
An Efficient Defect Estimation Method for Software Defect Curves
1

1
 Supported by the National Natural Science Foundation of China (60233020), the Aviation Science Foundation of China (01F51025) and the “863”

Program of China (2001AA113192).

Chenggang Bai

Department of Automatic

Control, Beijing University of

Aeronautics and Astronautics

Beijing 100083, China

bcg@buaa.edu.cn

Kai-Yuan Cai

Department of Automatic

Control, Beijing University of

Aeronautics and Astronautics

Beijing 100083, China

kycai@buaa.edu.cn

T.Y. Chen

School of Information

Technology, Swinburne

University of Technology

Hawthorn 3122, Australia

tchen@it.swin.edu.au

Abstract

Software defect curves describe the behavior of the

estimate of the number of remaining software defects as

software testing proceeds. They are of two possible

patterns: single-trapezoidal-like curves or multiple-

trapezoidal-like curves. In this paper we present some

necessary and/or sufficient conditions for software defect

curves of the Goel-Okumoto NHPP model. These

conditions can be used to predict the effect of the

detection and removal of a software defect on the

variations of the estimates of the number of remaining

defects. A field software reliability dataset is used to

justify the trapezoidal shape of software defect curves and

our theoretical analyses. The results presented in this

paper may provide useful feedback information for

assessing software testing progress and have potentials in

the emerging area of software cybernetics that explores

the interplay between software and control.

1. Introduction

Software defects play a key role in software reliability

study. Therefore, it is very important to study the

properties of software defects. As pointed out by

Yourdon [1], "Defects are not the only measure of

quality, of course; but they are the most visible indicator

of quality throughout a project". The problem has been

studied by many researchers [2-4]. Many early studies of

defect occurrence suggested that it followed a Rayleigh

curve [5, 6], roughly proportional to project staffing. The

underlying assumption is that the more effort expended,

the more mistakes are made. McConnell [7] has discussed

the relationship between defect rate and development

time. In his observations, projects that achieve the lowest

defect rates also achieve the shortest schedules. Since

software testing is the immediate phase prior to the

release of software, it will be most interesting to know

more about the relationship between the number of

remaining software defects and testing process. Although

there have been some experimental curves to depict the

relationship between the number of remaining software

defects and testing process, a thorough and rigorous

analysis has not yet been conducted. In our previous

investigation [8], we have presented the notion of

software defect curve to depict such a relationship. This

paper is a follow-up of our previous investigation.

Software defect curves describe the behavior of the

estimate of the number of remaining software defects as

software testing proceeds. Figure 1 shows a typical

pattern of software defect curves under a time-

homogenous test profile. In Figure 1, n denotes the

number of software defects detected and removed, and

nM̂ denotes the estimate of the number of defects

remaining in the software after n defects are detected and

removed. In the early testing phase, as more and more

software defects are detected and removed, the estimate

of the number of remaining defects tends to increase. In

the middle testing phase, the estimate of the remaining

defects remains steady. In the late testing phase, the

estimate of the number of remaining defects tends to

decrease.

If the test profile is time-nonhomogenous, changing

from one to another, then the expected trend of software

defect curves demonstrates a multiple-trapezoidal-like

curve as shown in Figure 2.

The trapezoidal shape of software defect curves has

been recently proposed [8]. It was motivated mainly by

the question: as software testing proceeds and software

reliability tends to grow, whether or not the estimate of

the number of remaining software defects tends to

Proceedings of the 27th Annual International Computer Software and Applications Conference (COMPSAC’03)
0730-3157/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 24,2010 at 01:30:27 EDT from IEEE Xplore. Restrictions apply.

Figure 2 Expected trend of software defect
 curves under multiple test profiles

decrease. This question was triggered by the empirical

observation that, under certain circumstances, the

estimate of the initial number of software defects tends to

increase as software testing proceeds[2].

Obviously, software defect curves help to answer the

questions. A considerable amount of theoretical analyses

and simulation studies have been conducted to justify the

trapezoidal shape of software defect curve and its

potential applications [8]. Software defect curves may

help to detect changes in software test profile, identify

stages of software testing, improve software testing

strategies, and so on. In order to do so, it is necessary to

analyze the actual trend of a software defect curve. In

particular, we need to characterize the relationship

between
nM̂ and

1
ˆ

nM (refer to Figure 1). In this paper

we present some necessary and/or sufficient conditions

for the relationship. These conditions are easily verifiable.

These results also supplement our previous theoretical

analyses of software defect curves [8].

The rest of the paper is organized as follows. Section 2

reviews the Goel-Okumoto NHPP model of software

reliability. Section 3 presents necessary and/or sufficient

conditions for software defect curves under the Goel-

Okumoto NHPP model. In Section 4 presents a software

defect curve based on Musa’s software reliability data.

Concluding remarks are presented in Section 5.

2. The Goel-Okumoto NHPP model

The Goel-Okumoto NHPP model is one of the most

important models in software reliability engineering. It is

based on the following assumptions [9].

(1). Software is tested under anticipated operating

environment.

(2). For any set of finite time instants 1t , 2t ,, nt ,

the numbers of software failures
n,,, 21 observed

in the time intervals],(,],,(],,0(1211 nn ttttt
respectively, are independent.

(3). Every software defect has an equal chance of

being detected.

(4). The accumulative number of software failure

observed up to time t,)(tN , follows a Poisson

distribution with the mean value)(tm such that the

number of software failures observed in the interval

),(ttt is proportional to the interval length and to

the number of remaining software defects at time t.

(5).)(tm is a bounded and non-decreasing function

with

m(t)=0, as t 0, and m(t) a , as t

where a is the total number of software failures

eventually observed.

With these assumptions, we have

m(t)= a {1-exp(-bt)}

In this way

})()(Pr{ 1 iii tNtN

!

)}()(exp{)]()([11

i

iiii tmtmtmtm i

Suppose that there is an one-to-one correspondence

between failure and defect, and each failure-causing

defect is removed immediately upon the detection of a

failure, without introducing new defects. Then, the

number of software failures is equal to the number of

software defects. Thus the Goel-Okumoto NHPP model

can be used to estimate the number of software defect [2].

Originally in the Goel-Okumoto NHPP model

},,,{ 21 nttt can be any observation time instants

given a priori and the model deals with },,,{ 21 n
which are classified as the type II data2 [10]. It should be

noted that Goel-Okumoto NHPP model deals with both

2
 Type I data mean that software reliability data are represented in terms

of the time intervals between successive software failures. Type II data

mean that software reliability data are represented in terms of the

numbers of failures observed in successive time intervals.

nM̂

Early phase Middle phase Late phase

n

Figure 1 Expected trend of software defect
 curves under a single test profile

nM̂

n

Test profile 1 Test profile 2 Test profile 3

Proceedings of the 27th Annual International Computer Software and Applications Conference (COMPSAC’03)
0730-3157/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 24,2010 at 01:30:27 EDT from IEEE Xplore. Restrictions apply.

type I and type II data. Since type I data is more accurate

than type II data, we use type I data in this study.

Here we still treat ti as the time instant of the ith

software failure. Let the software failure process be

represented in Figure 3, where },,1:{ niXi is a series

of time intervals between successive software failures

with
1iii TTX .

Suppose
nXXX ,,, 21 are independent and it is

realization of
iT . Then the joint density distribution

function of
nTTT ,,, 21 can be determined by3

}1(exp{}exp{)(),,,(
1

21
nbt

n

i

i

n

n eatbabtttL

Hence, the maximum likelihood estimates of a and b

are determined by the following equations

nn tbn

e

n
a

ˆ
1

ˆ

(1)
n

i

i

tb

nn

n

teta
b

n
nn

1

ˆ
ˆ

ˆ

(2)

Here we are more interested in
nM̂ than

nâ , with

naM nn
ˆˆ

(3)

Let z= nb̂ t n and

n

n

i

i

n
nt

t

P 1 , the followings are after

equations (1)-(3)

1
ˆ

zn
e

n
M

(4)

1

11
zn

ez
P (5)

3

The joint density distribution function can be obtained from most

books, e.g. [11], about non-homogeneous Poisson process.

Let wz be the inverse function of
1

11
zez

w , and

1

1
wze

wh . In [8], we have proved the following

proposition.

Proposition 1
1

ˆ
nM nM̂ iff •n+1•h (

1nP) n h (
nP),

where can be >, = , or < . Q.E.D.

In the next section, we will present another necessary

and sufficient condition for software defect curves, which

is easier to be verified.

3. Necessary and sufficient conditions

From equations (4) and (5), we note

n

M

M

n
P n

n

n

ˆ

)
ˆ

1ln(

1

Thus, we have 0lim
0ˆ n

M
P

n

Let

00

0

)
1

1ln(

1

)(

x

xx

x
xfy

Lemma 1)(xfy is continuous and strictly

increasing on),0[.

Proof It is obvious that)(xfy is continuous on

),0[.

Furthermore, for),0(x ,)(xfy is equivalent

to

x
e

y

e
x

1

1

11

1

1

(6)

So, 1
d

d1

d

d
2 xx

y
1

)1(1 2

2 e

e

It is easy to prove that 01
)1(1

2

2 e

e , for 0 .

Therefore)(xfy is strictly increasing for),0(x .

Finally, 0)0(f , and 0)(xfy for),0(x

because
xx

1
)

1
1ln(. Hence, we can conclude that

)(xfy is strictly increasing on),0[x . Q.E.D.

Corollary 1)()(1 yfykx is continuous and

strictly increasing on)
2

1
,0[.

Figure 3 Software failure process

X1 X2 … Xi

tT0 =0 T1 Ti-1T2 Ti

Proceedings of the 27th Annual International Computer Software and Applications Conference (COMPSAC’03)
0730-3157/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 24,2010 at 01:30:27 EDT from IEEE Xplore. Restrictions apply.

Proof Note 0)0(f and

2

1

)
1

1ln(

1
lim x

x

x

.

Therefore, we have)
2

1
,0[y , and)(ykx is

continuous and strictly increasing on)
2

1
,0[as a result of

Lemma 1. Q.E.D.

Corollary 1)()(1 yfykx is continuous and

strictly increasing on)
2

1
,0[.

Proof Note 0)0(f and

2

1

)
1

1ln(

1
lim x

x

x

.

Therefore, we have)
2

1
,0[y , and)(ykx is

continuous and strictly increasing on)
2

1
,0[as a result of

Lemma 1. Q.E.D.

Lemma 2 For),0(x , 0
d

d
2

2

x

y
.

Proof Refer to equation (6).

2

2

2

2

2

2

2

)
d

d
).(

d

d
.

d

d
.

d

d

d

d
(

d

d

xx

xyy

x

y

2

3
)

d

d
(

)1(

22

xe

ee

It is easy to verify that 022 ee for

0 . This completes the proof. Q.E.D.

Lemma 3)(yk is a strictly convex function over

)
2

1
,0[.

Proof First,

0)
d

d
/(

d

d
.

d

d
)

d

d
(

d

d

d

d 2

2

2

2

2

x

y

x

y

y

x

y

x

yy

x

Hence,)(yk a strictly convex function over)
2

1
,0[.

Furthermore, we have

y

x

y

x

y

x

y

kyk
k

yyy d

d
lim

d

d
limlim

0

)0()(
lim)0(

000

/

0
)1(

lim
22

2

ee

e

0
0

)0(
d

d

lim)0(

/

0

//

y

k
y

x

k
y

This implies that)(yk is a convex function defined

on)
2

1
,0[, that is,)

2

1
,0[y .

)1,0(, there holds

)()0()1()0)1((ykkyk

or)()(ykyk

In order to show that)(yk is a strictly convex

function defined on)
2

1
,0[, we need to show

)()(ykyk for)
2

1
,0[y ,)1,0(. This is to be

done by contradiction. Suppose)
2

1
,0[y ,)1,0(0

,

such that)()(0000 ykyk

Let)(00 ykx •or)(0000 ykx . Then

0

0

0

)
1

1ln(

1
x

x

y

00

00

00

)
1

1ln(

1
x

x

y

However, we also have

)

)
1

1ln(

1
(0

0

000 x

x

y

Thus,

00

1

0

1
1)

1
1(0

xx

On the other hand, we have

00

1

0

1
1)

1
1(0

xx
,)

2

1
,0(0x ,)1,0(0

This leads to a contradiction. Q.E.D.

Theorem 1
1

ˆ
nM nM̂ iff)()1(1nPkn)(nPnk ,

where can be >, <, or =.

Proof The proof follows after)
ˆ

(
n

M
fP n

n
 and that

(.)k is strictly increasing function. Q.E.D.

Theorem 2 If
nn PP 1
, then

nn MM ˆˆ
1

.

Proof
nn PP 1

 implies)()(1 nn PkPk , which in

turn implies)()()1(1 nn PnkPkn . Q.E.D.

Theorem 3 If
nn nPPn 1)1(, then

nn MM ˆˆ
1

Proof Note (.)k is a strictly increasing and convex

function, and 0)0(k . Hence:

)
1

()(1 nn P
n

n
kPk =)0

1

1

1
(

n
P

n

n
k n

Proceedings of the 27th Annual International Computer Software and Applications Conference (COMPSAC’03)
0730-3157/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 24,2010 at 01:30:27 EDT from IEEE Xplore. Restrictions apply.

)(
1

)0(
1

1
)(

1
nn Pk

n

n
k

n
Pk

n

n

This completes the proof as a result of Theorem 1.

Q.E.D.

4. Example of software defect curves

In this example, we use the software reliability dataset

of Musa [12].
nM̂ (1361 n)can be computed from

Equations (1)-(3). Figure 4 depicts the trajectory of
nM̂ .

Disregarding the portion of
nM̂ for 271 n , which is

over fluctuating and unreliable as anticipated at the very

early stage of software testing, Figure 4 matches the

pattern of Figure 2. For 9528 n , the behavior of
nM̂

is displayed in Figure 5, which also matches the pattern of

Figure 1.

0 20 40 60 80 100 120 140

0

20

40

60

80

100

120

140

160

180

n

nM̂

Figure 4 Trajectory of
nM̂ for the Musa Data

20 30 40 50 60 70 80 90 100

0

5

10

15

20

25

30

35

40

n

nM̂

Figure 5 Trajectory of
nM̂ for the Musa Data

from 28n to 95n
The example software defect curves in Figures 4 and 5

demonstrate:

(1) The trapezoidal shape of software defect curves

complies with empirical observations.

(2) Although the expected trend of a software defect

curve may demonstrate a single-trapezoidal-like curve or

a multiple-trapezoidal-like curve, fluctuations are

associated with the software defect curve throughout the

testing process.

(3) For the trapezoidal-like software defect curve, if
nM̂

tends to increase, then the software testing is in its early

phase with respect to the corresponding test profile; if

nM̂ tends to fluctuating around certain values, then the

software testing is in its middle phase with respect to the

corresponding test profile; if
nM̂ tends to decrease, then

the software testing is in its late stage with respect to the

corresponding test profile.

Once we know whether
nM̂ tends to increase or

decrease, we can judge the phase of software testing. As

shown in Equations (1)–(3),
nM̂ can be calculated only

after we know
nb̂ . However, Equation (2) is an implicit

function of
nb̂ . Therefore, it is very difficult to calculate

nM̂ on-line during the process of software testing. In

order to solve the problem, we have developed Theorems

1-3 to provide other more easily computable conditions.

These conditions involve
nP which could be computed

directly from the data collected during the process of

software testing. In view of Theorems 1-3, it is natural to

ask: will
nP be as effective as

nM̂ in judging the stage of

software testing. Figures 6 and 7 show the relationship

between
nP and n.

0 20 40 60 80 100 120 140
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n

Pn

Figure 6 Trajectory of
nP for the Musa Data

Proceedings of the 27th Annual International Computer Software and Applications Conference (COMPSAC’03)
0730-3157/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 24,2010 at 01:30:27 EDT from IEEE Xplore. Restrictions apply.

20 30 40 50 60 70 80 90 100
0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

n

Pn

Figure 7 Trajectory of
nP for the Musa Data

from 28n to 95n

Having compared Figures 4 and 6, as well as Figures 5

and 7, we can conclude that the patterns of the trajectories

of
nP and

nM̂ are very similar. Since it is easier to

compute
nP ,

nP should be used instead of
nM̂ to check

the stage of software testing.

5. Conclusion

In this paper, we have reviewed the trapezoidal shape

of software defect curves and presented some necessary

and/or sufficient conditions for software defect curves of

the Goel-Okumoto NHPP model. These results have

supplemented the results of our previous theoretical

analyses. Our necessary/sufficient conditions provide a

faster approach to predict the types of change for the

estimated number of remaining software defects, after

detecting and removing a software defect. We have also

used an example software defect curve generated by a

field software reliability dataset to further justify the

trapezoidal shape of software defect curves, and to

demonstrate the applications of our necessary/sufficient

conditions. In addition, these necessary/sufficient

conditions may help to assess software testing progress

and thus provide useful feedback information for adaptive

software testing which is counterpart of adaptive control

in software testing and falls into the scope of software

cybernetics. Software cybernetics explores the interplay

between software and cybernetics [13, 14].

References

[1] E.Yourdon, "Software Metrics," Application Development

Strategies (newsletter), Nov. 1994, pp 16.

[2] K.Y. Cai, Software Defect and Operational Profile

Modeling, Kluwer Academic Publishers, 1998.

[3] A.M. Neufelder, “How to predict software defect density

during proposal phase”, National Aerospace and

Electronics Conference. NAECON 2000, pp 71 -76.

[4] N.E. Fenton and M. Neil, “A critique of software defect

prediction models” IEEE Transactions on Software

Engineering , Vol: 25 ,Issue: 5 , pp675 -689.

[5] D. N. Card, “Managing Software Quality with Defects”,In

Proceedings: Computer Software and Applications

Conference, August 2002 , 2002 IEEE Computer Society.

[6] C.Y. Huang, S.Y. Kuo, and I.Y. Chen, "Analysis Of A

Software Reliability Growth Model With Logistic Testing-

Effort Function", 8th International Symposium on Software

Reliability Engineering, Nov, 1997, pp378-388.

[7] S. McConnell, “Software Quality at Top Speed”, Software

Development, Aug,1996.

[8] C.G. Bai, K.Y. Cai, “Software Defect Curves”, submitted

for publication, 2002.

[9] A.L. Goel and K. Okumoto, “Time Dependent Error

Detection Rate Model for Software Reliability and Other

Performance Measure”, IEEE Transactions on Reliability,

Vol. R-28, No.3, 1979, pp206-211.

[10] K.Y. Cai, “Towards a Conceptual Framework of Software

Run Reliability Modeling”, Information Sciences, Vol.126,

2000, pp137-163.

[11] D.L. Syder, Random Point Processes, Wiley, New York,

1975.

[12] J. D. Musa, Software Reliability Data, Bell Telephone

Laboratories Whippany, N.J. 07981, 1979.

[13] K.Y.Cai, “Optimal Software Testing and Adaptive Software

Testing in the Context of Software Cybernetics”,

Information and Software Technology, Vol.44, 2002,

pp841-855.

[14] K.Y.Cai, T.Y.Chen, T.H.Tse, “Towards Research on

Software Cybernetics”, Proc. 7th IEEE International

Symposium on High Assurance Systems Engineering, 2002,

pp240-241.

Proceedings of the 27th Annual International Computer Software and Applications Conference (COMPSAC’03)
0730-3157/03 $ 17.00 © 2003 IEEE

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 24,2010 at 01:30:27 EDT from IEEE Xplore. Restrictions apply.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

