

 Swinburne University of Technology | CRICOS Provider 00111D | swinburne.edu.au

Swinburne Research Bank
http://researchbank.swinburne.edu.au

 Ning, B., & Liu, C. (2011). A hybrid algorithm for finding top-k twig answers in
probabilistic XML.

Originally published J. X. Yu, M. H. Kim, & R Unland (eds.). Proceedings of the
16th International Conference on Database Systems for Advanced Applications

(DASFAA 2011), Hong Kong, China, 22–25 April 2011.
Lecture notes in computer science (Vol. 6587, pp. 528–542). Berlin: Springer.

 Available from: http://dx.doi.org/10.1007/978-3-642-20149-3_38

Copyright © Springer-Verlag Berlin Heidelberg 2011.

This is the author’s version of the work, posted here with the permission of the
publisher for your personal use. No further distribution is permitted. You may also be
able to access the published version from your library. The definitive version is
available at http://www.springerlink.com/.

A Hybrid Algorithm for Finding Top-k Twig
Answers in Probabilistic XML

Bo Ning1 and Chengfei Liu2

1 Dalian Maritime University, Dalian, China
ningbo@dlmu.edu.cn

2 Swinburne University of Technology, Melbourne, Australia
CLiu@groupwise.swin.edu.au

Abstract. Uncertainty is inherently ubiquitous in data of real appli-
cations, and those uncertain data can be naturally represented by the
XML. Matching twig pattern against XML data is a core problem, and
on the background of probabilistic XML, each twig answer has a proba-
bilistic value because of the uncertainty of data. The twig answers that
have small probabilistic values are useless to the users, and the users only
want to get the answers with the largest k probabilistic values. In this
paper, we address the problem of finding twig answers with top-k prob-
abilistic values against probabilistic XML documents directly. To cope
with this problem, we propose a hybrid algorithm which takes both the
probability value constraint and structural relationship constraint into
account. The main idea of the algorithm is that the element with larger
path probability value will more likely contribute to the twig answers
with larger twig probability values, and at the same time lots of use-
less answers that do not satisfy the structural constraint can be filtered.
Therefore the proposed algorithm can avoid lots of intermediate results,
and find the top-k answers quickly. Experiments have been conducted to
study the performance of the algorithm.

1 Introduction

Nowadays, uncertainty is inherently ubiquitous in data of real applications. For
instance, in sensor applications, sensors produce uncertain data since readings of
sensors are inherently imprecise. In scientific research, error-prone experimental
machinery, polluted samples, and simple human error bring the uncertainty to
experimental data. Therefore uncertain data management is becoming a critical
issue. The current relational database technologies can not deal with this problem
very well, because to store imprecise information in structured data format can
lead to high complexity of space and processing time. While the XML data
is a natural representation of uncertain data due to its flexible characteristics.
XML has hierarchical structure, therefore the probability values can be assigned
to elements and subtrees, dependency and independency of elements can be
expressed. In addition, XML supports incomplete information gracefully. The
data models for representing uncertainty in XML have been studied in [1–6].

II

As to the query processing on probabilistic XML, the queries on the proba-
bilistic XML are often in the form of twig patterns. Compared with the query
on ordinary XML, the matched answers are associated with the probabilistic
values when querying probabilistic data. Therefore the answers as well as the
probability values need to be returned. Many kinds of twig queries with different
semantics were proposed, and their evaluations were studied in [7]. It is obvious
that the answers with small probabilistic values are useless to users who submit
the queries, and it makes sense to only return the twig answers with top-k prob-
abilistic values. There are also some other works on querying uncertain data.
On uncertain relational data, matching the twig answers with probability values
above a threshold was investigated in [8], and query ranking was studied in [9, 11,
12]. The paper [10] studied the query ranking in probabilistic XML by possible
world model, and a dynamic programming approach was deployed that extends
the approach in [9] to deal with the containment relationships in probabilistic
XML, and rank the results by the interplay between score and uncertainty. Those
works are based on the p-documents generated from probabilistic XML or the
relational data model in which the possible worlds are stored.

It is more flexible if the twig answers with top-k probabilistic values can
be matched against the probabilistic XML directly. The algorithm ProTJFast
and PTopKTwig [13] belong to this catalog. In those algorithms, by the use of a
novel encoding scheme and the effective use of lower bounds, elements or paths
with small probabilities can be filtered. Matching a twig query against ordinary
XML document only needs the answer to satisfy the structural relationships
constraint, while finding top-k twig answers against probabilistic XML also needs
the answers to satisfy the constraint that the probabilistic values of twig answers
are largest k ones. The algorithm ProTJFast uses element streams ordered by
document order (pre-order) as input, and the process of algorithm follows the
document order, so that the constraint of probabilistic values are not fed as soon
as possible. The algorithm PTopKTwig is based on the element streams ordered
by path probabilistic value, and do not consider about the structural constraint
too much, so that, to satisfy the structural constraint, there are lots of times
of detection whether the elements of leaf nodes in query can be matched to be
an twig answer. Although the use of enhanced lower bound makes algorithm
PTopKTwig efficient, there are still lots of useless path answers are joined to the
candidate twig answers that are not the final top-k answers.

In this paper, we address the problem of efficiently finding top-k twig answers
against probabilistic XML directly too. Our algorithm takes both of the struc-
tural constraint and probabilistic value constraint into account, and can find the
k twig answers which satisfy the structural relationships and their probabilistic
values are largest as earlier as possible. In our algorithm, the intermediate path
answers which do not satisfy the structural constraint and probabilistic value
constraint can be filtered rapidly. Also we improve the encoding scheme that
makes the process of calculating the probabilistic values more efficiently.

The rest of this paper is organized as follows. Section 2 introduce the back-
ground and relate work including the data model twig answers and encoding

III

scheme of probabilistic XML.In Section 3, we improve the encoding scheme by
redesign the float vector. In Section 4, we present a hybrid algorithm HyTopK-
Twig for matching twig answers with top-k probabilities. Section 5 shows our
experimental results. Conclusions are included in Section 6.

2 Preliminaries

2.1 Probabilistic XML Model

Nierman et al. proposed the Probabilistic Tree Data Base(ProTDB) [4] to man-
age uncertain data represented in XML. Actually it belongs to the catalog of
PrXML{ind, mux} model [6],in which the independent distribution and mutually-
exclusive distribution are considered.

A probabilistic XML document TP defines a probability distribution over an
XML tree T (V, E) and it can be regarded as a weighted XML tree TP (VP ,EP). In
TP , VP = VD ∪ V , where V is a set of ordinary elements that appear in T , and
VD is a set of distribution nodes, including independent nodes and mutually-
exclusive nodes (ind and mux for short). An ordinary element, u ∈ VP , may
have different types of distribution nodes as its child elements in TP that specify
the probability distributions over its child elements in T . EP is a set of edges,
and an edge which starts from a distribution node can be associated a positive
probability value as weight.

S1

ind

ind mux

a1 a2

b1 c1 b2 c2

0.5 0.7

0.8 0.6 0.3 0.7

(b) Tree model of probabilistic XML

<S1>
 <DIST type="independant">
 <a1 Prob='.5'>
 <DIST type="independant">
 <b1 Prob='.8'><b1>
 <c1 Prob='.6'><c1>
 </DIST>
 </a1>
 <a2 Prob='.7'>
 <DIST type="mutually-exclusive">
 <b2 Prob='.3'><b2>
 <c2 Prob='.7'><c2>
 </DIST>
 </a2>
 </DIST>
</S1>

(a) Fragment of probabilistic XML

Fig. 1. Example of probabilistic XML

In Figure 1, (a) is the fragment of probabilistic XML document. By using the
tag DIST, Prob and VAL, the XML has the ability to express the probabilistic
distributions and the probabilistic values of elements. Figure (b) is the tree model
for the probabilistic XML, which contains ind and mux nodes. The element a1

IV

has an ind node as its child, which specifies that its twig child nodes, b1 and
c1 are independent. The probabilities of having b1 and c1 are 0.8 and 0.6, as
indicated in the incoming edges to b1 and c1 respectively. The element a2 has
a mux node as its child, which specifies that b2 and c2 cannot appear as a2’s
child at the same time. Because of the mutually-exclusive distribution, the sum
of probability values of b2 and c2 cannot be larger than one.

2.2 Twig Query and Answers

A twig query q is an XPath query with predicates, and it can be modeled as a
small tree Tq(Vq, Eq), where Vq is a set of nodes representing types(tag name)
and Eq is a set of edges. There are two kinds of edges in Eq including parent-child
edge (PC for short) and ancestor-descendant edges (AD for short). Usually, AD
edge corresponds to the descendant axis in XPath, and PC edge corresponds to
the child axis. The answer of a twig query is a set of tuples, in which there are
elements from the probabilistic XML, and those elements match the nodes in q
and satisfy all the structural relationships specified in q.

However, to find the answers of a twig query q against a probabilistic XML
document, not only the structural relationships specified in q have to be satisfied,
but also the types of distribution nodes and weights of edges from distribution
nodes have to be considered as well. Actually, a mux distribution node umux can
be regarded as constraint to restrict two elements under different child elements
of umux so that they do not contribute to the same result. In contrast, an ind
distribution node does not affect the existence of an answer, but determine the
probability value of the answer.

Given an answer expressed by a tuple t = (e1, e2, ..., en), there exist a subtree
Ts(Vs, Es) of TP , which contains all those elements. The probability of t can be
computed by the following equation.

prob(t) = prob(Ts) = Πei∈Es
prob(ei);

2.3 Encoding Scheme

For encoding an ordinary XML, the encoding scheme should support the struc-
tural relationships and keep the document order, because matching a twig query
against ordinary XML document only needs the answer to satisfy the structural
relationships constraint, while the formal encoding scheme can not meet the
requirements at the background of probabilistic XML, as there are new charac-
teristics of probabilistic XML including the distribution nodes and the proba-
bilistic values. Therefore encoding scheme for probabilistic XML should contains
the information of probabilistic values and provides the ability for matching twig
answers that satisfy the constraint of probabilistic values.

Region-based encoding[14, 15] and prefix encoding are two kinds of encod-
ing schemes for ordinary XML documents. Both encoding schemes support the
structural relationships and keep the document order, and these two require-
ments are essential for evaluating queries against ordinary XML documents. As

V

to the aspect of encoding elements in probabilistic XML, a new requirement
needs to be fed, that is how to record the probability values of elements on dif-
ferent levels. Depending on different kinds of processing, the probability value
of the current element which is under a distribution node in PXML (node-prob
for short) needs to be record, and so does the probability value of the path from
the root to the current element (path-prob for short). Ning et al.[13] conclude
that both node-prob and path-prob in twig pattern matching against PXML are
needed, and property for supporting ancestor vision and ancestor probability
vision are also needed. The prefix encoding scheme naturally have the proper-
ties above, therefore it is better to encode PXML elements by a prefix encoding
scheme.

For efficiently processing twig matching against ordinary XML, Lu et al. pro-
posed a prefix encoding scheme named extended Dewey [16]. Extended Dewey
is a kind of Dewey encoding, which use the modulus operation to create a map-
ping from an integer to an element name, so that given a sequence of integers, it
can be converted into the sequence of element names. This characteristic make
extended Dewey encoding have the tag name vision of ancestor, that makes the
evaluation of twig join efficiently.

For the purpose of supporting twig pattern matching against probabilistic
XML, Ning et al.[13] extend Lu’s encoding scheme[16] by adding the properties
of the probability vision and the ancestor probability vision, and propose a new
encoding scheme called PEDewey. Compared with Extended Dewey, PEDewey
takes the distribution node into account and assigns a float vector to each ele-
ment, which records the probabilistic value information.

3 Improvement of the PEDewey Encoding

In this paper, we just improve the float vector part of PEDewey for the efficient
calculation of twig answers’ probabilistic values.

In PEDewey, an additional float vector is assigned to each element. The
length of the vector is equal to that of a normal Dewey encoding, and each
component holds the node probability value of the element. Given the vector v
and each component nodei in v, the path probability value can be calculated by
the following equation:

prob(path) = Πnodei∈vprob(nodei);

We can see from the equation that there are lots of multiplication operations
for calculating a path probability value, and it is not efficient, so we improve
the float vector by recording the natural logarithm of probability value in each
component. After that, the path probability value can be calculated by equation:

probln(path) = Σnodei∈vprobln(nodei);

During the processing of finding top-k twig answers, the probability values are
in the form of natural logarithm, and when the final answers are found, we

VI

calculate the probability value by the equation prob(t) = eprobln(t). Notice that
the components for elements of ordinary, ind and mux are all assigned to 0 which
is the natural logarithm of 1.

S1

ind

ind mux

a1 b1

c1 d1 f1 g1

0.9 0.6

0.7 0.8 0.5 0.4

(a) Probabilistic XML

s1 0

ind

a2

c2

a1 0.-2.0
c1 0.-2.0.-2.0

d1 0.-2.0.-2.1
a2 0.-2.2
c2 0.-2.2.-2.0

b1 0.-2.1
f1 0.-2.1.-3.0
g1 0.-2.1.-3.1

ln(0.9)

0.7

0.6

(b) PEDewey Encoding

ln(0.9) ln(1) ln(0.7)

ln(0.9) ln(1) ln(0.8)

ln(0.7)
ln(0.7) ln(1) ln(0.6)

ln(0.6)

ln(0.6) ln(1) ln(0.5)

ln(0.6) ln(1) ln(0.4)

Fig. 2. Example of PEDewey encoding

We redefine the operations on the float vector. (1) Given element e, function
pathProbln(e) returns the path-prob of element e in natural logarithm form,
which is calculated by adding the node-prob values of all ancestors of e in the float
vector (2) Given element e and its ancestor ea, function ancPathProbln(e, ea)
returns the path-prob of ea in natural logarithm form by adding those compo-
nents from the root to ea in e’s float vector. (3) Given element e and its ancestor
ea, function leafPathProbln(e, ea) returns the path-prob of the path from ea to
e in form of natural logarithm by adding those components from ea to e in e’s
float vector. (4) Given elements ei and ej , function twigProbln(ei, ej), returns
the probability of the twig whose leaves are ei and ej . Assume the ei and ej have
common prefix ec, and the probability of twig answer containing ei and ej is:

twigProbln(ei, ej) = pathProbln(ei) + pathProbln(ej)− ancPathProbln(ei, ec);

For the PXML shown in Figure 2(a), the encodings of its elements are
shown in Figure 2(b). For example, pathProbln(c1)=-0.462 (0+(-0.10536)+0+(-
0.35667)), ancPathProbln(c1, a1)= -0.10536 (0+(-0.10536)+0), leafPathProbln

(c1, a1) = -0.35667 (0+(-0.35667)) and twigProbln(c1, d1) = pathProbln(c1) +
pathProbln(d1) - ancPathProbln(c1,a1) = -0.6852, where a1 is the common pre-
fix of c1 and d1. At last we can get the probability value of this twig answer is
0.504 (e−0.6852).

4 HyTopKTwig : a Hybrid Algorithm

In this part, we will propose an algorithm for finding top-k twig answers against
the probabilistic XML directly. Firstly, we analyze the characteristics of the

VII

problem that finding top-k twig answers, then we propose the algorithm. At
last, we analyze the correctness of our algorithm.

4.1 Analysis of the problem

When matching twig pattern against the ordinary XML documents, the only
consideration is the structural relationships of query. That means the answers
only need to satisfy the structural relationships of twig pattern. However the
problem we are going to deal with is to find not only the answers that match
the twig pattern, but also the k answers that have the largest probability values
among all the twig answers. Therefore how to find top-k answers quickly without
large amount of useless intermediate results is the challenge of the problem.

Most of the algorithms for matching twig pattern against the ordinary XML
use elements streams ordered by the document order as the input data. Although
those algorithms can be easily adjusted to solve the top-k answers problem
against probabilistic XML, the efficiency is very low. That is because all the twig
answers need to be found out no matter how small their probabilistic values are.
Many useless intermediate results are computed, and the algorithm ProTJFast
is in this case. The algorithm ProTJFast uses the elements streams ordered by
document order, and the document order is good for matching the structural
relationships, and makes the twig matching algorithm holistic. However, at the
background of our problem, the document order limits the efficiency.

Intuitively the element with larger path probability value will more likely
contribute to the twig answers with larger twig probability values. Based on this
idea, algorithm using the elements streams ordered by probability values is pro-
posed, for example the algorithm PTopKTwig, to deal with the top-k matching
of twig queries against probabilistic XML. The algorithm PTopKTwig mainly
takes the probability value order into account, and ignores the characteristics
of the structural relationships constraints. It needs to compare whether the two
leaf elements of leaf nodes in query can be joined to contribute to a final an-
swers lots of times. Although the use of enhanced lower bound makes algorithm
PTopKTwig efficient, without the documents order, the merge-joins can not be
performed, that leads to the low efficiency because lots of comparisons can not
be avoided.

From above we can see that there are structural relationships constraint and
largest probabilistic values constraint in our problem, and it is a tradeoff between
finding top-k probability values and satisfying the structural relationships. So we
intend to design a hybrid algorithm which takes both constraints into account,
and in our algorithm, the intermediate path answers which do not satisfy the
structural constraint and probabilistic value constraint can be filtered rapidly.

4.2 Data Structures and Notations

Firstly we give the definition of skeleton pattern, which is the key point to
balance the tradeoff between finding top-k probability values and satisfying the
structural relationships.

VIII

Definition 1. The skeleton pattern s is a subtree of twig pattern q, and it can be
got by deleting all the subtrees of twig pattern which do not contain any branching
node.

For example, the skeleton pattern of A[//E]//B[//D]//C is A//B.
In our algorithm, we associate each leaf node f in a twig pattern q with a

stream Tf , which contains encoding of all elements that match the leaf node f .
The elements in the stream are sorted by their path-prob values. It is very fast
to sort those elements by using the float vector in our encodings. Notice that
in our encoding scheme, the component of float vector is in the form of natural
logarithm, so the order of those natural logarithm floating numbers should be
ascending, so that the order of real probability values is descending. We maintain
cursorList, a list pointing to the head elements of all leaf node streams. Using
the function cursor(f), we can get the position of the head element in Tf .

A list Lc for keeping top-k candidates is allocated for q. A set Sb is associated
with skeleton pattern of query q. Each element cached in Sb are the skeleton part
of the candidate answers. Initially set Sb is empty. For each element stream, we
assign a signature list. The signature for a element represent whether the current
element is a descendant of any skeleton result in set Sb. Initially, all the signatures
are zero.

4.3 Algorithm HyTopKTwig

There are three phases in main algorithm of HyTopKTwig(Algorithm 1). The
first phase (Lines 2-6) is to find the initial answers so that we can have k skeleton
results in Sb. In the second phase(Lines 7-10), we use the signature list to identify
the descendants of skeleton results in set Sb in respective element streams of
leaf node in query q. The function of signature list is filtering the elements
that can not contribute to the final answers. So in third phase(Line 11), we
run algorithm ProTJFast against the document ordered element streams where
useless elements have been filtered in phase two.

In the first phase, we intend to find the answers whose probability values are
as large as possible, so we use the element streams ordered by probability value.
The processing of this phase is just like that of algorithm PTopKTwig. Algorithm
1 firstly proceeds in the probability order of all the leaf nodes in query q, by
calling the function getNextP(). This function returns the tag name of the leaf
node stream which has the biggest probability value in its head element among
all leaf node streams. So that, each processed element will not be processed
repetitively. After function getNextP() returns a tag qact, we may find the twig
answers which the head element in stream Tqact

contributes to, by invoking
function matchTwig(). In function matchTwig(), the twig answers containing
the eqact can all be found. During the process of finding other elements that
contribute to the twig answers with eqact

, there is no duplicated computation
of comparing the prefixes, due to the order of probability values and the use
of cursorList. The cursorList records the head elements in respective streams
which is next to be processed. The elements before the head elements have

IX

Algorithm 1: HyTopkTwig(q)
Data: Twig query q, and streams Tf of the leaf node in q.
Result: The matchings of twig pattern q with top-k probabilities.
begin1

while Sizeof(Sb) < k ∧ ¬ end(q) do2

qact=getNextP (q);3

tempTwigResults=matchTwig(qact, q);4

addSkeletonResults(Sb, tempTwigResults);5

advanceCursor(cursor(qact));6

foreach qi ∈ leafNodes(q) do7

foreach ej ∈ Tqi do8

if ∃sk ∈ Sb, sk is the prefix of ej then9

ej .signature = 1;10

ProTJFastBySignature(q);11

end12

Function end(q)13

begin14

Return ∀f ∈ leafNodes(q) → eof(Tf);15

end16

Function getNextP (n)17

begin18

foreach qi ∈ leafNodes(q) do19

ei = get(Tqi);20

max = maxargi(ei);21

return nmax22

end23

Function ProTJFastBySignature(q)24

begin25

Sort the elements whose signature equals to 1 in respective element streams26

by document order.
By using algorithm ProTJFast, output the k answers with largest27

probability values.
end28

X

been compared with elements in other streams, and the twig answers that these
elements might contribute to have been considered. Therefore we only compare
eqact with the elements after the head elements in the related streams (Lines 3-4
in Algorithm 2). Once a twig answer are found, we add the skeleton result of this
answer to the set Sb, until the size of the Sb equals to k (Line 5 in Algorithm
1). So we can see that the task of phase 1 is to find k skeleton results.

In the second phase of Algorithm 1(Lines 7-10), we update the signature lists
of element streams by assigning the signature of element below any skeleton
result in set Sb to 1. So that, by the signature lists, we can get a subtree of
original probabilistic XML document. We can prove that the final top-k twig
answers against the original XML can be found in the subtree.

In the last phase of Algorithm 1(Line 11), we firstly sort the elements whose
signatures equal to 1 in respective element streams by document order. And
then we can perform the algorithm ProTJFast to output the k answers with
largest probability values. Notice that if the k of top-k query is small, we can
use algorithm TJFast at the third phase directly, because the number of elements
under the k skeleton results is also small, therefore there is no need to use the
more complex algorithm ProTJFast.

Algorithm 2: matchTwig(qact, q)
begin1

for any tags pair [Tqa ,Tqb] (qa,qa ∈ leafNodes(q) ∧ qa, qb 6= qact) do2

Advance head element in Tqa to the position of cursor(qa);3

Advance head element in Tqb to the position of cursor(qb);4

while ¬ end(q) do5

if elements eqa ,eqa match the common path pattern with eqact in6

query q, and the common prefix of eqa ,eqa match the common path
pattern which is from the root to the branching node qbran of qa and
qb in query q, and the common prefix is not a element of mux node.
then

add eqa ,eqa to the set of intermediate results.7

return twig answers from the intermediate set.8

end9

For the twig query (a) in Figure 3: S[//C]//D against probabilistic XML (b),
assume that the answers for top-2 probabilities are required. In the first phase
of Algorithm 1, streams TC and TD are scanned, and the elements in streams
are sorted by path-prob values shown in Figure 3 (c). The processing order of
elements in streams are marked by dotted arrow line in Figure 3(c), which is
obtained by invoking the getNextP () function. Firstly, getNextP () returns c3

because its probability value is largest among the elements in respective streams,
and c3 start to join the element in TD, and find a match (c3, d3), next the
Algorithm 1 add the skeleton result s2 of (c3, d3) to set Sb. Then getNextP ()

XI

returns the element c1, and an answer (c1, d1) is found, also the skeleton result
s1 is added to set sb. At this moment, the size of set sb equals to the value of k,
so the first phase ends. In the second phase, Algorithm 1 marks the signatures of
elements that are the descendants of skeleton results in set Sb, so the signatures
of elements c1, d1, c2, d2, c3 and d3 are updated. In the last phase, the elements
of respective element streams are ordered by document order (In Figure (d)),
and then the Algorithm ProTJFast can be performed on them. So the final top-2
twig answers is (c1,d1) with probability value 0.576 and (c2,d2) with probability
value 0.512. Notice that, the temporal results (c3,d3) in phase one is not the
final answer, by the skeleton result s2 generated from temporal results (c3,d3),
we can bring the elements c2 and d2 to the final phase, and finally they can be
merge-joined to be a final answer.

S1

ind

ind

a1

c1 d1
0.9 0.8

0.8

ind

a2

c2 d2
0.8 0.8

S2

ind
0.8

ind

a3

c3 d3
0.9 0.5

0.9

ind

a4

c4 d4
0.7 0.5

S3

ind

0.4

ind

a5

c5 d5
0.3 0.6

S4

ind

0.6

Root

pathprob(ci) 0.72 0.64 0.28 0.18

0.36pathprob(dj) 0.64 0.64 0.20
twigprob(ci,dj) 0.576 (c1,d1) 0.512 (c2,d2) 0.14 (c4,d4) 0.108 (c5,d5)

S

C D

(a) Twig query (b) Probabilistic XML

0.81

0.45

0.405 (c3,d3)

c30.81

c10.72

c50.18

c40.28

c20.64

d1 0.64

d2 0.64

d4 0.20

d5 0.36

d3 0.45

ci djpathProb(ci) pathProb(di)

matched

matched

(c) Phase one of Algorithm HyTopKTwig

S1

ind

ind

a1

c1 d1
0.9 0.8

0.8

ind

a2

c2 d2
0.8 0.8

S2

ind
0.8

ind

a3

c3 d3
0.9 0.5

0.9

Root

pathprob(ci) 0.72 0.64

pathprob(dj) 0.64 0.64
twigprob(ci,dj) 0.576 (c1,d1) 0.512 (c2,d2)

0.81

0.45

0.405 (c3,d3)

Skeleton results S1 and S2.

The elements with signature

Final answers (c1,d1) and (c2,d2)

(c3,d3) and (c1,d1) returned in first phase.
and the s1 and s2 can be deduced to be the
skeleton results.

(d) Phase two and three of Algorithm HyTopKTwig

Fig. 3. Example of HyTopKTwig

XII

4.4 Analysis of Algorithm

We can see that in the first phase of Algorithm HyTopKTwig, the element
streams are ordered by probability value, so that we can find the answers whose
probability value are as larger as possible, while in the last phase, we use Al-
gorithm ProTJFast against the element streams ordered by document order,
therefore Algorithm HyTopKTwig is a hybrid algorithm that takes both proba-
bility value constraint and structure constraint into account.

However, are those temporal results in phase one the final answers? In Algo-
rithm PTopKTwig, an enhanced lower bound is proposed to get the final answer
quickly and to ensure the correctness of algorithm. The HyTopKTwig algorithm
also needs to ensure the correctness and try to find other candidate answers
which may be the final answers, so we use the skeleton results to bound the
structural region of those candidate answers. The correctness of Algorithm Hy-
TopKTwig is proved below:

Theorem 1. Given a twig query q and an probabilistic XML database PD,
Algorithm HyTopKTwig correctly returns all the answers for q with top-k prob-
abilities on PD.

Proof. If the k skeleton results in set Sb can bound the final answers, then we
can prove the correctness of algorithm HyTopKTwig, so we change the problem
to prove that there is no element, which is not the descendant of any skeleton
results in set Sb, can contribute to the final answers.

Assuming that there is an element e which is not the descendant of any
skeleton results in set Sb, and can match a twig answer with element ex whose
probability value is larger than the k-th twig answer (merge-joined by ek1 and
ek2). So we can get the inequations:

pathProb(ek1) ∗ preProb(ek2) < pathProb(ex) ∗ preProb(e) (1)

equation (1) can be deduced to equation (2)

pathProb(ex) > pathProb(ek1) ∗ preProb(ek2)/preProb(e) (2)
In phase one, once the function getNextP() returns a tag t, algorithm will

regard the tag t as main path and find matching with the other element streams
ordered by predicate probability value, so the preProb(ek2)/preProb(e) must
be larger than one because the path answer with larger predicate probabil-
ity value has been scanned, we can conclude that pathProb(ex) is larger than
pathProb(ek1), this is contradictory with that the processed main path has larger
path probability value than the unprocessed ones. Or if the pathProb(ex) is re-
ally larger than pathProb(ek1), it means element ex has been processed before
ek1, and the skeleton result of ex has existed in set Sb. Because the element e
can be merge-joined with ex, the element e must be the descendant of skeleton
result of ex. It means element e will be dealt with in phase three of algorithm
HyTopKTwig. Therefore we can conclude that there is no element which is not
the descendant of any skeleton results in set Sb, and can match a twig answer
whose probability value is larger than the k-th twig answer. So the correctness
of algorithm HyTopKTwig is proved.

XIII

5 Experiments

5.1 Experimental Setup

The algorithms HyTopKTwig,ProTJFast and PTopKTwig were implemented in
JDK 1.4. Both real-world data set DBLP and synthetic data are used to test the
performance of algorithm above, and the synthetic data set was generated by
IBM XML generator and a synthetic DTD. We made the corresponding proba-
bilistic XML documents from ordinary ones by inserting distribution nodes and
assigning probability values to the child elements of distribution nodes. Table 1
lists the used queries. We take the metrics elapsed time and processed element
rate rateproc =numproc/numall to compare the performance among those algo-
rithms, where numproc is the number of processed elements, and numall is the
number of all elements.

Table 1. Queries

ID queries

Q1 dblp//article[//author]//title

Q2 S//[//B]//A

Q3 S//[//B][//C]//A

Q4 S//[//B][//C][//D]//A

Q5 S//[//B][//C][//D][//E]//A

5.2 Performance Study

Influence of Document Size We evaluated Q1 against the DBLP data set
of different sizes, ranging from 20MB to 110MB, and the answers with top-20
probability values were returned. From Figure 4, we can see that the elapsed time
of ProTJFast is linear to the size of documents, while varying size of documents
has almost no impact on HyTopKTwig and PTopKTwig, and the algorithm
HyTopKTwig performs better than PTopKTwig.

Fig. 4. Varying size Fig. 5. Varying size

XIV

Influence of Number of Answers Query Q1 was evaluated against the DBLP
data set. From Figures 6 and 7, we can see that by varying k from 10 to 50, the
elapsed time and the rate of processed elements of those algorithms increase,
the algorithm HyTopKTwig performs best, and algorithm ProTJFast performs
worst. When k is small, the performance of HyTopKTwig is much better than
ProTJFast and is better than PTopKTwig.

Fig. 6. Varying K Fig. 7. Varying K

Influence of Multiple Predicates To test the influence of multiple predicates,
the queries Q2 to Q5 were evaluated on the synthetic data set. By varying the fan-
out of query from 2 to 5, from Figures 8 and 9, we can see that the elapsed times
of algorithm PTopKTwig increases rapidly. The situation is similar in Figure 9
when testing the rate of processed elements. The increasing speed of algorithm
HyTopKTwig is steady and is slower than the other two ones, especially when
the query’s fan-out is large.

Fig. 8. Varying pred Fig. 9. Varying pred

XV

6 Conclusions
In this paper, we addressed the problem of finding top-k matching of a twig
pattern against probabilistic XML data. Firstly, we improved the float vector
part of PEDewey encoding, then we proposed a hybrid algorithm named Hy-
TopKTwig that has three phases. The element streams in first phase are ordered
by probabilistic value, and the element streams in third phase are ordered by
document order, therefore the algorithm HyTopKTwig considers about both the
probability values constraint and structural relationships constraint. Finally we
presented experimental results on a range of real and synthetic data.
Acknowledgement. This work is supported by the Australian Research Coun-
cil Discovery Project (Grant No. DP0878405, DP110102407), and the Fundamen-
tal Research Funds for the Central Universities of China (Grant No. 2009QN030).

References

1. S.Abiteboul and P. Senellart. Queryig and updating probabilistic information in
XML. In Prodeeding of EDBT, pp. 1059-1068, 2006.

2. E.Hung, L.Getoor, and V.S.Subrahmanian. Probabilistic interval XML. In Proceed-
ing of ICDT, pp. 358-374, 2003.

3. E.Hung, L.Getoor, and V.S.Subrahmanian. PXML: A probabilistic semistructured
data model and algebra. In Proceeding of ICDE, pp. 467-478, 2003.

4. A. Nierman and H.V.Jagasish. ProTDB: Probabilistic data in XML. In Proceeding
of VLDB, pp.646-657, 2002.

5. P.Senellart and S.Abiteboul. On the complexity of managing probabilistic XML
data. In Proceeding of PODS, pp. 283-292, 2007.

6. B. Kimelfeld, Y. Kosharovsky, and Y. Sagiv. Query efficiency in probabilistic XML
models. In Proceeding of SIGMOD, pp. 701-714, 2008.

7. B. Kimelfeld and Y. Sagiv. Matching twigs in probabilistic XML. In Proceeding of
VLDB, pp. 27-38, 2007.

8. M.Hua, J.Pei, W.Zhang, and X.Lin. Ranking queries on uncertain data: A proba-
bilistic threshold approach. In Proceeding of SIGMOD, pp. 673-686, 2008.

9. M.Hua, J.Pei, W.Zhang, and X.Lin. Efficiently answering probabilistic threshold
top-k queries on uncertain data. In Proceeding of ICDE, pp. 1403-1405, 2008.

10. L. Chang, J. X. Yu and L. Qin. Query Ranking in Probabilistic XML Data. In
Proceeding of EDBT, pp. 156-167, 2009.

11. K. Yi, F. Li, G.Kollios, and D. Srivastava. Efficient processing of top-k queries in
uncertain databases. In Proceeding of ICDE, pp. 1406-1408, 2008.

12. K. Yi, F. Li, G.Kollios, and D. Srivastava. Efficient processing of top-k queries in
uncertain databases with x-relations. TKDE 20(12): 1669-1682, 2008.

13. B. Ning, C.Liu, J. X. Yu, and G.Wang : Matching Top-k Answers of Twig Patterns
in Probabilistic XML. In Proceeding of DASFAA, pp. 125-139, 2010.

14. T. Grust. Accelerating XPath Location Steps. In Proceeding of SIGMOD, pp.
109-120, 2002.

15. C. Zhang, J. Naughton, D. DeWitt, Q. Luo, G. Lohman. On Supporting Con-
tainment Queries in Relational Database Management Systems. In Proceeding of
SIGMOD, pp. 425-436, 2001.

16. J. Lu, T. W. Ling, C-Y. Chan, and Ting Chen. From region encoding to ex-
tended dewey: On efficient processing of XML twig pattern matching. In Proceeding
of VLDB, pp. 193-204, 2005.

