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”Imagination is more important than knowledge. Knowledge is limited.

Imagination encircles the world.”

Albert Einstein
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Abstract

Periodic arrays of magnetic microtraps patterned on a magnetic film provide a

potential complementary tool to conventional optical lattices. Such magnetic lat-

tices allow a high degree of design flexibility, low technical noise and state-selective

trapping of atoms. This thesis reports the trapping of ultracold 87Rb atoms in

0.7µm-period triangular and square magnetic lattices integrated on an atom chip

as a step towards using magnetic lattices as a platform for simulating condensed

matter and quantum many-body phenomena in nontrivial lattice geometries.

The new generation sub-micron period magnetic lattices are produced by pattern-

ing a Co/Pd multi-atomic layer magnetic film deposited on a silicon substrate using

electron-beam lithography and reactive ion-etching. The magnetic microstructures

include 0.7µm-period 2D square and triangular lattices and 1D 0.7µm-period and

5µm-period lattices. The four magnetic microstructures are mounted on an atom

chip containing two Z-shaped and two U-shaped current-carrying wires fabricated

by chemical etching on a direct bonded copper (DBC) board. The current-carrying

wires are required for initial preparation of the ultracold 87Rb atoms, allowing the

creation of a Bose-Einstein condensate in a Z-wire trap and loading into the magnetic

lattice.

The magnetic lattice potential is produced by applying a bias magnetic field

to the magnetic lattice structures which in the case of the 0.7µm-period lattice

produce extremely tight magnetic microtraps with trap frequencies up to about 800

kHz and trap bottoms at estimated distances down to about 90 nm from the chip

surface. The atom-surface interaction is studied by measuring the atom loss when

atoms in the Z-wire magnetic trap are brought to various distances very close to

the chip surface. The interaction of the atoms with the magnetic trapping potential

is investigated by launching the Z-wire trap cloud vertically towards the magnetic

lattice structures under different bias magnetic fields.

The key results presented in this thesis are the successful loading of ultracold

atoms into the 0.7µm-period 2D triangular and square magnetic lattices. The mea-



iii

sured trap lifetimes range from 0.4 to 2.5 ms, and increase approximately linearly

with increasing distance from the chip surface. The relatively short trap lifetimes are

attributed mainly to losses due to surface-induced thermal evaporation when loading

into the tight magnetic lattice traps rather than to fundamental loss processes such

as three-body recombination or spin-flips due to Johnson noise from the chip surface.

The Casimir-Polder interaction starts to become significant at distances less than

about 100 nm from the chip surface.

To the best of my knowledge, these results represent the first reported realization

of trapping of atoms in a sub-micron period magnetic lattice. This is considered

to be a significant step towards employing magnetic lattices for the simulation of

condensed matter and many-body phenomena in nontrivial lattice geometries.
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CHAPTER 1

Introduction

1.1 Introduction to magnetic lattices

In atomic physics, quantum simulation with ultracold atoms is currently one of

the most promising methods to better understand unsolved quantum Hamiltonian

systems and other complex phenomena in many-body physics at the quantum scale.

In recent years, ultracold atoms trapped in periodic lattices have attracted much

attention as a simulator for condensed matter systems because of the ability to con-

fine, manipulate and precisely control the ultracold atoms [1]. Thanks to advances

in the controllability of experimental parameters such as dimensionality, atomic

interactions, level of purity, disorder, etc., experiments on ultracold quantum gas

systems have opened the way to simulate the behaviour of complex systems that are

normally difficult to control and understand.

Following the discovery of laser cooling and trapping techniques in the 1980s [2–4],

optical lattices produced by interfering laser fields have been used extensively to trap

periodic arrays of ultracold atoms and quantum degenerate gases, including Bose-

Einstein condensates and degenerate Fermi gases. Applications of optical lattices

range from quantum simulations of exotic condensed matter phenomena [5] to high

precision atomic clocks [6], quantum gas microscopes [7] and storage registers and
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quantum gates for quantum information processing [8,9]. One advantage of an opti-

cal lattice system is the high controllability of system parameters including geometric

lattice structures and interaction between the particles, which make it an attractive

system to study condensed matter phenomena such as Josephson junctions [10],

the quantum Hall effect [11], Anderson localization [12, 13], the superfluid to Mott

insulator transition [5], low-dimensional quantum systems [14,15] and the Ising spin

model [16]. Despite their broad range of applications, optical lattices still have

certain limitations such as a low degree of design flexibility, difficulty in generating

arbitrary trap geometries, restrictions on the lattice spacing imposed by the optical

wavelength, presence of spontaneous emission, non-uniformity, scalability, etc. [17].

Trapping of periodic arrays of ultracold atoms can also be performed using lattices

consisting of periodic arrays of magnetic microtraps. Such magnetic lattices can be

created in various ways including patterning a periodic array of current-carrying

wires [18–20] and patterning permanent magnetic films [17, 21–35] or by producing

vortex arrays of superconducting films [36], pulsed gradient magnetic fields [37, 38]

and nano-magnetic domain walls [39].

Investigations have demonstrated that magnetic lattices created by permanent

magnetic microstructures on an atom chip can provide a potentially powerful alter-

native approach to optical lattices for trapping periodic arrays of ultracold atoms

and quantum degenerate gases [24]. For magnetic lattices, the trap geometries and

lattice spacing are not restricted by the requirement of interfering laser fields or by

the optical wavelength, which consequently makes it possible in principle to gener-

ate almost arbitrary trap geometries and lattice periods [28]. Additionally, magnetic

lattices have highly stable trapping potentials, they have inherently no spontaneous

emission, low heating rates and low technical noise, and they are ideally suited for

mounting on an atom chip [40]. Importantly, atoms trapped in magnetic lattices

are state-selected which allows radiofrequency evaporative cooling to be carried out

in the lattice itself and the trapped atoms in the lattice to be characterized by

radio frequency spectroscopy [26, 33]. Such characteristics make magnetic lattices

involving ultracold bosonic or fermionic atoms potentially attractive to simulate
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condensed matter phenomena such as the superfluid to Mott insulator quantum

phase transition [5, 41] and graphene-like states in honeycomb magnetic lattices.

1.2 Review of one-dimensional and two-dimensional

magnetic lattices

After the first magnetic traps to confine neutral atoms were reported in 1985 by

Midgall et al. [42] and Lovelace et al. [43], Opat et al. [44] in 1992 proposed the use

of a periodic array of magnets of alternating polarity and a periodic array of current-

carrying wires as magnetic mirrors for reflecting beams of laser cooled atoms. In

1995, Roach et al. [45] demonstrated the retroflection of laser-cooled rubidium atoms

from a periodically magnetized audiotape. In 1996, Sidorov et al. [46] observed

specular reflection and multiple bounces of laser-cooled caesium atoms from a mag-

netostatic mirror based on a periodic array of rare-earth magnets with a period of

2 mm.

In 1998, Sidorov et al. [47] reported the fabrication of a grooved 10 µm period

magnetic structure using electron beam lithography. This structure exhibits the

same magnetic field pattern as a periodic array of magnets of alternating polarity

proposed by Opat et al. [44], but it permits the fabrication of small micron-scale

period magnetic structures. In 1999, a periodic magnetic mirror fabricated using

optical lithography was reported by Lau et al. [48]. This mirror was based on an

array of current-carrying conductors of periodicity 330 µm mounted on a silicon

wafer. As all wires in the array carry the same current, the magnetic flux created

by this magnetic mirror should in principle be more uniform allowing the creation

of a flatter mirror for reflection than a magnetostatic mirror. Additionally, through

adjustment of the current, the mirror can be rapidly switched on or off or modulated.

By applying a suitable uniform bias field, a magnetic mirror can be turned into

a one-dimensional lattice of magnetic microtraps through the interference with the

rotating magnetic field of the periodic array. In 2002, Yin et al. [18] proposed two
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schemes for creating 1D and 2D periodic arrays of magnetic microtraps using a static

magnetic field from current-carrying wires. In 2003, another 2D array trapping

scheme using two overlayed layers of crossed current-carrying wires was proposed

by Grabowski and Pfau [49]. In 2006, the Swinburne group [50] proposed a scheme

to create 1D and 2D magnetic lattices using periodic arrays of permanent magnetic

films. By applying bias magnetic fields to periodic arrays of magnetic films, a 2D

square magnetic lattice with non-zero potential minima can be created using two

crossed layers of parallel rectangular magnets and also by utilizing a single layer

of square-shaped magnets with three different thicknesses. In the same year, Yun

and Yin [51] proposed a scheme to produce 2D arrays of magnetic traps with non-

zero potential minima using current-carrying conductors with the ability to vary the

barrier height.

In 2005, a periodic array of 1D magnetic traps with a period of 106 µm was

created by Sinclair et al. [52] using a sinusoidally magnetized videotape plus bias

fields. The group successfully produced a Bose Einstein condensate (BEC) in a

one of the traps. In 2007, the MIT group [53] produced a 1D periodic array of

magnetic traps from a CoCrPt magnetic film on a hard disk platter written with

a period of 100 µm. This group successfully produced a BEC in one of the traps

and demonstrated a method to detect imperfections in the trapping potential using

BECs.

In 2008, Singh et al., from our Swinburne group successfully trapped 87Rb atoms

in the |F = 2,mF = 2〉 low-field seeking state in ∼ 150 sites of a 10 µm-period 1D

magnetic lattice comprising a grooved TbGdFeCo permanent magnetic film mounted

on a current-carrying wire structure atom chip plus a bias field [22]. They subse-

quently studied the dynamics and the effect of temperature on the reflection of

ultracold atoms from the trapping potential [54,55]. Meanwhile, in 2007, a 2D rect-

angular magnetic lattice with 22 µm and 36 µm spacing in orthogonal directions

was created by the Amsterdam group [25]. 87Rb atoms in the |F = 2,mF = 2〉

state were successfully trapped in multiple sites at about 10 µm from the surface

with a trap lifetime of more than 1 second. In 2009, the atoms were loaded into
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more than 500 lattice sites and further cooled to near the critical temperature for

condensation [26]. However, they were unable to reach BEC due to large three-body

recombination losses.

In 2014 and 2015, Jose et al. [32] and Surendran et al. [33] from our group success-

fully produced a 1D periodic array of BECs across ∼100 lattice sites using the above

TbGdFeCo magnetic lattice [22] by preparing 87Rb atoms in the |F = 1,mF = −1〉

low-field seeking state and providing additional axial confinement for the lattice

traps. Use of the |F = 1,mF = −1〉 state helps to reduce the three-body loss

rate of atoms in the traps by up to three times and also allows the confining traps

to be less tight [56, 57]. In situ RF spectra measurement of ultracold atoms in

individual lattice sites showed the evolution from a thermal Boltzmann distribution

to a pronounced bimodal distribution consisting of a narrow BEC distribution plus

a thermal cloud as the atom clouds were cooled in the lattice to lower temperature.

The RF spectra measurement also indicated a remarkable uniformity across the

magnetic lattice, with small site-to-site variations of atom temperature, condensate

fraction, chemical potential, atom number and trap bottom [33].

In 2010, Schmied et al. [28] introduced an algorithm for designing various periodic

arrays of magnetic traps based on patterned magnetic films. This code can produce

desired lattice geometries with optimized properties in both 2D and 1D, and gen-

erates output that is straightforward for fabrication, overcoming the complexity of

design and fabrication in earlier proposals [24,50]. Using this algorithm, in 2011 the

Amsterdam group fabricated 10 µm-period square and triangular magnetic lattices

for trapping 87Rb atoms [30]. The lattice structure was fabricated using UV lithog-

raphy on a FePt magnetic film. In 2014, the same group successfully loaded atoms

into hundreds of sites in these lattices [34]. In 2015, our Swinburne group fabricated

0.7 µm-period 1D and 2D triangular and square magnetic lattice structures using

electron-beam lithography and reactive ion etching techniques [17]. Such magnetic

lattices with sub-micron period are designed for quantum tunnelling experiments

such as the simulation of Hubbard physics [1].
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1.3 Overview of thesis

In previous works of our group, a one-dimensional magnetic lattice structure with

a period of 10 µm [22, 32, 33] was used. However, according to our calculations,

the quantum tunnelling time of atoms between lattice sites would be much too long

compared with the lifetime of the atoms in the lattice traps. In order to perform

quantum tunnelling experiments, it is required to use magnetic lattice structures

with submicron periods.

This thesis reports the loading and trapping of ultracold 87Rb |F = 1,mF = −1〉

atoms in a 0.7µm-period triangular magnetic lattice and a 0.7µm-period square

magnetic lattice on an atom chip at a distances down to ∼ 90 nm from the chip

surface. This represents new territory for trapping ultracold atoms. The trapping

in the triangular magnetic lattice has recently been published in [35].

The lattice trapping experiment was performed on the modified laser optical

setup built by former students in our group: Mandip Singh, Smitha Jose, Prince

Surrendran and Yibo Wang [58–61]. The Direct Bonded Copper atom chip and

the sub-micron magnetic lattice film were designed by Dr. Ivan Herrera and Yibo

Wang and fabricated by Armandas Balcytis from the Centre for Micro-Photonics

at Swinburne University of Technology [17]. The characterization of the fabricated

magnetic film and the installation of the atom chip and sub-micron period magnetic

lattice film was carried out jointly with Yibo Wang. My independent personal

contribution to the magnetic lattice trapping experiments is that I created different

protocols for successful trapping 87Rb in the sub-micron period magnetic lattice and

realized the trapping of ultracold atoms in the sub-micron period magnetic lattice

as reported in the paper [35] and in this thesis (Figures 5.8, 5.9, 5.10, 5.11, 5.12,

5.16, 5.17).

The layout of the thesis is as follows:

Chapter 2 summarizes the theoretical background relevant for the interpretation

of the experimental results. The atom-surface interaction when an atom cloud is

trapped close to a surface is discussed. In the final part, the theoretical framework
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for the design of a sub-micron period 2D magnetic lattice is presented.

Chapter 3 presents the design and fabrication of the magnetic lattice atom chip

including the patterned Co/Pd magnetic film and the Direct Bonded Copper (DBC)

atom chip. The characterization and quality test results of the fabricated microstruc-

tures are described. Additionally, the fabrication of an improved new generation

direct bonded copper atom chip for future experiments is presented.

Chapter 4 presents the experiment setup including the laser setup, the ultra-high

vacuum chamber, the electronic control system and the experimental procedure to

obtain Bose Einstein condensation in the Z-wire magnetic trap used to load the

magnetic lattices.

Chapter 5 reports the experimental results for the trapping of ultracold 87Rb

atoms in the 0.7µm-period triangular and square magnetic lattices at a distances

down to ∼ 90 nm from the surface of the atom chip. These are the key results of

the thesis.

Chapter 6 summarizes the work and discusses some possible experiments for the

future.



8 Introduction



CHAPTER 2

Theoretical background

This chapter describes the theoretical background for the trapping of ultracold atoms

in a magnetic lattice atom chip and for producing Bose-Einstein condensation. Also,

the atom-surface interactions and the theoretical framework for creating submicron-

period 2D magnetic lattices are discussed. My calculations shown as simulated plots

and tables in this chapter were performed using Mathematica software.

2.1 Trapping of neutral atoms in a magnetic field

The potential energy of an atom in an inhomogeneous magnetic field is given by:

U(x, y, z) = −µBgFmF |B(x, y, z)|, (2.1)

where (x, y, z) is the position of the atom in the magnetic field, mF is the magnetic

quantum number, gF is the Landé g-factor of the atomic state |F,mF 〉 and µB

is the Bohr magneton. For a field gradient ∇|B(x, y, z)|, the atom experiences a

Stern-Gerlach force:

F (x, y, z) = µBgFmF∇|B(x, y, z)|. (2.2)

• If mFgF > 0, the atom is in a weak-field seeking state. In this state, the

atom experiences a potential minimum, which increases with increasing magnetic
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field strength allowing it to be trapped. For 87Rb atoms, the trappable states are

|F = 1,mF = −1〉, |F = 2,mF = 2〉 and |F = 2,mF = 1〉.

• If mFgF < 0 , the atom is in a high-field seeking state and experiences a driving

force toward the higher magnetic field regions. In this state, there is no trapping

since the potential energy of the atom is higher than the local field minimum. As

according to Maxwell’s equation it is not possible to create a local magnetic field

maximum in free space [62], we require a magnetic field minimum to trap atoms in a

magnetic trap. This can be done with a configuration consisting of a pair of parallel

anti-Helmholtz coils which creates a quadrupole trap with a zero-field minimum.

This setup can produce a magnetic field strength |B(x, y, z)| that increases linearly

in all directions.

• If mFgF = 0, there is no interaction to first order between the atom and the

magnetic field.

When confined in a magnetic trap, an atom oscillates around the local trap

minimum of the magnetic field experiencing a change in the field direction and

magnitude. If the atom’s magnetic moment does not adiabatically follow the field

direction, this will induce atom loss due to flipping to other magnetic states. Thus,

for stable trapping, it is required not only that the trap depth is much larger than

the thermal energy of the atom but also that the precessing atomic spin should

adiabatically follow the change in the magnetic field direction. In order to satisfy

the adiabatic condition, the rate of change
dθ

dt
of the field’s direction needs to be

slower than the precession in the magnetic field [63]:

dθ

dt
� ωL =

gFmFµBB

h̄
, (2.3)

where ωL is the Larmor frequency at which the magnetic moment of the atom

precesses around the magnetic field.

In a region of zero or small magnetic field, the adiabatic condition is violated. In

these regions, the change in the atom’s precession angle induces transitions between

mF levels, which can transfer atoms to untrappable states so that they become

lost [64]. Thus, to avoid Majorana spin flips it is important to trap atoms in a
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magnetic field pattern in which a non-zero trap minimum can be maintained [65].

Spin-flip losses are the main drawback of a quadrupole trap, which has a zero-field

minimum and cannot be used for stable magnetic trapping. One way to overcome

this problem is to use an Ioffe-Pritchard trap with a non-zero minimum. For Ioffe-

Pritchard traps, the probability of an atom having a Larmor frequency smaller

than the orbital frequency at the non-zero trap minimum is dramatically reduced.

These traps usually contain four current-carrying bars and two pinch coils. The

2D quadrupole field created by the bars and the non-uniform field created by the

coils can produce a 3D trap with a magnetic field minimum B0. It is required to

provide a magnetic field minimum large enough for stable trapping since the spin-flip

transition rate is significantly reduced thanks to the large Larmor frequency.

A cloud of spin-half trapped atoms with a thermal Boltzmann distribution at

temperature T has a spin-flip transition rate [66]:

Γ = 2πω tanh

(
h̄ω

2kBT

)
exp

[
−2E0

h̄ω
tanh

(
h̄ω

2kBT

)]
, (2.4)

where ω is the trap oscillator frequency for negligible axial confinement, kf is the

momentum of the final state and E0 = h̄2k2
f/2m = 2µBB0 + h̄ω is the kinetic energy

of the atom after a spin-flip transition occurs and. At the high temperature limit

kBT � 2h̄ω, the spin-flip transition rate reduces to:

Γ ≈
(
h̄ω2

kBT

)
exp[− E0

kBT
]. (2.5)

2.2 Magnetic trapping of neutral atoms on an atom

chip

The basic trapping potential is created by passing a DC current I through a straight

wire and adding a constant homogeneous bias field Bb perpendicular to the wire,

which produces a total magnetic field:
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B = Bwire + Bb, (2.6)

where Bwire is the magnetic field created by a infinitely thin long straight wire and

µ0 is the vacuum permeability. Due to the cancellation of the magnetic fields from

the wire and the bias field, Figure 2.1 (c), the total magnetic field reaches zero at a

distance r0 =
µ0I

2πBb

[67–69]. This creates a two-dimensional quadrupole trap with

a zero magnetic field minimum and a field gradient [67,69]:

∂|B|
∂r0

= − µ0I

2πr2
0

. (2.7)

To avoid Majorana spin-flip loss at the zero field minimum, another magnetic field

B0 parallel to the wire is employed. This offset magnetic field also adds harmonicity

to the trapping potential. The trapping frequency of an atom in this harmonic

trapping potential is given by:

ω =

(
2π

µ0

)
B2
b

I

√
gFmFµB
mB0

, (2.8)

where m is the atom mass.

Figure 2.1: Field-line plots from a uniform bias field (a), radial field from a straight

wire (b) and the combined field (c).

In our experimental setup, the atom chip is designed with planar rectangular

cross-section U-shaped and Z-shaped wires with thickness t = 0.127 mm and width

w = 1 mm. By passing current through the wires and adding a uniform bias field Bx,
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different trapping potentials are created. For the U-shaped wire, the bias field and

the middle section L = 5 mm of the U-wire creates a two-dimensional quadrupole

field while the two magnetic fields created by the two opposite currents running in

the end segments in the x-direction are cancelled out at the trap centre y = 0. This

configuration produces a three-dimensional quadrupole trap [42,70] with a zero field

minimum at position (x0, 0, z0). This configuration can be employed to create a

magneto-optical trap close to the reflecting surface of the atom chip without the use

of external coils; this is known as a Compressed Mirror MOT (CMOT) [71,72].

Figure 2.2: (a) U-wire trap with wire length L = 5 mm, (b) calculated contour plot

of the U-wire magnetic field and (c)(d)(e) calculated magnetic field cross-sections of

the U-wire trap for IU = 15 A, Bx = 25 G and wire thickness t = 0.127 mm.

A trapping field with a zero field minimum cannot be used for stable trapping due

to Majorana spin-flip losses. A Ioffe-Pritchard type trap with a non-zero minimum

field can be created by utilizing the Z-shaped wire on the atom chip. In the Z-wire,

since the currents in the two end-segments are in the same direction, a non-zero field

minimum is created. The field strength at the minimum can be controlled by the

strength of a uniform bias field By along the middle section of the wire. Contour

plots of the simulated trapping fields for U-wire and Z-wire traps calculated with
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the help of the Radia coding package from the European Synchrotron Radiation

Facility [73] are shown in the Figure 2.2 and 2.3 .

Figure 2.3: (a) Z-wire trap with wire length L = 5 mm, (b) contour plot of the

Z-wire magnetic field and (c)(d)(e) magnetic field cross-sections of a Z-wire trap for

IZ = 15 A, Bx = 25 G, By = 0 and wire thickness t = 0.127 mm.

2.3 Theory of Bose-Einstein condensation

Bose-Einstein condensation (BEC) is defined as a state of a trapped bosonic gas

in which a macroscopic occupation of the lowest quantum state occurs when the

gas is cooled below a critical temperature close to absolute zero. In a BEC system,

the bosonic atoms become indistinguishable as their inter-particle spacing becomes

comparable with their matter wavelength. Atoms in a BEC system are described

by Bose-Einstein statistics rather than Maxwell-Boltzmann statistics and are char-

acterized by a sharp peak in the density distribution.

Consider N atoms trapped in a harmonic potential U(x, y, z) given by:

U(x, y, z) =
m

2
(ω2

xx
2 + ω2

yy
2 + ω2

zz
2), (2.9)
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where ωx, ωy and ωz are the trapping frequencies in the x, y and z-directions.

Neglecting atom-atom interactions, the many-body Hamiltonian can be rewritten

as a sum of single-particle Hamiltonians with eigenvalues:

Enx,ny ,nz =

(
nx +

1

2

)
h̄ωx +

(
ny +

1

2

)
h̄ωy +

(
nz +

1

2

)
h̄ωz, (2.10)

where nx, ny and nz are positive integers.

In the grand-canonical ensemble the total number of particles at temperature T

is given by [74]:

N =
∑

nx,ny ,nz

[
exp

[
β(Enx,ny ,nz − µ)

]
− 1
]−1

, (2.11)

where β =
1

kBT
and µ is the chemical potential, and the total energy of the system

is:

E =
∑

nx,ny ,nz

[
Enx,ny ,nz exp

[
β(Enx,ny ,nz − µ)

]
− 1
]−1

. (2.12)

In the thermodynamic limit N −→∞, as the level spacing becomes smaller and

the chemical potential is equal to the energy of the lowest state µ =
h̄

2
(ωx + ωy + ωz),

the semi-classical expression for the number of atoms in excited states can be rewrit-

ten as:

N −N0 =

∫ ∞
0

dnxdnydnz
exp[βh̄(ωxnx + ωyny + ωznz)]− 1

= ζ(3)

(
kBT

h̄ω

)3

, (2.13)

where N0 is the number of atoms in the ground state and ζ(n) is the Riemann zeta

function, ζ(3) = 1.202.

As N0 −→ 0, the critical temperature of a BEC is given by:

Tc =
h̄ω

kB

(
N

ζ(3)

)1/3

, (2.14)

and the condensation fraction can be calculated as:

N0

N
= 1−

(
T

T 0
c

)3

. (2.15)



16 Theoretical background

In order to reach BEC, it is required that the phase space density (PSD) Φ =

nλ3
dB ≥ 1, where λdB = h/

√
2πMkBT is the thermal de-Broglie wavelength of the

atom cloud at temperature T and n is the atom density. The PSD is dependent

on the characteristics of the trapping potential, e.g., Φ = ζ(3) = 1.202 for a 3D

harmonic trap while Φ = ζ(3/2) = 2.612 for a 3D uniform (box) trap.

For a dilute bosonic gas system at low temperature, in the mean-field approach,

the time-dependent Gross-Pitaevskii (GP) equation is employed to describe the

system, which has the form of a nonlinear Schrodinger equation [63]:

ih̄
∂

∂t
ψ(r, t) =

(
− h̄2

2M
∇2 + V (r) + g|ψ(r, t)|2

)
ψ(r, t), (2.16)

where V (r) is the external confining potential, g|ψ(r, t)|2 is the interaction potential

due to the mean-field produced by the other particles in the condensate, g = 4πh̄2as
M

is the mean field coupling constant with the s-wave scattering length as . The GP

equation is valid if the number of atoms in the condensate Nc � 1 and as � da, the

average distance between atoms.

Substituting ψ(r, t) = ψ(r)e−iµt/h̄, the GP equation becomes:

(
−h̄2

2M
∇2 + V (r) + g|ψ(r)|2

)
ψ(r) = µψ(r), (2.17)

where ψ(r) is the ground-state wavefunction of the condensate.

In the case where atom interactions are ignored, the scattering length as = 0

and the condensate takes a Gaussian shape. In the case where atom interactions

are repulsive, the scattering length as > 0, and the kinetic energy term − h̄2

2M
∇2ψ is

neglected, the GP equation Eq.(2.17) becomes:

(
V (r) + g|ψ(r)|2

)
ψ(r) = µψ(r). (2.18)

This Thomas-Fermi approximation is valid for Nas/aho � 1, where aho = (
h̄

mω
)1/2

is the harmonic oscillator length. The trivial solution of the GP equation can be

expressed as [75]:

ρ(r) = |ψ(r)|2 =
M

4πh̄2as
[µ− V (r)]. (2.19)
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Solving the normalization condition
∫
ρdr = N , the chemical potential is derived

as [76]:

µ =
h̄ω

2

(
15Nas
aho

)2/5

. (2.20)

The density of the condensate vanishes when µ ≥ V (r). For the region µ < V (r)

the atom density is given by:

n(r)TF = ψ2(r) =
µ− V (r)

g
. (2.21)

For a harmonic trapping potential, the condensate takes a Thomas-Fermi inverted

parabola shape with an ellipsoidal boundary for which the radius Ri is given by:

µ =
1

2
Mω2

iR
2
i . (2.22)

In the case where the atom interactions are attractive, as < 0, the condensate

is considered to be stable if Eint < Ekin, where Eint is the mean field interaction

energy and Ekin is the kinetic energy. The kinetic energy acts as the main factor to

prevent a ”bosenova” collapse of a bosonic gas system with attractive interactions.

2.4 Atom-surface interactions

In our experiments, atoms are trapped in magnetic lattice microtraps at distances

down to ∼ 90 nm from the chip surface at room temperature. The mean energy of

a trapped atom is approximately ∼ 9 orders smaller than the mean thermal energy

of the chip surface [77]. At such small distances, atoms can experience surface

interaction mechanisms which can affect the behaviour of the trapped atoms. It is

important to investigate the interactions systematically to see how close to a surface

the trapped atoms can approach before being affected by the surface and lost. This

information would also be useful for atom chip applications that require full coherent

control of the trapped atoms close to the chip surface. The atom-surface interactions

have been studied in detail both theoretically and experimentally in [78–82].
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2.4.1 Interaction mechanisms

When trapped close to a surface, a neutral atom can interact with the surface via two

fundamental coupling mechanisms, which are the interaction with the thermal and

quantum-mechanical fluctuations of the electromagnetic field. The characteristics

of the interactions are strongly dependent on the distance d and the nature of the

surface (Figure 2.4).

Figure 2.4: Schematic of a trapped atom cloud close to a conducting surface. Red

dots represent the trapped atoms. Green circles with arrows represent thermal

agitation electrons with random movements. t is the thickness of the conducting

layer. Figure adapted from [77].

The interaction of the magnetic moment µ of a trapped atom with a fluctuating

magnetic field can lead to spin flips, decoherence and heating of the atoms. The spin-

flip results from coupling between the magnetic field components perpendicular to µ

which drives the decoherence and loss due to transitions to untrappable states of the

atoms. The coupling between the magnetic field components parallel to µ can lead

to spin dephasing with a dephasing rate comparable to the spin-flip rate for most

states. Heating and motional decoherence of atoms in the trap can occur due to the

perturbation of the thermal magnetic near-field on the atom’s centre of mass motion.

In the surface near-field where the trap and spin-flip frequencies are < 10 GHz, the
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thermal fluctuations dominate while the quantum fluctuations are negligible. This

effect is negligible for dielectric surfaces. To reduce the thermal magnetic field noise,

it is better to reduce the thickness and size of the conductors rather than to cool

the surface as the spectral density of the magnetic field fluctuations increases as the

surface temperature T decreases. Another way is to replace the conducting surface

with a high resistance alloy or a superconducting material [83, 84].

Fluctuating electric fields can lead to a modification of the trapping potential

through the interaction with atomic electric dipoles at optical frequencies. At these

frequencies, quantum fluctuations are dominant while thermal fluctuations are neg-

ligible. In this case, the trapped atoms feel an attractive surface potential which

can lead to a reduction in the trap depth of the trapping potential and hence atom

losses through evaporation. This effect occurs in both conductors and dielectrics.

2.4.2 Casimir-Polder and van der Waals interactions

In the vicinity of a surface, the electric dipole of an atom in the ground state interacts

with the fluctuating electromagnetic field from the surface which induces an attrac-

tive potential. As the trapped atom approaches the surface, it experiences several

interaction regimes with different dominant interacting mechanisms (Figure 2.5). At

large distances z � λT = h̄c/kBT (the thermal photon wavelength), thermal fluctua-

tions are dominant and the potential scales as −T/z3 at thermal equilibrium. In this

Lifshitz or thermal regime, quantum fluctuations are negligible. Approaching closer

to the surface where λT � z � λopt/2π the atom enters the Casimir-Polder regime.

In this regime, quantum fluctuations are dominant while thermal fluctuations are

negligible. This potential scales as −1/z4. In the next regime λopt/2π � z � a0

(where a0 is the Bohr radius), the van der Waals-London regime, the potential scales

as −1/z3. For the final regime where z ∼ a0, chemical physics mechanisms which

control surface field phenomena such as surface adsorption are dominant.

In our experiment setup, thermal fluctuations are negligible and 87Rb atoms are

trapped in the Casimir-Polder and van der Waals-London regimes. The trapping
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Figure 2.5: Interaction regimes for a 87Rb atom trapped close to a surface. Adapted

from [77].

potential can be distorted due to the attractive potential arising from the interaction

of the atomic electric dipoles with the fluctuating electromagnetic field. From an

atomic physics perspective, the Casimir-Polder potential originates from a change

in the AC Stark effect due to the change in boundary conditions in the presence of

a surface, which is treated as a macroscopic object, and thus a change in the mode

spectrum of the electromagnetic field [85]. The dependence of the Casimir-Polder

potential on the distance to the surface can be explained by the fact that the mode

function is only affected when the condition λ > z is satisfied, where λ is the mode

wavelength. On the other hand, the van der Waals effect is considered to result

from the interaction between an atomic dipole and its field which is reflected from

the surface.

In the Casimir-Polder and van der Waals-London regimes, the attractive potential

can be expressed as [86]:

VCP (d) = − C4

d3(d+ 3λopt/2π2)
, (2.23)

where d is the trapping position and C4 is the Casimir-Polder coefficient given by [87]:

C4 =
1

4πε0

3h̄cα0

8π

εr − 1

εr + 1
φ(εr), (2.24)

where ε0 is the vacuum permittivity, c is the light velocity, α0 is the static atomic

polarizability which for 87Rb atoms is α0 = 5.25×10−39 Fm2 and φ(εr) is a numerical

factor which is dependent on the relative permittivity εr of the top surface layer [88].

In the presence of atom-surface interactions, a harmonically trapped atom close

to the chip surface feels a combined potential given by:

V (z, d) = Vt(z) + VCP (d), (2.25)
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where Vt(z) = 1
2
mω2

t (z − d)2 is the harmonic trapping potential when the atom-

surface interactions are neglected. The attractive Casimir-Polder potential reduces

the trap depth as the atoms get closer to the surface. At a finite distance d > 0, the

attractive Casimir-Polder potential cancels the harmonic trapping potential making

the combined trap depth zero. This is different from the case where there is no

Casimir-Polder interaction, and the trap depth reaches zero at d = 0.

Figure 2.6: (a) Trapping potential with Casimir-Polder interaction close to a silica

surface. The blue curve shows the harmonic trapping potential without the Casimir-

Polder interaction. The red curve shows the effective trapping potential with the

Casimir-Polder interaction. The trap position is located at d= 3 µm from the surface

for a trapping frequency ωt/2π = 250 Hz. (b) Calculated trap-surface distance d

versus trap frequency ωt/2π.

Figure 2.6 (a) shows an example of the total trapping potential experienced by

an atom in the presence of a silica surface where the trap depth decreases due to

the attractive surface potential. In order to trap atoms with energy E = ζh̄ωt,

where ζ = 1/2 for the lowest bound state of a harmonic trap, the condition Vb(dmin,

ωt) = ζh̄ωt must be satisfied. Our calculation of dmin versus trapping frequency ωt

(Figure 2.6 (b)) shows that it is possible to trap atoms at a distance d < 0.5µm by

providing a trapping frequency ωt/2π > 20 kHz.
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2.4.3 Johnson magnetic noise

In an atom chip experiment, Johnson noise results from thermal agitation of the

electrons in both the reflecting metallic surface and the current-carrying wires of

the atom chip. This thermal agitation of the electrons induces current noise which

consequently generates a fluctuating magnetic field and can induce spin-flip losses

of atoms in the trap. This thermal magnetic noise is dominant within the near-field

regime of the conductor where the magnitude is much larger than the black body

radiation. This effect is considered to be the main limitation to the trap performance

close to conductors [87,89–92].

The spectral density of the magnetic field fluctuations is given by [90,93]:

SBαβ(ω) =
µ2

0σkBT · sαβ · g(d, t, δ)

16πd
, (α, β = x, y, z) (2.26)

where sαβ = diag
(

1
2
, 1, 1

2

)
is a tensor which is diagonal in the coordinate system of

Figure 2.4, g(d, t, δ) is a dimensionless function of the distance d from the conducting

surface, t is the thickness of the conducting film, δ =
√

2/(σµ0ω) is the skin depth

and σ is the electrical conductivity of the conducting film.

The function g is dependent on the geometry and the frequency ω and has the

expressions [87,94]:

g =



1, for d� δ � t,

3δ3/2d3, for δ � min(δ, t),

t/d
1+[4dt/(π2δ2)]2

, for t� min(δ, d),

t
t+d
, for δ � max(δ, d),

tw
(t+d)(w+2d

, for δ � max(δ, d) and finite w,

(2.27)

where w and t are the width and thickness of the conducting film, respectively.

The mean square fluctuation of the magnetic field components is given by:

〈B2
α(d)〉 =

1

π

∫ ∞
0

SBαα(ω)dω. (2.28)

For a transition between adjacent magnetic sublevels |F = 1,mF = −1〉 and

|F = 1,mF = 0〉 at the Larmor frequency, the transition rate γs is given by [77]:
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γs = g(d, t, δ) · 3µ2
0µ

2
BσkBT

256h̄2πd
. (2.29)

For δ � max{d, t}, the dimensionless function g can be approximated by g(d, t, δ) '

t/(t+ d) which gives the Johnson noise spin flip lifetime:

τs = γ−1
s =

d(t+ d)

t
· 256πh̄2

3µ2
0µ

2
BσkBT

. (2.30)

For example, for a gold reflecting film with t = 0.05 µm, d = 0.28 µm, T = 300 K,

we obtain a thermal spin-flip lifetime τAu ≈ 180 ms. The spin-flip lifetime could

be increased if required by using a reflecting film with higher resistivity, such as

palladium (ρPd = 1.05 × 10−7 Ωm), for which the spin-flip lifetime becomes τPd ≈

870 ms [17].

2.4.4 Atom-adsorbate effect

For atom trapping experiments using atom chips, it is normal that atoms are ad-

sorbed on the chip surface. The adsorbed atoms generate a small electric dipole

moment µe perpendicular to the chip surface through their electron redistribution.

The quadratic Stark effect, which results from the interaction between the trapped

atoms and the combined electric fields from the adsorbed atoms, creates an attractive

potential [95]:

Va(r) = −α0|E0(r)|2

2
, (2.31)

where E0(r) is the combined electric fields from the adsorbed atoms and α0 is the

atomic polarizability. The magnitude of Va(r) depends on the surface material

and the spatial distribution of the adsorbed atoms. The adsorbed atoms, if dis-

tributed inhomogeneously, can lead to a corrugated trapping potential produced by

the current-carrying wire or magnetic lattice structures on the chip. To reduce the

negative effect of atom adsorbates, coating the chip surface with a thin layer of SiO2

to reduce µe, is sometimes used [96].
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2.4.5 Hitting effect

When trapped very close to the surface, atoms can be lost by hitting the hot sur-

face of the atom chip. This effect results from the fact that atoms with energies

comparable to the barrier height can tunnel through the barrier of the traps. For

atoms with low energies, this effect is negligible. In our experiments, the Z-wire

trap is designed so that the trap depth is at least 10 times larger than the average

temperature of the trapped atoms in order to limit hitting losses. However, when

atoms are trapped in magnetic lattice traps with small barrier heights, some fraction

of the trapped atoms can be lost due to hitting losses.

2.4.6 Stray light effect

When trapped close to the gold reflecting surface of the atom chip, atoms in a

magnetic trap are prone to stray resonant light which can induce spin-flip losses

through optical pumping. The loss rate γsl can be expressed as:

γsl = Γ
Ibg
Is
, (2.32)

where Γ is the linewidth of the strong dipole transition, Is is the saturation intensity

and Ibg is the intensity of the stray light.

2.5 Collisional trap loss

In our atom chip experiments, atoms are trapped with large trapping frequencies,

from several hundred Hz (in the Z-wire magnetic trap) up to a few hundred kHz

(in the magnetic lattice traps). Therefore, even for a small total atom number N ,

the atoms can be confined at a very high density n. At this high density, inelastic

collisions can occur and cause trap losses. The collisional trap loss rate is given

by [63]:
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1

N

dN

dt
= −γbg −K 〈n〉 − L

〈
n2
〉
, (2.33)

where γbg is the background collision loss rate, K 〈n〉 describes inelastic two-body

collisions while L 〈n2〉 represents three-body recombination.

The background collision loss occurs due to collisions of the trapped atoms with

the residual gas inside the ultra high vacuum chamber. The background loss rate is

independent of the atom density n but proportional to the residual gas density.

Three-body recombination loss is defined as an inelastic collision where three

trapped atoms are involved. At first, two trapped atoms combine to form a molecule.

The kinetic energy of this molecule, gained from the conversion of excess binding

energy, is shared by a third atom through conservation of energy and momentum.

Normally, this kinetic energy is larger than the barrier height of the trapping po-

tential and all three atoms are lost by escaping out of the trap. The three-body

recombination loss rate γ3b is given by [63]:

γ3b = L
〈
n2
〉
∝ ω

12/5
ho N4/5, (2.34)

where ωho is the harmonic oscillator trapping frequency and N is the total number

of atoms in the trap for a BEC with a Thomas-Fermi distribution. At high density,

the three-body recombination loss rate for 87Rb atoms in the |F = 1,mF = −1〉 and

|F = 2,mF = 2〉 states is dominant with the BEC rate constants L|F=1,mF=−1〉 =

5.8(1.9)× 10−30 and L|F=2,mF=2〉 = 1.8(0.5)× 10−29 [56, 57].

For 87Rb atoms in the |F = 1,mF = −1〉 and |F = 2,mF = 2〉 states, inelas-

tic two-body collisions, which occur by weak spin-dipole interaction due to spin

exchange collisions, are forbidden due to conservation of energy and angular mo-

mentum rules [63, 97,98]. The two-body loss rate γ2b is given by:

γ2b = K 〈n〉 ∝ ω
6/5
ho N

2/5. (2.35)

Normally, for these states γ3b+γbg � γ2b, and so the two-body loss rate is neglected

in our experiments.
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2.6 Theoretical framework of the design of the

sub-micron 2D magnetic lattice

2.6.1 Optimization algorithm

The concept of a 1D magnetic lattice is based on the early work of our group on

magnetic mirrors. By applying a bias field By perpendicular to the magnets, a

magnetic mirror with flat equipotentials can be converted into a corrugated struc-

ture comprising a 1D array of magnetic traps. Such a 1D magnetic lattice may

be extended to 2D by various methods described in [24, 25, 28, 31]. However, these

methods are complicated and limited to certain trapping geometry and lattice pe-

riods. Therefore, for our lattice structures, a programming algorithm developed by

Schmied et al. [28] for designing almost arbitrary configurations of magnetic traps

based on patterned magnetic films is employed. The advantage of this method is

it gives much more freedom for the design of complex patterns such as triangular,

honeycomb, etc. which is limited in other methods.

This algorithm can produce finite or infinite single-layer magnetization patterns

with perpendicular magnetization that can satisfy desired lattice symmetries, geom-

etry, period and surface-trap distance and especially Ioffe-Pritchard traps to avoid

Majorana spin-flip losses. Basically, the algorithm generates a binary image which

encodes the magnetic versus non-magnetic regions within one unit cell, so that the

generated pattern has pixels with either zero or maximal magnetization. This im-

age is then exported to a format suitable for the lithographic patterning software.

Thanks to the binary nature of the pattern, the lithography procedure is rather

straightforward by etching away the pixels with zero magnetization.

To obtain an optimized magnetic lattice for a magnetic film with thickness t and

magnetization Mz, at first a scalar magnetic potential generated in the xy plane is

defined as:
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Φ(x, y, z) =
µ0tMz

2

∫
P

m(x′, y′)G(x− x′, y − y′, z)dx′dy′, (2.36)

where µ0 is the free space permeability, G(x, y, z) = z
2π(x2+y2+z2)3/2

is the Green’s

function and m(x, y) is a dimensionless function describing the spatial dependence

of the magnetization current which varies from 0 to 1.

We assume that ~r(l) is the desired trapping positions; ~u(l) = −~B(~r(l)) is the local

magnetic field vector at the trap positions with components uli; ~v
(l) are the local

magnetic field tensors with components v
(l)
i,j such that v

(l)
1,1 + v

(l)
2,2 + v

(l)
3,3 = 0; and the

~w(l) are the local magnetic field curvature tensors with components w
(l)
i,j,k such that

w
(l)
i,1,1 + w

(l)
i,2,2 + w

(l)
i,3,3 = 0 for all i integers varying from 1 to 3.

Then the scalar magnetic potential around the trap points can be expressed as:

Φ(~r) = Φl
0 +

3∑
i=1

uli(ri − rli) +
1

2

3∑
i,j=1

v
(l)
i,j (ri − rli)(rj − rlj)

+
1

6

3∑
i,j,k=1

w
(l)
i,j,k(ri − r

l
i)(rj − rlj)(rk − rlk) + ...,

(2.37)

where (r1, r2, r3) = (x, y, z) are the Cartesian coordinates.

In order to obtain Ioffe-Pritchard traps, it is required that the eigenvalues of the

gradient tensors associated with the traps vl are zero and vl. ~BI = 0, where ~BI is

the Ioffe field. For equal trap depths of all trapping potentials, it is required that vl

is well aligned with the Ioffe axes for all ~rl. For desired trapping potential shapes,

orientations and aspect ratios, further constraints on the eigenvalues of vl, ~u(l) and

~w(l) are required.

For optimizing the magnetization pattern, the atom chip surface is first sub-

divided into N small domains, where the number of domains N determines the

resolution of the magnetization pattern. The total scalar magnetic potential and its

derivatives are then expressed as:

Φ(~r) =
1

2
µ0δMz

∑
α

mαφα(~r)
∂Φ(~r)

∂ri

=
1

2
µ0δMz

∑
α

mα
∂φα(~r)

∂ri
,

(2.38)
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where φα(x, y, z) =
∫
Aα
G(x− x′, y − y′, z)dx′dy′ are the scalar magnetic potentials

induced by the domains α covering an area Aα, and the components mα of vector ~m

are equal to 1 for fully magnetic domains or 0 for non-magnetic domains. A matrix

equation which takes into account all constraints is defined as:

A.~m = C~b, (2.39)

where the prefactor C is maximized to gain the highest Zeeman pseudopotential

possible.

The main limitation of this algorithm is that it does not consider the shape of the

Zeeman pseudopotentials between the Ioffe-Pritchard traps. This is negligible for

ion trapping experiments while for neutral atom trapping experiments, points with

zero magnetic fields can lead to trap losses due to tunnelling between Ioffe-Pritchard

traps and Majorana spin-flip losses [21].

2.6.2 Optimized square and triangular magnetization pat-

tern

Our 2D square and triangular magnetic lattice structures are designed with one

Ioffe-Pritchard trap per unit cell at {0, 0, h} with a Ioffe axis { sinφ, cosφ, 0}. Our

nominal lattice trapping height is chosen to be a/2, which is one half of the inter-

trap distance. For this design, the second derivative of the scalar magnetic potential

is constrained as

Φζ,φ(~r) = Φ̂

[
α sin

(
2πx

a
− 2πy

a tan ζ

)
+ sinα sin

(
2πy

a sin ζ

)]
, (2.40)

where a is the lattice period.

The magnetization pattern for a square lattice of Ioffe-Pritchard traps at a trap-

ping height h = a/2 is produced with ζ = π/2, where the barrier heights in the x and

y-directions are equal. Due to the higher-order Fourier modes, the square magneti-

zation pattern and the Ioffe direction do not conform to exact cmm symmetry [28],

which consequently creates an imperfect cmm symmetric Zeeman pseudo-potential .

However, this limitation can be overcome by slightly tuning the Ioffe field strength.
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Figure 2.7: Optimized square magnetic lattice structure (a) and simulated Zeeman

pseudo-potentials at the trapping plane h = a/2. Input parameters: 4πMz = 5.9 kG,

tm = 10.34 nm. Black points in (a) indicate the positions of the trap centres and

the red arrow indicates the direction of the Ioffe-Pritchard field. Dark regions in (b)

indicate trap minima.

The magnetization pattern for a triangular lattice of Ioffe-Pritchard traps at

trapping height h = a/2 is produced with ζ = π/3, where the barrier heights in

all three lattice directions are equal. For triangular lattices, in order to obtain

equivalent tunnelling in all three directions and anisotropic lattice, the Zeeman

pseudo potential should be fully p6m symmetric. This can cause a problem since

the symmetry requires nonlinear constraint beyond the linear programming method.

By providing additional linear constraints, it is possible to overcome this problem

by applying additional linear constraints at the trap barrier positions [28].

By manipulating the bias magnetic fields in the parallel and perpendicular direc-

tions, one can change characteristics of the trapping potential such as the distance of

the trap minima to the surface, trapping frequencies, etc. These parameters play an

important role in determining the behaviour of the trapped atoms in the magnetic
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Figure 2.8: Optimized triangular magnetic lattice structure (a) and simulated Zee-

man pseudo-potentials at the trapping plane h = a/2. Input parameters of the

simulations: 4πMz = 5.9 kG, tm = 10.34 nm. Black points in (a) indicate the

positions of the trap centres and the red arrow indicates the direction of the Ioffe-

Pritchard field. Dark regions in (b) indicate trap minima.

lattice. There are no analytic expressions for the lattice trapping magnetic fields

as in the 1D case; so the numerical approach was utilized for the calculation of the

trap minimum position as well as the Ioffe field trap bottom [28].

To create the optimized 0.7µm-period square and triangular magnetic lattice

traps at a trapping height zmin = a/2 = 0.35µm, it is required to provide the

bias field configuration shown in Table 2.1. The resulting lattice traps have the

desired 2D geometry traps with equal barrier heights in the lattice directions and

non-zero trap bottoms. It is important to note that these bias field values are just

for illustration since it is possible to create lattice traps with similar characteristics

keeping the same ratio between the bias fields in the (x, y, z) directions. In our atom

chip, the Co/Pd magnetic film stack is coated with a layer of 50 nm gold and a layer

of 25 nm silica. Therefore, the optimized magnetic lattice traps are just 275 nm
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Table 2.1: Calculated parameters for the optimized 0.7µm-period square and tri-

angular magnetic lattices at trapping height zmin = 0.35µm. Input parameters of

the simulations: magnetization of the magnetic film 4πMz = 5.9 kG, magnetic film

thickness tm = 10.34 nm.

Square Lattice Triangular Lattice

Required bias field (Bx, By, Bz) (7.86 G, −3.76 G, 0) (0.50 G, 4.52 G, 0)

Barrier height in lattice directions 6.56 G (220µK) 5.97 G (200µK)

Trap depth δEz 3.61 G (121µK) 2.85 G (96µK)

Trap bottom 5.11 G 1.69 G

Geometric mean trapping frequency ω/2π = 173 kHz ω/2π = 195 kHz

from the atom chip surface. At such a small distance, atoms in the lattice traps are

in the region where the attractive Casimir-Polder potential effect is dominant.

2.7 Ultracold atoms in a periodic lattice

For a gas of interacting ultracold bosonic atoms confined by an external trapping

potential, the many body Hamiltonian has the form [99]:

Ĥ =

∫
drψ̂†(r)

(
− h̄

2m
∇2 + Vext(r)

)
ψ̂(r)

+
1

2

∫
drdr′ψ̂†(r)ψ̂†(r′)Vat(r− r′)ψ̂(r′)ψ̂(r),

(2.41)

where ψ̂(r) and ψ̂†(r′) are the bosonic annihilation and creation field operators,

respectively and Vat is the interatomic scattering potential.

For a cold dilute gas, in which s-wave scattering is the main scattering process,

the interatomic scattering potential Vat(r) can be described as a contact interaction:

Vat(r) =
4πh̄2as
m

δ(r), (2.42)

where m is the mass of the atoms and as is the s-wave scattering length.
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In our experiments, the dynamics of bosonic atoms in a periodic lattice potential

is described by a Bose-Hubbard model [99]. This simplest non trivial model is

famous in solid state physics and used to describe many interesting effects such as

the superfluid to a Mott insulator transition [5, 100]. The Hamiltonian for bosonic

atoms in a trapping potential V (x):

Ĥ =

∫
d3xψ̂†(x)

(
− h̄

2m
∇2 + V (x)

)
ψ̂(x)

+
1

2

4πh̄2as
m

∫
d3xψ̂†(x)ψ̂†(x)ψ̂(x)ψ̂(x),

(2.43)

where V (x) is the sum of the lattice potential Vlat(x) and the external confinement

Vext(x) and ψ̂(x) is a boson field operator.

The boson field operator ψ̂(x) can be expressed in the form of localized Wannier

functions w(x− xi) of the ground state:

ψ̂(x) =
∑
i

âiw(x− xi), (2.44)

where âi is the annihilation operator of the lattice site i and [âi, â
†
j] = δij.

Equation (2.43) reduces to the Bose-Hubbard Hamiltonian [99]:

Ĥ = −J
∑
<i,j>

â†j âi +
∑
i

(εi − µ)n̂i +
∑
i

1

2
Un̂i(n̂i − 1), (2.45)

where n̂i = â†i âi is the operator counting the atom number in lattice site i. The first

term of the Bose-Hubbard Hamiltonian describes the tunnelling of atoms between

lattice sites. The tunnelling strength of this term is characterized by the hopping

matrix element J which is expressed as [5]:

J = −
∫
d3xw(x− xi)(

−h̄2∆2

2m
+ Vlat(x))w(x− xj). (2.46)

The second term characterizes the external trapping potential which introduces an

energy offset εi of the lattice site i and the chemical potential µ. The third term

accounts for the repulsive interaction between two atoms in a single lattice site i

and is characterized by the on-site interaction matrix element U :
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U =
4πh̄2as
m

∫
|w(x)|4d3x. (2.47)

Depending on the ratio U/J , the Bose Hubbard Hamiltonian can have two differ-

ent ground states. If J � U , the tunnelling term dominates and the atoms tend to

spread out over the lattice. The system is in a superfluid state with long-range phase

coherence over the lattice. In this case, the quantum fluctuation is neglected and all

the atoms have the same identical Bloch states. The system is characterized by a

macroscopic wave function with phase defined in each lattice site. The many-body

ground state of the system is expressed as [5]:

|ΨSF 〉U/J≈0 ∝

(
M∑
i=1

â†i

)N

|0〉, (2.48)

where N is the total number of atoms. The variance of the Poissonian atom number

distribution for a single lattice site is then expressed as:

V ar(ni) = 〈n̂i〉. (2.49)

If U � J , the interaction term dominates and the atoms tend to localize in lattice

sites. The system is characterized by localized atomic wave functions with a fixed

number of atoms in each lattice site in order to minimize the interaction energy.

The system is in the Mott insulator state and no longer exhibits phase coherence

but exhibits strong correlations in the number of atoms in lattice sites. The many-

body ground state is then expressed as a product of local Fock states in each lattice

site [5]:

|ΨMI(n)〉J≈0 ∝
M∏
i=1

(â†i )
n|0〉, (2.50)

where M is the number of lattice sites.

The ratio of U/J can be controlled by varying the lattice trap depth Vlat. As the

ratio U/J reaches a quantum critical point, a quantum phase transition occurs in

which the system changes from the superfluid state to the Mott insulator state and

vice versa [5, 101]. The phase change features a change in the excitation spectrum
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of the system; as the quantum critical point is crossed in the Mott insulator regime

the excitation spectrum shows a gap whereas in the superfluid phase there is no gap

in the excitation spectrum.

Table 2.2: Calculated tunnelling times for a 2D square lattice for different lattice

periods a at the quantum critical point (J/U)c ≈ 0.06.

Period a 0.3µm 0.7µm 1µm 3µm 10µm

Er 306 nK 56 nK 28 nK 3.1 nK 275 pK

Vlat 2.8 mK 668 nK 362 nK 53 nK 6.3 nK

J 8.6 nK 820 pK 300 pK 14 pK 0.46 pK

U 143 nK 13.7 nK 5 nK 230 pK 7.7 pK

τtunnel 0.9 ms 9.3 ms 25 ms 0.55 s 17 s

In order to estimate the strength of the tunnelling term J and the on-site inter-

action term U , units of the recoil energy Er = h̄2k2/(2m) are introduced [102]. The

expressions for J/Er and U/Er can be approximated as [102]:

J/Er =
4√
π

(
Vlat
Er

)3/4

exp

[
(
−2Vlat
Er

)1/2

]
, (2.51)

U/Er =
2
√

2kas√
π

(
Vlat
Er

)3/4

. (2.52)

The case of the superfluid to Mott insulator transition in a magnetic lattice

has been considered by Ghanbari et. al [41]. For a 2D square lattice with equal

trap depths in all directions, which is similar to our magnetic lattice structures,

the quantum critical point is expected to occur at (J/U)c ≈ 0.06 [103]. Table 2.2

presents calculated parameters for a 2D square lattice for different lattice periods a

at the quantum critical point (J/U)c ≈ 0.06. As can be seen, in order to achieve

reasonably short tunnelling times (e.g., <∼10 ms) lattices with submicron periods

are required.
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The magnetic lattice atom chip

3.1 Introduction

In our Magnetic Lattice group in the Centre for Quantum and Optical Science

at Swinburne, we had been using a one-dimensional 10 µm-period magnetic lattice

structure mounted on a micromachined silver-foil atom chip, providing a platform to

trap independent periodic arrays of ultracold atoms and Bose Einstein condensates

[22, 32, 33]. A periodic microstructure consisting of one-thousand parallel grooves

of 10 mm length and 10 µm spacing was etched in the centre of a silicon wafer.

The grooved microstructure was coated with six layers of 160 nm-thick magneto-

optical Tb6Gd10Fe80Co4 film, separated by 100 nm-thick non-magnetic chromium

layers. A 150 nm-thick gold film (reflectivity > 95 % at 780 nm) was deposited

on the top for the mirror MOT and for reflective absorption imaging of the atom

clouds. The TbGdFeCo microstructure was magnetized in a strong magnetic field

leading to a remanent perpendicular magnetization 4πMz = 3 kG with a coercivity

Hc = 6 kOe [22]. Trapping of ultracold 87Rb |F = 2,mF = 2〉 atoms in multiple

lattice sites was demonstrated in the work of M. Singh et al. [22], and the realization

of multiple BECs of 87Rb |F = 1,mF = −1〉 atoms was demonstrated in the work

of Jose et al. [32] and Surendran et. al [33].
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According to our calculations, the tunnelling time in a 10 µm-period magnetic

lattice with a barrier height of only 0.21 mG would be about 100 s. This time is

considered to be too long and all the atoms trapped in the magnetic lattice would be

lost before any tunnelling could occur. In order to perform tunnelling experiments

in a magnetic lattice, it is required to scale down the lattice period to less than

about 1µm. By decreasing the lattice period, one can increase the energy scales

in the Hubbard model used to describe quantum gases in optical lattices [17, 26],

which consequently increase the tunnelling rate and the on-site interaction [102].

Our calculations show that for a 0.7 µm-period lattice, the tunnelling times are 9

ms and 2 ms for barrier heights V0 ∼ 12Er (20 mG) and 6Er (10 mG), respectively

(Sect 2.7).

This chapter presents the fabrication and characterization of the new sub-micron-

period magnetic lattice structures on a Co/Pd multilayer magnetic film. Also, the

fabrication of a direct-bonded copper (DBC) atom chip containing current-carrying

wire structures is presented. The fabricated magnetic film is glued onto the DBC

atom chip to create a magnetic lattice atom chip which is the crucial component of

our experiment. In the final part of this chapter, a newly fabricated improved DBC

atom chip for future use is described.

The Co/Pd film was provided by M. Albrecht from the University of Augsburg in

Germany. The magnetic film fabrication was performed in the nano-fabrication fa-

cility in the Centre for MicroPhotonics at Swinburne University of Technology and

at the Melbourne Centre for Nanofabrication at Monash University by Pierrette

Michaux, Amandas Balcytis and Saulius Juodkazis. The Monte-Carlo simulation

shown in Figure 3.14 was provided by Amandas Balcytis. The fabrication quality

test, the characterization of the sub-micron magnetic lattice film and the installa-

tion of the combined magnetic lattice atom chip in the experimental system was

carried out jointly with Yibo Wang. I independently performed the design and the

fabrication of the new improved DBC atom chip.
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3.2 Direct Bonded Copper atom chip

3.2.1 Design and fabrication

On the old-generation atom chip used for the 10 µm-period 1D magnetic lattice, the

designed wire structure was micromachined on a silver foil and glued on a Shapal-

M machinable ceramic plate with a high vacuum thermal conductive epoxy. The

advantage of this chip is the ability of the wires to carry a high current (up to 40

A) without noticeable heating. However, the thermal conductivity is limited due to

the epoxy. Additionally, the silver/ceramic is not strongly bonded which can lead

to delamination of the silver wire during machining. To overcome these problems, a

new-generation atom chip using a Direct-Bonded Copper (DBC) subtrate, a UHV

compatible material, is employed [104, 105]. DBC is the direct joining of a thin

sheet of pure copper to a ceramic substrate of AlN by heating to ∼ 1065 ◦C in an

environment of ∼ 1.5% oxygen and ∼ 98.5% nitrogen. The DBC process is based

on the fact that oxygen reduces the melting point of copper from 1083◦C to 1065◦C

(the eutectic melting temperature). By pre-oxidizing copper foil and aluminum

nitride ceramic, then injecting oxygen during high temperature annealing between

1065◦C and 1080◦C, a thin layer of copper-alumina-spinel forms thereby creating a

direct bond between the copper and the ceramic. Compared to the silver-foil atom

chip, the DBC chip provides much stronger bonding, better thermal properties and

similar high current handling while the fabrication is much simpler.

At first, a mask with wire patterning is applied to the surface of a DBC board

after spin-coating a 20µm-thick layer of positive photoresist (AZ4620). Afterwards,

ultraviolet (UV) photolithography is employed to transfer the wire pattern to the

desired side of the DBC board. In the next step, the DBC board is immersed in a

10% ammonium persulphate solution at 60 ◦C for wet etching. After several hours,

the copper is etched away from the exposed areas which leaves wire traces on the

AlN subtrate. Finally, the board is ultrasonic cleaned with acetone.

Our fabricated DBC atom chip size is 50 mm × 55 mm which is fabricated from
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a large 127µm-thick DBC + 635 µm AlN + 127µm-thick DBC board from Stellar

Ceramics. A drawing of the front and rear of the designed DBC atom chip is shown

in Figure 3.1. The chip is designed with four separated 1 mm-wide, 5 mm-long

U/Z-wire structures. Different wire configurations for four lattice structures can be

easily arranged by connecting the corresponding pin holes. Different U-wires and

Z-wires are configured by connecting the pin holes 1, 2, 3, 5, 6, 7 and 10. In the

design, two 3.4 mm-long × 0.5 mm-wide RF wires are included for the evaporative

cooling procedure and RF spectra measurements. The RF wires are configured by

connecting pin holes 3, 4 and 8, 9.

Figure 3.1: Drawing of the front (a) and rear (b) of the designed DBC atom chip.

For attaching the magnetic film onto the atom chip, two separated holes, which

are not numbered in Figure 3.1, are drilled. Also, two markers for aligning the

fabricated magnetic film when being glued onto the DBC atom chip are employed. In

conjunction with the atom chip, a pure copper block for heat dissipation is designed

to match the rear face of the atom chip while avoiding short-circuit problems.
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3.2.2 Quality check and assembly

To check the fabrication quality, a UHV compatibility test and a heat dissipation

measurement are performed. For the UHV test, the new chip is installed in a

separate vacuum chamber and baked at ∼ 100 ◦C for 4 days to pump out water

vapour and other gases. After the chamber cooled down to room temperature, the

pressure measured inside the chamber was 10−12 mbar which indicated a good UHV

compatibility of the chip.

For the heat dissipation test, as shown in the Figure 3.2, constant currents are

passed through the U/Z wires and the voltage behaviour is recorded to examine the

evolution of the resistance. After 5 minutes of running high currents (40 A and 60

A) through the Z/U wires, the resistance of the wires increased by less than 20%

which indicates that the temperature increase is not too high to damage the copper

wires (∆T = 57◦C and 82◦C for 40 A and 60 A respectively) [106].

Figure 3.2: Evolution of (a) the Z-wire resistance after passing a current of 40 A

(red line) and 60 A (black line) and (b) the U-wire resistance after passing a current

of 40 A (red line) and 60 A (black line). The initial jump is attributed to heating

of the wire and the barrel connector connection.

For assembly of the hybrid magnetic lattice chip, at first a UHV compatible glue

(Epotek H77) is employed to attach the fabricated magnetic film to the DBC atom

chip with an estimated error of ±1 mm . This is done by first applying a thin,
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Figure 3.3: Schematic drawing of the layout of the hybrid atom chip with the

magnetic lattice film.

flat layer of the epoxy to cover the desired magnetic film region. After precisely

positioning the fabricated magnetic film, the whole structure is heated to ∼ 110 ◦C

for one hour to form a strong bond. The hybrid magnetic lattice chip is then pre-

baked in a separate UHV chamber at ∼ 110 ◦C for two days to remove undesired gas

and water vapour. The complete hybrid atom chip system is shown in Figure 3.3.

3.3 Fabricated magnetic film characterization

After the magnetic film fabrication procedure, SEM measurements, which show the

surface topology (Figures 3.4, 3.5, and 3.6), were performed. The results show

satisfactory 1D, 2D square and triangular lattice patterned structures. In addition,

Magnetic Force Microscope (MFM) measurements were performed for an evaluation

of the magnetic field map of the fabricated magnetic film. At first, a fabricated

sample is magnetized and then scanned in dynamic mode (AC mode) to increase

the signal-to-noise ratio. This mode provides a measure of the phase difference
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between the oscillating cantilever and the sample. The magnetic tip operating in

semi-contact mode scans over the magnetized sample while oscillating at its resonant

frequency with a small amplitude in the vertical direction. The tip-surface distance

is set to be larger than the tip size so that the tip can be treated as a point dipole

oriented along the z-direction.

Figure 3.4: Small-scale (a) and (b) large-scale SEM images of the 1D 0.7µm-period

magnetic lattice structure showing an edge roughness of 40 nm and a multiple trench

period of 688 nm [17]. Dark regions represent the etched regions and light regions

represent the unetched magnetic regions.

Figure 3.5: SEM images showing the patterns of the 1D 5 µm-period (a) and 1D

0.7µm-period (b) magnetic lattice structures showing the etched (dark regions) and

unetched magnetic (light regions) regions.



42 The magnetic lattice atom chip

Figure 3.6: SEM images showing the patterns of the 2D 0.7µm-period square (a)

and triangular (b) magnetic lattice structures. The etched regions are the dark

regions and the unetched magnetic regions are the light regions.

To lowest order, the magnetic force causes a phase shift [17]:

∆φ ≈ Q

ks

∂Fz
∂z
∝ ∂2Bz

∂z2
, (3.1)

where ks is the spring constant and Q is the cantilever quality factor. The shift in

the resonant frequency caused by the tip:

∆f ≈ − fn
2ks

∂Fz
∂z
∝ ∂2Bz

∂z2
, (3.2)

where fn is the natural resonant frequency of the cantilever tip [107].

The MFM signal is proportional to the second spatial derivative of the z-component

of the magnetic field, which in the case of 1D structures, is dependent on the os-

cillating signal in the y-direction with period given by the lattice period. As the

distance from the cantilever tip to the surface of the magnetized sample increases,

the amplitude of the oscillating signal decays with the decay length k−1 = a/2π,

where a is the lattice period. The dependence of the amplitude of the oscillating

MFM signal on this distance is examined for an evaluation of the magnetic quality

of the structures. The oscillating profile shown in Figure 3.7 gives aosc = 651±3 nm

while the fitted decay length gives a value aosc = 662±11 nm, where the uncertainties
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Figure 3.7: (a) MFM image of the 1D 0.7µm-period magnetic lattice structure using

a probe tip height of 50 nm. (b) Plot of the natural logarithm of the MFM signal

amplitude versus tip-surface distance z showing a fitted decay curve (red line). Inset:

Plot of the profile of the MFM signal in the y-direction at a tip-surface distance of

50 nm showing the fitting (red curve) of the oscillating signal [17].

represent the residuals of the fits. These values are in reasonable agreement with

the SEM tests showing a measured period of 688 nm, as can be seen in Figure 3.4,

which confirms the fabrication quality of the structure.

Figure 3.8: (a) Optimized pattern of the square magnetic lattice structure produced

by the Schmied et al. code [28] and (b) calculated magnetic potential at a trapping

height z = a/2. (c) Calculated second derivative of Bz. (d) MFM measurement of

the 0.7µm-period square magnetic lattice structure. The red square shows one unit

cell [17].
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For an evaluation of the magnetic properties of the fabricated structures, the

second derivative of the calculated magnetic field is analyzed and compared with

the MFM measurements of the patterned Co/Pd stack (Figure 3.8). Qualitatively,

the calculated second derivative and the MFM measurement results are generally in

agreement except that there are some sharp horizontal lines in the MFM measure-

ment at some boundary edges. These are attributed to magnetic domain formations

of the structure or to possible errors in the MFM measurements caused by changes

in the surface topology at the edges.

3.4 Two-dimensional magnetic lattice structures

3.4.1 Co/Pd magnetic film

The fabrication of the first version of the sub-micron period magnetic film structure,

a promising candidate for experiments involving quantum tunnelling, was completed

in 2015 [17]. Thanks to big advances in materials science, a new state-of-the-art mag-

netic material comprising alternating atomic bilayers of a ferromagnetic transition

metal Co and a noble metal Pd was used to replace the Tb10Gd6Fe80Co4 magnetic

film.

Compared to the rare-earth transition metal film, the Co/Pd magnetic film has

a larger perpendicular magnetic anisotropy (PMA), larger remanent magnetization,

higher Curie temperature, smaller grain size (6 nm compared to ∼40 nm for Tb10Gd6Fe80Co4)

[17] and large Kerr rotation at short wavelengths. These properties were considered

for their key roles in producing smooth, homogeneous magnetic potentials and dense

magnetic microtraps to trap atoms in submicron-period arrays.

For the Co/Pd structure, the thickness of the Co layer and the Pd layer and

the total thickness of the stack of Co/Pd layers can be varied to obtain the desired

thermomagnetic properties. For the Co magnetic layer, the thickness is chosen to

be approximately two atomic layers (< 4 nm) so that its easy magnetization axis

aligns perpendicularly to the structure plane and when configured with Pd layers it
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Figure 3.9: Multilayer structure of the Co/Pd magnetic film. Adapted from [17].

will create optimal interface anisotropy. For the Pd layer, the thickness is chosen to

be < 1 nm so that when configured with the neighbouring Co magnetic layers on

the top and bottom creates an enhanced magnetization [108]. For optimal magnetic

properties of the structure, the total thickness (Co plus Pd) should be 10-30 nm.

A schematic of the new multilayer Co/Pd magnetic film is shown in Figure 3.9.

The magnetic film consists of a total of 8 bilayers of alternating Co (0.28 nm) and Pd

(0.9 nm) with a 1.1 nm-thick layer of Pd on the top to protect from oxidation and a 3

nm-thick layer on the bottom. The number of bilayers can be varied to obtain a high

surface magnetic field or a high perpendicular magnetic anisotropy (PMA) within

a trade-off relation. This stack is deposited onto a 330 µm thick Si(100) substrate

through a seed layer of 3 nm-thick Ta to provide a good texture for the deposition

which leads to an improvement of the PMA and the crystallographic orientation of

the layers.

For the deposition of the Co/Pd multilayers at room temperature, a DC mag-

netron sputter-deposition method is employed in which the argon pressure was set at

3.5× 10−3 mbar during the whole deposition procedure and the base pressure inside

the deposition chamber was 1.0× 10−8 mbar. For accurate control of the deposition

thickness, a quartz microbalance was used in conjunction with X-ray reflectometry

measurements on the Co/Pd samples for calibration purposes.
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3.4.2 Co/Pd magnetic film characterization

The magneto-optical Kerr effect (MOKE), which measures the degree of rotation

of linearly polarized light reflected from a magnetized surface, was employed for

quantitative analysis of the coercivity, the remanence ratio and the perpendicular

magnetization hysteresis loop. The Kerr rotation is proportional to the surface

magnetic moment and is dependent on the magnetic composition, the magnetiza-

tion direction, the coating layer of the film, the angle of incidence and the probe

wavelength.

For the MOKE measurement setup, the film stack is magnetized in a perpendic-

ular direction in a strong external magnetic field generated by a manually operated

1.5-inch electromagnet which can provide a maximum magnetic field up to 1 Tesla.

Linearly polarized light, produced by passing the output of a diode laser source (780

nm) through polarizing optics, shines at an angle of 450 to the magnetic film and

experiences a rotation of the polarization plane when reflected from a magnetized

surface. The photodiode signal versus magnetic field strength is recorded on an

oscilloscope and post-analyzed for a complete hysteresis loop as shown in Figure

3.10. The measured hysteresis loop of the Co/Pd film is almost perfectly square

with a coercivity of Hc = 1.0 kOe.

Figure 3.10: Magneto-optical Kerr effect hysteresis loop of the Co/Pd film [17].
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For quantitative information of the magnetization and the in-plane hysteresis, a

superconducting quantum interference device (SQUID, Quantum Design MPMS5)

was employed. The result provided by staff at the University of Augsburg in Ger-

many gives a saturation magnetization of the Co/Pd film of 4πMs = 5.9 kG.

Scanning Electron Microscopy (SEM) measurements were performed for an eval-

uation of the Co/Pd film surface. A SEM image of the Co/Pd film is shown in

Figure 3.11 (a). The SEM tests show a good homogeneity of the material and a

practical grain size of about 10 nm, compared to the nominal value of 6 nm. This

small grain size is considered to be suitable for the fabrication of sub-micron scale

magnetic lattice structures.

Figure 3.11: (a) SEM image of the Co/Pd film showing the material homogeneity

and an average grain size of about 10 nm, (b) MFM image of the Co/Pd film in the

demagnetized state showing magnetic domains with a typical size of 5 µm [17].

An atomic/magnetic force microscope (AFM/MFM) was employed for analyzing

the magnetic properties of the fabricated Co/Pd film which operates in two passes.

In the first pass, which is operated in the semi-contact mode, a magnetic CoCr

coated cantilever periodically taps the surface to map out the surface topology of

the sample. In the second pass, which is operated in the non-contact mode, the

cantilever scans over the sample at a constant height from the surface to produce a

magnetic force signal. A MFM image of the Co/Pd film in the demagnetized state,
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which was provided by staff at the University of Augsburg in Germany, is shown in

Figure 3.11 (b). Due to the strong PMA, large magnetic domain structures with

magnetization pointing up or down perpendicular to the film plane are observed in

island shapes. To test the longevity of the PMA properties, the measurements were

repeated after several months. No significant change in the domain structure shape

and position is observed, which indicates a stable and strong PMA of the Co/Pd

film.

3.4.3 Design and fabrication

The optimization algorithm developed by Schmied et al. [28] was used to calculate

the desired magnetic lattice geometries (Section 2.6.1). For our experiment, a new

35×40 mm2 Co/Pd magnetic film was designed which contains four 1 mm×1 mm

magnetic lattice structures: one 5 µm-period 1D lattice, one 0.7 µm-period 1D

lattice, one 0.7 µm-period 2D square lattice and one 0.7 µm-period 2D triangular

lattice, as shown in Figure 3.12. The 5 µm-period 1D lattice is included for system

optimization while the other three 0.7 µm-period lattices serve as platforms for

performing the main experiments.

For the fabrication of the new magnetic film, e-beam lithography (EBL) followed

by reactive ion etching (RIE) microfabrication techniques were chosen for their high

resolution, high versatility and the flexibility to produce arbitrary submicron scale

magnetization patterns [32]. In the preparation stage, a Co/Pd film-coated wafer

was wet cleaned in the solvents acetone, isopropanol and methanol, using an ul-

trasonic cleaning method. After that, dry nitrogen was employed to blow-dry the

wafer, which was later heated on a 180 ◦C hot-plate for 3 minutes to vaporize the

remaining solvents.

The fabrication procedure, shown in Figure 3.13, started by spin-coating the

wafer with a 300 nm-thick layer of polymethyl methacrylate (PMMA) resist. In

the second step, EBL, a maskless direct-write method using electron beams focused

on an electron-sensitive resist to generate the desired patterns on the Co/Pd film,
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Figure 3.12: Schematic diagram of the magnetic lattice structures on the Co/Pd

film.

was employed using a Raith EBPG5000plusES EBL exposure tool. The machine

operates at 100 kV electron acceleration voltage and is capable of writing an area of

1 mm2 all at once, which is considered sufficient for writing an entire magnetic lattice

structure, thereby eliminating the need for stitching blocks. The exposure rate for

the patterning is determined based on the complexity and the geometry of the lattice

structures. Using a 5 nm full-width half-maximum electron spot size operating at

50 MHz rate, the exposure time ranges approximately from 30 mins for the 1D

0.7 µm-period grating structure to 120 mins for the 2D 0.7 µm-period structures.

Afterwards, the resist is immersed for 80 seconds in a mixture of isopropanol and

methyl isobutyl ketone with a proportion of 3:1 to develop the pattern. This step is

necessary to avoid solubility of the patterned area due to the broken bonding of the

polymer chains caused by the energetic electrons. Next, the resist is immersed in

the isopropanol again to stop any further pattern development, and then blow-dried

with dry nitrogen.
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Figure 3.13: Patterning sequence of the Co/Pd magnetic film [17].

In the next step, an inductively coupled plasma reactive ion etching tool (Samco

RIE-101iPH) is employed for dry-etching purposes. During this procedure, the ma-

chine first produces an environment of argon ions (Ar+) which is subsequently used

for bombardment via physical sputtering. The remaining PPMA resist layer after

the resist development stage acts as a protective coating from the argon ion bom-

bardment while in the exposed area the film is etched until it reaches the Si layer of

the magnetic film stack. A ∼ 25 nm etch depth is chosen to ensure the magnetic film

is completely removed from the non-magnetic zones to produce binary patterns. In

the next stage, the remaining PMMA resist is removed by immersing the wafer in

acetone at 60 ◦C .

Subsequently, an AXXIS (K.J. Lesker) physical vapour deposition system is em-

ployed to coat the magnetic film with a 50 nm gold reflecting layer via magnetron

sputtering. In this way, the gold fills the etched gaps which helps to flatten the

film surface. The high reflectivity gold layer acts as a mirror which is required for

creating the mirror-MOT and for reflective absorption imaging of the atom clouds.

Then, a 25 nm SiO2 layer is deposited by electron-beam evaporation to prevent
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rubidium atoms from reacting with the gold surface. In the final stage, the wafer is

trimmed to 35 × 40 mm2 size using a 1030 nm femtosecond laser beam (PHAROS,

Light Conversion) before being ultrasonic cleaned.

3.4.4 Proximity effects

The proximity effect is a deformation of the structure towards the edges when the

EBL exposure is performed on large areas. During our magnetic film fabrication,

there is a non-uniformity in the pattern structure, increasing from the centre area

towards the edge of the film.

Figure 3.14: (a) Schematic representation of the electron spread due to forward-

scattered and back-scattered electrons, (b) Monte-Carlo simulation of the trajectory

spread of 106 electrons, (c) Energy density distribution along the radial direction of

the electron beam in semi-log scale. The Gaussian part is created from the normal

beam and the broad pedestal part is created from the scattered electrons responsible

for proximity effects.

The non-uniformity is attributed to electron scattering as the electrons hit the

resist-coated substrate (Figure 3.14 (a)). As a consequence, electrons are spread
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over a large area compared to the initial 5 nm spot-size. The scattered electrons

create a parasitic effect on the areas around the region being etched which changes

the resist dissolution rate and the partially developed patterns. When a uniform

dose distribution is used, this can cause a change in the desired patterns (Figure 3.14

(b)).

To compensate for this error, a dose scaling method is employed, in which the

dose distribution is modified for different exposure areas. At first, Monte-Carlo

simulations are performed to simulate the scattering of electron beams during the

lithography procedure to generate a point spread function. Based on this, the dose

is modified correspondingly to compensate for parasitic exposure. As a result, the

base dose at the periphery region is considerably larger than the base dose in the

central area. In our case, in a ∼ 25 µm wide periphery region, it is required to add

0.5 × the base dose to avoid the proximity effect for a 1 mm × 1 mm EBL exposure

area (Figure 3.14 (c)).

3.5 New DBC atom chip

In our current atom chip (Figure 3.1), the chip wires are designed with mainly

diagonal wires which creates a spatially non-uniform magnetic field component. This

can affect the lattice loading in our present experiments since our magnetic lattice is

very sensitive to changes in magnetic field . In this new chip, I have designed current-

carrying wires that are optimized by employing more symmetric and perpendicular

wires so that the bias field created from secondary current-carrying wires spatially

cancel each other resulting in a more stable magnetic field environment for trapping

and loading the atoms. Compared to the previous DBC atom chip, the width of

current-carrying wires on the new DBC chip are three times smaller which can

induce a three times larger resistive heating on the same current.

The new chip was fabricated in direct bonded copper (DBC) to our design by

the company REMTEC Industries [109], USA using specialized and high precision

fabrication facilities and procedures. The wire etching techniques can produce a 0.25
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Figure 3.15: Photos of the front (a) and rear (b) face of the new fabricated DBC

atom chip.

mm copper trace width with a typical tolerance of 0.1 mm. As atoms are trapped

very close to the chip surface, any wire fabrication defects can alter the trapping

potential of the atoms. The final fabricated DBC chip is shown in Figure 3.15.

The etching procedure is described as follows:

In a clean room environment both sides of the copper clad ceramics are laminated

with a UV-sensitive dry film photoresist ∼ 40 - 100 µm thick depending on the circuit

complexity. A photo tool is placed over the laminated copper substrate and exposed

to high-intensity collimated light with a wavelength of 350 - 420 nm. When exposed,

the photo tool negative selectively lets light pass through the tool to harden the

exposed photoresist.

The exposed substrates are then moved to wet processing and passed through a

neutralizing sodium developer solution which reacts with the unexposed photoresist

allowing it to become soluble and to be removed through rinsing. The remaining

hardened photoresist coats the copper substrate with a positive image of the desired

circuit. Unwanted copper around the desired circuit is removed through a sub-

tractive spray etch process using cupric chloride solution. The remaining positive

copper pattern then passes through a mildly alkaline caustic solution allowing the
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remaining photoresist to be dispersed into a stripping solution or dissolved before

the substrate is rinsed and thoroughly dried.

The patterned parts are surface-plated to customer specifications by typically

depositing electrodeless nickel mid-phos (∼ 6 - 10% phosphorus by weight) 2.5 -

8 µm thick followed by an immersion gold ∼0.01 - 0.15 µm thick to reduce the

potential for oxidation of the nickel surface. The patterned parts that are to be left

in the bare copper are subjected to a final cleaning process and then the copper is

passivated in citric acid or other anti-tarnish solutions.

Finally, the patterned and plated substrates are laser-scribed using a CO2 laser

equipped with Automatic Optical Pattern Recognition (AOPR) to align and score

the ceramic along the designated boundaries of individual cells. The scored sub-

strates are cleaned to remove any residual contamination from the scribing process,

to singulate and cut individual finished cells from the master substrate array.

Finished individual cells are packaged with a corrosion inhibitor and placed into

metallized-foil bags which are then purged with nitrogen and vacuum-sealed creating

an anti-corrosive environment to ensure product reliability and solderability.



CHAPTER 4

Experimental setup

This chapter describes the technical details of our magnetic lattice trapping experi-

ment including the patterned magnetic lattice film on the DBC atom chip mounted

inside an ultra-high vacuum chamber, the laser system layouts, and the experimental

control system. Also, the experimental procedure to obtain Bose-Einstein conden-

sation of 87Rb |F = 1,mF = −1〉 atoms in the Z-wire trap on the atom chip is

presented.

The current experimental setup was partly modified, developed and optimized

from the experiment system built by former students in our group [58–61]. The

installation of the new fabricated magnetic lattice and atom chip (described in Chap-

ter 3) in the UHV chamber, which was carried out jointly with PhD student Yibo

Wang, is described. Also, my independent work of optimizing the experimental

setup, achieving BEC in the Z-wire magnetic trap and other measurements with

this experimental system is described.

4.1 Ultrahigh vacuum chamber

An ultra-high vacuum (UHV) system, used for isolating the trapped atoms from

the environment, is one of the most important apparatuses for our ultracold atom

experiment setup. We need to have good control of the vacuum conditions in the
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chamber in order to prevent collision losses of the trapped atoms with background

gases (H2, CO, CO2, N2, H2O, etc.) and to maintain long trapping lifetimes of

atoms in the magnetic traps.

Figure 4.1: Schematic drawing of the vacuum chamber with atom chip and magnetic

coils. A: compensation coils, B: Bx large coils, C: quadrupole coils, D: atom chip,

E: connections to vacuum pumps, F: electrical feedthrough connections to the atom

chip.

In our experiment setup, we use a single 316L non-magnetic stainless steel vacuum

chamber with octagonal geometry (MCF600-SO200800 Kimball Physics Inc.) with

10 conflat ports. The ten conflat ports include two 6′′ diameter antireflection-coated

viewports on two sides of the UHV chamber, one 2.75′′ diameter port for mounting

the atom chip, two 2.75′′ diameter ports for mounting electrical feedthroughs to

provide electrical connections to the atom chip and the remaining five 2.75′′ diameter

ports for optical access and pumping purposes. In our experiment, the atom chip is

mounted upside down with a 20 mm-diameter solid copper rod for heat conduction.

A schematic drawing of the vacuum system and magnetic coils is shown in Figure 4.1.
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Figure 4.2: Schematic drawing of the vacuum pumps. A: cold cathode gauge, B:

getter pump, C: all-metal angle valve, D: ion pump, E: connection to UHV chamber,

F: access viewport for optical beams.

A stable pressure below 10−11 mbar inside the UHV chamber is required for

maintaining a long trapping lifetime of atoms in the magnetic traps. To achieve this

vacuum, we first perform a baking procedure, in which the vacuum chamber and

components are baked at a temperature of 110◦C for one week. During this period, a

turbo molecular pump (Pfeiffer TMU065) and a diaphragm pump are used to pump

out the system. The baking procedure is carried out at a relatively low temperature

to avoid demagnetization of the magnetic film and at a low heating rate to avoid

damage to the chip. After this process, the vacuum is maintained using a SAES

getter pump (CapaciTorr D 400-2) and an ion pump (Varian Starcell VacIon Plus

55) at a pumping speed of 50 l/s. Use of 4 pumps can help to remove all gases more

efficiently which helps to achieve a good vacuum inside the UHV chamber. During
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the whole procedure, all pressure measurements are performed using a cold cathode

gauge (Pfeiffer IKR-270). A similar baking-out procedure is described in detail in

the thesis of Mandip Singh [58]. A schematic diagram of the vacuum pump system

is shown in Figure 4.2.

4.2 Laser optical system

4.2.1 Trapping laser

In our experiments, a total of four laser beams at different frequencies including

trapping, repumper, optical pumping and imaging beams are used. To avoid stray,

scattered light to the UHV chamber, a separate optical table for the laser systems

is used. These beams are then directed to the UHV chamber on another optical

table through polarization-maintaining optical fibres. In order to reduce mechanical

vibrations and associated noise, the optical table is floated on a compressed air

system. Also, the laser-system table is covered with a perspex box to improve laser-

head temperature stability for optimal usage.

The energy level diagram of the 87Rb D2 line is illustrated in Figure 4.3 and a

schematic diagram of the trapping laser optics is shown in Figure 4.4. The trapping

beam is derived from a tapered amplifier diode laser (Toptica TA100). It can provide

an output ∼ 600 mW at 780 nm wavelength, which is used for the MOT and

polarization gradient cooling. The laser output is locked a few linewidths below

the 87Rb F = 2 to F ′ = 3 cycling transition using the polarization spectroscopy

technique [110, 111]. For this purpose, a low intensity output (3 mW) from the

rear panel of the Toptica TA100 is sent through an acousto-optic modulator AOM

1 (Isomet 1205C-2) in double-pass. This frequency-tuneable AOM is configured for

a single-pass shift f1 of 70 MHz, which makes a total 2 × 70 MHz frequency shift

before entering the locking setup.

By utilizing a quarter-wave plate, we can obtain a circularly polarized pump

beam which is sent to a Rb vapour cell. The Rb vapour cell is probed by a counter-
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Figure 4.3: Energy level diagram of the 87Rb D2 line.

propagating linearly polarized beam. By detecting the difference of the polarizations

of the probe beam without and with the vapour cell by means of a polarizing beam

splitter, the laser can be locked to the F = 2 to F ′ = 3 cycling transition. Since the

locking beam experiences a frequency up-conversion, the laser beam is red-detuned

by 2× f1 from the F = 2 to F ′ = 3 cycling transition.

The main output of the TA100 diode laser is sent through AOM 2 (Isomet 1206C),

which has a frequency shift of f2 = 125 MHz. As a result, it produces a total

detuning of f2 − 2 × f1. The first-order diffracted beam from AOM 2, with an

output of ∼ 90 mW is sent to the MOT setup via a polarization-maintaining optical

fibre. In our locking setup, AOM 1 is used for laser detuning through a double-pass

configuration while AOM 2 is used as a fast shutter for the trapping laser with a

response time of less than 500 ns compared to 1 ms for the mechanical shutters.
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Figure 4.4: Optical layout for the trapping laser system. TA100: tapered am-

plifier diodelaser, PBS: polarizing beam splitter, AOM: acousto-optic modulator,

λ/4: quarter-wave plate, λ/2: half-wave plate, PD: photo-diode, PMF: polarization-

maintaining fibre, M: mirror, L: lens.

4.2.2 Repumper laser

Figure 4.5: Optical layout for the repumper laser system. ECDL: external cavity

diode laser, PBS: polarizing beam splitter, AOM: acousto-optic modulator, λ/4:

quarter-wave plate, λ/2: half-wave plate, PD: photo-diode, PMF: polarization-

maintaining fibre, M: mirror, L: lens, OI: optical isolator.

In our experiments, a 50 mW repumper laser, produced by a MOGLabs diode
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laser (ECD-004) plus a MOGLabs diode laser controller, is locked to the F = 1

to F ′ = 2 transition using the Zeeman modulation technique. An error signal

is generated by a lock-in amplifier, which is produced by subjecting a reference

vapour cell to an AC magnetic field and modulating the laser frequency through the

Doppler-free transition peak. The repumper beam is then sent to the MOT setup

via a polarization-maintaining optical fibre producing a ∼ 20 mW beam output. A

schematic diagram of the repumper laser optics is shown in Figure 4.5.

Figure 4.6: Schematic diagram of the MOT-beam layout. BE: beam expander,

PBS: polarizing beam splitter, λ/4: quarter-wave plate, λ/2: half-wave plate, PMF:

polarization-maintaining fibre, M: mirror, L: lens, RP: repumper light, MOT: trap-

ping light.

During the MOT stage, some atoms may experience off-resonant excitation via

the F = 2→ F ′ = 2 transition to the F ′ = 2 state which decays to the F = 1 dark

state and cannot be cooled. Therefore, in our MOT setup, after transferring through

the polarization maintaining optical fibre to the UHV chamber optical table, the

repumper beam is combined with the trapping beam for higher trapping efficiency.

This combination beam, with an output of ∼ 220 mW, is then further divided into

four different beams using a polarizing beam splitter which are sent to the UHV
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chamber with a power of around ∼ 40 mW after beam expansion up to ∼ 20 mm

in diameter, as shown in Figure 4.6.

4.2.3 Optical pumping laser

In our experiment, in order to efficiently load trapped atoms into the magnetic

lattice, we require a large number of atoms trapped in the |F = 1,mF = −1〉 state.

After the MOT stages, atoms are populated over all Zeeman sublevels. Therefore,

an active optical pumping stage is needed to optically pump atoms into the desired

state |F = 1,mF = −1〉. This can be done by applying a combination of σ− light

and π-polarization light. The σ− light is achieved by passing the beam through a λ/4

waveplate while π-polarization can be achieved by a small misalignment between the

beam and its quantization axis. The σ− light is employed to optically pump atoms

into the |F = 2,mF = −2〉 state while the π-polarization light pumps atoms from

the |F = 2,mF = −2〉 state into the required |F = 1,mF = −1〉 state (Figure 4.7).

The optical pumping beam, taken from a MOGLabs diode laser with ∼ 40 mW

laser output, is first sent through a PBS to extract a weak beam for the locking

procedure. This weak beam is locked to the F = 2→ F ′ = 1/F = 2→ F ′ = 3 cross-

over using a frequency modulation locking scheme, shown in Figure 4.8. As the atom

cloud is thick for resonant light, in order to pump atoms in all undesired Zeeman

sublevels the main beam is red-detuned by 20 MHz from the F = 2 → F ′ = 2

transition by passing through an AOM (Isomet 1205C-2) operating at 75 MHz.

This light is then coupled into a PMF which is later sent through a λ/4 waveplate

to create the desired σ− polarization, before reaching the UHV chamber with an

output of ∼ 3 mW.

The reason we do not choose the passive pumping method, in which the repumper

laser is shut off right after the PGC stage in order to let atoms relax to the |F =

1,mF = −1〉 state, is that the active pumping method can achieve a higher (around

two-fold) efficiency, compared to the passive optical pumping method.
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Figure 4.7: Optical pumping 87Rb atoms into the |F = 1,mF = −1〉 state. The

dashed lines refer to spontaneous emission.

Figure 4.8: Optical layout for the optical pumping laser system. DL 100: Top-

tica external cavity diode laser, PBS: polarizing beam splitter, AOM: acousto-optic

modulator, λ/4: quarter-wave plate, λ/2: half-wave plate, PD: photo-diode, PMF:

polarization-maintaining fibre, M: mirror, L: lens, OI optical isolator.

4.2.4 Imaging laser

In our experiments, the imaging laser setup is quite a challenge since high precision

measurements with low noise and low fringing are required. For this purpose, a
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narrow linewidth (∼ 80 kHz) imaging beam from a MOGLabs cateye external cavity

diode laser (ECD-003) with an output of ∼ 40 mW is used. This beam is split into

two parts by a PBS, where the weak beam is sent through an AC peak locking

system for locking to the F = 2 → F ′ = 1/F = 2 → F ′ = 3 cross-over while the

main beam is passed through a tuned AOM (Isomet 1206C). This AOM, operating

at 105 MHz, tunes the imaging light to the F = 2→ F ′ = 3 cycling transition with

a double pass before coupling to a PMF. The light is then σ−-polarized by a λ/4

waveplate, which is aligned 450 to the optical axis before being sent to the UHV

chamber. A schematic diagram of the imaging laser optics is shown in Figure 4.9.

Figure 4.9: Optical layout of the imaging laser system. ECDL: external cavity diode

laser, PBS: polarizing beam splitter, AOM: acousto-optic modulator, λ/4: quarter-

wave plate, λ/2: half-wave plate, PD: photo-diode, PMF: polarization-maintaining

fibre, M: mirror, L: lens, BS: beam splitter.

After the UHV chamber, an imaging system consisting of two lenses with focal

lengths f1 = 120 mm and f2 = 500 mm is used for collecting images as shown in

Figure 4.10. The first lens is positioned at a distance equal to its focal length

f1 = 120 mm from the chamber, while the second lens is positioned a distance equal

to f2 = 500 mm from the CCD camera. The distance between the two lenses is
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determined based on the desired magnification M = f2/f1.

4.3 Absorption imaging

To image the magnetically trapped atoms, a resonant absorption imaging method is

used, in which an imaging beam traverses the atom cloud in a direction parallel to

the chip surface. In principle, this technique is based on detecting the difference of

the light intensity of the imaging beam before and after traversing the atom cloud

on a CCD camera. This method gives a two-dimensional profile of the atom cloud

based on the light absorption by the atom cloud which casts a shadow on the CCD

camera.

Figure 4.10: Optical setup for absorption imaging system. CCD: camera; f1: lens

with focal length f1; f2: lens with focal length f2.

Assuming laser light of intensity I0 passing through the cloud, the intensity dis-

tribution of the imaging light in the x-direction is given by:

I(y, z) = I0(y, z)e−OD(y,z), (4.1)

where OD(y, z) = σ
∫
n(x, y, z)dx is the optical density and n(x, y, z) is the cloud

density. The photon absorption cross section σ for an atomic transition between the

|F = 2,mF = +2〉 and the |F = 3,mF = +3〉 states is given by:

σ =
σ0

1 + I/Is + 4(δ/Γ)2
, (4.2)
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where Is is the saturation intensity, Γ is the natural radiative linewidth, δ is the

laser detuning and σ0 = 3λ2

2π
is the resonant absorption cross section for a two-level

system. In our experiment, σ+ polarized imaging light is used for 87Rb, which gives

σ0 = 2.9× 10−13 m2. The number density of an atom cloud is given by:

n(y, z) ≡
∫
n(x, y, z)dx ≈ OD(y, z)

σ0

. (4.3)

For each absorption imaging cycle, three consecutive frames are taken, which are

shown in Figure 4.11: a first CCD clean frame which is used for discharging all

the accumulated dark counts, a second absorption frame with atoms and a third

reference frame without atoms. The CCD clean frame is then discarded while the

light intensities Iabs and Iref are derived from the last two CCD images, respectively.

The optical density is then rewritten as OD = − ln[Iabs/Iref ]. Therefore, the total

number of atoms can be calculated as:

N =

∫
Ap

n(y, z)dydz =
Ap
σ0

∑
(i,j)∈Ap

ODij, (4.4)

where Ap is the pixel area of the CCD camera.

Figure 4.11: Frames taken by the CCD camera within one imaging cycle, (a) CCD

clean frame, (b) absorption frame, (c) reference frame.

In our experiment setup, a Princeton Instruments frame transfer camera Mi-

croMAX: 1024B is employed to capture images of the atoms. The camera has

1024× 1024 pixels2 with a pixel area of 13µm× 13µm. The quantum efficiency of

the camera, which corresponds to the number of electrons that the camera produces

when absorbing one photon, is Q ≈ 0.7 for a laser wavelength of λ = 780 nm.



Computer control and electronics 67

By using the camera in so-called frame-transfer mode, the time between taking

two consecutive second and third frames is 4 ms while the exposure time of the

camera is 1200 ms. Compared to the full-frame mode, the frame-transfer mode

gives clearer images with less fringing and noise because the difference in beam

intensity between the two frames caused by factors other than atom absorption are

minimized in the very short time delay of 4 ms [60].

4.4 Computer control and electronics

In each cycle of our experiment, there are many complex stages which require a

rapid change in numerous experimental parameters in differently defined steps with

high accuracy. For this purpose, a LabVIEW programming environment (National

Instruments LabVIEW) which controls and synchronizes experimental parameters is

used. This program is run by a computer to generate both analog and digital signals

using three National Instruments cards: one PCI-6259 card for digital output and

two PCI-6713 cards for analog output. The first card controls the operation of the

mechanical shutters, AOMs and other triggers while the other two cards control

the current through the atom chip wires, magnetic coils and tuning of AOMs. For

controlling the U-wire and Z-wire current through the atom chip and magnetic field

coils, home-made IGBT switches are used with a typical response time of less than

800 µs. For operation of the CCD camera, a separate computer is used for image

acquisition with the WinView program.

4.5 50 Hz AC line synchronization

For conducting high accuracy measurements with the magnetic lattice, it is required

to reduce the effect of stray magnetic fields to a minimal level. There can be AC

magnetic noise mainly from nearby power supplies affecting the experiments. The

measured dominant noise is from 50 Hz and its higher harmonic frequencies. For

example, during RF spectra measurements, the width of the measured RF spectra is
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quite sensitive to this noise. The reason might be traced back to phase fluctuations

of the 50 Hz AC line while we are applying the RF pulse in the RF spectra measure-

ments. The fluctuations cause a phase difference in the RF pulse triggering which

can alter the trap bottom and consequently lead to broadening of the RF spectra.

This problem can be simply overcome by building a line trigger circuit which

ensures the RF pulse is triggered at a fixed specific phase compared to the AC

noise. For this reason, we have employed a 50 Hz AC line trigger circuit which was

designed by Rice University (Figure 4.12). Generally, the circuit acts as a good clock

and produces TTL pulses which trigger the RF pulse generator at the zero-crossing

of the AC power line. In this way, the RF pulse is locked to a well-defined phase of

the AC line until being triggered by the circuit which consequently suppresses the

magnetic noise from the environment.

Figure 4.12: Schematic drawing of the 50 Hz AC line synchronization line circuit.
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4.6 Producing a Bose-Einstein condensation on

the atom chip

4.6.1 Mirror MOT

In our atom chip experiment setup, two reflected beams from the gold reflecting

surface of the atom chip are employed to replace two of the six beams of a normal

MOT. In this configuration, the reflecting surface on the chip creates two pairs of

trapping laser beams at 45◦ to the chip surface together with a pair of counter-

propagating beams parallel to the chip surface. A pair of anti-Helmholtz coils is

positioned outside the UHV chamber with their axis along the direction of one of

the 45◦ beams to produce a quadrupole magnetic field (Fig 4.1). Upon reflection

from the chip surface, a circularly polarized beam will change its helicity so that the

pair of beams resembles a standard MOT light-field configuration. The quadrupole

field centre position can be overlapped with the intersection of the four laser beams

by using three orthogonal pairs of current-carrying coils in a Helmholtz configura-

tion which produces uniform magnetic fields. The advantage of the mirror MOT

(MMOT) is that its geometry creates a MOT very close to the atom chip, which

increases the trapping efficiency by directly collecting atoms near the chip surface

and then transferring to the magnetic trap.

In our experiment, the first stage involves cooling and trapping 87Rb atoms in

the MMOT. The trapping laser is red-detuned 14 MHz below the F = 2 to F ′ = 3

hyperfine transition and is mixed with the repumping light which is locked to the

F = 1 to F ′ = 2 transition. In the first step, Rb dispensers (SAES alkali metal

dispensers) are turned on by passing a current of 6.0 A for 26 s to produce the Rb

vapour needed for the experiment. The dispensers are then turned off during the

subsequent steps and finally turned on again at the end of each experiment cycle. A

small running current of 2.9 A is used to maintain the temperature of the dispensers

which is warm enough for them to quickly heat up in the following experiment

cycles. After the MMOT stage, approximately 2× 108 atoms are trapped at ∼ 1.2
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mm below the chip surface.

4.6.2 Compressed U-wire magneto-optical trap

After the MMOT stage, the atoms are brought closer to the chip surface by trans-

ferring to a compressed U-wire magneto-optical trap (CMOT) in 30 ms. In the first

step, the current in the external quadrupole coils is ramped down to zero to turn

off the associated quadrupole magnetic field while the current through the U-wire

is ramped up. Combining with a bias magnetic field in the x-direction, another

quadrupole field with a larger field gradient along the z-direction is created. In

the next step, the bias field is further ramped up while keeping the U-wire current

constant to further compress the trap. After the CMOT stage, around ∼ 1.5× 108

atoms at ∼ 150 µK are transferred to the Z-wire trap. The main purpose of the

CMOT is to increase the transfer efficiency of trapped atoms to the Z-wire trap with

rapid magnetic field switching capability. However, a limitation of the CMOT stage

is that as the density of the atom cloud is increased, the temperature of the atoms

increases correspondingly which reduces the cloud density.

After the CMOT stage, a polarization gradient cooling (PGC) stage is used to

further reduce the temperature of the atom cloud below the Doppler limit. During

this stage, the trapping laser detuning is ramped up to 56 MHz in three stages

while keeping the U-wire current the same. By doing this, the atom scattering rate

decreases which results in a reduction of the radiation pressure and consequently an

increase of the cloud density. After ∼ 20 ms of PGC, the temperature of the cloud

is as low as 30 µK. The U-wire current and trapping light are then turned off for

the next stages.

4.6.3 Optical pumping

As only atoms in low field-seeking states can be trapped in a magnetic trap, it

is required to prepare the atoms in the |F = 1,mF = −1〉, |F = 2,mF = 1〉 or

|F = 2,mF = 2〉 states. In our experiment, the |F = 1,mF = −1〉 absolute ground
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state is chosen because of its three-times smaller three-body recombination rate and

weaker magnetic confinement compared with the |F = 2,mF = 2〉 state [56,57]. For

optical pumping atoms into the |F = 1,mF = −1〉 state, an active optical pumping

scheme is used. In the first 0.5 ms, atoms are transferred to the |F = 2,mF = −2〉

state with a σ−-polarized light component of the optical pumping beam (Figure 4.7).

During this period, the repumper light is also employed to optically pump atoms

out of the |F = 1,mF = 0〉 and |F = 1,mF = +1〉 states. After this step, atoms

occupy the negative magnetic sublevels mF = −1 and mF = −2. After switching

off the repumper light, the optical pumping light with a π-polarization component

is applied for an additional 0.5 ms to remove atoms from the |F = 2,mF = −2〉

dark state so that they then relax into the |F = 1,mF = −1〉 state through the

|F ′ = 2,mF = −2〉 excited state. The optical pumping light is then shut off for the

loading of the Z-wire magnetic trap. In order to check the efficiency of the optical

pumping stage, a comparison of the atom number trapped in the Z-wire magnetic

trap after employing and not employing an optical pumping stage was performed.

In our experimental system, the optical pumping stage atom number increases ∼2.5

times the atom number previously trapped in the Z-wire magnetic trap.

Besides the active optical pumping scheme described above, there is a passive

optical pumping method, which is to turn off the repumper laser after the PGC. By

doing this, most of the atoms will spontaneously decay into the |F = 1,mF = −1〉

state. However, the efficiency of this method is not as high as for the active pumping

method.

4.6.4 Z-wire magnetic trap

After the optical pumping stage, atoms are transferred to the desired |F = 1,mF =

−1〉 trapping state which is ready for the Z-wire magnetic trap loading. The Z-wire

trap has the advantages of rapid switching of the magnetic field and a high collision

rate for efficient evaporative cooling which is needed to achieve BEC. In this stage, a

Ioffe-Pritchard magnetic trap is created ∼ 600 µm from the chip surface by applying

a 35 A current through the Z-wire while the bias field Bx is increased to 33 G. To
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control the trap depth and trap bottom, a bias field By = 7.2 G is applied. After

that, atoms are transferred to the magnetic trap in 4 ms. In the next 100 ms, the

trap is further compressed to increase the elastic collision rate and also to bring the

atom cloud closer to the chip surface. This is done by ramping the Z-wire current to

37.6 A, Bx to 52 G and By to 8 G. In the ideal case, this compression is an adiabatic

process which increases the elastic collision rate several orders while the phase space

density remains constant. After this stage, around 5× 107 atoms are trapped in the

Z-wire magnetic trap.

4.6.5 Forced evaporative cooling

Forced evaporation cooling is used to cool atoms in the Z-wire magnetic trap. This

cooling method employs RF radiation to resonantly transfer trapped atoms to non-

trappable magnetic sublevels which are lost from the trap. The more energetic atoms

located at the top of the trap, which have a large Zeeman shift, are out-coupled from

the trap through ∆mF = ±1 transitions first as the Zeeman shift of the magnetic

sublevels is in resonance with the RF frequency: gFµFB = h̄ωRF . These atoms take

away more energy than their share of thermal energy which allows the remaining

atoms to rethermalize and reach a new equilibrium state at a lower temperature by

elastic collisions.

During the evaporative cooling procedure, the trapped atoms are characterized

by a Boltzmann distribution that is truncated at the trap depth εt = ηkBT , where

η is a truncation parameter [112]. In forced evaporation cooling, the trap depth εt

is lowered as the cooling progresses to maintain an evaporation cooling rate given

by:
1

τev
= −N ηe−η

τel
√

2
, (4.5)

where the elastic collision rate 1/τel = n0σelv̄
√

2, σel = 8πa2
s is the elastic collision

cross section, and v̄
√

2 =
√

16kBT
πM

is the average relative velocity between two atoms.

For a high evaporative cooling efficiency α = d lnT
d lnN

, the RF ramping should be

performed at a proper rate. If the RF ramping rate is too low, the atoms can suffer
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losses from background gas collisions. On the other hand, if the RF ramping rate

is too high, there is not enough time to allow atom rethermalization to occur, so

that consequently atoms are removed from the trap without cooling. Additionally,

to allow a large increase in the phase space density, the elastic collision rate should

be maintained at a rate [113]:

d(τ−1
el )/dt

τ−1
el

=
1

τel

(
α(δ − 1/2)− 1

λ
− 1

R

)
> 0, (4.6)

where α = η
δ+3/2

− 1, λ = τev/τel =
√

2eη

η
for large η, δ = 3/2 for a 3D harmonic trap

and R = τloss/τel is the number of elastic collisions per trapping time.

As no photon redistribution is involved, evaporative cooling typically helps to

increase the phase space density of the atom cloud by several orders of magnitude,

which makes it a crucial stage in achieving a BEC.

In our experiments, an unamplified 30 MHz synthesized function generator (Stan-

ford Research Systems DS345) provides a RF field in sweep mode in which the trap

depth is ramped down as the cooling progresses. The RF field is transferred through

a thin RF wire on the atom chip as an antenna whose plane is perpendicular to the

trapping axis. The start frequency, the final frequency, the ramping time and the

RF amplitude parameters are programmed before each experimental cycle. The RF

cooling period is 12 seconds with a starting frequency of 30 MHz and RF amplitude

of 5 V while the final frequency is determined based on the desired final temperature

of the atom cloud. This setting is considered to be optimal for cooling, in which the

ramping rate is not too fast so that rethermalization of the atoms can occur, nor is

it too slow for the limited trapping lifetime of atoms in the magnetic trap.

4.6.6 Trap frequency measurements

To measure the radial trapping frequencies of atoms in the Z-wire magnetic trap,

we use a dipole oscillation method. The Z-wire trapped cloud is first cooled close to

the BEC critical temperature to reduce the size during the evaporation cooling. In

the next step, the cloud is shaken vertically in the z-direction by quickly changing
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the Z-wire current for a short time of ∼ 1.2 ms and then back to the original value

while the bias fields remain unchanged. This introduces an oscillation in the vertical

direction to the cloud. By recording the position of the cloud after different holding

times t, we map the oscillation of the atoms in the trap in the z-direction. By

fitting a sinusoidal function to the oscillation, one can determine the radial trapping

frequency which is equal to the oscillation frequency. In this experiment, the value

of the final current If and the current changing time determines the amplitude

and the frequency of the oscillations. The value of If is chosen so that the cloud

oscillation remains in the harmonic region near the bottom of the trap while the

current changing time is chosen to be one-half of an oscillation period.

Figure 4.13 shows the measurement of the Z-wire trapping frequency for Iz =

37.7 A, Bx = 52 G, By = 8.3 G by the dipole oscillation method. The measured

radial trapping frequency is ωrad/2π = 417(2) Hz. This measurement is in reasonable

agreement with the calculated trapping frequency ωrad/2π = 426 Hz.

Figure 4.13: Radial trapping frequency measurement of the Z-wire magnetic trap,

ωrad/2π = 417(2) Hz.

For measurements of the small axial trapping frequency, it is very difficult in our

experiment setup to use the above dipole oscillation method. Instead, the trapped

atom cloud is shaken along the axial (y) direction and a collective mode excitation
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method is employed [114]. The experiment procedure is described in detail in the

thesis of Yibo Wang [61]. The measured axial trapping frequency is ωax/2π = 18(2)

Hz.

Figure 4.14: Radial trapping frequency versus distance to the chip surface. The

linear fit is ωrad/2π = −0.21× zmin + 257(7) Hz.

All of the measurements above were performed with the Z-wire magnetic trap

located far (∼ 700 µm) from the chip surface where there are no trap perturba-

tion or surface effects much affecting the trapped atoms. However, as the Z-wire

magnetic trap is brought to within ∼ 100µm of the chip surface, atom-surface inter-

actions significantly affect the trapped atoms. Any perturbation or oscillation of the

trap can result in atoms hitting the chip surface and becoming lost. Additionally,

atom-surface interactions, which can distort the trapping potential, may affect the

accuracy of the measurements. Therefore, for distances < 100µm from the surface

an extrapolation of the radial trapping frequency of the Z-wire magnetic trap is

performed. The extrapolation is based on a series of radial trapping frequency

measurements versus distance zmin as shown in Figure 4.14, which gives a linear fit

ωrad/2π = −0.21 × zmin + 257(7) Hz. The change of the axial trapping frequency

with distance is assumed to be negligible.
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4.6.7 Effective pixel size

As the images taken by our CCD imaging system are processed by a Winview

program, all dimensions and distances are measured in pixel units. Therefore, we

need to have a parameter for converting pixel units to the real distance in our

imaging system. This parameter is called the effective pixel size (EPS), which is

also used to check the magnification of our imaging system. We use this mainly

for measurements of the distance from the atom cloud to the chip surface. At first,

the distance between the real and reflected images of the clouds (Figure 5.1 (b)) in

pixels is measured. Then, this is converted to the real distance in µm. This distance

is approximately twice the distance from the real atom cloud to the atom chip.

Figure 4.15: Effective pixel size measurement of the imaging system. The black

points are experimental data, the red curve is the fit of a second-order polynomial

function z = 1.36t2 − 13.7t+ 179.4. The unit of t is ms.

To determine the effective pixel size, a measurement of the vertical position of the

atom cloud centre after different times of flight is performed. When the cloud falls

under gravity, the vertical cloud position follows the kinematic equation z = g
2
t2 +

v0t+ z0, where g is the gravitational acceleration. The pixel size is then determined

by fitting the recorded data with a second-order polynomial z = At2 +Bt+C. Thus,

the effective pixel size can be calculated as EPS = g/(2A).



Producing a Bose-Einstein condensation on the atom chip 77

A second-order polynomial function fit for the effective pixel size of our imaging

system is shown in Figure 4.15. The fitting function z = 1.36t2− 13.7t+ 179.4 gives

the effective pixel size EPS = 3.31µm while the resolution of the imaging system

is ∼ 10µm.

4.6.8 Bose-Einstein condensation in the Z-wire trap

As the atom cloud is cooled by RF evaporative cooling to a final RF frequency

of 580 kHz, besides the isotropic Gaussian distribution of the thermal cloud, an

inverted parabolic shape of a BEC (Thomas-Fermi distribution) in a harmonic trap

appears. The thermal and condensate components of this bimodel distribution are

non-interacting. As the temperature is reduced further, the thermal component

becomes less dominant while the distribution of the condensate part becomes sharper

until an almost pure BEC distribution is achieved for a final RF frequency of 480

kHz. The evolution of the atom distribution in the cloud is shown in Figure 4.16.

Further evidence of a BEC is provided by the anisotropic expansion of the atom

cloud in Time of Flight (TOF) measurements, as shown in Figure 4.17. In this

experiment, the Z-wire current is switched off to release the cloud from the trap.

As a result, the cloud falls downwards under gravity and an anisotropic expansion

occurs in which the condensate component of the cloud experiences an accelerated

expansion in the tight radial direction. The radial R(t)rad and axial width R(t)ax of

the atom cloud after a TOF t are given by [115]:

R(t)rad = R(0)rad(1 + ωradt) (4.7)

R(t)ax = R(0)ax(1 +
πω2

ax

2ωrad
t), (4.8)

where R(0)rad and R(0)ax are the initial radial width and axial width of the cloud

before releasing from the trap, and ωrad and ωax are the radial and axial trapping

frequencies, respectively.
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Figure 4.16: Evolution of the density distribution of atoms trapped in the Z-wire

magnetic trap as the RF frequency is lowered during the evaporation cooling pro-

cedure. The left panel shows the Z-wire cloud images. The right panel shows the

corresponding fitting of the cloud density distribution in the y-direction.
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Compared to the expansion R(t)rad, the R(t)ax is negligible as ωax � ωrad for

the same TOF t. This anisotropic expansion occurs as the atom-atom interaction

energy of the condensate is converted to kinetic energy (Figure 4.17). In the case of

the thermal cloud, an isotropic expansion in both the axial and radial direction of

the cloud is observed instead.

Figure 4.17: Anisotropic expansion of a BEC versus time of flight due to gravity

after releasing from the Z-wire magnetic trap.
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CHAPTER 5

Trapping atoms in the 0.7µm-period triangular

and square magnetic lattices

This chapter describes the successful trapping of 87Rb atoms in multiple sites of

the 0.7µm-period triangular and square magnetic lattices at distances of less than

1 µm from the chip surface. Measurements of the lifetimes of the trapped atoms

in both magnetic lattices are also presented. The experimental data presented in

Figures 5.3 and 5.5 was obtained jointly with a former PhD student in our group,

Yibo Wang [61].

5.1 Trap-surface distance calibration

In our experiment setup, the period of our 2D fabricated magnetic lattice structures

are on a sub-micron scale, 0.7µm. As the surface magnetic field from the magnetic

structures decays exponentially from the film surface, the magnetic lattice traps are

created at distances down to about ∼ 100 nm from the chip surface. This imposes

a challenge for lattice loading experiments since at such a small distance, effects

of atom-surface interactions can be significant which can induce atom losses. In

order to load atoms into the magnetic lattice traps, one needs to merge the Z-wire

magnetic trap with the lattice traps. Thus, before attempting to trap atoms in the
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0.7µm-period magnetic lattices at such small distances, it is important to study the

surface-interaction effects on the Z-wire trapped atom cloud and to see how close

the Z-wire trapped cloud can be to the chip surface without losing the atoms. This

information helps us not only to determine the proper height to load atoms from

the Z-wire trap into the magnetic lattice traps but also to study the effects of the

surface on the Z-wire trapped atoms.

Figure 5.1: (a) Reflection absorption imaging setup, (b) reflection absorption images

of a Z-wire trapped atom cloud at a distance of 72 µm from the surface showing the

direct (lower) and mirror (upper) images of the cloud.

For this purpose, at first, a surface-distance calibration is performed to measure

the distance from the Z-wire trapped atom cloud to the chip surface as the cloud is

brought closer to the surface. These experiments are carried out by employing an

in situ imaging method rather than releasing the cloud to fall under gravity and then

taking standard TOF measurements. In this experiment, a reflection absorption

imaging technique, in which the imaging beam is shone onto the reflecting chip

surface at an angle of about 2◦, is used [116]. The imaging beam is aligned so

that the incoming beam and the reflected beam from the surface both pass through

the cloud. This imaging setup produces a real image of the cloud together with

its reflected image (Figure 5.1). The real image is created by the reflecting beam

from the chip surface passing through the atom cloud while the reflected image

is produced by the beam first passing through the atom cloud and then reflecting
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from the chip surface. By measuring the distance s between the two images, the

distance d from the centre of the magnetically trapped cloud to the chip surface can

be determined from the expression s = 2dcosθ. When θ ≈ 2◦, d is given to good

approximation by d = s/2.

The experiment cycle begins by ramping down the Z-wire current Iz, while keep-

ing the bias field Bbx at different selected values, and measuring the distance from

the centre of the Z-wire trapped cloud to the chip surface. From a Gaussian fit

to the cloud image, the vertical positions of the centres of the clouds in pixels are

determined which are subsequently used to determine the distance d in µm using

the measured effective pixel size (Section 4.6.7). In our experiment setup, owing to

the finite resolution of the imaging system (∼ 10 µm) and the large size of the atom

cloud, as the atom cloud approaches very close (∼ 40 µm) to the chip surface the

two images merge into one and it is not possible to directly measure the distance.

Therefore, an extrapolation of the linear curve of Iz versus distance, shown in Fig-

ure 5.2, is used to determine the distance of the cloud within 40 µm of the chip

surface.

Figure 5.2: Distance calibration of a Z-wire trapped atom cloud close to the chip

surface for Bx = 52 G. The measurement shows a plot of the distance d from the

trap centre to the gold reflecting layer on the chip surface versus Z-wire current Iz.

The fitting function is d = 38.88(0.8)Iz − 712(17)µm.
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As can be seen in Figure 5.2, there is a linear relationship between the current

Iz passing through the Z-wire on the atom chip and the corresponding distance

d from the cloud to the chip surface: d = 38.88(0.8)Iz − 712(17)µm, where the

uncertainties are statistical (1σ). At Iz = 0, d = 712(17)µm which is consistent

with the estimated distance from the plane of the current-carrying wires to the gold

reflecting surface.

5.2 Projection of ultracold atoms towards the 2D

magnetic lattice potential

Although during the baking procedure the heating temperature (∼ 110◦C) is kept

well below the nominal Curie temperature (300 − 400◦C) to protect the magnetic

properties of the magnetic film, it is important before commencing the magnetic

lattice trapping experiments to check the magnetization of the film in situ to ensure

the ultracold atoms can interact with the short-range magnetic lattice potential.

This is performed by bringing a Z-wire trapped atom cloud far from the surface

(d ∼ 700µm) to within a few hundred nanometres of the chip surface with no bias

magnetic field applied. At such short distances, the cloud interacts with the short-

range magnetic lattice potential in which the strength of the magnetic field decays

exponentially from the surface with decay length ∼ 0.7µm/2π.

In our earlier 1D 10µm-period magnetic lattice experiments, an arc-shaped atom

cloud reflection from the lattice grating structure was observed when a Z-wire trap

cloud was projected towards the surface in the z-direction with a bias-field applied

in the y-direction [54, 58]. This reflected cloud showed a lateral expansion in the

y-direction with increasing TOF which resulted from the corrugated potential in the

y-direction in the presence of the bias field By. For the case where there is no bias

field applied, the reflected cloud from the 1D grating structure experiences no force

component in the y-direction.
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We have calculated the pseudo-potentials of the magnetic patterns in the trapping

plane 0.35µm from the surface created by the 0.7 µm-period square and triangular

lattice structures for the case of no applied bias field. When an ultracold atom

cloud interacts with the surface potentials, the cloud can only be reflected and atoms

cannot be trapped since without a bias field there are no trap minima resulting from

magnetic field cancellation. For the case of the square magnetic lattice, the magnetic

pattern consists of a two-dimensional corrugated potential with a period
√

2a [61].

For the case of the triangular magnetic lattice, the pattern consists of a corrugated

potential with a period ∼ a in the y-direction and ∼ a/2 in the x-direction [61].

The simulations were repeated for different trapping heights which showed robust

potential patterns.

For our 2D 0.7µm-period magnetic lattice structures, we expect the reflected

cloud to show a lateral expansion in both the x-direction and the y-direction of

the chip surface plane. As an atom approaches the surface, it experiences an ex-

ponentially increasing repulsive force in the z-direction which originates from the

corrugated potential. In the case where there is no external bias field, the reflected

cloud from the 1D structure experiences no force component in the y-direction while

the reflected cloud from the 2D structure still experiences force components in the

x− and y-directions. Consequently, the force components in the x and y-directions

affect the shape of the reflected cloud in the corresponding directions. In our imag-

ing setup, since the imaging beam is aligned along the x-direction, only a half-moon

shaped expansion of the cloud is expected.

For this experiment, at first a Z-wire trapped atom cloud at ∼ 200µK is prepared

at ∼ 700µm from the chip surface. The cloud is then brought to a distance d close

to the surface of the triangular magnetic lattice structure by slowly reducing Iz while

keeping Bx constant. In the next step, we quickly turn off Iz and Bx simultaneously,

so that Iz quickly becomes zero while the magnetic field Bx decreases much more

slowly due to the slow response time (∼ 10 ms) of the large Helmholtz coils. This

introduces a momentum kick launching the cloud vertically towards the surface with

an estimated initial launching velocity vl ∼ 70µm/ms. The experiment is repeated
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for different cloud launching positions and the cloud behaviour is monitored after

different TOFs, as shown in Figure 5.3.

Figure 5.3: Reflection absorption images of an atom cloud launched vertically to-

wards the magnetic lattice potential of the 0.7 µm-period triangular magnetic lat-

tice structure with no bias field at distances d0 = (a) 145µm, (b) 128µm, (c)

76µm, (d) 67µm from the chip surface. The upper clouds in (a) - (d) are the

mirror images, the lower clouds are real images of the projected cloud. (e) Time

evolution of the lateral widths along the y-direction and (f) vertical positions of

the cloud launched vertically towards the magnetic lattice potential at distances

d0 = 67µm (blue points), 76µm (orange points), 128µm (green points), 145µm

(red points). The fitted curves in (f) are d = −67.5 + 70t − 0.5gt2 before re-

flection and d = −82.5 + 60(t + 8.1) − 0.5g(t + 8.1)2 after reflection (blue line);

d = −75.7+65t−0.5gt2 before reflection and d = −82.5+60(t+7.8)−0.5g(t+7.8)2

after reflection (orange); d = −130 + 52t− 0.5gt2 (green). d is in µm and t is in ms.

Gravity acceleration g = 9.8µm/ms2. Adapted from [35].
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As can be seen in Figure 5.3, when launched far from the surface, d0 > 128µm,

the cloud does not reach the magnetic potential before falling down under gravity.

In this case, there is almost no thermal expansion observed during the free fall of the

cloud; the lateral width remains constant σY ∼ 50µm since the cloud temperature

is well below the critical temperature. When launched from a distance d0 = 128µm,

some of the cloud can reach the surface potential and is reflected. The cloud is split

into two parts: the reflected part (the lower cloud) which expands in a direction

parallel to the surface and the non-expanding free-falling part (the upper cloud).

When the cloud is launched from smaller distances, d0 = 76µm and d0 = 67µm, a

clear half-moon shaped expansion in the y-direction, which is associated with lateral

expansion of the reflected cloud with TOFs in a direction parallel to the surface, is

clearly observed.

To study the reflection dynamics, a simple analysis of the lateral width σY and

the initial launching distance d versus time t after projection is employed, as can be

seen in Figure 5.3 (e), (f). For the case of no reflection, there is no change of the

lateral width of the atom cloud (σY ∼ 50µm). The velocity of the cloud is fitted

using a single quadratic function. After reflection from the chip surface, the lateral

width of the projected cloud σY increases almost linearly with TOF. The lateral

width expansion with increasing fall time increases with velocities of 30 µm/ms for

d0 = 67µm and 21µm/ms for d0 = 76µm. By using quadratic functions, reasonable

fitting of the cloud trajectories in the vertical direction is achieved. The fits imply

the incident velocity vi and the reflected velocity vr of the cloud are not exactly

the same. The fitting gives vi = 65µm/ms, vr = 60µm/ms for d0 = 76µm and

vi = 70µm/ms, vr = 60µm/ms for d0 = 67µm, respectively. The fitted equations,

given in the caption of Figure 5.3, indicate that for d = 128µm, the cloud reaches its

turning point 8 µm below the silica surface after 5.3 ms. For d = 76µm and 67µm,

the projected cloud reaches the chip surface with incident velocities of 60 and 52

µm/ms after 1.0 and 1.3 ms launching, respectively and is reflected with downward

velocities of 45 and 45 µm/ms, respectively. In fact, the initial launching position of

the cloud plays an important role in determining the strength of the interaction with
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the exponentially increasing magnetic potential. As the distance d0 increases, the

interaction decreases due to the decrease in the incident velocity at the surface; a

cloud with low incident velocity penetrates the magnetic potential less than a cloud

with high incident velocity. Consequently, the distance d0 changes the spatial profile

of the reflected cloud due to the different interaction strength with the corrugated

potential. It is observed that the cloud reflection starts to occur at d0 ≈ 128µm.

If we further reduce d0 such that vi � 70µm/ms the cloud would penetrate the

potential, then hit the hot chip surface and become lost. Similar observations have

been reported for the 1D 10 µm-period magnetic lattice by Singh et al. [54, 58].

An experiment was also performed in which the same atom cloud is launched

vertically towards the surface in a region where there is no magnetic lattice structure.

Similar to the experiment above, no reflection is observed as the cloud is launched

far from the surface, d0 > 128µm. For d0 ≤ 128µm, the cloud touches the surface

and disappears immediately. This confirms that the magnetic potential from the

lattice structures is responsible for the observed reflected cloud in Figure 5.3.

Figure 5.4: Reflection absorption images of an atom cloud launched vertically toward

the triangular magnetic lattice potential at the same distance d0 from the chip

surface in different bias fields (a) By with Bx = 0 and (b) Bx with By = 0.

A similar experiment was performed on the triangular magnetic lattice structure
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with a bias field applied in the x or y-directions. At appropriate initial launching

distances d0, the reflection of the cloud is observed with different strength for dif-

ferent bias fields, as can be seen in Figure 5.4. In the case of applying only a bias

field By, the reflection becomes weaker as we increase By. This is attributed to the

fact that for the triangular magnetic lattice structures, the applied bias field By is

in the opposite direction to the direction of the magnetic field from the magnetic

lattice structure, which reduces the repulsive force component in the y-direction.

In the case of applying only a bias field Bx, the interaction becomes stronger until

a certain value Bx = 2.8 G and then gets smaller and disappears for Bx > 4.6 G.

The non-uniform distribution of atom density in the reflected cloud is due to the

fact that the magnetic interaction strength is not the same for all atoms, which is

attributed to the different atom positions and momenta. From this experiment, it is

clear that we can control the interaction strength between the Z-wire trapped atom

cloud and the magnetic lattices and also the number of atoms interacting with the

lattice potentials by varying the external bias fields.

5.3 Atom number versus Z-wire trap distance

To study the atom-surface interactions, measurements of the remaining atom frac-

tion χ(d) versus distance d = z − 75 nm from the chip surface were performed,

where z is the distance of the centre of the atom cloud to the magnetic film and the

75 nm accounts for the nominal thickness of the gold and silica films on the chip

surface. At first, a Z-wire trap cloud with an initial atom number Ni is prepared at

a distance di ∼ 100 µm from the chip surface. By slowly ramping down the Z-wire

current, the atom cloud is brought to a distance d close to the chip surface. The

cloud is held there for a short time, t0 = 10 ms, before being moved back quickly

to its original position by ramping up the Z-wire current to the original value. The

remaining number of atoms, Nf , is then measured using the in situ reflection ab-

sorption imaging method. During the whole experiment, the bias field Bx is kept

constant.
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The experiment is performed for a range of different atom cloud temperatures,

which is achieved by changing the final evaporation frequency during the RF evapo-

rative cooling stage: from a condensate T = 200 nK well below the critical tempera-

ture (Tc ≈ 520 nK) to thermal clouds at 600 nK, 1 µK and 2µK. These temperatures

were measured by TOF measurements where a Gaussian distribution was used to fit

the measured cloud distribution. The measured atom fraction χ(d) versus distance

d results are shown in Figure 5.5 for a range of different cloud temperatures.

Figure 5.5: Remaining atom fraction χ(d) versus distance d of the Z-wire trap cloud

centre from the chip surface for a BEC at T ≈ 200 nK (blue) and for a thermal cloud

at 600 nK (black), 1µK (purple) and 2µK (orange) for Bx = 52 G. Solid curves are

theoretical fits using the simple truncation model with T ≈ 190 nK (blue curve),

430 nK (black curve), 0.85µK (purple curve) and 1.5µK (orange curve). The inset

is the χ(d) versus distance d of the Z-wire trap cloud centre from the chip surface

for a BEC at T ≈ 200 nK, where the dashed blue curve is a theoretical fit using the

1D surface evaporation model with T = 130 nK, τel = 0.6 ms (see text).

As can be seen in Figure 5.5, atom losses occur as the centre of the Z-wire trap

cloud is brought close to the surface. For the condensate, the loss is noticed at
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distances d ∼ 5µm while the loss begins at distances d ∼ 10, 15, 20µm for thermal

clouds at T ∼ 0.6, 1, 2µK, respectively. The rapid loss of atoms in the loose Z-

wire trap at these distances is attributed to atom-surface interactions which could

be caused by Johnson noise and/or Casimir-Polder interactions and/or inelastic

collisions.

In our experiment setup, atom losses caused by 3-body recombination are ignored

because of the long calculated lifetime, τ3b = 500 s for a Z-wire trapped atom cloud

at T = 1.5µK with n = 6.7 × 1012 cm−3, N ∼ 4 × 105 and ωrad/2π = 300 Hz,

ωax/2π = 18 Hz. In another experiment [61], a distance-independent loss rate for

d� 30µm was observed which indicates an atom loss due to background collisions

γbg = (25± 4 s)−1. Therefore, loss due to background collisions is negligible in these

experiments.

In the case of atom losses due to Johnson noise, when atoms are trapped close to

the surface, their magnetic moment couples to the fluctuating magnetic field from

the thermal current noise in the gold conducting film near the chip surface. The

coupling can drive spin-flip transitions which cause atom losses. In our experiment

setup, the thickness of the gold reflecting layer is tAu = 50 nm and the trap bottom is

set to 1.0 G, which gives a skin depth δ ∼ 94µm. As our experiments are performed

in the region δ = 94 nm � max{d, tAu}, the spin-flip rate is calculated from Eq.

2.30, to give γs = 1/τs = (150 s)−1. The spin-flip lifetime due to Johnson noise is

long and thus is not considered to be the significant factor for the steep atom loss

curves in Figure 5.5.

When close to the surface, an atom cloud experiences a combined trapping po-

tential V (z) = Vz(z) + VCP (d), where Vz(z) = 1
2
Mω2

r(z − zmin)2 is the harmonic

Z-wire trap potential truncated at the chip surface z = tAu + tSiO2 = 75 nm and

VCP (d) = − C4

d3(d+3λopt/2π2)
is the attractive Casimir-Polder potential, where for 87Rb

λopt/2π ≈ 120 nm and C4 ≈ 8.2 × 10−56 Jm4 for a dielectric silica film. For the

attractive Casimir-Polder effect, the trap depth is lowered to ∆Eb corresponding to

distance d, which is approximately reduced to zero at d ≈ 1 µm from the surface for

a Z-wire trapped atom cloud at a radial trapping frequency ωrad/2π = 280 Hz. The
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ωrad/2π = 280 Hz is an extrapolated value based on the trapping frequency versus

distance d curve (Figure 4.14). The finite trap depth created by the combined po-

tential V (z) leads to a sudden truncation of the high energy tail of the Boltzmann

distribution of atoms in the Z-wire trap. Thus, the remaining atom fraction can

be expressed approximately by a simple truncation model χ(d) = 1 − e−η, where

η = ∆Eb/(kBT ) is the truncation parameter [86].

Trapped atoms with higher energies, located in the region near the chip surface,

tend to escape the trap through 1D surface evaporation during the holding time

t0 = 10 ms. This is understandable since for a thermal cloud at temperature

T = 2µK, the holding time is much longer than the elastic collision time τel ≈ 1.6 ms.

The simple truncation model above can be extended to include classical 1D surface

evaporation loss of the atoms [87], in which the remaining atom fraction becomes

χ = χ0e
−Γevt0 , where χ0 = 1 − exp(−η) and Γev = f(η)e−η/τel is the atom loss

rate due to 1D surface evaporation, f(η) ≈ 2−5/2(1 − η−1 + 3
2
η−2) for η ≥ 4 [117],

τel = [n0σelvrel]
−1 is the elastic collision time, vrel =

√
16kBT/(πM) is the mean

relative velocity, n0 = N
(2π)3/2σ2

radσax
is the peak atom density in the Z-wire trap,

σrad,ax = (kBT/M)1/2/ωrad,ax is the half-width of the trapped cloud, N is the number

of atoms in the Z-wire trap, σel = 8πa2
s is the elastic collision cross section, and

as = 5.3 nm is the s-wave scattering length for 87Rb |F = 1,mF = −1〉 atoms.

For this 1D surface evaporation model, the cloud temperature T acts as the main

fitting parameter. The fitting temperatures used for the data shown in Figure 5.5

are 190 nK, 430 nK, 0.85µK and 1.5µK, corresponding to the blue, black, purple

and orange curves, respectively. These values are comparable to the temperatures

measured by TOF mentioned above. For a good fit to the condensate 200 nK data

set, a cloud temperature T = 130 nK and an elastic collision time τel = 0.6 ms

are employed, which is shown by the dashed blue curve in the inset of Figure 5.5.

Compared to the fit using the simple truncation model, which is shown as the solid

blue curve, there is a discrepancy for χ < 0.4. The reason could be that for the

simple 1D surface evaporation model, the effect of evaporation-induced temperature

changes and redistribution of atom directions from the atom collisions are ignored
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[118]. According to our simulations, the attractive Casimir-Polder force tends to

reduce the trap depth of the combined potential V (z) to zero at d ∼ 1.5µm which is

comparable to our observed value (Figure 5.5). Indeed, one can cool a trapped cloud

by bringing it close to the chip surface thanks to surface-induced 1D evaporation.

This method has been considered as an effective cooling method to reach BEC [92].

5.4 Trapping 87Rb atoms in the 0.7 µm-period tri-

angular magnetic lattice

From the experiments described above, it is clear that the magnetized magnetic

film is suitable for lattice loading experiments and also that the Z-wire trapped

atoms can be brought to a sufficiently close distance to smoothly merge with the

magnetic lattice traps. To prevent significant atom losses due to the Casimir-Polder

interaction for a Z-wire trap at distances d < 1µm from the chip surface, it is

required to create a trap with very high trapping frequencies. Our simulations

indicate that the trapping frequencies of our magnetic lattice traps (∼100-800 kHz)

are sufficiently high to overcome the Casimir-Polder interaction effect at such short

distances from the surface. Details of the experiment procedures and simulation

results are discussed in the following.

After the RF cooling stage in the Z-wire trap, the atom cloud is merged with the

magnetic lattice traps, which are located around 200 nm below the chip surface, for

a constant bias field Bx. This merging procedure is performed by ramping down

the Z-wire current further to various final values until the Z-wire trap overlaps the

magnetic lattice trapping potential. The ramping was performed slowly while By is

turned off and Bx is kept constant. Lattice loading was performed for a range of

bias field settings Bx = 9, 14, 26, 40 and 52 G.

Figure 5.6 (a) shows the magnetic film pattern which is designed for a triangular

magnetic lattice optimized for a trap distance h = a/2 from the magnetic film

surface. To obtain the optimized triangular magnetic lattice potential for the film
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Figure 5.6: (a) Optimized magnetic film pattern for a triangular magnetic lattice

at a vertical trap distance h = a/2, with bias fields Bx = 0.5 G, By = 4.5 G. (b)

Calculated potentials at the optimum trapping plane height. Dark regions represent

trapping potential minima. (c) Simulated trapping potential for 87Rb |F = 1,mF =

−1〉 atoms trapped in a 0.7µm-period triangular magnetic lattice for a bias field

Bx = 40 G, By = 0 G and (d) calculated pseudo-potentials at the trapping plane

height at the trap minimum. Vertical blue line in (c) is the nominal position of

the silica surface (z = 75 nm). Black dashed line in (c) represents the magnetic

lattice trapping potential, and the red line is the combined magnetic lattice trapping

potential and the attractive Casimir-Polder potential for a silica surface (C4 = 8.2×

10−56Jm4). Input parameters of the simulations: 4πMz = 5.9 kG, tm = 10.34 nm.

magnetization 4πMz = 5.9 kG and magnetic film thickness tm =10.34 nm, we need

to apply bias fields Bx = 0.5 G, By = 4.5 G. As can be seen in Figure 5.6 (b),

each trap minimum, which is shown as a dark region, is surrounded by six potential
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maxima. For our magnetic trapping potential created by applying Bx = 40 G, By =

0 G (shown in Figure 5.6 (c)), the traps are more elongated and tighter compared

with the traps for the optimized lattice and they are surrounded by four potential

maxima (Figure 5.6 (d)). This is explained as follows. As the magnetic film is

magnetized in the vertical z-direction, the surface magnetization can be considered

as a virtual current running along the edges of the etched structure of the magnetic

film (Figure 5.6 (a)). Because the bias field is applied in the x-direction Bx, the

magnetic field from the current running along the red edges of the magnetic film is

cancelled, which leads to elongated magnetic traps along the long red edges. Because

increasing the bias field strength Bx increases the trapping frequencies, the barrier

heights increase accordingly while the distance from the trapping potential minima

to the chip surface decreases resulting in a stronger effect of the Casimir-Polder

interaction on the trapping potential. On the other hand, as no bias field is applied

in the y-direction By, the magnetic field from the virtual current running along the

horizontal black edges of the magnetic film is not affected and there are no magnetic

traps created along the short horizontal black edges.

The loading procedure begins with a thermal cloud of ∼ 5 × 105 87Rb |F =

1,mF = −1〉 atoms at ∼ 1µK prepared in the Z-wire trap at ∼ 670µm from the

chip surface with Iz = 38 A and Bx = 52 G. For lattice trapping at Bx = 52 G,

the trapping sequence is rather straightforward since there is no change in the bias

field in transferring from the Z-wire trap to the magnetic lattice traps. This is con-

veniently implemented by just ramping down the Z-wire current to an appropriate

value so that the Z-wire trap can merge with the magnetic lattice potential. For the

smaller Bx = 9, 14, 26, 40 G, the procedure is more complex since Bx needs to be

reduced first before loading atoms into the magnetic lattice traps. As we reduce Bx,

the Z-wire magnetic trap position changes accordingly and this would result in the

Z-wire cloud being pushed further away from the surface. In order to compensate

for this change, the Z-wire current needs to be reduced at the same time as Bx and

should be carefully monitored to minimize atom losses during atom transfer and

any sloshing in the magnetic lattice traps. In the experiment, the response time for
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reducing the Z-wire current is about 0.1 ms and the response time of the two large

Helmholtz coils that produce the bias field Bx is about 10 ms. This fact was taken

into account in calculating the experimental parameters so that the change of the

Z-wire trap position is minimal. This stage is carried out in 146 ms.

Figure 5.7: Simulated trapping potentials for 87Rb |F = 1,mF = −1〉 atoms trapped

in a 0.7 µm-period triangular magnetic lattice for various bias fields Bx and By= 0

with an offset parameter δd = 25 nm. The black dashed lines represent the magnetic

lattice trapping potentials, and the red lines are the combined magnetic lattice

trapping potential and the attractive Casimir-Polder potential for a silica surface

(C4 = 8.2×10−56Jm4). The blue solid line represents the nominal atom chip surface

position at z = 75 nm.

Figure 5.7 shows calculated trapping potentials for 87Rb |F = 1,mF = −1〉 atoms

trapped in a 0.7 µm-period triangular magnetic lattice for various bias fields Bx = 9,

14, 26, 40, 52 G and By = 0, where the coefficient for the attractive Casimir-Polder

potential for a silica surface is taken to be the calculated value C4 = 8.2× 10−56Jm4

and an offset parameter δd = 25 nm is used (see Section 5.5 for discussion). As shown

in Table 5.1, the calculated geometric mean trapping frequencies ω/2π for the lattice

traps are high, ranging from ∼ 330 kHz to ∼ 830 kHz, which are sufficiently high to

largely compensate the Casmir-Polder effect. For Bx ≥ 40 G, for which the distance

from the trap centre to the chip surface is d < 130 nm, the Casimir-Polder force



Trapping 87Rb atoms in the 0.7 µm-period triangular magnetic lattice 97

starts to affect the lattice traps and the effective trap depth of the lattice potential

is determined by the Casimir-Polder interaction ∆Eeff ≡ ∆ECP (Figure 5.7). For

bias fields Bx < 40 G, the Casimir-Polder effect is insignificant and the effective trap

depth of the lattice potential is determined by ∆Eeff ≡ ∆Ez.

Figure 5.8: Reflection absorption images of 87Rb |F = 1,mF = −1〉 atoms trapped

(a) in the 0.7µm-period triangular magnetic lattice mid-way between the real and

mirror images of the Z-wire trapped cloud for Bx = 52 G and (b) in the 0.7µm-

period triangular magnetic lattice only for Bx = 14 G. The temperature of the

Z-wire trapped cloud is 1.3 µK.

The key task of the magnetic lattice loading experiments is to optimize the ramp-

ing speed. If the Z-wire current is ramped down too quickly the Z-wire trapped cloud

would receive a large launching force so that it would penetrate the lattice trapping

potential and hit the chip surface and become lost. On the other hand, if the Z-wire

current is ramped too slowly, in the region where the atom cloud is very close to

the chip surface, the atoms may be lost because of atom-surface interactions and

atom sloshing. Next, the Z-wire current is further ramped down to a small value so

that the Z-wire trap can merge with the magnetic lattice potential and Iz is rapidly

ramped up in 2 ms to bring the Z-wire cloud further away from the surface for

in situ imaging.

Figure 5.8 (a) shows a representative reflection absorption image for Bx = 52
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Table 5.1: Calculated parameters for 87Rb |F = 1,mF = −1〉 atoms trapped in

the 0.7µm-period triangular magnetic lattice, for 4πMz = 5.9 kG, tm = 10.34 nm,

C4 = 8.2 × 10−56 Jm4 and offset parameter δd = 25 nm. The distance of the trap

minima from the chip surface is d = zmin − (tAu + tSiO2) + δd = zmin − 50 nm. BIP

is the Ioffe-Pritchard (minimum) magnetic field.

Bias field zmin d BIP ω⊥,‖/2π ω/2π ∆Ex,y/kB ∆Ez/kB ∆ECP/kB

Bx (G) (nm) (nm) (G) (kHz) (kHz) (µK) (µK) (µK)

9 310 260 1.6 618, 94 330 359, 232 244 2258

14 267 217 2.5 772, 115 409 559, 362 376 2072

26 203 153 4.7 1097, 153 569 1104, 729 731 1584

40 163 113 6.7 1405, 185 715 1703, 1155 1118 1075

52 139 89 8.2 1657, 207 828 2233, 1554 1465 655

G. The clouds at the bottom and top of the figure are the real and mirror images

of the atoms remaining in the Z-wire trap, respectively. The cloud in the middle is

attributed to the unresolved direct and mirror images of atoms trapped in multiple

sites of the magnetic lattice very close (∼ 90 nm) to the chip surface. Due to the

limited resolution of the imaging system, it is not possible to resolve the direct and

mirror images of the lattice trapped cloud, which are separated by only ∼ 0.2µm,

and atoms in individual lattice sites, which are separated by 0.7µm. Similar images

of the lattice trapped clouds are observed for the other values of the bias field Bx.

In conjunction with the above experiments, another lattice loading experiment

was performed in order to verify that the atoms are trapped in the magnetic lattice.

This experiment starts by bringing the Z-wire trapped cloud up close to the chip

surface to merge with the magnetic lattice trap potential and then Iz is quickly

switched to a small value, or Iz is completely switched off, while keeping the bias

field constant at Bx = 14 G. This projects the Z-wire trap cloud in the vertical

direction so that the cloud hits the chip surface and is removed while the small

atom cloud mid-way between the two images of the Z-wire cloud remains visible

(Figure 5.8 (b)). This is a good test for the authenticity of the trapped cloud since
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if atoms are actually trapped in the magnetic lattice, they should remain at their

original position when the Z-wire magnetic trap is turned off.

Immediately after turning off the Z-wire trap, typically ∼ 2 × 104 atoms are

trapped in the 0.7µm-period magnetic lattice in an area of ∼ 180µm × 13µm

(FWHM). This area corresponds to ∼ 4900 lattice sites which gives N site ≈ 4 atoms

per site.

Figure 5.9: Reflection absorption images of 87Rb |F = 1,mF = −1〉 atoms trapped

in the 0.7µm-period triangular magnetic lattice mid-way between the real and mir-

ror images of the Z-wire trapped cloud for different Z-trap cloud temperatures:

(a) 0.3 µK, (b) 0.5 µK (c) 0.7 µK and (d) 1.3 µK with the number of magnetic

lattice trapped atoms N ∼ 200, 1.2 × 103, 2.5 × 103 and 4 × 103, respectively. The

measurements of the number of atoms were taken after 2 ms of bringing the Z-wire

trapped atom cloud further from the chip surface for imaging. The bias field was

Bx = 52 G.

Similar lattice trapping experiments were performed with different initial tem-

peratures of the Z-wire trapped cloud and hence for clouds with different sizes and

Z-wire trapped atom numbers. After bringing the Z-wire trapped atom cloud close

to the chip surface, it was then moved further from the surface in 2 ms to measure

the number of atoms trapped in the magnetic lattice. As can be seen in Figure 5.9,

with a larger cloud, it is possible to load more atoms in the magnetic lattice sites,

from N ∼ 200 atoms at T ∼ 0.3µK up to N ∼ 4× 103 at T ∼ 1.3µK.
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An additional trapping experiment was carried out by carefully launching the

atom cloud towards the chip surface. At first, using a bias field Bbx= 52 G, the

Z-wire trapped cloud is brought from 670 µm to around 130 µm from the chip

surface by ramping down just the Iz value. At this position, the Z-wire current

and the bias magnetic field Bx are quickly switched off simultaneously. The delay

in response time between Iz and Bx, as discussed in Section 5.2, projects the atom

cloud towards the chip surface. As a result, this sudden switch-off creates a vertical

force launching the cloud towards the chip surface, so that it interacts with the

magnetic lattice potential before falling down under gravity.

Figure 5.10: Reflection absorption images of 87Rb |F = 1,mF = −1〉 atoms trapped

in the 0.7µm-period triangular magnetic lattice for Bx = 52 G after projecting a

Z-wire trapped atom cloud vertically towards the chip surface after TOF of 0 ms

(a), 2 ms (b) and 3 ms (c). The small atom cloud mid-way between the real and

mirror images of the Z-trap cloud in (c) is attributed to the magnetic lattice trapped

atom cloud.

Immediately after launching the atom cloud, small bias fields in the negative x-

direction, Bx = −5.3 G, and in the y-direction, By = 6.1 G, are applied for a short

time of 3 ms. The bias field in the negative x-direction is produced by a pair of small

Helmholtz coils, which have a much faster response time than the large Helmholtz

coils used to produce Bx = 52 G . This applied magnetic field acts to cancel the

residual bias magnetic field from the large magnetic coils. In addition, the bias field

in the y-direction, By = 6.1 G, acts to create a triangular magnetic lattice similar

to the optimized triangular lattice in Figure 5.6(b). This experiment was performed
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by trial and error using different launching speed. At the optimal launching speeds,

part of the atom cloud merges with the magnetic lattice trap potential and is trapped

there while the remaining part of the cloud falls down under gravity, as can be seen

in Figure 5.10. The occurrence of some surface evaporative cooling provides the

dissipation required for atoms to remain trapped in the conservative potential of

the magnetic lattice. The lattice trapped cloud appears after 3 ms time of flight

and then disappears after a further 1.5 ms which is consistent with the lifetimes

measured in the experiments below. When the experiment is repeated using the

same initial experimental parameters but without applying external bias fields Bx

and By, no trapped cloud is observed.

5.5 Lifetimes of atoms trapped in the 0.7 µm-period

triangular lattice

The lifetime of the atoms trapped in the triangular magnetic lattice was measured by

recording the atom number remaining in the lattice versus holding time for various

values of the bias field Bx, and hence for various values of the distance z = zmin

from the magnetic film. The results shown in Figure 5.11 are decay curves for

Bx = 9, 14, 26, 40, 52 G. A single exponential function is employed for fitting the

decay curves. The smaller number of atoms in the images in Figure 5.9 is due to

the measurement being made after ramping up the Z-wire current for 2 ms, while

the atom number shown at the start of the decay curves in Figure 5.11 was taken

immediately after the atom cloud was trapped in the magnetic lattices. Due to the

sensitivity limitation of our imaging system, very low numbers of atoms are not

detectable which hinders the observation of any small non-exponential tail in the

decay curves. The lifetimes of the trapped atoms are rather short varying from

0.43 ± 0.06 ms for Bx = 52 G up to 1.69 ± 0.11 ms for Bx = 9 G. These lifetimes

increase approximately linearly with distance d = z − (tAu + tSiO2) from the chip

surface and are much longer than the corresponding lattice trap oscillation periods

(1 - 3µs). Various loss mechanisms are considered to explain the short lifetimes:
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one-dimensional thermal evaporation, three-body recombination and Johnson noise.

Figure 5.11: Decay curves for atoms trapped in the 0.7µm-period triangular mag-

netic lattice for Bx = 9, 14, 26, 40, 52 G. The solid lines are single exponential fits to

the data corresponding to τ = 1.69± 0.11ms, 1.24± 0.07ms, 0.9± 0.06ms, 0.78±

0.11ms, 0.43± 0.06ms. Time zero is chosen arbitrarily.

When the Z-wire trapped atom cloud is transferred to the tight magnetic lattice

traps, the cloud is heated by adiabatic compression resulting from the large increase

in trapping frequency from ω/2π = 84− 113 Hz in the Z-wire trap to ω/2π = 330−

830 kHz in the magnetic lattice traps, depending on the bias field Bx = 9−52 G, and

hence distance d from the chip surface d = 260 − 89 nm, respectively. The transfer

therefore introduces significant heating of the cloud, from an initial temperature

T ≈ 1µK to an estimated ∼ 3−8 mK. Atoms with energies higher than the effective

lattice trap depth ∆Eeff = min{∆Ez,∆ECP} quickly escape the trap. After this

sudden truncation of the high energy tail of the Boltzmann distribution, energetic

atoms with energies comparable to the effective lattice trap depth ∆Eeff , which

populate the edge of the lattice traps, are rapidly lost by escaping from the traps,

spilling over into neighbouring lattice traps, or by three-body recombination.

Through rethermalization by elastic collisions, the remaining atoms reach a quasi-

equilibrium state at a lower temperature due to the fact that the energies of the lost
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Figure 5.12: Measured lifetimes (red points) of atoms trapped in the magnetic lattice

versus distance z of the magnetic lattice trap centre from the magnetic film surface.

The Bx values (in G) are shown and the error bars are 1σ statistical uncertainties.

The black curve shows the calculated evaporation lifetime τev versus z for N site = 1.5,

η = 4, offset δd = 25 nm. The vertical blue line indicates the position of the silica

surface at z = 50 nm, allowing for an offset of δd = 25 nm.

atoms are greater than the energies of the remaining atoms. The quasi-equilibrium

temperature can be approximated by T ≈ ∆Eeff/(ηkB) where η is the truncation

parameter. We estimate that there are initially of the order of 100 atoms per lattice

site available for elastic collisions and evaporative cooling which provides dissipation

to allow the atoms to be trapped in the conservative potential. At the beginning

of the evaporation, the one-dimensional thermal evaporation loss is large and then

decreases gradually as evaporation proceeds.

Using the 1D evaporation model in Section 5.3, the lifetime for one-dimensional

thermal evaporation is [87]:

τev = τel/[f(η)e−η], (5.1)

where τel = [n0σelvrel]
−1 and n0 = Nsite

(2π)3/2
( M
kBT

)3/2ω3 is the peak atom density in the

magnetic lattice traps. In this model, τev scales as ∆Eeff/[ω
3N siteηf(η)e−η]. For
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Bx < 40 G, where ∆Eeff ≡ ∆Ez (Table 5.1), there is an almost linear increase

of τev with increasing distance d from the chip surface (Figure 5.12). This can be

interpreted as follows: as the minima of the lattice traps are brought further from

the atom chip surface, ω−3 increases at a faster rate than ∆Ez decreases. On the

other hand, for Bx ≥ 40 G, where ∆Eeff ≡ ∆ECP (Table 5.1), there is a sharp

decrease in τev with decreasing d. This is due to the fact that when the minima

of the lattice traps are brought to a very small distance from the chip surface both

∆ECP and ω−3 decrease together with decreasing z.

Figure 5.13: Calculated lifetimes for 1D evaporation τev (black), three-body recombi-

nation τ3b (purple) and spin flips τs (dashed red) for N site = 1.5, η = 4, δd = 25 nm.

The curves for τ3b and τs are reduced by factors of 3 and 100, respectively. The

vertical blue line indicates the position of the silica surface at z = 50 nm, allowing

for an offset of δd = 25 nm.

In the very tight magnetic lattice traps, atoms can be lost via three-body recom-

bination. For a non-condensed cloud of 87Rb atoms in the |F = 1,mF = −1〉 state,

the lifetime for (non-exponential) decay by 3-body recombination is τ3b = 1/(K3n
2
0),

where K3 = 4.3(1.8)×10−29 cm6s−1 [56]. Therefore, τ3b scales as ∆E3
eff/[ω

6N
2

siteη
3].

For Bx < 40 G where ∆Eeff ≡ ∆Ez, as Bx decreases, the rate at which ∆E3
z

decreases is comparable to the rate at which ω−6 increases. Thus, there is almost no
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change in τ3b observed for distances z > 170 nm as shown by the purple (top) curve

of Figure 5.13. For increasing Bx ≥ 40 G where ∆Eeff ≡ ∆ECP , a rapid decrease

in τ3b is observed. This is due to the fact that as Bx increases, the trap minima are

brought very close to the chip surface and ∆E3
CP and ω−6 both decrease strongly

together with decreasing z.

In addition, Johnson magnetic noise from currents induced in the gold coating

layer of the magnetic film structures may cause atom loss through Majorana spin-

flips (Sect. 2.4.3). The Johnson spin-flip lifetime is given by τs = 256πh̄2d
3µ20µ

2
BσkBTg(d,tAu,δ)

for the state |F = 1,mF = −1〉 [77], where g(d, tAu, δ) ≈ tAu/(tAu + d) for δ �

Max{d, tAu}, δ =
√

2/(σµ0ωL) is the skin depth at the spin-flip transition frequency

ωL = mFgFµBBIP/h̄; σ is the electrical conductivity of the conducting layer, and µ0

is the vacuum permeability [93]. According to our calculations, the Johnson spin-flip

lifetimes for tAu = 50 nm are much longer than the measured magnetic lattice trap

lifetimes, as shown by the dashed red in Figure 5.13. For example, the calculated

lifetimes are τs = 48 ms for d = 110 nm and τs = 230 ms for d = 290 nm.

Generally, the calculated one-dimensional evaporation lifetime versus distance

curve (Figure 5.12), which has a positive slope given approximately by ∆Eeff/(ω
3d),

fits the measured lifetime versus distance curve satisfactorily. On the hand, the

three-body recombination lifetimes versus distance curve is almost constant for z >

170 nm and the calculated Johnson spin-flip lifetimes are much longer than the

experimental lifetimes (Figure 5.13). Therefore, we attribute the main mechanism

for loss of atoms in the lattice traps to one-dimensional thermal evaporation, rather

than to the other two mechanisms. It is expected that some atoms will remain in

the magnetic lattice traps after thermal evaporation for times much longer than 1

ms. However, no non-exponential tail in the decay curves is observed within our

detection sensitivity.

As can be seen in Figure 5.12, the parameters N site = 1.5, η = 4 and an offset

δd = 25 nm allow a reasonable fit of the calculated evaporation lifetime to the mea-

sured lifetimes. A value N site ≈ 1.5, which is smaller than the estimated N site ≈ 4, is

required to keep the evaporation lifetime much smaller than the three-body recombi-
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nation lifetime which exhibits a different dependence on distance z. This difference

in N site could be explained as a result of atoms spilling over into neighbouring lattice

sites during the initial transfer of atoms from the Z-wire trap to the magnetic lattice

traps, so that at the time the lifetime measurements are taken, there are actually

more than 4900 lattice sites occupied. On the other hand, the difference may be

due to uncertainties in the estimated size of the Z-wire magnetic trap cloud or the

estimated total number of atoms trapped in the magnetic lattice. An average value

N site ≈ 1.5 is consistent with the end product of a rapid three-body recombination

process which occurs before the observation period leaving, 2, 1 or 0 atoms on any

given lattice site.

To achieve a good fit between the calculated evaporation lifetime and the mea-

sured magnetic lattice trapping lifetimes in the region of very small distances d

to the magnetic film surface, the calculated Casimir-Polder interaction coefficient

C4 = 8.2× 10−56Jm4 is required to be smaller by an order of magnitude or the cal-

culated distances of the trapped atoms from the chip surface d = zmin− (tAu + tSiO2)

are required to be larger by δd ≈ 25 nm.

The uncertainty in the calculated C4 value is expected to be ∼ 40% based on

the the level of agreement between the calculated C4 value and the measured value

for a dielectric sapphire surface film [119]. On the other hand, for our fabricated

magnetic lattice film, the estimated uncertainty
(

+40
−30 nm

)
in d = zmin− (tAu + tSiO2)

for Bx = 40 G and 52 G has contributions from a systematic error of about +10

nm from the 20 nm-deep etching of the patterned film, the uncertainties in the

thickness of the gold and silica coating layer of the magnetic film (± 5 nm) and zmin

(± 25 nm) and the effect of the estimated uncertainty in C4 (± 2 nm) [35]. Thus, an

offset of δd = 25 nm is considered to be within the estimated uncertainty
(

+40
−30 nm

)
in d = zmin − (tAu + tSiO2) for Bx = 40 G and 52 G.
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5.6 Trapping 87Rb atoms in the 0.7 µm-period square

lattice

In the above section, 87Rb atoms were successfully trapped in a 0.7 µm-period

triangular magnetic lattice. Due to the high trapping frequencies in the magnetic

lattice traps, atoms could be trapped at distances down to ∼ 90 nm from the chip

surface. However, the trap lifetimes are short, even for a relatively low bias magnetic

field. In the next stage, we trap atoms in the 0.7 µm-period square magnetic lattice

using a similar loading procedure to the triangular magnetic lattice. Since for an

optimized square magnetic lattice, the main bias field is along the x-direction (i.e.,

Bx), it is expected that the trapping should be more straightforward.

Figure 5.14 (a) shows the magnetic film pattern designed for a square magnetic

lattice that is optimized for a trap distance h = a/2 from the magnetic film surface.

To obtain the optimized square magnetic lattice potential for the film magnetization

(4πMz = 5.9 kG) and magnetic film thickness (tm =10.34 nm), it is required to

apply bias fields Bx = 7.5 G, By = 3.6 G. As can be seen, for a square magnetic

lattice each potential minimum, which is shown as a dark region, is surrounded by

four potential maxima. For our trapping potential created by applying Bx = 11 G,

By = 0 G (shown in Figure 5.14 (c)), the barrier heights in the y and z-directions

are much smaller than in the x-direction (Table 5.2) and the traps tend to resemble

a periodic array of 1D magnetic traps. Additionally, the traps are more elongated

and are looser than for the optimized triangular lattice and each potential minimum

is surrounded by two large and two small potential maxima.

For comparison with the simulated results for the triangular magnetic lattice,

calculations of the trap potentials for the 0.7 µm-period square magnetic lattice

were performed for the same bias field configuration, as shown in Figure 5.15. The

Casimir-Polder interaction coefficient C4 = 8.2×10−56Jm4 and the offset δd = 25 nm

are still employed. Generally, the trend in the change in trapping parameters with Bx

bias field in the square magnetic lattice is similar to that of the triangular magnetic
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lattice. However, the lattice trap minimum is further away from the chip surface for

the same bias magnetic field strength Bx, which results in the trapping frequencies

being 2 to 3 times smaller. This is a key factor for reducing losses caused by 1D

thermal evaporation, 3-body recombination, heating due to adiabatic compression

and the Casimir-Polder force. However, for the same bias magnetic field, the effective

trap depth is smaller for the square magnetic lattice potentials, which increases the

atom loss through 1D evaporation near the chip surface.

Figure 5.14: (a) Optimized magnetic film pattern for a square magnetic lattice at a

vertical trap distance h = a/2 and (b) calculated pseudo-potentials at the optimum

trapping plane height. The bias fields required are Bx = 0.5 G and By = 4.5 G. Dark

regions represent the trapping potential minima. (c) Simulated trapping potential

for 87Rb |F = 1,mF = −1〉 atoms trapped in a 0.7µm-period square magnetic

lattice for a bias field Bx = 11 G, By = 0 and (d) calculated pseudo-potentials in

the trapping plane at the trap minimum. Vertical blue line in (c) is the nominal

position of the silica surface (z = 75 nm). Input parameters of the simulations:

4πMz = 5.9 kG, tm = 10.34 nm.
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Table 5.2: Calculated parameters for 87Rb |F = 1,mF = −1〉 atoms trapped in

the 0.7µm-period square magnetic lattice, for 4πMz = 5.9 kG, tm = 10.34 nm,

C4 = 8.2 × 10−56 Jm4 and offset parameter δd = 25 nm. The distance of the trap

minima from the chip surface is d = zmin − (tAu + tSiO2) + δd = zmin − 50 nm. BIP

is the Ioffe-Pritchard (minimum) magnetic field.

Bias field zmin d BIP ω⊥,‖/2π ω/2π ∆Ex,y/kB ∆Ez/kB ∆ECP/kB

Bx (G) (nm) (nm) (G) (kHz) (kHz) (µK) (µK) (µK)

9 384 334 7.7 156, 29 89 156, 21 42 2028

10.5 364 314 8.9 175, 35 103 189, 27 51 1947

11 358 308 9.3 181, 39 109 200, 29 54 1920

13.5 330 280 11.3 211, 44 125 261, 40 70 1787

15 316 265 12.5 229, 54 142 301, 48 81 1709

A similar loading procedure was used to trap atoms in the 0.7 µm-period square

magnetic lattice. The experiment setup is the same except the Z-wire and U-wire

traps are now above the square magnetic lattice structure instead of the triangular

magnetic lattice structure. This is easily implemented by switching the pinhole

connections on the atom chip (Figure 3.1).

At first, a thermal cloud of ∼ 5× 105 87Rb |F = 1,mF = −1〉 atoms at ∼ 1µK is

prepared in the Z-wire trap at ∼ 670µm from the chip surface with Iz = 38 A and

Bx = 52 G. The loading procedure is performed by ramping down the Z-wire current

further to various final values to bring the cloud closer to the chip surface until the

Z-wire trapped atom cloud merges with the magnetic lattice trapping potential. The

ramping is performed slowly while By is turned off and Bx is kept constant. The

magnetic lattice trapping is first performed at similar bias field settings as in the

triangular magnetic lattice: Bx = 26 G, 40 and 52 G. However, no lattice trapping is

observed when bias fields Bx ≥ 26 G are applied. Lattice trapping occurs when we

reduce the bias field down to Bx = 15 G. The trapped cloud in the square magnetic

lattice is similar to that in the triangular magnetic lattice shown in Figure 5.8.

The lifetime of the atoms trapped in the square magnetic lattice was measured
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Figure 5.15: Simulated trapping potentials for 87Rb |F = 1,mF = −1〉 atoms

trapped in a 0.7 µm-period square magnetic lattice for various bias fields Bx and

By = 0 with an offset parameter δd = 25 nm. The black dashed curves represent the

magnetic lattice trapping potentials, and the red curves are the combined magnetic

lattice trapping potential and the attractive Casimir-Polder potential for a silica

surface (C4 = 8.2×10−56Jm4). The blue solid line represents the nominal atom chip

surface position at z= 75 nm

by recording the atom number remaining in the lattice versus holding time for

various values of the bias field Bx, and hence for various distances z = zmin from

the magnetic film. The decay curves for Bx = 9, 10.5, 11, 13.5, 15 G are shown in

Figure 5.16. The lifetimes range from 0.79 ± 0.07 ms for Bx = 15G to 2.5 ms

± 0.25 ms for Bx = 9G and tend to increase approximately linearly with distance

d = z−(tAu+tSiO2) from the chip surface, as shown by the black points in Figure 5.17.

As with the decay curves for the triangular magnetic lattice (Figure 5.12), there is

no definite evidence of a non-exponential tail within the sensitivity of our detection

system.

When the Z-wire trapped atom cloud is transferred to the tight magnetic lattice

traps, the cloud is heated by adiabatic compression resulting from a large increase in

trapping frequency from ω/2π = 84−88 Hz in the Z-wire trap to ω/2π = 89−142 kHz

in the magnetic lattice traps, for the bias field Bx = 9 − 15 G, and hence the
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Figure 5.16: Decay curves for atoms trapped in the 0.7µm-period square magnetic

lattice for Bx = 9, 10.5, 11, 13.5, 15 G. The solid lines are single exponential fits to

the data corresponding to τ = 2.46±0.25ms, 1.78±0.12ms, 1.56±0.09ms, 1.17±

0.07ms, 0.82± 0.07ms. Time zero is chosen arbitrarily.

distance from the chip surface d = 334−265 nm, respectively. The transfer therefore

introduces significant heating of the atom cloud, from an initial temperature T ≈

1µK to an estimated ∼ 1 − 2 mK. The Casimir-Polder force is negligible in these

cases since the lattice traps are far from the chip surface and the effective trap depth

is determined purely by the magnetic lattice potentials ∆Eeff = ∆Ez. Furthermore,

atom loss by three-body recombination is smaller because of the smaller trapping

frequencies and hence smaller atom densities.

For the square magnetic lattice, the effective trap depth is much smaller than that

of the triangular magnetic lattice for the same bias field Bx, and 1D evaporation is

again the dominant loss mechanism. The parameters N site ≈ 1.6 and δd = 25 nm,

which are similar to the triangular magnetic lattice case, are employed to fit the

calculated evaporation lifetime to the measured lifetimes as shown by the black curve

in Figure 5.17. The value of N site ≈ 1.6 is required to keep the evaporation lifetime

much smaller than the three-body recombination lifetime. To obtain a reasonable

fit to the steeply varying lifetime versus distance z curve using our model, we need
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to assume a small and varying truncation parameter η. In the fit we assume a linear

variation of η with distance from the chip surface, from η = 1.53 at z = 384 nm

(Bx = 9 G) to η = 1.10 at z = 316 nm (Bx = 14 G). For a truncation parameter

as small as η = 1.5, evaporative cooling will not have progressed very far and one

might expect η to vary with barrier height and hence with distance from the chip

surface.

Figure 5.17: Measured lifetimes of atoms trapped in the square (black points) and

triangular (blue points) magnetic lattices versus distance z of the magnetic lattice

trap centre from the magnetic film surface. The Bx values (in G) are shown and

the error bars are 1σ statistical uncertainties. The blue curve for the triangular

magnetic lattice shows the calculated evaporation lifetimes τev for N site = 1.5, η = 4,

δd = 25 nm. The black curve for the square magnetic lattice shows the calculated

evaporation lifetimes τev for N site = 1.6, η = 1.53 − 1.11 linearly decreasing with

zmin, and δd = 25 nm.

The rate at which the trap lifetime of atoms in the square magnetic lattice de-

creases with decreasing distance d is much larger than for the triangular magnetic

lattice (Figure 5.17). For the square magnetic lattice, the spilling over of atoms into

neighbouring lattice sites during the initial transfer of atoms from the Z-wire mag-

netic trap to the magnetic lattice traps can occur more easily than for the triangular
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magnetic lattice because of the smaller minimum trap depth ∆Ey. Also, there is

no sudden change in the slope of the lifetime curve as there is for the triangular

magnetic lattice, since the Casimir-Polder interaction has no significant effect for

the square magnetic lattice traps.
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CHAPTER 6

Summary and future directions

6.1 Summary

In this thesis, we have reported the trapping of ultracold 87Rb atoms in 0.7µm-

period triangular and square magnetic lattices on an atom chip.

In chapter 2 the theoretical background required for understanding the experi-

ments described in this thesis was presented. This included the basic theory on Bose-

Einstein condensation and the theory and conceptual framework for constructing the

sub-micron period magnetic lattices and for the loss mechanisms of atoms trapped

close to a surface.

In chapter 3 the fabrication and characterization of the triangular and square

magnetic lattice structures on a Co/Pd multilayer magnetic film was described.

The fabrication ultilizes an algorithm developed by Schmied etal. [28] which allows

the design of optimized magnetic film patterns with the desired geometry and trap-

ping parameters such as trapping heights, non-zero trap bottoms and trap depths.

For the fabrication procedure, electron-beam lithography and reactive ion etching

methods which give high etching resolution and high accuracy were employed. Addi-

tionally, a new direct bonded copper (DBC) atom chip was designed and fabricated

with current-carrying wire structures for initial trapping of the ultracold atoms and
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loading into the magnetic lattices. Together with the new Co/Pd magnetic lattice

film, this atom chip forms a hybrid system that is used for trapping ultracold atoms

in magnetic lattice traps.

In chapter 4 our experimental setup including the ultrahigh vacuum chamber, the

laser optical system and the electronics control systems for trapping and cooling 87Rb

atoms were presented. Additionally, the experimental procedure and the creation of

a BEC in a Z-wire magnetic trap used for loading the magnetic lattice traps were

described.

In chapter 5 experiments demonstrating the trapping of 87Rb atoms in the 0.7µm-

period triangular and square magnetic lattice were presented. Evidence for trapping

in the sub-micron period magnetic lattices is based on the following observations:

(i) When the atom cloud in the Z-wire trap is launched vertically towards the

chip surface, it interacts with the short-range magnetic lattice potential showing

clear half-moon cloud shaped reflection signals.

(ii) When the Z-wire trap atom cloud is slowly brought very close to the chip

surface, an atom cloud containing ∼ 2 × 104 atoms is observed mid-way between

the real and mirror images of the Z-wire cloud detected by reflection absorption

imaging. When the Z-wire magnetic trap is completely turned off, the atom cloud

in the middle still remains.

(iii) When an atom cloud in the Z-wire trap is launched vertically towards the

surface with optimized velocity and bias magnetic fields, a small atom cloud appears

very close to the chip surface, mid-way between the direct and mirror images of the

Z-trapped atom cloud.

(iv) The lifetimes of the middle atom cloud, which range from 0.43 ± 0.06 ms

for Bx = 52 G up to 1.69 ± 0.11 ms for the triangular magnetic lattice and from

0.79± 0.07 ms for Bx = 15 G up to 2.5± 0.25 ms for the square magnetic lattice, are

much longer than the corresponding lattice trap periods (1 - 3 µs). The trap lifetime

increases almost linearly with increasing distance from the chip surface which ranges

from as close as ∼ 90 nm to ∼ 330 nm.

Model calculations suggest that the trap lifetimes in the 0.7µm-period magnetic
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lattices are limited mainly by atom losses through one-dimensional thermal evapo-

ration resulting from adiabatic heating as the atoms are transferred from the Z-wire

magnetic trap with trapping frequency ∼ 200 Hz to the very tight magnetic lattice

traps with trapping frequencies up to ∼ 800 kHz. The calculations also indicate

that for atom-surface distances greater than about 100 nm three-body recombina-

tion loss and fundamental atom-surface interactions such as Johnson magnetic noise

and Casimir-Polder interactions do not contribute significantly to the short trap

lifetimes.

The trapping of ultracold atoms in a sub-micron-period magnetic lattice at dis-

tances down to ∼ 90 nm from the chip surface and at trap frequencies up to ∼800

kHz represents new territory for trapping ultracold atoms. The observed trapping

represents a significant step towards the long term goal of using magnetic lattices to

simulate novel condensed matter phenomena such as newly predicted supersolidity

characterized by co-existing crystalline and superfluid long-range order [120, 121],

topologically non-trivial insulating states [122], and Mott insulating phases with

fractional (1/3, 2/3) filling [123]. If the trap lifetimes can be lengthened, it should

be possible to conduct the first quantum tunnelling experiments in a magnetic lat-

tice. This would also provide us with important information on how close to the

surface the arrays of atoms may be located and hence how small a lattice period

can be used before decoherence due to surface effects such as the Casimir-Polder

force become an issue. Such information is important in order to be able to perform

quantum coherence experiments in sub-micron period magnetic lattices and it is also

relevant to other atom chip applications such as chip-based miniature atomic clocks

currently under development [124,125].

6.2 Future directions

To overcome the limitation of short trap lifetimes in the sub-micron period magnetic

lattices, it would be instructive to try to load the lattices with a BEC in the Z-wire

trap. For a BEC, since all the atoms occupy the lowest energy state of the trap, it
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is expected theoretically that no adiabatic heating occurs during the transfer of the

atoms from the Z-wire magnetic trap with low trapping frequency to the tight sub-

micron magnetic lattice traps with high trapping frequency. Also, in our experiment

setup, it would be easier to be able to provide the appropriate bias magnetic fields

required to obtain optimized square and triangular magnetic lattices as designed.

In the case of the square magnetic lattice, for which the main bias field is along the

x-direction (i.e., Bx), the bias field control is easier which would help us to study

more about the behaviour of cold atoms very close to the chip surface.

In order to investigate further the origin of the short trap lifetimes, a new gener-

ation of magnetic lattice structures is planned with various lattice periods from 0.7

µm to 10 µm. The increase in the lattice period will reduce the trapping frequency

of the lattice traps which should reduce the loss of atoms due to adiabatic heating

during the transfer and increase the trap lifetime. Ideally, if the lifetime of the mag-

netic lattice trapped atoms can be increased to around a few hundred milliseconds

with a lattice period around 1 µm, more important experiments could be performed

such as RF spectroscopy of atoms trapped in the lattice and quantum tunnelling

experiments.

It is also suggested to prepare a Z-wire magnetic trap with a high trapping

frequency to reduce adiabatic heating as atoms are transferred into the lattice traps.

Trapping frequencies of the order of kilohertz, as achieved by Jacqmin et al. [126]

and Lin et al. [87], can help to reduce adiabatic heating by a factor of a few hundred.

In our experiment setup, it should be possible to create a Z-wire trap with a higher

trap frequency (∼ 1 kHz) by using a thinner Z-wire to allow a smaller Z-wire trap.

For this purpose, a new DBC (Direct Bonded Copper) atom chip has been designed

and fabricated (Section 3.5).

Another possibility, which was suggested during a recent visit to our lab by

Wolfgang Ketterle, is to load the magnetic lattice from a 1D optical lattice, for which

the trapping frequencies could be as high as a few MHz [127]. A 1D optical lattice

can be formed close to the magnetic lattice, for example, by shining a red-detuned

laser beam at say 782 nm at nearly normal incidence to the gold reflecting surface
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of the atom chip [128]. Atoms from a BEC in the Z-wire trap can then be loaded

into several sites of the 1D optical lattice which extend from a few µm from the chip

surface up to the magnetic lattice potential about 300 nm from the surface. In order

for the atoms to remain trapped in the magnetic lattice, some energy dissipation in

the conservative potentials can be provided by surface evaporative cooling.
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muth, P. Krüger, S. Schneider, T. Schumm, and J. Schmiedmayer. Absorption

imaging of ultracold atoms on atom chips. Opt. Express, 19(9):8471–8485,

2011. (Cited on page 82.)

[117] E. L. Surkov, J. T. M. Walraven, and G. V. Shlyapnikov. Collisionless motion

and evaporative cooling of atoms in magnetic traps. Phys. Rev. A, 53:3403,

1996. (Cited on page 92.)

[118] J. Märkle, A. J. Allen, P. Federsel, B. Jetter, A. Günther, J. Fortágh, N. P.
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