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Logic Programming and Software Engineering -
Implications for Software Design

Leon Sterling1 and Ümit Yalçinalp2

Department of Computer Engineering and Science
Case Western Reserve University
Cleveland, OH, 44106, U.S.A.

Abstract

Logic programming is a programming paradigm with potential to contribute to
software engineering. This paper is concerned with one dimension of that
potential, the impact that experience with developing logic programs can have
on software design. We present a logic programming perspective on
programming patterns, systematic program development, design for
provability, and the paradigm of meta-programming.

1. Abstractions help in developing complex software

The essential challenge of software engineering is how to build and maintain
complex software. The challenge has continued unabated over many years.  Computer use
is increasing, and with increased computer use has come increased user knowledge, and
rising expectations of software reliability and usability.

Opinions vary as to whether current software engineering practice can meet
expectations. Harel (1992) sounded an optimistic tune. While acknowledging earlier
cautionary writing of Brooks (1987) and Parnas (1985) that there is no `silver bullet' for
the problems software developers face, Harel claims that computer science is advancing
and software production can become more reliable.

The history of computer science has shown that progress in software development
has come through better abstractions. Logic programming (Kowalski, 1979) is an
abstraction introduced in the 1970’s. It has taken time for its value to be appreciated in
software engineering. It is the purpose of this paper, and more generally this special issue,
to argue that logic programming has something to offer.

The key abstraction introduced in logic programming is the logical variable and the
use of unification as a uniform means of computation. Unification abstracts away many
data manipulation details, making programs more concise, and easy to read and write. This
will be explicitly pointed out in later sections. Non-determinism is also present, which
abstracts away implementation details of specific search techniques in some applications.

This paper discusses in detail one dimension of the potential of logic programming
to contribute to software engineering - the impact that experience with developing logic
programs can have on software design. The key innovation of the paper is explicitly
identifying patterns that have emerged within logic programming, and pointing out their
relationship to the current interest in programming patterns (Gamma et al., 1995). Another
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discussion of the potential of logic programming to contribute to software engineering can
be found in (Ciancarini and Levi, 1992).

Patterns in logic programming constitute reusable components and are sketched in
Section 2. The patterns are easy to recognize in logic programs due to the high level of
abstraction afforded by unification and the logical variable. We will discuss this more in the
context of Program 4 for finding a path between nodes in a graph. In Section 3 we show
how patterns can form the basis for a systematic program development method which aids
maintainability.

Logic programming draws its source from logic. Indeed the theme for this stream
of papers is logic engineering. Conceived appropriately, using logic programs is a formal
method. A strength of formal methods is the ability to prove programs correct and to
construct programs that are provably correct. How the program patterns can guide a
correctness proof is discussed in Section 4, along with implications towards design of
programs for provability.

Section 5 presents the paradigm of meta-programming. We believe the essence of
meta-programming is building an abstraction of a language and developing an interpreter
for the abstraction. We explain our non-standard view of meta-programming and argue that
logic programming is especially amenable to introducing and exploiting abstractions. The
theme of powerful abstraction explicit here is implicit in the paper.

These are not the only issues relevant to software design from experience in
program development with logic programming languages. The specific areas were chosen
to give a flavor of what logic programming can contribute, and because they reflect our
recent research. Other interesting issues are related to module systems (Bugliesi et al.,
1994), and the interactions between types and modes reflected, for example, in the
development of the language Mercury (Somogyi et al., 1996).

Logic programming has contributed to software engineering more broadly. Other
papers in this special issue speak for themselves, but we explicitly mention the following:

• Process modeling
• Rapid prototyping and exploratory programming
• Program transformation
• Formal methods

We conclude this section with the observation that there may be growing acceptance
of logic programming within software engineering. There has certainly been increased
visibility in the form of this special issue, and the special issue of International Journal of
Software Engineering and Knowledge Engineering (Ciancarini and Sterling, 1996) arising
out of the workshop on Application of Logic Programming to Software Engineering
following the Eleventh International Conference on Logic Programming held in Italy in
1994. There has also emerged a stream of applications presented in the Prolog 1000
database and presented at the series of international conferences on practical applications of
Prolog and Constraint Logic Programming in 1992, 1994, 1995, and 1996 in London and
Paris.

2. Program patterns

Patterns have been widely acknowledged as being important in crafting complex
systems in areas such as architecture and machine design. Recent attention has focussed on



design patterns for software engineering, particularly associated with the widespread
interest in object-oriented programming. To some extent, patterns have been a theme
throughout the evolution of programming languages. Subroutines and macros can certainly
be viewed as patterns, and were introduced to allow reusability within a single piece of
software. Current emphasis is on patterns that can be reused between software systems.

The abstraction level of logic programming languages makes certain patterns easy to
see and reuse. Unification is a key factor. Taking a pattern-directed view can make logic
programs easy to build. In this section, we discuss patterns that have emerged, primarily in
Prolog, and comment at the end on the relationship to other languages. .

2.1 Skeletons and shells

We loosely identify two classes of programming patterns for logic programming:
skeletons and shells discussed in this subsection, and techniques discussed in the next
subsection (Sterling and Kirschenbaum, 1993), (Sterling and Shapiro, 1994).

The first class of patterns are reusable programs which we have called skeletons .
Skeletons constitute an essential control flow of a program. Useful skeletons are

• data structure traversers,
• grammars, and
• interpreters.

The most common data structure for logic programs is the list, and many programs
are based on skeletons for traversing lists. These have been described elsewhere, notably in
(Sterling and Kirschenbaum, 1993) and (Sterling and Shapiro, 1994). A running example
we will use in this paper is a program for graph traversal. Program 1 contains the program
connected/2 which is a skeleton for traversing a graph specified by a collection of
edge/2 facts.  We use a simple example here for pedagogic reasons. The program (pattern)
is the transitive closure of the edge relation, and checks connection via depth-first search
inherited from Prolog’s computation model.

connected(X,Y) ← edge(X,Y).
connected(X,Y) ← edge(X,Z), connected(Z,Y).

Program 1   A skeleton for traversing a graph

Program 2 contains a fragment of a definite clause grammar (DCG) for parsing a
Pascal-like programming language. The first rule says that a statement is an identifier,
followed by :=, followed by an expression. DCGs are in fact syntactic sugar for Prolog,
and most Prolog systems translate DCGs directly into Prolog.

statement → identifier, [:=], expression.
statement → [if], test, [then], statement, [else], statement.
statement → [while], test, [do], statement.

Program 2 Fragment of a grammar for parsing a simple programming language



Skeletons are complete logic programs which run even if all they do is check types.
It is also useful to think of incomplete programs where the details are to be filled in. A shell
is a skeleton where not all predicates in the skeleton are fully developed. Loosely,

Shell = Code + comments + specifications for the missing code

A shell is refined by including the code for the missing goals in the body, or by
adding and deleting new goals in the body of a clause.

An example of a shell is the game playing structure presented in Figure 1. Note that
many other predicates need to be filled in for the shell to be useful. But the essential logic
has been captured. The shell is discussed in detail in Chapter 20 of ‘The Art of Prolog’
(Sterling and Shapiro, 1994), and it is refined and reused for games of nim and kalah in
Chapter 21 of that text. A colleague, Andrew Davison, told me this was a good starting
point for a game playing tutorial he developed in C.

play(Game) ← Play game with name Game

Predicates that need to be filled in are:
initialize/3 which initializes the game board, and the person who is to play next;
display_game/2 which displays the current position of the game from the

 perspective of the next player;
game_over/3 which checks if the game is over;
announce/1 which announces the result;
choose_move/3 which chooses a move;
move/3 which makes the move updating the board;
next_player which gives the succession of moves.

play(Game) ←
initialize(Game,Position,Player),

display_game(Position,Player),

play(Position,Player,Result).

play(Position,Player,Result) ←
game_over(Position,Player,Result) ->

announce(Result)

;  choose_move(Position,Player,Move),

   move(Move,Position,Position1),

   display_game(Position1,Player),

   next_player(Player,Player1),

   play(Position1,Player1,Result).

Figure 1 Shell for playing games

2.2 Techniques and enhancements

Techniques  are the second class of patterns. They capture basic Prolog
programming practices, such as building a data structure or performing calculations in
recursive code. Unlike skeletons, techniques are not programs but can be conceived as a
family of operations that can be applied to a skeleton to produce a program.



Informally, a programming technique interleaves some additional computation
around the control flow of a skeleton program. The additional computation might calculate
a value or produce a side effect such as screen output. Syntactically, techniques may
rename predicates, add arguments to predicates, add goals to clauses, and/or add clauses to
programs. Applying a technique to a skeleton yields an  enhancement.. Enhancements
preserve the basic computational behavior of the skeleton.

The calculate and build techniques both compute something (a value or a data
structure) while following the control flow of the skeleton. An extra argument is added to
the defining predicate in the skeleton, and an extra goal is added to the body of each
recursive clause. In the case of the calculate technique, the added goal is an arithmetic
calculation; in the case of the build technique, the goal builds a data structure. In both
cases, the added goal relates the extra argument in the head of the clause to the extra
argument(s) in the body of the clause.

Examples of the calculate and build techniques applied to the program for
connected are given as the programs count and path below respectively in Programs
3a and 4.

count(X,Y,2) ← edge(X,Y).
count(X,Y,N) ← edge(X,Z), count(Z,Y,N1), N is N1+1.

Program 3a   An enhancement of the graph traverser that counts nodes

count(X,Y,N) ← count_ac(X,Y,2,N).

count_ac(X,Y,N,N) ← edge(X,Y).
count_ac(X,Y,Ac,N) ←

edge(X,Z), Ac1 is Ac+1, count_ac(Z,Y,Ac1,N).

Program 3b   An enhancement of the graph traverser that counts nodes using accumulate-calculate

path(X,Y,[X,Y]) ← edge(X,Y).
path(X,Y,[X|P]) ← edge(X,Z), path(Z,Y,P).

Program 4   An enhancement of the graph traverser that builds a path

Let us consider how Program 4 for path illustrates the power of the logic variable
and unification. Consider the query path(a,b,P)? asking for a path between nodes a
and b. Unification with the head of the recursive clause for path will allocate a list for the
path, set the head of the list to be a, in short manage all the data handling. Program 4 is
multiple use. A query path(a,b,[a,c,b])? will check whether the path [a,c,b] joins a
and b. Unification handles the list comparison, and the logic variable has specified that the
first node and the head of the list must be the same.

The accumulator technique adds two arguments to the defining predicate in the
skeleton to allow for global variables in a program. The first argument is used to record the
current value of the variable in question and the second contains the final result of the
computation. The base case relates the input and output arguments, often via unification.



Analogous to calculate and build, there are two types of accumulator technique:
accumulate-calculate and accumulate-build. An example of the accumulate-calculate
technique is given in Program 3a. One difference between calculate and accumulate-
calculate is in the need to add an auxiliary predicate. Another is that goals and initial values
need to be placed differently. There is an analogous accumulate-build technique. The reader
can rewrite Program 4 to use accumulate-build as an exercise.

Other examples of useful techniques are adding a depth bound to a computation,
and adding an accumulator to keep track of previously visited nodes in a search application.
This technique is applied to Program 1 to yield Program 5.

connected(X,Y) ← connected_enh(X,Y,[X]).

connected_enh(X,Y,Visited) ← edge(X,Y).
connected_enh(X,Y,Visited) ←
  edge(X,Z),

not member(Z,Visited),

connected_enh(Z,Y,[Z|Visited]).

Program 5   An enhancement keeping track of nodes visited previously

 Program 6 is the result of applying the build technique to Program 2 to generate a
parse tree. We give another example of the build technique for two reasons. First, to
emphasize that techniques are patterns. The operation of creating Program 4 from Program
1 should be seen as the same pattern as creating Program 6 from Program 2. Second, we
give a forward pointer for the discussion of meta-programming in Section 5. DCGs are an
example of a meta-linguistic abstraction. The patterns of skeletons and techniques are ideal
for meta-programming.

statement(assign(Id,E)) →
identifier(Id), [:=], expression(E).

statement(if(Test,T,E)) →
   [if], test(Test), [then], statement(T), [else], statement(E).
statement(while(Test,S)) →

[while], test(Test), [do], statement(S).

Program 6 Fragment of a grammar plus parse tree

2.3 Composition

Two enhancements of the same skeleton share computational behavior. They can be
combined into a single program which combines the functionality of each separate
enhancement. Techniques can be developed independently and subsequently combined
automatically. The (syntactic) operation for combining enhancements is called composition.
This is similar in intent to function composition where separate functionalities are combined
into a single function.

Program 7 shows the result of composition of Programs 4 and 3a, path and
count. Note that the operation is syntactic. The extra arguments in path_count are
copied verbatim from their respective programs, as are the extra goals in the recursive



clause. The algorithm is described in ‘The Art of Prolog’ and Prolog code given for
performing composition.

path_count(X,Y,[X,Y],2) ← edge(X,Y).
path_count(X,Y,[X|P],N) ←

              edge(X,Z), path_count(Z,Y,P,N1), N is N1+1.

Program 7   Graph traversal building path and counting nodes

One application of composition is to merge the behavior of ‘parallel loops’. This
can be done by program transformation using fold/unfold operations. However, due to the
non-determinism of Prolog, composition is a more general operation. It reflects a program
construction approach to combining programs which is natural for programmers.

2.4 Other LP work

The skeletons and techniques presented in this paper are all Prolog examples.
Skeletons and techniques can be as easily identified for other logic programming
languages, as discussed in Kirschenbaum, Michaylov and Sterling (1996). They claim that
programming patterns should be identified when a (logic-based) language is first used, in
order to encourage systematic, effective program development. This learning approach
should be stressed during teaching. They show that the skeletons and techniques for Prolog
can be extended to constraint logic programming languages, notably CLP(R) (Jaffar et al.,
1992), concurrent logic programming languages such as Flat Concurrent Prolog (Shapiro,
1987) and Strand (Foster and Taylor, 1989), and higher order logic program languages, in
particular λ-Prolog (Nadathur and Miller, 1988). Applying these ideas to functional
programming languages is currently being studied.

Recently, Gegg-Harrison (1995) and Naish (1996) presented skeletons and
techniques in terms of higher order predicates. The approach has some elegant predictive
power, but is probably only accessible to more advanced students.

There have been attempts to characterize logic programming patterns using
schemas. This paper shares intent with Gegg-Harrison (1991), but is both simpler and
easier to generalize. The skeletons are simpler than schemata because they are not overly
general. Students (and programmers) think in terms of specific examples not schemas,
which we emphasize by dealing with real but skeletal programs, rather than second-order
predicates. Techniques are easily adapted to other skeletons, which is not possible in his
schemas.

O’Keefe’s text (1990) also discusses Prolog programming patterns in terms of
schemas, albeit different ones to Gegg-Harrison. Again our preference is for concrete
programs. Fuchs and colleagues also present schemas for program transformation (Fuchs
and Fromherz, 1991).

2.5 Other paradigms

The design patterns espoused in the book by (Gamma et al., 1995) are closer to
skeletons than techniques, especially in their higher order characterization. In particular, the
template pattern described in the book is reminiscent of a shell as discussed in Section 2.1.
The strategy pattern is also similar to a shell. Our sense is that the logic programming



perspective does not match exactly with classes and instances, but is similar in spirit,
especially if a higher order view is taken.

Characterizing patterns via higher order functions as mentioned above is similar to
work on higher order programming in functional languages. Techniques such as foldl and
foldr can achieve the same effect as application of programming techniques. Loop merging
in functional languages achieves the same effect as composition, though non-determinism
is an added issue in logic programming.

Research has also been performed on merging similar behaviors in imperative
languages. Reps and colleagues use slicing to combine effects (Reps, 1990). Reps’ work is
similar in intent to composition. In our opinion, the patterns are more elegant in the logic
programming context.

3. Systematic development and maintenance

3.1 Stepwise enhancement

The identification of skeletons and techniques arose from investigation into what
might constitute a standard program development methodology for Prolog. Despite
attractive features, Prolog has not been widely adopted for software engineering. A
possible factor is that standard development practices have not been adapted to Prolog. The
method of stepwise enhancement, an adaptation of stepwise refinement, addresses this
weakness. It permits a systematic construction of Prolog programs, while exploiting
Prolog's high-level features.

Stepwise enhancement consists of three steps:

1. Identify the skeleton program constituting the control flow of the program.
2. Create enhancements using standard programming techniques.
3. Compose the separate enhancements to give the final program.

Developing a program is typically straightforward once the skeleton is decided.
Knowing what skeleton to use is less straightforward and must be learned by experience,
which is true for any design task. However, by splitting up the program development into
three steps, the design process is simplified and given structure.

A tutorial example of using stepwise enhancement to develop a simple program is
given in Chapter 13 of (Sterling and Shapiro, 1994). A more elaborate example developing
an expert system shell is given in Chapter 17 of the text. Other expert system examples can
be found in (Yalçinalp, 1991). A detailed example of code developed using stepwise
enhancement is a Prolog tracer, reported in (Lakhotia, Sterling and Bojantchev, 1995).

Stepwise enhancement has also been useful for developing programs for software
testing. A skeleton parser for Pascal (of which Program 2 is a part) was instrumented to
give def-use chains and block numbering. The experience is reported in (Sterling et al.
1992). A novice Prolog programmer adapted the program for instrumenting data coverage
testing to work on C code rather than Pascal.  The programmer was successful due to the
structuring of the problem and by being able to adapt patterns.



3.2 Enhancement Structures

path_count

path count

connected

build([[X,Y],[X|P]]) calculate ([2,N1+1])

compose(pat h,count)

Figure 2: Example enhancement structure

Enhancement structures are a graphical way of presenting the relationship between
programs which emphasize patterns. Figure 2 shows an enhancement structure for our
running example of path_count. Nodes of the enhancement structure are programs,
typically skeletons and their enhancements. Arcs represent the application of a
programming technique and are labelled by a parameterized representation of the technique
applied. The name is the technique and the arguments are what needs to be filled in to
complete the enhancement.

Enhancement structures can help guide a proof of correctness for programs
developed via stepwise enhancement. This will be sketched in Section 4.2.

3.3 Maintaining enhanced programs

Consider changing a program developed using stepwise enhancement. If the only
change is to a single technique, all the programmer need do is create a new enhancement
embodying the changed technique. The sequence of enhancements and compositions can
which built the original program can be replayed to give the new final program. The
modifications and replay could readily be moderated through a user interface operating
directly on the enhancement structure.

Facilitating program modification by replaying operations that have not changed is
certainly viable. A prototype system was demonstrated at a logic programming workshop
in 1991 which replayed a series of programming enhancements. The system was based on
a poorer version of techniques proposed by Lakhotia (1989).



3.4 Support tools

The PT3 environment supports logic program development via stepwise
enhancement. Its design and prototype implementation in C++ is described in (Sterling and
Sen, 1992). The environment can be tailored to either Prolog or CLP(R). Via a mouse-
driven interface, a user can create extensions by applying techniques to skeletons. The user
is prompted to fill in values for arguments and supply extra goals with the interface
stepping through the code to the appropriate places.

The prototype currently facilitates construction of programs concerned with
recursive data structure traversal. The environment allows the application of four
techniques to skeletons:  calculate, build, accumulate-calculate and accumulate-build. Seven
skeletons are pre-defined with the environment, and the user can add others.

Composition of extensions created in the environment is supported, and limited
error checking has been incorporated. Implicit in PT’s interface is a representation of
techniques. Each technique is parameterized for each skeleton to know where to add
values. For example, the build technique adds an extra argument to each essential predicate
in the skeleton. A new goal is given for each rule where the extra argument in the head is
determined by the arguments in the body.

The PT programming environment supports simple program maintenance. The
simplicity of program construction in the environment carries over to small modifications.

4. Proving Prolog programs correct

4.1 Specifications of Prolog programs
We do not advocate using first-order logic as a specification language. Still it is

necessary to have a specification, that is a document which explains the behavior of a
program sufficiently so that the program can be used without the code having to be read.
We believe that a specification should be the primary form of documentation and be given
for each procedure in a program.

A suggested form for a specification of a Prolog program is given in Figure 3. It
consists of a procedure declaration, effectively giving the name and arity of the predicate, a
series of type declarations about the arguments, a relation scheme, and other important
information such as modes of use of the predicate and multiplicities of solutions in each
mode of use. Most relevant here is the relation scheme.

The relation scheme is a precise statement in English which explains the relation
computed by the program. It should be stressed that relation schemes must be precise
statements. We believe that proving properties of programs should proceed in the way of
mathematics where proofs are given by precise statements in an informal language. Our
view of specifications is heavily influenced by Deville (1990).

                                                
3 An unimaginative acronym for Prolog Tool



procedure p(T1, T2, ..., Tn)

Types:T1: type1
T2: type2
 . .
 . .
Tn: typen

Relation scheme:

Modes of use:

Multiplicities of solution:

Figure 3:    Template for a specification

4.2 A sample proof of correctness

We sketch a sample proof that a Prolog program is correct with respect to its
specification. The proof heavily depends on the way the program was derived. The
derivation is described by the concept of an enhancement structure presented in Section
3.2.

The enhancement structure can help guide a proof of correctness for programs
developed via stepwise enhancement. The proof suggests leveraging the structure of the
program development to help the final program. For example, with the program for
path_count given in the enhancement structure of Figure 2, the following steps will
constitute the proof.

1. Establish that the connected program is correct using a straightforward induction
argument.

2. Prove that path is correct relative to connected using the correctness of the
programming technique.

3. Prove that count is correct relative to connected using the correctness of the
programming technique.

4. Since path_count is the composition of count and path, and composition
preserves correctness, path_count is correct.

A sample proof that count is correct relative to connected is sketched in the appendix,
where an appropriate specification is given. The proof depends on the Computation
Extension Theorem proved in (Kirschenbaum et al., 1993).

4.3 Design for provability

Structuring proofs of correctness to correspond to how the program was developed
can be extended for more elaborate examples. This leads to the notion of design for
provability. The way the program is built is shaped by the intention to prove it correct.

The first author has been gathering anecdotal evidence about the efficacy of design
for provability. Together with Liming Cao, Leon Sterling modified a program for



partitioning a number so that it could be proved correct. Thinking about having to prove the
program correct greatly improved the program. We also were forced to clarify the main data
structure that would be needed in the design.

Proofs of correctness have been sketched for several other examples. The largest
are an object-oriented database language, and a translator from Z to Prolog (Sterling et al.,
1996). In both these cases, thinking of the need to prove the program correct improved the
code.

5. Meta-Programming

...  the establishment of new descriptive languages ... is particularly important in computer

programming, because in programming not only can we formulate new languages but we

can also implement these languages by constructing evaluators.
(Abelson & Sussman, 1985)

5.1 What is Meta-Programming?

The paradigm of meta-programming has emerged as a mature entity within logic
programming since the pioneering work of Bowen and Kowalski (1982). Prolog, as a
logic programming language, supports the paradigm. Manipulating programs is easy, and
rapid prototyping of new meta-linguistic abstractions is a normal style of development.

It is worth exploring definitions of meta-programming. The commonly accepted
definition of meta-programming, given for example in (Sterling and Shapiro, 1994) and in
the foreword to (Abramson and Rogers, 1989) is ‘the writing of programs that treat other
programs as data.’ This definition is an accurate description, however, it does not convey
the essence of program development using meta-programming.

We believe that meta-programming is best viewed as a (relatively) new paradigm
for programming complex systems that has emerged in both functional and logic
programming. A paradigm for our purposes, as discussed in (Floyd, 1987), is an approach
to writing programs. According to Floyd, a paradigm is a collection of methods and/or
techniques to facilitate the construction of certain classes of programs. Examples of
paradigms are structured programming, rule-based programming, and dynamic
programming. Each of them are effective for a class of programming problems.

In our opinion, the essence of meta-programming is building a language which
abstracts and interprets other languages. The purpose of meta-programming is to facilitate
manipulation of object programs, either by syntactically manipulating them or executing
them. This leads to a different definition of meta-programming.

‘Meta-programming is building an abstraction of an object language and developing
an interpreter for the abstraction.’

5.2 Applications

Logic programming and Prolog as its most mature language have played a role in
application development. Prolog is particularly appropriate for manipulating symbols.
Where the symbols are programs, we have the literal sense of meta-programming.
Applications which are oriented to symbol manipulation such as parsing and compiling are
most suitable. An excellent case for the use of Prolog for parsing and compiling has been



made by Cohen and Hickey (1992). Prolog has also made some impact in software testing.
Here the specification of an abstract data type is manipulated to generate a computationally
feasible set of test cases (Dauchy and Marre, 1991). Again the power to manipulate
symbols at a high level is very important.

In previous research, we have shown the power of language abstraction for expert
systems, both for tools and specific applications. The case is eloquently made in
(Yalçinalp, 1991) of how to use Prolog for knowledge-based systems via a meta-
programming approach.

 Meta-programming is good for compiling one language to another as well as
providing a means of abstraction for defining a language and its interpretation. There are
two examples from developments at Quintus. The first extends and formulates a language
and paradigm on top of Prolog. Schachte and Saab (1994) describe the Quintus objects
package, which was possible to build precisely because of the meta-programming
approach. We believe this is a model for software development. The second example is
abstract SQL compilation to native SQL for a relational database layer. After developing the
abstract SQL, there was an interface to all the major databases. Adding them was not a real
problem except linking with specific database libraries.

6. Conclusions

Taking a pattern view of programming is helpful. There is no doubt that skeletons
and techniques can help in teaching the effective use of logic programming languages.
Within the classroom, emphasizing patterns has been valuable for teaching effective Prolog
programming. Students are able to follow more complicated Prolog programs and the
quality of code in student projects has increased. Graduate students find this approach
useful for explaining code to others, and in the cases of meta-interpreters cited earlier
complicated programs were more easily developed.

Finally, we reiterate our belief that abstraction is key to future development of
complex software systems. It makes it easy to identify programming patterns so
programming solutions can be re-used. Also more literally, domain-specific abstractions
can be rapidly prototyped and developed using a meta-programming approach. It will be a
cornerstone in any applications we are involved with.
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Appendix

Specification for count(X,Y,N)

    Types   : X, Y: constants (representing nodes of a graph);
N: A non-negative integer

    Relation scheme   : N is the number of nodes contained in a path connecting nodes X
and Y in a graph.

N.B. The number of nodes in the path is one more than the number of edges in the path,

     Modes of use   : X, Y are inputs, and N is an output;
X,Y,N are all inputs;

     Multiplicities of solution    : The predicate fails if the nodes are not connected.
If there are k distinct paths, then there are k solutions.

    Proof of relative correctness  of       count/3   

    Lemma   : The length N computed by count for a goal  G = count(X,Y,N) is one plus
the number of times, S, that an edge/2 goal is selected in the SLD-refutation for G.

    Proof   : By induction on S.
    Base case   : S = 1. The only refutation,  i.e. sequence of quadruples  (Ak,σk,Ck,Rk)

ending in the empty resolvent ,where edge is selected once is
(count(X,Y,N), {X1=X,Y1=Y,N=2}, count(X1,Y1,2):-edge(X1,Y1),

edge(X,Y))
(edge(X,Y), {X=X2,Y=Y2}, (edge(X2,Y2)), T)

and hence N equals 2.

   Inductive case   : Assume the lemma is true for when edge/2 is selected k times.
The value for k+1 is at least two, and thus in any refutation the recursive clause must be
chosen. A refutation for  G = count(X,Y,N) starts with the sequence

(count(X,Y,N), {X1=X,Y1=Y,N=N1},
count(X1,Y1,N1):-edge(X1,Z1),count(Z1,Y1,N11),N1 is N11+1,

(edge(X,Z1), count(Z1,Y1,N11), N is N11+1))
By induction the refutation for count(Z1,Y1,N11) selects an edge/2 fact k

times, and N11 equals k+1.
In the refutation for G, edge/2 is selected one more time and N equals k+2

    Completeness   : Let G = count(X,Y,N) be in the intended meaning for count. This means
that N-1 edges connect the node X to the node Y. So it must be true that G' =
connected(X,Y) is in the intended meaning of connected. Since connected is
correct, there exists a refutation for G' which lifts to one for count(X,Y,N'), by the
Computation Extension Theorem of (Kirschenbaum et al. 1993). Furthermore, the
refutation chooses an edge/2 goal N-1 times, since the additional goals are only
arithmetic calculations. That the lifted refutation produces the correct value for N’ follows
immediately from the lemma.



    Correctness   : Suppose G = count(X,Y,N) is in the meaning of count, i.e. there is a
refutation for G. By the lemma, there exists a refutation of G where N is one plus the
number of times edge/2 is selected. Interpreting this for the graph, N is the number of
nodes contained in a path connecting nodes X and Y, and thus G is in the intended
meaning of count.


