A Bose-condensed, simultaneous dual-species Mach–Zehnder atom interferometer

To cite this article: C C N Kuhn et al 2014 New J. Phys. 16 073035

View the article online for updates and enhancements.

Related content
- Optically trapped atom interferometry using the clock transition of large 87Rb Bose–Einstein condensates
 P A Altin, G McDonald, D Döring et al.

- PHD Tutorial
 C Ospelkaus and S Ospelkaus

- Quantum test of the equivalence principle and space-time aboard the International Space Station
 Jason Williams, Sheng-wei Chiow, Nan Yu et al.

Recent citations
- Common-mode noise rejection using fringe-locking method in WEP test by simultaneous dual-species atom interferometers
 Xiao-Bing Deng et al.

- Species-selective confinement of atoms dressed with multiple radiofrequencies
 E Bentine et al.

- Non-destructive shadowgraph imaging of ultra-cold atoms
 P. B. Wigley et al.
A Bose-condensed, simultaneous dual-species Mach–Zehnder atom interferometer

C C N Kuhn, G D McDonald, K S Hardman, S Bennetts, P J Everitt, P A Altin, J E Debs, J D Close and N P Robins

Quantum Sensors and Atomlaser Lab, Department of Quantum Science, Australian National University, Canberra 0200, Australia
E-mail: nick.robins@anu.edu.au

Received 24 January 2014, revised 28 April 2014
Accepted for publication 28 May 2014
Published 24 July 2014

New Journal of Physics 16 (2014) 073035
doi:10.1088/1367-2630/16/7/073035

Abstract
This paper presents the first realization of a simultaneous $^{87}\text{Rb}^{–^{85}\text{Rb}}$ Mach–Zehnder atom interferometer with Bose-condensed atoms. A number of ambitious proposals for precise terrestrial and space based tests of the weak equivalence principle rely on such a system. This implementation utilizes hybrid magnetic-optical trapping to produce spatially overlapped condensates with a repetition rate of 20 s. A horizontal optical waveguide with co-linear Bragg beamsplitters and mirrors is used to simultaneously address both isotopes in the interferometer. We observe a non-linear phase shift on a non-interacting ^{85}Rb interferometer as a function of interferometer time, T, which we show arises from inter-isotope scattering with the co-incident ^{85}Rb interferometer. A discussion of implications for future experiments is given.

Keywords: atom interferometry, Bose–Einstein condensation, Bragg diffraction, atom optics

1. Introduction

Many decades of research have yet to unify the theory of gravity with the other fundamental interactions. It is conceivable that gravity is simply a classical field [1], however most theorists have pursued a quantization of gravity as the unifying theory [2]. Typically, these unifying
theories imply a violation of general relativity [3]. A number of ambitious experiments have been proposed to provide experimental data to test, and exclude or confirm, new theories.

Atom interferometers provide an ideal platform for these experiments [4–7], providing ultra-high resolution absolute measurements of gravity [8]. For example, simultaneously comparing a measurement of the acceleration due to gravity of two different atomic species allows a direct test of the weak equivalence principle (WEP) of general relativity. Indeed, large investments and spectacular progress have already been made in Europe and the US, most notably by the ESA projects Q-WEP and STE-QUEST in Europe [9–12], and the Stanford drop tower project [4]. The European teams, in particular, have made outstanding contributions to microgravity tests and the robustness of atom interferometry infrastructure [13, 14]. A feature of the proposed experiments, both terrestrial and space based, is the use of a dual isotope $^{87}\text{Rb} - ^{85}\text{Rb}$ Bose–Einstein condensate (BEC) atom interferometer. A BEC based source allows direct manipulation of momentum width and spatial profile through modification of trapping potentials and scattering length [15]. The phase transition from a thermal cloud to a BEC produces a sudden and dramatic change in momentum width (with an equivalent classical gas temperature in the 10’s of pK), a uniform and symmetric spatial profile (advantageous for reducing technical effects such as Coriolis shifts [16]), and an increased spatial coherence [17] (advantageous for maintaining fringe visibility in the presence of technical noise). These are all critical factors contributing to achieving a signal in long interrogation time interferometry. Additionally, the use of two isotopes suppresses common mode and platform noise by a predicted factor of 4×10^8 [12]. A very recent experiment demonstrated a simultaneous $^{87}\text{Rb} - ^{85}\text{Rb}$ atom interferometer based on a laser cooled thermal source and Raman transitions, showed a factor of 550 common-mode noise rejection [18].

This paper demonstrates the first simultaneous Mach–Zehnder atom interferometer based on Bose-condensed sources of ^{87}Rb and ^{85}Rb. A simplified trapping apparatus, consisting of only two magnetic coils and a crossed dipole trap, is used to produce simultaneous BEC of ^{87}Rb and ^{85}Rb. A schematic of the trap and beam orientations is shown in figures 1(a) and (b). In order to study interferometry in quasi-expanded clouds (an approximation to the freely expanded clouds in space and long-drop terrestrial systems), the BECs are then loaded into a horizontal optical waveguide. An atom interferometer is constructed from co-linear counter propagating laser beams configured to drive Bragg transitions between momentum states. It is shown that s-wave inter-isotope scattering leads to a relative phase shift between the two isotopes. In addition to dual isotope interferometry for WEP tests, ^{85}Rb offers a number of intriguing possibilities for atom interferometry. The tuneable s-wave scattering of the ^{85}Rb condensate allows control of the mean-field phase shift associated with condensate atom interferometers [19], allowing interactions to be switched off. This has been demonstrated in the context of lattice based Bloch oscillations [20, 21]. This work provides the first such demonstration in a Mach–Zehnder atom interferometer. Both the dual-species and non-interacting condensate interferometers provide important data for both future space missions and terrestrial high precision measurements.

This paper is organized as follows. The apparatus is first described, focusing on the components and techniques that simplify production of ^{85}Rb condensates. The tuneable nature of the ^{85}Rb scattering length is demonstrated in both the crossed dipole trap and the waveguide. Results are then presented for a simultaneous Bose-condensed $^{87}\text{Rb} - ^{85}\text{Rb}$ Mach–Zehnder atom interferometer and a non-interacting ^{85}Rb atom interferometer. The paper concludes with a discussion pertinent to the applications of this technique to proposed equivalence principle tests.
2. Apparatus

The primary components of our experiment are a single set of low current (∼15A) coils that can be dynamically configured to produce either a Helmholtz or quadruple configuration magnetic field, and two separate 20 W laser beams that cross with large (∼100 μm) waists near the centre of the two coils. This design, based on ideas from the 87Rb team at JQI [22, 23], is a far simpler setup than our previous 85Rb apparatus [24]. Not surprisingly, this simplified system has many benefits, including much improved optical access and higher stability and repeatability in the condensate number.

The experiment is based around a compact vacuum system described previously [24]. The basic optical design of the experiment has been retained as well, utilizing a 2D-magneto-optical trap (2DMOT) to load the primary 3DMOT via a pair of co-propagating push beams. The setup used to produce the laser light is illustrated in a block diagram in figure 1. Four different frequencies of light are required for laser cooling of the two rubidium isotopes. The appropriate frequencies lie conveniently within a band of 6.8 GHz at 380 THz, easily accessible by readily

![Figure 1](image.png)

Figure 1. Left frame: schematic of the setup used to generate the laser light used in the experiment. Saturated absorption spectrometer (SAS), Single mode polarization maintaining fibre (SM PM), tapered amplifier (TA). The double pass acousto-optic modulator (DP-AOM) setup sites the AOM and retro-reflection mirror a focal length away from the centre lens. Right frame: (a) a simplified rendering of the experiment, showing the key hardware for producing the dual condensates. An ultra-high vacuum glass cuvette, quadrupole/Feshbach coils and the crossed dipole trapping beams. Not shown are the coincident two-colour MOT beams and the orthogonal absorption imaging systems. The glass cell is 3 cm × 3 cm × 10 cm on its outside edges. Right frame: (b) a schematic of the layout of the beam paths. DM—dichroic mirror. The second imaging beam path has been omitted to avoid clutter in the schematic.
available external cavity diode lasers. Four separate lasers, one for each of the primary trapping
and re-pumping transitions are used, each running at about 40 mW (post isolator). This
configuration has proved to provide the best stability in the total and relative atom numbers in
the dual condensates. We have found that sidebands added via diode modulation, external phase
modulators or acousto-optic modulators (AOM) have so far proved less stable than this
configuration, primarily due to alignment, temperature and polarization sensitivity [25]. By
means of an AOM in the 85Rb master locking loop, both trapping lasers are locked with the
same offset from the $|F = 2\rangle \rightarrow |F' = 3\rangle$ and $|F = 3\rangle \rightarrow |F' = 4\rangle$ cooling transitions for
87Rb and 85Rb, respectively. The master lasers provide light for the push and imaging beams and
for injection locking two separate free running diodes (running at 60 mW each). These injection
locked lasers are mixed on a non-polarizing beamsplitter and used to seed two tapered
amplifiers (TA). By varying the alignment, mode matching and relative input powers, the
output from the TA’s are optimized to contain an appropriate ratio of the cooling light for two
isotopes in the 2/3D MOTs. Subsequent AOMs are used to rapidly vary the frequency and
intensity of the light used for both MOTs, including shuttering. Finally, all light is guided to the
experiment head in high quality, single-mode, polarization-maintaining optical fibers. Repump
light is produced in much the same way. Both repump lasers are locked to saturated absorption
cross-over resonances with the nearly the same offset (~78 MHz) from the re-pumping transitions $|F = 1\rangle \rightarrow |F' = 2\rangle$ and $|F = 2\rangle \rightarrow |F' = 3\rangle$ for 87Rb and 85Rb, respectively. The
output from the repump lasers is mixed on a non-polarizing beamsplitter and one port is used to
inject a TA. Post-TA, the light is split through two separate single-pass AOMs and sent to the 2/
3D MOTs. Total trapping powers are 100 mW and 120 mW in the 3D and 2DMOTs,
respectively, with approximately 15% of that power at the 85Rb trapping frequency. Repump
powers are ~25 mW for each species in each MOT. The main non-common fluctuation that can
occur in dual frequency MOTs is through birefringent polarization instability in the single mode
polarization maintaining fibre coupling light to the experiment. The laser setup is designed to
minimise non-common fluctuations between the cooling lasers by combining them with co-
linear polarization prior to TA injection. This is a critical factor in obtaining good stability in the
final condensate atom numbers [25–27].

The magnetic field for the 3DMOT, quadrupole magnetic trap and for accessing the 85Rb
Feshbach resonance is generated by a single set of coils. The coils are driven by a custom-built,
closed-loop stabilization circuit, providing a measured absolute RMS stability of better than
1:106 at a current of 15A (this corresponds to approximately 10 μG stability around the
Feshbach resonance). At all times, the current runs in series through the two coils. High speed
switching is provided by an integrated capacitor boost circuit for the switch on (100 μs from 0 to
15A), and TTL-controlled solid-state relays for the switch off (20 μs from 15A to zero current).
An H-bridge switch electrically separates the two trapping coils, allowing a rapid switch of the
direction of current in one of the coils (20 μs). The pair of coils dissipate an absolute maximum
of 40 W total, and as a consequence no active cooling is required.

The experimental sequence is separated into three stages: loading of the atoms in the 3D
MOT, evaporative cooling in the hybrid trap, and the interferometer sequence.

2.1. 3DMOT loading

At the end of a 10 s loading stage, 3×10^6 and 5×10^8 atoms of 85Rb and 87Rb respectively
have been collected. Atom numbers are currently limited by our MOT beam size, and 2D-MOT
source flux. Following 25 ms of polarization gradient cooling (PGC) on both isotopes (smoothly decreasing magnetic field and repump intensity while increasing MOT detuning), the repump light is extinguished and 1ms later the trapping light is switched off, leaving a sample at a temperature of \(\approx 15 \mu \text{K}\). This sequence pumps both isotopes into their respective ground states. About 50% of the atoms accumulate in our target states of \(|F = 1, m_F = -1\rangle\) for \(^{85}\text{Rb}\) and \(|F = 2, m_F = -2\rangle\) for \(^{87}\text{Rb}\).

2.2. Dual species, hybrid trap cooling

Immediately after PGC and optical pumping, the current in the trapping coils is switched on to capture the atoms in a quadrupole trap, and then ramped to full current over 100 ms, generating our maximum gradient of \(\sim 300 \text{G cm}^{-1}\). Simultaneously with the magnetic field ramp up, the power from two separate laser beams, intersecting at 30°, is increased to produce a hybrid quadrupole-magnetic and optical-dipole trap for the atoms. The axial confinement laser runs at \(\lambda = 1090 \text{nm}\), with a 2 nm linewidth, 25 W power and beam waist 100 \(\mu\text{m}\). The primary trapping laser (and waveguide) runs at \(\lambda = 1064 \text{nm}\), with a 1 MHz linewidth, 20 W power and beam waist 60 \(\mu\text{m}\). During 3.5 s, the magnetic and optical parameters of the hybrid trap are kept constant, while the clouds are cooled by radio frequency (rf) evaporation of \(^{87}\text{Rb}\) atoms in the \(|F = 1, m_F = -1\rangle\) ground state. The \(^{85}\text{Rb}\) atoms in \(|F = 2, m_F = -2\rangle\) are cooled sympathetically, due to their tighter confinement in the quadrupole magnetic field [24, 27]. The s-wave scattering lengths at this stage in the experiment are \(a_{\text{ss}} = -443a_0\), \(a_{\text{ss}} = 99a_0\) and \(a_{\text{ss},\text{ss}} = 213a_0\), where \(a_0\) is the Bohr radius. The relatively large \(a_{\text{ss},\text{ss}}\) scattering length ensures good thermalization between the two species. The magnetic field is then ramped to zero over 3 s, loading the two isotopes into the pure crossed dipole trap, whilst forced rf evaporation continues until the magnetic field is off. At this stage we have a sample of \(3.5 \times 10^5\) \(^{85}\text{Rb}\) and \(2.5 \times 10^6\) of \(^{87}\text{Rb}\) atoms at temperatures close to \(1 \mu\text{K}\).

The H-bridge is then switched to the Helmholtz configuration, and the current is ramped up over 50 ms to provide a bias field of \(\sim 140\text{G}\), and then rapidly jumped through the 155 G Feshbach resonance to 165.64 G, zeroing the s-wave scattering length of \(^{85}\text{Rb}\) and minimizing three-body loss [28, 29]. Over a further 3.5 s the dipole trap intensities are smoothly ramped down to their final value giving an optical trap with radial and axial trapping frequencies of 70 Hz and 9 Hz, respectively. In the last 0.5 s of this ramp the bias field is tuned to give a \(^{85}\text{Rb}\) s-wave scattering length of 300 \(a_0\). We set the scattering length to be large to increase the physical size of the cloud and to optimise miscibility/atom number. Pure BECs of \(2 \times 10^4\) \(^{85}\text{Rb}\) and \(2 \times 10^5\) \(^{87}\text{Rb}\) are formed at this stage. In the crossed dipole trap this results in condensates of radial and axial widths of 5.6(4.4) \(\mu\text{m}\) and 43(35) \(\mu\text{m}\), respectively, for \(^{87(85)}\text{Rb}\) and a peak density of \(10^{14(13)}\) atoms \text{cm}^{-3}\), calculated using the Thomas–Fermi (TF) approximation. 3D Numerical simulations, based on a system of radially symmetric Gross–Pitaevskii equations (without gravity), indicate a near complete phase separation at these parameters, with the \(^{85}\text{Rb}\) atoms residing outside of the \(^{87}\text{Rb}\) core, primarily along the radial direction. The peak \(^{85}\text{Rb}\) atom density is reduced by a factor of 2, compared to the TF approximation. Depending on the details of the 3DMOT loading sequence, the condensate isotope ratio can be precisely controlled, from pure \(^{87}\text{Rb}\), through a mixture, to pure \(^{85}\text{Rb}\). Repeatability at about the level of 20% is achievable for both isotopes. Modification of the \(^{85}\text{Rb}\) s-wave scattering length in the final optical cooling sequence allows condensates to be produced at a range of scattering lengths, including very near zero.
After creation of the dual species condensate, the ^{85}Rb s-wave scattering length can be tuned by varying the current in the Fechbach coils. Indeed, this tuneability is a key feature to reduce systematics in the latest space interferometer proposals [11, 12]. Figure 2(a) demonstrates the tuneable nature of the s-wave scattering length in ^{85}Rb. Here, the condensate is created at $300\, a_0$, and then the crossed dipole trap is turned off in $\mu\sim 10\, s$. Simultaneously, the Feshbach magnetic field is jumped to different values, rapidly changing the scattering length and hence the expansion rate of the condensate. Larger values of scattering length increase the 85 condensate mean-field energy, causing the cloud to expand rapidly and the optical depth to decrease, while smaller values cause the cloud to maintain or even decrease its size. At negative values of the scattering length, the condensate is known to rapidly collapse [30], with a signature heating (and requisite increase in size of the cloud). To observe this change in expansion rate, after 15 ms the Feshbach field is switched to zero and after a further 10 ms expansion, the atoms are imaged with absorption imaging. The observed change in width is a feature of a tuneable scattering length condensate, and does not appear for a thermal cloud [31].

2.3. Transfer into the waveguide and the interferometer sequence

To perform the interferometer sequence, the atom clouds are transferred into a single beam dipole trap, effectively forming a waveguide for the atoms [32]. The loading sequence follows our previous technique [33], with the addition that, after forming the ^{85}Rb condensate, the scattering length is ramped to zero over $100\, \text{ms}$, followed by a ramp up in the power of the single beam dipole trap over $200\, \text{ms}$. The weaker cross beam is then switched off, releasing the clouds into the waveguide. It is observed that tuning the s-wave scattering length of the ^{85}Rb cloud to near zero mitigates heating in this transfer. Just prior to release, the radial and axial trapping frequencies are $70\, \text{Hz}$ and $\sim 2\, \text{Hz}$, respectively. In the waveguide, just prior to switch off of the weak cross beam, the condensates have increased in axial length and decreased
slightly in radial extent, to have of radial and axial widths of 4.1(3.2) μm and 145(114) μm, respectively, for $^8\text{Rb}^{87}(85)$ and a peak density of $10^{14}(13)$ atoms cm^{-3}, calculated using the TF approximation. 3D Numerical simulations, again based on a system of radially symmetric Gross–Pitaevskii equations (without gravity), indicate a near complete phase separation at these parameters, with the ^8Rb atoms residing outside of the ^8Rb core, primarily along the axial direction. The peak ^8Rb atom density is increased by a factor of 1.3, compared to the TF approximation. Using time-of-flight observations we have determined that the majority of the ^8Rb atoms initially occupy the transverse ground state of the waveguide [34]. Similarly to the release data from the crossed dipole trap, figure 2(b) shows expansion of the ^{85}Rb cloud in the waveguide. Recently such an expansion was described as the production of a ‘bright soliton’ in the region of small negative scattering length [35]. Additionally, RF sweeps similar to those used to calibrate the Feshbach magnetic field [24], can be used to transfer each isotope into any magnetic state [29, 36]. This will allow measurement of the interferometric phase shifts due to external magnetic fields, their gradients, and cross-and-self-scattering between the different m_f states of each isotope [37]. A systematic study is beyond the scope of this work, but is clearly an avenue for future experiments.

Figure 3. (a) and (c) show the simultaneous fringes acquired from a 0.4 ms and 0.5 ms interferometer, respectively. (b) and (d) show the ellipses generated from (a) and (c), respectively, by comparing normalized population in the two isotopes at varying phase.
After release of the dual condensates into the waveguide, we engage a Bragg Mach–Zehnder interferometer. The Bragg optical setup consists of up to 50 mW in each of two counterpropagating beams, precisely aligned to the waveguide optical trap by means of dichroic mirrors [34]. The lattice beams are collimated with a full width of 1.85 mm and detuned \(\sim 10^5 \) GHz to the blue from the \(|F=1\rangle \rightarrow |F'=2\rangle \) and \(|F=2\rangle \rightarrow |F'=3\rangle \) transitions of \(^{87}\)Rb and \(^{85}\)Rb, respectively. Bragg beam polarization is optimized to achieve the largest Rabi frequency. Arbitrary, independent control of the frequency, phase, detuning, and amplitude of each beam is achieved using a two-channel direct digital synthesiser (DDS) driving two separate AOMs. The large detuning from both the \(^{87}\)Rb and \(^{85}\)Rb transitions sets the Bragg beamsplitter Rabi frequencies of the two isotopes equal to approximately 2%. For this work, beamsplitters and mirrors with up to \(8\hbar k \) of momentum transfer, where \(k = 2\pi/780.24 \) nm is the single photon wavenumber, are used in a standard three pulse \(\pi/2 \), \(\pi \), \(\pi/2 \) configuration, with each pair of pulses separated by a time, \(T \). Atom numbers in the momentum state output ports of the interferometer are measured using simultaneous absorption imaging of each isotopes on (near) orthogonal horizontal axes.

This implementation of a Mach–Zehnder Bragg interferometer is primarily sensitive to external inertial forces [32, 33, 38], which lead to a phase shift on the interferometric fringes obtained. This phase shift is the ‘signal’ of the interferometer, which in our experiments is generated by (i) gravitational acceleration due to a small tilt in the horizontal waveguide, (ii) acceleration due to a small magnetic field curvature in the Helmholtz field and (iii) the mean field interaction between the two isotopes. Noise is generated by spurious accelerations of optical mirrors, vibration of the optical table and by possible fluctuating magnetic field gradients. This is particularly so in our system, since the waveguide laser strongly couples the atoms to these external noise sources at all times, as it is effectively tied to the laboratory. This is in contrast to free falling atoms, which form nearly ideal test masses. Figures 3(a), (c) shows typical interferometer fringes obtained by scanning the optical phase of the final Bragg beamsplitter. As observed in the laser-cooled simultaneous interferometer reported in [18], the fringes for each isotope indicate that they have acquired a different phase shift through the interferometer, but unlike that work, the fringes are of very similar contrast. We attribute the similarity in contrast of the fringes of each isotope to the use of Bragg transitions. The Bragg laser system has only a single frequency in each counter-propagating beam, and hence drives the atoms with near identical Rabi frequencies. The ellipses shown in figures 3(b), (d) are generated by parametrically plotting the normalized atom number of each isotope for every realization of the interferometer. The fact that some of the data lies off the fit to the ellipse indicates that there is non-common-mode noise between the two interferometers. Ideally, plotting the data parametrically should reject a significant amount of common noise [18] (such as vibration of the lab table). It is most likely that the outlying data originates primarily from classical noise that is observed in our absorption imaging, and this is clearly a candidate for improvement in the apparatus. Previously, we have experimentally observed shot noise limited interferometry with \(10^5 \) \(^{87}\)Rb [39] atoms, and in a separate paper we have calculated that an observable interferometric signal-to-noise of 10 000:1 is possible with standard absorption imaging [40, 41].

There is also a notable phase shift between the two isotopes in the data of figure 3. In order to investigate this shift, a \(^{85}\)Rb Bragg interferometer is operated at zero s-wave scattering length, and the interferometric phase shift is studied as a function of the interferometer time, with different numbers of \(^{87}\)Rb present. With negligible \(^{87}\)Rb present, there is no obvious systematic
phase shift on the ^{85}Rb interferometer, as shown in figure 4, curve (a). However, as the number of ^{87}Rb atoms is increased there is a nonlinear increase in the phase shift of the ^{85}Rb interferometer. Reversing the wave-vectors of the Bragg beams, simply reverses the sign of this phase evolution, without changing its form.

A one-dimensional numerical simulation based on a system of coupled Gross–Pitaevskii equations [17] for the two isotopes can be used to make a qualitative investigation of the observed effect, since the system can be considered as a weakly interacting two component condensate with potentially complex initial conditions and dynamics [42, 43]. This simulation contains the $a_{85} = 0$ and $a_{87} = 99 a_0$ intra- and $a_{85/87} = 213 a_0$ inter-isotope s-wave scattering lengths. These simple numerical simulations indicate that there are complex spatial dynamics at play between the two isotopes. These spatial dynamics cause a nonlinear phase shift in ^{85}Rb due simply to the presence of ^{87}Rb, as shown in the inset to figure 4. There is no phase shift observed without ^{87}Rb present. Quantitive agreement between experiment and theory will require a full 3D simulation taking into account gravitational sag, which is beyond the scope of this paper but is needed to understand how this trapped system evolves over time, and more importantly, how expanded systems will evolve over the long interferometer times needed for WEP tests.

3. Discussion

In this work, we have presented a relatively simple arrangement to produce simultaneous ^{85}Rb and ^{87}Rb Bose–Einstein condensates. Following this, we have loaded the condensates into an optical waveguide and demonstrated the first simultaneous dual-species Bose-condensed atom interferometer. It is important to consider how our design and observations might contribute to
discussions and planning on space-based and terrestrial precision measurement systems, such as the acceleration due to gravity or a violation of the WEP.

3.1. Initial conditions in the dual condensate system

The performance of a dual-species interferometer is highly dependent on having a clean initial spatial profile which evolves in a known way. Spatial dynamics driven by differences in scattering lengths can be complex and detrimental, and degrade interferometric performance, especially when the two species do not interpenetrate. We have previously mentioned that from the outcome of radially symmetric 3D numerical simulations, we expect the initial condition for our dual species atom interferometer to be immiscible. This situation is often characterized by the miscibility parameter, \(\mu = a_{85} a_{87} / a_{85,87}^2 \) [25, 27]. If \(\mu < 1 \), the interspecies repulsion overpowers the intra-species interaction, and the components will spatially separate. On the other hand, if \(\mu > 1 \) the two species will be miscible and the condensates will interpenetrate. Gravitational sag in the optical trap further complicates the initial conditions, as does the different magnetic moment of the initial states. There are strong caveats to this characterization, which have important implications for both space and terrestrial efforts to produce BEC based precision measurement systems. While the miscibility equation predicts interpenetrating condensates above a \(^{85}\text{Rb} \) s-wave scattering length of 460\(a_0 \), our numerical simulations indicate that there is still significant repulsion between the isotopes, even for dual condensate systems with \(a_{85} = 1000a_0 \). The numerical solution of the radially symmetric GP equation for the ground states of a miscible dual condensate system, in the absence of gravity, are shown in figure 5. For terrestrial precision measurement systems based on dual condensates the situation...
is more complicated due to a relative gravitational sag in the optical trap. Clearly, significant further effort needs to be applied to understand and control spatial effects on the source clouds.

3.2. Systems for the production of condensates

Current proposals use a magnetic chip trap to generate the fields for the MOT, and for creating an Ioffe–Pritchard (IP) configuration harmonic trap for evaporative cooling [11, 12]. Here we have shown that a more complicated macroscopic IP trap can be dispensed with altogether, in favour of a single pair of coils that provide the field for the MOT, magnetic trap and Feshbach magnetic field. The configuration presented here may thus provide an alternative to a chip-based system, potentially providing greater optical access and simplicity than current designs. It should be noted however, that the hybrid optical/magnetic potential used for pre-cooling would need to be carefully considered for operation in zero gravity.

The number of condensed 85Rb atoms proposed for both terrestrial-and space-based atom interferometer experiments exceed current state of the art by nearly two orders of magnitude. It is important to consider that to achieve fast and efficient sympathetic cooling of 85Rb by 87Rb in the pre-cooling stage requires a careful balance in atom number [25–27]. 85Rb will not efficiently evaporatively cool by itself due to an extremely low collision cross-section around 100 μK [44], although it is feasible to produce condensates slowly [31, 45]. For the very large condensates being proposed, it is conceivable that lattice cooling [46, 47] will be required to overcome the stringent requirements placed on initial atom numbers by sympathetic cooling.

3.3. Comparing Raman and Bragg optical beam-splitters

Raman transitions are the mainstay of most atom interferometer precision measurement systems. It was recently shown that the Bragg transitions used in this work are compatible with an ultra-high precision measurement of gravity at the 3 ppb level [38]. There are a number of interesting differences between Bragg transitions and the proposed Raman laser systems for space missions. For Bragg transitions, (i) only two counter-propagating laser beams, each with a single frequency, are required to drive the dual isotope interferometer, giving good common mode noise rejection between the two isotope; (ii) only a single internal atomic state is used, reducing or eliminating many of the systematic effects common to all Raman based systems; (iii) detection via absorption imaging is simultaneous on all momentum states, reducing systematic effects on detection; and finally, (iv) large momentum transfer beam splitting offers the opportunity to increase the measurement sensitivity [48]. Enormous investments have been made in understanding systematic effects in Raman transitions. To provide an informed comparison, a similar study of systematic effects in high precision atom interferometry with Bragg transitions is required.

To illustrate this comparison, Raman transitions allow one to match the Rabi frequencies to 1 part in 10^4 using multiple laser frequencies [9–12]. There are two ways to approach this level of accuracy with Bragg. The first is to situate the Bragg frequency halfway between the 87Rb $F = 1$ and 85Rb $F = 2$ ground states, which are separated by about ~ 2 GHz. If the laser frequency was stabilised to ± 100 kHz this would achieve the desired goal. The second method would be to detune the Bragg laser from both transitions by greater than 20 THz. With our present setup we can drive Rabi frequencies of 1 MHz for a $2\hbar k$ transition. Thus we could achieve 5 kHz Rabi frequencies at 20 THz. With the 4 cm beams specified in the proposed space missions, we would require a factor of 400 higher power to achieve the same Rabi frequency,
giving a laser power requirement around 40 W. Note however, that we routinely achieve 12 W of power at 780 nm using single pass doubling of a 30 W 1560 nm fibre laser [49]. This laser could then be used for optical trapping at 1560 nm and then re-purposed for the Bragg lasers.

3.4. Which states to use in a precision measurement?

The internal states required for dual-species condensation of 85Rb and 87Rb are constrained by the scattering properties of 85Rb and the requirements of sympathetic evaporative cooling [25]. However, once the condensates have been created in the pure optical dipole trap, the internal states used in the interferometer can be chosen freely. Indeed we have performed Ramsey interferometry on the $m_F = 0$ ground states of 87Rb in this system [40, 41]. At high densities the choice for 85Rb is restricted to the $|F = 2, m_F = -2\rangle$ state by the availability of the wide Feshbach resonance in this state, as the background scattering length of $a \approx -400a_0$ will cause such high density clouds to collapse [30]. In an expanded cloud in which the atoms do not collide with one another during the time of the interferometer, we are also free to choose any internal state for 85Rb. If an experiment is planned using Raman transitions, then it would be clearly advantageous to use the $m_F = 0$ sub-levels of both ground states of 85Rb and 87Rb. As the internal magnetic state does not change in a Bragg interferometer, choosing the $m_F = 0$ sub-level of either of the ground states reduces the differential magnetic phase shift by a factor of $1/2$ as compared with Raman.

4. Conclusion

In summary, an apparatus to produce a dual-species BEC atom interferometer with a 20 s repetition rate has been demonstrated. The condensates were loaded into a horizontal optical wave guide, where a Bragg Mach–Zehnder interferometer was applied. A relative phase shift driven by inter-isotope s-wave scattering was observed and numerically confirmed, although future 3D numerical studies will be required to gain a quantitative understanding of the system. Our technique for condensate production is readily applicable, and perhaps critical, to ongoing efforts to produce experimental data in the realm of predicted violations of the universality of free fall.

Avenues for further study include the production of a non-dispersive soliton atom interferometer [50], detailed 3D numerical studies of 85Rb–87Rb inter-isotope scattering and dynamics, and an investigation of systematic effects in a high-precision Bragg atom interferometer.

Acknowledgments

The authors gratefully acknowledge the support of the Australian Research Council Discovery program. CCNK would like to acknowledge financial support from CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico). JED would like to acknowledge financial support from the IC postdoctoral fellowship program.
References

[12] Aguilera D et al 2014 Class. Quantum Grav. 31 115010
[38] Altin P A et al 2013 Precision atomic gravimeter based on Bragg diffraction New J. Phys. 15 023009
[42] Stamper-Kurn D M and Ueda M 2013 Spinor Bose gases: symmetries, magnetism, and quantum dynamics Rev. Mod. Phys. 85 1191–244