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Transactions Briefs

Binary Output of Cellular Neural Networks
with Smooth Activation

Lachlan L. H. Andrew

Abstract—An important property of cellular neural networks (CNN’s)
is the binary output property, that, when the self-feedback is greater than
one, the final activations are�1. This brief considers the generalization of
this property to networks with sigmoidal output functions. It is shown that
in this case the property cannot be stated without reference to the cross
feedback, and conditions are found under which the property remains
valid.

I. INTRODUCTION

Cellular neural networks (CNN’s) form an important neural net-
work paradigm which has the important property of being realisable
in hardware [1]–[3]. Ann neuron CNN implements a dynamical
system of the form

_x = �x + Ay + k (1)

wherex is the state vector andy is the corresponding output vector,
with ith elementsxi and yi = f(xi), respectively,A = (aij) is
the feedback matrix, andk represents the input and the bias. Ideally
f is the piecewise linear functionfL(x) = (jx + 1j � jx � 1j)=2,
but more generally will be a continuous, piecewise differentiable,
bounded, monotonic function. Since a real hardware implementation
can only approximatefL it is important to show that the properties
of CNN’s do not depend heavily on the precise form off .

Important applications of CNN’s and their derivatives include bi-
nary image processing [4]–[9], binary associative memories [10]–[12]
and winner-take-all networks [13]–[15]. In each of these applications,
the outputs represent binary quantities. Hence it should be clear
whether a neuron is “on” or “off”. This can be guaranteed by the
binary output property (BOP) [1], [2], [16], which is possessed by
all CNN’s with f = fL.

Definition 1: The BOP is the property that a convergent CNN with
self feedbackaii > 1 for all i will, for a given inputk, converge to
a state withjyij = 1 for all i for almost all initial conditions.

This property has also been used in proving stability results [17],
[18]. A form of this important property applicable to more general
functionsf is presented in Section II, and it is then shown that the
effect of cross feedback terms,aij with i 6= j, cannot in general be
ignored. Sections III and IV then prove that the precise values of the
cross feedback terms can indeed be ignored in the important cases
of reciprocal networks and transpose diagonally dominant networks,
which between them include many useful CNN’s.
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II. BINARY OUTPUT WITH SMOOTH ACTIVATION

When the output functionf is smooth, a neuron will gradually
saturate asjxj ! 1 rather than attaining a limit for finitex. Despite
this, the notion of all neurons being clearly “on” or “off” can be
expressed in this case by the smooth binary output property (SBOP):

Definition 2: Let P be the statement that a)f 0(x) � 1 for all
x 2 (b; c) and b)aii > 1 for all i. Let Q be the statement that for
each stable equilibrium,x, there is no outputyi 2 (f(b); f(c)). A
class of CNN’s is said to have the SBOP for the interval(b; c) if, for
every CNN in that class,P impliesQ. A class of CNN’s is simply
said to have the SBOP if it has the SBOP for every interval(b; c).

In the context of smoothf , a binary output statewith respect
to some interval(b; c) may be defined to be a state in which, for
all i, yi 62 (f(b); f(c)). Having the SBOP ensures that, if a CNN
converges, it almost surely converges to a binary output state.

An equilibrium point will be unstable if there is at least one positive
eigenvalue of the corresponding linearized system

_x = (AD � I)x (2)

whereD = diag(f 0(x1); . . . ; f
0(xn)); I denotes the identity matrix

andx denotes the deviation of the state from the equilibrium point.
This system is homogeneous since the linearization is about an
equilibrium point.

Although it has been shown [16] that whenf = fL the BOP
holds with no restriction on the off-diagonal elements ofA (the cross
feedback), this is not the case for generalf . The following example,
using a smooth function which can approximatefL arbitrarily closely,
has a stable equilibrium with one output in the active region, (-1,+1).

Consider the 2� 2 case of (2) withf not fL. Let �i = f 0
(xi). If

�1a11 + �2a22 < 2 and (�1a11 � �2a22)
2
+ 4�1�2a12a21 < 0, then

the traceT := Tr(AD � I) < 0, and the complex eigenvalues both
have real partT=2 < 0, soAD � I will have no eigenvalues with
positive real part. Letf� be given by

f�(x) =

x if 0 � x � 1

1 + � 1� e(1�x)=� if x > 1

�f�(�x) if x < 0

: (3)

As �! 0; f� ! fL. Now let1 < a11 = a22 < 2, let � be a constant
such that0 < � < (2� a11)=a22 < 1, let a12 = �a21 = 1=� and
� = 1= log(1=�), and letx+1 be an arbitrary value in(�1;+1) and
x+2 = 2. Linearizing at the pointx+ gives�+1 = 1 and�+2 = �. Now
if k = x

+
� Af�(x

+
) then the system (1) withf = f� has a stable

equilibrium point(x+1 ; x
+
2 ) with f(x+1 ) 2 (�1;+1), and thus does

not have the SBOP on (-1,+1).
For a more concrete example, consider the special case of

A =
1:2 100

�100 1:2

� = 1= log(100) � 0:217

k = (0:5; 2)
T
�Af� (0:5; 2)

T
:

Fig. 1 showsf� in this case. Linearizing about the equilibrium point
x
+

= (0:5; 2) gives

_x =
0:2 1

�100 �0:988
x: (4)
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Fig. 1. Activation functionf0:22.

Fig. 2. Basins of attraction of the two stable equilibria of the example
CNN without the SBOP. The black area converges to the nonbinary output
equilibrium.

The system matrix can easily be shown to have eigenvalues with
real part�0.394 and thus this equilibrium point is stable. Indeed,
simulations indicate that it is one of two stable equilibria of the
system, as shown in Fig. 2. However, for slightly smaller values of
a11 = a22 only one equilibrium exists. The difference in behavior in
these two cases can be explained by observing the signs of_xi as a
function of x in each case. Fig. 3 shows this fora11 = a22 = 1.2
and� = 0.01. The state vector will move in the direction of the line
away from the circle in each of the regions. The pins have a leftward
component if _x1 < 0 and a downward component if_x2 < 0. This
shows that there is a stable equilibrium at around (�1.267, 167.38)T

and an unstable equilibrium at around (�0.586, 110.6)T in addition
to the stable equilibrium at (0.5, 2)T. As a11 decreases, the vertical
band separating these two additional equilibria gets narrower, until
it vanishes witha11 � 1:143, and the two spurious equilibria vanish
with it. On the other hand, as� increases andf ! fL, the band
widens and the nonbinary output equilibrium becomes decreasingly
stable.

This example shows that, for activation functions other thanfL,
the BOP does not depend only on the self-feedback. It is easy to show
that for any bounded monotonic differentiable function,f , such that
there is anx 2 (b; c) with f 0(x) < 2, there will be a 2� 2 matrix
A (i.e., a two neuron CNN) satisfying the requirements ofP in the
SBOP, and operating pointx+ such thatx+ is stable andx1 2 (b; c).
However the above example also shows that care must be taken when
replacing a function by an arbitrarily close approximation as must be
done in VLSI implementation. Althoughf� ! fL, the BOP holds
for fL but does not in general forf�.

Note also that this example relies on the fact thata12a21 < 0.
It can be shown that ifa12a21 � 0 then the larger eigenvalue of

Fig. 3. Pin diagram of the signs of_x1 and _x2. Curves indicate points at
which _xi = 0. The three equilibria where_x = 0 can be clearly seen.

TABLE I
EIGENVALUES �m WITH GREATEST REAL PART

OF AD � I FOR n � n TRIDIAGONAL TOEPLITZ A

AD satisfies� � max(�1a11; �2a22). This quantity is greater than 1
sinceaii > 1 by hypothesis, and for one of the state variables to be
in (b; c), there must be at least one�i � 1.

This phenomenon is not limited to the 2� 2 case. If A is
a tridiagonaln � n Toeplitz matrix with 1 < a11 <

p
2 and

a12 = �a21 � 1 and there is at least onex 2 (b; c) such that
f 0(x) = 1 then there exists ak such that the system will violate the
SBOP. To illustrate this, consider the concrete example ofa11 = 1:1

and a12 = 1, giving

A =

1:1 1 0 . . . 0

�1 1:1 1 . . . 0

0 �1 1:1 . . . 0
...

. ..
. ..

.. .
...

0 . . . 0 �1 1:1

and an operating point such thatx1 2 (b; c) with f 0(x1) =

1 and xi such that f 0(xi) = 1=2 for i 6= 1, giving D =

diag(1; 1=2; 1=2; . . . ; 1=2). This occurs, for example, iff = f� with
� = 1= log(2), x+ = (0; 2; . . . ; 2)T , andk = x

+ � Af�(x
+). The

eigenvalues,�m, of AD�I with largest real part in then�n case for
n = 2; . . . ; 10 are shown in Table I. This indicates that the real part
of �m converges towarda11=2� 1 from above asn increases, and
so a CNN of arbitrary size may be constructed which does not have
the SBOP. It is interesting to note that the matrix in this example is
of the same form as those discussed in [18].

The remainder of this brief describes special forms ofA which
have the SBOP.

III. RECIPROCAL NETWORKS

The most important class of CNN’s is reciprocal networks, in
which A is Hermitian (or real symmetric). This corresponds to a
cloning template which is centro-Hermitian (aij = �an�i+1;n�j+1) or
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real centro-symmetric (aij = an�i+1;n�j+1). There is a large body
of literature about matrices of this form [19]. In particular, many
useful CNN’s of this form have been developed [4], [6], [13]–[15].
Any reciprocal CNN has the SBOP. To prove this, the following
known result [16] will be used.

Theorem 1: Let� and� be positive real numbers. IfA is ann�n

matrix whose diagonal elementsaii are real and satisfyaii > �, and
D = diag(�1; . . . ; �n) is a real diagonal matrix with�i = 0 or �i � �

for all i, and not all�i are zero, thenAD has at least one eigenvalue
� with Re(�) > ��.

This will be combined with the following result.
Theorem 2: If A is an n � n Hermitian matrix, andD =

diag(�1; . . . ; �n) is a real diagonal matrix with�i � 0 then for all
nonzero eigenvalues� of AD, @�=@�i = k�, wherek � 0 may
depend onD and i.

Proof: Define the selector matrix,Si = (sjk) such thatsjk is
1 if i = j = k and 0 otherwise. Letv be a right eigenvector of
AD corresponding to some� 6= 0, scaled such thatv�Dv = 1

(which is possible since� 6= 0 andD is nonnegative diagonal), so
ADv = �v andu� = (Dv)� is a left eigenvector ofAD. Here�

denotes the complex conjugate transpose. It can be shown that the
nonzero eigenvalues ofAD are nondefective, and so the well-known
result (see, for example, [20, eq. 12.4])

@�

@�i
=
u
�(@(AD)=@�i)v

u�v

can be applied. Noting thatu�v = 1, it follows that

@�

@�i
= u

�
A
@D

@�i
v = u

�
ASiv = v

�
D

�
ASiv

= (ADv)
�
Siv = �v

�
Siv = �v

�
Siv

where the last step uses the fact that� is real, as will be shown below.
Now let k := v

�Siv = vivi = jvij
2

� 0. Then@�=@�i = k� with
k � 0 as required.

The above theorem used the fact that all of the eigenvalues� of
AD are real. In the case thatD is nonsingular, this follows from the
fact thatK-Hermitian matrices have real eigenvalues [21, p. 111].
WhenD is singular,AD need not beK-hermitian, but� may still
simply be shown to be real as follows. Ifv�Dv = 0 then � = 0

and is real. Otherwise�v�Dv = v
�D(ADv) = (v�D�A�)Dv =

�v�Dv, and so� = � and � is real.
Corollary 1: Let A andD be n � n matrices. IfA is Hermitian

with aii > � > 0 andD is positive semidefinite, real and diagonal
with at least one element not less than� > 0, thenAD has at least
one eigenvalue� > ��.

Remark: The significance of this result is that it only requires that
at least onediagonal element ofD be not less than�. In the much
more restricted case thatall diagonal elements ofD are not less
than�, this follows from the elementary result that the sum of the
eigenvalues is equal to the trace ofAD [22, p. 95], [23, p. 1].

Proof of Corollary 1: Let Pj denote the set of alln� n positive
semidefinite diagonal matrices withj elements in the interval(0; �)
and at least one element not less than�. ClearlyD 2 Pj for some
j. Let Dj denote the set of allP 2 Pj for which AP has at least
one eigenvalue� > ��. It then suffices to show thatDj = Pj

for all j. Clearly D0 = P0 by Theorem 1. Make the inductive
hypothesis thatDj = Pj for somej. To see thatDj+1 = Pj+1,
consider an arbitraryP = diag(�1; . . . ; �n) 2 Pj+1 with �i 2 (0; �).
Consider P̂ (t) = diag(�1; . . . ; �i�1; t; �i+1; . . . ; �n), and let �(t)
denote the largest eigenvalue ofAP̂ (t). Now P̂ (0) 2 Pj = Dj , so
�(0) > �� > 0. But d�(t)=dt > 0 by Theorem 2. Thus�(�i) > ��

andP = P̂ (�i) 2 Dj+1. ThusDj = Pj for all j, and the corollary
is proved.

It may now be proved that reciprocal networks have the SBOP.
Theorem 3: The class of CNN’s with Hermitian weight matrixA

has the SBOP.
Proof: For the outputyi to be in(f(b); f(c)) it is necessary that

xi 2 (b; c). Assume, with a view to obtaining a contradiction, that
there exists a stable equilibrium withxi 2 (b; c) for somei. Then the
linearization about this point (2) satisfies the conditions of Corollary
1 with � = � = 1, and soAD has an eigenvalue� > 1, and
AD � I has a positive eigenvalue. Thus the equilibrium is unstable,
contradicting the assumption, and the theorem is proved.

It has been shown [1], [2] that a CNN with Hermitian feedback
matrix converges for smooth activation functions as well as for the
piecewise linear function. Thus, and because Theorem 3 shows that
the only stable states are binary output states, such a system will
almost surely converge to a binary output state.

IV. DIAGONALLY DOMINANT NETWORKS

Another class of CNN’s which have the SBOP is those for which
A� I is transpose diagonally dominant (TDD). A matrixM is said
to be TDD if M� is strictly diagonally dominant with positive di-
agonal elements. This corresponds to a “centrally dominant” cloning
template, in which the central element is at least one greater than the
sum of the absolute values of the other elments.

Theorem 4: The class of CNN’s with weight matrixA such that
A � I is TDD, has the SBOP.

Proof: By definition of transpose diagonal dominance, for alli

aii � 1 >

j 6=i

jajij:

Now if there is an equilibrium withyi 2 (f(b); f(c)) for somei
then �i = f 0(xi) � 1, and so

aii�i � 1 � �i(aii � 1) > �i
j 6=i

jajij :

Then by Gershgorin’s theorem,(AD � I)� has an eigenvalue with
positive real part, and hence so doesAD � I. Thus the equilibrium
is not stable.

This result covers a wider range of dominant matrices than
some previous results. For example, [24] shows that systems whose
elements have a specific sign structure have a unique global attractor.
In contrast, TDD matrices may give rise to multiple stable states. A
simple example isA = �I, where� > 1 andk = 0, in which all
states withjxij = � for all i are stable. However, the result presented
here is limited to simple CNN’s, while that of [24] includes the wider
class of delay type CNN’s.

In many proposed templates,A is diagonally dominant butA� I

is not (for example [5], [8]). This is not in general sufficient for the
CNN to have the SBOP. In the casen = 2 of the second example
given in Section IIA is diagonally dominant, but was shown there
not to have the SBOP.

Theorems 3 and 4 are independent of the network’s size and can
be formulated in terms of replicated templates. A third sufficient
condition for the SBOP to hold relates the self feedback to the size
of the network rather than specifying a form for the cross feedback.

Theorem 5: The class of CNN’s withn neurons and weight
matrix, A, with diagonal elements satisfyingaii > n for all i and
arbitrary off-diagonal elements, has the SBOP.

Proof: These networks satisfy Tr(AD � I) =
i
aii�i � n.

Each term of the sum will be nonnegative, since�i = f 0(xi) � 0.
If there is an equilibrium withyi 2 (f(b); f(c)) for some i then
�i = f 0(xi) � 1, and soaii�i > n giving Tr(AD � I) > 0,
implying that at least one eigenvalue ofAD�I is positive. Thus the
equilibrium is not stable.
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V. CONCLUSION

This brief has generalized the BOP to CNN’s with an important
class of realisable, smooth transfer functions. It has been shown that
the cross feedback does affect the binary output of such CNN’s.
However in most important cases, namely reciprocal networks and
transpose diagonally dominant networks, the precise cross feedback
terms are not important.
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Approximating Delay Elements by Feedback

Alessandro Beghi, Antonio Lepschy, and Umberto Viaro

Abstract—A procedure for obtaining a proper rational approximant of
the transfer function of a delayor is suggested. In particular, the step
response of the unity-feedback system with the delayor in the direct
path is first approximated by truncating the Fourier series expansion of
its periodic component, and then the corresponding direct-path rational
transfer function is derived, thus arriving at a stable Blaschke product.

Index Terms— Approximation, delay elements, feedback systems,
Fourier analysis.

I. INTRODUCTION

Many approximation techniques aim at the construction of a
simplified model of a plant to be controlled, in such a way that the
design of the controller can be implemented more easily.

To this purpose, it is advisable to derive the model of the simplified
plant by referring to the desired closed-loop system characteristics
(cf., e.g., [1]). In fact, the feedback control system could even turn
out to be unstable with the original plant if the controller were
designed by referring to a reduced model of the plant obtained without
consideration of the closed-loop specifications (bandwidth, resonance
peak, etc.), as pointed out in [2].

Approximating a given system characterized by the transfer func-
tion G(s) from an approximation of

W (s) =
G(s)

1�G(s)
(1)

(see Fig. 1) may be convenient for different reasons, too.
For instance, whenG(s) has no zeros and its poles cannot

reasonably be separated into a set of dominant poles and a set of
remote poles, a reduction procedure based on the retention of the
dominant modes is not applicable toG(s): Instead, in most cases
a pole-retention technique can easily be applied toW (s) because
its poles diverge for increasing values of the loop gain magnitude
(tending to the asymptotes of the related root locus) and, therefore,
some of them become definitely dominant over the others.

By denoting withŴ (s) the approximation ofW (s); the required
reduced model will then be obtained according to

Ĝ(s) =
Ŵ (s)

1� Ŵ (s)
: (2)
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