
DEVELOPING A TENNIS MODEL THAT REFLECTS OUTCOMES
OF TENNIS MATCHES

Barnett, T., Brown, A. and Clarke, S.
Faculty of Life and Social Sciences, Swinburne University, Melbourne, VIC, Australia

ABSTRACT

Many tennis models that occur in the literature assume the probability of winning a
point on service is constant. We show this assumption is invalid by forecasting outcomes
of tennis matches played at the 2003 Australian Open. Revised models are formulated
to better reflect the data. The revised models improve predictions overall, particularly
for the length of matches and can be used for index betting. Suggestions on further
improvements to the predictions are discussed.

KEY WORDS
tennis, sport, Markov chain, index betting

1. INTRODUCTION

Many tennis models that occur in the literature assume the probability of winning a
point on service is constant (Schutz 1970, Carter and Crews 1974, Fischer 1980, Barnett
and Clarke 2002). On the other hand, there are works in the literature to show that
the assumption of players winning points on serve being i.i.d. does not hold. Jackson
(1993), and Jackson and Mosurski (1997) show that psychological momentum does exist
in tennis, and set up a “success-breeds-success” model for sets in a match, and find that
this model provides a much better fit to the data, compared to an independence of sets
model. Klaassen and Magnus (2001) test whether points in tennis are i.i.d. They show
that winning the previous point has a positive effect on winning the current point, and at
important points it is more difficult for the server to win the point than at less important
points.

In this paper, an i.i.d. Markov Chain model is used to predict outcomes of tennis matches.
The predictions indicate that the i.i.d. assumption may not hold since there are fewer
games and sets actually played than predicted. A revised Markov chain model is then
formulated for sets in a match that allows for players that are ahead on sets, to increase
their probability of winning the set, compared to their probabilities of winning the first set.
This is then followed by a revised model for games in a match that has an additive effect
on the probability of the server winning a point. The revised models better reflect the data
and the latter model is most useful for predicting lengths of matches, as demonstrated
through index betting.

2. MARKOV CHAIN MODEL

2.1 MODELLING A GAME

A Markov chain model of a game for two players, A and B, is set up where the state of
the game is the current point score (a, b), where both a ≥ 0 and b ≥ 0. With a constant
probability p the state changes from (a, b) to (a+1, b) and with probability 1−p it changes
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from (a, b) to (a, b + 1). Therefore the probability P (a, b) that player A wins the game
when the point score is (a, b), is given by:

P (a, b) = pP (a + 1, b) + (1− p)P (a, b + 1)

where: p is the probability of player A winning a point.

The boundary values are P (a, b) = 1 if a = 4, b ≤ 2, P (a, b) = 0 if b = 4, a ≤ 2,
P (3, 3) = p2

p2+(1−p)2

Similarly, the mean number of points M(a, b) remaining in the game at point score (a, b)
is given by:

M(a, b) = 1 + pM(a + 1, b) + (1− p)M(a, b + 1)

The boundary values are M(a, b) = 0 if b = 4, a ≤ 2 or a = 4, b ≤ 2, M(3, 3) = 2
p2+(1−p)2

Let N(a, b|g, h) be the probability of reaching a point score (a, b) in a game from point
score (g, h) for player A. The forward recurrence formulas are:

N(a, b|g, h) = pN(a− 1, b|g, h), for a = 4, 0 ≤ b ≤ 2 or b = 0, 0 ≤ a ≤ 4
N(a, b|g, h) = (1− p)N(a, b− 1|g, h), for b = 4, 0 ≤ a ≤ 2 or a = 0, 0 ≤ b ≤ 4
N(a, b|g, h) = pN(a− 1, b|g, h) + (1− p)N(a, b− 1|g, h), for 1 ≤ a ≤ 3, 1 ≤ b ≤ 3

The boundary values are N(a, b|g, h) = 1 if a = g and b = h.

2.2 MODELLING A SET

Let P
gs

T
A (c, d) {P gs

A (c, d)} represent the conditional probabilities of player A winning
a tiebreaker {advantage} set from game score (c, d) for player A serving. Let P

gs
T

B (c, d)
{P gs

B (c, d)} represent the conditional probabilities of player A winning a tiebreaker {advantage}
set from game score (c, d) for player B serving.

The formulas below are for player A serving. Similar formulas apply for when player B
is serving.

For a tiebreaker set:

P
gs

T
A (c, d) = pg

AP
gs

T
B (c + 1, d) + (1− pg

A)P
gs

T
B (c, d + 1)

The boundary values are P
gs

T
A (c, d) = 1 if c = 6, 0 ≤ d ≤ 4 or c = 7, d = 5, P

gs
T

A (c, d) = 0
if d = 6, 0 ≤ c ≤ 4 or c = 5, d = 7, P

gs
T

A (6, 6) = p
g

T
A .

where:
pg

A and pg
B represents the probability of player A and player B winning a game on serve

respectively
p

g
T

A represents the probability of player A winning a tiebreaker game

For an advantage set:

P gs
A (c, d) = pg

AP gs
B (c + 1, d) + (1− pg

A)P gs
B (c, d + 1)

179



Boundary values: P gs
A (c, d) = 1 if c = 6, 0 ≤ d ≤ 4, P gs

A (c, d) = 0 if d = 6, 0 ≤ c ≤ 4,

P gs
A (5, 5) = pg

A(1−pg
B)

pg
A(1−pg

B)+(1−pg
A)pg

B
.

Recurrence formulas can be obtained for the mean number of games remaining in sets
and the probability of reaching a game score in a set.

2.3 MODELLING A MATCH

Let P sm(e, f) represent the conditional probabilities of player A winning a best-of-5 set
advantage match from set score (e, f).

The recurrence formula is represented by:

P sm(e, f) = ps
T P sm(e + 1, f) + (1− ps

T )P sm(e, f + 1)

Boundary values: P sm(e, f) = 1 if e = 3, f ≤ 2, P sm(e, f) = 0 if f = 3, e ≤ 2,
P sm(2, 2) = ps.

where:
ps

T represents the probability of player A winning a tiebreaker set
ps represents the probability of player A winning an advantage set

Recurrence formulas can be obtained for the mean number of sets remaining in a match
and the probability of reaching a set score in a match.

3. MATCH PREDICTIONS

3.1 2003 AUSTRALIAN OPEN MEN’S PREDICTIONS

When two players, A and B, meet in a tournament, forecasting methods (Barnett and
Clarke, 2005) are used to obtain estimates for the probability of each player winning a
point on serve. These two parameters (each player winning a point on serve) are then
used as input probabilities in the Markov Chain model to obtain match outcomes. We
will compare the accuracy of the predictions to the actual outcomes for the 2003 men’s
Australian Open.

For a match between two players, the player who has greater than a 50% chance of
winning was the predicted winner. Table 1 represents the percentage of matches correctly
predicted for each round and shows that overall 72.4% of the matches were correctly
predicted. Based on the ATP tour rankings only 68.0% were correctly predicted.

If pi represents the probability for the predicted player for the ith match, then the pro-
portion of matches (P ) expected to be predicted correctly and the variance (V ) of the
proportion can be calculated by:

P =
∑

i pi

n

V =
∑

i piqi

n2
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Table 1: Percentage of matches correctly predicted at the 2003 Australian Open

Round Percentage No. of
correct(%) matches

1 78.1 64
2 62.5 32
3 68.8 16
4 75.0 8
5 75.0 4
6 50.0 2
7 100.0 1

Total 72.4 127

Table 2: Predicted and actual number of games and sets played at the 2003 Australian
Open men’s singles

Games played 3 sets 4 sets 5 sets
Prediction 4737.7 41.1 42.7 34.2

Actual 4250.0 50.0 42.0 26.0

where:

qi = 1− pi

n = total number of matches played in the tournament

Applying these equations gives values of P = 0.753 and V = 0.0013. The 95% confidence
interval is represented by: (0.753 − 1.96

√
0.0013, 0.753 + 1.96

√
0.0013) = (0.682,0.824),

which includes the value of 0.724.

Out of 127 scheduled matches for the 2003 Australian Open men’s singles, only 118 were
completed. For the other 9 matches, players had to withdraw prior to the match or
retire injured during the match. Therefore, only the 118 completed matches were used
for predicting the number of games and sets played. Table 2 gives the results. Overall,
there were 487.7 fewer games played than predicted. This equates to 487.7

118 = 4.13 fewer
games per match. Also, there were more 3 set matches played than predicted and fewer
5 set matches. This gives some indication that the i.i.d. model may need to be revised.

3.2 USING THE MODEL FOR GAMBLING

For head-to-head betting we will place a bet only when there is a positive overlay as
represented by:

Overlay = [Our Probability ×Bookmakers Price]− 1

A method developed by Kelly, discussed in Haigh (1999), calculates the proportion of
bankroll you should bet depending on your probability and the bookmaker’s price and is
represented below:
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Proportion of bankroll to gamble =
Overlay

Bookmakers Price− 1

For example: Suppose player A was paying $2.20 to win, and player B was paying $1.65
to win. Suppose we predicted player B to win with probability 0.743.

In this situation we would bet on player B as given by a positive overlay:
[0.743× 1.65]− 1 = 0.226

Proportion of bankroll to gamble = 0.226
1.65−1 = 0.348

Figure 1 represents how we would have performed by adopting a constant Kelly system
(fixed bankroll) of $100 for the head-to-head matches played at the 2003 Australian Open.
It can be observed that we would have suffered a $195 loss by our 72nd bet but still ended
up with a $45 profit. This recovery came from round 3 (bet number 75) onwards, where
at that point we were down $147. By updating the parameters after each round by simple
exponential smoothing (Bedford and Clarke, 2000) some important factors such as court
surface, playing at a particular tournament, playing in a grand slam event and recent
form would be included in the predictions.

Figure 1: Profit obtained from betting on head-to-head matches played at the 2003 Aus-
tralian Open

Jackson (1994) outlines the operation of index betting with some examples in tennis
through binomial-type models. The outcome of interest X is a random variable and for
our situation is the number of games played in a tennis match. The betting firm offers
an interval (a, b), known as the spread. The punter may choose to buy X at unit stake y,
in which case receives y(X − b) if X > b or sell X at unit stake z, in which case receives
z(a−X) if X < a.

We will place a bet only when our predicted number of games is greater than b or less
than a. For example if an index is (35,37), we would sell if our prediction is less than
35 games or buy if our prediction is greater than 37 games. We will use a very simple
betting system, and that is to trade 10 units each time the outcome is favourable. Figure
2 represents how we would have gone by using our allocated betting strategy, for a profit
of $435. This was as high as $480 but as low as -$220. We also made $420 from one match
alone being the El Aynaoui versus Roddick match where a total of 83 games were played.

182



Without including this match we would have still made a profit of $60. Unlike head-to-
head betting, there does not appear to be any advantage by betting from later rounds.
We can generate a profit from the start of the tournament. Perhaps the bookmakers are
not as proficient in estimating the number of games played in a match as they are with
the probabilities of winning the match. The bookmakers are always trying to balance
their books where possible so that they gain a proportion of the amount gambled each
match regardless of the outcome. This implies that general public are unable to predict
the number of games played in a match as well as probabilities of players winning. Figure
3 represents the results by subtracting an additional 4.13 games per match from our
predictions. This gave a profit of $285, despite the fact that no money was bet on the El
Aynaoui versus Roddick match, which made a $420 profit previously.

Figure 2: Profit obtained from index betting on matches played at the 2003 Australian
Open

Figure 3: Profit obtained from index betting on matches played at the 2003 Australian
Open by subtracting 4.13 games per match from our predictions

4. REVISED MARKOV CHAIN MODEL

4.1 PROBABILITIES OF REACHING SCORE LINES WITHIN AN AD-
VANTAGE MATCH

Suppose that if a player is ahead on sets, they can increase their probability of winning
a set by α. Let N sm(e, f |k, l) be the probability of reaching a set score (e, f) in a match
from set score (k, l). The forward recursion formulas become:
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N sm(e, f |k, l) = ps
T N sm(e− 1, f |k, l), for (e, f) = (1, 0)

N sm(e, f |k, l) = (1− ps
T )N sm(e, f − 1|k, l), for (e, f) = (0, 1)

N sm(e, f |k, l) = psN sm(e− 1, f |k, l), for (e, f) = (3, 2)
N sm(e, f |k, l) = (1− ps)N sm(e, f − 1|k, l), for (e, f) = (2, 3)
N sm(e, f |k, l) = (ps

T + α)N sm(e− 1, f |k, l), for (e, f) = (3, 0), (2, 0) and (3, 1)
N sm(e, f |k, l) = (1− ps

T + α)N sm(e, f − 1|k, l), for (e, f) = (0, 3), (0, 2) and (1, 3)
N sm(e, f |k, l) = (ps

T −α)N sm(e−1, f |k, l)+(1−ps
T )N sm(e, f −1|k, l), for (e, f) = (1, 2)

N sm(e, f |k, l) = ps
T N sm(e− 1, f |k, l) + (1− ps

T − α)N sm(e, f − 1|k, l), for (e, f) = (2, 1)
N sm(e, f |k, l) = (ps

T −α)N sm(e− 1, f |k, l) + (1− ps
T −α)N sm(e, f − 1|k, l), for (e, f) =

(1, 1) and (2, 2)

where: 0 ≤ ps
T + α ≤ 1 and 0 ≤ ps + α ≤ 1

The boundary values are N sm(e, f |k, l) = 1 if e = k and f = l.

Table 3 represents the probabilities of playing 3, 4 and 5 set matches when α = 0 and
0.06, for different values of pA and pB. The probability of playing 3 sets is greater when
α = 0.06 compared to α = 0, for all pA and pB. The probability of playing 5 sets is
greater when α = 0 compared to α = 0.06, for all pA and pB.

Table 3: Distribution of the number of sets in an advantage match when α = 0 and
α = 0.06

α = 0 α = 0.06
pA pB ps

T 3 sets 4 sets 5 sets 3 sets 4 sets 5 sets
0.60 0.60 0.50 0.25 0.38 0.38 0.31 0.38 0.30
0.61 0.60 0.53 0.25 0.37 0.37 0.32 0.38 0.30
0.62 0.60 0.57 0.26 0.37 0.36 0.33 0.38 0.29
0.63 0.60 0.60 0.28 0.37 0.35 0.35 0.38 0.28
0.64 0.60 0.63 0.30 0.37 0.32 0.37 0.37 0.26
0.65 0.60 0.66 0.33 0.37 0.30 0.40 0.37 0.23
0.66 0.60 0.69 0.36 0.37 0.27 0.43 0.36 0.21
0.67 0.60 0.72 0.40 0.36 0.24 0.47 0.34 0.19
0.68 0.60 0.75 0.43 0.35 0.21 0.51 0.33 0.16
0.69 0.60 0.77 0.47 0.34 0.19 0.55 0.31 0.14
0.70 0.60 0.79 0.51 0.33 0.16 0.60 0.29 0.11

From our forecasting predictions in Subsection 3.1, it was noticed that on average the
proportion of 3 set matches played are about 7% more than the model predicted and the
proportion of 5 set matches are about 7% less than the model predicted, based on the
assumption that the probability of players winning a point on serve are i.i.d. Notice from
Table 3, the probability of playing 4 sets is about the same for both values of α = 0 and
0.06, and the differences in probabilities for playing 3 sets is about 0.07 greater when
α = 0.06 compared to α = 0, if ps

T ≤ 0.75. This was the reason α = 0.06 has been chosen
for the revised model.
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4.2 CONDITIONAL PROBABILITIES OF WINNING A MATCH

The recurrence formulas are represented by:

P sm(e, f) = ps
T P sm(e + 1, f) + (1− ps

T )P sm(e, f + 1), for e = f
P sm(e, f) = (ps

T + α)P sm(e + 1, f) + (1− ps
T − α)P sm(e, f + 1), for e > f

P sm(e, f) = (ps
T − α)P sm(e + 1, f) + (1− ps

T + α)P sm(e, f + 1), for e < f

Boundary values: P sm(e, f) = 1 if e = 3, f ≤ 2, P sm(e, f) = 0 if f = 3, e ≤ 2,
P sm(2, 2) = ps.

When α = 0, the formulas reflect the Markov chain model presented in Subsection 2.3.

Table 4 represents the probabilities of player A winning an advantage match for α = 0
and 0.06, for different values of pA and pB. Note once again that ps

T , ps and pm represent
the probabilities of player A winning a tiebreaker set, advantage set and an advantage
match respectively. It can be observed that the probabilities remain essentially unaffected
for all values of pA and pB by comparing the probabilities of winning the match when
α = 0 to α = 0.06.

Table 4: Probabilities of player A winning an advantage match when α = 0 and α = 0.06

pA pB ps
T ps pm : α = 0 pm : α = 0.06

0.60 0.60 0.50 0.50 0.500 0.500
0.61 0.60 0.53 0.54 0.565 0.564
0.62 0.60 0.57 0.57 0.627 0.627
0.63 0.60 0.60 0.61 0.686 0.685
0.64 0.60 0.63 0.64 0.740 0.739
0.65 0.60 0.66 0.67 0.789 0.787
0.66 0.60 0.69 0.71 0.831 0.829
0.67 0.60 0.72 0.74 0.867 0.865
0.68 0.60 0.75 0.76 0.897 0.895
0.69 0.60 0.77 0.79 0.921 0.920
0.70 0.60 0.79 0.81 0.941 0.939

4.3 MEAN NUMBER OF SETS REMAINING IN A MATCH

The recurrence formulas are represented by:

M sm(e, f) = 1 + ps
T M sm(e + 1, f) + (1− ps

T )M sm(e, f + 1), for e = f
M sm(e, f) = 1 + (ps

T + α)M sm(e + 1, f) + (1− ps
T − α)M sm(e, f + 1), for e > f

M sm(e, f) = 1 + (ps
T − α)M sm(e + 1, f) + (1− ps

T + α)M sm(e, f + 1), for e < f

Boundary values: M sm(e, f) = 0 if e = 3, f ≤ 2 or f = 3, e ≤ 2, M sm(2, 2) = 1.

Table 5 represents the mean number of sets played in an advantage match M sm for α = 0
and 0.06, for different values of pA and pB. The mean number of sets played when α = 0.06
is less than that when α = 0 for all pA and pB.
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Table 5: Mean number of sets played in an advantage match when α = 0 and α = 0.06

pA pB ps
T M sm : α = 0 M sm : α = 0.06

0.60 0.60 0.50 4.13 3.99
0.61 0.60 0.53 4.12 3.98
0.62 0.60 0.57 4.10 3.96
0.63 0.60 0.60 4.06 3.93
0.64 0.60 0.63 4.02 3.89
0.65 0.60 0.66 3.97 3.83
0.66 0.60 0.69 3.91 3.78
0.67 0.60 0.72 3.85 3.71
0.68 0.60 0.75 3.78 3.65
0.69 0.60 0.77 3.71 3.58
0.69 0.60 0.79 3.65 3.52

4.4 MEAN NUMBER OF GAMES IN A MATCH

We begin this subsection with the analysis of a tiebreaker match. The number of games
in a tiebreaker match is finite, with the maximum of 65. However we are faced with the
problem of relating the momentum for winning a set to the momentum for winning a
game, or even winning a point.

A simple approach to dealing with this problem is to assume the momentum factor m
has a linear form:

m = cpkp + cgkg + csks

where:
cp, cg, cs are coefficients for terms of points, games and sets respectively.
kp, kg, ks is the lead on the scoreboard in terms of points, games and sets respectively.

We can make further simplifying assumptions for the coefficients cp, cg, cs, such that cs =
6cg and cg = 4cp. The factors 6 and 4 come from the stopping rules for sets and games
respectively. Putting cg = c > 0 we then have:

m = c(
1
4
kp + kg + 6ks)

where: −4 < kp < 4 in a standard game, (−7 < kp < 7 in a tiebreaker game, but this only
occurs when the game scores are level at 6-all), −6 < kg < 6 in a set, and −3 < ks < 3 in
a 5-set match. Combining all these inequalities we find that: −25c < m < 25c

Now if we model momentum as an additive effect on the probability of the server winning
a point we require p′ = p + m, where 0 < p + m < 1. This puts theoretical limits on the
values of c that can be assumed. It is possible to avoid such difficulties by following Jackson
and Mosurski (1997) and express the momentum effect of leading on the scoreboard in
terms of log odds:

ln(
p′

q′
) = m ln(

p

q
)
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This can be re-expressed as p′ = p
p+qe−m . It is easy to show that p < p′ < 1 if the player

is ahead, and 0 < p′ < p if the player is behind. Whilst this theory appears nicer it is of
no practical consequence, as the transformation is very close to linear in the main area of
interest.

The linear model for the momentum factor enables us to calculate the probability of
a player winning a point on serve in a tiebreaker game in a manner consistent with
the probability of a point in a standard game. Furthermore wider consistency can be
maintained with the probability of winning a game or a set. In particular the same linear
model can be applied to an advantage set, even though the number of games is potentially
infinite, because after 5-all has been reached the lead is at most one game until the end
of the set. The probability of winning the advantage set will be consistent with the
probability of winning the tiebreaker sets.

The model calculations have also been carried out and the results indicate, that under
this momentum model, values of 0.0008 < c < 0.0032 give a better fit to the data, when
compared to an independence model (c = 0). Nevertheless the linear model fails to fit the
data on game difference and the pattern of sets simultaneously. The model calculations
have also been carried out with each player having his own base probability of winning a
point on serve, as well as his own individual momentum factor to allow for temperament
or other personality factors. However the model still fails to fit the data.

5. CONCLUSION

Using an Markov chain model to predict outcomes of tennis matches, where the probability
of each player winning a point on serve is i.i.d., overestimates the number of games and
sets played in a match. In particular, from our forecasting predictions, it was noticed
that on average the proportion of 3 set matches played are about 7% more than the
model predicted and the proportion of 5 set matches are about 7% less than the model
predicted. A revised Markov chain model is then formulated for sets in a match that
allows for players that are ahead on sets, to increase their probability of winning the set,
compared to their probabilities of winning the first set. This is then followed by a revised
model for games in a match that has an additive effect on the probability of the server
winning a point. The revised models are shown to better reflect the data, which could be
useful for both punters and bookmakers, as demonstrated through index betting on the
number of games played in a match.

Magnus and Klaassen (2001) have tested for independence of points from 4 years of
Wimbledon point-by-point data. Further research for testing for independence, could
involve analyzing Australian Open point-by-point data. This could involve finding a
suitable momentum factor for individual players. In Subsection 4.4, we set up a revised
model with the focus of estimating the number of games played in a match. This model
could also be used for estimating the number of points played in a match, by choosing
suitable values for the coefficients. As a further extension, this model can be modified to
estimate the time duration of a match.
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