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Transactions Briefs

Binary Output of Cellular Neural Networks [l. BINARY OUTPUT WITH SMOOTH ACTIVATION
with Smooth Activation When the output functiory is smooth, a neuron will gradually
saturate agr| — oc rather than attaining a limit for finite. Despite
Lachlan L. H. Andrew this, the notion of all neurons being clearly “on” or “off’ can be

expressed in this case by the smooth binary output property (SBOP):

AbStract—An i ant o of cellul | networks (CNN's) Definition 2: Let P be the statement that g)(z) > 1 for all
stract—An important property of cellular neural networks s - .

is the binary output property, that, when the self-feedback is greater than @ € (b,c) and b).C.L“' .> 1 for all ‘" Let ¢ be the statement that for
one, the final activations are+1. This brief considers the generalization of €ach stable eql_"'“b“_umv there is no outpuy; € _(f(b):f(ﬂ_))- A
this property to networks with sigmoidal output functions. Itis shown that ~ class of CNN’s is said to have the SBOP for the interfdal:) if, for

in this case the property cannot be stated without reference to the cross every CNN in that classP implies Q. A class of CNN'’s is simply
feedback, and conditions are found under which the property remains said to have the SBOP if it has the SBOP for every intetbat)
valid. . . e
In the context of smoothf, a binary output statewith respect
to some interval(b,c) may be defined to be a state in which, for
I. INTRODUCTION all 4, yi € (f(b), f(¢)). Having the SBOP ensures that, if a CNN

Cellular neural networks (CNN's) form an important neural netCONverges, it. almos.t sur.ely converges to a bipary output state.
work paradigm which has the important property of being realisabIeA“ equilibrium point will be u_nsta_ble |f_there is at least one positive
in hardware [1]-[3]. Ann neuron CNN implements a dynamical€igenvalue of the corresponding linearized system
system of the form % = (AD — I)x @)

X=-x+4y+k (1) whereD = diag f'(z1), ..., f'(z.)). I denotes the identity matrix

) ) ) andx denotes the deviation of the state from the equilibrium point.
wherex is the state vector ang is the corresponding output VECtor, Thjs system is homogeneous since the linearization is about an
with ith elementse; andy;, = f(x;), respectively,A = (a;;) is equilibrium point.
the feedback matrix, ankl represents the input and the bias. Ideally Although it has been shown [16] that wheh= f, the BOP
f is the piecewise linear functiofy. (x) = (|l + 1| —|= —1[)/2, " holds with no restriction on the off-diagonal elementsiofthe cross
but more generally will be a continuous, piecewise differentiablgseghack), this is not the case for genefallhe following example,
bounded, monotonic funpt!oq. Since a real hardware |mplemenFat|8§ng a smooth function which can approximgtearbitrarily closely,
can only approximate;, it is important to show that the propertiesyas 5 stable equilibrium with one output in the active region, (-1,+1).
of CNN'’s do not depend heavily on the precise formfof Consider the 2 2 case of (2) withf not f.. Let§; = f'(z;). If

Important applications of CNN's and their derivatives include bis , .+ 5,4, < 2 and (8,41, — S2a22)? + 46162012021 < 0, then
nary image processing [4]-[9], binary associative memories [10]—[1@]]e traceT := Tr(AD — I) < 0, and the complex eigenvalues both

and winner-take-all networks [13]-[15]. In each of these applicationgg,e real parl’/2 < 0, so AD — I will have no eigenvalues with
the outputs represent binary quantities. Hence it should be Cl‘fﬂsitive real part. Letf. be given by

whether a neuron is “on” or “off". This can be guaranteed by the

binary output property (BOP) [1], [2], [16], which is possessed by x \ _if 0<2<1
all CNN's with f = f7. foe)y=41+ 5(1 - eﬁH)/() fe>1 . (3
Definition 1: The BOP is the property that a convergent CNN with —fe(—2) if e <0

self feedback:;; > 1 for all i will, for a given inputk, converge to
a state withy;| = 1 for all i for aimost all initial conditions. Ase— 0, fo— fi. Nowletl <aiy = a2 <2, leté be a constant

This property has also been used in proving stability results [17ﬁl.1_(:r]1thlatO f; < r(13|_tmjr)é022n< 1rb||t?t:12vzl _(im 1: 1/15 azg
[18]. A form of this important property applicable to more general . / Og‘.( / )_,_a €lr; De an arbitraly vaiue —1,+1) &

) . . . L T = 2. Linearizing at the poink™ givess] = 1 andé} = 6. Now
functions f is presented in Section Il, and it is then shown that th.c?zk " 4f.(xH) then th " 11 ith — f Zh ! tabl
effect of cross feedback terms;; with i # j, cannot in general be ! iﬁb;ic m_ I’Lm(x+) , *enwiti sy§ Em @) V\{' ’ 1_ f‘ndafha S; ©
ignored. Sections Il and IV then prove that the precise values of tﬁg,l:h u thpOSB((LDEIé'/LE? ) 1 +lf(‘t1 )€ (=1.+1) a us does
cross feedback terms can indeed be ignored in the important cad@save e on (-1,+1).

. X . |§or a more concrete example, consider the special case of
of reciprocal networks and transpose diagonally dominant networks, pie, P

which between them include many useful CNN’s. 4= 1.2 100
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Fig. 3. Pin diagram of the signs af; and 2. Curves indicate points at

which #; = 0. The three equilibria wherg = 0 can be clearly seen.
Fig. 1. Activation functionfo 22.

TABLE |
EIGENVALUES A;, WITH GREATEST REAL PART
OoF AD — I FOR n X n TRIDIAGONAL TOEPLITZ A

Am
—0.175000 + 0.651441:
—0.247693 + 0.000000¢
—0.295359 + 0.374517:
—0.322510 + 0.575111:
—0.340325 + 0.689794:
—0.353876 + 0.7593557
—0.365731 + 0.8038461
—0.375483 + 0.636467:
—0.380491 + 0.698926:
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Fig. 2. Basins of attraction of the two stable equilibria of the example
CNN without the SBOP. The black area converges to the nonbinary output
equilibrium. AD satisfies\ > max(6;a11, 62a20). This quantity is greater than 1
sincea;; > 1 by hypothesis, and for one of the state variables to be
The system matrix can easily be shown to have eigenvalues with(?: ), there must be at least ore > 1. _
real part—0.394 and thus this equilibrium point is stable. Indeed, T1hiS Phenomenon is not limited to the 2 2 case. If 4 is
simulations indicate that it is one of two stable equilibria of th@ tridiagonaln x n Toeplitz matrix with1 < ai; < V2 and
system, as shown in Fig. 2. However, for slightly smaller values §f> = —¢21 > 1 and there is at least one € (b,c) such that
11 = ax» only one equilibrium exists. The difference in behavior i/ (*) =1 then there exists & such that the system will violate the
these two cases can be explained by observing the signs af a SBOP. To ||Iustr_a_te this, consider the concrete example of= 1.1
function of x in each case. Fig. 3 shows this for; = ass = 1.2 andaiz = 1, giving

andés = 0.01. The state vector will move in the direction of the line r1r 0 ... 0
away from the circle in each of the regions. The pins have a leftward -1 11 1 ... 0
component ifz; < 0 and a downward component i, < 0. This A=]0 -1 11 ... O
shows that there is a stable equilibrium at around.@67, 167.38) : e
and an unstable equilibrium at aroundQ.586, 110.6) in addition 0 0 -1 1:1

to the stable equilibrium at (0.5, 2)As a;; decreases, the vertical ) ] )

band separating these two additional equilibria gets narrower, uffld an operating point such that € (b,c) with f'(z1) =
it vanishes withz1, ~ 1.143, and the two spurious equilibria vanishl and «i such that f'(x;) = 1/2 for i # 1, giving D =
with it. On the other hand, a increases and — £, the band diad1,1/2,1/2,...,1/2). This occurs, for example, if = f. with

_ . + _ T ot ) +
widens and the nonbinary output equilibrium becomes decreasingly” 1/108(2), x* = (0.2.....2)", andk = x — Af.(x7). The
stable. eigenvalues),,, of AD —I with largest real part in the x » case for
This example shows that, for activation functions other tifian " = 2,...,10 are shown in Table I. This indicates that the real part

the BOP does not depend only on the self-feedback. It is easy to sy converges toward,, /2 — 1 from above as: increases, and

that for any bounded monotonic differentiable functigin.such that S° @ CNN of arbitrary size may be constructed which does not have

there is anr € (b, ¢) with f(x) < 2, there will be a 2x 2 matrix the SBOP. It is interesting to _note that _the matrix in this example is

A (i.e., a two neuron CNN) satisfying the requirementsfofn the of the same form as those_dlscussgd in [18]._ _

SBOP, and operating poist™ such that™ is stable and1 € (b, ¢). The remainder of this brief describes special formsdofvhich

However the above example also shows that care must be taken vvﬂ@Y]e the SBOP.

replacing a function by an arbitrarily close approximation as must be

done in VLSI implementation. Althouglf. — fr, the BOP holds lll. RECIPROCAL NETWORKS

for fr but does not in general fof.. The most important class of CNN'’s is reciprocal networks, in
Note also that this example relies on the fact thatao: < 0. which A is Hermitian (or real symmetric). This corresponds to a

It can be shown that ifi;2a21 > 0 then the larger eigenvalue of cloning template which is centro-Hermitiam;{ = @, —i+1,5—j41) OF
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real centro-symmetricaf; = an—it+1,n—j+1). There is a large body It may now be proved that reciprocal networks have the SBOP.
of literature about matrices of this form [19]. In particular, many Theorem 3: The class of CNN’s with Hermitian weight matrix
useful CNN'’s of this form have been developed [4], [6], [13]-[15]has the SBOP.

Any reciprocal CNN has the SBOP. To prove this, the following  Proof: For the outpuy; to be in(f(b), f(c)) itis necessary that
known result [16] will be used. x; € (b,c). Assume, with a view to obtaining a contradiction, that
Theorem 1: Let o and3 be positive real numbers. i is ann xn  there exists a stable equilibrium with € (b, ¢) for somei. Then the
matrix whose diagonal elements; are real and satisfy;; > «, and linearization about this point (2) satisfies the conditions of Corollary

D = diagé1,. .., 6,) is areal diagonal matrix with; =0 oré; > 3 1 with « = 3 = 1, and soAD has an eigenvalua > 1, and
for all 7, and not alls; are zero, them D has at least one eigenvalueAD — I has a positive eigenvalue. Thus the equilibrium is unstable,
A with Re(A) > «af. contradicting the assumption, and the theorem is proved. W

This will be combined with the following result. It has been shown [1], [2] that a CNN with Hermitian feedback

Theorem 2:If A is an n x n Hermitian matrix, andD = matrix converges for smooth activation functions as well as for the
diag61,...,6,) is a real diagonal matrix witl; > 0 then for all piecewise linear function. Thus, and because Theorem 3 shows that
nonzero eigenvalued of AD, OX/86;, = kX, wherek > 0 may the only stable states are binary output states, such a system will
depend onD andi. almost surely converge to a binary output state.

Proof: Define the selector matrixX§; = (s;i) such thats;, is

1if ¢ = j = k and 0 otherwise. Let' be a right eigenvector of IV. DIAGONALLY DOMINANT NETWORKS

AD corresponding to soma # 0, scaled such that™Dv = 1 Another class of CNN’s which have the SBOP is those for which
(which is possible since # 0 and D is nonnegative diagonal), so 4 — J is transpose diagonally dominant (TDD). A matiX is said
ADv = Av andu® = (Dv)" is a left eigenvector ofAD. Here™ o be TDD if M* is strictly diagonally dominant with positive di-
denotes the complex conjugate transpose. It can be shown thatghenal elements. This corresponds to a “centrally dominant” cloning
nonzero eigenvalues of D are nondefective, and so the well-knowntemplate, in which the central element is at least one greater than the

result (see, for example, [20, eq. 12.4]) sum of the absolute values of the other elments.
N u*(9(AD)/38)v Theorem 4: The class of CNN'’s with weight matril such that
96, = T v A — 1 is TDD, has the SBOP.

Proof: By definition of transpose diagonal dominance, for:all
can be applied. Noting that*v = 1, it follows that y P g '

OA oD aii = 1> |aji.
35 = u A 3% v=u"AS;v=v'D"AS;v 2
i _ (ADv)iSiV — WSV = AW Siv Now if there is an equilibrium withy; € (f(b). f(c)) for somei

thens; = f'(x;) > 1, and so

where the last step uses the fact thas real, as will be shown below.
Now let k := v*S;v = Tu; = |o;[> > 0. Thend\/86; = kX with aiib; — 1> 6;(a; —1) > 6 <Z |a,]»i|>.
k > 0 as required. | j#i

The above theorem used the fact that all of the eigenvaluet 11,4 by Gershgorin’s theoremAD — I)*
AD are real. In the case th& is nonsingular, this follows from the y
fact that K -Hermitian matrices have real eigenvalues [21, p. 111
When D is singular,AD need not bel{-hermitian, butA may still

has an eigenvalue with
ositive real part, and hence so do&¢® — I. Thus the equilibrium

not stable. |
) This result covers a wider range of dominant matrices than
simply be shown to be real as follows. ¥ Dv = 0 thenX = 0 gome previous results. For example, [24] shows that systems whose
and is real. Otherwisdv™Dv = v D(ADv) = (v'D"A")Dv = glements have a specific sign structure have a unique global attractor.
Av*Dv, and soA = A and A is real. In contrast, TDD matrices may give rise to multiple stable states. A

Corollary 1: Let A and D ben x n matrices. IfA is Hermitian simple example isd = oI, wherea > 1 andk = 0, in which all
with a;; > > 0 and D is positive semidefinite, real and diagonaktates with;| = « for all i are stable. However, the result presented
with at least one element not less than> 0, then AD has at least pere is limited to simple CNN's, while that of [24] includes the wider
one eigenvalue\ > aj. class of delay type CNN's.

Remark: The significance of this result is that it only requires that |n many proposed templated, is diagonally dominant butt — I
at least onediagonal element oD be not less tham. In the much s not (for example [5], [8]). This is not in general sufficient for the
more restricted case thail diagonal elements oD are not less CNN to have the SBOP. In the case= 2 of the second example
than 5, this follows from the elementary result that the sum of thgiven in Section 114 is diagonally dominant, but was shown there
eigenvalues is equal to the trace 4D [22, p. 95], [23, p. 1]. not to have the SBOP.

Proof of Corollary 1: Let P; denote the set of alt x » positive  Theorems 3 and 4 are independent of the network’s size and can
semidefinite diagonal matrices wihelements in the intervdld, 3)  be formulated in terms of replicated templates. A third sufficient
and at least one element not less tiiarClearly D € P; for some condition for the SBOP to hold relates the self feedback to the size
Jj. Let D; denote the set of al’ € P; for which AP has at least of the network rather than specifying a form for the cross feedback.
one eigenvaluex > «g. It then suffices to show thab; = P; Theorem 5: The class of CNN’s withn neurons and weight
for all j. Clearly Do = Po by Theorem 1. Make the inductive matrix, 4, with diagonal elements satisfying, > » for all i and
hypothesis that>; = P; for somej. To see thatD;4+, = P;+1, arbitrary off-diagonal elements, has the SBOP.
consider an arbitrary® = diagé1.....6,) € Pj4+1 with & € (0, 3). Proof: These networks satisfy TAD — I) = (3, aiid;) — n.
Consider P(t) = diag(é1,...,0i—1,t,8i41,...,0,), and letA(¢) Each term of the sum will be nonnegative, sirfge= f'(x;) > 0.
denote the largest eigenvalue 4(¢). Now P(0) € P; = D;, so If there is an equilibrium withy; € (f(b), f(c)) for somei then
A(0) > a8 > 0. ButdA(¢)/dt > 0 by Theorem 2. Thua(6;) > af 6 = f'(x;) > 1, and soa;;6; > n giving Tr(AD — I) > 0,
andP = P(éi) € Djy1. ThusD; = P; for all j, and the corollary implying that at least one eigenvalue 4D — I is positive. Thus the
is proved. B equilibrium is not stable. |
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V. CONCLUSION [22] R. Bellman,Introduction to Matrix Analysis New York: McGraw-Hill,

This brief _has generalized the BOP tq CNN’s with an |mp0rtarl:23g EQE'SAO Horn and C. R. Johnsofippics in Matix Analysis Cambridge,
class of realisable, smooth transfer functions. It has been shown that y.k.: cambridge Univ. Press, 1991.
the cross feedback does affect the binary output of such CNN[g4] T. Roska, C. W. Wu, and L. O. Chua, “Stability of cellular neural
However in most important cases, namely reciprocal networks and networks with dominant nonlinear and delay-type templat¢8FE
transpose diagonally dominant networks, the precise cross feedback 1ans- Circuits Syst, lvol. 40, pp. 270-272, Apr. 1993.

terms are not important.
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