

 Swinburne Research Bank
 http://researchbank.swinburne.edu.au

Zhou, R., Wang, G., & Han, D., et al. (2006). Buffer-preposed QoS adaptation framework and

load shedding techniques over streams.

Originally published in K. Aberer, Z. Peng, & E. A. Rundensteiner, et al. (eds.). Proceedings of
the 7th International Conference on Web Information Systems Engineering (WISE 2006),

Wuhan, China, 23–26 October 2006.
Lecture notes in computer science (Vol. 4255, pp. 234–246). Berlin: Springer.

Available from: http://dx.doi.org/10.1007/11912873_25

Copyright © 2006 Springer-Verlag Berlin Heidelberg.

The original publication is available at www.springer.com.

This is the author’s version of the work. It is posted here with the permission of the publisher for
your personal use. No further distribution is permitted. If your library has a subscription to these
conference proceedings, you may also be able to access the published version via the library

catalogue.

Accessed from Swinburne Research Bank: http://hdl.handle.net/1959.3/155600

Buffer-preposed QoS Adaptation Framework
and Load Shedding Techniques over Streams

Rui Zhou, Guoren Wang, Donghong Han,
Pizhen Gong, Chuan Xiao, and Hongru Li

Institute of Computer System, Northeastern University, Shenyang, China
wanggr@mail.neu.edu.cn

Abstract. Maintaining the quality of queries over streaming data is of-
ten thought to be of tremendous challenge since data arrival rate and
average per-tuple CPU processing cost are highly unpredictable. In this
paper, we address a novel buffer-preposed QoS adaptation framework on
the basis of control theory and present several load shedding techniques
and scheduling strategies in order to guarantee the QoS of processing
streaming data. As the most significant part of our framework, buffer
manager consisting of scheduler, adaptor and cleaner, is deliberately in-
troduced and analyzed. The experiments on both synthetic data and real
life data show that our system, which is built by adding several concrete
strategies on the framework, outperforms existing works on both resource
utilization and QoS assurance.

1 Introduction

Data stream applications such as network monitoring, on-line transaction flow
analysis, intrusion detection and sensor networks pose tremendous challenges
to traditional Database Management Systems (DBMSs). To Meet requirements
of such scenarios, Data stream Management Systems (DSMSs) such as Aurora
[7]/Borealis [8], STREAM [4], NiagaraCQ [10] and TelegraphCQ [11] are built for
data management and query processing upon multiple, unbounded, continuous,
time-varying input streams, which desire specific processing techniques different
from fixed-size stored data sets.

One of the most significant characteristics of DSMSs is to provide assured
QoS (such as tuple processing delay [1]) by load shedding [9] in order to cope
with excessive incoming tuples and keep up with high-speed streams. In most
scenarios, data arrival rates are fluctuating and unpredictable, and average per-
tuple processing cost also varies due to inherent uncertainty of processing cost
for different tuples, changes of queries (submitting new queries or cancelling
old ones) or other urgent incoming tasks taking up part of CPU cycles. Conse-
quently adaptivity is strongly demanded on building a DSMS to deal with these
uncertainties and provide stable service for clients.

To achieve adaptivity, Aurora dynamically adjusts its shedding ratio (the
fraction of tuples to be dropped) by plus or minus a step value. This solution may
lead to overshoot or undershoot and also reacts slowly to bursty traffic. Tu [1]

addressed a control-based adaptation framework and solved the above problem.
However, drawbacks still exist when the stream arrival rate fluctuates frequently
around CPU’s top processing ability, for the reason that if those dropped tu-
ples can be stored temporarily rather than discarded during high stream speed
cycles and taken out to be processed when speed falls down, shedding ratio
will be reduced and more tuples can be evaluated. Thus we propose a novel
buffer-preposed framework to offer a better DSMS adaptation and elaborate the
strategies required in constructing a buffer manager. Section 2 investigates re-
lated works. The framework and buffer manager are introduced in Section 3 and
4, respectively. Experiments and conclusions are given in Section 5 and 6.

2 Related Work

There has been considerable work on data stream processing. The survey in [12]
gives an overview of stream work, and has summarized the issues of building a
Data stream Management System. Specialized systems have been mentioned in
Section 1. The existing load shedding works can be classified into two categories.

The first one focuses on specific operators (or queries). In [2,3,5,13], approxi-
mate joins were extensively studied to give MAX-subset [5] outputs of unbounded
streams by dropping the tuples, which produce less join results. The work [6]
mainly discussed about minimize the degree of inaccuracy while shedding load
on aggregation queries. Our work considers about the other category [1,8,9] that
integrates the queries as a whole forming a query network. Data stream Manage
Systems monitor the QoS of the outputs, and make corresponding decisions on
when, where and how much load to shed. Aurora/Borealis takes advantage of its
LSRM to determine the target and amount for adaptation and inserts drop oper-
ators into its query network to reduce resource usage. In TelegraphCQ, synopses
are built to capture the properties of the tuples, which are dropped from triage
queues [15] in case of excessive stream load. Tu et al. [1] proposed a novel frame-
work that regards DSMS as a plant and adjusts incoming flow rate according
to current system status by leveraging control theory. Loadstar [14] introduces
load shedding techniques to facilitate classifying multiple data streams of large
volume and high speed. There are also other topics related to stream applica-
tions, such as search for moving object trajectories [16], comparison and contrast
between Lp-Norm and edit distance [17], and location-aware topology matching
in P2P systems [18].

3 Buffer-preposed QoS Adaptation Framework

In this section, we propose a novel data stream processing system framework,
which consists of two parts: upstream part and downstream part. The archi-
tecture is depicted in Figure 1. As for downstream part, query processor and
CPU scheduler act as the fundamental evaluation components of DSMS, the
same as operator network in Aurora/Borealis and STREAM. Monitor sends the
QoS of output results to PI controller so that the controller could determine the

number of tuples (C(k)) to be injected into the query processor during the next
monitoring cycle.

Cleaner

Adaptor
 Scheduler

Buffer

Manager

CPU

Scheduler

Monitor
PI Controlle
r

Reference

Miss Ratio

-

Deadline

Miss Ratio

Queue

Data

Streams

C
(
k
)

Upstream Part
 Downstream Part

Query

Repository

Queries

Query

Processor

Fig. 1. Buffer-preposed QoS Adaptation Framework

Applying control theory results in a better adaptation, and details can be
found in [1]. However, drawbacks still exist when the stream arrival rate fluctu-
ates frequently around CPU’s top processing ability as is mentioned in Section
1. Hence, we prepose a buffer regulated by a buffer manager at the upstream
part in front of former classic DSMS (the downstream part) to eliminate the
problem. Three modules are built in buffer manager: scheduler allocates mem-
ory resources and dispatches the tuples in and out of their corresponding queues;
adaptor will shed load if the queues are about to overflow; and cleaner is utilized
to purge of those QoS-violated tuples. Detailed illustrations are given in Section
4. Note that all the strategies applied in the three modules are orthogonal to
our framework, they may be replaced by better ones in the future.

In this paper, we take deadline miss ratio [1] as an example of QoS, note that
other QoS metrics also work in our framework. Firstly, tuple delay is defined as
time elapsed between the generation of the tuple at source and the end of its
processing in query processor. A violation of tuple delay requirement is called
deadline miss, and deadline miss ratio is the fraction of missing tuples of the
entire data stream. Concerning that, tuple delay is differently defined in [26],
whereas both of them could make sense and one can be simply transformed to
the other.

4 Buffer Manager

4.1 Scheduler

Scheduler acts not only as a resource manager, but also a communicator between
buffer and query processor. Its utility and functions are described as follows:

1. Dynamically allocate memory resource for the incoming streams according
to their arrival rates and average per-tuple processing cost. It is believed
that higher arrival rate, lower processing cost and higher tuple priority will
result in a longer queue in memory. We preset a proper queue length limita-
tion for each stream, and reallocate resources only when remarkable changes
of system state take place, such as joining of a new stream, leaving of an
old one, or tremendous speed varying of an existing stream, while on the
common circumstance, we shed some load to deal with temporary stream
speed fluctuation, which will be mentioned in Section 4.2.

2. Receive incoming tuples, dispatch them to their corresponding queue accord-
ing to some strategies, such as FIFO(First In First Out), EDF [19](Earliest
Deadline First), MUF [20](Maximum Urgent First), and pass the number
of tuples required by DSMS from the queues to downstream part in terms
of a suitable ratio at each sampling cycle. Our work mainly focuses on the
situation where tuple priority is not explicit or difficult to determine, which
accords with most application scenarios. Therefore FIFO, EDF are stud-
ied and compared as our candidate scheduling strategies, noting that other
strategies also work in our framework.

4.2 Buffer Adaptor

It may be lack of resources for system to store and process every tuple of the in-
coming streams, especially when the streams have high arrival rates. We provide
a queue with a proper maximum length to each stream. If the queue is about
to overflow, we drop some tuples to reduce load in order to make sure DSMS is
under a normal state. In this section, we mainly focus on single stream adapta-
tion, and it is easy to be applied to multi-streams. There are many adaptation
strategies to maintain the queue. In this section, we will discuss some of them.

Tail drop, Drop front, Random drop If queue length reaches its predefined
maximum limitation, the queue will not permit entering of future tuples, and
load shedding will be set up. One of the following strategies will be adopted. Tail
drop [21] (referred to as TD) means dropping those new incoming tuples, i.e.
dropping from the end of the queue, while drop front [23] means dropping from
the front of the queue. Random drop [22] is also easy to understand (dropping
a tuple in the queue randomly without regarding its position).

Note that the above three strategies are performed only when the queue is
full, we consider this condition to be obviously deficient as there is no preserved
room for future important tuples. Moreover if stream rate arises and lasts for a
period of time, late arriving tuples will most likely be dropped, which will lead
to unfairness to some extent. RED′ and PID can avoid this problem.

RED′ RED(Random Early Detection) [24] is dramatically studied for Active
Queue Management(AQM)in the field of computer network. Since strategies in
each module are orthogonal with the framework, adaptor can be implemented

with any strategy. Now we will simply introduce RED′ adaptation scheme, a
variation of RED. The average queue length is calculated by:

q̃ = (1− wq) · q̃ + wq · q (1)

where q is the current queue length and q̃ is the historical average length. wq

is weight factor, wq ∈ [0,1]. If q̃ < minth (minth: predefined minimum length
of queue), all arriving tuples will enter into the queue; if q̃ > maxth (maxth:
predefined maximum length of queue), all these incoming ones will be dropped
; and if minth ≤ q̃ ≤ maxth, the shedding ratio p will be given in Equation 2,
where maxp is a maximum shedding ratio.

p = maxp · (q̃ −minth)/(maxth −minth) (2)

PID PID [25] (Proportional, Integral and Differential) control is widely used in
automatic control and system engineering. First, we define occupying ratio as the
number of tuples in queue divided by maximum queue length. In order to reserve
some space for future tuples, we assign an expected occupying ratio (denoted as
r) as the reference and try to control the queue length to be r · L. Symbols of
this section are listed in Table 1.

Table 1. Symbols used in PID Adaptation

L maximum queue length
Y output signal: occupying ratio of queue

Xin incoming rate of tuples entering the queue
Xout output rate of tuples (i.e. CPU processing ability)
X queue length increment (i.e. Xin-Xout)
S stream rate
U load shedding ratio

PID

Controller

Data

Dropper

Queue

Monitor

r
 e
(
t
)

Stream Load
(
S
)

X(t)
 Y
(
t
)

-

U(t)

Referrence

Fig. 2. The Feedback Control Loop

The blocks of closed-loop feedback control are given in Figure 2. As to queue,
the plant, it is easy to obtain the following difference equation, which is utilized
to model the variation of occupying ratio of the queue,

Y (k) = Y (k − 1) +
X(k)

L
(3)

and the transfer function in Z-domain is:

G(z) =
Y (z)
X(z)

=
1

L(1− z−1)
(4)

With respect to PID controller, the input signal is calculated as the following:

X(k) = KP · e(k) + KI

k∑

j=0

e(j) + KD [e(k)− e(k − 1)] (5)

and we can get controller transfer function:

C(z) =
X(z)
E(z)

= KP + KI
1

1− z−1
+ KD(1− z−1) (6)

After analyzing the system’s closed-loop transfer function (see Equation 7) by
means of Root Locus or Frequency Response (available in MATLAB), we con-
clude that the system is marginally stable, and thus controllable. Parameters
KP , KI , KD can be determined through real experiments.

T (z) =
C(z)G(z)

1 + C(z)G(z)
(7)

Considering the data dropper and the queue as a whole, we have:

X(k) = Xin(k)−Xout(k) = (1− U(k)) · S(k)−Xout(k) (8)

and thus the controller passes the shedding ratio U(k) to data dropper. U(k)
can be deduced from Equation 8: U(k) = 1 − X(k)+C(k)

S(k) , where C(k) equals to
Xout(k), and S(k), C(k) can be predicted by S(k− 1) and C(k− 1) obtained in
the last sampling period.

4.3 Cleaner

Cleaner detects the tuples in queues that will not satisfy the QoS of the queries
submitted in DSMS if passed to CPU to be processed. For instance, if possible
out-of-date tuples which may miss its deadline can be removed from queues by
cleaner, CPU cycles will be saved to produce useful results. As is mentioned in
previous sections, we adopt deadline miss ratio as the expected QoS of DSMS,
and then the cleaning strategy should be invalidating (the same as removing)
the tuples whose permitted tuple delay will be probably violated. Now we will
introduce the rule of removing a possible outdated tuple. Table 2 gives out the
variables used in the following subsections, here t stands for timestamp, and T
stands for time period.

Cleaning Strategy At the kth monitoring cycle, the following condition should
be satisfied if a tuple is supposed to be purged.

T i
t + T i

w(k) + T i
p(k) > Td (9)

Here, T i
t can be determined by T i

t = tia− tig, note that ta and tg can be obtained
when the corresponding tuple arrives. As average per-tuple processing cost may
be variable in different monitoring cycles, we use T i

w(k) to associate T i
w with

cycle information k (also the same as to T i
p(k) and T i

p) to make a more accurate
estimation of waiting time. Details of estimating of T i

w(k) and T i
p(k) are presented

in the next subsections.

Table 2. Variables used in Cleaning Strategies

tg generation timestamp of a tuple (at source)
ta arrival timestamp of a tuple (at destination)
Tt transmission time of a tuple
Tw waiting time of a tuple before it can be processed
Tp processing time of a tuple in query networks
Td tuple delay predefined by query properties or users

T i
p(k) processing time of the ith tuple in queue at the kth monitoring cycle

ET i
w(k) estimated waiting time of the ith tuple in queue at the kth monitoring cycle

Estimation of T i
p(k) Several reasons that may result in fluctuations of aver-

age per-tuple processing cost have been given in Section 1. Therefore, we are
supposed to formulate an estimation of T i

p(k), the predicted cost of a tuple in
the kth monitoring cycle, to help judge if the tuple can be invalidated.

We utilize Single Exponential Smoothing to estimate the processing cost, and
the formula is given below:

ET i
p(k) = αT i

p(k − 1) + (1− α)ET i
p(k − 1) (10)

where 0 < α ≤ 1 and k ≥ 2. T i
p(k − 1) is the real average per-tuple processing

cost in (k−1)th monitoring cycle, while ET i
p(k−1) is the estimated one. ET i

p(k)
is the weighted sum of T i

p(k − 1) and ET i
p(k − 1). Weight α is called smoothing

constant. When α is close to 1, latest processing ability dominates the estimation
of ET i

p(k), while when α is close to 0, historical processing cost plays a more
important role. We can set α according to specific application scenarios and a
proper value can be found through a series of extensive experiments.

Estimation of T i
w(k) Note that, as for a certain tuple, there exists a long

period of time during which the tuple is waiting in the queue after arrival in
advance of the time being processed, it is crucial to perform an estimation of
the waiting time. First we have:

T i
w(k) = T i−1

w (k) + T i−1
p (k) (11)

The waiting time of the ith tuple equals to the sum of waiting time and processing
time of the (i− 1)th tuple (suppose the ith and (i− 1)th tuple are in the same
processing cycle). Substitute ET i

w(k) and ET i−1
w (k) for T i

w(k) and T i−1
w (k) in

Equation 11, we get:

ET i
w(k) = ET i−1

w (k) + T i−1
p (k) (12)

After recurrence substitution, we have:

ET i
w(k) =

i−1∑

j=1

T j
p (k) (13)

Assume that estimated per-tuple processing cost in the kth monitoring cycle are
the same, denoted as ETp(k), Equation 13 can be reduced to Equation 14.

ET i
w(k) = (i− 1)ETp(k) (14)

Summary of Estimation Replacing T i
w(k) and T i

p(k) with ET i
w(k) and ET i

p(k)
in Equation 9, and also combining with Equation 10 and Equation 14, we can
get the final conclusion, i.e. the formula of cleaning strategy:

T i
t + i · [αTp(k − 1) + (1− α)ETp(k − 1)] > Td (15)

Cleaning is performed from queue front to queue end, as a result, if a tuple is
removed, its processing cost will not add in the estimation of waiting time of
its successive tuple. Hence the estimation is probably accurate, and cleaner can
reduce excessive stream load gracefully and effectively.

5 Experimental Results

To assess the practical performance of our model, we perform several sets of
experiments on both synthetic and real life datasets. First we test our framework
with various buffer scheduling strategies, adapting schemes, and cost estimation
precisions. After certifying the validity of our framework, we pick a set of concrete
strategies and build an adaptation system, referred to as CWB (Control With
Buffer), and compare its performance with that of the system mentioned in
[1], referred to as COB (Control withOut Buffer). The results show that CWB
outperforms COB, achieving higher CPU utilization and lower deadline miss
ratio, especially when stream arrival rate fluctuates wildly.

For synthetic data, we generate the tuples with arrival time following ex-
ponential distribution, i.e. in each time interval, the number of arriving tuples
follows Poisson distribution. For real life data, we use the LBL-PKT-4 dataset
from Internet Traffic Archive [27]. Monitoring cycle of downstream part (CPU)
and upstream part (buffer) are 5s, 1s, respectively. Tuple delay is randomly cho-
sen from 250ms, 500ms, 1s, 2s. Maximum queue length of incoming stream is set
to be 150 tuples. We construct the downstream part according to [1] as stated in
Section 3. Our discussion is mainly about the strategies in buffer manager (the
upstream part) and comparison between CWB and COB.

5.1 Experiments on Buffer Manager

Buffer manager includes scheduler, adaptor and cleaner. For cleaner, we deter-
mine the smoothing constant α as 0.1 through experiments, which obtains a
nearly optimal prediction of average per-tuple processing cost.

Scheduling Strategies As for scheduler, FIFO and EDF as tuple transmission
strategies are thoroughly studied and compared. Here, we use synthetic dataset,
permitted deadline miss ratio 0.01, and the simplest TD strategy for adaptor.

Figure 3 shows that EDF leads to higher CPU utilization and lower deadline
miss ratio. That is because some miss-prone tuples can be laid at front and
processed earlier by EDF, and thus deadline misses are reduced. Meanwhile
this optimization could result in cleaning less tuples, which can reduce the load
shedding ratio, i.e. increase the CPU utilization. Therefor EDF rather than FIFO
is used in the following experiments.

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

5
 25
 45
 65
 85
 105
 125
 145
 165
 185
 205
 225
 245
 265
 285
 305

Time (s)

C
PU

 U
til

iz
at

io
n

FIFO

EDF

(a) CPU Utilization

-0.02

0

0.02

0.04

0.06

0.08

0.1

5
 25
 45
 65
 85
 105
 125
 145
 165
 185
 205
 225
 245
 265
 285
 305

Time (s)

D
ea

dl
in

e
M

is
s

R
at

io

EDF

FIFO

(b) Deadline Miss Ratio

Fig. 3. Performance on FIFO and EDF

Adaptation Strategies As for adaptor, we perform the comparison among
TD, RED′ and PID. We set the parameters in Equation 1 and 2 as: wp =
0.15, minth = 30, maxth = 120, maxp = 0.1 and the parameters in Equation
5 as: KP = 30, KI = 18, KD = 7.5, the reference occupying ratio 0.5. System
load is l.2 times of CPU processing ability.

0.99

0.992

0.994

0.996

0.998

1

1.002

5
 55
 105
 155
 205
 255
 305
 355
 405

Time (s)

C
PU

 U
til

iz
at

io
n

TD

RED'

PID

(a) CPU Utilization

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

5
 55
 105
 155
 205
 255
 305
 355
 405

Time (s)

D
ea

dl
in

e
M

is
s

R
at

io

TD

RED'

PID

(b) Deadline Miss Ratio

Fig. 4. Performance on TD, RED′ and PID

As is shown in Figure 4, PID performs the best while TD the worst, and
RED′ is also acceptable but exhibits only a second choice. Figure 5 gives the fre-
quencies of queue occupying ratio under three adapting strategies during 1000s
execution. Here sampling cycle is 0.1s. The experimental result shows PID ef-
fectively reduces the occupying ratio of queue and provides reserved space for
future tuples. Like EDF, PID is used exclusively in the following experiments.

0

20

40

60

80

100

120

140

160

0
 0.07
 0.13
 0.2
 0.27
 0.33
 0.4
 0.47
 0.53
 0.6
 0.67
 0.73
 0.8
 0.87
 0.93
 1

Buffer Occupying Ratio

Fr
eq

ue
nc

y

TD

RED'

PID

Fig. 5. Frequency of Buffer Occupying Ratio

Precisions of Cost Estimation We also investigate the performance of our
framework with respect to different precisions of cost estimation. Let E stand
for the precision level. E=0, Tp = ETp; E=1, Tp ∈ [0.3ETp, 1.7ETp]; E=2,
Tp ∈ [0.1ETp, 4.1ETp]. Tp, ETp are real tuple processing cost and average tuple
processing cost, respectively.

0.99

0.992

0.994

0.996

0.998

1

1.002

5
 25
 45
 65
 85
 105
 125
 145
 165
 185
 205

Time (s)

C
PU

 U
til

iz
at

io
n

E=0

E=1

E=2

(a) CPU Utilization

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

5
 25
 45
 65
 85
 105
 125
 145
 165
 185
 205

Time (s)

D
ea

dl
in

e
M

is
s

R
at

io

E=0

E=1

E=2

(b) Deadline Miss Ratio

Fig. 6. Different Precisions of Cost Estimation

From figure 6, we can draw the conclusion that, though the fluctuation of
CPU utilization and deadline miss ratio arises as E increases, the affects are not
prominent and system is capable to learn the variation and works stably and
robustly. E is set to 0 unless particularly specified in other experiments.

5.2 Performance of CWB vs. COB

After discussing about buffer manager, we compare CWB and COB with param-
eters set according to Section 5.1. From figure 7(a), we know that CWB reacts
faster, while COB converges to a steady state after 15 seconds. Although CWB
undulates frequently, its fluctuating amplitude is trivial and can be ignored,
whereas COB exhibits the opposite. As to CPU utilization, CWB can make full
use of CPU resources for the reason that buffered data can be passed to the
downstream part if CPU becomes idle. Figure 7(b) illustrates that dropped tu-
ples of CWB is much fewer than COB, which means CWB has processed more
tuples. This is accorded with higher CPU utilization of CWB. As the expected
deadline miss ratio arises, fewer tuples are dropped. The decrease of CWB is not
obvious due to effectiveness of cleaning strategy, for only those tuples prone to
miss their deadlines are doomed to be removed.

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

5
 55
 105
 155
 205
 255
 305
 355
 405
 455
 505

Time (s)

D
ea

dl
in

e
M

is
s

R
at

io
,C

PU
 U

til
iz

at
io

n

COB DMR

CWB DMR

COB Utilization

CWB Utilization

(a) CPU Utilization and Deadline Miss Ratio

40000

42000

44000

46000

48000

50000

52000

0.005
 0.01
 0.03
 0.05

Specified Deadline Miss Ratio

T
ot

al
 T

up
le

s
D

ro
pp

ed

COB
 CWB

(b) Total Tuples Dropped

Fig. 7. Performance on CWB and COB

5.3 Experiments on Real Life Datasets

As is shown in Figure 8, the performance of CWB is much better than that of
COB contrasting to the result on synthetic dataset. That is because the arrival
rate of LBL-PKT-4 TCP Traffic is more fluctuating than Poisson distribution
data. Our framework provides a more adaptive solution in real life applications.

-0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

5
 25 45 65 85 105
125
145
165
185
205
225
245
265
285
305
325
345
365
385
405

Time (s)

D
e
a
d
l
i
n
e

M
i
s
s

R
a
t
i
o
,
C
P
U

U
t
i
l
i
z
a
t
i
o
n

CWB Utilization

CWB DMR

COB Utilization

COB DMR

Fig. 8. Experimental Result on Real Life Dataset

6 Conclusions and Future Work

In this paper, we propose a novel QoS adaptation framework including upstream
part and downstream part. In the upstream part, buffer manager including sched-
uler, adaptor and cleaner is deliberately introduced and analyzed. The experi-
ments on both synthetic data and real life data show that our system, which is
built by adding several concrete strategies on the framework, outperforms exist-
ing works on both resource utilization and shedding ratio. A promising direction
for future work is to consider the priority of the tuples, i.e. incoming data are of
different importance. On the circumstance, we are supposed to find out a set of
specific strategies for scheduler, adaptor and cleaner.

Acknowledgement. This work is partially supported by National Natural Sci-
ence Foundation of China under grant No. 60573089 and 60473074 and supported
by Natural Science Foundation of Liaoning Province under grant no. 20052031.

References

1. Yi-Cheng Tu, Mohamed Hefeeda, Yuni Xia, and Sunil Prabhakar. Control-based
Quality Adaptation in Data Stream Management Systems. In Proceedings of DEXA,
pages 746-755, August 2005.

2. J. Kang, J. F. Naughton, and S. D. Viglas. Evaluating window joins over unbounded
streams. In Proc. of ICDE, Bangalore, India, March 2003.

3. J.Xie, J. Yang, and Y. Chen. On joining and caching stochastic streams. In Proc.
2005 ACM SIGMOD Conf., Baltimore, Maryland, USA, June 2005.

4. The STREAM Group. STREAM: The Stanford Stream Data Manager. IEEE Data
Engineering Bulletin ,26(1):19-26,March 2003.

5. A. Das, J. Gehrke, and M. Riedewald. Approximate Join Processing Over Data
Streams. In Proc. 2003 ACM SIGMOD Conf., June 2003.

6. B. Babcock, M. Datar, and R. Motwani. Load Shedding for Aggregation Queries
over Data Streams. In Proc. 2004 Int. Conf. on Data Engineering, Feb. 2004.

7. D. Abadi, D. Carney, et al. Aurora: a new model and architecture for data stream
management. VLDB Journal, Vol.12(2),pp.120-139,2003.

8. D. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, M. Cherniack, J. Hwang, W.
Lindner, A. Maskey, A. Rasin, E. Ryvkina, N. Tatbul, and S. Zdonik. The Design
of the Borealis Stream Processing Engine. In Procs. of CIDR, Jan. 2005.

9. N. Tatbul, U. Cetintemel, S. Zdonik. M. Cherniack, M. Stonebraker. Load Shedding
in a Data Stream Manager. In Proc. 29th int. Conf. on VLDB, Sep. 2003.

10. J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: A scalable continous
query system for internet databasses. In Proc. ACM SIGMOD Int. Conf. on Man-
agement of Data, pages 379-390, 2000.

11. S. Chandrasekaran, A. Deshpande, M. Franklin, et al. TelegraphCQ: Continuous
Dataflow Processing for an Uncertain World. In Proc. of CIDR, Jan. 2003.

12. B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and issues in
data stream systems. In Proc. Principles of Database Systems (PODS), June 2002.

13. D. Han, R. Zhou, C. Xiao. G. Wang. et al. Load shedding for Window Joins over
Data Streams. In Proc. Int. Conf. on WAIM, Hongkong, June 2006,

14. Yun Chi, Haixun Wang, and Philip S. Yu. LoadStar: Load Shedding in Data Stream
Mining. In Proc. Of the 31st VLDB Conf., pages 1302-1305, August 2005.

15. Frederick Reiss and Joseph M. Hellerstein. Data Triage: An Adaptive Architecture
for Load Shedding in TelegraphCQ. In Proc. of ICDE, pages 155-156, April 2005.

16. L. Chen, M. T. Ösu, and V. Oria, Robust and Fast Similarity Search for Mov-
ing Object Trajectories. In Proceedings of 24th ACM International Conference on
Management of Data (SIGMOD’05), Baltimore, June 2005, pages 491-502.

17. L. Chen, R. Ng. On the Marriage of Lp-Norm and Edit Distance. In Proc. of
VLDB, Toronto, Canada, August 2004, pages 792-803.

18. Y. Liu , X.Liu , L. Xiao , Li. Ni, and X. Zhang. Location-Aware Topology Matching
in P2P Systems. IEEE INFOCOM, 2004

19. Abdelzaher, T., Sharma, V., Lu, C. A Utilization Bound for Aperiodic Tasks and
Priority Driven Scheduling. IEEE Trans. on Computers, 53, 2004, 334-350.

20. D. B. Stewart and P. K. Khosla, Real-Time Scheduling of Sensor-Based Control
Systems, Real-Time Programming, ed. by W. Halang and K. Ramamritham, (Tar-
rytown, New York: Pergamon Press Inc.), 1992.

21. S. Floyd, V. Jacobson. Traffic phase effects in packet-switched gateways. ACM
Comp. Commun. Rev., Vol.21, No.2, pp.26-42, Apr. 1991.

22. Hashem E S. Analysis of random drop for gateway congestion control. MIT Lab
for Computer Science : Technical Report, MIT 1989.

23. T Lakshman, A Neidhardt, and T Ott. The drop from front strategy in TCP and
in TCP over ATM. In IEEE INFOCOM, San Francisco, CA, 1996. pp.1242-1250

24. S. Floyd and V. Jacobson. Random Early Detection gateways for congestion avoid-
ance. IEEE/ACM Transactions on Networking, vol. 1, no. 4, August 1997.

25. G. F. Franklin, J. D. Powell, and A. Emami-Naeini. Feedback Control of Dynamic
Systems. Prentice Hall, Massachusetts, 2002.

26. Yi-Cheng Tu, Liu Song, Sunil Prabhakar. Load Shedding in Stream Databases: A
Control-Based Approach. March 2006. Technical report, Purdue University.

27. V. Paxson and S. Floyd. Wide-Area Traffic: The Failure of Poisson Mod-
eling. IEEE/ACM Transactions on Networking, 3(3), pp. 226-244, June 1995.
http://ita.ee.lbl.gov/html/contrib/LBL-PKT.html

