

 Swinburne Research Bank
 http://researchbank.swinburne.edu.au

Liu, C., Lin, X., & Orlowska, M., et al. (2003). Confirmation: increasing resource availability for

transactional workflows.

Originally published in Information Sciences, 153, 37–53.
Available from: http://dx.doi.org/10.1016/S0020-0255(03)00066-5

Copyright © 2003 Elsevier Ltd. All rights reserved.

This is the author’s version of the work. It is posted here with the permission of the publisher for
your personal use. No further distribution is permitted. If your library has a subscription to this

journal, you may also be able to access the published version via the library catalogue.

Accessed from Swinburne Research Bank: http://hdl.handle.net/1959.3/37783

Confrmation: Inreasing Resoure Availability for

Transational Workfows

Chengfei Liu

Advaned Computing Researh Centre

Shool of Computer and Information Siene

University of South Australia

Adelaide, SA 5095, Australia

hengfei.liu�unisa.edu.au

Xuemin Lin

Shool of Computer Siene and Engineering

The University of New South Wales

Sydney, NSW 2052, Australia

lxue�se.unsw.edu.au

Maria Orlowska, Xiaofang Zhou

Dept of Computer Siene and Eletrial Engineering

University of Queensland

Brisbane, QLD 4072, Australia

{maria,zxf}�see.uq.edu.au

Abstrat

The notion of ompensation is widely used in advaned transation models as

means of reovery from a failure. Similar onepts are adopted for providing "transation

like" behaviour for long business proesses supported by workfows tehnology. In

general, it is not trivial to design ompensating tasks for tasks in the ontext of a

workfow. Atually, a task in a workfow proess does not have to be ompensatable

in the sense that the foribility of "reverse" operations of the task is not always guar

anteed by the appliation semantis. In addition, the isolation requirement on data

resoures may make a task diÆult to ompensate. In this paper, we frst look into the

requirements that a ompensating task has to satisfy. Then we introdue a new on

ept alled onfrmation. With the help of onfrmation, we are able to modify most

nonompensatable tasks so that they beome ompensatable. This an substantially

inrease the availability of shared resoures and greatly improve bakward reovery

for workfow appliations in ase of failures. To efetively inorporate onfrmation

and ompensation into a workfow management environment, a three level bottomup

workfow design method is introdued. The implementation issues of this design are

also disussed.

Keywords: Advaned Transation Models, Workfows, Bakward Reovery, Com

pensating Transations.

1

1 Introdution

Reent years have seen widespread use of databases in non-traditional appliations suh
as oÆe automation, CAD/CAM, publiation environments and software development
environments. The transations in suh environments are often omplex, with the need
to aess data held in multiple autonomous database systems for a long duration. The
traditional transations [7, 15] are not appropriate for these appliations sine some of
the ACID properties ontradit the requirements of these appliations. For example, a
long-running transation may aess many data in the ourse of its exeution. Due to
the isolation requirement, these data annot be released until the transation ommits.
If some other transations need to aess some data held by the transation, it will wait
- perhaps for hours or even days - for the long-running transation to ommit. This
is apparently unaeptable. To overome the limitations of the traditional transation
model, many advaned transation models have been proposed [1]. Most of them have
taken the appliation semantis into aount and provided some semanti mehanisms for
programmers. For examples, the Multi-level Transations [1] allows more onurreny at
higher level ompared to single-level onurreny ontrol. Commutativity of higher level
operations an be explored by programmers based on appliation-speif semantis. Con-
urreny ontrol for transations on aggregate attributes has been partiularly studied
by Reuter [17], Gawlik and Kinkade [4], O'Nell [16]. In their proposed methods, pro-
grammers are allowed to make a speial request to verify that an attribute bears some
relation to a known value. No lok needs to be put on a data item. Similarly, in the
NT/PV model [10] and the ConTrat model [18], invariants have been used to allow more
onurreny.

To guarantee the atomiity of long-lived transations, ompensating transations [6, 11]
have been widely used in many advaned transation models, suh as Sagas [3], ConTrat,
Flex [2], Multi-level Transations and Open-nested Transations. For a transation T ,
a ompensating transation C is a transation that an semantially undo the efets of
T after T has been ommitted. For example, the ompensation of a reservation an be
a anellation, and the ompensation of a withdrawal an be a deposit. To deal with
the problem of long-lived transations, the Sagas model, for instane, strutures a long-
lived transation as a sequene of subtransations, and eah of them is assoiated with
a ompensating subtransation. In ase one of the subtransations in suh a sequene
aborts the previous subtransations are undone by automatially sheduling the assoiated
ompensating subtransations. By allowing transations to release partial results before
they omplete, we are able to avoid the long-duration waiting problem aused by long-
lived transations. However, the Sagas model, like most other advaned transation models
based on ompensation, is useful only when the subtransations in a Saga are relatively
independent and eah subtransation an be suessfully ompensated.

Reliability is of ritial importane to workfow systems [19, 5]. A workfow onsists of
a set of tasks that are oordinated in order to ahieve a ommon business goal. Eah task
defnes a logial step that ontributes towards the ompletion of the workfow. Workfows
with transation-like behaviors are referred to as transational workfows [19, 8]. Transa-
tional workfows share the objetives of some advaned transation models about seletive
relaxation of transational properties of business proesses based on appliation semantis.
As a workfow instane (enatment proess) tends to be long lasting, failures ould our
at various stages within its life-time. We an lassify failures into two separate groups:
(1) system failures: failures in the underlying infrastruture (e.g., hardware, network)
or failures within the workfow system (e.g., sheduler, databases); (2) semanti failures:

2

2

failures assoiated with the exeution of workfow tasks (e.g., unavailability of resoures,
internal deisions). A workfow management system (WfMS) normally deals with system
failures by implementing the feature of forward reovery. Dealing with semanti failures
requires the feature of bakward reovery, i.e., to eliminate the efets of failed workfow
instanes. In this paper, we fous on the support of bakward reovery.

The notion of ompensation is important to workfow systems not only beause most
workfow instanes tend to be long lasting, but also beause tasks in a workfow instane
may not always be able to be undone (e.g., human ations and legay system proessing).
One an defne ompensating tasks whih semantially undo the exeuted tasks of the
failed workfow instane [12, 9]. Compensation has been applied to tasks and group of
tasks (spheres) to support partial bakward reovery in the ontext of the FlowMark
WfMS [13]. Usually, it is assumed a ompensating task is assoiated with a task. However,
this assumption is not always true. A task an be non-ompensatable if the foribility of
the reverse operations of the task annot be guaranteed by the appliation semantis. In
this paper, we arefully investigate the properties of shared resoures and tasks whih may
be performed on these resoures. We fnd some tasks are non-ompensatable beause the
reverse operations of the task may not be always exeuted suessfully. In addition, if the
relaxation of isolation on a shared data resoure annot be ompromised by a workfow
appliation, the ompensation annot be applied to the tasks whih are performed on
the resoure. As suh, we introdue a new mehanism alled onfrmation. By using
onfrmation, we are able to modify some non-ompensatable tasks so that they beome
ompensatable. one a workfow instane is exeuted suessfully, the onfrmation tasks
of all exeuted tasks are exeuted automatially. This is in ontrast to the ompensation
senario: one a workfow instane fails in its exeution, the ompensating tasks of all
exeuted tasks are exeuted. In this paper, we fous our presentation in the ontext of
workfows, though the onepts and mehanisms disussed in the paper are also appliable
to non-traditional database appliations.

The rest of the paper is organized as follows. In setion 2, we look into the requirements
that a ompensating task must satisfy. In setion 3, we introdue the mehanism of
onfrmation and show how it is used to deal with the non-ompensatability problem. A
bottom-up workfow design method whih inludes both ompensation and onfrmation
is proposed in setion 4, together with some implementation issues. Setion 5 onludes
the paper.

Requirements of a Compensating Task

Suppose a task T is defned in a workfow W , T is alled ompensatable if the following
onditions are satisfed.
(1) foribility: Let C be the ompensating task of the task T . Then after T is invoked
and exeuted in any instane W of W , the exeution of C must be guaranteed to be
suessful within a period of time speifed.
(2) relaxation of isolation: After T is invoked and exeuted in any instane W of W , the
shared data resoures whih T has aessed will be released. This relaxation of isolation on
shared data resoures is required as the purpose of introduing ompensation is to avoid
long-duration waiting, otherwise, we should use system level undo instead of ompensation.

The following two examples illustrate these two requirements.

3

Example 1 Suppose a ommon aount is used for efetive fnanial management of
multiple projets in an organisation. The organisation may have two types of business
proesses whih are speifed by two workfows Wh and W2, respetively. Instanes of Wh

involve a task Tp produing an amount of money and putting it into the ommon aount,
while instanes of W2 involve a task T onsuming funds from the ommon aount.

To model these business proesses, a shared data resoure alled Common Aount
is used with two operations defned on it: deposit and withdraw. The tasks Tp and T
in the business proesses an be implemented by invoking the operations deposit and
withdraw, respetively. The Common Aount an be desribed by the following pseudo
ode. A ompensation is assoiated with the implementation of eah operation, it defnes
the ompensating operation of the operation, if needed. Consequently, the ompensating
tasks of tasks Tp and T an invoke the ompensation parts of the deposit and withdraw
operations, respetively.

Common Aount {

double balane;

1* operations on the aount

boolean withdraw(double amount);

void deposit(double amount);

}

boolean withdraw(double amount) {

if (balane - amount >= 0) {

balane := balane - amount;

return(true)

}

else return(false);

Compensation:

deposit(amount);

}

void deposit(double amount) {

balane := balane + amount

Compensation:

1* not available

}

For a private aount, deposit is always ompensatable by withdrawal and vie versa.
However, for the ommon aount as defned in this example, the ompensation of the
deposit operation is not available. This is beause the foribility of its reverse operation
withdraw is not always guaranteed by the appliation. Consequently, the ompensating
task of Tp is not available either. Notie, onurreny ontrol of aggregate attributes
(balane in this example) has been well addressed in Reuter's method, Fast Path method
and Esrow method. These methods fous on the forward behaviour of transations.
In this paper, we study the bakward behaviour of transations (workfows), i.e., the
ompensatability of tasks whih aess aggregate attributes.

Let us have a look at the following senario. Suppose W h is an instane of W h and
W 2 is an instane of W 2. Initially, the balane of Common Aount is 0. First, the

4

task Tp of W h is exeuted whih deposits $1,000 to the Common Aount. After that,
the task T in W 2 withdraws $800 from the Common Aount. In a later stage, W h

fails due to some reason and tries to rollbak. This naturally inludes withdrawing $1,000
bak whih it previously deposited into the aount. Unfortunately, this withdrawal is
unable to exeute suessfully sine part of the money has been onsumed by W and it2

is possible the exeution of W has already been fnished.2

There are two system-level solutions to this problem:
(1). The Tp of W holds the lok of the Common Aount until all tasks of W fnishes.h h

(2). The Tp of W releases the Common Aount after it is exeuted. However, Wh 2

must wait for W to suessfully fnish. If W fails and the ompensation of Tp an not
be exeuted suessfully, W may need to be asadedly rollbaked. This means muh

h h

2

work done by W may be lost.

Obviously, both solutions are not appliable sine long-duration waiting is unavoidable
even when the balane of Common Aount is ample.

In real situation, one may use an approximate approah based on statistis or experi-
ened estimation of, say, the perentage of failed instanes. In that way, Tp of most failed
instanes of Wh an be ompensated. However, there is no guarantee that Tp of all failed
instanes of Wh an be ompensated, espeially if the estimation is over-optimisti. In
this ase, the organisation may have some poliies for exeptional ompensation. Can we
provide guaranteed ompensation? We will answer this in the next setion.

2

Example 2 In many servie organisations, there may exist one type of business proesses
whih inlude a task olleting ustomer information and other types of business proesses
whih inlude tasks using ustomer information. Due to the variety of appliations, the
use of the ustomer information might be diferent. Let us frst look at a dirty-read ase
where a business proess does not have to aess aurate information about ustomers.

To model the business proesses in this example, we may have two workfows Wh and
W2, where inludes a task T for inserting ustomer information while inludesWh T W2

a task Td whih dirty-reads ustomer information. A shared data resoure alled Cus-
tomer Info is needed with two operations insert and dirty read for TT and Td to invoke,
respetively. The following is the defnition of Customer Info.

Customer Info {

table ustomer;

1* operations on Customer Info

void insert(tuple ust);

table dirty read(string pred);

}

void insert(tuple ust) {

1* insert tuple ust to the table ustomer

Compensation:

1* delete tuple ust from table ustomer using ust.name;

}

table dirty read(string pred) {

1* return("selet * from ustomer where pred")

5

Compensation:

1* do nothing

}

As seen above, in this dirty-read ase, the operation insert is ompensatable with
reverse operation defned whih deletes what has been inserted. This is beause there
is no isolation requirement on the shared data resoure Customer Info. After TT of an
instane, say W h of Wh, inserts a ustomer tuple into ustomer table, the table with the
new inserted ustomer tuple (partial result of W h) is immediately aessible for Td of
any instane of W2, regardless whether W h may fail later and thus the inserted ustomer
information may be deleted.

Suppose now the servie organisation needs to add a new business proess speifed
by W3 whih needs to strit-read Customer Info via a task Ts. In this ase, the operation
insert defned above is no longer ompensatable. This is beause the isolation on Cus-
tomer Info an no longer be ompromised. After TT of W h inserts a ustomer tuple, that
tuple an not be immediately aessed by Ts of any instane of W 3 aesses it. As a
result, the ompensating task of TT is no longer available. Even loking (in long-duration)
on the ustomer table annot be applied as it restrits the use of dirty-read. To support
this mixed dirty-read and strit-read senario by loking, an expliit and sophistiated
reord-level loking feature must be supported. Unfortunately, this feature is not easy to
fnd in urrent SQL-based DBMSs.

3 Confrmation

In this setion, after analysing the requirements of ompensatable tasks, we introdue
a new onept alled onfrmation and show how it an be used to ope with the non-
ompensatability problem. As seen from the above examples, a task an be implemented
by invoking a set of operations. Similarly, the ompensating task of the task an be
implemented by invoking the ompensation parts of the set of operations. If a task is
ompensatable, all operations it may invoke must be ompensatable. In the following, we
will disuss the ompensatability at the operation level.

3.1 Coping with Non-foribility

As demonstrated by Example 1, if an operation is ompensatable, its reverse operation
must be forible. There are some non-ompensatable operations whose reverse opera-
tions are absolutely non-forible. An often-mentioned example is emitting a missile. If a
workfow instane ontains a task whih invokes this kind of non-ompensatable opera-
tions, the only solutions are either delaying the task to a later stage, or ignoring/manually
adjusting the efets of the operation if the workfow instane fails. However, for most
non-ompensatable operations, their reverse operations are not forible only under er-
tain onditions. i.e., the reverse operation of a non-ompensatable operation annot be
exeuted suessfully only when an undesired ondition is reahed. For example, the om-
pensation of the operation invoation deposit($1, 000) in Example 1 fails only if the balane
dereases to less than $1,000. If the original balane is no less than $800, the exeution
of the ompensation will not enounter a problem. Therefore, if the organisation has a
suÆient balane in the ommon aount for most of the time, the undesired ondition

6

will not be easily reahed. System level loking is a simple way to deal with this non-
ompensatability problem, but obviously it sufers two severe problems: (1). long duration
loking of the data resoure until the invoking workfow instanes omplete suessfully.
(2). unneessary loking sine update of the data resoure will not ause any problem in
most ases.

Based on the disussion, it is ideal to provide a semanti level mehanism whih an be
used to prevent the undesired ondition from being satisfed. For this purpose, we propose
a new mehanism alled onfrmation. For eah operation, a onfrmation part may be
defned with the default default defnition as "doing nothing". The onfrmation part is not
exeuted at the same time when the operation is exeuted. Instead, the onfrmation part
is exeuted at a later time for the purpose of onfrming the exeution of the operation.
The motivations for introduing the onfrmation mehanism are two fold: (1) to isolate
the part of the operation whih may afet the ompensatability of the operation and
exeute this part later; (2) to semantially ommit the operation at a safe time. Similar to
a ompensating task, the onfrmation task of a task an be implemented by invoking the
onfrmation parts of the set of operations whih have been invoked during the exeution
of the task. The onfrmation parts of all invoked operations in a workfow instane are
exeuted automatially one the system gets the instrution for onfrmation.

More preisely, let O! and Op the onfrmation part and the ompensation part of
an operation O, respetively. Suppose the onfrmation part and ompensation part are
defned for eah operation with the default defnitions for both as "doing noting". Then
after O is exeuted, two possible situations will happen later. (1) If the invoking workfow
instane exeutes suessfully, O! will be automatially exeuted later to semantially
ommit O; (2) If the invoking workfow instane fails, Op will be automatially exeuted
later to semantially rollbak O.

To ensure that the undesired ondition will never be reahed, we an put the unsafe
part of an operation (e.g., deposit) into its onfrmation part and delay the exeution of
this part until a safe time later on, say, after an invoking workfow instane sueeds in its
exeution. At that time, hanging the value of the undesired ondition by other operations
(e.g., withdraw) will not ause any problem beause the ompensation is no longer needed
for this workfow instane. As a result, an operation an always be ompensated before the
exeution of the onfrmation part of the operation. In addition, both an operation and
its onfrmation part an be implemented as two separate short transations. Therefore,
the shared resoures that they may aess only need to be loked in a short time.

Note, O and O! are forward parts while Op is a bakward part. If the foribility of
forward parts annot be guaranteed, it will not leave any problem as the invoking workfow
instane an always hoose to fail or try a ontingeny plan.

Let us look at how onfrmation an help our frst example.

Example 3 A modifation of Example 1 with onfrmation.

Common Aount {

double balane;

double available balane;

1* operations on the aount

boolean withdraw(double amount);

void deposit(double amount);

7

}

boolean withdraw(double amount) {

if (available balane - amount >= 0) {

available balane := available balane - amount;

balane := balane - amount;

return(true)

}

else return(false);

Compensation:

balane := balane + amount;

available balane := available balane + amount;

Confirmation:

1* do nothing

}

void deposit(double amount) {

balane := balane + amount

Compensation:

balane := balane - amount

Confirmation:

available balane := available balane + amount

}

As shown above, a new attribute available balane is added to indiate the available
balane of the aount. A onfrmation part is added to the deposit operation for in-
reasing available balane. A workfow instane whih invokes a deposit operation an
hold its deposited amount of money by delaying the exeution of the onfrmation part
of the operation later, say, until the workfow instane sueeds later in its exeution. By
doing so, the deposit operation beomes ompensatable by the ompensation part of the
operation, i.e., balane derement.

Come bak to the senario in Example 1. If the original balane and available balane
are all zero, after deposit($1, 000) is invoked by W h, the balane is inreased to $1,000.
The available balane, however, remains to be zero. Both balane and available balane
an be aessed by other workfows for whatever purposes. Before the onfrmation part
of the operation invoation deposit($1, 000) is exeuted, withdraw($800) invoked by W
annot be suessfully exeuted. This guarantees that deposit($1, 000) invoked by W h

is ompensatable. If the original available balane is no less than $800 or is inreased to
no less than $800 (say, after the onfrmation of the invoation deposit($1, 000)), there
is no problem for W 2 to suessfully invoke withdraw($800). This refets preisely the
semantis of the appliation.

The onfrmation mehanism used in this example is diferent from a onurreny
ontrol method suh as the invariant used by the NT/PV model and the ConTrat model.
The former is used for guaranteeing suessful bakward reovery, while the latter is used
for inreasing onurreny.

8

2

3.2 Coping with Isolation

As shown in Example 2, if an operation performed on a shared data resoure is ompen-
satable, the isolation requirement on the data resoure must be ompromised. Usually
in a workfow instane, the ompensation of an operation is invoked at a later time after
the invoation of the operation. If the isolation on the data resoure is required, other
workfow instanes have to wait until the invoking workfow instane fnishes. In that ase,
there is no need to provide ompensation at all. However, with the help of onfrmation,
we an make an operation ompensatable while still keeping the isolation requirement on
the shared data resoures. This an be done by temporarily separating a data resoure
into an isolation part and a non-isolation part.

Let us look how it works for our isolation example.

Example 4 A modifation of Example 2 with onfrmation.

Customer Info {

table ustomer, temp ust;

1* operations on Customer Info

void insert(tuple ust);

table dirty read(string pred);

table strit read(string pred);

}

void insert(tuple ust) {

1* insert tuple ust into table temp ust

Compensation:

1* delete tuple ust from table temp ust using ust.name;

Confirmation:

1* swap the tuple ust from table temp ust to ustomer

1* insert tuple ust into table ustomer;

1* delete tuple ust from table temp ust using ust.name.

}

table dirty read(string pred) {

table tempi, temp2;

1* selet * into tempi from ustomer where pred

1* selet * into temp2 from temp ust where pred

1* return(tempi union temp2)

Compensation:

1* do nothing

Confirmation:

1* do nothing

}

table strit read(string pred) {

1* return("selet * from ustomer where pred")

Compensation:

1* do nothing

Confirmation:

9

4

1* do nothing

}

In this example, we use the table ustomer and temp ust to store the non-isolation
and isolation parts of Customer Info, respetively. When an insert operation is invoked,
new ustomer information is put into temp ust. When the invoking workfow instane
fnishes suessfully, the onfrmation part of the operation is exeuted to onfrm the insert
operation invoation by swapping the ustomer information from the table temp ust to
the table ustomer. If the invoking workfow instane fails, the invoked insert operation
an be easily ompensated by removing the ustomer information from the table temp ust,
without afeting other workfow instanes whih are onurrently aessing the ustomer
information.

With the help of onfrmation, long-duration loking an be avoided but isolation on the
data resoures an still be ahieved. For invoations of operations suh as strit read where
isolation is required, only non-isolation part of ustomer information is made available
for aessing; For invoations of operations suh as dirty read where isolation an be
ompromised, both non-isolation and isolation parts of the resoure an be aessed. No
interferene will our among workfow instanes regardless whether isolation on the data
resoures is required. As a result, the availability of data resoures is maximised. This is
ideal for enterprises where a variety of requirements on data resoures may exist. However,
without the help of onfrmation, it is almost impossible to efetively implement the above
mixed strit read and dirty read senario where both ompensatability and isolation on
shared data resoures are required.

Bottom-Up Workfow Design

In this setion we propose a three level bottom-up workfow design method as shown in
Figure 1. This design method an easily and perfetly inorporate both ompensation and
onfrmation into a workfow management environment.
(1) At the bottom level, data resoures are modelled as resoure lasses. The only inter-
fae to a data resoure is via a set of operations together with their ompensations and
onfrmations. This is helpful in workfow environments. For instane, a legay system
an be wrapped as an objet with an interfae providing a set of operations. Compensa-
tion and onfrmation an be developed at the time a legay system is involved in some
workfows. For example, the resoure lass Ca has three operations oph, op2 and op3
defned in Figure 1.
(2) The middle level is used to speify tasks. A task an be implemented simply by in-
voking operations on data resoures. As shown in Figure 1, TT is implemented as invoking
operation oph of resoure lass Cb and op3 of Ca.
(3) The top level is used to speify workfows. As usual, dependenies among tasks of
workfows are speifed. To support onfrmation and ompensation, extra ontrol are
added at this level. Partial bakward reovery an be easily realised by multiple use of
onfrmation ontrol.
In the following, we present workfow design via these three levels frst, then disuss briefy
the run-time support of workfows designed in suh a way.

10

Workflow Specification Level

...... Ti Tj

Task Specification Level

Tj {
...

 RCb.op2;
...

}

RCb RCc

 RCa.op3;
 RCa.op1;

 RCc.op2

 RCb.op1;

...

Tk {
 ...

 ...

}

Ti {

}
 ...

...

Data Resource Specification Level

op1

op2

op3

op1

op2

op1

op2

op3

RCa

Figure 1: A Bottom-Up Workfow Design Method

4.1 Speifying a Workfow

Basially, a workfow is about the oordination of a set of tasks. This is ahieved by
defning various types of dependenies among tasks, e.g., ontrol fows, data fows, tem-
poral onstraints, et. Usually, a workfow speifation language is provided by a WfMS
to speify these dependenies. In this paper, we onentrate on how ompensation and
onfrmation an be inorporated into the workfow speifation. In supporting ompen-
sation and onfrmation, we add two statements alled COMPENSATE and CONFIRM.
Speifers should be allowed to put these statements into the workfow speifation to
refet their deisions. This is similar to inluding ROLLBACK and COMMIT statements
in a transation. The diferene between a workfow senario and a transation senario is
that exeution of COMPENSATE and CONFIRM statements is an appliation behaviour,
while exeution of ROLLBACK and COMMIT statements is a system behaviour. We may
give another pair of names SEMANTIC-ROLLBACK/SEMANTIC-COMMIT to represent
COMPENSATE/CONFIRMATION.

By putting a CONFIRM statement arefully at several plaes in a workfow, we are
able to onfrm the exeuted tasks group by group, thus onfrm the exeution of the
workfow instanes step by step. We may all suh a group of tasks as a sphere of joint
onfrmation with the similarity to the term a sphere of joint ompensation disussed in
[13]. In most ases, these two spheres an be ombined as a single onept. As a result,
a workfow instane an be partially onfrmed or partially ompensated in the unit of a
sphere of ompensation/onfrmation. One a workfow instane onfrms the exeution
of a group of tasks at a point and fails its exeution later, the system an apply partial

11

reovery by ompensating those tasks whih are exeuted after that point.

4.2 Speifying a Task

A task speifation is mainly onerned with the implementation of the task. When a
task needs to aess a data resoure, it is implemented by invoking an operation defned
at the interfae of the data resoure. A task may invoke multiple operations defned on
diferent data resoures. For eah task, a ompensating task and a onfrmation task are
automatially defned by the ompensation parts and onfrmation parts of all operations
the task may aess. This will be disussed next.

4.3 Speifying a Data Resoure

For eah data resoure, an interfae is provided whih onsists of a set of operations. Tasks
using a data resoure of this type an only invoke these operations. Beside the operation
itself (we will all it as the normal part of the operation in the following disussion), a
ompensation part and a onfrmation part of the operation must be defned, with the
default defnition as "doing nothing".
(1). A normal part speifes what needs to be exeuted when the operation is invoked by
a task.
(2). A ompensation part speifes what needs to be exeuted to eliminate the efet of
the normal part invoked previously by a task T . The ompensation part is invoked when
the ompensating task of the task T is exeuted.
(3). A onfrmation part speifes what needs to be exeuted to onfrm the work done by
the normal part invoked previously by a task T . The onfrmation part is invoked when
the onfrmation task of the task T is exeuted.

The speifations for shared data resoures Common Aount and Customer Info have
been given in Example 3 and Example 4, respetively.

This design method has an appealing feature. It provides data resoure independene
from the workfow appliations. The modifation of implementation of the operations (in-
luding ompensation and onfrmation) on a data resoure has no impat on the workfow
speifation as long as the interfae remains unhanged.

4.4 Exeuting a Workfow Instane

When an instane of an above-speifed workfow is submitted to the workfow engine of
a WfMS for exeution, the engine will shedule a ompensation proess automatially
while a COMPENSATE statement is being exeuted. Similarly, the engine will shed-
ule a onfrmation proess automatially while a CONFIRM statement is being exeuted.
This an happen as well when an external event triggers the engine requiring COMPEN-
SATE/CONFIRM the workfow instane. When a COMPENSATE request arrives, the
engine shedules the exeution of all ompensating tasks of those tasks whih have been
exeuted yet have not been onfrmed. This in turn triggers the exeution of ompensation
parts of all operations whih have been invoked by the above tasks. The latest point of
the group of tasks onfrmed is reorded by the system. This point is used as a guide to
where the bakward reovery should stop. Compensating tasks are exeuted in reverse
order (bakward).

12

5

Similarly, when a CONFIRM request arrives, the engine shedules the exeution of all
onfrmation tasks whih have been exeuted yet have not been onfrmed. This in turn
triggers the exeution of onfrmation parts of all operations whih have been invoked by
the above tasks. The latest point is also used as a guide to where the onfrmation proess
should start. Confrmation tasks are exeuted in the same order as their tasks (forward).

During the proess of ompensation or onfrmation, the values of input parameters of
ompensation part or onfrmation part of eah invoked operation are provided automat-
ially. This an be done by appropriate omputation after the ompletion of the normal
part of eah invoked operation and saving the results in the system log.

Conluding Remarks

Designing ompensating tasks is ritial for supporting bakward reovery in workfow
systems and non-traditional database appliations. Workfow evolution [14] an also be
better supported by well-designed ompensating tasks. Due to the semantis of applia-
tions and their shared data resoures, a ompensating task does not always exist for a task.
In this paper, we studied the requirements of a ompensatable task. Based on our observa-
tions, we proposed a novel semanti level mehanism alled onfrmation. The relationship
between onfrmation and ompensation is similar to that between a ommit and a roll-
bak. By using onfrmation properly, non-ompensatable operations on the shared data
resoures an be rewritten and beome ompensatable. As suh, the availability of shared
data resoures gets inreased substantially. The onfrmation mehanism also found its
appliability in dealing with the isolation problem of workfows of long transations. To
efetively inorporate both onfrmation and ompensation into workfow environments,
a three level workfow design framework was presented together with the disussion of its
run-time support.

Like a ompensation, a onfrmation is also a semanti mehanism provided to workfow
speifers. Workfow speifers may use it in a fexible way, based on the requirements of
appliations. Multiple versions of a onfrmation and a ompensation may be provided
based on ertain fators suh as time. It is also interesting to build diferent patterns of
ompensation and onfrmation aording to some typial appliations. We will investigate
these in the future.

Referenes

[1] A. Elmagarmid, editor. Database Transation Models For Advaned Appliations.
Morgan Kaufmann, 1992.

[2] A. Elmagarmid, Y. Leu, W. Litwin, and M. Rusinkiewiz. A multidatabase trans-
ation model for interbase. In Proeedings of the 16th VLDB Conferene, Brisbane,
Australia, August 1990.

[3] H. Garia-Molina and K. Salem. Sagas. In Proeedings of the ACM Conferene on

Management of Data, pages 249�259, 1987.

[4] D. Gawlik and D. Kinkade. Varieties of onurreny ontrol in ims/vs fast path.
Bull. IEEE Database Eng., 8(2):3�10, 1985.

13

[5] D. Georgakopoulos, M. Hornik, and A. Sheth. An overview of workfow manage-
ment: From proess modeling to workfow automation infrastruture. Distributed
and parallel Databases, 3:119�153, 1995.

[6] J. Gray. The transation onept: Virtues and limitations. In Proeedings of the
International Conferene on Very Large Data Bases, pages 144�154, Cannes, Frane,
1981.

[7] J. Gray and A. Reuter. Transation Proessing: Conepts and Tehniques. Morgan
Kaufmann, 1993.

[8] P. Grefen. Transational workfows or workfow transations. In Proeedings of the
International Conferene on Database and Expert Systems Appliations, pages 60�69,
Aix-en-Provene, Frane, 2002.

[9] B. Kiepuszewski, R. Muhlberger, and M. Orlowska. Flowbak: Providing bakward
reovery for workfow systems. In Proeedings of the ACM SIGMOD International

Conferene on Management of Data, pages 555�557, 1998.

[10] H. Korth and G. Speegle. Long-duration transations in software design projets. In
Proeedings of the 6th International Conferene on Data Engineering, pages 568�574,
1990.

[11] Henry F. Korth, E. Levy, and A. Silbershatz. A formal approah to reovery by
ompensating transations. In Proeedings of the 16th VLDB Conferene, pages 95�
106, 1990.

[12] D. Kuo, M. Lawley, C. Liu, and M. Orlowska. A model for transational workfows. In
R. Topor, editor, Seventh Australasian Database Conferene Proeedings, volume 18,
pages 139�146, Melbourne, Australia, 1996. Australian Computer Siene Communi-
ations.

[13] F. Leymann. Supporting business transations via partial bakward reovery in work-
fow management systems. In Proeedings of BTW'95, pages 51�70, 1995.

[14] C. Liu, M. Orlowska, and H. Li. Automating handover in dynami workfow en-
vironments. In Proeedings of the 10th International Conferene, CAiSE'9S, pages
159�172, Pisa, Italy, 1998.

[15] N. Lynh, M. Merritt, W. Weihl, and A. Fekete. Atomi Transations. Morgan
Kaufmann, 1993.

[16] P. O'Neil. The esrow transational method. ACM Trans. Database Syst., 11(4):405�
430, Deember 1986.

[17] A. Reuter. Conurreny on high-traÆ data elements. In Proeedings of ACM Sym-

posium on Priniples of Database Systems, pages 83�92, 1982.

[18] A. Reuter. Contrats: A means for extending ontrol beyond transation boundaries.
In Proeedings of the 3rd International Workshop on High Performane Transation
Systems, 1989.

[19] M. Rusinkiewiz and A. Sheth. Speifation and exeution of transational workfows.
In W. Kim, editor, Modern Database Systems: The Objet Model, Interoperability,
and Beyond. Addison-Wesley, 1994.

14

