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Lyapunov-Theory-Based Radial Basis Function Networks
for Adaptive Filtering

Kah Phooi Seng, Zhihong Man, and Hong Ren Wu

Abstract—Two important convergence properties ofLyapunov-theory-
based adaptive filtering(LAF) adaptive filters are first explored. The LAF
finite impulse responseand infinite impulse responseadaptive filters are
then realized using theradial basis function(RBF) neural networks(NNs).
The proposed adaptive RBF neural filtering system possesses the distinctive
properties of RBF NN and the LAF filtering system. Unlike many adaptive
filtering schemes using gradient search techniques, a Lyapunov function of
the error between the desired signal and the RBF NN output is first de-
fined. By properly choosing the weights update law in the Lyapunov sense,
the RBF filter output can asymptotically converge to the desired signal. The
design is independent of the stochastic properties of the input disturbances
and the stability is guaranteed by the Lyapunov stability theory. Simula-
tion examples for nonlinear adaptive prediction of nonstationary signal and
system identification are performed.

Index Terms—Adaptive filtering, Lyapunov stability theory, radial basis
function neural network.

I. INTRODUCTION

Adaptive filtering has achieved widespread applications [1]. How-
ever, linear filtering is the most widely used and poor performance is
usually observed for real world applications. Therefore the develop-
ment of nonlinear filters is necessary. Among various adaptive non-
linear filters, neural networks are becoming increasingly popular. One
type of nonlinear filters is multiplayer perceptron (MLP), but they are
highly nonlinear in parameters. The parameter estimate may be trapped
at a local minimum of the chosen optimization criterion when a gradient
descent algorithm such as backpropagation (BP) is used. Other opti-
mization techniques [2]–[4] are capable of achieving a global minimum
but they require intensive computation. An alternative to highly non-
linear MLP is theradial basis function(RBF)neural networks(NNs).
Their universal approximation property [5] and straightforward com-
putation using a linearly weighted combination of single hidden-layer
neurons have made RBF NN natural choices in many applications.

Due to the linear-weighted combiner, the weights can be determined
usingleast mean square(LMS) andrecursive least square(RLS) algo-
rithms. However, these algorithms suffer from several drawbacks and
limitations. The LMS is highly dependent on the autocorrelation func-
tion associated with the input signals and slow convergence. RLS, on
the other hand, provides faster convergence but they rely on the im-
plicit or explicit computation of the inverse of the input signal’s auto-
correlation matrix. This not only implies a higher computational cost,
but it can lead to instability problems [6]. Methods of avoiding insta-
bility have been developed in [6]–[10], but the stability problem of
adaptive filters with bounded input disturbances has not been solved.
In addition, most of adaptive filtering schemes suffer so-called local
minima problem, i.e., the optimization search may stop at a local min-
imum of the cost function in the parameter space if the initial values
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Fig. 1. Adaptive filtering problem.

are arbitrarily chosen. For example, the cost function of a gradient
search-based adaptive filtering system has a fixed structure in the pa-
rameter space after the expression of the cost function is chosen. The
parameter update law is only a mean to search for the global minimum
and independent of the cost function in the parameter space. Further-
more, if the disturbances encountered by the filter are random signals,
the mathematics of stochastic processes need to be used for the opti-
mization and parameter design.

To overcome the aforementioned problems, authors [11] proposed
Lyapunov-theory-based adaptive filtering(LAF). In [11], a Lyapunov
function of the error between the desired signal and the filter output is
first defined, the filter weights are then adaptively adjusted based on
Lyapunov stability theory(LST) so that the error can asymptotically
converges to zero. The selected Lyapunov function for an LAF filter has
a unique global minimum in the state–space. By properly choosing the
parameter update law in Lyapunov sense, the filter output can asymp-
totically converge to the desired signal. Although the input signal of
the adaptive filter is disturbed by the bounded random noises, only the
input and output measurements are used for the filter design. Therefore,
the design of the LAF filter is independent of the stochastic properties
of the random input disturbances. Moreover, stability is guaranteed be-
cause the error dynamics asymptotically converge to zero. It can be
seen that LST provides an optimization method in the state–space for
the filter design. In this brief, two realizations of the LAFfinite-im-
pulse response(FIR) andinfinite-impulse response(IIR) adaptive fil-
ters using the feedforward and recurrent RBF NNs are proposed. Be-
fore that, the error convergence rate of the LAF and the convergence
region of the error for the modified LAF to avoid the singularities are
explored. The proposed adaptive neural filtering system inherits the
good properties of RBF NN and LAF filtering system.

II. PROBLEM FORMULATION

The typical structure of an adaptive filtering system is illustrated in
Fig. 1, wherex(k) is the input signal, which is corrupted due to the
nonlinearity of the communication channel and noises. They(k) is the
filter output andd(k) is thedesired response. The difference between
the desired response and the filter output is the errore(k) in (2.1). The
adaptive algorithm is generally designed to adaptively update the filter
parameters so that a cost function of the error is minimized in the pa-
rameter space

e(k) = d(k)� y(k): (2.1)

The basic principle of the LAF algorithm can be briefly introduced
as follows. Consider the following FIR system:

y(k) = H
T (k)X(k) (2.2)
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where

H(k) = [hk(0); hk(1); . . . ; hk(N � 1)]T (2.3)

X(k) = [x(k); x(k � 1); . . . ; x(k �N + 1)]T : (2.4)

The design of the LAF for FIR filter can be summarized in the fol-
lowing theorem.

Theorem 2.1 [11]: For the given desired responsed(k), if the
weight vectorH(k) of the filter y(k) = HT (k)X(k) is updated as
follows:

H(k) =H(k� 1) + g(k)�(k) (2.5)

and

g(k) =
X(k)

kX(k)k2
1� �

je(k� 1)j

j�(k)j
(2.6)

whereg(k) is the adaptation gain,�(k) is thea priori estimation error
defined as

�(k) = d(k)�H
T (k � 1)X(k) (2.7)

and

0 �� < 1 (2.8)

then, the errore(k) asymptotically converges to zero.
Proof [11]: To prevent the singularities of the gaing(k) in (2.6)

whenkX(k)k and�(k) approach zero, (2.6) is modified as (2.9)

g(k) =
X(k)

�1 + kX(k)k2
1� �

je(k � 1)j

�2 + j�(k)j
: (2.9)

The results in [11] provided only a basic idea of the Lyapunov fil-
tering. Many problems, such as the analysis of convergence rate in The-
orem 2.1 and the convergence region of the adaptive filter using the
modified gain in (2.9) have not been investigated. In the following the-
orems, some important properties of the Lyapunov filtering systems are
explored.

Theorem 2.2:Consider the FIR filtering system in (2.2). If the Lya-
punov update law in (2.5)–(2.7) is used to update the filter parameters,
the errore(k) between the desired signald(k) and the filter outputy(k)
converges to zero exponentially.

Proof: Appendix A: Expression (3.2) shows that the errore(k)
converges to zero exponentially and the convergence rate is controlled
by the positive constant�. The smaller� is, the faster the error con-
verges.

The convergence region of the adaptive filter using the modified gain
in (2.9) is given by the following theorem.

Theorem 2.3:Consider the FIR system in (2.2). If the filter parame-
ters are updated according to the modified adaptive laws (2.10)–(2.12),

H(k) =H(k � 1) + g(k)�(k) (2.10)

g(k) =
X(k)

�1 + kX(k)k2
1� �

je(k � 1)j

�2 + j�(k)j
(2.11)

�(k) = d(k)�H
T (k � 1)X(k) (2.12)

then, the errore(k) will converge to the ball centered at the origin of
the error space with the radius

re1 =
� 3�� �

2
+ 3�� �

2

2

+ 4 1� � �

4

9

4
�2
2

�2 1� � �

4

(2.13)

where� is a constant discussed in Appendix B.

Proof: Appendix B.
Remark 2.1: Similarly, for an IIR filtering system, the design prin-

ciple of the Lyapunov filtering can also be implemented ify(k),H(k)

andX(k) are specified by (2.14)–(2.16).

y(k) = B
T (k) ~X(k) +A

T (k)~Y (k � 1) = H
T (k)X(k) (2.14)

where

A(k) = [a1(k); a2(k); . . . ; aN�1(k)]
T

B(k) = [b0(k); b1(k); . . . ; bN�1(k)]
T

~X(k) = [x(k); x(k � 1); . . . ; x(k �N + 1)]T

~Y (k) = [y(k � 1); y(k � 2); . . . ; y(k �N + 1)]T

H(k) = [b0(k); b1(k); . . . ; bN�1(k);

a1(k); a2(k); . . . ; aN�1(k)]
T (2.15)

X(k) = [x(k); x(k � 1); . . . ; x(k �N + 1);

y(k � 1); y(k � 2); . . . ; y(k �N + 1)]T : (2.16)

It is easy to prove that, for IIR filtering system in (2.14), the error can
also exponentially converge to zero if the adaptive law in (2.5)–(2.7) is
used with specifiedy(k), H(k), andX(k) in (2.14)–(2.16), respec-
tively.

Remark 2.2: It is known that the gradient search-based optimiza-
tion is indeed affected by the stochastic properties of the signals. From
the introduction and the analysis of the error convergence properties
of LAF, if the input disturbances are bounded random processes, the
adaptive filtering algorithm can be directly designed using the input
and output measurements based on the LST without considering the
stochastic properties of the signals. This point is similar to the design of
Lyapunov-stability-based adaptive control systemsandvariable-struc-
ture control system[12].

Remark 2.3: The LST provides an optimization method in
state–space. It is different from the gradient search based methods.
According to LST, the selectedV (k) is a Lyapunov function if and
only is�V (k) is negative (�V (k) < 0). For the Lyapunov adaptive
filtering system, whether or not�V (k) is negative depends on the
selection of the parameter update law. Only when the parameter
update law is chosen in Lyapunov sense,V (k) = e2(k) is a Lyapunov
function of the designed adaptive filtering system, which has a unique
global minimum in this case. Therefore, the selection of the Lyapunov
function and the parameter update law are not independent. The cost
function and the Lyapunov function have many different characteris-
tics, but they are all energy-like functions. One is considered in the
state space, and another is considered in the parameter space. The
corresponding optimization methods can be used for the design of
adaptive filters with different requirements.Now

Remark 2.4: The LAF algorithm has the computational complexity,
which is proportional toN multiplies per weight vector update (/ N ,
N is filter order). It has less computational complexity compared with
that of RLS that is proportional toN2 due to the matrix multiplication.
In contrast, LMS has the simplest computational complexity that is
proportional toN .

III. REALIZATION OF ADAPTIVE LAF FILTERS USING

RBF NEURAL NETWORKS

We consider the realization of adaptive FIR and IIR filters using RBF
NNs. The advantages of this realization are that the RBF NNs that have
some linear properties and the network parameters can be easily ad-
justed using LAF algorithm. In addition, the parallel structure of RBF
NNs is suitable for the fast signal processing.
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Fig. 2. Nonlinear feedforward RBF FIR filter.

A. Feedforward RBF Lyapunov Adaptive FIR Filter

Fig. 2 shows the realization of the adaptive FIR filter using the feed-
forward RBF. The RBF FIR filter output can be expressed as

y(k) =

N

i=1

wi(k)�i(k) (3.1)

or

y(k) =W
T (k)�(k) (3.2)

where

W (k) = [w1(k); w2(k); . . . ; wN(k)]
T (3.3)

�(k) = [�1(k); �2(k); . . . ; �N(k)]T : (3.4)

�(k) is the Gaussian type of function defined as

�i(k) = exp �

kX(k)� cik

�2i
; i = 1; 2; 3; . . .N: (3.5)

X(k) = [x(k); x(k � 1); . . . ; x(k � N)]T , ci is the center vector
and�i is the width of Gaussian function. The width is controlled by
the noise variance�2n and is usually set at�i = 2�2n.

Using the results of Theorem 2.1 in Section II, we have the following
update law for the RBF filter:

W (k) =W (k � 1) + g(k)�(k) (3.6)

�(k) = d(k)�W
T (k � 1)�(k) (3.7)

g(k) =
�(k)

k�(k)k2
1� �

je(k� 1)j

j�(k)j
(3.8)

or

g(k) =
�(k)

k�(k)k2 + �1
1� �

je(k � 1)j

�2 + j�(k)j
: (3.9)

Remark 3.1: It is easy to see that the stability analysis of the error
dynamics, convergence analysis of the Lyapunov RBF FIR adaptive
filter are same as the ones given in [11, Th. 2.1, 2.2] if we replaceX(k)
by �(k).

Remark 3.2: The centers are either randomly selected from the data
or determined using thek-means clustering [13], [14] algorithm if the
number of hidden neurons needs to be relatively large to cover the entire
input domain.

B. Recurrent RBF Lyapunov Adaptive IIR Filter

The basic structure of the adaptive IIR filter using the recurrent RBF
NN is given in Fig. 3. The output is written as

y(k) =

N

i=1

wi(k)�i(k)+

M

j=1

wN+j(k)�N+j(k) (3.10)

Fig. 3. Nonlinear recurrent RBF IIR filter.

or

y(k) = �
T (k)�(k) (3.11)

where

�(k) = [w1(k); w2(k); . . . ; wN(k);

wN+1(k); . . . ; wN+j(k)]
T (3.12)

�(k) = [�1(k); �2(k); . . . ; �N(k);

�N+1(k); . . . ; �N+j(k)]
T (3.13)

X(k) = [x(k); x(k � 1); . . . ; x(k �N);

y(k � 1); . . . ; y(k �N)]T (3.14)

and�(k) is defined in (3.5).
Using the results in Sections II and III-A, the network parameters

can be updated as follows:

�(k) = �(k � 1) + g(k)�(k) (3.15)

�(k) = d(k)� �
T (k � 1)�(k) (3.16)

g(k) =
�(k)

k�(k)k2
1� �

je(k � 1)j

j�(k)j
(3.17)

and the modifiedg(k) is given by

g(k) =
�(k)

k�(k)k2 + �1
1� �

je(k � 1)j

�2 + j�(k)j
: (3.18)

IV. SIMULATION EXAMPLES

Nonstationary Time Series Prediction

Simulations have been done for a one-step ahead prediction of a non-
linear and nonstationary speech signal which is identical to that used by
S. Haykin [15]–[17]. The signal is downloaded from the Internet [18]
and is described as follows: S1 speech sample “When recording audio
data … ,” length 10 000, sampled at 8 kHz. The NN is expected to be
able to track the nonstationary signal characteristic. An input order of
p = 50, which is used in [16], andc = 50 centers are used for this
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Fig. 4. RBF FIR predictor—the speech signal and predictor output.

Fig. 5. RBF FIR predictor—the square prediction error,e (k).

simulation. Fig. 4 shows the speech signal and the RBF FIR predictor
output. Fig. 5 illustrates the square predictor error. For comparison to
previous works [15]–[17], the performance measure we shall use is the
predicted signal-to-noise ratio(PSNR) defined by

PSNR(dB)
�
= 10 log10 ~�2s=~�

2
e (4.1)

where~�2s and~�2e are the actual and error signal powers estimated by
~�2s

�
= (1=N) N

i=1 y
2(i) and~�2e

�
= (1=N) N

i=1 e
2(i).

For 10 000 speech samples,~�2s is calculated to be 0.3854. The~�2e
is about 0.0019, yielding PSNR= 23:11 dB. The same speech signal
has been used as part of three previous studies, the dynamic regularized
RBF [16] based on theregularized least-squares fitting(RLSF), pine-
lined recurrent NNs (PRNN) [15], [17] which are another method of
modeling nonstationary dynamics. The authors in [17] have done the
simulations for PRNN and standard linear adaptive filters. While con-
siderably different in details of their architectures and training methods,
they do share the common principle of continuously adapting their net-
work parameters to yield minimum squared prediction error and track

Fig. 6. RBF IIR (system identification)—squared error,e (k) (y axis:
x10 ).

nonstationary signal characteristics. Comparing their results, our PSNR
is 8.7 dB better than the best PSNR of 14.71 dB listed in [16, Table IV]
and 8.82 dB better than that of 13.59 dB listed in [17, Table II] for a
hybrid extended RLS(ERLS)-trained PRNN followed by a 12th-order
RLS filter. However, the computational complexity of our method and
RBF NN with p = 50 inputs andc = 50 centers is less than that of
[16] with p = 50, c = 100.

Nonlinear System Identification

A nonlinear single-input single-output (SISO) system is considered
in this simulation example

y(k) = 0:0705x(k)� 0:141x(k� 1)� 0:0705x(k� 1)

+ 1:1993e�y (k�1)y(k�1)�0:5156e�y (k�2)y(k�2):

The input signal that is random noise with zero mean value and vari-
ance 1 is used to excite the nonlinear plant. The recurrent RBF NN has
five input and five hidden nodes and one output node with the feedback
connections back to two nodes in the input layer. Fig. 6 has revealed
the squared error,e2(k). The mean square error (MSE) of the proposed
RBF IIR filter is 3:5519�10�12. This extremely small MSE has indi-
cated the proposed scheme has high tracking ability and can adaptively
identify the nonlinear plant.

V. CONCLUSION

In this brief, a new scheme called Lyapunov-theory-based RBF NNs
has been proposed for adaptive filtering. The proposed scheme is based
on the adaptive filter theory that the feedforward and recurrent RBF
NNs are considered as the FIR and IIR filters, respectively. The weight
parameters are adaptively adjusted using the LAF algorithm so that the
dynamic error can converge to zero asymptotically. Two important con-
vergence properties of the LAF are discussed. The design is indepen-
dent of the stochastic properties of the input disturbances and the sta-
bility is guaranteed by the LST. The computational complexity of the
LAF is less than that of RLS. The simulation results have demonstrated
good convergence and tracking properties of the proposed RBF filters.
Further research, based on this brief, is to use different Lyapunov func-
tions and different adaptive laws to further improve the convergence
and robustness properties of the Lyapunov filter or RBF NN filters with
respect to the bounded random disturbances.
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APPENDIX A

Proof of Theorem 2.1:Using (2.1) and (2.5)–(2.7), the errore(k)
can be expressed as

e(k) = d(k)� y(k) = d(k)�H
T (k)X(k)

= d(k)� [HT (k � 1) + g
T (k)�(k)]X(k)

= d(k)�H
T (k � 1)X(k)� g

T (k)�(k)X(k)

=�(k)� g
T (k)�(k)X(k)

=�(k)�
XT (k)

kX(k)k2
1� �

je(k � 1)j

j�(k)j
�(k)X(k)

=�(k)� 1� �
je(k � 1)j

j�(k)j
�(k) = �

�(k)

j�(k)j
je(k � 1)j

=�je(k � 1)jsgn(�(k)) (A1)

je(k)j = �je(k � 1)j

je(1)j = �je(0)j

je(2)j = �je(1)j = �
2je(0)j

...

je(k)j = �
kje(0)j: (A2)

APPENDIX B

Proof of Theorem 2.2:Define a Lyapunov function

V (k) = e
2(k): (B1)

We then have�V (k) = V (k)� V (k � 1)

�V (k) =�
2(k)(1� g

T (k)X(k))2� e
2(k� 1)

=�
2(k) 1�

kX(k)k2

�1 + kX(k)k2
1� �

je(k � 1)j

�2 + j�(k)j

2

� e
2(k� 1)

=�
2(k) 1�

kX(k)k
�

1 + kX(k)k
�

1�
�

�2

je(k � 1)j

1 + j�(k)j
�

2

� e
2(k� 1) (B2)

where

kX(k)k2

�1
< 1 and

j�(k)j

�2
< 1: (B3)

The following equations are obtained using Taylor series:

kX(k)k
�

1 + kX(k)k
�

=
kX(k)k2

�1
+O

kX(k)k2

�1
(B4)

and
1

1 + j�(k)j
�

=1�
j�(k)j

�2
+O

j�(k)j

�2
(B5)

where

O
kX(k)k2

�1
=

kX(k)k2

�1 + kX(k)k2
�

kX(k)k2

�1

=
kX(k)k4

�1(�1 + kX(k)k2)

=
kX(k)k2

�1
�

kX(k)k2

�1 + kX(k)k2
� 1�

1

2
=

1

2

(B6)

and

O
j�(k)j

�2
=

�2

�2 + j�(k)j
� 1 +

j�(k)j

�2

=
j�(k)j2

�2(�2 + j�(k)j)

=
j�(k)j

�2
�

j�(k)j

(�2 + j�(k)j)
� 1�

1

2
=

1

2
:

(B7)

Then, the expression (B1) can be written as

�V (k) =�
2(k) 1�

kX(k)k2

�1
+O

kX(k)k2

�1

� 1�
�je(k � 1)j

�2
1�

j�(k)j

�2

+O
j�(k)j

�2

2

� e
2(k� 1)

=�
2(k) 1�

kX(k)k2

�1
+O

kX(k)k2

�1

� 1�
�je(k� 1)j

�2
+
�je(k� 1)k�(k)j

�22

�
�je(k � 1)j

�2
O

j�(k)j

�2

2

� e
2(k� 1)

=�
2(k) 1�

kX(k)k2

�1
+
�kX(k)k2je(k� 1)j

�1�2

�
�kX(k)k2je(k� 1)k�(k)j

�1�
2
2

+
�kX(k)k2je(k� 1)j

�1�2
O

j�(k)j

�2

�O
kX(k)k2

�1
+
�je(k � 1)j

�2

�O
kX(k)k2

�1
�
�je(k� 1)k�(k)j

�22

�O
kX(k)k2

�1
+
�je(k� 1)j

�2

�O
kX(k)k2

�1
O

j�(k)j

�2

2

� e
2(k� 1)

��
2(k) 1 +

�kX(k)k2je(k� 1)j

�1�2

+
�kX(k)k2je(k� 1)j

�1�2
O

j�(k)j

�2

�O
kX(k)k2

�1
+
�je(k � 1)j

�2

�O
kX(k)k2

�1
�
�je(k� 1)k�(k)j

�22

�O
kX(k)k2

�1
+
�je(k� 1)j

�2

�O
kX(k)k2

�1
O

j�(k)j

�2

2

� e
2(k� 1): (B8)
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It is noted that

�V (k) <�
2

2 1 +
�je(k � 1)j

�2
+

�je(k � 1)j

2�2
+
1

2

+
�je(k � 1)j

2�2
+

��1je(k � 1)j

2�2

+
�je(k � 1)j

4�2

2

� e
2(k� 1)

=�
2

2

3

2
+

�je(k � 1)j

2�2
2 + 1 + 1 + �1 +

1

2

2

� e
2(k� 1)

=�
2

2

3

2
+

�je(k � 1)j

2�2
4
1

2
+ �1

2

� e
2(k� 1)

(B9)

and let

� = 4 1

2
+ �1: (B10)

�V (k) <�
2

2

3

2
+

��

2�2
je(k � 1)j

2

� e
2(k� 1)

=�
2

2

9

4
+
3��

2�2
je(k � 1)j+

�
2
�
2

4�2
2

je2(k � 1)j

2

� e
2(k � 1)

=� 1�
�
2
�
2

4
e
2(k� 1) +

3��2�

2
je(k � 1)j

+ 9

4
�
2

2: (B11)

For further analysis, we consider the following parabolic function:

�V (k) = � 1�
�
2
�
2

4
e
2(k� 1) +

3��2�

2
je(k � 1)j+

9

4
�
2

2:

(B12)

If � is small enough in the sense that

�
2
�
2

4
< 1 or

��

2
< 1 (B13)

and

�
9

2
+ �1 < 2: (B14)

�V (k) in (B1) is a concave down parabolic function. Also, for the
given�1 and�2, the small positive number� satisfies the following
inequality:

0 � � < 2 9

2
+ �1 : (B15)

Solving the quadratic equation�V (k) = 0, we obtain the two roots
as follows:

re1; 2 =
� 3�� �

2
� 3�� �

2

2

+ 4 1� � �

4

9

4
�2
2

�2 1� � �

4

: (B16)

The rootre1 is considered becauseje(k � 1)j � 0

re1 =
� 3�� �

2
+ 3�� �

2

2

+ 4 1� � �

4

9

4
�2
2

�2 1� � �

4

: (B17)

Hence, the errorje(k � 1)j should satisfy the following equality:

je(k � 1)j > re1 (B18)

in order to make�V (k) < �V (k) < 0. Then, the error will converge
to the ball centered at the origin of the error space with radiusre1 in
(B16).
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