Monte Carlo modeling of optical coherence
tomography imaging through turbid media

Qiang Lu, Xiaosong Gan, Min Gu, and Qingming Luo

We combine a Monte Carlo technique with Mie theory to develop a method for simulating optical
coherence tomography (OCT) imaging through homogeneous turbid media. In our model the propagat-
ing light is represented by a plane wavelet; its line propagation direction and path length in the turbid
medium are determined by the Monte Carlo technique, and the process of scattering by small particles
is computed according to Mie theory. Incorporated into the model is the numerical phase function
obtained with Mie theory. The effect of phase function on simulation is also illustrated. Based on this
improved Monte Carlo technique, OCT imaging is directly simulated and phase information is recorded.
Speckles, resolution, and coherence gating are discussed. The simulation results show that axial and
transversal resolutions decrease as probing depth increases. Adapting a light source with a low coher-
ence improves the resolution. The selection of an appropriate coherence length involves a trade-off
between intensity and resolution. © 2004 Optical Society of America
OCIS codes: 170.7050, 170.4500, 290.5850.

1. Introduction oretical modeling of OCT imaging of turbid media,

Noninvasive optical imaging methods are of great  Such as biological tissues: single backscattering,’

importance in biological observation and in medical
diagnosis in vivo. Optical coherence tomography
(OCT), which can reveal the subsurface structures of
biological tissues, has been studied extensively since
its potential was first demonstrated by Huang et al.?
in 1991. Thereafter, in addition to imaging trans-
parent tissue such as eyes,? its application has been
extended to image high-scattering tissue such as
skin.3 However, when applied to high-scattering
tissue, OCT fails to produce the high-quality images
obtained with transparent tissue. Multiscattering,
which becomes dominant deep under the surface of
turbid tissue, degrades image resolution and con-
trast.# In particular, the coherence of scattered
light produces speckles, which make the interpreta-
tion of OCT images more difficult.5

To optimize the OCT technique in biological imag-
ing, much research has been done in the area of the-
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linear system theory,” the Monte Carlo method,*7-9
the extended Huygens—Fresnel analytical model,>-10
and so on. Nevertheless, except for the extended
Huygens—Fresnel model, none of the available theo-
retical models of OCT considers the interference of
multiscattered light. Incorporated into previous
Monte Carlo models#8? is a coherence gate, which is
implemented by comparing the optical path differ-
ence between sample and reference arms with the
coherence length of the light source.

In this paper we present a new Monte Carlo model
for OCT imaging that includes the interference ef-
fects of multiscattered light. In our model, named
the coherent Monte Carlo (CMC) model, the propa-
gating light is represented by a plane wavelet with its
line propagation direction and path length in turbid
medium determined by the Monte Carlo technique
and with the process of scattering by small particles
computed with Mie theory.l! Because the phase in-
formation of light is carried during its line propaga-
tion and scattering, the heterodyne signal of OCT is
directly simulated. We should point out that the
incorporation of phase information into the Monte
Carlo technique was first reported by Daria et al.12 to
consider the diffraction effects of a focused beam in
two-photon microscopy. To study OCT imaging in
this paper, we adapt the method of Daria et al. by
adding Mie theory to calculate the phase variation
during scattering.



»

(n-1)th scattering event

Fig. 1. Geometrical schematic of the transform of the coordinate systems. é denotes the unit vector for a given spatial direction. &,

and é,,,
with length /,, and direction é,,,.

vectors can be denoted by é, 1 é,,é, X &, =¢,,é, = &, é, = —¢é,.

Section 2 describes the basic Monte Carlo tech-
nique used to simulate light migration, in which
phase information is carried and Jones vectors, in-
stead of intensity, are used to denote light. Also
incorporated is a numerical phase function derived
from Mie theory. In addition, the model used to sim-
ulate polarized OCT imaging through turbid media is
illustrated in Section 2. Some results of the simu-
lation are presented in Section 3.

n = 1...m denote unit vectors of perpendicular and parallel components, respectively. r,,n = 1...m, denotes the free path
0, and ¢,, n = 1...m, denote scattering and azimuthal angles, respectively. The relation among these

2. Coherent Monte Carlo Techniques

A. Basic Monte Carlo Techniques

We already know that light migration in turbid me-
dia is composed of two processes: movement (line
propagation) and scattering (see Fig. 1). Therefore
the basic Monte Carlo technique used to study light
migration includes two random sampling processes:
(1) sampling free path length /, which denotes the
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moving distance between two adjacent scattering
events, and (2) sampling scattering angle 6 and azi-
muthal angle ¢, which are used to determine the light
propagation direction after scattering. The cross it-
erations of these two sampling processes, as well as
some application-specific constraints, construct the
whole simulation process for an individual photon.13
Calculations of some interesting physical quantities,
such as the detected intensity, are performed simply
by simulation of a large number of photons and sub-
sequent statistical processing. A detailed descrip-
tion of this process is given below.

To consider coherence in OCT imaging, phase in-
formation is included in our CMC model. Jones vec-
tors E = (E,, E_)T, which express both the amplitude
and the phase information of two orthogonal electri-
cal field components, parallel component E, and per-
pendicular component E,, are used to identify a
wavelet with the help of parameters of position P =
(x, y, 2)" and line propagation direction u = (p,, My,
w,)", which describe a wavelet in global Cartesian
coordinates. The superscript T denotes the matrix
transpose.

Variation of the Jones vectors of light migration in
turbid medium is due to both line propagation and
scattering. Following Ref. 12 we treat light as a
plane wave during its line propagation. Therefore
only the phase, not the magnitude, of the light field is
changed during line propagation. In addition, if we
disregard the birefringence in the medium, the phase
variations of perpendicular and parallel components
are equivalent. This variation can be expressed by
T(,_4) as follows:

En, = T(anl)Enfl = Enfl exp[jklnflér(nfl)]y (1)

where E,,_; = (E,,_1), Es(n,l))T denotes light after
the (n—1)th scattering event, E, = (E,,,’, E,"7T de-
notes light before the nth scattering event, k is a
wave vector in the medium, and /,,_, is the free path
length. All these quantities are in the coordinate
system (&5(,,—1), €p(n—1)» €-(n—1))> as shown in Fig. 1. &
denotes the unit vector.

We know that in scattering of light by an isotropic
microsphere, if the incident light is polarized parallel
to a scattering plane, then the scattered light is also
polarized parallel to the scattering plane. Further-
more, if the incident light is polarized perpendicular
to the scattering plane, then the scattered light is also
polarized perpendicular to the scattering plane.!!
The nth single scattering event is thus denoted

Epn B Epn”
(Esn) - S(en)<Esn//>
. n Epn”
= eXp(jT/2)<82(e ) Sl(en)>(Esn”) ) (2)

where (E,,”, Esn”)T denotes the light field before scat-
tering in the same coordinate system (é;,,, é,,, é,,) as
that of the nth scattered light field E,,, shown in Fig.
1. Scattering matrix S(6,) components s;(0,) and
s5(0,,) are calculated with Mie theory.
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Moreover, a project matrix R(g,,) is needed to trans-
form the light field from the coordinate system

(és(nfl)’ ép(nfl)a ér(nfl)) tO (ésru épn; érn):

E,"\ E,'\ [cose, —sing,\(E,,’
(EJ)‘R(@”)<Esn'>‘<sincpn cos ¢>(E ’
3)

where ¢, is the azimuthal angle of the nth scattering
event.

Now we can perform matrix vector multiplication
and obtain the relation between the Jones vectors of
two adjacent scattering events as follows:

Epn _ Ep(n—l)
(Esn> - S(en)R((Pn)T(rnl)(Es(nl) . (4)
The whole migration process of a single wavelet can
thus be expressed as

E, =T(,)S8,)R(¢,). . . T(1)S(61) R(¢)T(ro)E,.
(5)

The length [,(n = 1...m) is sampled randomly from
the exponential distribution p(l) = 1/1; exp(—1/1;),
where I = 1/(p, + p,) denotes the mean free path
(mfp) length and p, and p, are the scattering coeffi-
cient and the absorption coefficient, respectively.
The scattering angle 0,, and the azimuthal angle ¢,
n = 1...m, are sampled randomly from the phase
function p(0, ¢), which will be discussed in detail in
Subsection 2.B.

In Monte Carlo simulation a large number of inde-
pendent wavelets are launched. The light field is
the superposition of all possible contributions from
Eq. (5), which yields

N
Emean = E Ei,m
i=1

=2 [M I1 [T(zi,n>S<ei,n)R<<pi,n>]T(lo>Ei,0} :
(6)

where i denotes the sum over all detected wavelets
and n denotes multiplication over all scattering
events of a single wavelet. The translation of the
light field from the local coordinate system to the
global one is considered via matrix M, which satisfies
following equation:

A A

(esma epm’ érm = (ém éy’ éZ)M7
where (é,, é

» €,) denotes unit vectors of the global
Cartesian coordinate system and (&,,, é,,,, é,,,) de-
notes the local coordinate system of the wavelet’s
final scattering event.

Considering 11, T'(/,,) can be translated to exp(jk
2 ol,), in a practical simulation the variation of the
Jones vectors brought by line propagation is calcu-
lated separately by addition, instead of multiplica-
tion, to improve the calculation efficiency. Other
details, such as position and direction transforms, are
the same as those of the conventional Monte Carlo
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Fig. 2. Contours of g values for microspheres with different radii

and different refractive indices. The refractive index of the me-

dium is 1.33; wavelength, 0.6328 pm. The g value is 0.9 in point

A (1.3603, 0.3577) and in point B (1.6303, 7.2737).

technique, which is illustrated in detail in Refs. 13
and 14.

B. Mie Theory and Numerical Mie Phase Function

To control the optical properties conveniently, a tur-
bid suspension (phantom) consisting of aqueous poly-
styrene microspheres, instead of a biological sample,
is usually used in tissue optics research. Mie theory
provides an exact solution of a plane wave scattered
by an isotropic microsphere.l* Therefore the optical
properties, such as the scattering coefficient ., the
absorption coefficient p.,, and the anisotropic factor g,
of the phantom can be directly calculated with Mie
theory instead of being experimentally measured.
In the CMC model, scattering matrix components
$1(8,) and s4(6,,) in Eq. (2) are also calculated with
Mie theory.

Furthermore, in our CMC model, the phase func-
tion p(6, ¢) is also obtained with Mie theory. As we
know, the Henyey—Greenstein (H-G) phase function
was widely adopted in previous Monte Carlo simula-
tions13:14 to sample the scattering angle 6, and the
uniform distribution from 0 to 2w was adopted to
sample the azimuthal angle ¢. The H-G phase
function, determined only by the anisotropic factor g,
was considered as a good approximation of Mie the-
ory results.14

However, here we illustrate why the H-G phase
function is not good enough. First, its single-
parameter anisotropic factor g is not sufficient to re-
flect the angular distribution of scattered light, which
is determined by the microsphere size relative to the
wavelength and the refractive index of the micro-
sphere relative to that of the solution. In biological
tissue scatter size ranges from 0.2 pum (peroxisome) to
10 pm (nucleus), and refractive indices range from
1.38 to 1.7.15 Using these ranges, we present the
g-value contours in Fig. 2. The solution is calculated

10

'« ——— Mie phase function of point B

10% Mie phase function of point A
: \ H-G phase function

Phase function

10'6 L L L
0 0.79 1.57 2.36 3.14

Scattering angle ()

Fig. 3. Mie and H-G phase functions with the same g value of 0.9
for points A and B, which correspond to those in Fig. 2.

with a refractive index of 1.33 and a wavelength of
0.6328 pm. From this figure we conclude that the
phase function could be described exactly only with
two parameters. We take two points A (1.3603,
0.3577) and B (1.6303, 7.2737) from this figure, in
which both g values equal 0.9, and plot their phase
functions in Fig. 3, along with the corresponding H-G
phase function (g = 0.9). From Fig. 3 itis clear that,
for large microspheres (point B, radius 7.2737 pwm),
the H-G phase function underestimates the intensity
of light scattered at small angles in the forward and
backward directions. However, for small micro-
spheres (point A, radius 0.3577 pm), the H-G phase
function overestimates the intensity of light scattered
at small and intermediate angles in the forward di-
rection.

Second, if polarized incident light is considered, the
supposedly uniform distribution used to sample the
azimuthal angle ¢ is also not cogent enough. We
calculated the two-dimensional intensity distribution
of light scattered over a 4w solid angle () when a
linearly polarized plane wave is incident. As we
know, the angle between the polarization plane of
incident light and the scattering plane is the azi-
muthal angle ¢. The result is shown in Fig. 4, in
which it is clear that that distribution over ¢ is not
uniform. In addition, the distribution of the inten-
sity over o is different for different scattering angles
0.

Given the above discussion, our CMC model uses a
two-dimensional phase function p(8, ¢), which is
equivalent to that used in Ref. 4:

p(0, @) = I(0, @) = cos® ¢[|s2(0) E,|* + [s1(0) E,|*]
+ sin® ¢[[s5(0) E,|* + [s1(6) E,|*]
— sin 2¢[|s5(6)[*
— [51(0)]*]Re(E,E *), (7)
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Fig. 4. Contours of the calculated two-dimensional phase func-

tion p(6, ¢) with a microsphere refractive index of 1.55, medium

refractive index of 1.33, microsphere radius of 0.2 pm, and wave-

length of 0.6328 pm.

where p(0, ¢) is normalized by [,.. p(6, ¢)dQ) = 1 and
I.(0, ¢) denotes the intensity of scattered light.

In this paper superscript * denotes the conjugate.
From Eq. (7) we know that, in the case of polarized
light, the incidence phase function depends not only
on the properties of the turbid medium, such as mi-
crosphere size, microsphere refractive index, and so-
lution refractive index, but also on light properties
such as wavelength and polarization status.

In practical coding 6 and ¢ are sampled with a
method of conditional possibility, p(0, ¢) =
{)(P‘a(cp)pe(ﬂ). 0 is sampled according to p,(6) as fol-

ows:

Do(0) =J p(6, ¢)de

= [[s1(0)]* + [s2(O*1( E, > + |E*)
= [s1(0)[* + |s2(0)[*11;, (8)

where I; denotes incident light intensity. Equation
(8) shows that p,(0) is independent of the polarization
status of incident light, which means that p,(6) could
be precalculated numerically before the wavelet ran-
dom walk to save computational resources. The
scattering matrix components s; and s, are deter-
mined based on the sampled value of the scattering
angle 0,. Subsequently, with the known light field
components E, and E; the azimuthal angle ¢ is nu-
merically sampled according to p (¢):

P, (@) = A cos® ¢ + B sin® ¢ + C sin 2¢, (9)

where
A = |’S‘2(en)EJp|2 + |sl(en)Es|27
B = s5(0,)E,* + [51(6,) E,|%,
C =[[s1(0,)]* = [s2(6,)|*IRe(E,E*).
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In conclusion, in the same Monte Carlo process, the
distribution of the scattering angle 6 [Eq. (8)] is cal-
culated only once and is used repetitiously to sample
0 in every scattering event, whereas the distribution
over azimuthal angle ¢ [Eq. (9)] should be calculated
for every scattering event and thereafter used to sam-

ple ¢.

C. Model of Optical Coherence Tomography Imaging
through Turbid Media

An OCT system is an extension of a Michelson inter-
ferometer, which incorporates a low-coherence light
source instead of a high-coherence laser source.!
The light reflected from the sample arm interferes
with the light from the reference arm only if the
difference between their optical path lengths is
within the coherence length of the light source. The
detected heterodyne signal could be expressed as16

oot Re{ EY* S ESONLO1f,  (10)

where EF denotes the light reflected from the refer-
ence arm and E,° denotes the light reflected from the
sample arm along a different path n. T'[L,(¢)] is the
low-coherence function, and L, (¢) is the overall path-
length difference of the nth wavelet with the refer-
ence arm.

Moreover, the low-coherence function is simulated
with the following principles:

'L, =1,
= 0’

if|L,| < L./2

else, (11)

where L, is the coherence length. If a wavelet sat-
isfies I'(L,,) = 1, it is detected and recorded as a
signal. Otherwise, it is discarded. Equation (11)
implies that the coherence function in the simulation
is a non-Gaussian square function in reality. Also,
in our CMC model the reference light field E* is set to
1 to simplify the simulation.

To simulate OCT imaging through turbid media, a
full-reflect mirror with a sharp edge is embedded in a
turbid phantom. By varying the length of the refer-
ence arm, axial scanning is implemented, and the
axial image is obtained. In the CMC model the in-
terfered signal is demodulated by use of the Hilbert
transform!? and a low-pass filter. The low-pass fil-
ter is designed as a ninth-order Butterworth low-pass
filter with a stop band equal to the sampling spatial
frequency 1/0.09 pm X 0.015.

3. Results and Discussion

A. Validation

A computational case for studying the polarization
status of diffusely scattered light is used to validate
the CMC program. The simulated experiment is the
same as that in Ref. 18. One element of the Mueller
matrix mq, for suspensions of 0.204-p.m-diameter mi-
crospheres is calculated. To achieve the same con-
ditions used in the standard Monte Carlo method, the
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Fig. 5. Comparison of our CMC program with that reported in

Ref. 18. Plot A is the m, value from Ref. 18, and plot B is that

from our CMC program.

interference between different wavelets is not consid-
ered, which means that the components of the Stokes
vectors (I, @, U, V)T are calculated by use of the
statistical expression of I = 3, |E, |>, not I = |3, E, |*.
The element m, is simulated by calculating the total
reflected intensity for linearly x-polarized incident
light and subtracting from this the total reflected
intensity for linearly y-polarized incident light.1?
The values of the m;, element on a ring with a 1-cm
radius centered on a light-incident point are shown in
Fig. 5 and serve to validate the CMC program to some
extent.

B. Effects of Phase Function

A simulation case of the transmitted intensity of a
linearly polarized light perpendicularly incident on
the surface is made in support of our discussion of
phase function presented in Subsection 2.B. The
distributions of the transmitted intensity over the
radial distance are given in Fig. 6, from which it is
apparent that, at small angles in the forward direc-
tion, the H-G phase function underestimates the in-
tensity for phantoms with large microspheres (point
B) and overestimates that for phantoms with small
microspheres (point A).

In Fig. 7 the spatial distributions of the degrees of
polarization (DOP) are given. DOP is defined as

DOP = (Q*+ U?* + V3V?/I. (12)

The parameters used in the simulations are the same
as those shown in Fig. 6. The x-polarized light is
incident. First, comparing Figs. 7(a) with 7(b) and
Figs. 7(c) with 7(d), we find that the H-G phase func-
tion lacks the ability to reflect the spatial distribu-
tions of the DOP exactly. The notable difference
between the DOPs in the x direction (horizontal) and
the y direction (vertical) is not apparent from the
results for the H-G phase function. Second, we no-
tice that, if we adapt the numerical Mie phase func-
tion, such as in Figs. 7(a) and 7(c), the effect of

€ -~4-- point A, Mie
—— point B, Mie
-+ point A, H-G
—o— point B, H-G

Transmission intensity (AU)

0L L I ! L L
0 20 40 60 80 100 120

Radial distance (um)

Fig. 6. Intensities of transmitted light for different phase func-
tions. Points A and B have the same g value of 0.9 and correspond
to those in Fig. 2. Number densities of microspheres in the solu-
tion are selected to equal the mfp value of 100 pum. The turbid
phantom has a thickness of 300 pm.

microsphere size on polarization is obvious; however,

this effect is not apparent from a similar comparison
of Figs. 7(b) with 7(d).

C. Optical Coherence Tomography Axial Image

To study the effect of OCT probing depth on signal
attenuation, a sharp-edged mirror is embedded in an
aqueous suspension of polystyrene microspheres at
different depths under the surface. The preparation
is of indefinite size in transversal dimensions. The
incident infinitely narrow light is x polarized and is
incident perpendicular to the surface of the sample.

© (d)

Fig. 7. Patterns of the DOP for different phase functions: (a)
point A with Mie phase function, (b) point A with H-G phase
function, (c) point B with Mie phase function, (d) point B with H-G
phase function. Pattern size is 1 mm X 1 mm.
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Fig. 8. Simulated one-dimensional axial image with the following
parameters: microsphere of size 1.2 pm and refractive index of
1.565 in an aqueous suspension (refractive index 1.329) with a
number density of 0.006 per cubic micrometer. The sharp-edged
mirror is embedded at a depth of 1-6 mfp’s under the surface (1
mfp = 103.15 pm). The wavelength is 0.8 pm. Plot A is the
simulated OCT signal, and plot B is the exponential fit curve of
data at 1-3 mfp’s. The coherence length of the light source is 7.5
pm in free space. The detector has a radius of 100 pm.

The embedded sharp edge also lies in the x direction.
With 10® wavelets simulated for each Monte Carlo,
the OCT axial images of this kind of phantom are
obtained. For every depth category, five images are
obtained and are averaged to suppress speckles.20
All of the simulation results are shown in Fig. 8, in
which each peak represents an image of the sharp-
edged mirror at a given depth. From Fig. 8, three
observations may be made. First, we observe that
the signal intensity decreases with increasing depth.
The signal attenuation rate approximates the expo-
nential reduction function (plot B, solid line) at shal-
low depths. As the depth increases further, the
signal attenuation rate slows down. We infer that
this phenomenon arises because least scattering is
dominant at shallow depths, whereas multiscattering
is dominant at great depths. This so-called shower
curtain effect (see Ref. 9) is important for calculating
the OCT signal at deep depths. Apparently, if we
omit this effect, as did the analysis in Ref. 6, the OCT
signal at great depths is underestimated by several
orders of magnitude. Second, we find that the axial
positions of the image deviate from the setting posi-
tions of object (sharp-edged mirror). Moreover, the
extent of the deviation increases with increasing
depth. We infer that this effect is also caused by
multiscattering in turbid media. This effect should
be considered in spatial measurements of turbid sam-
ples by the adaptation of the OCT technique or by the
restoration of the OCT image. Gan et al.2! reported
a similar phenomenon in their study of single- and
two-photon microscopy. However, to our knowl-
edge, the present study is the first one to consider the
axial deviate effect of the OCT image. Finally, it is
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Axial distance relative to corresponding image depth (um)

Fig. 9. Axial images of a sharp-edged mirror embedded at differ-
ent depths. The parameters are the same as those in Fig. 8.
Plots A, B, and C denote the images at depths of 1, 3, and 5 mfp’s,
respectively. Plot D is the image without a low-pass filter. Plot
C is the envelope of the raw image demodulated after the Hilbert
transform.

observed that the peak width, which reflects the axial
resolution, roughly increases as the depth increases,
implying that the axial resolution is reduced as the
probing depth increases.

D. Optical Coherence Tomography Speckles

To clearly illustrate the effect of multiscattering on
the image, we present in Fig. 9 images in which the
object is embedded at different depths, all of which
are normalized to the maximal value. The trans-
verse axis is the axial distance relative to a given
sharp-edged mirror depth. Comparing plots A, B,
and C in Fig. 9, we observe more clearly the two
effects also seen in Fig. 8. First, the peak is broad-
ened by multiscattering with increasing depth. Sec-
ond, the deviation effect is illustrated more clearly.
Moreover, in Fig. 9, particularly in plot C, we observe
many small peaks, some of which are marked by
inverse triangles. These peaks are several microme-
ters (=>\) in size and represent speckles encountered
in OCT imaging of turbid media.2° If we consider a
raw image without Butterworth filtering (plot D), the
speckles are clearer and more numerous and include
many high-frequency spikes of size ~\. Considering
their different frequencies, these speckles are classi-
fied into two categories: interferogram speckle of
size >>\ and phase fluctuation speckle of size ~N\.
The interferogram speckle is comparable in size with
the minimal resolvable structure and thus compli-
cates the interpretation of the OCT image. In our
simulation we found that the number and relative
magnitude of interferogram speckles increase as the
probing depth increases. On the other hand, the
level of phase fluctuation speckles remains fairly con-
stant across different probing depths, a trend that is
not shown in this figure. We know that speckles are
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Fig. 10. Axial resolution as a function of the depth at which a
sharp-edged mirror is embedded. Results with coherence lengths
of 30 pm (plot A), 15 pm (plot B), and 7.5 pm (plot C) are presented.

caused by interference between beams of light with
different phases. Light transported in turbid media
has a phase variation that is composed of two parts:
line propagation and scattering. We deduce that the
phase variation from line propagation contributes
mainly to interferogram speckles, whereas that from
scattering contributes mainly to phase fluctuation
speckles. Given the different characteristics and
different sources of these speckle types, we know that
digital filters, such as the wavelet filter,22 are very
effective at suppressing high-frequency phase fluctu-
ation speckles, but have a limited capability in
removing interferogram speckles. Besides, the
method of averaging uncorrelated speckle patterns
(i.e., images are taken at different angles of incidence
and are then averaged; see Ref. 23) performs well in
suppressing interferogram speckles.

E. Optical Coherence Tomography Resolutions

In Fig. 10 the dependence of axial resolution on im-
aging depth is illustrated. Axial resolution is de-
noted by the axial resolvable distance, which is
defined as the width of the image of a sharp-edged
mirror at a magnitude relative to the maximum value
equal toe !. A larger resolvable distance denotes a
lower resolution. From Fig. 10 we first observe that
axial resolution decreases as probing depth increases.
Moreover, the deeper the depth the faster this change
occurs. Second, comparisons of plots A, B, and C
show that longer coherence lengths yield lower axial
resolutions. Usually, the OCT axial resolution is
considered to be the coherence length of the light
source. However, given the above simulation result,
it is shown that, when OCT is used to image turbid
media such as a biological sample, the coherence
length as the resolution limit cannot always be
reached. Multiscattering of a turbid sample blurs
the image and thus reduces the resolution to a large
extent.
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Fig. 11. Transverse resolution as a function of the depth at which
a sharp-edged mirror is embedded. Results with coherence
lengths of 30 pm (plot A), 15 pm (plot B), and 7.5 pm (plot C) are
presented.

Transverse resolution is denoted by the transverse
resolvable distance, which is defined as the width of
sharp-edged mirror image at 10% and 90% intensity
that has been normalized to the maximum value.24
To facilitate the simulation of transverse scanning,
we introduced the effective point-spread function in
our Monte Carlo simulation. Similar to that re-
ported in Ref. 24, the effective point-spread function
used here for OCT is defined by the distribution of
photons that can propagate through a turbid medium
and reach a detector in the imaging region. Accord-
ing to this technique, only the interference between
light from the reference arm and the sampling arm is
considered, and the interference among the different
sampling paths is omitted. The transverse resolu-
tion of OCT is generally known to be dependent on
the waist radius of the focused Gaussian incident
beam. However, the light source in our simulation
is of infinite size, which means that no focusing effect
is considered. Under this condition, the dependence
of the transverse resolution of OCT on imaging depth
for different coherence lengths is given in Fig. 11,
from which it is shown that greater probing depths
yield lower transverse resolutions. Additionally,
longer coherence lengths yield lower transverse res-
olutions. Comparing the results from Figs. 10 and
11, we find that, with increasing depth, the axial
resolution drops faster than the transverse resolution
does. This implies that the loss of axial resolution
might be the factor limiting the OCT’s penetration
depth.

F. Coherence Gating

In Fig. 12 the dependence of the axial resolution on
the coherence length for different probing depths is
given. From Fig. 12 it is shown that a longer coher-
ence length yields a lower axial resolution when prob-
ing depth is given. This implies that adapting the
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Fig. 12. Axial resolution as a function of coherence length for
different image depths. Light with wavelength of 0.6328 pm in-
cidents on the turbid medium, which is composed of microspheres
with a radius of 1.0 wm, a refractive index of 1.573, and a number
density of 0.006 per cubic micrometers suspended in water, which
has a refractive index of 1.332. Results for image depths of 5 mfp
(plot A; 1 mfp = 155 um) and 3 mfp (plot B) are given.

light source with a low coherence length can improve
axial sectioning ability. The effect of coherence
length on signal intensity is shown in Fig. 13, in
which we observe that a lower coherence length
yields a lower signal intensity. From these two ob-
servations, we conclude that the coherence length of
a light source plays a gating role in OCT imaging.
The selection of the coherence length is a trade-off
between the resolution and the intensity. However,
from Fig. 13 we know that, at large sizes (e.g., larger
than 30 wm in plot A), the coherence length affects
signal intensity only mildly. This phenomenon im-
plies that relatively high resolution could be obtained
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Fig. 13. Signal intensity as a function of coherence length for
different image depths. The parameters are the same as those
used in Fig. 12.
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while preserving sufficient signal intensity. In ad-
dition, by comparing results from cases with different
probing depths we find that the effect of coherence
gating increases with increasing probing depth.

4. Conclusions

In this paper we report a novel Monte Carlo model
(CMC) that incorporates Mie theory to calculate the
effect of small-particle scattering on a light field.
Compared with the standard Monte Carlo method
(see Ref. 14), which adapts only intensity to denote
photons and thus does not include wave properties,
CMC, which adapts Jones vectors to denote light and
thus considers magnitude and phase information,
brings the capability of simulating the interference
between multiscattered light. This improvement
has great potential for studying other kinds of coher-
ence imaging techniques in biomedical optics. In
addition, incorporated in the CMC model is a two-
dimensional numerical phase function, which is ob-
tained from Mie theory. A comparison of the
numerical phase function with the conventional H-G
phase function shows the superior performance of the
former.

The CMC model is applied to simulate OCT imag-
ing of an object under the surface of a turbid sample.
In this context, speckles, resolution, and coherence
gating are discussed. The simulation results ascribe
speckles to two sources: line propagation and scat-
tering. The simulations also reveal that, when used
to image an object under the surface of a turbid sam-
ple, OCT’s axial and transversal resolutions cannot
reach their corresponding theoretical limits: coher-
ence length and diffractive limit, respectively. Res-
olution decreases as probing depth increases.
However, adapting the light source with a lower co-
herence can improve the resolution. Furthermore,
the selection of a light source with an appropriate
coherence length involves a trade-off between inten-
sity and resolution.

This work was completed mainly when Q. Lu vis-
ited the Swinburne University of Technology and was
supported by the Swinburne’s Chancellery Strategic
Initiatives Program.
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