

 Swinburne Research Bank
 http://researchbank.swinburne.edu.au

Liu, C., Lin, X., & Orlowska, M., et al. (2003). Confirmation: increasing resource availability for

transactional workflows.

Originally published in Information Sciences, 153, 37–53.
Available from: http://dx.doi.org/10.1016/S0020-0255(03)00066-5

Copyright © 2003 Elsevier Ltd. All rights reserved.

This is the author’s version of the work. It is posted here with the permission of the publisher for
your personal use. No further distribution is permitted. If your library has a subscription to this

journal, you may also be able to access the published version via the library catalogue.

Accessed from Swinburne Research Bank: http://hdl.handle.net/1959.3/37783

Confrmation: In
reasing Resour
e Availability for

Transa
tional Workfows

Chengfei Liu

Advan
ed Computing Resear
h Centre

S
hool of Computer and Information S
ien
e

University of South Australia

Adelaide, SA 5095, Australia

hengfei.liu�unisa.edu.au

Xuemin Lin

S
hool of Computer S
ien
e and Engineering

The University of New South Wales

Sydney, NSW 2052, Australia

lxue�
se.unsw.edu.au

Maria Orlowska, Xiaofang Zhou

Dept of Computer S
ien
e and Ele
tri
al Engineering

University of Queensland

Brisbane, QLD 4072, Australia

{maria,zxf}�
see.uq.edu.au

Abstra
t

The notion of
ompensation is widely used in advan
ed transa
tion models as

means of re
overy from a failure. Similar
on
epts are adopted for providing "transa
tion­

like" behaviour for long business pro
esses supported by workfows te
hnology. In

general, it is not trivial to design
ompensating tasks for tasks in the
ontext of a

workfow. A
tually, a task in a workfow pro
ess does not have to be
ompensatable

in the sense that the for
ibility of "reverse" operations of the task is not always guar­

anteed by the appli
ation semanti
s. In addition, the isolation requirement on data

resour
es may make a task diÆ
ult to
ompensate. In this paper, we frst look into the

requirements that a
ompensating task has to satisfy. Then we introdu
e a new
on­

ept
alled
onfrmation. With the help of
onfrmation, we are able to modify most

non­
ompensatable tasks so that they be
ome
ompensatable. This
an substantially

in
rease the availability of shared resour
es and greatly improve ba
kward re
overy

for workfow appli
ations in
ase of failures. To efe
tively in
orporate
onfrmation

and
ompensation into a workfow management environment, a three level bottom­up

workfow design method is introdu
ed. The implementation issues of this design are

also dis
ussed.

Keywords: Advan
ed Transa
tion Models, Workfows, Ba
kward Re
overy, Com­

pensating Transa
tions.

1

1 Introdu
tion

Re
ent years have seen widespread use of databases in non-traditional appli
ations su
h
as oÆ
e automation, CAD/CAM, publi
ation environments and software development
environments. The transa
tions in su
h environments are often
omplex, with the need
to a

ess data held in multiple autonomous database systems for a long duration. The
traditional transa
tions [7, 15] are not appropriate for these appli
ations sin
e some of
the ACID properties
ontradi
t the requirements of these appli
ations. For example, a
long-running transa
tion may a

ess many data in the
ourse of its exe
ution. Due to
the isolation requirement, these data
annot be released until the transa
tion
ommits.
If some other transa
tions need to a

ess some data held by the transa
tion, it will wait
- perhaps for hours or even days - for the long-running transa
tion to
ommit. This
is apparently una

eptable. To over
ome the limitations of the traditional transa
tion
model, many advan
ed transa
tion models have been proposed [1]. Most of them have
taken the appli
ation semanti
s into a

ount and provided some semanti
 me
hanisms for
programmers. For examples, the Multi-level Transa
tions [1] allows more
on
urren
y at
higher level
ompared to single-level
on
urren
y
ontrol. Commutativity of higher level
operations
an be explored by programmers based on appli
ation-spe
if
 semanti
s. Con-

urren
y
ontrol for transa
tions on aggregate attributes has been parti
ularly studied
by Reuter [17], Gawli
k and Kinkade [4], O'Nell [16]. In their proposed methods, pro-
grammers are allowed to make a spe
ial request to verify that an attribute bears some
relation to a known value. No lo
k needs to be put on a data item. Similarly, in the
NT/PV model [10] and the ConTra
t model [18], invariants have been used to allow more

on
urren
y.

To guarantee the atomi
ity of long-lived transa
tions,
ompensating transa
tions [6, 11]
have been widely used in many advan
ed transa
tion models, su
h as Sagas [3], ConTra
t,
Flex [2], Multi-level Transa
tions and Open-nested Transa
tions. For a transa
tion T ,
a
ompensating transa
tion C is a transa
tion that
an semanti
ally undo the efe
ts of
T after T has been
ommitted. For example, the
ompensation of a reservation
an be
a
an
ellation, and the
ompensation of a withdrawal
an be a deposit. To deal with
the problem of long-lived transa
tions, the Sagas model, for instan
e, stru
tures a long-
lived transa
tion as a sequen
e of subtransa
tions, and ea
h of them is asso
iated with
a
ompensating subtransa
tion. In
ase one of the subtransa
tions in su
h a sequen
e
aborts the previous subtransa
tions are undone by automati
ally s
heduling the asso
iated

ompensating subtransa
tions. By allowing transa
tions to release partial results before
they
omplete, we are able to avoid the long-duration waiting problem
aused by long-
lived transa
tions. However, the Sagas model, like most other advan
ed transa
tion models
based on
ompensation, is useful only when the subtransa
tions in a Saga are relatively
independent and ea
h subtransa
tion
an be su

essfully
ompensated.

Reliability is of
riti
al importan
e to workfow systems [19, 5]. A workfow
onsists of
a set of tasks that are
oordinated in order to a
hieve a
ommon business goal. Ea
h task
defnes a logi
al step that
ontributes towards the
ompletion of the workfow. Workfows
with transa
tion-like behaviors are referred to as transa
tional workfows [19, 8]. Transa
-
tional workfows share the obje
tives of some advan
ed transa
tion models about sele
tive
relaxation of transa
tional properties of business pro
esses based on appli
ation semanti
s.
As a workfow instan
e (ena
tment pro
ess) tends to be long lasting, failures
ould o

ur
at various stages within its life-time. We
an
lassify failures into two separate groups:
(1) system failures: failures in the underlying infrastru
ture (e.g., hardware, network)
or failures within the workfow system (e.g., s
heduler, databases); (2) semanti
 failures:

2

2

failures asso
iated with the exe
ution of workfow tasks (e.g., unavailability of resour
es,
internal de
isions). A workfow management system (WfMS) normally deals with system
failures by implementing the feature of forward re
overy. Dealing with semanti
 failures
requires the feature of ba
kward re
overy, i.e., to eliminate the efe
ts of failed workfow
instan
es. In this paper, we fo
us on the support of ba
kward re
overy.

The notion of
ompensation is important to workfow systems not only be
ause most
workfow instan
es tend to be long lasting, but also be
ause tasks in a workfow instan
e
may not always be able to be undone (e.g., human a
tions and lega
y system pro
essing).
One
an defne
ompensating tasks whi
h semanti
ally undo the exe
uted tasks of the
failed workfow instan
e [12, 9]. Compensation has been applied to tasks and group of
tasks (spheres) to support partial ba
kward re
overy in the
ontext of the FlowMark
WfMS [13]. Usually, it is assumed a
ompensating task is asso
iated with a task. However,
this assumption is not always true. A task
an be non-
ompensatable if the for
ibility of
the reverse operations of the task
annot be guaranteed by the appli
ation semanti
s. In
this paper, we
arefully investigate the properties of shared resour
es and tasks whi
h may
be performed on these resour
es. We fnd some tasks are non-
ompensatable be
ause the
reverse operations of the task may not be always exe
uted su

essfully. In addition, if the
relaxation of isolation on a shared data resour
e
annot be
ompromised by a workfow
appli
ation, the
ompensation
annot be applied to the tasks whi
h are performed on
the resour
e. As su
h, we introdu
e a new me
hanism
alled
onfrmation. By using

onfrmation, we are able to modify some non-
ompensatable tasks so that they be
ome

ompensatable. on
e a workfow instan
e is exe
uted su

essfully, the
onfrmation tasks
of all exe
uted tasks are exe
uted automati
ally. This is in
ontrast to the
ompensation
s
enario: on
e a workfow instan
e fails in its exe
ution, the
ompensating tasks of all
exe
uted tasks are exe
uted. In this paper, we fo
us our presentation in the
ontext of
workfows, though the
on
epts and me
hanisms dis
ussed in the paper are also appli
able
to non-traditional database appli
ations.

The rest of the paper is organized as follows. In se
tion 2, we look into the requirements
that a
ompensating task must satisfy. In se
tion 3, we introdu
e the me
hanism of

onfrmation and show how it is used to deal with the non-
ompensatability problem. A
bottom-up workfow design method whi
h in
ludes both
ompensation and
onfrmation
is proposed in se
tion 4, together with some implementation issues. Se
tion 5
on
ludes
the paper.

Requirements of a Compensating Task

Suppose a task T is defned in a workfow W , T is
alled
ompensatable if the following

onditions are satisfed.
(1) for
ibility: Let C be the
ompensating task of the task T . Then after T is invoked
and exe
uted in any instan
e W of W , the exe
ution of C must be guaranteed to be
su

essful within a period of time spe
ifed.
(2) relaxation of isolation: After T is invoked and exe
uted in any instan
e W of W , the
shared data resour
es whi
h T has a

essed will be released. This relaxation of isolation on
shared data resour
es is required as the purpose of introdu
ing
ompensation is to avoid
long-duration waiting, otherwise, we should use system level undo instead of
ompensation.

The following two examples illustrate these two requirements.

3

Example 1 Suppose a
ommon a

ount is used for efe
tive fnan
ial management of
multiple proje
ts in an organisation. The organisation may have two types of business
pro
esses whi
h are spe
ifed by two workfows Wh and W2, respe
tively. Instan
es of Wh

involve a task Tp produ
ing an amount of money and putting it into the
ommon a

ount,
while instan
es of W2 involve a task T

onsuming funds from the
ommon a

ount.

To model these business pro
esses, a shared data resour
e
alled Common A

ount
is used with two operations defned on it: deposit and withdraw. The tasks Tp and T

in the business pro
esses
an be implemented by invoking the operations deposit and
withdraw, respe
tively. The Common A

ount
an be des
ribed by the following pseudo

ode. A
ompensation is asso
iated with the implementation of ea
h operation, it defnes
the
ompensating operation of the operation, if needed. Consequently, the
ompensating
tasks of tasks Tp and T

an invoke the
ompensation parts of the deposit and withdraw
operations, respe
tively.

Common A

ount {

double balan
e;

1* operations on the a

ount

boolean withdraw(double amount);

void deposit(double amount);

}

boolean withdraw(double amount) {

if (balan
e - amount >= 0) {

balan
e := balan
e - amount;

return(true)

}

else return(false);

Compensation:

deposit(amount);

}

void deposit(double amount) {

balan
e := balan
e + amount

Compensation:

1* not available

}

For a private a

ount, deposit is always
ompensatable by withdrawal and vi
e versa.
However, for the
ommon a

ount as defned in this example, the
ompensation of the
deposit operation is not available. This is be
ause the for
ibility of its reverse operation
withdraw is not always guaranteed by the appli
ation. Consequently, the
ompensating
task of Tp is not available either. Noti
e,
on
urren
y
ontrol of aggregate attributes
(balan
e in this example) has been well addressed in Reuter's method, Fast Path method
and Es
row method. These methods fo
us on the forward behaviour of transa
tions.
In this paper, we study the ba
kward behaviour of transa
tions (workfows), i.e., the

ompensatability of tasks whi
h a

ess aggregate attributes.

Let us have a look at the following s
enario. Suppose W h is an instan
e of W h and
W 2 is an instan
e of W 2. Initially, the balan
e of Common A

ount is 0. First, the

4

task Tp of W h is exe
uted whi
h deposits $1,000 to the Common A

ount. After that,
the task T
 in W 2 withdraws $800 from the Common A

ount. In a later stage, W h

fails due to some reason and tries to rollba
k. This naturally in
ludes withdrawing $1,000
ba
k whi
h it previously deposited into the a

ount. Unfortunately, this withdrawal is
unable to exe
ute su

essfully sin
e part of the money has been
onsumed by W and it2

is possible the exe
ution of W has already been fnished.2

There are two system-level solutions to this problem:
(1). The Tp of W holds the lo
k of the Common A

ount until all tasks of W fnishes.h h

(2). The Tp of W releases the Common A

ount after it is exe
uted. However, Wh 2

must wait for W to su

essfully fnish. If W fails and the
ompensation of Tp
an not
be exe
uted su

essfully, W may need to be
as
adedly rollba
ked. This means mu
h

h h

2

work done by W may be lost.

Obviously, both solutions are not appli
able sin
e long-duration waiting is unavoidable
even when the balan
e of Common A

ount is ample.

In real situation, one may use an approximate approa
h based on statisti
s or experi-
en
ed estimation of, say, the per
entage of failed instan
es. In that way, Tp of most failed
instan
es of Wh
an be
ompensated. However, there is no guarantee that Tp of all failed
instan
es of Wh
an be
ompensated, espe
ially if the estimation is over-optimisti
. In
this
ase, the organisation may have some poli
ies for ex
eptional
ompensation. Can we
provide guaranteed
ompensation? We will answer this in the next se
tion.

2

Example 2 In many servi
e organisations, there may exist one type of business pro
esses
whi
h in
lude a task
olle
ting
ustomer information and other types of business pro
esses
whi
h in
lude tasks using
ustomer information. Due to the variety of appli
ations, the
use of the
ustomer information might be diferent. Let us frst look at a dirty-read
ase
where a business pro
ess does not have to a

ess a

urate information about
ustomers.

To model the business pro
esses in this example, we may have two workfows Wh and
W2, where in
ludes a task T for inserting
ustomer information while in
ludesWh T W2

a task Td whi
h dirty-reads
ustomer information. A shared data resour
e
alled Cus-
tomer Info is needed with two operations insert and dirty read for TT and Td to invoke,
respe
tively. The following is the defnition of Customer Info.

Customer Info {

table
ustomer;

1* operations on Customer Info

void insert(tuple
ust);

table dirty read(string pred);

}

void insert(tuple
ust) {

1* insert tuple
ust to the table
ustomer

Compensation:

1* delete tuple
ust from table
ustomer using
ust.name;

}

table dirty read(string pred) {

1* return("sele
t * from
ustomer where pred")

5

Compensation:

1* do nothing

}

As seen above, in this dirty-read
ase, the operation insert is
ompensatable with
reverse operation defned whi
h deletes what has been inserted. This is be
ause there
is no isolation requirement on the shared data resour
e Customer Info. After TT of an
instan
e, say W h of Wh, inserts a
ustomer tuple into
ustomer table, the table with the
new inserted
ustomer tuple (partial result of W h) is immediately a

essible for Td of
any instan
e of W2, regardless whether W h may fail later and thus the inserted
ustomer
information may be deleted.

Suppose now the servi
e organisation needs to add a new business pro
ess spe
ifed
by W3 whi
h needs to stri
t-read Customer Info via a task Ts. In this
ase, the operation
insert defned above is no longer
ompensatable. This is be
ause the isolation on Cus-
tomer Info
an no longer be
ompromised. After TT of W h inserts a
ustomer tuple, that
tuple
an not be immediately a

essed by Ts of any instan
e of W 3 a

esses it. As a
result, the
ompensating task of TT is no longer available. Even lo
king (in long-duration)
on the
ustomer table
annot be applied as it restri
ts the use of dirty-read. To support
this mixed dirty-read and stri
t-read s
enario by lo
king, an expli
it and sophisti
ated
re
ord-level lo
king feature must be supported. Unfortunately, this feature is not easy to
fnd in
urrent SQL-based DBMSs.

3 Confrmation

In this se
tion, after analysing the requirements of
ompensatable tasks, we introdu
e
a new
on
ept
alled
onfrmation and show how it
an be used to
ope with the non-

ompensatability problem. As seen from the above examples, a task
an be implemented
by invoking a set of operations. Similarly, the
ompensating task of the task
an be
implemented by invoking the
ompensation parts of the set of operations. If a task is

ompensatable, all operations it may invoke must be
ompensatable. In the following, we
will dis
uss the
ompensatability at the operation level.

3.1 Coping with Non-for
ibility

As demonstrated by Example 1, if an operation is
ompensatable, its reverse operation
must be for
ible. There are some non-
ompensatable operations whose reverse opera-
tions are absolutely non-for
ible. An often-mentioned example is emitting a missile. If a
workfow instan
e
ontains a task whi
h invokes this kind of non-
ompensatable opera-
tions, the only solutions are either delaying the task to a later stage, or ignoring/manually
adjusting the efe
ts of the operation if the workfow instan
e fails. However, for most
non-
ompensatable operations, their reverse operations are not for
ible only under
er-
tain
onditions. i.e., the reverse operation of a non-
ompensatable operation
annot be
exe
uted su

essfully only when an undesired
ondition is rea
hed. For example, the
om-
pensation of the operation invo
ation deposit($1, 000) in Example 1 fails only if the balan
e
de
reases to less than $1,000. If the original balan
e is no less than $800, the exe
ution
of the
ompensation will not en
ounter a problem. Therefore, if the organisation has a
suÆ
ient balan
e in the
ommon a

ount for most of the time, the undesired
ondition

6

will not be easily rea
hed. System level lo
king is a simple way to deal with this non-

ompensatability problem, but obviously it sufers two severe problems: (1). long duration
lo
king of the data resour
e until the invoking workfow instan
es
omplete su

essfully.
(2). unne
essary lo
king sin
e update of the data resour
e will not
ause any problem in
most
ases.

Based on the dis
ussion, it is ideal to provide a semanti
 level me
hanism whi
h
an be
used to prevent the undesired
ondition from being satisfed. For this purpose, we propose
a new me
hanism
alled
onfrmation. For ea
h operation, a
onfrmation part may be
defned with the default default defnition as "doing nothing". The
onfrmation part is not
exe
uted at the same time when the operation is exe
uted. Instead, the
onfrmation part
is exe
uted at a later time for the purpose of
onfrming the exe
ution of the operation.
The motivations for introdu
ing the
onfrmation me
hanism are two fold: (1) to isolate
the part of the operation whi
h may afe
t the
ompensatability of the operation and
exe
ute this part later; (2) to semanti
ally
ommit the operation at a safe time. Similar to
a
ompensating task, the
onfrmation task of a task
an be implemented by invoking the

onfrmation parts of the set of operations whi
h have been invoked during the exe
ution
of the task. The
onfrmation parts of all invoked operations in a workfow instan
e are
exe
uted automati
ally on
e the system gets the instru
tion for
onfrmation.

More pre
isely, let O
! and O
p the
onfrmation part and the
ompensation part of
an operation O, respe
tively. Suppose the
onfrmation part and
ompensation part are
defned for ea
h operation with the default defnitions for both as "doing noting". Then
after O is exe
uted, two possible situations will happen later. (1) If the invoking workfow
instan
e exe
utes su

essfully, O
! will be automati
ally exe
uted later to semanti
ally

ommit O; (2) If the invoking workfow instan
e fails, O
p will be automati
ally exe
uted
later to semanti
ally rollba
k O.

To ensure that the undesired
ondition will never be rea
hed, we
an put the unsafe
part of an operation (e.g., deposit) into its
onfrmation part and delay the exe
ution of
this part until a safe time later on, say, after an invoking workfow instan
e su

eeds in its
exe
ution. At that time,
hanging the value of the undesired
ondition by other operations
(e.g., withdraw) will not
ause any problem be
ause the
ompensation is no longer needed
for this workfow instan
e. As a result, an operation
an always be
ompensated before the
exe
ution of the
onfrmation part of the operation. In addition, both an operation and
its
onfrmation part
an be implemented as two separate short transa
tions. Therefore,
the shared resour
es that they may a

ess only need to be lo
ked in a short time.

Note, O and O
! are forward parts while O
p is a ba
kward part. If the for
ibility of
forward parts
annot be guaranteed, it will not leave any problem as the invoking workfow
instan
e
an always
hoose to fail or try a
ontingen
y plan.

Let us look at how
onfrmation
an help our frst example.

Example 3 A modif
ation of Example 1 with
onfrmation.

Common A

ount {

double balan
e;

double available balan
e;

1* operations on the a

ount

boolean withdraw(double amount);

void deposit(double amount);

7

}

boolean withdraw(double amount) {

if (available balan
e - amount >= 0) {

available balan
e := available balan
e - amount;

balan
e := balan
e - amount;

return(true)

}

else return(false);

Compensation:

balan
e := balan
e + amount;

available balan
e := available balan
e + amount;

Confirmation:

1* do nothing

}

void deposit(double amount) {

balan
e := balan
e + amount

Compensation:

balan
e := balan
e - amount

Confirmation:

available balan
e := available balan
e + amount

}

As shown above, a new attribute available balan
e is added to indi
ate the available
balan
e of the a

ount. A
onfrmation part is added to the deposit operation for in-

reasing available balan
e. A workfow instan
e whi
h invokes a deposit operation
an
hold its deposited amount of money by delaying the exe
ution of the
onfrmation part
of the operation later, say, until the workfow instan
e su

eeds later in its exe
ution. By
doing so, the deposit operation be
omes
ompensatable by the
ompensation part of the
operation, i.e., balan
e de
rement.

Come ba
k to the s
enario in Example 1. If the original balan
e and available balan
e
are all zero, after deposit($1, 000) is invoked by W h, the balan
e is in
reased to $1,000.
The available balan
e, however, remains to be zero. Both balan
e and available balan
e

an be a

essed by other workfows for whatever purposes. Before the
onfrmation part
of the operation invo
ation deposit($1, 000) is exe
uted, withdraw($800) invoked by W

annot be su

essfully exe
uted. This guarantees that deposit($1, 000) invoked by W h

is
ompensatable. If the original available balan
e is no less than $800 or is in
reased to
no less than $800 (say, after the
onfrmation of the invo
ation deposit($1, 000)), there
is no problem for W 2 to su

essfully invoke withdraw($800). This refe
ts pre
isely the
semanti
s of the appli
ation.

The
onfrmation me
hanism used in this example is diferent from a
on
urren
y

ontrol method su
h as the invariant used by the NT/PV model and the ConTra
t model.
The former is used for guaranteeing su

essful ba
kward re
overy, while the latter is used
for in
reasing
on
urren
y.

8

2

3.2 Coping with Isolation

As shown in Example 2, if an operation performed on a shared data resour
e is
ompen-
satable, the isolation requirement on the data resour
e must be
ompromised. Usually
in a workfow instan
e, the
ompensation of an operation is invoked at a later time after
the invo
ation of the operation. If the isolation on the data resour
e is required, other
workfow instan
es have to wait until the invoking workfow instan
e fnishes. In that
ase,
there is no need to provide
ompensation at all. However, with the help of
onfrmation,
we
an make an operation
ompensatable while still keeping the isolation requirement on
the shared data resour
es. This
an be done by temporarily separating a data resour
e
into an isolation part and a non-isolation part.

Let us look how it works for our isolation example.

Example 4 A modif
ation of Example 2 with
onfrmation.

Customer Info {

table
ustomer, temp
ust;

1* operations on Customer Info

void insert(tuple
ust);

table dirty read(string pred);

table stri
t read(string pred);

}

void insert(tuple
ust) {

1* insert tuple
ust into table temp
ust

Compensation:

1* delete tuple
ust from table temp
ust using
ust.name;

Confirmation:

1* swap the tuple
ust from table temp
ust to
ustomer

1* insert tuple
ust into table
ustomer;

1* delete tuple
ust from table temp
ust using
ust.name.

}

table dirty read(string pred) {

table tempi, temp2;

1* sele
t * into tempi from
ustomer where pred

1* sele
t * into temp2 from temp
ust where pred

1* return(tempi union temp2)

Compensation:

1* do nothing

Confirmation:

1* do nothing

}

table stri
t read(string pred) {

1* return("sele
t * from
ustomer where pred")

Compensation:

1* do nothing

Confirmation:

9

4

1* do nothing

}

In this example, we use the table
ustomer and temp
ust to store the non-isolation
and isolation parts of Customer Info, respe
tively. When an insert operation is invoked,
new
ustomer information is put into temp
ust. When the invoking workfow instan
e
fnishes su

essfully, the
onfrmation part of the operation is exe
uted to
onfrm the insert
operation invo
ation by swapping the
ustomer information from the table temp
ust to
the table
ustomer. If the invoking workfow instan
e fails, the invoked insert operation

an be easily
ompensated by removing the
ustomer information from the table temp
ust,
without afe
ting other workfow instan
es whi
h are
on
urrently a

essing the
ustomer
information.

With the help of
onfrmation, long-duration lo
king
an be avoided but isolation on the
data resour
es
an still be a
hieved. For invo
ations of operations su
h as stri
t read where
isolation is required, only non-isolation part of
ustomer information is made available
for a

essing; For invo
ations of operations su
h as dirty read where isolation
an be

ompromised, both non-isolation and isolation parts of the resour
e
an be a

essed. No
interferen
e will o

ur among workfow instan
es regardless whether isolation on the data
resour
es is required. As a result, the availability of data resour
es is maximised. This is
ideal for enterprises where a variety of requirements on data resour
es may exist. However,
without the help of
onfrmation, it is almost impossible to efe
tively implement the above
mixed stri
t read and dirty read s
enario where both
ompensatability and isolation on
shared data resour
es are required.

Bottom-Up Workfow Design

In this se
tion we propose a three level bottom-up workfow design method as shown in
Figure 1. This design method
an easily and perfe
tly in
orporate both
ompensation and

onfrmation into a workfow management environment.
(1) At the bottom level, data resour
es are modelled as resour
e
lasses. The only inter-
fa
e to a data resour
e is via a set of operations together with their
ompensations and

onfrmations. This is helpful in workfow environments. For instan
e, a lega
y system

an be wrapped as an obje
t with an interfa
e providing a set of operations. Compensa-
tion and
onfrmation
an be developed at the time a lega
y system is involved in some
workfows. For example, the resour
e
lass Ca has three operations oph, op2 and op3
defned in Figure 1.
(2) The middle level is used to spe
ify tasks. A task
an be implemented simply by in-
voking operations on data resour
es. As shown in Figure 1, TT is implemented as invoking
operation oph of resour
e
lass Cb and op3 of Ca.
(3) The top level is used to spe
ify workfows. As usual, dependen
ies among tasks of
workfows are spe
ifed. To support
onfrmation and
ompensation, extra
ontrol are
added at this level. Partial ba
kward re
overy
an be easily realised by multiple use of

onfrmation
ontrol.
In the following, we present workfow design via these three levels frst, then dis
uss briefy
the run-time support of workfows designed in su
h a way.

10

Workflow Specification Level

...... Ti Tj

Task Specification Level

Tj {
...

 RCb.op2;
...

}

RCb RCc

 RCa.op3;
 RCa.op1;

 RCc.op2

 RCb.op1;

...

Tk {
 ...

 ...

}

Ti {

}
 ...

...

Data Resource Specification Level

op1

op2

op3

op1

op2

op1

op2

op3

RCa

Figure 1: A Bottom-Up Workfow Design Method

4.1 Spe
ifying a Workfow

Basi
ally, a workfow is about the
oordination of a set of tasks. This is a
hieved by
defning various types of dependen
ies among tasks, e.g.,
ontrol fows, data fows, tem-
poral
onstraints, et
. Usually, a workfow spe
if
ation language is provided by a WfMS
to spe
ify these dependen
ies. In this paper, we
on
entrate on how
ompensation and

onfrmation
an be in
orporated into the workfow spe
if
ation. In supporting
ompen-
sation and
onfrmation, we add two statements
alled COMPENSATE and CONFIRM.
Spe
ifers should be allowed to put these statements into the workfow spe
if
ation to
refe
t their de
isions. This is similar to in
luding ROLLBACK and COMMIT statements
in a transa
tion. The diferen
e between a workfow s
enario and a transa
tion s
enario is
that exe
ution of COMPENSATE and CONFIRM statements is an appli
ation behaviour,
while exe
ution of ROLLBACK and COMMIT statements is a system behaviour. We may
give another pair of names SEMANTIC-ROLLBACK/SEMANTIC-COMMIT to represent
COMPENSATE/CONFIRMATION.

By putting a CONFIRM statement
arefully at several pla
es in a workfow, we are
able to
onfrm the exe
uted tasks group by group, thus
onfrm the exe
ution of the
workfow instan
es step by step. We may
all su
h a group of tasks as a sphere of joint

onfrmation with the similarity to the term a sphere of joint
ompensation dis
ussed in
[13]. In most
ases, these two spheres
an be
ombined as a single
on
ept. As a result,
a workfow instan
e
an be partially
onfrmed or partially
ompensated in the unit of a
sphere of
ompensation/
onfrmation. On
e a workfow instan
e
onfrms the exe
ution
of a group of tasks at a point and fails its exe
ution later, the system
an apply partial

11

re
overy by
ompensating those tasks whi
h are exe
uted after that point.

4.2 Spe
ifying a Task

A task spe
if
ation is mainly
on
erned with the implementation of the task. When a
task needs to a

ess a data resour
e, it is implemented by invoking an operation defned
at the interfa
e of the data resour
e. A task may invoke multiple operations defned on
diferent data resour
es. For ea
h task, a
ompensating task and a
onfrmation task are
automati
ally defned by the
ompensation parts and
onfrmation parts of all operations
the task may a

ess. This will be dis
ussed next.

4.3 Spe
ifying a Data Resour
e

For ea
h data resour
e, an interfa
e is provided whi
h
onsists of a set of operations. Tasks
using a data resour
e of this type
an only invoke these operations. Beside the operation
itself (we will
all it as the normal part of the operation in the following dis
ussion), a

ompensation part and a
onfrmation part of the operation must be defned, with the
default defnition as "doing nothing".
(1). A normal part spe
ifes what needs to be exe
uted when the operation is invoked by
a task.
(2). A
ompensation part spe
ifes what needs to be exe
uted to eliminate the efe
t of
the normal part invoked previously by a task T . The
ompensation part is invoked when
the
ompensating task of the task T is exe
uted.
(3). A
onfrmation part spe
ifes what needs to be exe
uted to
onfrm the work done by
the normal part invoked previously by a task T . The
onfrmation part is invoked when
the
onfrmation task of the task T is exe
uted.

The spe
if
ations for shared data resour
es Common A

ount and Customer Info have
been given in Example 3 and Example 4, respe
tively.

This design method has an appealing feature. It provides data resour
e independen
e
from the workfow appli
ations. The modif
ation of implementation of the operations (in-

luding
ompensation and
onfrmation) on a data resour
e has no impa
t on the workfow
spe
if
ation as long as the interfa
e remains un
hanged.

4.4 Exe
uting a Workfow Instan
e

When an instan
e of an above-spe
ifed workfow is submitted to the workfow engine of
a WfMS for exe
ution, the engine will s
hedule a
ompensation pro
ess automati
ally
while a COMPENSATE statement is being exe
uted. Similarly, the engine will s
hed-
ule a
onfrmation pro
ess automati
ally while a CONFIRM statement is being exe
uted.
This
an happen as well when an external event triggers the engine requiring COMPEN-
SATE/CONFIRM the workfow instan
e. When a COMPENSATE request arrives, the
engine s
hedules the exe
ution of all
ompensating tasks of those tasks whi
h have been
exe
uted yet have not been
onfrmed. This in turn triggers the exe
ution of
ompensation
parts of all operations whi
h have been invoked by the above tasks. The latest point of
the group of tasks
onfrmed is re
orded by the system. This point is used as a guide to
where the ba
kward re
overy should stop. Compensating tasks are exe
uted in reverse
order (ba
kward).

12

5

Similarly, when a CONFIRM request arrives, the engine s
hedules the exe
ution of all

onfrmation tasks whi
h have been exe
uted yet have not been
onfrmed. This in turn
triggers the exe
ution of
onfrmation parts of all operations whi
h have been invoked by
the above tasks. The latest point is also used as a guide to where the
onfrmation pro
ess
should start. Confrmation tasks are exe
uted in the same order as their tasks (forward).

During the pro
ess of
ompensation or
onfrmation, the values of input parameters of

ompensation part or
onfrmation part of ea
h invoked operation are provided automat-
i
ally. This
an be done by appropriate
omputation after the
ompletion of the normal
part of ea
h invoked operation and saving the results in the system log.

Con
luding Remarks

Designing
ompensating tasks is
riti
al for supporting ba
kward re
overy in workfow
systems and non-traditional database appli
ations. Workfow evolution [14]
an also be
better supported by well-designed
ompensating tasks. Due to the semanti
s of appli
a-
tions and their shared data resour
es, a
ompensating task does not always exist for a task.
In this paper, we studied the requirements of a
ompensatable task. Based on our observa-
tions, we proposed a novel semanti
 level me
hanism
alled
onfrmation. The relationship
between
onfrmation and
ompensation is similar to that between a
ommit and a roll-
ba
k. By using
onfrmation properly, non-
ompensatable operations on the shared data
resour
es
an be rewritten and be
ome
ompensatable. As su
h, the availability of shared
data resour
es gets in
reased substantially. The
onfrmation me
hanism also found its
appli
ability in dealing with the isolation problem of workfows of long transa
tions. To
efe
tively in
orporate both
onfrmation and
ompensation into workfow environments,
a three level workfow design framework was presented together with the dis
ussion of its
run-time support.

Like a
ompensation, a
onfrmation is also a semanti
 me
hanism provided to workfow
spe
ifers. Workfow spe
ifers may use it in a fexible way, based on the requirements of
appli
ations. Multiple versions of a
onfrmation and a
ompensation may be provided
based on
ertain fa
tors su
h as time. It is also interesting to build diferent patterns of

ompensation and
onfrmation a

ording to some typi
al appli
ations. We will investigate
these in the future.

Referen
es

[1] A. Elmagarmid, editor. Database Transa
tion Models For Advan
ed Appli
ations.
Morgan Kaufmann, 1992.

[2] A. Elmagarmid, Y. Leu, W. Litwin, and M. Rusinkiewi
z. A multidatabase trans-
a
tion model for interbase. In Pro
eedings of the 16th VLDB Conferen
e, Brisbane,
Australia, August 1990.

[3] H. Gar
ia-Molina and K. Salem. Sagas. In Pro
eedings of the ACM Conferen
e on

Management of Data, pages 249�259, 1987.

[4] D. Gawli
k and D. Kinkade. Varieties of
on
urren
y
ontrol in ims/vs fast path.
Bull. IEEE Database Eng., 8(2):3�10, 1985.

13

[5] D. Georgakopoulos, M. Horni
k, and A. Sheth. An overview of workfow manage-
ment: From pro
ess modeling to workfow automation infrastru
ture. Distributed
and parallel Databases, 3:119�153, 1995.

[6] J. Gray. The transa
tion
on
ept: Virtues and limitations. In Pro
eedings of the
International Conferen
e on Very Large Data Bases, pages 144�154, Cannes, Fran
e,
1981.

[7] J. Gray and A. Reuter. Transa
tion Pro
essing: Con
epts and Te
hniques. Morgan
Kaufmann, 1993.

[8] P. Grefen. Transa
tional workfows or workfow transa
tions. In Pro
eedings of the
International Conferen
e on Database and Expert Systems Appli
ations, pages 60�69,
Aix-en-Proven
e, Fran
e, 2002.

[9] B. Kiepuszewski, R. Muhlberger, and M. Orlowska. Flowba
k: Providing ba
kward
re
overy for workfow systems. In Pro
eedings of the ACM SIGMOD International

Conferen
e on Management of Data, pages 555�557, 1998.

[10] H. Korth and G. Speegle. Long-duration transa
tions in software design proje
ts. In
Pro
eedings of the 6th International Conferen
e on Data Engineering, pages 568�574,
1990.

[11] Henry F. Korth, E. Levy, and A. Silbers
hatz. A formal approa
h to re
overy by

ompensating transa
tions. In Pro
eedings of the 16th VLDB Conferen
e, pages 95�
106, 1990.

[12] D. Kuo, M. Lawley, C. Liu, and M. Orlowska. A model for transa
tional workfows. In
R. Topor, editor, Seventh Australasian Database Conferen
e Pro
eedings, volume 18,
pages 139�146, Melbourne, Australia, 1996. Australian Computer S
ien
e Communi-

ations.

[13] F. Leymann. Supporting business transa
tions via partial ba
kward re
overy in work-
fow management systems. In Pro
eedings of BTW'95, pages 51�70, 1995.

[14] C. Liu, M. Orlowska, and H. Li. Automating handover in dynami
 workfow en-
vironments. In Pro
eedings of the 10th International Conferen
e, CAiSE'9S, pages
159�172, Pisa, Italy, 1998.

[15] N. Lyn
h, M. Merritt, W. Weihl, and A. Fekete. Atomi
 Transa
tions. Morgan
Kaufmann, 1993.

[16] P. O'Neil. The es
row transa
tional method. ACM Trans. Database Syst., 11(4):405�
430, De
ember 1986.

[17] A. Reuter. Con
urren
y on high-traÆ
 data elements. In Pro
eedings of ACM Sym-

posium on Prin
iples of Database Systems, pages 83�92, 1982.

[18] A. Reuter. Contra
ts: A means for extending
ontrol beyond transa
tion boundaries.
In Pro
eedings of the 3rd International Workshop on High Performan
e Transa
tion
Systems, 1989.

[19] M. Rusinkiewi
z and A. Sheth. Spe
if
ation and exe
ution of transa
tional workfows.
In W. Kim, editor, Modern Database Systems: The Obje
t Model, Interoperability,
and Beyond. Addison-Wesley, 1994.

14

