
Improving Goal and Role Oriented Analysis for Agent Based Systems

Pei Pei Shanika Rarunasekera, Leon Sterling
Department of Computer Science and Software Engineering

The University of Melbourne, Parkville,Australia 3052

Abstract

The separation between analysis and design phases has
long been advocated in software engineering literature.
There has been active interest in the the area agent
ented engineering but the methodologies devel-
oped not on a clear separation between the two
phases. existing agent oriented methodolo-
gies be tied to a particular design architecture and
applicable onlyfor small systems. In this paper, we describe
a goal and role based analysis methodology is both
unbiased towards design architecture and is scalable.
The model is derived to the
methodology for agent onented systems developed at the
University Melbourne. We alsopresent REBEL - a CASE
tool developed to support methodology. Furthermore,
several examples and with the method are dis-
cussed Weconclude by comparing analysis models
agent oriented methodologies ours.

Keywords: Agent oriented engineering, role ori-
ented analysis, goal oriented analysis, methodology

1. Introduction

Software analysis is a crucial phase in the software de-
velopment lifecycle. During the ‘what’ as oppose
to the ‘how’ of the system is described It is during
this phase that the basis for understanding the problem do-
main is established. models then serveas the com-
mon communication medium between two often disparate
groups - domain and software developers. Besides
these two groups, clients would also be interested in the
analysis models. Following analysis, the ‘how’ of the sys-
tem can be described during the design phase.

Agent-oriented engineering has be-
come a widely researched area in recent Many

methodologies for supporting the development of multi-
agent systems have been proposed in the literature

121.Many of these methodologies introduce anal-
ysis and design models for multi-agent systems. However,
they do not draw a clear separation between the de-
tail that should go into analysis and design models. Most
of these models have much design details in the analy-
sis models and thereby, taking away the flexibility of mak-
ing important design decisions during the design phase.
Furthermore, by not providing a clear separation be-
tween analysis and design, there methodologies have in
effect impaired the communication channel between do-
main experts and software developers. It also the
models difficult to understand for the clients.

Another major drawback of the existing AOSE method-
ologies is that they are tied to a particular agent architecture
from the early phases, and therefore are constrained.
Having analysis models which are agent architecture inde-
pendent will make the models more understandable to do-
main experts. It will also give the designers the choice of
choosing an appropriate architectureonce the
areproperly analysed. Scalability is alsoan issue that needs
to be considered since agent systems are typically large sys-
tems.

In our previous work we presented ROADMAP a
methodology for modeling open, adaptive intelligent agent
systems. Since then we have applied the methodology to
develop many multi-agent systems both in academia and
industry. Based on these experiences we have refined our
methodology, especially the analysis models, to meet the
challenges described above and elaborated on in the next
section. In this paper, we describe the analysis models of
ROADMAP and demonstrate how they provide a clear

between analysis and design. We present the
Editor Built for Easy (REBEL),

a CASE we developed to aid usage of
analysis models.

The paper i s organised into several sections. Section 2

Proceedings of the 2005 Australian Software Engineering Conference (ASWEC’05)

1530-0803/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on July 15,2010 at 04:47:27 UTC from IEEE Xplore. Restrictions apply.

describes the criteria that our analysis methodology should
meet. Section 3 provides an overview of the ROADMAP
methodology. Section 4 explains the Goal Model. Section
5 explains the Role Model. Section 6 explains the Social
Model. Section 7 presents REBEL which is a tool devel-
oped to support our methodology. Section 8discusses some
examples of how the methodology has been used. Section
9 compares our analysis methodology with other agent ori-
ented methodologies. Section 10concludes the paper.

2. Criteria for the Analysis Methodology

In this section, we discuss the criteria that motivated us
to devise the methodology.The criteria are design indepen-
dence, scalability and ease of use.

2.1. Design Independence

By design independence, we mean that the methodology
should provide a clear separation between analysis and de-
sign. In other words, the model should not be tied
to any particular design architecture. The design architec-
ture should be decided during the design stage and not at
onset of analysis.

Software analysis should be performed at a high level
of abstraction. It is important that the analysis model cap-
tures the high level requirements and quality of
the system. Only during design are the lower level details
about architecture and considered. A clear
separation is important because the target audience for each
phase is different. Domain experts are able to understand an
overview of the system during analysis. They are not inter-
ested in technical details. On the other hand, technical de-
tails are important to software developers at design time.
Besides, providing a separation between the two phases fa-
cilitates clear traceability of requirements.

2.2. Scalability

Multi-agent systems, especially open systems are inher-
ently large systems managing different organizational
pects. Therefore, an important aspect of a methodology for
modeling such systems is scalability.It is very unlikely that
a single analysis model will able to capture the require-
ments for the complete system. It is necessary to be able to

models at different levels of abstraction so that both
domain experts and developers alike can get an idea of the
overall system behaviour or focus on a particular part of the
system in more if required.

23. Ease of

Themethodology should be easy to use and easy to learn.
It should not be complicated by complex notations or for-
mal specifications. For example, to use even in the
analysis stage, one has to learn and understand myriad nota-
tional concepa such as triggers, preconditions, inheritance,
etc. By meeting this criterion, the methodology makes it
easy for domain experts to understand the models produced,
thus simplifying the sharing of domain knowledge with de-
velopers. It should also be easy for clients to understand
the models. It may even provide the benefit that
the methodology is not restricted to agent oriented systems
only.

3. ROADMAP Methodology Overview

The ROADMAP methodology was first pre-
sented as an extension to GAIA However, feedback
and experiences with the methodology then uncovered sev-
eral limitations. Work on the methodology has since pro-
gressed through several evolutions such
that ROADMAP is now disparate from GAIA.

The analysis methodology we are presenting here i s a
part of the ROADMAP methodology. However, this paper
is not meant to describe. all the models in the methodology,
Here, we concentrate only on the analysis models. We de-
scribed the Goal Model, Role Model and Social Model in
the next few sections.

Figure 1 shows the models in the current ROADMAP
methodology. The dotted horizontal line in the figure shows
the between models in the analysis and design
phase.

In the current ROADMAP methodology, the models are
divided vertically into 3 Domain Specific Models.
Application Specific Models and Reusable Services Mod-
els. The Environment Model and Knowledge Model

information about a specific domain and do not belong
to a particular software development phase. On the other
hand, Goal Model, Role Model, Agent Model and Interac-
tion Model are tied to the system being modelled. Generic
and reusable components in the system are captured by the
Social Model and Service Model.

The models are also split horizontally according to the
analysis and design phases. As discussed, it i s important to
keep implementation details out of the analysis models. The
Goal Model, Role Model and Social Model are part of the
analysis phase Agent Model, Protocol Model and
Service Model are part of the design phase.

All the models do not use notation. Feedback
from teaching the methodology in the 433-682 Software
Agents subject at the University of Melbourne and from

Proceedings of the 2005 Australian Software Engineering Conference (ASWEC’05)

1530-0803/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on July 15,2010 at 04:47:27 UTC from IEEE Xplore. Restrictions apply.

many presentations at workshops shows that the are
easy to understand.

.....................

.

:

............................

ROADMAP

4. The Goal Model

The Goal Model provides a high level overview of the
requirements. Its main objective is to enable both

domain experts and developers to pinpoint &he goals (and
of the system and thus the separate roles the

system needs to fulfill in order to meet those goals. Imple-
mentation details arc not described at all as they arc of no
concern in our analysis stage.

The reader can simply think of the Goal Model as a con-
tainer of three components: Goals, Quality Goals and Roles.
A Goal is a representation of a functional requirement of
the system. A Quality Goal, as its name implies, is a non-
functional or quality requirement of the system. We use the

quality goal as opposed to goal because the former
comes from a software engineering mindset whereas the lat-
ter is from an artificial intelligence A Role is some
sort of capacity or position that the system requires in or-
der to achieve its Goals. Later on in the design stage, a Role
may well be decomposed into one or more agents.

A Goal, Quality Goal or Role may appear in more than
one Goal Model. This simplifies the analysis of large sys-
tem because it can be decomposed into multiple Goal Mod-
els. Goal Model does not require its com-
ponents to be unique across the system.

Goals and Quality Goals can be further decom-
posed into smaller sub-Goals and sub-Quality
Goals. This seem to imply some hierachical structure be-
tween the Goal and its
Goals. However, this is by no means an “is-a” relation-
ship is common in 00 methodologies. Rather the
achical structure is just to show that the sub-component is
an aspect of the top level component.

On other hand, Roles do not such a hierachy.
This is because Roles required in the system are deter-
mined from the Each Goal is analysed to the
type of Roles to fulfill it. As such, Roles can be con-
sidered to be atomic though they may share Goals
and Quality Goals. Who or rather which human or software
agent fulfills a particular Role is not a at this stage.
An agent may also play part ofmore than one Role.

As an let us consider modelling a university.
For simplicity, let us that this university has only
one Goal which is to provide tertiary education. This Goal
can be into two sub-Goals to conduct lectures
and to conduct tutorials. To accomplish these, it the
Lecturer and Tutor positions these are the separate Roles
it The university must also provide quality courses
if it wants to be regarded highly by potential students. Fac-
tors that affect the quality of a are for example its
practical value, its cost and whether or not it has profes-
sional accreditation. As such, the university has a top level
Quality Goal which in turn is to 3 Goals.

The Goal is presented in a graphical diagram and
no formal notations is A summary of the notations
used is shown in Figure 2 whereas Figure 3 portrays the
university model diagrammatically.

Goal its related

Figure2. Summary of Notations

We clearly do not utilisc a use case-like approach
as do some other The inital version of

utilised use which we later found
to be a disadvantage. This is use cases im-
pose limitations when the system is a multi-agent

Proceedings of the 2005 Australian Software Engineering Conference (ASWEC’05)

1530-0803/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on July 15,2010 at 04:47:27 UTC from IEEE Xplore. Restrictions apply.

Figure 3. An Example Goal Model for Univer-
sity System

one. Firstly, use cases inherently impose a system bound-
ary. This is unsuitable for an open any
number of may enter or Secondly, the ap-
proach a focus on user actions which can only
give a restricted of the system. Agent systems un-
like traditional system. potentially are responsible
for every aspect of the system and not just an abstrac-
tion of users’ point of view.

5. The Role Model

The Role Model describes the properties of a Role. The
term Role Schema is used interchangablywith Role Model,
The Role Model consists of four elements to describe the
Role:

Role A name the Role.

Description A textual description of the Role.

Responsibilities A list of that the Role must
in order for a set of Goals Quality

Goals to be achieved.

Constraints A list of conditions that the Role must take
into consideration when performing its responsibili-
ties. These include guard conditions, conditions
and quality conditions.

Clearly, is analogous to the delegation of work
through the creation of positions in a human organisation.
Every employee in the organisation holds a particular po-
sition in order to realise business functions. Differ-
ent degree of autonomy, decision
making and responsibilities. Taking this analogy, a Role
Schema is “position description” for a particular Role.

Table 1 shows an example Role Schema.

Role Lecturer

Description

Responsibilities

Teaches one or more courses,

Make preparations for lectures such
as slides, notes. etc.

Present lectures.

Provide consultation hours.

Decide on course content.

Lectures must not go on for too
long, it fits in hour as per the
timetable.

Delivery style should not bore the
audience.

Consultation hours must be suitable
and accessible - not when

too early for most students, it
does not clash with other

etc.

Course content must respect re-
quirements of relevant accreditation
bodies.

Constraints

Table 1. Role schema for Lecturer - an exam-
ple

Models (and hence Roles) can merged or
ted. This i s useful because Roles can be refined as more un-
derstanding of the domain space is obtained during analy-
sis. For example, a more Lecturer Role than in Ta-
ble 1can be divided into the Educator Role and Researcher
Role. The Educator Role deals with the teaching
bilites of the Lecturer whereas the Researcher Role
sulates his activities. Conversely, if the analyst had
started with &he Role and Researcher Role, he may

them into the Role.

The Social Model

The Social Model captures the relations between the
Roles in the system and policies for interaction. Policies
for interaction between the Roles areas such
as security,privacy and communication.

In a multi-agent system, it is to have team
The team interaction then is a type of relation among

the Roles participating in the team. Another basic relation i s
a reporting relation similar to a human organisation where

Proceedings of the 2005 Australian Software Engineering Conference (ASWEC’05)

1530-0803/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on July 15,2010 at 04:47:27 UTC from IEEE Xplore. Restrictions apply.

you have junior employees reporting to senior employees.
In our university example, Tutor X may plan and discusss

plan with other Tutors. Every fortnight, Tu-
tor X has to meet with Lecturer Y to report on his
plan or suggestions for the next scheduled tutorial.

The model is open to all possible types of relations de-
pending on the type of system. To the possible
relations. analysts will need to ask probing questions about
how a particular Role will fit in the system and how it will
interact with environment. Research on the Social Model
is still evolving. Nonetheless, our aim is to achieve a level
whereby common relations that exist in an agent-systemcan
be easily described and yet understandable by domain ex-
perts.

7.

The Roadmap Editor Built for Easy
(REBEL)is a tool for building Goal Models and Role Mod-
els (or Role during the analysis stage. In the
future it will be extended to support stages of the soft-
ware development life cycle.

REBEL has been developed in Java an Eclipse plugin.
Eclipse was chosen because of the following reasons:

Its extensible plugin architecture allows easy ex-
tension to our plugin in the It also allows reuse
of functionalities provided by other

It enables the developer to concentrate on the plugin
without worrying about IDE capabilities such as file

team sharing, common views, etc.

Eclipse’s Graphical Editing Framework and
Eclipse Framework (EMF) technologies can
be (as discussed further in Section

It has strong community plus its docu-
mentation is well maintained.

7.1. Features

The Goal Models and Role Schema5 created are part
of an application model of the system to be built. This
application model persists in a file on the file system. A
Roadmap Project is a folder for such application model
files. In REBEL, the user can create Roadmap Projects and
then create application model files for the relevant Project.

REBEL 3 main views - Navigator, Model Outline
and Graphical views. The Navigator view is a standard
Eclipse view that shows the files in a particular project. The
Model Outline view provides a tree view of the persisted
application model. This view allows the user to save the
model. add another Goal Schema and delete
an existing Goal Schema. Saving the applica-
tion model also done through the Outline view.

The Graphical view provides graphical editing capabilities.
It has a to drag and drop elements onto the
area. It provides functionalities such move, delete
and grouping. Double clicking on an element in the draw-
ing area will enable the user to edit the element’s properties,
if applicable.

Figure 4 and show some scrcenshots of REBEL. In
4, the top left panel is the Navigator view, the bot-

tom left panel is the Model Outline view and panel
is Graphical view.

Figure 4. REBEL Navigator, Model Outline
and Graphical Views

Figure 5. Editing a Role Schema with REBEL

The application model file i s actually an XML

Proceedings of the 2005 Australian Software Engineering Conference (ASWEC’05)

1530-0803/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on July 15,2010 at 04:47:27 UTC from IEEE Xplore. Restrictions apply.

data Interchange compliant representation of the
model. Saving it thus enables the analysis model to be ven-
dor neutral and simplifies of the model
for purposes).

7.2. Architecture

REBEL consists of 4 main parts as shown in Figure 6.

Figure6. REBEL Design Architecture

The Utility component consists mainly of classes needed
to integrate into the Eclipse IDE and utility classes for cre-
ating files, project, etc.

The rest of the components - Application Model, Graph-
ical and Model Outline implements the MVC archi-
tecture. The Application Model is the model in the ar-
chitecture which is used by the views in the Graphical
and Model Outline components. The Graphical com-
ponent Eclipse's Graphical Framework

for its graphical capabilities. Its View and Con-
troller parts to those required by GEF as
described in (Chapters 3 and 4). The Model Out-
line view Viewers and SWT widgets for its
implementation. describe the and SWT
chi

As mentioned before, the Application Model is saved
an XMI model. To more precise it uses Eclipse's imple-
mentation of - the Ecore model (Chapter
The Modelling Framework (EMF) was
used to auto-generate skeleton classes from a class

which represented the meta-model for the
Model and Role Model. The main benefit of using EMF
was it enabled the developer to model the component
at a very high-level. The generated classes were later modi-
fied and customised as required.

8. Examples and Experiences

The methodology has been used in several differ-
ent by people with varying degree of expo-
sure and experience with agent-oriented paradigms. Here
an overview of four of the applications:

Secure Identity Management Project This was a
project in collaborationwith our industry partner,

An employee of Adacel applied the methodol-
ogy to a multi-agent system. The employee has
a industry background in object-oriented con-
cepts but none at all with agent-oriented ones. The em-
ployee was easily able to use the methodology and it

him with understanding agent concepts. Exam-
ples of some of the Coal Models developed (repro-
duced with REBEL) are show in Figures 7 and 8.

440 Project Intelligent Lifestyle This is a fourth year
software engineering project. The team of 14 under-
graduate students the to
requirements for building a demonstration of intelli-
gent agents in a smart home environment. All the stu-
dents had not taken any agent-oriented courses prior

this project.

TeachingExperience The methodology was taught as part
of a masters level subject: 433-682 Software Agents at
the University of Melbourne. were exposed to
agent-oriented concepts and methodologies. The stu-
dents also used the methodology to
yse example systems part of their assessment.

post-
graduate student used the methodology to develop
Goal Model diagrams, Role Models and Social Re-
lationship Models to model an real estate
system. This student has knowledge of agent con-
cepts and had also taken the 433-682 subject. This
project is now progressing to the design phase.

All the examples mentioned, except for the Intelligent
Lifestyle project, were carried out in the first 6-9 months

The 440 Project will progress till the end of the year.
Feedback from the participants in these examples was
able to the continuous improvement of methodology.Of
particular note was the fact that the methodology was
favourably both by people who had prior knowledge about
agent-oriented concepts and those who do not. Furthennore.
the recency of these gives further assurance that i t
is applicable for developing systems in the present and
future.

Estate Agent Systems A

9. Comparison to Similar Methodologies

In this section, we compare our analysis methodology
with other agent oriented methodologies. We will consider

Proceedings of the 2005 Australian Software Engineering Conference (ASWEC’05)

1530-0803/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on July 15,2010 at 04:47:27 UTC from IEEE Xplore. Restrictions apply.

3

Figure 7. Voice Call Management Goal Model
Diagram from S I M Project (reproduced with
REBEL)

GAIA Tropos Prometheus [7] and
in our discussion.
The GAIA methodoloy provides a complete analysis and

design framework, It is architecturally independent but does
not have a clear separation between analysis and design, Its
analysis phase has decisions and computational in-
formation. For example, its role model “Liveness” and
“Safety” properties that require low level information that
may not be known at analysis phase. The notations used in
its analysis models are unfamiliar developers and hard
for domain experts to understand.

on the other has good support for early require-
ment analysis. However, it on the architecture
and BDI notions in its analysis phase. Knowledge level
concepts, such as goals, plans, capabilities. etc. are

throughout all phases of development. It requires the
system under construction to be shown as a actor in an ac-
tor diagram in its Late Requirements phase. The goals and
plans of the system are subsequently identified. However.
this is not suitable when there are no identifiable domain
stakeholders to serve as the main actor or for the design
of reactive agent systems. the actor diagrams
used in Tropos may not scale. This is because the actor di-
agram has to depict the entire network of dependency rela-
tionships between the system-to-be and other actors, goals
and soft goals.

Prometheus also is not design independent.

I

%a*-

‘\

Figure 8. Voice Call Handling Goal Model Di-
agram from SIM Project (reproduced with
REBEL)

ically the development of BDI agents and is
strongly tied to the JACK agent language. While the
tionalities in its phase (termed the system
specification similar to Goals in method-
ology, Prometheus does not have any concept similar to
Quality Goals. Moreover, Prometheus employs case
scenarios to capture information about the system in op-
eration. These scenarios only capture sequential system
operations and are unable to provide a high level sys-
tem overview at analysis phase. An overview of the
system is provided by Prometheus but only during

Even then, their system overview diagram i s not
scalable as all information has to be created in a single

The methodology is an extension of
to include agent concepts. It is implementation un-

biased. During analysis, different views of the system are
decomposed and refined. It lets the analyst have the flex-
ibility of choosing appropriate views and
strategies. While this is acceptable for experience users,
novice users have difficulty deciding on a view.

a guideline of situations a particular view
is more would help ease the learning pro-
cess. Its heavy use of UML notations also complicates the
analysis process because it impedes understanding by do-
main

Our analysis methodology does not the drawbacks
of the other methodologies. It is clearly not biased toward
any specific design or implementation. assumption has

made about the design architecture nor is one required
to be chosen before the methodology can be applied. In the
methodology, Goals, Quality Goals and Roles can be

Proceedings of the 2005 Australian Software Engineering Conference (ASWEC’05)

1530-0803/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on July 15,2010 at 04:47:27 UTC from IEEE Xplore. Restrictions apply.

in Goal Models. Roles can also be merged
or the Social Model does not need to
be portrayed in the Goal Model diagram (as depen-
dency model does in its actor diagram). These ensures that
our diagrams can be used to depict large systems thus meet-
ing the scalability criteria. We have also introduced a rela-
tively small set of notations and This make it easy
to learn and use both domain experts software devel-
opers.

10. Conclusion

In this paper, we presented the ROADMAP methodology
for improving role and goal oriented analysis of multi-agent
systems. We how the methodology is able to ful-
fill the three criteria of design scalability and
ease of use. In fact, the methodology can also be used on
object-oriented systems. Future work will focus on matur-
ing the other models so that ROADMAP can support the en-
tire software We also plan to develop REBEL fur-
ther as the inethodology matures.

11. Acknowledgement

We would like to thank Andrew Seiberras for his feed-
back and experiences with using the methodology in the
SIM project. Thanks also to Bhaltacahrya for her
insights the project and Thomas Juan for his
work on the version of ROADMAP. We also thank the

Internet Technology CRC for supporting our work,

References

G. et Agent oriented analysis using
In Second International Workshop on Soft-
ware Engineering pages

et Eclipse Modeling Framework. Addison
Wesley Professional,

and Developing
Systems: The Gaia Methodology. ACM

tions on Software Engineering and Methodology
July 2003.

Create an Eclipse-based application using the
Graphical Editing Framework.

3003.
Eclipse 3.0 Plug-in Development Guide.

sp,
and Adapting for Agent

Software Engineering.
and Prometheus: A Methodology

for Developing Intelligent Agents. In Proceedings of 3rd
Workshop on Agent Oriented Software

July

et al. An Agent Oriented Development
Methodology. of Agents and

May
Notes on the Eclipse Plug-in

h

[Software Engineering: A Practitioner’s
page 176.

Getting Started Eclipse and the SWT (Tutorials) .
http://www.cs.urnanitoba.ca/ eclipse/, 2003.

and the
Methodology for Complex Open Systems. In Pro-

ceedings of the First Joinr Conference on
Agents und Systems pages

and The KOADMAP Meta-model for In-
telligent Adaptive Multi-Agent Systems in Open Environ-
ment. In Proceedings of the 4th International on
Agent Oriented Software Engineering, July 2003.

[and Achieving Dynamic Interfaces with
Agent Concepts. In Proceedings of 3rd
Joint Conference on and Multi-Agent
Systems (AAMAS).July

[The Eclipse Modeling Framework (EMF1 Overview.
http://download.eclipse.org/tools/emf/saipts/dncs.php?doc=

et al. Development using the Graphicul
Editing and the Eclipse Modeling Frumework.

Publications,
XMI Metadata Specification.

3-10,

Proceedings of the 2005 Australian Software Engineering Conference (ASWEC’05)

1530-0803/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on July 15,2010 at 04:47:27 UTC from IEEE Xplore. Restrictions apply.

