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Abstract

Software defect curves describe the behavior of the 

estimate of the number of remaining software defects as 

software testing proceeds. They are of two possible 

patterns: single-trapezoidal-like curves or multiple-

trapezoidal-like curves. In this paper we present some 

necessary and/or sufficient conditions for software defect 

curves of the Goel-Okumoto NHPP model. These 

conditions can be used to predict the effect of the 

detection and removal of a software defect on the 

variations of the estimates of the number of remaining 

defects. A field software reliability dataset is used to 

justify the trapezoidal shape of software defect curves and 

our theoretical analyses. The results presented in this 

paper may provide useful feedback information for 

assessing software testing progress and have potentials in 

the emerging area of software cybernetics that explores 

the interplay between software and control. 

1. Introduction 

Software defects play a key role in software reliability 

study. Therefore, it is very important to study the 

properties of software defects. As pointed out by 

Yourdon [1], "Defects are not the only measure of 

quality, of course; but they are the most visible indicator 

of quality throughout a project". The problem has been 

studied by many researchers [2-4]. Many early studies of 

defect occurrence suggested that it followed a Rayleigh 

curve [5, 6], roughly proportional to project staffing. The 

underlying assumption is that the more effort expended, 

the more mistakes are made. McConnell [7] has discussed 

the relationship between defect rate and development 

time. In his observations, projects that achieve the lowest 

defect rates also achieve the shortest schedules. Since

software testing is the immediate phase prior to the 

release of software, it will be most interesting to know 

more about the relationship between the number of 

remaining software defects and testing process. Although 

there have been some experimental curves to depict the 

relationship between the number of remaining software 

defects and testing process, a thorough and rigorous 

analysis has not yet been conducted. In our previous 

investigation [8], we have presented the notion of 

software defect curve to depict such a relationship. This 

paper is a follow-up of our previous investigation. 

Software defect curves describe the behavior of the 

estimate of the number of remaining software defects as 

software testing proceeds. Figure 1 shows a typical 

pattern of software defect curves under a time-

homogenous test profile. In Figure 1, n denotes the 

number of software defects detected and removed, and 

nM̂  denotes the estimate of the number of defects 

remaining in the software after n defects are detected and 

removed. In the early testing phase, as more and more 

software defects are detected and removed, the estimate 

of the number of remaining defects tends to increase. In 

the middle testing phase, the estimate of the remaining 

defects remains steady. In the late testing phase, the 

estimate of the number of remaining defects tends to 

decrease.

If the test profile is time-nonhomogenous, changing 

from one to another, then the expected trend of software 

defect curves demonstrates a multiple-trapezoidal-like 

curve as shown in Figure 2. 

The trapezoidal shape of software defect curves has 

been recently proposed [8]. It was motivated mainly by 

the question: as software testing proceeds and software 

reliability tends to grow, whether or not the estimate of 

the number of remaining software defects tends to 

Proceedings of the 27th Annual International Computer Software and Applications Conference (COMPSAC’03) 
0730-3157/03 $ 17.00 © 2003 IEEE 

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 24,2010 at 01:30:27 EDT from IEEE Xplore.  Restrictions apply. 



Figure 2  Expected trend of software defect
         curves under multiple test profiles 

decrease. This question was triggered by the empirical 

observation that, under certain circumstances, the 

estimate of the initial number of software defects tends to 

increase as software testing proceeds[2].

Obviously, software defect curves help to answer the 

questions. A considerable amount of theoretical analyses 

and simulation studies have been conducted to justify the 

trapezoidal shape of software defect curve and its 

potential applications [8]. Software defect curves may 

help to detect changes in software test profile, identify 

stages of software testing, improve software testing 

strategies, and so on. In order to do so, it is necessary to 

analyze the actual trend of a software defect curve. In 

particular, we need to characterize the relationship 

between
nM̂  and 

1
ˆ

nM  (refer to Figure 1). In this paper 

we present some necessary and/or sufficient conditions 

for the relationship. These conditions are easily verifiable. 

These results also supplement our previous theoretical 

analyses of software defect curves [8]. 

The rest of the paper is organized as follows. Section 2 

reviews the Goel-Okumoto NHPP model of software 

reliability. Section 3 presents necessary and/or sufficient 

conditions for software defect curves under the Goel-

Okumoto NHPP model. In Section 4 presents a software 

defect curve based on Musa’s software reliability data. 

Concluding remarks are presented in Section 5. 

2. The Goel-Okumoto NHPP model 

The Goel-Okumoto NHPP model is one of the most 

important models in software reliability engineering. It is 

based on the following assumptions [9]. 

(1). Software is tested under anticipated operating 

environment. 

(2). For any set of finite time instants 1t , 2t ,, nt ,

the numbers of software failures 
n,,, 21  observed

in the time intervals ],(,],,(],,0( 1211 nn ttttt  
respectively, are independent. 

(3). Every software defect has an equal chance of 

being detected. 

(4). The accumulative number of software failure 

observed up to time t, )(tN , follows a Poisson 

distribution with the mean value )(tm  such that the 

number of software failures observed in the interval 

),( ttt  is proportional to the interval length and to 

the number of remaining software defects at time t.

(5). )(tm  is a bounded and non-decreasing function 

with 

m(t)=0, as t 0, and m(t) a , as t

where a is the total number of software failures 

eventually observed. 

With these assumptions, we have 

m(t)= a {1-exp(-bt)}

In this way 

})()(Pr{ 1 iii tNtN

!

)}()(exp{)]()([ 11

i

iiii tmtmtmtm i

Suppose that there is an one-to-one correspondence 

between failure and defect, and each failure-causing 

defect is removed immediately upon the detection of a 

failure, without introducing new defects. Then, the 

number of software failures is equal to the number of 

software defects. Thus the Goel-Okumoto NHPP model 

can be used to estimate the number of software defect [2]. 

Originally in the Goel-Okumoto NHPP model 

},,,{ 21 nttt   can be any observation time instants 

given a priori and the model deals with },,,{ 21 n 
which are classified as the type II data2 [10]. It should be 

noted that Goel-Okumoto NHPP model deals with both 

                                                
2
 Type I data mean that software reliability data are represented in terms 

of the time intervals between successive software failures. Type II data 

mean that software reliability data are represented in terms of the 

numbers of failures observed in successive time intervals.

nM̂

Early phase Middle phase Late phase 

n

Figure 1  Expected trend of software defect
         curves under a single test profile 

nM̂

n

Test profile 1 Test profile 2 Test profile 3 
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type I and type II data. Since type I data is more accurate 

than type II data, we use type I data in this study. 

Here we still treat ti as the time instant of the ith 

software failure. Let the software failure process be 

represented in Figure 3, where },,1:{ niXi   is a series 

of time intervals between successive software failures 

with 
1iii TTX .

Suppose
nXXX ,,, 21   are independent and it  is 

realization of 
iT . Then the joint density distribution 

function of 
nTTT ,,, 21   can be determined by3

}1(exp{}exp{)(),,,(
1

21
nbt

n

i

i

n

n eatbabtttL  

Hence, the maximum likelihood estimates of a and b

are determined by the following equations 

nn tbn

e

n
a

ˆ
1

ˆ

(1)
n

i

i

tb

nn

n

teta
b

n
nn

1

ˆ
ˆ

ˆ

(2)

Here we are more interested in 
nM̂ than

nâ , with 

naM nn
ˆˆ

(3)

Let z= nb̂ t n and 

n

n

i

i

n
nt

t

P 1 , the followings are after 

equations (1)-(3) 

1
ˆ

zn
e

n
M

(4)

1

11
zn

ez
P                                                               (5) 

                                                
3

The joint density distribution function can be obtained from most 

books, e.g. [11], about non-homogeneous Poisson process.

Let wz  be the inverse function of 
1

11
zez

w , and 

1

1
wze

wh . In [8], we have proved the following 

proposition.

Proposition 1
1

ˆ
nM nM̂  iff •n+1•h (

1nP ) n h (
nP ),

where  can  be >, = , or < . Q.E.D.

In the next section, we will present another necessary 

and sufficient condition for software defect curves, which 

is easier to be verified. 

3. Necessary and sufficient conditions 

From equations (4) and (5), we note 

n

M

M

n
P n

n

n

ˆ

)
ˆ

1ln(

1

Thus, we have 0lim
0ˆ n

M
P

n

Let

00

0

)
1

1ln(

1

)(

x

xx

x
xfy

Lemma 1 )(xfy  is continuous and strictly 

increasing on ),0[ .

Proof It is obvious that )(xfy  is continuous on 

),0[ .

Furthermore, for ),0(x , )(xfy  is equivalent 

to

x
e

y

e
x

1

1

11

1

1

                                 

(6)

So, 1
d

d1

d

d
2 xx

y
1

)1(1 2

2 e

e

It is  easy to prove that 01
)1(1

2

2 e

e , for 0 .

Therefore )(xfy  is strictly increasing for ),0(x .

Finally, 0)0(f , and 0)(xfy  for ),0(x

because
xx

1
)

1
1ln( . Hence, we can conclude that 

)(xfy  is strictly increasing on ),0[x . Q.E.D.

Corollary 1 )()( 1 yfykx  is continuous and 

strictly increasing on )
2

1
,0[ .

Figure 3 Software failure process 

X1 X2 … Xi

tT0 =0 T1 Ti-1T2 Ti
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Proof  Note 0)0(f  and 

2

1

)
1

1ln(

1
lim x

x

x

.

Therefore, we have )
2

1
,0[y , and )(ykx  is 

continuous and strictly increasing on )
2

1
,0[  as a result of 

Lemma 1. Q.E.D.

Corollary 1 )()( 1 yfykx  is continuous and 

strictly increasing on )
2

1
,0[ .

Proof Note 0)0(f  and 

2

1

)
1

1ln(

1
lim x

x

x

.

Therefore, we have )
2

1
,0[y , and )(ykx  is 

continuous and strictly increasing on )
2

1
,0[  as a result of 

Lemma 1. Q.E.D.

Lemma 2 For ),0(x , 0
d

d
2

2

x

y
.

Proof Refer to equation (6).

2

2

2

2

2

2

2

)
d

d
).(

d

d
.

d

d
.

d

d

d

d
(

d

d

xx

xyy

x

y

2

3
)

d

d
(

)1(

22

xe

ee

It is easy to verify that 022 ee  for 

0 . This completes the proof. Q.E.D.

Lemma 3  )(yk  is a strictly convex function over 

)
2

1
,0[ .

Proof First,

0)
d

d
/(

d

d
.

d

d
)

d

d
(

d

d

d

d 2

2

2

2

2

x

y

x

y

y

x

y

x

yy

x

Hence, )(yk  a strictly convex function over )
2

1
,0[ .

Furthermore, we have 

y

x

y

x

y

x

y

kyk
k

yyy d

d
lim

d

d
limlim

0

)0()(
lim)0(

000

/

0
)1(

lim
22

2

ee

e

0
0

)0(
d

d

lim)0(

/

0

//

y

k
y

x

k
y

This implies that )( yk  is a convex function defined 

on )
2

1
,0[ , that is, )

2

1
,0[y .

)1,0( , there holds 

)()0()1()0)1(( ykkyk

or )()( ykyk

In order to show that )(yk  is a strictly convex 

function defined on )
2

1
,0[ , we need to show 

)()( ykyk  for )
2

1
,0[y , )1,0( . This is to be 

done by contradiction. Suppose )
2

1
,0[y , )1,0(0

,

such that )()( 0000 ykyk

Let )( 00 ykx •or )( 0000 ykx . Then 

0

0

0

)
1

1ln(

1
x

x

y

00

00

00

)
1

1ln(

1
x

x

y

However, we also have 

)

)
1

1ln(

1
( 0

0

000 x

x

y

Thus,

00

1

0

1
1)

1
1( 0

xx

On the other hand, we have 

00

1

0

1
1)

1
1( 0

xx
, )

2

1
,0(0x , )1,0(0

This leads to a contradiction. Q.E.D.

Theorem 1 
1

ˆ
nM nM̂  iff )()1( 1nPkn )( nPnk ,

where  can be >, <, or =. 

Proof The proof follows after )
ˆ

(
n

M
fP n

n
 and that 

(.)k  is strictly increasing function. Q.E.D.

Theorem 2 If
nn PP 1
, then 

nn MM ˆˆ
1

.

Proof
nn PP 1

 implies )()( 1 nn PkPk , which in 

turn implies  )()()1( 1 nn PnkPkn . Q.E.D.

Theorem 3 If
nn nPPn 1)1( , then 

nn MM ˆˆ
1

Proof Note (.)k  is a strictly increasing and convex 

function, and 0)0(k . Hence: 

)
1

()( 1 nn P
n

n
kPk = )0

1

1

1
(

n
P

n

n
k n
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)(
1

)0(
1

1
)(

1
nn Pk

n

n
k

n
Pk

n

n

This completes the proof as a result of Theorem 1. 

Q.E.D.

4. Example of software defect curves

In this example, we use the software reliability dataset 

of Musa [12]. 
nM̂ ( 1361 n )can be computed from 

Equations (1)-(3). Figure 4 depicts the trajectory of 
nM̂ .

Disregarding the portion of 
nM̂  for 271 n , which is 

over fluctuating and unreliable as anticipated at the very 

early stage of software testing, Figure 4 matches the 

pattern of Figure 2. For 9528 n , the behavior of 
nM̂

is displayed in Figure 5, which also matches the pattern of 

Figure 1. 
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Figure 4  Trajectory of 
nM̂  for the Musa Data 
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Figure 5 Trajectory of 
nM̂  for the Musa Data

from 28n  to 95n
The example software defect curves in Figures 4 and 5 

demonstrate: 

(1) The trapezoidal shape of software defect curves 

complies with empirical observations. 

(2) Although the expected trend of a software defect 

curve may demonstrate a single-trapezoidal-like curve or 

a multiple-trapezoidal-like curve, fluctuations are 

associated with the software defect curve throughout the 

testing process. 

(3) For the trapezoidal-like software defect curve, if 
nM̂

tends to increase, then the software testing is in its early 

phase with respect to the corresponding test profile; if 

nM̂ tends to fluctuating around certain values, then the 

software testing is in its middle phase with respect to the 

corresponding test profile; if 
nM̂ tends to decrease, then 

the software testing is in its late stage with respect to the 

corresponding test profile. 

Once we know whether
nM̂  tends to increase or 

decrease, we can judge the phase of software testing. As 

shown in Equations (1)–(3), 
nM̂ can be calculated only 

after we know 
nb̂ . However, Equation (2) is an implicit 

function of 
nb̂ .  Therefore, it is very difficult to calculate 

nM̂  on-line during the process of software testing. In 

order to solve the problem, we have developed Theorems 

1-3 to provide other more easily computable conditions. 

These conditions involve
nP  which could be computed 

directly from the data collected during the process of 

software testing. In view of Theorems 1-3, it is natural to 

ask: will 
nP  be as effective as

nM̂  in judging the stage of 

software testing.  Figures 6 and 7 show the relationship 

between
nP  and n.
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Figure 6   Trajectory of 
nP  for the Musa Data
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Figure 7 Trajectory of 
nP  for the Musa Data

from 28n  to 95n

Having compared Figures 4 and 6, as well as Figures 5 

and 7, we can conclude that the patterns of the trajectories 

of
nP  and 

nM̂  are very similar. Since it is easier to 

compute
nP ,

nP  should be used instead of 
nM̂  to check 

the stage of software testing. 

5.  Conclusion 

In this paper, we have reviewed the trapezoidal shape 

of software defect curves and presented some necessary 

and/or sufficient conditions for software defect curves of 

the Goel-Okumoto NHPP model. These results have 

supplemented the results of our previous theoretical 

analyses. Our necessary/sufficient conditions provide a 

faster approach to predict the types of change for the 

estimated number of remaining software defects, after 

detecting and removing a software defect. We have also 

used an example software defect curve generated by a 

field software reliability dataset to further justify the 

trapezoidal shape of software defect curves, and to 

demonstrate the applications of our necessary/sufficient 

conditions. In addition, these necessary/sufficient 

conditions may help to assess software testing progress 

and thus provide useful feedback information for adaptive 

software testing which is counterpart of adaptive control 

in software testing and falls into the scope of software 

cybernetics. Software cybernetics explores the interplay 

between software and cybernetics [13, 14]. 
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