
Network Impacts of Autonomous Shared Mobility
Hussein DIA 

Associate Professor  
Department of Civil Engineering  

Swinburne University of Technology  
Melbourne AUSTRALIA 
HDia@swin.edu.au 

Farid JAVANSHOUR 
PhD Candidate  

Department of Civil Engineering  
Swinburne University of Technology 

Melbourne AUSTRALIA 
FJavanshour@swin.edu.au 

Jack HILL 
PhD Candidate  

Department of Civil Engineering  
Swinburne University of Technology  

Melbourne AUSTRALIA 
JackHill@swin.edu.au 

 
 

ABSTRACT 
Disruptive transport technologies are introducing new 
opportunities for providing travelers and consumers with more 
options to meet their travel needs. These prospects are being 
facilitated by the convergence of a number of disruptive 
technologies including autonomous driving and mobile 
computing, and the shared (collaborative) economy. Although 
some of these disruptions are still a few years away (e.g. 
autonomous vehicles), they have already started to shape a vision 
for a very different future.  Shared networks of autonomous 
vehicles, in particular, are already perceived as holding great 
promise for addressing the urban mobility challenges in our cities.  
This paper presents results from a simulation-based study which 
aimed to demonstrate the feasibility of using agent-based 
simulation tools to model the impacts of shared autonomous 
vehicles. A base case scenario representing the current situation 
(i.e. using traditional privately owned vehicles) and future 
scenarios of autonomous mobility on-demand (AMoD) were 
simulated on a real transport network in Melbourne, Australia. In 
addition to assessing the mobility impacts of AMoD, the paper 
also presents an assessment of how mode choice preferences 
impact the operation of fleets of autonomous vehicles. The results 
showed that using an AMoD system resulted in a significant 
reduction in both the number of vehicles required to meet the 
transport needs of the community (reductions between 43% and 
88%), and the required on-street parking space (reductions 
between 57% and 83%. Investigations of shared mode choice 
preferences (car-share versus ride-share) also showed that shifting 
40% of travelers to autonomous on-demand ride-sharing has the 
potential to deliver a 70% reduction in the total vehicle fleet size 
and 14% reduction in the total vehicle-kilometers-travelled 
compared to the Base Case Scenario. 

CCS Concepts 
• Emerging Technologies ➝ Emerging Simulation • Network 
Performance Evaluation ➝Network Simulations. Modeling 
and  Simulation ➝ Model Development and Analysis 
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1. INTRODUCTION 
Over the past few years, innovations in the transport sector have 
been driven by a growing recognition that cars, once anonymous 
with freedom and mobility, have become victims of their own 
success. [1] The narrative is also changing - “transport” has 
become “mobility” and sustainability in the built environment is 
more often cited in research papers and policy documents. [2] 
Digital disruptions and new business models, inspired by the 
sharing or collaborative economy, are also starting to shape an 

exciting new era in mobility. Research is showing that car 
ownership is increasingly making less sense to many people, 
especially in urban areas. [3] Consumers are finding it difficult 
to justify tying up capital in an under-utilized asset that stays idle 
for 20-22 hours every day. The arrival of on-demand ride services, 
car-sharing, ride-sharing, bike-sharing and other innovative 
solutions are all poised to change car ownership models and how 
people move around cities. The coming together of these powerful 
trends has the potential to create much broader economic and 
disruptive impacts and transform how people live and work. They 
are also likely to create new business opportunities and have a 
broad reach – touching companies and industries beyond the 
automotive industry, and giving rise to a wide range of products 
and services. Driverless on-demand shared vehicles, for example, 
would provide a sensible option as a second car for many people 
and as the trend becomes more widespread, it may also begin to 
challenge the ‘first’ car. 

Vehicles which drive themselves may very well be on our roads 
within 5 years. Vehicles with varying levels of self-driving 
capability are already available to consumers today, and the 
transition to full autonomous operation is expected to 
be gradual taking up to 15-20 years. The pace of change will 
depend in part on acceptance by consumers, regulators and the 
wider industries which may be disrupted by the changes. 

Although autonomous vehicles are still a few years away, they 
have already started to shape some visions for a mobility 
transformation driven by four key converging forces: Vehicle 
electrification, automated self-driving, mobile computing and on-
demand car-sharing. The coming together of these powerful 
trends is shaping an urban mobility future inspired by a vision of 
zero road injuries and low carbon living. 

The fast pace of developments in this space has prompted a 
number of researchers to explore how “driverless shared vehicles” 
could play a prominent role in the future mix of urban 
transportation options.  This paper aims to provide an analysis of 
the potential impacts of a fleet of Shared Autonomous Vehicles 
aimed at replacing private car commuter trips in urban areas 
through shared autonomous vehicle services.  

2. THE CHALLENGES 
The reform of urban mobility remains one of the biggest 
challenges facing policy makers around the world. Today, more 
than half the world’s population lives in towns and cities and the 
percentage is growing. By 2050, 70 percent of the world is 
expected to live in cities and urban areas. According to the 
McKinsey Global Institute [4], just 100 cities currently account 
for 30 percent of the world's economy. New York City and 
London, together, represent 40 percent of the global market 
capitalization. In 2025, 600 cities are projected to generate 58 

http://www2.deloitte.com/us/en/pages/manufacturing/articles/2014-gen-y-automotive-consumer-study.html
https://medium.com/@kaleazy/a-financial-model-comparing-car-ownership-with-uberx-los-angeles-b7becd917095
http://phys.org/news/2015-05-ceo-nissan-ready-autonomous.html
https://youtu.be/DYTV4d-Gn0s
http://ec2-54-204-78-255.compute-1.amazonaws.com/wp-content/uploads/2014/07/autonomous_driverless_car_infographic_predictions.png
http://www.afr.com/lifestyle/cars-bikes-and-boats/handsfree-cars-set-to-drive-into-a-legal-void-20150504-1mz9ww?stb=lkn


percent of the global Gross Domestic Product (GDP) and 
accommodate 25 percent of the world’s population. The MGI also 
expects that 136 new cities, driven by faster growth in GDP per 
capita, will make it into the top 600 by 2025, all from the 
developing world, 100 of them from China alone. The 21st 
century appears more likely to be dominated by these global 
cities, which will become the magnets of economy and engines of 
globalization. The problem is further compounded by ageing 
infrastructures which in many cities are at a breaking point with 
governments’ budgets for major infrastructure projects under 
increasing pressure. Furthermore, according to the United Nations 
Road Safety Collaboration [5], it is estimated that 1.3 million 
people are killed on the world’s roads each year. If left 
unchecked, this number could reach 1.9 million fatalities 
worldwide by 2020.  The World Health Organization [6] has 
described road casualty figures as being of ‘epidemic’ 
proportions, with road-related trauma being the biggest single 
killer of those aged between 15 and 29. Over 90% of road crashes 
are associated with human error imposes a hefty amount of 
damages in terms of human and economic. [7] A number of 
studies reported in the literature have also documented evidence 
showing that the environmental footprint of traditional transport 
systems, and in particular private vehicles with combustion 
engines, is not sustainable. [8] Globally, transport sector accounts 
for 27 percent of the world’s total energy consumption 75 percent 
of which is sourced from non-renewable fossil fuels. Australia’s 
per capita CO2 emissions are almost twice the OECD 
(Organization for Economic Co-operation and Development) 
average while transport contributes 14 percent of GHG emissions. 
[9] Moreover, road traffic continues to account for around 80 
percent of transport CO2 emissions and is estimated to reach 
9,000 Megaton per year by 2030 if the current mobility trends are 
not curbed. [8] 

Pursuing conventional approaches and relying on building new 
infrastructure to respond to increased travel demands has so far 
met with limited success and proven to be ineffective in meeting 
these challenges. New approaches are needed. 

3. THE OPPORTUNITIES 
Decision makers and leaders who run these complex cities are 
increasingly recognizing the role of smart technologies in 
improving the efficiency of existing infrastructure and sweating of 
assets through better utilization of available infrastructure. [10] 
These systems can significantly improve operations, reliability, 
safety, and meet consumer demand for better services with 
relatively small levels of investment. Cities are essentially made 
up of a complex network of systems that are increasingly being 
instrumented and interconnected, providing an opportunity for 
better infrastructure management. An “Internet of Things” 
comprising sensors, monitors, video surveillance, and radio 
frequency identification (RFID) tags, all communicating with 
each other to enhance infrastructure capability and resilience, and 
capturing volumes of data. Through data mining, artificial 
intelligence and predictive analytics tools, smart infrastructure 
systems can help city managers to monitor the performance of 
vital infrastructure, identify key areas where city services are 
lagging, and inform decision makers on how to manage city 
growth and make our cities more livable. [10] 

4.   NEW PARADIGM: TECHNOLOGY-
DRIVEN URBAN INFRASTRUCTURE 
Smart cities of the future will include advanced network 
operations management and control systems that utilize field 
sensors to detect and respond quickly to equipment and 
infrastructure faults. Vital infrastructure downtimes will be cut 

using sensors that monitor the health of critical infrastructure, 
collect data on system functioning, alert operators inside an 
integrated urban control center to the need for predictive 
maintenance, and identify potential breakdowns before they 
occur. In transport, smarter vehicles, trains and public transport 
systems will sense their surrounding environments, and slow 
down or stop without human intervention in emergency situations. 
On-board public transport, a range of GPS, position fixing, video 
surveillance, and communications equipment will provide 
accurate and reliable multi-modal real-time passenger 
information, resulting in better informed travelers and ensuring a 
smoother, safer and more reliable experience for customers. A 
combination of sensors and position fixing equipment will 
maximize the efficiency of existing roads by providing route and 
network-wide levels of priority for emergency vehicles, light rail, 
and other modes of transport so as to maximize the movement of 
goods and passengers safely and efficiently. Back-office systems 
that leverage sensors, web, mobile, and GPS technologies will 
utilize smart algorithms, data mining and predictive modeling 
tools to reduce delays to passengers by optimizing schedules and 
capacities in real time. Near railroad level crossings, a range of 
train-to-infrastructure and train-to-vehicle technologies will 
improve passenger safety by detecting fast approaching vehicles 
and providing warnings to avoid collisions. Electric vehicle 
charging infrastructure will also be integrated into a smart grid 
network, providing consumers with access to sustainable and 
equitable forms of connected mobility. A combination of 
technologies and sensors will also improve safety and security by 
permitting operators to remotely disable or enable a public 
transport service in the event of a security threat (e.g. an 
unauthorized driver).  

Adoption of technology-based customer-centric approaches have 
the potential to introduce substantial improvements in customer 
satisfaction, and create a shift in attitude to cost and value. A 
smarter city will mean better access to sustainable forms of 
transport; electricity and drinking water that can be counted on; 
and energy-efficient buildings resulting in enhanced standards and 
quality of life for today’s increasingly empowered citizens and 
consumers. Given the maturity levels and affordability of smart 
technologies, these benefits can be achieved at a fraction of the 
cost of investment in new infrastructure. In a study published in 
2009, Access Economics [11] reviewed the potential economic 
benefits from the adoption of smart technologies in transport, 
electricity, irrigation, health, and broadband communications. The 
report examined how smart systems will allow the use of vast 
amounts of data collected in all areas of city activity far more 
effectively, providing the potential to radically alter our economy 
and society for the better. Their research demonstrated that smart 
technologies would have significant benefits including a 1.5 
percent increase in GDP, and increase in the net present value 
(NPV) of GDP by $35-80 billion over the first ten years. In 
another report prepared by The Climate Group [12] on behalf of 
the Global e-Sustainability Initiative, it is estimated that a 15 
percent reduction in emissions can be realized in 2020 through 
smart technologies that achieve energy and resource efficiency 
using adaptive and proactive technologies. In Australia, the 
challenges are further amplified by the fact that around 96 percent 
of Australian total energy consumption is made up of non-
renewable resources, while its fuel stocks hold no more than three 
weeks’ worth of oil and refined fuels onshore. Given that 
Australia’s transport system accounts for 26 percent of whole 
Australia’s energy consumption [9], the reform of urban mobility 
becomes more crucial. 



5. OPPORTUNITIES FOR LOW CARBON 
MOBILITY 
The convergence of physical and digital worlds is creating 
unprecedented opportunities to enhance the travel experience for 
millions of people every day through new mobility solutions 
driven by disruptive forces and providing consumers with more 
choices to meet their transport needs. Although some of these 
disruptive forces are still a few years away (e.g. driverless 
vehicles), they have already started to shape a vision for a 
mobility transformation driven by six key converging forces: 
Vehicle electrification, automated self-driving, mobile computing, 
on-demand shared mobility services, Big Data and predictive 
analytics. The coming together of these powerful trends is shaping 
an urban mobility future inspired by a vision of low carbon living 
and zero road injuries. In particular, there has been some 
enthusiasm recently surrounding autonomous and semi-
autonomous driving and the shared economy. Shareable networks 
of autonomous electric vehicles, in particular, are reported to hold 
great promise for addressing the urban mobility challenges and 
promoting sustainable transport. Autonomous mobility-on-
demand (AMoD) systems are novel and transformative mode of 
transportation aimed at reducing carbon emissions as well as 
vehicle accidents. However, principal challenge for researchers is 
to ensure the same benefits of privately-owned cars in parallel 
with cutting down reliance on non-renewable resources, 
minimizing pollution, and decreasing the need for constructing 
new roads and parking spaces. [13] Furthermore, key to the 
success of these systems is a good understanding of the role of 
enabling technologies and new business models in improving the 
efficiency urban mobility and meeting people’s demand for travel 
through low carbon mobility solutions. These systems can 
significantly improve operations, reliability, safety, and meet 
consumer demand for better services with relatively small levels 
of investment. This work is part of a research project which is 
fundamentally an investigation into the development and 
evaluation of new methods to provide urban transport and active 
travel options. These new mobility solutions would offer travelers 
with more choices and provide efficient, affordable and flexible 
trips while reducing reliance on private vehicle use and promoting 
low carbon mobility. This paper will focus mainly on one aspect 
of the research which is the development of models for evaluating 
the impacts. 

6. MOTIVATION AND SCOPE OF WORK 
The work reported in this paper is part of a research agenda aimed 
at developing innovative low carbon mobility solutions driven by 
disruptive technologies which are changing the mobility 
landscape and generating new opportunities for consumers to 
meet their transport needs. These include six key converging 
forces: Vehicle electrification, automated self-driving, mobile 
computing, on-demand shared mobility services, Big Data and 
Deep Learning/Artificial Intelligence. Amalgamation of these 
powerful technologies is revolutionizing the future of urban 
mobility inspired by a vision of low carbon living and zero road 
injuries. This research also aims to investigate the main driving 
factors affecting the demand for mobility under these emerging 
forces and understanding the resulting benefits in terms of 
enhanced mobility, reduced emissions and improved road safety 
conditions.  

This paper is focused on one of the main objectives of this 
research which is the development of simulation models that can 
be used to model AMoD systems and assess their impacts on 
mobility, congestion, parking supply and how they can be used to 
supplement existing transport systems. This includes developing 

methodologies to estimate how future carbon emissions can be 
best mitigated using the proposed intervention measures. This 
work comprises a number of research challenges which will need 
to be overcome, including enhancements of existing tools to allow 
for modeling autonomous vehicles and also optimization of 
vehicle fleet sizes using innovative rebalancing strategies which 
aim to reduce the total kilometers of empty travel. 

7. REVIEW OF RELEVANT LITERATURE 
AND CASE STUDIES 
Providing access to high-quality urban transport services requires 
a variety of planning and operational innovations, as well as better 
understanding of travel behavior, operational processes, and the 
factors which affect these issues. A growing body of literature 
over the past few years have addressed the issues of disruptive 
technologies and their future potential. In this section of the paper, 
we provide a high level review of some of these technologies and 
discuss a number of overseas studies which have attempted to 
evaluate their impacts. 

7.1 Demystifying Disruptive Technologies 
New technologies are poised to revolutionize the way in which 
communities interact with their daily issues including mobility 
needs. Autonomous Vehicles (AVs), Mobile Internet, Internet of 
Things (IoT), Cloud Technology, and Energy Storage are seen as 
the key drivers of smart urban transport systems.  

• Autonomous vehicles. An autonomous vehicle is one that can 
maneuver with reduced or no human intervention. [14] The 
main contributions of these vehicles are reductions in 
greenhouse emissions as well as reducing road car crashes. 
Vehicle automation has a great potential for decreasing these 
numbers by removing the weakest link, the human driver, 
from the driving equation. 

• Mobile computing. Today, people are taking advantage of 
smart phones for their daily trips as well using a multitude of 
mobile apps for monitoring the traffic volume on roads, 
finding the arrival and departure time of public transport 
systems and choosing the shortest route to their destination. 
Moreover, smart phones are a great source for obtaining real-
time traffic information. Network-based solutions, which rely 
on passive monitoring of data already being communicated 
in the mobile phone system, have the potential to provide 
network-wide travel time and origin–destination information. 
[15] 

• Big Data. Big Data refers to the large amounts of real-time 
data that is being generated from millions of connected 
devices and interactions including data from cell phones, 
social media, card readers, navigation systems and so forth. 
Every day almost 2.5 quintillion bytes of data are created 
[16] including tweets on various topics and vehicles 
travelling from one point to another. Harnessing such a flow 
of data will benefit a multitude of sectors including transport 
systems. Urban areas are equipped with many sensors and 
actuators collecting information from different aspects of city 
dwellers’ activities. Smart phones with built-in GPS systems 
can record and transmit their own trails which can be used 
for multiple purposes such as forecasting travel demand 
through machine learning without recourse to highly 
expensive traditional manual surveys. [17] Transponders can 
be used to monitor throughput through a road network, 
measuring vehicle flow along a road or the number of empty 
spaces in a car park, and track the progress of buses and 
trains along a route. These devices and sensors provide urban 
managers with dynamic, well-defined and relatively cheap 



data on city activities enabling them to establish real-time 
analytics and adaptive management and governance systems. 
[18] 

• The Internet of Things (IoT). The IoT refers to the use of 
sensors, actuators, and data communications technology, 
built into physical objects from roadways to pacemakers, to 
enable these objects to be tracked, coordinated, or controlled 
across a data network or the Internet. [14] IoT is a key 
element for intelligent transport systems powered by many 
sensors and actuators embedded in vehicles, pavements and 
traffic lights to exchange real-time information among one-
another to create a sustainable efficiency across the transport 
network. 

• Cloud computing. Cloud computing is a model for enabling 
ubiquitous, convenient, on-demand network access to a 
shared pool of configurable computing resources (e.g., 
networks, servers, storage, applications, and services) that 
can be rapidly provisioned and released with minimal 
management effort or service provider interaction. [18] With 
the support of cloud computing technologies, it will go far 
beyond other multi-agent traffic management systems, 
addressing issues such as infinite system scalability, an 
appropriate agent management scheme, reducing the upfront 
investment and risk for users, and minimizing the total cost 
of ownership. [20] 

• Energy storage systems. These convert electricity into a form 
that can be stored and converted back into electrical energy 
for later use, providing energy on demand. [14] Lithium 
batteries are widely used in small applications, such as 
mobile phones and portable electronic devices. This type of 
batteries attracts much interest in the field of material 
technology and others, in order to obtain high power devices 
for applications like electric vehicles and stationary energy 
storage. [21] 

7.2 Autonomous Mobility On-Demand 
(AMoD) 
Several recent studies which relied on millennial surveys report 
that younger people are less keen to own private cars. In a study 
by car sharing company Zipcar, it is reported that half of 
millennials interviewed say they would prefer public transport and 
car sharing systems to privately owned cars. [3] With this in mind, 
shareable autonomous electric vehicles (particularly those in 
which electricity is produced through clean resources e.g. wind 
turbines or solar systems) appear like a promising proposition for 
decreasing the overall number of private cars. This would in turn 
directly address the problems of oil dependency, pollution, 
promote higher utilization rates and reduce parking lot sprawls. 
[22]. However, deploying these new systems also brings about 
new challenges to fleet operators which requires development and 
evaluation of robust and novel techniques. For example, the 
security of Mobility-as-a-Service (MaaS) systems against cyber-
attacks was investigated in a recent study [23] where the authors 
proposed a tractable block-coordinate descent algorithm to 
compute attack strategies in the Manhattan road network. 

To date, few studies have dealt with the implications of AMoD 
systems. Some of the studies of particular relevance to this 
research are described below. 

7.2.1 Lisbon 
The Lisbon study [24] examined the potential impacts that would 
result from the implementation of a shared and fully autonomous 
vehicle fleet. To perform this assessment, the researchers 

developed an agent-based model to simulate the behavior of all 
entities in the system: Travelers, as potential users of the shared 
mobility system; Cars, which are dynamically routed on the road 
network to pick-up and drop-off clients, or to move to, from, and 
between stations; and Dispatcher system tasked with efficiently 
assigning cars to clients while respecting the defined service 
quality standards, e.g. with regard to waiting time and detour time. 
The analysis was based on a real urban context, the city of Lisbon, 
Portugal. The simulation used a representation of the street 
network, using origin and destination data derived from a fine-
grained database of trips on the basis of a detailed travel survey. 
Trips were allocated to different modes: walking, shared self-
driving vehicles or high-capacity public transport. A set of 
constraints were established (e.g. that all trips should take at most 
5 minutes longer than today’s car trips take for all scenarios, and 
assumed all trips are done by shared vehicles and none by buses 
or private cars). The study also modeled a scenario which 
included high-capacity public transport (Metro in the case of 
Lisbon). The study modeled two different car-sharing concepts, 
“TaxiBots”, a term the researchers coined for self-driving vehicles 
shared simultaneously by several passengers (i.e. ride sharing), 
and “AutoVots”, cars which pick-up and drop-off single 
passengers sequentially (car sharing). For the different scenarios, 
the researchers measured the number of cars, kilometers travelled, 
impacts on congestion and impacts on parking space. The results 
indicated that shared self-driving fleets can deliver the same 
mobility as today with significantly fewer cars. When serviced by 
ride-sharing TaxiBots and a good underground system, 90% of 
cars could be removed from the city. Even in the scenario that 
least reduces the number of cars (AutoVots without underground), 
nearly half of all cars could be removed without impacting the 
level of service. Even at peak hours, only about one third (35%) of 
today’s cars would be needed on the roads (TaxiBots with 
underground), without reducing overall mobility. On-street 
parking could be totally removed with a fleet of shared self-
driving cars, allowing in a medium-sized European city such as 
Lisbon, reallocating 1.5 million square meters to other public 
uses. This equates to almost 20% of the surface of kerb-to-kerb 
street area (or 210 football pitches!). These findings suggest that 
shared self-driving fleets could significantly reduce congestion. In 
terms of environmental impact, only 2% more vehicles would be 
needed for a fleet of cleaner, electric, shared self-driving vehicles, 
to compensate for reduced range and battery charging time. 

7.2.2 Stockholm 
In the Stockholm study [25], the assessments included both a fleet 
consisting of currently in use gasoline and diesel cars as well as 
electric cars. The results showed that an autonomous vehicle-
based personal transport system has the potential to provide an on-
demand door-to-door transport with a high level of service, using 
less than 10 % of today's private cars and parking places. In order 
to provide an environmental benefit and lower congestion the 
autonomous vehicle would require users to accept ride-sharing, 
allowing a maximum 30% increase of their travel time (15% on 
average) and a start time window of 10 minutes. In a scenario 
where users were not inclined to accept a lower level of service, 
i.e. no ride-sharing and no delay, empty vehicle drive will lead to 
increased road traffic increasing environmental impacts and 
congestion. In a scenario which looked at electric cars, an 
autonomous vehicle-based system and electric vehicle technology 
seemed to provide a “perfect” match that could contribute to a 
sustainable transport system in Stockholm. 

7.2.3 Austin 
The Austin case study [26] investigated the potential travel and 
environmental implications of autonomous shared mobility 



systems by simulating a 12-mile by 24-mile area in Austin, Texas. 
The Multi-agent transport simulation (Matsim) software was used 
for conducting this experiment using 100,000 randomly drawn 
person-trips out of 4.5 million Austin’s regional trips. The study 
claimed that each autonomous shared car would almost replace 
around 9 conventional vehicles within the 24-mile by 12-mile area 
while providing the same level of service, but would generate 
approximately 8 percent more vehicle-mile travelled. Their study 
also confirmed that this system would decrease the emissions by 
not only replacing the heavier vehicles with higher emissions 
rates, but also by cutting down on the number of cold starts. 

7.2.4 New York 
The New York case study [27] introduced the Expand and Target 
algorithm which was integrated with three different scheduling 
strategies for dispatching autonomous vehicles. The study also 
implemented an agent-based simulation platform and empirically 
evaluated the proposed approaches using New York City taxi 
data. Experimental results demonstrated that the algorithms 
significantly improve passengers' experience by reducing the 
average passenger waiting time by around 30% and increasing the 
trip success rate by around 8%. 

8. MODELING FRAMEWORK 
This research will apply the Commuter model, which is an agent-
based simulation tool, to model an AMoD system for the city of 
Melbourne. A brief overview of the agent-based models and why 
they are suitable for this research is provided next. 

8.1 Agent-Based Modeling 
Transport professionals today have access to powerful modeling 
tools which can be applied at a number of levels depending on the 
application and modeling need. At the highest level are macro-
simulation (or macroscopic simulation) tools which model traffic 
on a network as a time-varying flow on each link and assume that 
traffic streams generally follow behaviors similar to fluid streams. 
These tools are useful for building strategic, regional or city-wide 
models without attention to individual traveler behavior. At the 
next level are dynamic simulation tools which include 
mesoscopic, microscopic and hybrid models. These dynamic 
models allow greater levels of detail than a strategic model. In the 
Mesoscopic approach, the vehicles are modeled as individual 
entities with simplified behavioral models (car following and lane 
changing) with a slight loss of realism resulting in an event-
oriented simulation approach. Microscopic simulation offers the 
highest level of detail and allows for distinguishing between the 
different types of vehicles and drivers. It also enables a wide 
range of network geometries (e.g. freeways, arterials) and traffic 
control (e.g. traffic signals, give-way intersections and ramp 
metering) modeling. The behavior of each vehicle is continuously 
modeled using detailed car following, lane changing, and gap 
acceptance models. In the Hybrid approach, the simulation 
concurrently applies the microscopic models in certain selected 
areas and the mesoscopic models in the rest. This approach can be 
used in large-scale networks where there is a need in specific 
areas to have a level of microscopic detail but with a global 
network evaluation. While these modeling tools have served the 
transport profession very well in previous years, the recent digital 
disruptions in mobility solutions (e.g. app-based on-demand car 
sharing and ride-sharing) and the anticipated arrival of 
autonomous vehicles over the next few years have created visions 
for a very different future based on shared autonomous mobility. 
Fleets of autonomous vehicles, to be owned by commercial 
companies, would pick up passengers on demand and offer both 
car-sharing and rider-sharing services. [25]; [27]; [28] This 
research builds on previous studies and will investigate how these 

disruptions are likely to impact on utilization of vehicles, car 
ownership, congestion, emissions and pollution. Modeling the 
impacts of such scenarios requires a level of detail much greater 
than what is offered by the above modeling tools. Agent-based or 
nanoscopic modeling offers a number of features which would 
allow for modeling network performance using end-to-end trips 
made by travelers over multiple modes of transport, rather than 
single-mode trips made in a vehicle or walking. This approach 
allows for modeling individual traveler behavior including 
dynamic decision processing incorporating a dynamic mode-
choice function of individual travelers. This provides capabilities 
to allow a traveler in the model to make instantaneous choices 
between available modes as well as choices between available 
routes. Although existing micro-simulation tools can model 
dynamic route choice within a mode, the demand is specified by 
an (O-D) matrix of mode-specific trips making it impossible to 
model a person dynamically switching from one mode of 
transport to another. A nano-simulation model can represent 
dynamic mode switching by allowing each individual agent to 
choose a new mode of transport during its trip. [29] 

8.2 Data Requirements 
The travel demand data for this study will be sourced from the 
Victorian Integrated Survey of Travel and Activity (VISTA), 
which is an ongoing survey of travel and activity in Victoria. It 
includes a sample of personal travel activities across the Victorian 
state that occur from home to access various activities. The 
currently available data covers the period from May 2007 to June 
2010, and includes 11,400 households for the metropolitan 
Melbourne. VISTA data for the period between 2012 and 2013 
have recently been published on the department of Economic 
Development, Jobs, Transport and Resources website for which a 
following dataset allowing more detailed analysis is to be 
published later in 2016. [30] Households who complete the 
surveys are randomly selected from a listing of all residential 
addresses in the study areas. They are asked to fill in a travel diary 
for one specified day of the year. All personal travel outside the 
home is reported, from a walk around the block through to a trip 
interstate. [31] Collecting this information provides detailed 
picture of travel including distribution of trips, trip rate, median 
trip distance, median trip time, mode share of travel, main method 
of travel, etc. which helps the government make better transport 
and land-use planning decisions. The traffic data, including traffic 
counts and signal timings, are available to the University through 
a Virtual Private Network (VPN) connection to VicRoads. 

8.3 Pilot Study 
To develop a proof-of-concept, a pilot study has been conducted 
on a real transport network located in Melbourne (See Figure 1). 
The pilot explored the feasibility of using Commuter for this 
project. It also helped the research team to develop a better 
understanding of the capabilities of the tool and the various 
functionalities required to enable investigations of a vast range of 
AMoD scenarios across a much larger study area under real 
activity-based data sourced from VISTA. 

 



 

 
Figure 1. Pilot study area 

8.3.1 Scenario 1: autonomous shared mobility with 
zero passenger waiting times 
A Base Case Scenario (BCS) and a scenario using a simple 
AMoD system (AMoD1) were developed in Commuter. In the 
Base Case Scenario, all trips are undertaken during the AM-Peak 
(7am-9am) using private cars. Table 1 describes the demand 
distribution among different origins and destinations. The 
information in Table 1 assumes single-occupant cars and shows a 
base-case scenario with a total number of 2,136 privately owned 
vehicles. Assuming an area of 16.8 square meter is needed (on 
average) to accommodate every single private car at the 
destination, it is estimated that these vehicles would require 
around 35,885 square meter area as parking lots in the proximity 
of destinations. 

Table 1. Total number of trips between different ODs during 
AM-Peak (7:00am-9:00am) 

        Destination 

Origin 
H7 H8 H9 Total 

H1 100 120 89 309 

H2 147 90 126 363 

H3 125 100 109 334 

H4 160 100 140 400 

H5 120 160 100 380 

H6 110 120 120 350 

Total 762 690 684 2,136 

 
In the autonomous shared mobility scenario (AMoD1), it is 
assumed that privately owned self-driving cars and shared self-
driving cars with capacities ranging from two to four people are 
available to replace all private vehicle travel. This scenario also 
assumed that passengers will have a vehicle immediately available 
for their travel and that their waiting times are zero. This scenario 
was investigated as it represented the closest conditions to owning 
and driving a private vehicle which is immediately available to 
travelers. Twenty-five percent of travelers were assumed to be 
using privately owned autonomous cars, and the other seventy-
five percent were assumed to travel in groups of two, three or 

four. In both cases, passengers would be picked up and dropped-
off at their destinations by the autonomous vehicles. After 
dropping their passengers off, the privately owned self-driving 
vehicles head back to their starting point (Home) and wait for 
further instructions from their owners. The self-driving shared 
cars, on the other hand, would typically be owned by a 
commercial fleet company who would direct the vehicles to 
nearby waiting areas where they wait for further instructions.  

An initial analysis of the autonomous mobility scenario (Table 2) 
shows that people travelling in groups and being dropped-off by 
the self-driving cars result in both decreased number of required 
vehicles (more than 40% compared to the base scenario) and 
parking space (around 58% compared to the base-case scenario). 
This frees up a substantial amount of land and space which can be 
used for different purposes. However, the simulation also showed 
that the total vehicle-kilometers travelled (VKT) by the 
autonomous vehicles increased by around 29% because the 
vehicles needed to reposition. The increase was largely due to the 
privately owned vehicles which were assumed to return to their 
origin. Finally, it was assumed in this analysis that no public 
parking space was needed for the privately owned cars because 
they would wait at home rather than at a public parking space. 

Table 2. Comparative evaluation of base case and AMoD1 
scenarios 

Scenario name 
Number of 

vehicles on the 
road network 

Mean VKT 
travelled 

(Km) 

Parking space 
required (m2) 

Base case – human-
driven single-occupant 

vehicles (BCS) 
2,136 4.04 35,885 

Autonomous mobility 
scenario (AMoD1) 1,217 5.20 15,238 

Percent difference 
between BCS and 

AMoD1 
43% decrease 29% increase 58% reduction 

 

8.3.2 Scenario 2: autonomous shared mobility with 
maximum 5 minutes passenger waiting times 
This scenario comprised the same origins and destinations as the 
first scenario within the study area shown in Figure 1 with a 
different demand matrix (Table 3). 

Table 3. Total number of trips between different ODs during 
AM-Peak (07:00 am - 09:00 am) 

Origin\   
Destination H1 H2 H3 H4 H5 H6 H7 H8 H9 Total 

H1       50 60 68 178 

H2       78 40 47 165 

H3       64 60 68 192 

H4       70 65 70 205 

H5       80 75 80 235 

H6       50 84 90 224 

H7 50 43 50 60 40 35    278 

H8 30 50 45 35 25 45    230 

H9 40 56 36 70 80 70    352 

Total 120 149 131 165 145 150 392 384 423 2,059 

 
In the base case scenario, it was assumed that all trips originated 
from home (where required on-street parking space is zero 
assuming all vehicles were parked on-site) towards destinations 
where off-street parking was also available. All trips were 



assumed to be undertaken during the period 07:00 am - 09:00 am 
using single-occupant traditional privately owned vehicles 
(therefore waiting time for travelers is zero). 

In this second scenario (AMoD2), the waiting times for 
passengers were assumed to be longer than in AMoD1 (Table 3). 
This reflected situations in which the driverless vehicle would 
need some time to travel to the customer location. The only 
constraint was that the waiting times should not exceed 5 minutes. 
It was assumed that all origins and destinations have at least one 
taxi rank in their near proximity and one drop-off lane at their 
destinations. In this scenario, an AMoD vehicle would pick-up the 
customers at the taxi rank, and as soon as it drops off the 
customers, the vehicle proceeds to the nearest taxi rank where it is 
needed to meet the maximum 5 minutes waiting constraint 
defined by the system. The following section explains the 
methodology used to determine the required initial AMoD fleet 
size and also a heuristic rebalancing strategy to reduce the empty 
travel and idle times for AMoD vehicles. 

8.3.3 Determination of fleet size and rebalancing 
strategy 
The goal is to find the minimum number of AMoD vehicles 
required to meet the same demand as the base case scenario such 
that passengers would not wait more than 5 minutes for their pick-
up vehicle. To achieve this, the area (3km x 2km) was divided 
into two equal blocks of 1.5km by 2km (See Figure 2). 

 
Figure 2. Dividing the pilot area into two equal blocks namely 

block 1 and block 2 for AMoD rebalancing purposes 

The first challenge is to determine the initial number of AMoD 
vehicles which should be fed into the taxi ranks. To this end, the 
difference between the number of generated and attracted trips 
were calculated for each origin. If the number of outgoing 
vehicles exceeds the number of in-coming AMoD vehicles, that 
number was chosen as the initial required number of vehicles for 
the origin at the start of simulation. For the first simulation run, no 
AMoD vehicles were allocated for the origins in which the 
number of attracted trips were greater than the generated ones. 
The premise was that as the trip attraction rate for these areas are 
higher, AMoD vehicles leaving other areas with greater trip 
generation rates will have enough time to arrive to these taxi 
ranks. Then, vehicles were released into the model within 30 
minutes and afterwards no new vehicle were generated and the 
fleet size remained fixed until the end of simulation time (7:00am-
9:00am). After the first run, waiting times for all passengers were 
calculated and the number of initial AMoD vehicles for the taxi 
ranks where passengers experienced waiting times more than 5 
minutes within the first 30 minutes of the simulation were 
increased proportional to the amount of waiting times. This 
process was repeated until all traveler’s waiting times were less 
than 5 minutes during the first 30 minutes of simulation period. 
Thereafter, it was attempted to reduce the waiting times with 

rebalancing the AMoD vehicles between various taxi ranks rather 
than generating new vehicles to meet the demand.  

The waiting times for each taxi rank over the simulation period 
were recorded and the periods during which waiting times were 
more than 5 minutes were identified. The waiting times in excess 
of 5 minutes were reduced by redirecting the SAVs parked in the 
areas with waiting times less than 3 minutes (i.e. the areas with 
the surplus of SAVs) within the same block. An iterative process 
was undertaken until all waiting times were under 5 minutes 
within the same block. The same was repeated for Block 2 and 
this process repeated until the waiting times for all passengers 
across the whole network fell to below 5 minutes. 

The results, shown in Table 4, illustrate that deploying the AMoD 
system led to a dramatic decrease in not only the total number of 
vehicles required to meet the demand (88% compared to the base 
case scenario) but also the required parking spaces (83% 
compared to base case scenario) at the expense of 10% increase in 
total VKT incurred by empty vehicles repositioning themselves to 
better serve the demand in the taxi ranks. This demonstrates that 
the same demand can be met using only 12% of total number of 
vehicles required in the base case scenario with an average 
waiting time of 1 minutes and a maximum waiting time of 4 
minutes (lower than 5 minutes constraint). 

Table 4. Comparative evaluation of base case and AMoD2 
scenarios 

Scenario name 

Number of 
vehicles on 

the road 
network 

 

Total VKT  
(Km) 

Parking space 
required (m2) 

Base case – human-
driven single-occupant 

vehicles (BCS) 
2059 4660.38 34591 

Autonomous mobility 
scenario 2 (AMoD2) 247 5204.16 6048 

Percent difference 
between BCS and 

AMoD2  
88% decrease 10% increase 83% reduction 

To sum up, as shown in Table 5, using the AMoD system resulted 
in a significant reduction in both the number of vehicles on the 
road (43% in scenario 1, and 88% in scenario 2), and required 
parking space (58% in scenario 1, and 83% in scenario 2) at the 
expense of a less significant increase in the total VKT (29% in 
scenario 1, and 10% in scenario 2). 

Table 5. Comparative evaluation of base case and AMoD 
scenarios 

Scenario name 
Reduction in 

number of 
vehicles 

Increase in 
the total 

VKT 

Reduction in 
required 

parking space  
Scenario 1 (AMoD1) 

compared to base case 
(BCS) 

43% 29% 58% 

Scenario 2 (AMoD2) 
compared to base case 

(BCS) 
88% 10% 83% 

8.3.4 Scenarios 3-5: Autonomous shared mobility 
with car-share and ride-share mode choice 
preferences 
In Scenario 2, a homogeneous population of travelers was 
assumed where all travelers had identical mode-choice 
preferences and used only car sharing with single occupant 
driverless cars to reach their destinations. In reality, the value of 
travel time is generally distributed heterogeneously across 
individuals within a population, and according to time of day and 



trip purpose. [30]; [31] It would therefore be expected that the 
preference towards car sharing versus ride sharing will differ 
between travelers based on the increased travel time required to 
rideshare.  

In this section, we explore the effects of travel cost on mode 
choice behavior of four categories of travelers. These include 
travelers with High Value of Time (HVoT) who choose car 
sharing systems (single-occupant autonomous vehicles with zero 
waiting time for passengers). This would necessitate that  
sufficient number of vehicles are available all the time to serve 
these customers (at a premium cost).  Travelers with a Low Value 
of Time (LVoT), on the other hand, would share their ride with 
other passengers using autonomous vehicles with capacities of 2, 
3 and 4 people. For the ride-sharing system, it is assumed that 
travelers would need to wait until a vehicle is available. After 
dropping their passengers of, vehicles available for HVoT 
customers will stay at the taxi rank to pick up other customers 
even if there is no current demand. For vehicles servicing LVoT 
customers, these vehicles may relocate to other taxi ranks if there 
is a need. The same rebalancing system used in Scenario 2 was 
utilized for rebalancing the empty vehicles in these scenarios.  

To develop a better understanding of the impacts of mode choice 
preferences, three scenarios were simulated in which the 
proportion of ride sharing travelers varied between 40% and 90% 
as shown in Table 6.  

Table 6. Proportions of ride-share and car-share travelers in 
Scenarios AMoD 3-5 

System 
Car sharing 

(For travelers 
with HVoT) 

Ride sharing 

(For travelers with 
LVoT) 

                        
Capacity(person) 

Scenario 
1 2 3 4 

AMoD3 10% 30% 30% 30% 

AMoD4 20% 20% 30% 30% 

AMoD5 60% 0% 20% 20% 

The simulation results are reported in Figure 3. As expected, the 
results show marked reductions in the total number of vehicles, 
total VKT traveled and parking spaces requirements when more 
people choose to ride-share instead of car-share. For example, the 
results show that the total number of required vehicles increased 
by 132% (from 273 in AMoD3 to 632 in AMoD5) as a result of a 
50% decrease in the proportion of ride-share travelers (from 90% 
to 40%). However, the number of vehicles in AMoD5 was still 
substantially lower (69% less) than the BCS. 

Comparison of the results for AMoD5 and BCS also suggest that 
shifting 40% of the population to autonomous on-demand ride-
sharing will result in a 70% decrease in the total vehicle fleet size 
(from 2059 to 632); 14% reduction in the total VKT (from 4,660 
to 4,027) and 57% reduction in the required parking spaces.  

Table 7 provides some additional insights. For example, 
comparison of AMoD5 and BCS shows that the same demand for 
travel can be met using only 31% of the total number of vehicles 
required in the BCS, with an average passenger waiting time of 4 
minutes and a maximum waiting time of 12 minutes. 

Table 7. Mean and maximum waiting times 

Scenario 

Proportion 
of ride-
sharing 

travelers 

Percentage of 
vehicles 

compared to 
Base Case 
Scenario 

Passenger 
mean 

waiting time 

(minutes) 

Passenger 
maximum 

waiting 
time 

(minutes) 

AMoD3 90% 13% 3 10 

AMoD4 80% 19% 2 10 

AMoD5 40% 31% 4 12 

 

8.3.5 Dynamic pricing 
This work highlights the impact of market segmentation (between 
ride sharing and car sharing) for a fleet of autonomous vehicles 
based on values of travel time. Given that mode choice 
preferences are largely dictated by the cost of the service, its 
convenience and comfort [34], the cost of the trip could be the 
determining factor as to whether a traveler chooses to rideshare or 
car share. 

Figure 3. Impacts of variable proportions of ride-share and car-share 



In that context, dynamic pricing could be a feasible mechanism to 
influence the mode split between car sharing and ride sharing to 
efficiently allocate the vehicle fleet across the road network. 
Dynamic pricing is implemented as a demand management 
technique during periods of excess demand and is currently used 
by mobility-on-demand companies, for example Uber’s Surge 
Pricing and Lyft’s Prime Time. [35]; [36] The increased price of a 
trip eliminates the shortage of available vehicles by offering a 
higher charge rate to drivers thereby increasing supply of vehicles 
where the demand is high. It also has an added benefit in that it 
may encourage travelers to reconsider their travel needs or shift to 
other modes of transport [34] where and when possible. 
For a fleet of autonomous mobility-on-demand vehicles, the 
dynamic pricing could take this simple form as an example: 

𝐷𝑦𝑛𝑎𝑚𝑖𝑐 𝑃𝑟𝑖𝑐𝑒 =
𝑉𝑒ℎ𝑖𝑐𝑙𝑒 𝐷𝑒𝑚𝑎𝑛𝑑 𝑖𝑛 𝐴𝑟𝑒𝑎
𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑠 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑖𝑛 𝐴𝑟𝑒𝑎

∗ 𝑓𝑎𝑟𝑒 𝑟𝑎𝑡𝑒 
 

This measure would allow prices to increase when demand 
exceeds supply within a region, and would also allow prices to be 
discounted when there is a surplus of vehicles in the area. This 
could be used to manage the modal split between car sharing and 
ride sharing on a regional basis. For example, if there is a shortage 
of autonomous vehicles within one region, this could cause the 
fare price to increase and thereby provides an incentive for 
passengers with a lower value of travel time to choose ride 
sharing instead of car sharing. The dynamic pricing could be used 
in reverse for regions that have a surplus of vehicles, where the 
price could be further discounted to encourage better utilization of 
idle vehicles.  Such pricing could also see vehicles travel from 
areas where there is a surplus to areas where there is a shortage 
based on the marginally higher price paid for the same service in 
areas where there are shortages. [37] In this case, dynamic pricing 
could be used as a rebalancing mechanism by providing 
incentives to underutilized vehicles to relocate to regions where 
there are shortages. Dynamic pricing has not been investigated in 
this simulation study and will be explored in future 
implementations of the simulation models.  

9. SUMMARY AND FUTURE 
DIRECTIONS 
The pilot study reported in this paper demonstrated the feasibility 
of using the agent-based approach for evaluating the impacts of 
autonomous shared mobility-on-demand systems. A base case 
scenario (current situation relying on traditional privately owned 
vehicles) and five autonomous shared mobility scenarios were 
simulated on a real transport network in Melbourne, Australia. 
The results showed that incorporating shared driverless-cars can 
significantly reduce the total number of vehicles required to meet 
the transport needs of a community. It also significantly decreased 
the parking requirements which would free up this space for other 
purposes. The results, however, also showed that there are likely 
to be some negative impacts such as increased total kilometers of 
travel due to repositioning, but these were less significant and can 
potentially be mitigated if all future self-driving vehicles are 
electric.  

Although the pilot study has demonstrated the feasibility of the 
approach, there are still a large number of challenges that will 
need to be addressed in this research. These include: 

• Undertaking stakeholder consultation to develop a better 
understanding of the drivers of travel behavior given 
emerging information technology solutions.  

• Development of models for demand forecasting and 
understanding the demand for travel in the age of 
autonomous mobility. 

• Development, calibration and validation of real-life models 
which include a large network representative of demands 
from the VISTA data. The models will also be tested on a 
large number of scenarios including ones which assume 
reduced or zero car ownership, and scenarios which assess 
the impacts under provision of light and heavy rail, public 
transport buses etc.  

• Development of a methodology to address the re-balancing 
strategy through development of optimization techniques for 
determining the minimum fleet size using real-time 
rebalancing strategies and dynamic pricing measures which 
aim to reduce the total kilometers of empty travel and 
optimize travel costs for users. 
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