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Abstract
Early quality evaluation and support for decisions that

affect quality characteristics are among the key incentives
to formally specify the architecture of a software-intensive
system. The Architecture Analysis and Description Lan-
guage (AADL) with its Error Annex is a new and promis-
ing architecture modeling language that supports analysis
of safety and other dependability properties. This paper re-
views the key concepts that are introduced by the Error An-
nex, and compares it to the existing safety evaluation tech-
niques regarding its ability in providing modeling, process
and tool support. Based on this review and the comparison,
its strengths and weaknesses are identified and possible im-
provements for the model-driven safety evaluation method-
ology based on AADL’s Error Annex are highlighted.

1 Introduction

The development of safety critical systems demands as-
surance that the system does not pose harm for people
and the environment even if some system components fail
[32, 34]. The related assurance process, known as safety
analysis, consists of a risk and hazard analysis phase. The
aim of risk analysis is to identify potential hazards that
can occur during the system’s lifetime and to determine
their tolerable hazard probabilities (THP) or rates (THR)
[18, 32]. A combination of a formally specified hazard
condition together with its tolerable hazard probability/rate
is a precondition to formulate a safety requirement. More
specifically, a safety requirement is formulated as the nega-
tion of a hazard condition, combined with the hazard’s
THP/THR [32]. A comprehensive list of these safety re-
quirements is the final outcome of the risk analysis process.

The set of all safety requirements, which are identified
in the risk analysis process, become an input of the haz-
ard analysis process. The aim of this process is to evaluate
whether a system design meets its safety requirements. Tra-
ditionally, manual methods like Fault Tree Analysis (FTA)
[26, 46] and Failure Modes and Effects Analysis (FMEA)

[25] are used to create evidence that the system fulfils its
safety requirements. Besides these traditional methods,
model-driven safety analysis techniques1 have gained the
increasing attention of researchers and practitioners [16].
Such model-driven approaches (applied in the architecture
design phase) are used to automatically produce Fault Trees
and FMEA tables based on an architecture design specifi-
cation annotated with information about the failure behav-
ior of the architectural components. Example languages for
these annotations are: Failure Propagation and Transfor-
mation Notation (FPTN) [12, 13], Component Fault Trees
(CFTs) [31], State Event Fault Trees (SEFTs) [20, 30], Fault
Propagation and Transformation Calculus (FPTC) [48] and
the Tabular Failure Annotation of the HiP HOPS methodol-
ogy [39, 40, 41]. Some of these architecture-based model-
driven safety evaluation techniques have been applied in in-
dustrial case studies (e.g.[23, 38]). However, most of these
techniques are still only used in research contexts.

A recently proposed model-driven safety analysis tech-
nique is based on the Architecture Analysis and Description
Language (AADL) [10] and its Error Annex. Due to the
success of the AADL in developing embedded systems in
the avionic and automotive domains, safety evaluation us-
ing AADL’s Error Annex has attracted much interest and
attention, with the prospect of becoming a de facto standard
for model-driven safety evaluation at the architectural level.
As such, it is prudent and timely to have a close examina-
tion of its overall capabilities in supporting practitioners’
carrying out safety analysis.

This paper investigates the suitability of AADL’s Er-
ror Annex as the basis of a model-driven safety evaluation
methodology and compares it to the existing model-driven
safety evaluation techniques, with the aim to identify its
strengths and weaknesses and propose improvements. In
fact, the comparison also identifies the strengths, weak-

1According to Lisagor et al. [33], model-driven safety analysis tech-
niques can be distinguished into approaches that use failure logic modeling
[13, 14, 20, 31, 36, 40] and fault injection experiments [4, 18, 21, 24, 28,
43]. This paper describes only approaches that use failure logic modeling.
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nesses and possible improvements for the existing tech-
niques. From the standpoint of the users or practitioners,
the comparison considers the following three perspectives:
modeling support, process support and tool support.

The specific contributions of this paper are two fold: (a)
the paper presents and reviews the modeling concepts of
AADL’s Error Annex, thus giving a short introduction to
the modeling of error behavior in AADL and (b) the pa-
per compares the model-driven safety evaluation method-
ology based on AADL’s Error Annex with the current
model/driven safety evaluation methodologies.

The rest of the paper is organized as follows: Sections
2 and 3 introduce the running example of a fire alarm sys-
tem and provide some background on existing model-driven
architecture-based safety evaluation techniques. Section 4
introduces the modeling concepts of AADL’s Error An-
nex. In the main part of this paper, Section 5, the safety
evaluation methodologies based on AADL’s Error Annex
and existing safety evaluation models are compared. Their
strengths, weaknesses and possible improvements are iden-
tified. Finally, Section 6 concludes the paper.

2 Running Example - Fire Alarm System

To introduce the concepts of AADL’s Error Annex and
to compare it with the existing failure propagation models, a
fire alarm system is used as a running example. This system
contains one or more smoke sensors, a software-based con-
trol unit including its executing hardware platform, a set of
sprinkler actuator and a watchdog component that tests the
software-based control unit at regular intervals. For sim-
plicity reasons no bus systems or detailed hardware plat-
form components, such as computer memory, I/O devices
or hard disks, are modeled. The specific architecture of the
system is depicted in Figure 1.

All the ports in this architecture are directed event ports
where the initiating event comes from the environment
when a fire occurs (fire breaks out). Once such a fire
occurs a smoke sensor will detect the fire and the control
unit will activate a set of sprinkler devices. Furthermore the
watchdog component continually (e.g. every minute) initi-
ates requests to the control unit via the are you alive
port and awaits responses (i am alive) within a defined
time interval (e.g. a second). If the control unit does not
respond within this time interval the watchdog component
resets the hardware platform via the reset port.

3 A Brief Review of Architecture-Based
Safety Evaluation Methods

This section briefly introduces existing architecture-
based safety evaluation methods. Specifically, the methods
based on the modular failure propagation models [16] are
investigated, since these models form the conceptual foun-
dation for AADL’s Error Annex. They include: Failure
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Figure 1. Fire Alarm System Architecture

Propagation and Transformation Notation (FPTN) [12, 13],
Component Fault Trees (CFTs) [31], State Event Fault
Trees (SEFT) [20, 30], Fault Propagation&Transformation
Calculus (FPTC) [48] as well as the HiP HOPS method-
ology [39, 40, 41]. Since this section can only describe
each approach briefly, the interested reader should consult
the original literature for a detailed description of each ap-
proach.

FPTN. The Failure Propagation and Transformation No-
tation [12, 13] is the first modular and graphical approach
for the specification of the failure behavior of architectural
elements. As a result, this notation was a significant driving
force for the later developed and more sophisticated models.

The Failure Propagation and Transformation Notation
can be best described by an example (Figure 2). Generally,
FPTN-modules contain a set of standardized sections. In
the first section (the header section) an identifier (ID),
a name and a safety integrity level (SIL) are specified.
The second section specifies the propagation of failures,
transformation of failures, generation of internal failures
and detection of failures (including its probabilities).
Therefore, this section enumerates all failures in the
environment that can affect the component and all failures
of the component that can affect the environment. These
failures are denoted as incoming and outgoing failures
and can be classified by a failure categorization[6] (e.g.
reaction too late (tl) or too early (te), value failure (v),
commission (c) and omission (o)). In the example in
Figure 2, the incoming failures are Smoke detected:o,
Smoke detected:c, and Smoke detected:tl
and the outgoing failures are Sprinkling:o and
Sprinkling:c. The propagation and transformation of
failures are specified inside the module with a set of equa-
tions or predicates (e.g. for propagation: Sprinkling:c
= Smoke detected:c and for transformation
Sprinkling:o= Smoke detected:tl ||Smoke
detected:o). These statements basically mean that for
this component commission failures are directly propa-
gated, whereas an omission failure can be caused by a
too late or an omission failure of the Smoke detected
input. A component can also generate failures (e.g. via
a Software Fault) or handle an existing failure (e.g.
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via a Safety Mechanism). For both constructs it is
necessary to specify the occurrence probabilities.

Alarm Unit

Propagation
Sprinkling:c =Smoke_detected:c
Transformation
Sprinkling:o =Smoke_detected:tl || 
                      Smoke_detected:o
Handled
Smoke_detected:c by [Safety Mechanism]
with [Probability]
Internal
Smoke_detected:o  Generated by [Software 
Fault] with [Probability] 

Smoke_
detected:tl

Smoke_
detected:o

ID SIL

Sprinkling:o

Sprinkling:c

Smoke_
detected:c

Figure 2. Example FPTN-Module

FPTN-modules can be nested hierarchically. Thus,
FPTN is a hierarchical notation that allows the decomposi-
tion of the evaluation model based upon the system architec-
ture. If a FPTN-module contains embedded FPTN-modules
the incoming failures of one module can be connected with
the outgoing failures of another module. Such a connec-
tion can be semantically interpreted as a failure propagation
between these two modules. For the evaluation of an FPTN-
module a fault tree is constructed for each outgoing failure
based on the predicates specified inside the FPTN-module.
As a result of this interpretation, a FPTN-module can be in-
terpreted as a forest of fault trees, where the leaf nodes and
their probabilities are extracted from the failure generation
and handling section inside the FPTN-module.

HiP-HOPS. The Hierarchically Performed Hazard Ori-
gin and Propagation Studies (HiP-HOPS) methodology
[39, 40, 41] uses a textual notation that is called Tabular
Failure Annotation (TFA) to specify the failure behavior of
architecture elements in a set of commercial tool environ-
ments, e.g. Matlab-Simulink or Simulation X. To determine
these Tabular Failure Annotations an extension of the Fail-
ure Modes and Effects Analysis [8] called Interface Focused
FMEA (IF FMEA) [40] is used. Based on these annota-
tions various analysis techniques are proposed. As an exam-
ple fault trees in Fault Tree+ format [27] can be generated
and can be analyzed for minimal cut sets to identify critical
points of failures. Furthermore, as presented in [41], Failure
Modes and Effect Analysis tables can be generated based
on an analysis of the minimal cut-sets. In practice, HiP-
HOPS has been successfully applied to many complex real-
world systems in companies such as Volvo [38] or Daimler
Chrysler [40]. An example of a tabular failure annotation
for the control unit of the fire alarm system is given in Fig-
ure 3 on the next page.

CFTs. Component Fault Trees (CFTs) [31] are a mod-
ular version of traditional Fault Trees [26, 46]. Similar to
traditional Fault Trees, CFTs use Fault Tree gates such as
AND, OR, and M-out-of-N gates. Furthermore CFTs use
input and output failure ports (graphically depicted as open

triangles) and internal fault events (graphically depicted as
circles). Internal fault events are similar to basic events in
traditional Fault Trees and input and output failure ports
are used to describe possible points for failure propagation.
Figure 4 depicts a CFT for the alarm unit of the fire alarm
case study.
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Safety 
Mechanism 
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Figure 4. Component Fault Tree Example

CFTs allow the definition of a partial Fault Tree for each
output failure port. These fault trees can be evaluated as
a function of the input failure ports and the internal fault
events. CFTs are typed and can be instantiated in different
projects. To be used at an architectural level, [19] presents
an approach that hierarchically constructs a system-level
CFT based on an architecture specification where all ar-
chitecture elements are annotated with low-level CFTs. To
identify possible failure propagations between components,
their possible dependencies are investigated and input and
output failure ports are matched based on their names and
types. The procedure for constructing hierarchical CFTs
has been extended in [15] in order to analyze SaveCCM
models [2].

CFTs have been used in many industrial projects (e.g.
[23] reports their use at Siemens) and furthermore the
windows-based tool ESSaReL [9] supports graphical spec-
ification and efficient evaluation of CFTs via probabilistic
evaluation and minimal cut set analysis.

SEFTs. In contrast to the other models, State Event
Fault Trees are a formalism that distinguishes states (that
last over a period of time) from events (sudden phenomena,
in particular state transitions). Syntactically, SEFTs are a
visual formalism that extends Component Fault Trees with
probabilistic finite state models [30]. As a result, an archi-
tectural element is modeled with a set of states (some of
them can be seen as error states) and probabilistic transition
between these states. As shown in the examples in Figure 5,
states are graphically represented as rounded rectangles and
events as solid bars. In SEFTs, transitions can be casually
triggered by another event, exponentially distributed or de-
terministically delayed. Based on the distinction between
states and events, novel fault tree gates can be supported,
including the one used by Dynamic FTs [3].

Similar to CFTs, SEFTs can be structured hierarchically
and ports are used to describe the interactions of an archi-
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Figure 3. Example of a HiP-HOPS tabular failure annotation

tectural element with its environment. In addition to the
standard event-based failure port, state ports can be used to
probe if an architectural element is in a specific state (see
the state output port of the “sprinkling” state in Figure 5).
To construct a SEFT for an architecture specification where
SEFTs are attached to each of its elements, a method is
described in [20] that identifies inter-component relations
based on name-matching of the state and event ports as well
as the data and control flow specified in the architecture.
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Figure 5. SEFT - Smoke Sensor and Sprinkler

FPTC. One limitation of the previously described fail-
ure propagation models is their inability to handle cyclic
data- and control-flow structures in the system architecture.
This is a major limitation of these techniques as many real-
world control systems contain closed feedback loops. To
overcome this problem, Wallace [48] has recently proposed
the Fault Propagation and Transformation Calculus (FPTC).
This calculus tries to solve the problem of cyclic depen-
dencies in failure propagation models by using fixed-point
evaluation techniques. However, the practicability of this
calculus in industrial applications remains to be tested.

4 Safety Evaluation with AADL and its Er-
ror Annex

This section, first introduces the general concepts of the
AADL and specifies the running example in AADL. Then,
the specific concepts to define an annotation in terms of
AADL’s Error Annex are presented.

4.1 Introduction to the AADL

AADL components are specified through component
types and component implementations [10]. A component
type defines the component’s interface in terms of inter-
action points (data, event and event data ports) with other
components and externally observable properties. A com-
ponent type can be defined as one of the three component
categories: application software, execution hardware and
composite system (system). In the application software

category an AADL component can be a thread, thread
group, process, data or subprogram. The execu-
tion hardware category is further refined into processor,
memory, device (e.g. a sensor or actuator), and bus
components.

system implementation FireAlarmSystem.impl
subcomponents

HW: processor PIC;
AU: process AlarmUnit;
WD: system WatchDog;
SS: device SmokeSensor;SP: device Sprinkler;

connections
C0: event port fire breaks out -> SS.fire breaks out;
C1: event port SS.smoke detected -> AU.smoke detected;
C2: event port AU.sprinkle -> SP.sprinkle;
C3: event port AU.i am alive -> WD.i am alive;
C4: event port WD.are you alive -> AU.are you alive;
C5: event port WD.reset -> HW.reset;

properties
Actual Processor Binding => reference HW applies to AU;

end FireAlarmSystem.impl;

Figure 6. Fire Alarm System in AADL

A component implementation defines the internal struc-
ture of a component. It may declare a set of sub-components
and defines how the ports of the sub-components are con-
nected as well as what application software is deployed
on which execution hardware. Furthermore, a compo-
nent implementation may define a set of operational modes
of the components and transitions between these modes.
Additionally, simple property sets such as security-levels,
scheduling parameters, etc. and complex annotations de-
fined in annex libraries can be attached to components types
and component implementations. As an example, the com-
ponent implementation of the fire alarm system as given in
Section 2 is specified in Figure 6. In this specification, the
AADL section on subcomponents defines the used com-
ponents, and the section on connections specifies which
of their input and output ports are connected. Finally, the
section properties defines that the process AU is exe-
cuted on the processor HW.

4.2 AADL’s Errror Annex

AADL’s Error Annex provides the capability to annotate
AADL components with dependability related information
called AADL error models. Similar to architectural AADL
models, error models have two levels of description: an er-
ror type level and an error instance/implementation level.
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An error model at the type level, defines a set of error states.
These error states can also describe error free states. An er-
ror model type further defines a set of error events and its
occurrence probabilities, if known. These error events can
be normal error events as well as other events such as re-
pair events. The occurrence probability of an error event
can be static (defined by the language keyword fixed),
exponentially distributed (defined by the language keyword
poisson) or can have a user-defined non-standard dis-
tribution (nonstandard). Examples of interesting non-
standard distributions are Weibull distributions that can be
used to describe the error behavior of most software and
hardware components [5]. However, despite the fact that the
language definition allows user-defined distributions, this
language feature has as far as the authors know not been
used.

package FireAlarmErrorLib
public
annex error model {**

error model SensorErrorModel
features
error free: initial error state;
unavailable, babbling: error state;
smoke detected omission: out error propagation
{Occurrence => fixed 1};
smoke detected commission: out error propagation
{Occurrence => poisson 1E-3};
fail stop, fail babble: error event;

end SensorErrorModel;

error model implementation SensorErrorModel.Standard
transitions
error free -[fail stop]-> unavailable;
error free -[fail babble]-> babbling;
unavailable -[out smoke detected omission]->
unavailable;
babbling -[out smoke detected commission]-> babbling;

end SensorErrorModel.Standard;
. . .

**};
end FireAlarmErrorLib;

Figure 7. Fire Alarm System error model

An error model implementation declares the error tran-
sitions between error states. These transitions can be trig-
gered by internal error events or by error propagations from
external components. (Note that most existing safety evalu-
ation methods [12, 13, 19, 40] use the term failure propaga-
tions instead of error propagations.)

Each AADL error model can be stored in a library and
can be (re)used for different AADL components. Con-
sequently an AADL error model can describe the error
behavior of a set of similar components. As examples,
several different error models for simple hardware and
software components have been defined in [11]. Fig-
ure 7 shows an extract of the error model annex library
FireAlarmErrorLib for our running example. Specif-
ically, the error model for a sensor is defined. This er-

device implementation SmokeSensor.simple
. . .
annex error model {**
Model => FireAlarmErrorLib::SensorErrorModel.Standard;
Occurrence => poisson 1E-7 applies to error fail stop;
Occurrence => poisson 1E-7 applies to error fail babble;

**};
end SmokeSensor.simple;

Figure 8. Linking the Error and AADL model

ror model contains three states, one for the correct be-
havior of the sensor (error free) and two error states
(unavailable and babbling). In the error state
unavailable the sensor omits to send the message
smoke detected in case a fire occurs and in the er-
ror state babbling the sensor falsely sends the mes-
sage smoke detected. In the first case the error is
propagated to the environment with a fixed probability
of one, meaning that the senor will always omit to send
the message. In the second case the wrong message is
sent with an exponentially distributed probability with the
rate 10−3 per second. The transitions between the error
states are defined in the implementation of the error model
SensorErrorModel.Standard (Figure 7).

As shown in Figure 8, error models from the error an-
nex library can be annotated or associated to an architec-
tural component Model => FireAlarmErrorLib::
SensorErrorModel.Standard;. When an architec-
tural component is annotated with an error model it is pos-
sible to further tailor it with specific information such as
occurrence probabilities for error events. In this example
the occurrence rates for internal error events fail stop
and fail babble have been defined. By using the same
statement, already defined properties can be overwritten.

To analyze an AADL error model there are currently
two approaches available. The first approach automati-
cally translates an error model into a standard fault tree
[29]. The second approach generates Generalized Stochas-
tic Petri Nets (GSPNs) from error model specifications and
uses existing GSPN tools for quantitative analysis [44].

4.3 Modeling of Error Propagation, Error
Masking and Error Filtering

To construct an error model of a system component that
contains subcomponents, the propagation of errors between
these subcomponents needs to be defined. For the AADL
error annex the error propagations are resolved via name
matching of incoming and outgoing error propagations in
combination with predefined abstract dependency rules be-
tween AADL components. A set of nineteen predefined de-
pendency rules is specified in [11]. Examples of such de-
pendencies are the error propagation from a hardware plat-
form (processor, memory, bus, etc.) to its software com-
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ponents (processes, threads, etc.) or between two software
components that communicate via a connection between in-
going and outgoing ports. Based on these error propagation
rules, a set of inheritance rules is defined in [11] to auto-
matically construct an error models for a hierarchical com-
ponent.

An interesting and novel feature of AADL error annex
models is the ability to define Guard In and Guard Out
rules. These rules can be used to filter incoming and out-
going error propagations. Furthermore, error propagations
can be renamed in order to allow a name matching between
two incompatible error models. In the fire alarm system
guards can be used to implement a voting strategy. For
example, let us refine the architecture defined in Figure 6
and use three smoke sensors (SS1, SS2, and SS3) and an
alarm unit with three input ports (smoke detected1,
smoke detected2 and smoke detected3). In this
case an incoming smoke detected commission
error propagation can be masked with a “two out of three”
voting strategy for the input port smoke detected1 of
the alarm unit with the following Guard In rule:
Guard In => smoke detected commission when
smoke detected1[smoke detected commission]and
(smoke detected2[smoke detected commission]or
smoke detected3[smoke detected commission])

applies to smoke detected1;

Similar rules have to be defined for the input ports
smoke detected2 and smoke detected3 respec-
tively.

5 A Comparison with Existing Failure Prop-
agation Models

This section compares the safety evaluation method-
ology based on AADL’s Error Annex with the existing
architecture-based safety evaluation methods. This com-
parison is carried out based on the experience gained in
modelling the fire alarm case study and a survey of the
currently available documentation for each of the meth-
ods. The results presented in this section shall help safety
engineers to identify the strengths and weaknesses of the
approach based on AADL’s Error Annex as well as other
approaches, and to select and possibly combine the most
appropriate architecture-based model-driven safety evalua-
tion techniques. Furthermore recommendations are given
on how to improve the safety evaluation methods.

The comparison is carried out from three perspectives,
i.e., modeling support, process support, and tool support.
Each perspective considers a set of relevant factors that are
used to compare the different approaches. The final result
of the comparisons is presented in three tables (Tables 1, 2,
and 3) that are discussed in the following subsections.

5.1 Modeling Support

Modeling support concerns with the ability of system
safety engineers in specifying the error/ failure behavior of
an architectural element and the error/ failure propagation
between dependent architectural elements. The main factor
is the underlying modeling formalism for the safety evalu-
ation models and its semantics. Furthermore, to assess ad-
vanced features the following factors have also been consid-
ered: the ability of graphically or textually specifying safety
evaluation models, the ability of reusing safety annotations,
the ability of modeling all relevant dependencies at the ar-
chitectural and error model levels, the ability of masking,
filtering and renaming error/ failure propagations and the
ability of modeling interactions between operational modes
and the error model. The outcome of the comparison is pre-
sented in Table 1.

An investigation of the underlying modeling concepts
clearly highlights the fact that the languages are similar and
have been evolved as a family of languages based on the
initial work of Fenelon et al. [12, 13]. The basic aim of
all these languages is to characterize the failure logic of in-
dividual components in a way that enables the automatic
synthesis of complete safety evaluation models for a sys-
tem built with these components [16, 33]. However differ-
ences can be found in the ability to model state-dependent
behavior. The earlier models (FPTN, FPTC, HiP-HOPS,
and CFT) only describe purely event-based failure behavior,
whereas SEFT and AADL’s Error Annex include states as
well. From a semantic perspective the purely event-based
models describe fault-tree-like structures characterized as
simple logical formulae. The state/event-based models have
a translational semantics that maps the safety evaluation
model into stochastic processes. Specifically, SEFTs are
mapped to Deterministic and Stochastic Petri Nets (DSPNs)
[20, 30] and AADL’s Error Annex is mapped to Generalized
Stochastic Petri Nets (GSPNs) [44]. Details of the both ver-
sions of stochastic petri nets can be found in [35]. The main
difference between the purely event-based and state/event-
based models is the expressive power. State/event-based
models allow modeling of failure behavior close to spec-
ification of the expected system behavior which is nor-
mally expressed with state-based specification formalisms
like Statecharts [22]. However, the increased expressive-
ness also implies a higher computational cost when analyz-
ing these models. Purely event-based models can still be
analyzed with analytic or numerical methods even for com-
plex models [23, 39], whereas for state/event-based mod-
els simulations are often the only means to analyze them
[30, 44]. Consequently, to select an appropriate formalism
for a specific project the trade-off between expressibility
and analyzability has to be considered.

An investigation of the other comparison factors shows
that AADL’s Error Annex matches or exceeds the model-
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Method Fundamental
Modeling
Formalism

Graphical/Textual Modeling Reuse of Safety Evaluation
Annotations

Modeling of Architec-
tural Dependencies

Masking, Filtering, and
Renaming of Error/
Failure Propagation

Modeling of Interac-
tion between Errors
and Operational Modes

AADL+
Error
Annex

State/Event-
Based

Textual modeling (including
XML based representation) +
Graphical modeling of the ar-
chitecture in AADL

Support to build Error Model
Annex Libraries containing
reusable standard error model
types incl. inheritance [11]

Implicit definition
of architectural de-
pendencies via 19
dependency rules

Supported via the
Guard In and Guard
Out Rules [11, 44]

Supported via the
Guard Transition
Rules [11, 44]

FPTN&
FPTC

Purely
Event-
Based

Graphical and textual model-
ing

Not supported Should be specified in
the underlying archi-
tectural model

Possibility to specify
detection mechanisms
[12]

Not supported

HiP-
HOPS

Purely
Event-
Based

Textual representation in the
tabular failure annotations
[40]

Reuse possible with failure
propagation patterns [49]

Is specified in the ar-
chitectural model (e.g.
Matlab/Simulink)

Extra modeling for
masking, filtering and
renaming required

Supported only by a re-
cent extension (PAN-
DORA) [47]

CFT Purely
Event-
Based

Graphical modeling (models
are saved in a XML based
representation)

CFTs are error types and can
be instantiated multiple times

Should be specified in
the underlying archi-
tectural model

Extra modeling for
masking, filtering and
renaming required

Supported only by a re-
cent extension of CFTs
[1]

SEFT State/Event-
Based

Graphical modeling (models
are saved in a XML based
representation)

SEFTs are error types and can
be instantiated multiple times

Should be specified in
the underlying archi-
tectural model

Extra modeling for
masking, filtering and
renaming required

Not supported

Table 1. Modeling support of architecture-based safety evaluation methods

ing capabilities of the earlier failure modeling formalisms
which it builds on. In particular, the filtering and masking
of error propagations via the Guard In and Guard Out
rules in AADL’s Error Annex is a powerful new modeling
feature that deserves further investigation as well as inclu-
sion into the other failure propagation models. Currently,
to model this feature in the traditional failure propagation
models, the filtering and masking rules have to be directly
implemented in the safety evaluation model. The ability of
modeling interactions between operational modes and the
error model, is only supported by the AADL and its Er-
ror Annex and by CFT [1] and HiP-HOPS [47] extensions.
The modeling of these interactions is an important feature
for systems with multiple operational modes, e.g. aircrafts.
This suggests that the traditional failure propagation models
should be extended to provide this feature.

Based on the evaluation of the modeling support one can
summarize that AADL’s error annex provides a rich syntax
that eases the specification of error annotations. However,
this rich syntax could also lead to modeling errors if the se-
mantic implications are not recognized by the safety engi-
neer. On the other hand, a simpler formalism such as CFTs
might lead to more complex annotations, but with possible
less modeling errors since the safety engineer is familiar
with all the modeling concepts.

5.2 Process Support

Our comparison from the process support perspective
follows the steps that are needed to perform safety evalu-
ations at an architectural level. First, the hazard conditions
and safety requirements have to be identified and formally
specified. Afterwards, the architecture and its dependen-
cies have to be modeled and each architectural element has
to be annotated with an error/failure model. Based on this
information, an error/failure propagation model for a hierar-
chical component must be constructed in order to calculate
the hazard probabilities with an appropriate tool.

From the comparison given in Table 2 it becomes evident
that all architecture-based safety evaluation methods, in-
cluding the method based on AADL’s Error Annex could
improve their process support. What is needed is a clear
description of all the steps involved to construct and ana-
lyze the safety evaluation models. Regarding identification
and specification of hazard conditions and safety require-
ments, only CFTs and HiP-HOPS describe some simple
methodological support with the Software Hazard Analy-
sis and Resolution in Design (SHARD) [15] and Functional
Failure Analysis (FFA) [40]. Based on these two techniques
the safety engineers can identify which system-level output
failure will lead to a hazardous situation where it only de-
pends on the environment if an accident occurs. Generally,
these hazard conditions can be formalized as simple logi-
cal formulae in CFTs and HiP-HOPS. In SEFTs, however,
a full specification of the hazard conditions in real-time and
probabilistic temporal logic (e.g. with specification patterns
[17]) is possible [20]. The expressive power of specifiable
hazard conditions in AADL’s Error Annex has to be investi-
gated in future research, however the authors expect a simi-
lar expressiveness as for the SEFTs.

Considering the second factor, AADL’s Error Annex
provides good support for modeling architecture speci-
fications including architectural dependencies. Method-
ological support and guideline can be found in numerous
CMU/SEI technical reports and tutorial style introductions
[10, 11]. A similar support is provided only by the HiP-
HOPS methodology, which can use architectures defined in
Matlab-Simulink or Simulation X [39]. The other model-
ing formalisms are general purpose failure propagation lan-
guages and consequently they do not target specific archi-
tecture description language. As a result there is also no
methodological support for modeling architecture specifi-
cations and architectural dependencies.

Considering the third factor, the safety evaluation ap-
proach with AADL’s Error Annex does not provide clear
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Method Identification and Specification of Haz-
ard Conditions & Safety Requirements

Architecture Specification
including Architectural Depen-
dencies

Identification of an Error
Model of a Basic Archi-
tectural Components

Generation of Error Models for Hierarchical Com-
ponents

AADL+
Error
Annex

Not supported, a use of SHARD and
Functional Failure Analysis (FFA) seams
suitable

Good support for architectural
modeling including architectural
dependencies in AADL [10]

Not supported, using
SHARD and IF-FMEA
seams suitable

Generation of hierarchical error models based on
name matching of incoming and outgoing error
propagations via architectural dependencies

FPTN
&
FPTC

Not supported General purpose language, no
specific support for modeling ar-
chitecture dependecies

Not supported Generation of hierarchical error models based on
name matching of incoming and outgoing er-
ror/failure propagations

HiP-
HOPS

Simple identification with Functional
Failure Analysis (FFA) of the top level
component in system architecture

Support for modeling architecture
specification in Matlab/Simulink
[39]

Based on IF-FMEA [40] Generation of fault trees [40] based on name
matching of incoming and outgoing failure propa-
gations via architectural dependencies

CFT Hazard conditions can be identified with
SHARD and specified directly in the
CFT formalism [15]

General purpose language, lim-
ited support for architectural
modeling in ROOM [19] and
SaveCCM [15]

Based on SHARD [15] &
IF-FMEA [19]

Generation of hierarchical CFTs based on name
matching of incoming and outgoing failure ports
with limited support of architectural dependencies
(currently communication connection only)

SEFT No support for the identification of haz-
ard conditions, however once identified
these hazard conditions can be directly
specified in the SEFT formalism [20, 30]

General purpose language, no
specific architecture specification
language recommended

Not supported Generation of hierarchical SEFTs based on name
matching of incoming and outgoing failure ports
with limited support of architectural dependencies
(currently communication connection only)

Table 2. Process support of architecture-based safety evaluation methods
Method Tool Description Automatic Support for the

Generation of Error Models
of Hierarchical Components

Probabilistic Model Analysis
(Tool Back-end)

Generation of Standard Fault
Trees

Generation of FMEA tables

AADL+
Error
Annex

OSATE (Eclipse Plu-
gin)

Good support for the gener-
ation of error model for hi-
erarchical AADL component
[10]

Transformation to Generalized
Stochastic Petri Nets (GSPN) &
evaluation of the GSPN model
[44]

Generation of fault tree for
acyclic models [29], or via
translation to AltaRica [37] &
AltaRica model checking [4]

Currently not supported

HiP-
HOPS

Matlab/Simulink
extension [39]

Direct generation of fault
trees for the system compo-
nent

Probabilistic analysis of the
fault trees

Generation of fault trees
(in Fault Tree+ format) for
acyclic models [27]

Generation of FMEA tables
base on a minimal cutset anal-
ysis [41]

CFT UWG3 & ESSaReL
(Windows-based with
drag and drop GUI) [9]

Manual tool guided genera-
tion of error models for hier-
archical components

Probabilistic evaluation by
translation of the CFTs into
BDD [31]

Automatic flattening of CFTs
to standard fault trees

Currently not supported, how-
ever FMEA table generation
similar to [41] should be posible

SEFT ESSaReL (Windows-
based with drag and
drop GUI) [9]

Manual tool guided genera-
tion of error models for hier-
archical components

Transformation to Deterministic
& Stochastic Petri Nets (DSPN)
and simulation with TimeNet

Currently not supported Currently not supported

Table 3. Tool support of architecture-based safety evaluation methods

instructions on how to create an error model for a specific
architectural element. However, this is generally a weak-
ness of all other investigated approaches. Although meth-
ods like SHARD [42] and IF-FMEA [40] exist to derive
failure annotations with systematic “what-if” questions, an
integration of these techniques into the architecture based
safety evaluation methods is not standard. Finally, no sig-
nificant differences can be found for the final factor as all
methods support the generation of error models for hierar-
chical components.

5.3 Tool Support
Provision of tool support for the model-driven safety

evaluation methods may be the most important aspect for
practitioners. Even a good theoretical framework or error
modeling language will not be used if there is no tool sup-
port to perform the safety analysis. Additionally, if we con-
sider complex systems, “paper and pencil”-based evalua-
tions are often impractical and will introduce in many cases
more errors than they can find in the system under examina-
tion. The factors of consideration from this perspective are:
support for automatic generation of error models for hierar-
chical software components, back-end support that allows
the calculation of hazard probabilities, and the ability to

generate fault trees and FMEA tables as they are required
for certification purposes. Since factors like ease of use
and ease of modeling are subjective they are not included
in the comparison. Furthermore, FPTN and FPTC do not
currently have tool support available and consequently they
are not considered in Table 3.

Driven by industrial cooperation, the described ap-
proaches generally have good tool support. One weakness
however of most architecture-based safety evaluation mod-
els is the inability to generate FMEA tables. Only HiP-
HOPS provides the means to extract the necessary infor-
mation of FMEA tables by analyzing minimal cutsets of the
generated fault trees [41]. An adaption of this technique
would be a good extension to the tool support of AADL’s
Error Annex and the existing failure propagation models.
A further suggestion for improvement in safety evaluation
with AADL’s Error Annex and all other approaches is to
provide the ability to generate fault trees and FMEA tables
for models that contain cycles. This could be done by ex-
tending the approach described by Wallace [48]. Finally,
due to their state/event based syntax, SEFTs and AADL’s
Error Annex could be used to derive Dynamic Fault Trees
[3] from the safety evaluation models.
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6 Conclusion

The paper has presented a brief introduction to error
modeling with AADL’s error annex. Based on this intro-
duction, its modeling capabilities as well as its process and
tool support are compared with existing safety evaluation
methods. This comparison has identified the strengths and
weaknesses of the approach based on AADL’s Error An-
nex as well as other approaches, and pointed out the general
and approach-specific improvements for them. This also
provides the basis for safety engineers to select the most
appropriate approach and associated techniques for a given
safety analysis task.

From the comparison it becomes evident that AADL’s
error annex provides rich syntactical support for error mod-
eling, that is similar to, if not more expressive than, the ex-
isting failure propagation models. Some examples of useful
syntactic features are the ability of masking, filtering, and
renaming of error/ failure propagations as well as the abil-
ity of modeling interactions between errors and operational
modes. Besides, the error model’s interrelation with AADL
is particularly beneficial. As identified in this paper, a weak
aspect is the methodological support for the identification
of error models including probabilities for error events. Ex-
isting failure propagation models attempt to use techniques
like IF-FMEA [40] or SHARD [15] to generate safety anno-
tations for specific components. Even for these techniques,
however, clearer guidelines would still be beneficial. An-
other point for improvement is the tool support for the gen-
eration of FMEA tables, and for the generation of fault trees
and FMEA tables for models with cycles.

In future work this comparison could be extended to
other model-driven architecture-based safety evaluation
methods. Specifically, a recent approach that extends the
EAST ADL (http://www.east-eea.org/) with an error model-
ing capability should be considered [7]. EAST ADL, which
has been designed by a consortium driven by the European
automotive industry, is an architecture description language
similar to AADL. EAST ADL’s error model has been in-
tegrated as a proof-of-concept with the HiP-HOPS method
[40] in order to analyze the error model. Finally, the com-
parison could be extended to include other recent concepts
and techniques. For example, [45] describes an approach
to generate fault trees for product lines based on an AADL
product line model. Such a capability is not provided by
any of the existing safety evaluation models.
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J. Håkansson, A. Möller, P. Pettersson, and M. Tivoli. The
SAVE approach to component-based development of vehic-
ular systems. Journal of Systems and Software, 80(5):655–
667, 2007.

[3] J. Bechta-Dugan, S. Bavuso, and M. Boyd. Dynamic fault-
tree models for fault-tolerant computer systems. IEEE
Transactions on Reliability, 41(3):363–77, Sept. 1992.

[4] P. Bieber, C. Castel, and C. Seguin. Combination of fault
tree analysis and model checking for safety assessment of
complex system. In Proceedings of the 4th European Dept-
ing Conference on Dependable Computing (EDCC), volume
2485 of LNCS, pages 19–31. Springer, 2002.

[5] A. Birolini. Reliability Engineering: Theory and Practice.
Springer, third edition, 1999.

[6] A. Bondavalli and L. Simoncini. Failure Classification with
respect to Detection. Esprit Project Nr 3092 (PDCS: Pre-
dictably Dependable Computing Systems), 1990.

[7] P. Cuenot, D.-J. Chen, S. Gérard, H. Lönn, M.-O. Reiser,
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