarasekera  30  50 0.8 
A.Ranatunga  55  70 14.3 
P.DeSilva   9  10 -6.2 
S.Jayasuriya 3   5 -10.1 
A.Gurusinha  22  40 -4.9 
H.Tillekeratne 11  23 -12.2 
J.Ratnayeke   0 2 -4.9 
E.DeSilva  13 17 0.9 
G.Labrooy *  6 2 -1.3 
R.Ratnayake   0 1 -12.5 
Extras   7  7.0 

 
 

 
Bowler 

 
Overs 

 
Wickets 

 
Runs 

Performance 
measure 

M.Hughes 9.2  2  41 6.1 
G.Campbell 10  0  36 -8.1 
S.O'Donnell 9  4  36 19.1 
S.Waugh 6  1  26 1.1 
P.Taylor 10  2  36 7.8 
A.Border 3  0  17 -4.3 
Run Outs - 1 - 8.5 

* = not out 
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The results from the match shown in Table 14.2 are presented in a summarised form in 
Table 14.3.   

 
TABLE 14.3.  Player performance summary for match on 26/12/89 

 
 
 

Player 

Batting 
performance 

measure 

Bowling 
performance 

measure 

Total 
performance 

measure 
D.Jones  34.90  34.90 
S.O'Donnell  10.73 19.05 29.78 
A.Ranatunga 14.32 10.31 24.63 
P.Taylor  7.79 7.79 
M.Hughes  6.07 6.07 
G.Marsh   2.86  2.86 
M.Samarasekera   0.84  0.84 
R.Mahanama  -0.93  -0.93 
P.DeSilva -6.24  -6.24 
S.Waugh -7.77 1.07 -6.70 
A.Gurusinha -4.91 -2.87 -7.78 
D.Boon  -7.83  -7.83 
G.Campbell   -8.14 -8.14 
A.Border  -5.58 -4.31 -9.89 
M.Taylor -10.05  -10.05 
S.Jayasuriya      -10.13  -10.13 
E.DeSilva 0.92 -11.07 -10.15 
R.Ratnayake -12.45 1.65 -10.80 
H.Tillekeratne -12.21  -12.21 
G.Labrooy -1.31 -11.01 -12.32 
J.Ratnayeke -4.90 -8.28 -13.18 
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The performance measures suggest that there were three players whose performance 
was well above the others, Dean Jones (performance measure of 34.90), Simon 
O'Donnell (29.78) and A.Ranatunga (24.63).  The 'man of the match' award which is 
presented to the player that the commentators feel was the best player for that match 
was given to Simon O'Donnell who was selected as the second best player by the 
performance measures.  Of course the adjudicators may have included an allowance for 
fielding that the performance measure ignores.  It is of interest that it was in fact 
O'Donnell who ran out the Sri Lankan batsman, which Table 14.2 shows cost Sri Lanka 
another 8.5 runs. 
 
The measures for the complete 1989/90 Benson & Hedges Series have been calculated 
and Tables 14.4 and 14.5 show the top ten ranked batsmen and bowlers respectively, 
ranked in terms of average performance measure per innings.  Only batsmen facing 
more than 100 balls and bowlers who have bowled more than 100 balls are included in 
these tables. 
 
14.6.  Further work 
 
The current statistics kept on players do not allow for the varying dimensions of 
grounds or the ease or difficulty of batting on certain pitches.  This is also the case with 
the performance measures.  Currently the performance measures are all calculated using 
a single relationship between R and pd.  This relationship results in the expected score 
with 300 balls to go and 10 wickets in hand being 215.  For a pitch that is very difficult 
(or very easy) to score on this may be unacceptable and produce measures where all the 
batsmen have high negative (positive) measures and all the bowlers have the reverse.  
This makes it difficult to compare performances in different matches.  In common with 
current measures, we have here used the average measure over a series of matches to 
hopefully even out any injustices.  This could be overcome at the expense of greater 
complication by using a different relationship for matches played on different pitches 
that reflects better the expected innings score on that pitch.  Alternatively the deviation 
of each player's performance measure from the average measure of his team members 
for the innings would result in a performance measure that takes into account the 
standard of the pitch and the opposition and allow for a relative comparison of team 
members who played in different matches.   
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TABLE 14.4.  Top 10 batsmen ranked by average batting performance measure 
 

 
Batsman 

 
Country 

 
Matches 

Average 
measure 

D.Jones Australia   9 15.42 
A.Ranatunga Sri Lanka 6 10.03 
T.Moody Australia 6 9.94 
W.Akram Pakistan 6 9.79 
D.Boon Australia 3 6.99 
A.Border Australia 9 4.22 
M.Taylor Australia 9 4.10 
S.Malik Pakistan 6 3.21 
G.Marsh Australia 4 2.96 

 
 

TABLE 14.5.  Top 10 bowlers ranked by average bowling performance measure 
 

 
Bowler 

 
Country 

 
Matches 

Average 
measure 

S.O'Donnell Australia 9 10.69 
T.Alderman Australia 8 9.94 
C.Rackermann Australia 7 4.72 
P.Taylor Australia 8 4.39 
P.DeSilva Sri Lanka 3 2.68 
M.Hughes Australia 4 2.65 
W.Akram Pakistan 7 1.24 
G.Campbell Australia 6 0.65 
A.Border Australia 5 -0.08 
A.Gurusinha Sri Lanka 4 -2.38 
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Although the model assumes that each team is made up of 10 batsmen of equal 
standard, this is never the case.  Generally a team has specialist batsmen, a wicket 
keeper and specialist bowlers.  Therefore when there are only specialist bowlers left to 
bat, batsmen place more emphasis on not losing a wicket (since these batsmen will not 
score many runs) than the dynamic programming formulation allows for, as it assumes 
that the batsmen still to bat are of equal standard with the batsmen at the crease.  An 
adjustment to the model could be made to allow for this at the expense of increased 
complication. 
 
14.7.  Conclusion 
 
This paper outlines a method of using a dynamic programming formulation to calculate 
performance measures for players involved in the game of one-day cricket.  The 
measures represent a player's contribution to the expected score of the team, and better 
reflect the constraints involved than the measures currently used by automatically 
allowing for the stage and state of the game when runs are scored and wickets taken.  
They allow the performance of batsmen and bowlers to be compared directly. 
 
While this measure is an improvement on the current statistics kept on one-day 
cricketers it does have its limitations that must be considered.  The measure takes no 
account of the fielding ability of players which is a very important part of the one-day 
game.  The measure treats all performance on an individual level whereas cricket is a 
team game and this must be considered when selecting the best representative team.  
However all of the limitations of the method outlined apply equally well to the current 
measures such as batting and bowling averages and run and strike rate. 
 
It is hoped that this new method of calculating performance measures will be used by 
commentators to determine the 'man of the match', by selectors to help with selecting 
the strongest team and for fans of the game with listings of the best one-day players in 
the world. 
 



 CHAPTER XV 229 

CONCLUSION 
 
 
What have I shown?  Sport abounds with untested assertions.  Carlton were unlucky not 
to make the finals.  West Coast has a huge home advantage.  Essendon had a bad draw 
this year.  Geelong is a two to one chance tomorrow.  The McIntyre final eight is a 
terrible play-off system.  Wickets in hand are important at the end of one day innings.  
Runs should be sacrificed to protect a weak batsman.  This thesis has shown how 
mathematical models can provide quantitative evidence relevant to such statements. 
 
Performance measurement is best derived from a mathematical model.  Whether we are 
measuring tactics, team performance, home advantage or the competition rules as a 
whole, measures should be based on a model of the system.  Different performances can 
then be judged against a standard model.  For example, a model that includes a 
performance measure and a home advantage allows the performance of two teams 
against a common opponent on different grounds to be compared.  A model with set 
probabilities of teams in different positions winning facilitates the comparison of two 
different finals systems.  Only through a model that allows for team goals can 
individual performance be correctly measured. 
 
This thesis has investigated the application of mathematical models in sport.  I have 
looked at applications in football and cricket, with particular emphasis on tactics and 
measuring performance.  Performance measurement in these team sports has been 
applied at three levels, the individual player, the team, and the competition structure in 
which they compete.  The importance of variability has been a recurring theme in my 
work, and this has resulted in an analysis of home advantage.  The implementation of 
these ideas has been demonstrated by their use in a forecasting model which compares 
favourably to the  expert tipsters and has received wide media coverage.   
 
In broad terms the early chapters on football discuss measurement of team ratings and 
home advantage.  For home ground advantage, the ad hoc measure of percentage of 
matches won by home team is shown to depend not only on home ground advantage but 
the spread of ability or average performance levels on a neutral ground of the teams.  In 
addition, this measure is inappropriate for individual teams, as it makes no allowance 
for the quality of team and opposition.  The measures demonstrated here depend on 
fitting a mathematical model to the match results, usually by least squares.  It shows 
that models 



 230

incorporating individual home advantages provide a significantly better fit over the 
common home advantage models previously used.  The thesis has extended the 
measurement of a common home advantage to methods for measuring individual home 
advantages and paired home advantages.  For the first time individual home advantage 
of Australian rules and English soccer clubs have been published.  While the main 
purpose has been the calculation of home advantages, rather than the investigation of 
such causes, I have demonstrated a significant 'isolation' factor.  The applicability of the 
suggested models has been shown by their use in forecasting Australian rules with an 
accuracy comparable to the expert tipsters.   
 
All sports competitions take place under a framework of some overall competition 
rules.  These are designed to produce a winner, or ladder order, or some other measure 
of overall success for the individual teams.  The thesis investigates the performance of 
particular football and cricket competitions and finals systems, and show that in most 
cases the systems are not balanced for strength of opposition or home advantage, and 
that some teams are disadvantaged by competition rules.   
 
The latter part of the thesis investigates the use of mathematical models for tactics.  For 
the first time DP models in cricket are used to determine optimal strategies under a 
range of models and objective functions.  The use of such models as the basis for player 
performance ratings that reward players for their contribution to team goals is 
demonstrated.   
 
The major contributions of each chapter to the overall themes of the thesis are detailed 
below. 
 
Chapter I gives an overview of the use of Operational Research methods in sport, with 
particular emphasis on the areas in which I have been involved.  This places most of my 
work in a backdrop of the work being done at the time.   
 
Chapter II introduces Australian rules football, and investigates the problem of 
estimating team performance measures and home advantage in a competition which is 
neither balanced for strength of opposition nor home grounds.  It discusses the 
drawbacks of the usual measures, and calculates home advantages of individual clubs 
by using various techniques.  It shows: 
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• The quality of opposition can be allowed for by looking at the paired HA.  These 
clearly show an isolation factor.   

• The individual HAs for all clubs are calculated in alternative ways.   An ordering of 
the clubs by HA clearly shows an isolation effect with interstate clubs heading the 
table and inner city Melbourne clubs bringing up the rear.   

• There was evidence for MCG teams and teams playing for the first season on a new 
ground having a lower than average HA.   

• Investigation of models of varying complexity shows that the use of models more 
detailed than those incorporating only a common home advantage is justified.   

 
Chapter III investigates special techniques for calculating team ratings and HAs in 

balanced competitions by investigating 15 years of English Association football 
data.  It shows: 

 
• The previous method used in the literature of calculating HA for competitions is 

unsuitable for individual teams. 
• The existence of a spurious HA, due to the HA of all other teams, when home and 

away performances of a particular team are compared. 
• Fitting a  model allowing for ability and individual HA by least squares to 

individual match results is equivalent to a simple method based on the end of year 
ladder. 

• The individual HAs in goals per match of all 94 clubs for the 15 years 1980-81 to 
1994-95 are calculated.  Analysis of these show no division effects but significant 
year effects and reasonable evidence that clubs do not have a common HA.  There 
was evidence of an 'isolation effect' with three of the top 10 clubs being particularly 
isolated, and many London clubs with low HAs.   

• The isolation hypothesis was confirmed by showing a definite linear relationship 
between a pair of clubs paired HA and their distance apart.   

 
Chapter IV gives a case study showing an implementation of the above methods for 
computer forecasting.  It shows: 
• Automated forecasting systems using variations of the models discussed in earlier 

chapters can be successfully applied to Australian rules football.   
• A simple program using a pre calculated common home advantage and exponential 

smoothing to produce team ratings was used to provide forecasts for the media for 
several years.   

• An 'improved' program used an extension of individual home advantages and a 
power method to measure error. 
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Chapter V looks at the absolute and relative performance of the computer model of 
Chapter IV by analysing in detail its performance in 1991.  It shows 

• The computer performed in 1991 better than most expert tipsters in predicting 
winners and margins.   

• Unlike the computer, humans are biased toward their own team, and generally do 
not select enough close margins.   

 
Chapter VI combines the previous chapters by looking at some international 

comparisons for both forecasting and home advantage.   
• A comparison of HA in several international and national competitions including 

soccer, American and Australian football and baseball, showed HA varied with the 
amounts of the three factors normally suggested as causes of HA.   

• The performance of radically different automated systems applied to the same data 
tend to be similar.  This suggests that the accuracy is limited by the data content, 
and more data rather than improved methods is necessary to make progress. 

 
Chapter VII looks at the measurement of the fairness of competition rules under which 

teams compete.  By assuming all teams are equal, or have probability of victory and 
HA as developed by the computer models of Chapter IV it shows: 

 
• The computers estimates of ground effects and errors of prediction can be used to 

evaluate the effect of a change of venue on a team's chances of winning .   
• The AFL draw is unfair, and the imbalance does not appear to even out over the 

years. 
• Ladder positions at the end of home and away matches are affected by up to 10 

places by randomness.   
• The Macintyre final eight system passes most tests of fairness.  However the chance 

of two teams meeting in the grand final is not in order of their combined ladder 
position.  Moreover a lack of consistency from year to year on a team's path to the 
finals increases the effects of randomness.   

• Bookmakers odds do not reflect the intricacies of the AFL finals draw. 
• The knockout structure of the finals increases the effect of home advantage. 
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Chapter VIII uses a DP approach to investigate the correct tactics near the end of a 
game in a commonly occurring situation in Australian rules.  Since individual 
players should make decisions that maximise some goal for his team, a knowledge 
of the correct strategy is sometimes important in assessing the effect of competition 
rules.   

 
• A simple Markov model is set up by dividing the ground into seven areas, with 

strategies depending on the area.  The model is checked by investigating steady 
state probabilities and estimated scores during a match.   

• It is often advantageous, depending on the score difference and the time remaining 
in the match, to concede a behind. 

• The effects on the optimal strategy due to a proposed rule change are shown.   
 
Chapter IX gives a comprehensive literature survey of cricket. 
 
Chapter X shows the importance of HA and competition rules applies equally in 

cricket.  By analysing the Sheffield Shield results it shows: 
• HA exists in cricket.  Most teams win most of the points allocated on their home 

grounds. 
• The competition rules create an unfair home advantage.  Some teams have many 

more points allocated on their home grounds. 
• Two suggested scoring methods of partly overcoming the problem always produce 

the same rank ordering of teams at the end of the year.   
 
Chapter XI continues the theme of tactical evaluation and applies a DP formulation to 
one day cricket to investigate optimal run rate.  In the first recorded application of 
Operational Research methods to cricket, both a first and second innings formulation 
are solved numerically, and the implications for competition rules and player 
performance measures are noted.  The model assumes all batsmen are of the same 
ability.  It shows 
 
• Contrary to current practice the optimal run rate is always faster than the expected  

average rate for the remainder of the innings.   
• A heuristic gives a good outcome under a range of relationships between probability 

of dismissal and scoring rates.  Batsmen should score at the rate which would see 
their last wicket fall at the end of the final over.  

• The results can be applied to selection decisions and player evaluation. 
• The current rain interruption rules are unfair. The model could be used to develop 

fairer rules. 
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Chapter XII investigates a DP model applicable to a common situation in test cricket 
with batsmen of two different abilities.  Should they refuse a possible run in order to 
protect the weaker batsmen?  It shows: 
 
• A model minimising the chance of the weaker batsman being on strike at the start of 

the next over is solvable analytically. 
• Trying to put the better batsman on strike at the start of the over does not 

necessarily maximise the expected duration of the partnership.   
• To maximise the expected duration of the partnership the better batsman should 

generally run if possible off the second last or last ball of the over. 
 
Chapter XIII develops further DP models that extend those of Chapters XI and XII to 
allow for batsmen of different ability and scoring profiles where the objective function 
is to maximise the number of runs.  It shows 
 
• Various relationships and symmetry can reduce the complexity of models where the 

states are the facing and non facing batsmen and the number of runs on offer.   
• Numerical solutions of such models can be used to advise batsmen on tactics near 

the end of an innings. 
• The practice of refusing runs to protect the weaker batsman is sensible under certain 

conditions.   
 
Chapter XIV shows how the models of the previous three chapters could be used for 
player performance measures that reflect a players contribution to the team goals.   
 
• The first innings dynamic programming formulation of Chapter XI is used to 

develop an innovative method of calculating the contribution, in runs, made by 
batsmen and bowlers to the team's score in a game of one-day cricket.   

• Data from a one day series was used to apply the method to all players.  Tables of 
the measure are given and compared with the usual statistics. 
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Where to from here?  Beginning from 1996, I have been a collaborator in the collection 
of player statistics from AFL matches.  The statistics have been collected from video 
and live, and consist of better quality data than has been collected previously.  Rather 
than just tally the number of possessions and disposals, they have been rated for quality.  
Possessions are rated as to difficulty of obtaining, and kicks and handballs have been 
categorised as long or short, effective or not.  The quality and power of the statistics is 
such they have obtained widespread publicity on both radio and television, (Hopkins 
(1996), Wright (1996) and are purchased by most clubs to assist in training and 
planning tactics against opponents.  The data is being analysed to determine the 
contribution of each performance statistic to winning performance, with a view to 
developing a player rating based on the statistics.  Further work will involve analysis of 
the data to determine if home ground advantage manifests itself in the number of 
possessions or quality of possession and disposal.  It will also be of interest to 
determine if incorporation of this data can improve the computer predictions.  
Alternatively the methods demonstrated for predicting final scores could be applied to 
the secondary data itself, to predict the style of game that will be played.  Since the data 
has some coding which places the action in broad areas of the field, it will also find a 
use in improving the Markov decision model of football.  Late in 1997, discussions 
began with the Victorian Institute of Sport on extending this data collection into other 
sports, particularly cricket.  This will overcome the lack of ball by ball data which 
hampers much of the work in this area.  A closer look at HA in cricket can be 
undertaken, and many of the possible investigations outlined in Chapter IX may 
become feasible. 
 
Research results need to be brought to the attention of possible users.  In sport these are 
players, administrators and fans.  The publication in the popular media of the computer 
predictions for Australian rules football has been discussed in the thesis.  During 1997, 
the analysis of the football statistics discussed above were the basis of a weekly article 
in the Australian Financial Review (e.g., Hopkins, 1997a).  Late in 1997, with the end 
of the football season, these articles were extended to other sports.  Hopkins (1997b, 
1997c, 1997d, 1997e, 1997f) are examples that have discussed my research work in 
cricket, golf and soccer.  This coverage will continue and hopefully extend to other 
sports and other researchers.   
 
In the last 20 years the applications of mathematical modelling to sport has increased 
significantly.  However there are still many problems which will yield to contributions 
from Operational Researchers and Statisticians.  A continuing challenge is to 
demonstrate to players, administrators and supporters that modellers have a continuing 
role in measuring and improving sports performance. 
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