
MNRAS 471, 839–856 (2017) doi:10.1093/mnras/stx1529
Advance Access publication 2017 June 20

Improving constraints on the growth rate of structure by modelling
the density–velocity cross-correlation in the 6dF Galaxy Survey

Caitlin Adams1,2‹ and Chris Blake1,2

1Centre for Astrophysics and Supercomputing, Swinburne University of Technology, PO Box 218, Hawthorn, VIC 3122, Australia
2ARC Centre of Excellence for All-sky Astrophysics (CAASTRO), The University of Sydney, NSW, 2006, Australia

Accepted 2017 June 15. Received 2017 June 13; in original form 2017 March 28

ABSTRACT
We present the first simultaneous analysis of the galaxy overdensity and peculiar velocity
fields by modelling their cross-covariance. We apply our new maximum-likelihood approach
to data from the 6-degree Field Galaxy Survey (6dFGS), which has the largest single collection
of peculiar velocities to date. We present a full derivation of the analytic expression for the
cross-covariance between the galaxy overdensity and peculiar velocity fields and find direct
evidence for a non-zero correlation between the fields on scales up to ∼50 h−1 Mpc. When
utilizing the cross-covariance, our measurement of the normalized growth rate of structure is
f σ8(z = 0) = 0.424+0.067

−0.064 (15 per cent precision), and our measurement of the redshift-space
distortion parameter is β = 0.341+0.062

−0.058 (18 per cent precision). Both measurements improve
by ∼20 per cent compared to only using the autocovariance information. This is consistent with
the literature on multiple-tracer approaches, as well as Fisher matrix forecasts and previous
analyses of 6dFGS. Our measurement of fσ 8 is consistent with the standard cosmological
model, and we discuss how our approach can be extended to test alternative models of gravity.

Key words: surveys – cosmological parameters – large-scale structure of Universe –
cosmology: observations.

1 IN T RO D U C T I O N

Our understanding of the Universe can be neatly summarized
by the standard cosmological model: under the assumption of a
Friedmann–Lemaı̂tre–Robertson–Walker metric governed by gen-
eral relativity, the Universe is flat and its total energy is dis-
tributed between baryonic matter (∼5 per cent), dark matter
(∼25 per cent) and dark energy in the form of the cosmological
constant (∼70 per cent). This picture has been refined over many
years through extensive testing against different observables, in-
cluding the cosmic microwave background (Planck Collaboration
VIII 2016), Type Ia supernovae (Betoule et al. 2014), and the distri-
bution of large-scale structure (Anderson et al. 2014). Each observ-
able tests different features of the model, and together they have
established a robust framework for cosmology. This model is com-
monly labelled as � cold dark matter (�CDM), which is shorthand
for two of its assumptions: the majority of energy in our Universe
is either CDM or an energy density in the form of the cosmolog-
ical constant (�). While � was originally inserted into Einstein’s
equations to keep the Universe from collapsing, it has come to rep-
resent the mechanism behind accelerating expansion, which was
first observed by Riess et al. (1998) and Perlmutter et al. (1999).

� E-mail: cadams@swin.edu.au

Despite the fact that its contribution to the total energy density is
very well constrained by modern studies, its physical form is poorly
understood.

There are two prominent lines of thinking regarding the cause of
accelerating expansion: it is either driven by an energy density with
negative pressure (specifically the cosmological constant or more
generally dark energy) or it is a natural consequence of gravity
deviating from general relativity on large scales, as described by
modified gravity models. See Joyce, Lombriser & Schmidt (2016)
for an excellent review of both.

Any modification to gravity will affect the formation of large-
scale structure, so alternative models may be tested by comparing
their prediction of how structure grows to observations. The linear
growth rate of structure, f = d ln (D)/d ln (a), is the cosmological
parameter that quantifies this growth, where D is the linear growth
function (describing how matter overdensities have evolved relative
to early times), and a is the scalefactor, a dimensionless parameter
that characterizes the Universe’s expansion. Modified gravity mod-
els commonly predict that the growth rate of structure should be a
function of scale (e.g. Baker et al. 2014), whereas general relativity
predicts the growth rate to be scale-independent and related only
to the matter density through f = �m(z)0.55 (Linder 2005). Conse-
quently, a precise measurement of the growth rate of structure as
a function of scale and redshift serves as an important test of our
standard model and alternative modified gravity models.
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It is not only the distribution of galaxies that is useful in large-
scale structure analyses, but also their motion in the form of peculiar
velocities. A galaxy’s peculiar velocity is the motion that is not due
to cosmological expansion. Peculiar velocities have been shown to
be a competitive cosmological probe when it comes to constrain-
ing the growth rate of structure (e.g. Koda et al. 2014; Howlett,
Staveley-Smith & Blake 2017). Johnson et al. (2014) used peculiar
velocities to provide the first scale-dependent measurement of the
growth rate of structure, which has since been used to test alternative
parametrizations of gravity (Johnson et al. 2016).

Direct peculiar velocities are particularly suited to probing large
scales, making them highly complimentary to other cosmological
probes, including redshift-space distortions (RSDs; see fig. 3 in
Johnson et al. 2014, adapted from fig. 8 in Jain & Khoury 2010).
However, their measurement is limited to low redshifts (z � 0.1)
as their uncertainties grow with distance (see fig. 4 in Scrimgeour
et al. 2016 for an example). This complicates matters; the number of
large-scale Fourier modes is limited when surveying a small volume
of space, introducing a non-negligible sample variance contribution
to the power spectrum. This means that the power spectrum for any
observable tied to the fixed volume will have a fundamental lower
bound on the uncertainty: it cannot be measured more precisely
than the sample variance for a given scale. Since the growth rate
of structure is inferred from the amplitude of the peculiar velocity
power spectrum, it too is affected.

While this uncertainty floor exists, there are methods available
to further lower the overall statistical uncertainty in the growth rate
of structure; such improvements are essential if we wish to accu-
rately test predictions from different cosmological models. Much
work has been done in this area: for two observables that trace the
same underlying matter distribution, it is possible to improve the
uncertainty in the amplitudes of their power spectra by adding in-
formation about how the two tracers are correlated. Furthermore,
neglecting stochasticity, the ratio of these two tracers is entirely
independent of the underlying matter distribution, and will not con-
tain a sample variance contribution (e.g. McDonald & Seljak 2009;
Gil-Marı́n et al. 2010; Bernstein & Cai 2011; Abramo & Leonard
2013). The most common application of this effect for peculiar ve-
locity studies is to include the galaxy overdensity field as a second
tracer, which is proportional to the underlying matter overdensity
field via the galaxy bias, b. It is then possible to relate the two fields
by gravitational instability theory and constrain the ratio between
the growth rate of structure and the galaxy bias, β = f/b, with high
precision. This is done by observing both fields, and reconstructing
one from the other for different values of β (e.g. Pike & Hudson
2005; Davis et al. 2011; Carrick et al. 2015). If enough is known
about the galaxy bias, the growth rate of structure can then be esti-
mated. However, the method does not lend itself well to measuring
the scale dependence of the growth rate of structure, and (as far as
we are aware) no attempt has been made to do so.

In this study, we propose a new way of analysing the relation
between the peculiar velocity and galaxy overdensity fields: instead
of modelling one field in terms of the other, we model the covari-
ance between the two fields, which can be done analytically. This
covariance can then be used in a maximum likelihood method to
constrain our cosmological parameters of interest: the growth rate
of structure, f, and either the galaxy bias, b, or the ratio of these,
β. We note that the expression for the cross-covariance has been
previously presented by Fisher (1995) but has never been applied
to data. Our work builds on previous analyses that measure the am-
plitude of the velocity divergence power spectrum by modelling the
peculiar velocity autocovariance (Jaffe & Kaiser 1995; Macaulay

et al. 2012). More specifically, we follow on from Johnson et al.
(2014), who obtained a scale-dependent constraint on the growth
rate of structure from the peculiar velocity autocovariance.

The aim of this paper is to lay down the theoretical foundation
for the cross-covariance between the peculiar velocity and galaxy
overdensity fields, so as to constrain the growth rate of structure to
higher precision than can be obtained from peculiar velocities alone.
We validate our approach by applying it to data from the GiggleZ
N-body simulation, before analysing data from the 6-degree Field
Galaxy Survey (6dFGS), obtaining constraints for the growth rate of
structure. This is the first application of this method, and this paper
serves to illustrate its effect on cosmological constraints when used
with current peculiar velocity and redshift data.

We begin by introducing the data in Section 2, and then discuss
the theory and methodology in Section 3. Results for the simulation
data are presented in Section 4 followed by the 6dFGS analysis in
Section 5. We conclude with a summary of the paper in Section 6.

2 DATA A N D S I M U L AT I O N S

This analysis requires measurements of the galaxy overdensity field,
δg(x), and the peculiar velocity field, vp(x). Both can be extracted
from redshift surveys, although peculiar velocities also require an
estimate of the true distance to the galaxy. These fields will be used
to constrain our model of the cross-correlation and we can then infer
constraints on our cosmological parameters of interest.

2.1 6dFGS

We choose to work with data from the 6dFGS (Jones et al. 2004,
2005, 2009) as it contains the largest single collection of peculiar ve-
locity measurements currently available. 6dFGS is a redshift survey
selected from the 2-Micron All-Sky Survey (2MASS) that covers
the entire southern sky except for 10 deg around the Galactic plane.
It can be broken into two samples: the redshift sample, 6dFGSz,
and the peculiar velocity sample, 6dFGSv.

As of the final data release, 6dFGSz contains 125 071 extragalac-
tic redshifts with a median redshift of z = 0.053. Our redshift sam-
ple for calculating the galaxy overdensity comes from the 6dFGS
baryon acoustic oscillation analysis by Beutler et al. (2011), who
selected galaxies with magnitude K ≤ 12.9 in regions of the sky that
had a completeness value of 60 per cent or greater, which yielded
75 117 galaxies.

In 6dFGS, peculiar velocities were obtained by applying the Fun-
damental Plane method to a high-signal-to-noise subset of spectra.
We use the 6dFGSv sample as defined by Springob et al. (2014),
which required signal-to-noise ratios greater than 5 Å−1, and ve-
locity dispersions greater than the resolution limit of the 6dF spec-
trograph (σ 0 ≥ 112 km s−1). This selection yielded 8885 galaxies.
Fig. 1 shows the sky and redshift distribution of both samples used
in this work.

Our analysis proceeds by gridding the data into cubic cells. Fol-
lowing Johnson et al. (2014), the peculiar velocity sample is gridded
into cubes of length L = 10 h−1 Mpc. The redshift sample is gridded
into cubes of length L = 20 h−1 Mpc; we found that gridding at
higher resolution did not affect our results so chose a larger gridding
to reduce the dimension of our data vector. The gridding produced
Nδ = 1036 cells for 6dFGSz and Nv = 2977 cells for 6dFGSv. We
now outline the steps involved in calculating the galaxy overden-
sity, and leave further discussion of the benefits and consequences
of gridding to Section 3.7.
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Figure 1. Distribution of the 6dFGSz and 6dFGSv samples, coloured by redshift. Both plots are equal-area Aitoff projections.

We require a volume-limited sample to calculate the galaxy over-
density; this ensures that our sample is unbiased by magnitude and
that the galaxy bias does not evolve with redshift. Data from 6dFGS
is magnitude-limited, and we calculate the absolute magnitude us-
ing the k-correction from Mannucci et al. (2001). For simplicity,
we limit our sample to the same volume as 6dFGSv, with a maxi-
mum redshift of z = 0.057; this defines the absolute magnitude cut:
galaxies need to be brighter than M = −23.37 to exceed the appar-
ent magnitude threshold at all redshifts. After the cut, our redshift
sample contains 20 796 galaxies.

The overdensity is related to the ratio between the number of
galaxies in a cell, Ncell, and the mean background number expected
for that cell, Nexp. Since the survey geometry and completeness af-
fect the expected number of galaxies, we proceed by determining
the selection function, assuming that the radial and angular com-
ponents are separable. We obtain the radial selection function by
taking a histogram of the sample and calculating the number den-
sity as a function of redshift, n(z). There is a slight increase in
number density with redshift, which can be explained by selection
effects and our choice of k-correction, so we fit a second-order
polynomial to obtain a functional form for n(z). We use the an-
gular selection function derived for 6dFGS by Jones et al. (2006).
We calculate the number of galaxies expected in a given grid cell
and normalize this to the total number of galaxies in our sample.
From this, we calculate the overdensity using δg = Ncell

Nexp
− 1, and

obtain the shot noise for each cell assuming Poisson statistics as
σδg = 1/

√
Nexp.

The peculiar velocity measurement for each cell is the average of
all velocities in that cell, and we add the observational uncertain-
ties in quadrature. See Abate et al. (2008) for a discussion of the
motivation behind this approach.

Due to the distribution of galaxies in 6dFGS, there are cells that
do not contain any galaxies. For example, a cell that covers the
Galactic plane will be empty since the survey did not take any data
in this region. For peculiar velocities, a cell can only be empty if we
have no measurement there: the cell has no information to contribute
to our analysis and can be safely removed. The overdensity cells
are more complicated, since an empty cell provides information
about the overdensity field as long as it is within the survey volume.
Thus, we keep empty overdensity cells if they fall within the 6dFGS
survey volume and exclude them otherwise.

Finally, since our sample is at very low redshift, we take the
effective redshift for our growth rate of structure measurement to
be at z = 0.

2.2 Simulation

We use simulated peculiar velocities and halo positions from the
GiggleZ simulation (Poole et al. 2015). The volume of the simula-
tion is 1 (h−1 Gpc)3, and it contains 21603 particles, each with a mass
of 7.5 × 109 h−1 M�. It was generated using GADGET-2 (Springel
2005), and haloes and subhaloes were identified with the SUBFIND al-
gorithm (Springel et al. 2001). The fiducial cosmology for GiggleZ
is a spatially flat �CDM fit to the Wilkinson Microwave Anisotropy
Probe (WMAP) five-year data (with the addition of baryon acoustic
oscillation and supernova data).

Applying our method to simulated data allows us to check how
well the approach recovers known input cosmological parameters,
as well as the effects of introducing the cross-covariance in the
absence of noise. We create a single approximate realization of the
6dFGS survey from GiggleZ, constructing a hemisphere around
an observer out to redshift z = 0.057 (the maximum redshift of
the 6dFGSv sample), corresponding to a radius of ∼150 h−1 Mpc.
For our galaxy overdensity sample, we use haloes with subhalo
masses between 1013 and 1013.5 h−1 M�. This limits the variation
in galaxy bias for our sample, as galaxy bias is related to halo mass
(e.g. Seljak et al. 2005). Linear theory prescribes that all velocities
should be fair tracers of the underlying matter distribution, so we
use all velocities available in our chosen volume. We project the
simulated velocities on to the line of sight to obtain the peculiar
velocity, and then convert this to a logarithmic distance ratio, η,
which is the observed quantity from the 6dFGS Fundamental Plane
analysis (see Section 3.7).

As with 6dFGS, we grid each sample to obtain a measurement
of the galaxy overdensity and average peculiar velocity in each
cell. We find that gridding both samples into cells of length L =
20 h−1 Mpc is sufficient for recovering the simulation cosmology
and has the added advantage of improving the computation speed
over a higher resolution gridding (see Section 3.7). Since our sam-
ples from the simulation are not affected by a selection function, we
can directly calculate the overdensity relative to the average number
density for our sample.
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We note that this realization is not a true mock of 6dFGS as
it does not contain observational errors for the peculiar velocities.
This is desirable since it allows us to perform a more accurate test of
our approach. The number densities are also different: we estimate
that our GiggleZ sample has a galaxy number density of ng = 1.7
× 10−4 ( h−1 Mpc)−3 and peculiar velocity number density of nv =
1.0 × 10−2 ( h−1 Mpc)−3, whereas our 6dFGSz sample has a number
density of ng = 3.6 × 10−3 ( h−1 Mpc)−3, and our 6dFGSv sample
has a number density of nv = 1.5 × 10−3 ( h−1 Mpc)−3. This does
not affect the ability of our GiggleZ sample to validate our method,
since we seek only to recover the input cosmological parameters.

3 TH E O RY A N D M E T H O D O L O G Y

It is physically intuitive that the overdensity field and peculiar ve-
locity field are correlated: increasing the matter density at a given
position will pull galaxies towards it though gravity. If we are to use
this information to test cosmological models, we must formalize
the theory for this correlation. This section provides a description
of the theoretical constructs used and their applications.

Throughout this paper, we will use a set of definitions for relative
positions and angles that are shown in Fig. 2. All positions are given
in units of h−1 Mpc, where the Hubble constant at redshift z = 0 is
H0 = 100 h km s−1 Mpc−1, and the reduced Hubble constant, h, is
given in Table 1 (see Section 3.6) for each cosmology.

3.1 Likelihood approach

Our aim is to model the galaxy overdensity and peculiar velocity
fields in a self-consistent way. For this, we expand on the approach
presented by Johnson et al. (2014), which was developed for the
peculiar velocity field only. This relies on the construction of an
appropriate likelihood function, which we detail now.

We begin by assuming that the measured galaxy overdensities,
δg = (δg1 , δg2 , . . . , δgNδ

), are correlated samples from an underlying
multivariate Gaussian distribution, which has a mean of zero. We as-
sume the same for the peculiar velocities, vp = (vp1 , vp2 , . . . , vpNv

).
These assumptions allow us to construct a theoretical likelihood
function, which is the probability of observing the data given our

Figure 2. The covariance is always calculated between a pair of obser-
vations at arbitrary positions xt and xs , separated by r = xt − xs and
angle α. When calculating the line of sight for a pair, we use the dot prod-
uct d · r = cos(γ ), where d = 1

2 (xt + xs ). All distances are measured in
h−1 Mpc.

model:

L = p(�|φ) (1)

= 1√
(2π)N |C(φ)| exp

(
−1

2
�T C(φ)−1�

)
(2)

where � is the data vector that contains the measured galaxy over-
densities and peculiar velocities with length N = Nv + Nδ , C is the
covariance matrix between each element of �, and φ is a vector
containing the parameters of the model we wish to constrain. In
this approach, we construct a theoretical model for the covariance
matrix in terms of φ. Since our model assumes that the mean values
of the overdensity field and peculiar velocity field are zero, we do
not explicitly include the subtraction of the mean from the data in
the likelihood function.

The covariance has the same dimension as the data, and the
structure of the data vector and covariance is

� =
(

δg

vp

)
, C =

(
Cδgδg Cδgvp

Cvpδg Cvpvp

)
. (3)

Each of the four submatrices in the covariance can be theoretically
modelled in terms of the parameters of interest, which is discussed
in Section 3.2.

The application of Bayes’ theorem allows us to evaluate the
probability of the model parameters given the data (the posterior)
by modifying the underlying probability distribution of our model
(the prior) through the ratio of the probability distribution of the
data given the model (the likelihood) to the probability distribution
of the data (the evidence). Mathematically,

p(φ|�) = p(φ)p(�|φ)

p(�)
. (4)

In order to evaluate this expression and find the values of the model
parameters that maximize the posterior, we need to determine the
prior and evidence (the likelihood is already described by equa-
tion 2). When working with a fixed cosmological model, the evi-
dence acts purely as a normalization and does not affect our ability
to determine which element of φ provides the best fit to the data
for our covariance model. If we take the prior on φ to be uniform,
this also becomes part of the normalization and the maximum of
the posterior can be determined purely from the maximum of the
likelihood. We justify our use of a uniform prior in Section 3.5 when
discussing the free parameters of our model.

3.2 Model covariance matrix

We now wish to model the four submatrices of the covariance as
shown in equation (3). These matrices are the autocorrelation and
cross-correlation functions of the galaxy overdensity and peculiar
velocity at two vector positions relative to the observer. These cor-
relation functions can be determined from the autopower and cross-
power spectra for the galaxy overdensity and velocity divergence
fields for a given cosmological model.

Assuming linear theory applies, the galaxy overdensity field is
proportional to the matter overdensity field, δm, and the velocity
field is proportional to the velocity divergence field, θ , in Fourier
space:

δg(k) = bδm(k), (5)

v(k) = −iaHf
k
k2

θ (k), (6)
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where b is the galaxy bias, f is the growth rate of structure, a is the
scalefactor and H is the Hubble constant in units of h km s−1 Mpc−1.
Since we are working in Fourier space, k is the wavevector and its
magnitude is given by the wavenumber, k, in units of h Mpc−1.
We note that θ (k) = δm(k) in linear theory, but keep these separate
for notational clarity. A complete derivation of equation (6) can be
found in Appendix C.

We have now met the first two free parameters of our model: the
galaxy bias, b, and the growth rate of structure, f. We purposefully
neglect the growth-rate information contained in RSD of the galaxy
overdensity field, as we wish to test how direct peculiar velocities
are correlated with the galaxy overdensity field. We discuss how
this choice affects our results in Section 5, and note that our method
can be extended to include RSD, which we will present in future
work (see Section 5.5).

The correlation function is the ensemble average of the product
of the first field with the complex conjugate of the second; for
example: Cδgδg (x1, x2) = 〈δg(x1)δ∗

g (x2)〉. In Appendix A, we use
equations (5) and (6) to derive the following expressions for the
autocovariance and cross-covariance between two positions xs and
xt separated by r = xt − xs and angle α:

Cδgδg (xs , xt ) = b2

2π2

∫
Pmm(k)Wδgδg (xs , xt , k)dk (7)

Cvpvp (xs , xt ) = (aHf )2

2π2

∫
Pθθ (k)Wvpvp (xs , xt , k)dk (8)

Cδgvp (xs , xt ) = −aHf b

2π2

∫
Pmθ (k)Wδgvp (xs , xt , k)dk (9)

Cvpδg (xs , xt ) = aHf b

2π2

∫
Pθm(k)Wvpδg (xs , xt , k)dk, (10)

where

Wδgδg (xs , xt , k) = k2j0(kr) (11)

Wvpvp (xs , xt , k) =
(

1

3
cos α[j0(kr) − 2j2(kr)]

+xsxt

r2
j2(kr) sin2 α

)
(12)

Wδgvp (xs , xt , k) = k(x̂t · r̂)j1(kr) (13)

Wvpδg (xs , xt , k) = k(x̂s · r̂)j1(kr) (14)

are the analytic solutions to the angular integrals involved in the
covariance derivations (and jn is the nth spherical Bessel function).
We note that the galaxy overdensity autocovariance is a well-known
result, and that the peculiar velocity autocovariance has been previ-
ously derived in the literature (e.g. Ma, Gordon & Feldman 2011).
To the best of our knowledge, our derivation of the theoretical
cross-covariance between the galaxy overdensity and peculiar ve-
locity fields is the first presented in the literature, although a similar
expression for the cross-covariance appears in Fisher (1995).

For the cross-covariance, it is especially important to note the
distinction between the galaxy overdensity position and the pecu-
liar velocity position, as it is always the peculiar velocity position
that appears in the dot product with the vector separation of the two
galaxies, r . The difference in sign between equations (9) and (10) is
illustrated by Fig. 3, in which we show two example galaxies along
the line of sight. If the galaxy overdensity increases, we expect the
peculiar velocity as seen by the observer to increase in the direction
of the overdensity. In the top panel, where the galaxy overdensity

Figure 3. The sign of the covariance between a peculiar velocity and a
galaxy overdensity is affected by their positions relative to the observer,
as the direction of positive velocity is away from the observer. Here, we
examine the effect of increasing the overdensity. In the top panel, the peculiar
velocity increases towards the observer (becomes more negative), and in the
bottom panel, it increases away from the observer (becomes more positive).

is closest to the observer, the peculiar velocity will increase to-
wards the observer, giving negative peculiar velocity and leading
us to expect a negative correlation (overdensity increases and pecu-
liar velocity decreases). This situation corresponds to equation (9)
and the analytic covariance is negative, as expected. Switching the
positions in the bottom panel, we expect a positive correlation, as
the peculiar velocity will increase away from the observer towards
the overdensity. In this case, equation (10) applies and the analytic
covariance is positive, as expected.

Throughout this work, we have assumed that velocities are fair
tracers of the matter overdensity field, implying that the velocity
bias is unity. This is a fair assumption on linear scales, but becomes
erroneous on small scales where the velocity bias introduces a scale-
dependent modification to the amplitude of the peculiar velocity
power spectrum. However, we consider a full systematic treatment
of velocity bias to be beyond the scope of this work, and defer to
Howlett et al. (2017) for a more detailed discussion of velocity bias
and its impact on results using data from future surveys.

3.3 Modification of the covariance to account for peculiar
velocity data

Although linear theory describes peculiar velocities as being drawn
from a multivariate Gaussian with a mean of zero, this is not the case
when observational errors are introduced. Springob et al. (2014)
have shown that peculiar velocities from the 6dFGS have uncer-
tainty distributions that are lognormal rather than Gaussian. We can
account for this by updating our model for the covariance.

For 6dFGS, peculiar velocities were obtained using the Funda-
mental Plane relation, which links the effective radius of an elliptical
galaxy, its effective surface brightness and its central velocity dis-
persion. It can be used to derive peculiar velocities because it acts
as a redshift-independent distance estimator, which can break the
degeneracy between the redshift from peculiar velocity, zvp = vp/c,
and the redshift from expansion, zH, that make up the observed
redshift of an object:

(1 + zobs) = (1 + zvp )(1 + zH ). (15)

As discussed by Magoulas et al. (2012), the Fundamental Plane fit
for each galaxy provides the probability distribution of the quantity
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log10[R(zobs)/R(zH)], which is the logarithmic ratio of a galaxy’s
observed effective radius (measured by the survey) to the effective
radius due purely to Hubble flow (inferred from the Fundamental
Plane fit). However, peculiar velocities are determined from the log-
arithmic ratio of the comoving distance inferred from the observed
redshift, D(zobs), to the true comoving distance, D(zH), which can
be calculated from R(zobs) and R(zH). Springob et al. (2014) de-
rived the probability distribution for the logarithmic distance ratio
η ≡ log10[D(zobs)/D(zH)] for each galaxy, and Johnson et al. (2014)
showed that the transformation between p(η) and p(vp) is non-
linear, resulting in a skewed distribution for p(vp) (see fig. 5 in
that work).

Since η has a Gaussian distribution, we rewrite the likelihood in
terms of this parameter. This requires a conversion factor from our
modelled peculiar velocity [equation (6)] to η. Such modelling has
already been performed for how peculiar velocities affect supernova
magnitudes (e.g. Hui & Greene 2006). The 6dFGS Fundamental
Plane uses a different convention to Type Ia supernovae, and we
derive the conversion factor between peculiar velocity and the loga-
rithmic distance ratio for 6dFGS in Appendix B. This gives a single
scaling factor that is a function of the observed redshift:

ξ = 1

ln(10)

(1 + zobs)

D(zobs)H (zobs)
, (16)

where H(zobs) is Hubble’s constant at the observed redshift, mea-
sured in h km s−1 Mpc−1, and D(zobs) is the comoving distance cor-
responding to the observed redshift, measured in h−1 Mpc. Then,

η = ξvp, (17)

where η is dimensionless, as expected for a logarithmic quantity.
The equations for the logarithmic distance ratio autocovariance and
the cross-covariances then become

Cηη(xs , xt ) = ξ 2Cvpvp (xs , xt ) (18)

Cδgη(xs , xt ) = ξCδgvp (xs , xt ) (19)

Cηδg (xs , xt ) = ξCvpδg (xs , xt ). (20)

3.4 Inclusion of error terms

We now discuss the inclusion of uncertainties; assuming that the
errors on the data points are independent, these appear along the
diagonal of the covariance matrix. For an observed value of η at po-
sition xi , we include the observed error in η from the Fundamental
Plane, σobs(xi) (as detailed in Springob et al. 2014), and a stochas-
tic velocity term to account for the breakdown of linear theory, σv .
This acts as the third and final free parameter in our analysis, taking
the same value for all diagonal entries of the peculiar velocity au-
tocovariance. The diagonal contribution to the logarithmic distance
ratio autocovariance will then be

σ 2
ηη(xs , xt ) = σ 2

obs(xs)δst + ξ 2σ 2
v δst (21)

Cηη(xs , xt ) = ξ 2Cvpvp (xs , xt ) + σ 2
ηη(xs , xt ), (22)

where δst is the Kronecker delta.
For an observed value of δg at position xi , we include the shot

noise contribution, σδg (xi), assuming that the galaxy counts are
drawn from a Poisson distribution, such that the shot noise variance
is equal to the inverse of the average number count (see Section 2.1).
The diagonal contribution to the galaxy overdensity autocovariance

will then be

σ 2
δgδg

(xs , xt ) = σ 2
g (xs)δst (23)

Cgg(xs , xt ) = Cδgδg (xs , xt ) + σ 2
δgδg

(xs , xt ). (24)

3.5 Cosmological constraints

Our model parameters are the growth rate of structure, f, the galaxy
bias, b, and the stochastic velocity, σ v . We do not vary the under-
lying cosmological parameters in this study and instead use fixed
fiducial power spectra Pmm(k), Pmθ (k) and Pθθ (k) when calculating
the covariances in equations (7)–(10). We take uniform priors on the
model parameters since we do not want to impose any restrictions
on the relation between f and b, and only impose the physically mo-
tivated condition that none of our free parameters may be negative.

Both the growth rate of structure and the galaxy bias scale the
amplitude of the three power spectra, and are hence degenerate with
another cosmological parameter, σ 8, which is the root-mean-square
amplitude of linear matter fluctuations in spheres of 8 h−1 Mpc.
Since we have fixed the fiducial power spectra, we can divide out
by the fiducial σ 8 value, and instead constrain the parameter com-
binations fσ 8 and bσ 8. For equations (7)–(10), we substitute

f → f σ8/σ
fid
8 , (25)

b → bσ8/σ
fid
8 . (26)

Since this is the first use of this approach to constrain cosmo-
logical parameters, we wish to examine how including the cross-
covariance affects our constraints compared to only using the auto-
covariance pieces. To do this, we consider two tests:

(i) Assume the galaxy overdensity and peculiar velocity fields
are uncorrelated, setting Cδgvp = Cvpδg = 0.

(ii) Include the cross-correlation, calculating Cδgvp and Cvpδg .

Comparing the constraints from these tests allows us to examine
not only the effect of including the extra information, but whether
the data supports a cross-correlation. In particular, we note that
in the first test, fσ 8 is only constrained by the peculiar velocity
autocovariance, and bσ 8 is only constrained by the galaxy overden-
sity autocovariance, whereas the second test also constrains their
product, f bσ 2

8 .
Forecasts for cosmological surveys, which use the Fisher matrix

formalism, have shown that constraints on cosmological parameters
improve when the cross-covariance is included (e.g. Howlett et al.
2017). While the constraint on the ratio of these parameters is im-
proved due to the correlated sample variance of the fields, the indi-
vidual parameters should also see improved constraints from need-
ing to satisfy the extra relationship imposed by the cross-covariance.
Abramo & Leonard (2013) demonstrated this by diagonalizing the
Fisher matrix for correlated data.

Traditionally, works that compare peculiar velocity and galaxy
overdensity measurements tend to constrain the RSD parameter, β,
as opposed to the galaxy bias, where β = f/b (Pike & Hudson 2005;
Davis et al. 2011; Carrick et al. 2015). This comes from the relation-
ship between the peculiar velocity field and the matter overdensity
field described by gravitational instability theory (Peebles 1976):

v(r) = aHf

4π

∫
d3r ′δm(r ′)

r ′ − r
|r ′ − r|3 (27)

= aHβ

4π

∫
d3r ′δg(r ′)

r ′ − r
|r ′ − r|3 . (28)
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This applies to galaxy distributions that have been corrected for
RSDs such that δg is in real space. In our analysis, we have absorbed
RSDs into the galaxy bias such that we are effectively fitting for
the redshift-space galaxy bias, bs, in terms of the real-space galaxy
bias, br:

b2
s = b2

r

(
1 + 2

3
β + 1

5
β2

)
(29)

= f 2

(
1

5
+ 2

3β
+ 1

β2

)
, (30)

where bs is boosted by the total contribution of RSDs to the
power spectrum (Kaiser 1987). This allows us to parametrize equa-
tions (7)–(10) in terms of f and β. We will apply this parametrization
to our 6dFGS analysis, but will continue to use f and br for the sim-
ulation data, since these are in real space.

3.6 Generation of the fiducial matter power spectrum

The fiducial power spectra required for the covariances are com-
puted prior to commencing the likelihood runs. We generated the
velocity divergence power spectrum, Pθθ , and the cross power spec-
trum, Pmθ = Pθm, with VELMPTBREEZE. This is an extension to
MPTBREEZE (Crocce, Scoccimarro & Bernardeau 2012) and uses
two loop multipropagators to generate the power spectra. While
VELMPTBREEZE also provides the matter power spectrum, Pmm(k),
we instead generate the non-linear matter power spectrum from the
Code for Anisotropies in the Microwave Background (CAMB; Lewis,
Challinor & Lasenby 2000; Lewis & Challinor 2011), which uti-
lizes non-linear corrections from HALOFIT. This is because the galaxy
overdensity autocovariance is influenced by scales beyond the linear
regime (see Section 3.8), so we require a more accurate determina-
tion of the matter power spectrum.

For our simulation tests, the power spectra are generated from the
same cosmological parameters as used in GiggleZ, which allows us
to check whether we recover the simulation input values. For the
6dFGS analysis, we use power spectra generated from the median
values of the six-parameter base �CDM model for the Planck 2015
TT-lowP data (Planck Collaboration VIII 2016). To check how
our results are affected by this choice, we also use power spectra
generated from the median values of the six-parameter base �CDM
model for the WMAP five-year data (Komatsu et al. 2009). We list
these parameters in Table 1.

Table 1. Cosmological parameters for the three cosmologies used in this
analysis. The top section shows the six base parameters for standard �CDM:
physical baryon density; physical dark matter density; reduced Hubble
constant; scalar spectral index; scalar amplitude (with pivot point k0 =
0.002 h Mpc−1 for GiggleZ and WMAP, and k0 = 0.05 h Mpc−1 for Planck)
and reionization optical depth. The bottom section shows σ 8, which is a
derived parameter.

GiggleZ Planck WMAP

�bh2 0.022 67 0.022 22 0.022 73
�ch2 0.1131 0.1197 0.1099
h 0.705 0.6731 0.719
ns 0.960 0.9655 0.963
As 2.445 × 10−9 2.195 × 10−9 2.41 × 10−9

τ 0.084 0.078 0.087

σ fid
8 0.812 0.8417 0.7931

3.7 Gridding of data

In our analysis we grid the data into cells, and determine the covari-
ance between cells. Gridding allows us to

(i) calculate the overdensity in each cell;
(ii) smooth over non-linear effects;
(iii) reduce the computation time by lowering the dimensionality

of the covariance matrix and data vector.

See Section 2.1 for details of how the galaxy overdensity and
peculiar velocity is calculated for each cell.

The second two points have been discussed by Abate et al. (2008)
and Johnson et al. (2014). Most importantly, the gridding has two
effects on the modelling. The first is that smoothing samples on to
a grid will reduce small-scale power, which we account for by mul-
tiplying the power spectra by a window function. We use a cubic
gridding approach, where each grid cell has length L in h−1 Mpc,
corresponding to a sinc function in Fourier space. In three dimen-
sions, the window function becomes

�(k, L) =
〈

8

L3

sin
(
kx

L
2

)
kx

sin
(
ky

L
2

)
ky

sin
(
kz

L
2

)
kz

〉
k∈k

, (31)

where the average is applied to all k vectors that have mag-
nitude k. Since we may use different gridding sizes for pecu-
liar velocities and overdensities, we define �δg (k) = �(k, Lδg ) and
�vp (k) = �(k, Lvp ). Our modified covariance equations then be-
come

C ′
δgδg

(xs , xt ) = b2

2π2

∫
Pmm(k)Wδgδg (xs , xt , k)�2

δg
(k)dk (32)

C ′
vpvp

(xs , xt ) = (aHf )2

2π2

∫
Pθθ (k)Wvpvp (xs , xt , k)�2

vp
(k)dk (33)

C ′
δgvp

(xs , xt ) = −aHf b

2π2

∫
Pmθ (k)Wδgvp (xs , xt , k)

× �δg (k)�vp (k)dk (34)

C ′
vpδg

(xs , xt ) = aHf b

2π2

∫
Pθm(k)Wvpδg (xs , xt , k)

× �vp (k)�δg (k)dk. (35)

After gridding, the position of the galaxy overdensity and average
peculiar velocity for each cell is set to be the centre of that cell.

The second effect is that a correction must be applied to the
diagonal elements of the peculiar velocity autocovariance to model
the varying shot noise involved in taking the average of Ni peculiar
velocities in each cell. Abate et al. (2008) proposed the following
correction:

Ccorr
vpvp

(xi , xj ) = C ′
vpvp

(xi , xj ) +
Cvpvp (xi , xj ) − C ′

vpvp
(xi , xj )

Ni

δij ,

(36)

which we adopt in our analysis.

3.8 Integration bounds

In theory the integral over k in equations (32)–(35) must be eval-
uated from k = 0 to k = ∞, which is not practical. As such, we
must pick limits for the integral. The lower limit is dictated by the
largest scale mode that the fields are sensitive to. For the simulated
data, this scale is the side-length of the simulation box (1 h−1Gpc),
which corresponds to kmin = 0.006 h Mpc−1. The 6dFGS data may
be influenced by modes larger than the survey volume, so there is
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no explicit restriction on the value of the minimum wavenumber.
We set kmin = 0.0025 h Mpc−1, similar to values used in the peculiar
velocity autocovariance studies conducted by Johnson et al. (2014)
and Macaulay et al. (2012). The upper limit is dictated by our ability
to model the small, non-linear scales. Johnson et al. (2014) found
that setting kmax = 0.15 h Mpc−1 for the peculiar velocity autoco-
variance provided a good compromise between accurate recovery
of fiducial parameters and constraining power (see fig. 8 of that
paper). We adopt this value for our peculiar velocity autocovariance
and find that it is also suitable for the cross-covariance (for both
data sets).

For the galaxy overdensity autocovariance, we find that there is
a significant contribution to the integral for k > 0.15 h Mpc−1. We
therefore add a second integral, which we refer to as the additional
integral. This integral has a fixed galaxy bias, and acts to increase
the value of the covariance without needing to provide an advanced
model of the bias on non-linear scales. The integral for the galaxy
overdensity autocovariance then becomes

C ′
δgδg

(xs , xt ) = b2
fit

∫ kmax

kmin

f (k, xs , xt )dk

+ b2
add

∫ kadd

kmax

f (k, xs , xt )dk, (37)

where f(k) represents the integrand in equation (32). We choose
kadd = 1.0 h Mpc−1, as this is where the gridding window function
�2

δg
(k) becomes close to zero. In Section 4.2, we show that the

additional integral is required for the simulation data and determine
the best-fitting value for badd. We repeat this analysis for 6dFGS in
Section 5.2, and show how the value of badd affects the constraint
on fσ 8.

3.9 Evaluating the likelihood function

We can now construct the final covariance. The data vector and
covariance now have the following structure:

� =
(

δg

η

)
, C =

(
Cgg Cgη

Cηg Cηη

)
, (38)

where the data vector, �, contains the galaxy overdensity and log-
arithmic distance ratio measurements for each grid cell, and the
covariance components have the form:

Cgg = C′
δgδg

+ σ 2
δgδg

I (39)

Cηη = ξ 2Ccorr
vpvp

+ σ 2
ηηI (40)

Cgη = ξC′
δgvp

(41)

Cηg = ξC′
vpδg

. (42)

We wish to constrain the free parameters fσ 8, bσ 8 and σ v , and do
this by evaluating the likelihood equation (equation 2) for a grid-
ded parameter space. We invert the covariance matrix by applying
the GNU SCIENCE LIBRARY Cholesky solver to the equation Cκ = �,
which yields κ = C−1�. The exponent of the likelihood equation is
obtained by multiplying this by − 1

2 �T . We analyse our results us-
ing the publicly available CHAINCONSUMER PYTHON package (Hinton
2016), which provides parameter constraints for gridded likelihood
evaluations.

4 SI MULATI ON R ESULTS

4.1 Parameter constraints

In this section, we use data from an N-body simulation to validate
our method and examine how the addition of the cross-covariance
affects the analysis (discussed in Section 3.5). We constructed an
approximate realization of the 6dFGS from GiggleZ as discussed in
Section 2.2. Since the simulation data is in real space, all references
to galaxy bias within this section refer to the real-space galaxy
bias, br.

We expect to recover the standard model prediction of the growth
rate of structure, which is calculated from f(z = 0) = �m(z = 0)0.55.
We obtain the best-fitting value for the additional bias, badd, by
fitting for this along with the standard bias, bfit, using only the galaxy
overdensity data (see Section 4.2). We find bfit = 1.59 and badd =
1.61 for our GiggleZ galaxy overdensity sample. For the fiducial
σ 8 value of GiggleZ (listed in Table 1), we expect to recover fσ 8 =
0.398 and bfitσ 8 = 1.29. We do not set an expected value for σv ,
as this only serves as a nuisance parameter in this test. Applying a
gridding length of L = 20 h−1 Mpc for the galaxy overdensity and
peculiar velocity data is sufficient to recover the input parameters.
We also tested kmax values of 0.10 and 0.20 h Mpc−1, and recover
the input parameters at the 2σ level in both cases.

The posteriors for our free parameters when assuming no cross-
covariance (Cgη = Cηg = 0) are shown in Fig. 4 (a), and the pos-
teriors when including the cross-covariance are shown in Fig. 4(b).
The maximum likelihood and median (with 68 per cent credible in-
tervals) are given in Table 2. We obtain a 7 per cent measurement of
fσ 8 and a 5 per cent measurement of bfitσ 8. Both tests recover the in-
put parameters at the 1σ level with a reasonable χ2/dof, validating
our analysis pipeline.

The results of our GiggleZ test provide useful insight into our
method. When setting the cross-covariance to zero, we would expect
the bfitσ 8–fσ 8 contour to be uncorrelated, since Cgg only constrains
bfitσ 8 and Cηη only constrains fσ 8. We calculated the Pearson cor-
relation coefficient from our gridded likelihood result, finding ρ =
−6.3 × 10−9, indicating an almost non-existent correlation. This is
represented visually in Fig. 4(a), since the contour forms an ellipse
that is aligned with both axes.

Consequently, if a correlation exists between galaxy overdensity
and peculiar velocity, then including the cross-correlation should
change the tilt of the ellipse. We see in Fig. 4(b) that this is the case:
the contour has become correlated and exhibits a positive slope.
This highlights that the data are intrinsically correlated and that the
cross-covariance has the power to constrain the relationship between
bfitσ 8 and fσ 8. Here, we find a Pearson correlation coefficient of ρ =
0.48, indicating a moderate correlation, which is consistent with our
visual interpretation.

Multiple works have indicated that we expect to see an improve-
ment in constraints when including cross-covariances (see Sec-
tion 3.5). We find that this is the case for our correlated parameters,
bfitσ 8 and fσ 8, although the improvement is greater for the galaxy
bias. This may be in part because we do not include any observa-
tional uncertainty for the peculiar velocity autocovariance in order
to test the recovery of the fiducial model more precisely. Coupling
this with the fact that the number density for our peculiar velocity
sample [nv = 1.0 × 10−2 ( h−1 Mpc)−3] is higher than that for the
galaxy overdensity sample [ng = 1.7 × 10−4 ( h−1 Mpc)−3], we
can also explain why the fractional uncertainty is lower for fσ 8 than
for bσ 8. If a parameter is already so well determined from having
a high number density and low uncertainties, the cross-covariance
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Figure 4. The posteriors of our free parameters, σv (km s−1), fσ 8 and bfitσ 8, with shaded 68 per cent credible intervals, when fitting to the GiggleZ sample.
The black dashed lines show the expected fσ 8 and bfitσ 8 values assuming the fiducial GiggleZ cosmology (Table 1) and an additional bias of badd = 1.60. Our
analysis pipeline successfully recovers these values.

Table 2. Maximum likelihood (ML) and median values (with 68 per cent
credible intervals) of our free parameters for the fit to the GiggleZ sample.
We include the χ2 value and χ2/dof statistic for the maximum likelihood.

No cross-covariance Cross-covariance
ML Median ML Median

σv (km s−1) 50.0 47.6 ± 6.0 50.0 48.6+5.8
−6.0

fσ 8 0.390 0.399+0.027
−0.026 0.390 0.395 ± 0.026

bfitσ 8 1.3 1.303+0.077
−0.075 1.275 1.279+0.068

−0.066

χ2 2480.52 – 2484.09 –
χ2/dof 0.99 – 0.99 –

may contribute less information. We expect this to change when
working with the 6dFGS data.

4.2 Additional bias

In this section, we show that the GiggleZ data require the additional
integral discussed in Section 3.8, and determine the best-fitting
value for badd for our galaxy overdensity sample. We do this by
evaluating the likelihood using only Cδgδg (φ):

Lgg = 1√
(2π)Nδ |Cδgδg (φ)|

exp

(
−1

2
δg

T Cδgδg (φ)−1δg

)
, (43)

where φ = (bfitσ8, baddσ8). We allow the baddσ 8 parameter to vary
over [0,2], where a value of 0 indicates that the additional integral
is not required by the data when constructing the covariance. The
results are given in Fig. 5.

We find median values of bfitσ 8 = 1.29 and baddσ 8 = 1.306, with a
χ2/dof of 1.01. badd = 0 is strongly disfavoured, with �χ2 = 241.27.
We take this as sufficient evidence for including the additional
integral in our analysis. The case where badd = bfit is within 1σ of

Figure 5. 68, 95 and 99 per cent credible regions of bfitσ 8 and baddσ 8

when fitting the GiggleZ galaxy overdensity sample. The black dashed line
represents the bfitσ 8 we expect to recover given the mass range of our
GiggleZ galaxy overdensity sample.

our median, which might suggest that the covariance needs to be
fitted beyond our chosen kmax of 0.15 h Mpc−1. However, we do not
wish to include non-linear information in our likelihood analysis,
so fix the value of badd rather than extending the value of kmax. Our
fitted bias is consistent with the power spectrum fits to GiggleZ data
by Koda et al. (2014), which suggest a bias value of bσ 8 = 1.2 for
the mass range of our sample.
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Figure 6. The posteriors of our free parameters, σv (km s−1), fσ 8 and β, with shaded 68 per cent credible intervals, when fitting to the 6dFGS sample. The
dashed lines show the expected fσ 8 and bfitσ 8 values assuming the fiducial Planck 2015 cosmology (Table 1) and an additional bias of badd = 1.50.

5 DATA R ESULTS

5.1 Parameter constraints

We now move to using the (fσ 8, β, σ v) parametrization discussed
in Section 3.5. Our fiducial cosmology is the Planck 2015 base-set
of parameters for �CDM, so we expect to recover fσ 8 = 0.446. The
observed data is in redshift space, so all references to the galaxy
bias within this section refer to the redshift-space bias, bs. The
best-fitting biases for our galaxy overdensity sample are bfitσ 8 =
1.379 and baddσ 8 = 1.50 (see Section 5.2), giving an expected β

value of β = 0.364 from equation (30). We repeat the same test as
performed for the simulated data, comparing the constraints with
and without the cross-covariance. We do not expect the tilt of the
fσ 8–β contour to change appreciably, but do expect the uncertainty
in both parameters to reduce. This is because the gradient of the
fσ 8–β contour is the galaxy bias, which we do not expect to be
significantly affected by the inclusion or exclusion of the cross-
covariance.

The posteriors for our free parameters when assuming no cross-
covariance (Cgη = Cηg = 0) are shown in Fig. 6 (a), and the pos-
teriors when including the cross-covariance are shown in Fig. 6(b).
The maximum likelihood and median (with 68 per cent credible
intervals) are given in Table 3.

When including the cross-covariance, we measure f σ8 =
0.424+0.067

−0.064 which is consistent at the 1σ level with the prediction
from �CDM using the Planck 2015 cosmological parameters. The
fractional uncertainty in fσ 8 is 18 per cent when the cross-covariance
is ignored and drops to 15 per cent when the cross-covariance is
included. We also measure β = 0.341+0.062

−0.058 which is consistent at
the 1σ level with our expectation, and σv = 210+57

−63 km s−1 which is
consistent with the literature (σ v usually takes a value between 100
and 300 km s−1). The χ2/dof value shows that our model is a good
fit to the data. We see an improvement in the constraints on both fσ 8

and β when including the cross-covariance, consistent with what

Table 3. Maximum likelihood (ML) and median values (with 68 per cent
credible intervals) of our free parameters for the 6dFGS sample. We include
the χ2 value and χ2/dof statistic for the maximum likelihood.

No cross-covariance Cross-covariance
ML Median ML Median

σv (km s−1) 175 174+63
−74 225 210+57

−63

fσ 8 0.425 0.461+0.087
−0.079 0.400 0.424+0.067

−0.064

β 0.350 0.380+0.087
−0.075 0.325 0.341+0.062

−0.058

χ2 3835.34 – 3832.49 –
χ2/dof 0.96 – 0.96 –

we saw from the simulated data. The effect is visually evident in
Fig. 6, where the contour in β–fσ 8 space shrinks considerably after
adding the cross-covariance. We calculated the Pearson correlation
coefficient between β and fσ 8 from our gridded likelihood results,
finding ρ = 0.97 when excluding the cross-covariance, and ρ =
0.96 when including it. Both cases exhibit strong correlation, which
is consistent with the fact that β is directly proportional to fσ 8 by
definition.

When the cross-covariance is introduced, the best-fitting values
of fσ 8 and β both decrease, and σ v increases, while the χ2 statistic
slightly decreases. σ v only contributes to the diagonal elements of
the peculiar velocity autocovariance, so any change in this parameter
when introducing the cross-covariance will come from its coupling
with fσ 8. If including the cross-covariance lowers fσ 8, then σ v will
increase to compensate for the change in the autocovariance values
along the diagonal.

5.2 Additional bias

In Section 3.8, we discussed the additional integral, which increases
the value of the galaxy overdensity autocovariance without directly

MNRAS 471, 839–856 (2017)
Downloaded from https://academic.oup.com/mnras/article-abstract/471/1/839/3871371
by Swinburne Library user
on 08 February 2018



Density–velocity cross-correlation in 6dFGS 849

Figure 7. 68, 95 and 99 per cent credible regions of bfitσ 8 and baddσ 8 for
the 6dFGS galaxy overdensity sample.

fitting for the galaxy bias on small scales where non-linear mod-
elling is unreliable. To determine the best-fitting bias for both inte-
grals, we follow the same procedure as for the simulation data (see
Section 4.2). The results are given in Fig. 7.

We find median values of bfitσ 8 = 1.38 and baddσ 8 = 1.50, with
a χ2/dof of 1.10. badd = 0 is strongly disfavoured, with �χ2 =
3206.79. As with the simulation results, we find that the case where
badd = bfit is allowed by the data. Again, since we do not wish to
include non-linear information, we fix badd at the median value and
do not change kmax.

It is clear from Fig. 7 that changing badd has little effect on the
value of bfit. However, since both bfit and f appear in the cross-
covariance, it is also important to examine how the value of badd

affects our constraints on fσ 8. We chose three different badd values
(1.175, 1.675, 2.375) and ran the full likelihood analysis (using
equation 2) for each. The fiducial power spectra for these runs
were generated using the Planck 2015 cosmological parameters
(see Section 3.6).

We also investigated how the choice of cosmological parameters
influences our results by adding an additional likelihood run that
used the WMAP five-year parameters to generate the fiducial power
spectra. We display the 68 per cent credible intervals around the
maximum likelihood for fσ 8 from the four runs in Fig. 8.

When including the additional integral, we find that the value
of badd does not significantly influence the constraints on fσ 8. The
maximum likelihood values are all consistent at the 1σ level, and
the difference between the maximum likelihood value of fσ 8 of
the highest and lowest badd is ∼0.04, which accounts for around
one-third of the statistical error.

Using the cosmological parameters from WMAP to construct the
power spectra gives a lower fσ 8 than using those from Planck for
the same additional bias. However, we note that the difference is
small, ∼0.02 between the maximum likelihood values. Given that
the fractional uncertainties in our measurements of fσ 8 are around
15 per cent, the small contribution of ∼3 per cent from the choice of
cosmological parameters is subdominant. However, analyses using
data from future surveys will need to be aware that the constraint on

Figure 8. Maximum likelihood (solid bar) and 68 per cent credible interval
(shaded region) of fσ 8 for the 6dFGS sample including the cross-covariance
modelling. Results are shown for different values of the additional galaxy
bias as well as using both the WMAP five-year and Planck 2015 fiducial
cosmologies.

fσ 8 is influenced by the choice of cosmological parameter values
used to generate the fiducial power spectra.

5.3 Direct evidence of cross-covariance

An interesting visualization of our results is to directly plot the ana-
lytic cross-covariance for the median values of our free parameters
as a function of the separation of grid cells, which can then be com-
pared to an estimate of the cross-covariance present in the 6dFGS
data. We represent the estimated covariance as

�δgη = 〈δgη〉 − 〈δg〉〈η〉. (44)

In principle, the average is performed for each pair of cells over
many realizations of the data, which would produce a full covari-
ance matrix that could be directly compared to our model. Given
that we only have a single realization of the 6dFGS sample, we in-
stead perform the average for pairs with similar orientation within
the survey, specifically their separation, r , and their angle to the
line of sight, γ (see Fig. 2). We split the range −1 < cos (γ ) <

1 into four equal bins, as this prevents the signals from averag-
ing out. The separation of each pair is assigned to bins of width
20 h−1 Mpc beginning at 20 h−1 Mpc and ending at 240 h−1 Mpc.

Performing the average for N pairs in each bin produces the
covariance as a function of separation for each angular bin, and we
estimate the standard deviation of this quantity as

σδgη = 1√
N

√〈
δ2

gη
2
〉

− 〈δgη〉2. (45)

We average the model covariance matrix for the median values of
our free parameters using the same scheme. This can then be directly
compared to our estimation from the data, which is shown in Fig. 9.
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Figure 9. Estimation of the 6dFGS data covariance, 〈δv〉, where the shaded contour represents the covariance plus one standard deviation above and below.
The black line shows the prediction from our 6dFGS model covariance for the median values obtained when including the cross-covariance.

We note that the standard deviations will be underestimated since
there will be an additional contribution from sample variance that
we have not estimated. However, the agreement between our model
and the estimated covariance of our data is reassuring. There is
good visual evidence from the estimated contours that there is a
non-zero cross-correlation between the peculiar velocity field and
galaxy overdensity field on separations up to ∼50 h−1 Mpc, and
that we are able to successfully model this.

During the production stage for this work, Nusser (2017) pre-
sented a direct measurement of the cross-correlation using pecu-
liar velocities from the cosmicflows-3 catalogue (Tully, Courtois &
Sorce 2016) and galaxy positions from the 2MASS Redshift Sur-
vey (Huchra et al. 2012). They also find evidence for a non-zero
cross-correlation on scales up to ∼50 h−1 Mpc.

5.4 Comparison to previous work

5.4.1 Multitracer approaches

Previous theoretical studies have shown that using multiple trac-
ers of the underlying matter overdensity field can improve con-
straints on cosmological parameters (McDonald & Seljak 2009;
Seljak 2009; Gil-Marı́n et al. 2010; Bernstein & Cai 2011; Abramo
& Leonard 2013). While these works focus on different cosmo-
logical tracers and parameters of interest, there are several broad
conclusions:

(i) Tracers will contain a statistical error contribution from the
sample variance associated with the matter overdensity field.

(ii) The sample variance is associated with the volume of space
observed and is linked to the number of Fourier modes observed at
a given scale.

(iii) The sample variance contributes to the uncertainty in the
power spectrum measurement through σP /P = √

2/Nm for all ob-
servable modes, Nm, so large scales (small k) will be most affected
since there are fewer modes for a fixed volume.

(iv) For two tracers, the fact that they both trace the same matter
overdensity field provides two benefits:

(a) The uncertainty in the ratio of the two tracers does not contain
a sample variance contribution and can be precisely known in the
limit of no other uncertainty.

(b) The cross-power spectrum is available and provides addi-
tional constraints.

Blake et al. (2013) presented the first multitracer RSD analysis
of observational data, using two galaxy samples with different bi-
ases from the Galaxy And Mass Assembly survey. They found a
10–20 per cent improvement in their measurement of fσ 8 when uti-
lizing the cross-covariance. We see behaviour that is consistent with
the expected outcomes from theoretical work and with the results
presented by Blake et al. (2013): our constraints on fσ 8 and β both
improve when including the cross-covariance term. The fractional
improvement on our measurement of fσ 8 is 20 per cent, and the
fractional improvement on β is 26 per cent.

5.4.2 Forecasts for 6dFGS cross-covariance analysis

Forecasts of parameter constraints have been performed for multi-
tracer analyses that utilize galaxy overdensity and peculiar velocity
data. Koda et al. (2014) and Howlett et al. (2017) presented forecasts
for 6dFGS that can be compared to our results.

Koda et al. (2014) performed a Fisher matrix forecast for fσ 8

and β given the properties of the peculiar velocity sample, 6dFGSv.
Constraining the parameters out to k = 0.1 h Mpc−1, they found
an expected fractional uncertainty of 25 per cent on fσ 8 when
only using the peculiar velocity autocovariance, falling to an ex-
pected fractional uncertainty of 15 per cent when including the
cross-covariance and galaxy overdensity autocovariance. The com-
plete covariance also gives an expected fractional uncertainty of
16 per cent on β.
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Howlett et al. (2017) used the same modelling and formalism
as Koda et al. (2014) but considered multiple extensions. For ex-
ample, they modelled the full 6dFGSz and 6dFGSv samples. They
found similar results to Koda et al. (2014), with the peculiar ve-
locity autocovariance providing an expected fractional uncertainty
of 25.1 per cent on fσ 8, and expected fractional uncertainties of
11.2 per cent on fσ 8 and 12.3 per cent on β when including the
cross-covariance and galaxy overdensity autocovariance. The tight-
ening of their constraints relative to Koda et al. (2014) can be
attributed to the increased number of galaxies from modelling the
full 6dFGSz sample.

Our analysis contains some differences in terms of modelling,
sample and scales fitted. However, we find that our results are
in line with these forecasts. We obtain fractional uncertainties of
15 per cent on fσ 8 and 18 per cent on β when using the cross-
covariance, and 18 per cent on fσ 8 when only using the peculiar
velocity autocovariance. The fractional uncertainties when includ-
ing the cross-covariance are very similar to those from Koda et al.
(2014) although larger than those from Howlett et al. (2017); this
is likely due to their significantly larger galaxy overdensity sample.
Our uncertainty from the peculiar velocity autocovariance is some-
what smaller than forecasted by both studies, in agreement with the
results of (Johnson et al. 2014, see below), which we attribute to
slight differences in assumptions.

5.4.3 6dFGS velocity and redshift-space distortion results

Johnson et al. (2014) constrained fσ 8 using only the peculiar ve-
locity autocovariance. When using the 6dFGSv sample, they found
f σ8 = 0.428+0.079

−0.068, which has a fractional uncertainty of 17 per cent.
While the fractional uncertainties are similar, our fσ 8 value is higher
when only using the peculiar velocity autocovariance. However, we
find a similar value of f σ8 = 0.424+0.067

−0.064 once cross-covariance is
included. This may be due to subtle differences in modelling and ap-
proach between our two studies. In particular, Johnson et al. (2014)
analytically marginalized over the peculiar velocity zero-point,
which would lower their measurement relative to ours. Huterer et al.
(2017) also presented an analysis of the peculiar velocity autocovari-
ance for 6dFGSv. We note that they applied their own Fundamental
Plane model to the data. Their constraint of f σ8 = 0.481+0.067

0.064 at an
effective redshift of z = 0.02 is consistent with our result and that
from Johnson et al. (2014).

We can also compare our results to the RSD analysis for 6dFGS,
performed by Beutler et al. (2012), who found fσ 8 = 0.423 ± 0.055
at an effective redshift of z = 0.067, and β = 0.373 ± 0.054, with
fractional uncertainties of 13 per cent and 14 per cent, respectively.
Both of our constraints are consistent with this work at the 1σ

level. We do not expect to perfectly recover β, as our use of a
volume-limited sample will prefer higher mass haloes compared to
the sample used by Beutler et al. (2012), which would increase our
galaxy bias relative to theirs.

Finally, we compare our result to recent measurements of the
growth rate from 6dFGS by Achitouv et al. (2017). They present
an RSD analysis of the galaxy–galaxy and galaxy–void correlation
functions, utilizing realistic mocks to estimate the uncertainties
in their results. For the galaxy–galaxy correlation, their result of
fσ 8 = 0.42 ± 0.06 is entirely consistent with that from Beutler
et al. (2012). They also find fσ 8 = 0.39 ± 0.11 when analysing
the void–galaxy correlation, which has a fractional uncertainty of
28 per cent. Again, we are consistent at the 1σ level with both of
these results. See Fig. 10 for a visual comparison of the previous
6dFGS fσ 8 measurements with the measurement from this work.

Figure 10. Maximum likelihood (solid bar) and 68 per cent credible interval
(shaded region) of fσ 8 for this work. Other works from 6dFGS are shown in
purple, and velocity–velocity comparisons are shown in pink. For Achitouv
et al. (2017), gg corresponds the galaxy–galaxy result, and vg corresponds
to the void–galaxy result.

5.4.4 Density–velocity comparison approaches

The practice of studying the relationship between the observed
galaxy overdensity and peculiar velocity fields dates back to the
1990s and has revolved around using gravitational instability to link
them (for early examples see Kaiser et al. 1991 and Strauss et al.
1992). The general approach used over the last 20 years involves
measuring both fields, applying gravitational instability theory to
predict one from the other, and then comparing the prediction and
the data to extract constraints on cosmological parameters. The most
popular method is a velocity–velocity comparison, where the model
peculiar velocity field is constructed from the real-space galaxy
overdensity field using equation (28). β = f/br is then constrained
by comparing the model peculiar velocity field to the observed one.
For an early review of this topic and different comparison methods,
see Strauss & Willick (1995).

We compare our results to fσ 8 constraints from several represen-
tative works: Pike & Hudson (2005), Davis et al. (2011) and Carrick
et al. (2015). Pike & Hudson (2005) and Carrick et al. (2015) used
similar methods where they utilized VELMOD (a velocity–velocity
comparison approach developed by Willick et al. 1997) with some
extensions. Davis et al. (2011) expanded both the modelled pecu-
liar velocity field and the observed field in terms of a set of basis
functions and then compared the expansion coefficients between
the fields. All three analyses used similar data sets, relying on red-
shifts collected from the 2MASS (with various extensions), and
peculiar velocities from the Spiral Field I-Band survey (again with
extensions).

We do not compare β values, as the galaxy overdensity samples
will be different between 6dFGS and other surveys, which affects
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the galaxy bias. We quote the normalized fσ 8 results, which each
survey produces by making an estimate of the galaxy bias for their
sample. Pike & Hudson (2005) found fσ 8 = 0.44 ± 0.06, Davis
et al. (2011) found fσ 8 = 0.32 ± 0.04 and Carrick et al. (2015)
found fσ 8 = 0.427 ± 0.027. See Fig. 10 for a visual comparison of
these results with the result from this work.

Our constraint on fσ 8 when including the cross-covariance is
consistent at the 1σ level with Pike & Hudson (2005) and Carrick
et al. (2015), and only just so with Davis et al. (2011), with a similar
fractional uncertainty to Pike & Hudson (2005). The most obvious
difference between these approaches and ours is that we model the
joint statistics, whereas these approaches make a model from one
observation and compare it to the other. They also use more ad-
vanced modelling than our current approach: for example, Carrick
et al. (2015) implemented a weighting scheme to model luminosity-
dependent bias, whereas our linear bias approach is quite simplistic.
However, an advantage of our approach is that the modelling can
be easily extended by changing the power spectra in the covariance
model, and there are multiple improvements that can be explored
here. Additionally, the covariance matrix framework makes propa-
gation of errors straightforward, whereas this can be difficult in the
comparison approach.

5.5 Future work

This work has presented the first multitracer analysis for galaxy
overdensities and peculiar velocities that models the covariance
rather than reconstructing the physical fields. This gives it a sig-
nificant number of advantages, especially its flexibility in testing
different cosmological models and its ability for the theory to be
easily refined and extended.

While the application of this method to 6dFGS has yielded
promising results, more work can be done to better quantify sys-
tematics. This can be addressed by working with multiple mocks of
6dFGS, which have a realistic number density for both samples and
observational errors. The direct comparison approach presented in
Section 5.3 would also benefit, as more samples will improve our
understanding of the sample variance contribution to the 6dFGS
result, which cannot be accounted for in the current comparison.

The covariance modelling can also be significantly improved
by moving to power spectra that account for RSD, such as those
presented by Koda et al. (2014). This would give a more reliable
estimate of fσ 8 and β. Additionally, adding RSD serves to further
constrain the relationship between fσ 8 and β since the RSD correc-
tion is a function of both parameters.

We can also fit for fσ 8 as a function of scale by splitting the
integrals in equations (32)–(35) into multiple bins. Coupling this
with the idea that modified gravity models exhibit scale-dependent
behaviour in the growth rate of structure provides a new opportunity
to test alternative cosmological models. This is especially the case
if the modelling is changed to incorporate power spectra from these
theories, as using �CDM power spectra only provides a consistency
test.

We are currently working on these improvements and will present
them in a follow-up paper.

6 SU M M A RY

We have presented the first joint statistical analysis of the galaxy
overdensity and peculiar velocity fields in which the cosmologi-
cal physics is modelled in the covariance, extending the work of
Johnson et al. (2014). This includes a complete derivation of the
analytic form of the cross-covariance between these two fields and
we found its behaviour is consistent with physical intuition. We

also found evidence for a non-zero cross-covariance when testing
against simulations, as well when we applied our method to data
from the 6dFGS.

For peculiar velocity and galaxy overdensity measurements
drawn from 6dFGS, we found the normalized growth rate of struc-
ture at redshift zero to be f σ8 = 0.424+0.067

−0.064, which is consistent
with the �CDM prediction for the Planck 2015 cosmological pa-
rameters. We also constrained the RSD parameter for our sample,
finding β = 0.341+0.062

−0.058. Our constraint on fσ 8 improves on that
from Johnson et al. (2014) who quoted a fractional uncertainty of
17 per cent, where we found a fractional uncertainty of 15 per cent.
This improvement is entirely consistent with the current theory of
multitracer analyses: including the cross-covariance will improve
constraints on the model’s cosmological parameters. Our results
are also consistent with the redshift-space analyses of 6dFGS by
Beutler et al. (2012) and Achitouv et al. (2017), as well as previous
forecasts for 6dFGS from Koda et al. (2014) and Howlett et al.
(2017). Finally, we also saw consistency with alternative methods
of analysing the relationship between the galaxy overdensity field
and the peculiar velocity field.

This is the first maximum-likelihood fit to the galaxy overdensity
and peculiar velocity autocovariances and cross-covariances, pro-
viding a new way of looking at multitracer approaches. Given the
strong existing theoretical work in this area, it is hugely promis-
ing to see concrete evidence of the statistical improvements that
are predicted by Fisher matrix forecasting. Importantly, the flexi-
bility offered by modelling the covariance acts as solid insurance
that this method will continue to expand and improve, providing
increasingly precise and accurate measurements of cosmological
parameters as a function of scale and cosmological model.

Refining this approach is particularly important, as several large
peculiar velocity surveys will come online in the next few years.
Taipan is forecast to obtain a fractional uncertainty on the growth
rate of structure lower than 4 per cent, and lower still when combined
with Wallaby (Howlett et al. 2017). We clearly still have much
to gain from large-scale structure data, and taking advantage of
the cross-correlation between different tracers is a strong step in
improving our knowledge and understanding of the behaviour of
our Universe.
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APPENDI X A : A NA LY TI C D ERI VATI ON O F
P E C U L I A R V E L O C I T Y A N D G A L A X Y
OV E R D E N S I T Y AU TO C OVA R I A N C E S A N D
C RO S S - C OVA R I A N C E S

In this appendix, we present the derivation of the galaxy overdensity
autocovariance (Cδgδg ), peculiar velocity autocovariance (Cvpvp ) and
the cross-covariances (Cδgvp and Cvpδg ). Within this document, we
refer to the logarithmic distance ratio parameter x(z) (the notation
used in Johnson et al. 2014) as η(z) (as used in Scrimgeour et al.
2016) to avoid confusion with configuration-space positions. We
wish to construct these covariances to build the larger covariance:

� =
(

δ

η

)
, C =

(
Cδδ Cδη

Cηδ Cηη

)
, (A1)

where � is the vector containing the list of overdensities, δg, and
logarithmic distance ratios, η, as measured from the 6dFGS. Here,
we use the analytic models in Fourier space for galaxy overdensity,
δg(k) = bδm(k) and peculiar velocity v(k′) = −iaHf θ (k′)k′/k′2.
The result for peculiar velocity is often quoted without derivation,
so we provide a derivation in Appendix C for reference.

Throughout, we use the following position conventions:

xs = (xsx , xsy , xsz ), |xs | = xs (A2)

xt = (xtx , xty , xtz ), |xt | = xt (A3)

r = xt − xs = (rx, ry, rz), |r| = r (A4)

k̂ = (sin θ cos φ, sin θ sin φ, cos θ ). (A5)

Within each step, we will use the expansion of the plane wave
term into spherical coordinates

eik·r =
∑

�

i�(2� + 1)j�(kr)P�(k̂ · r̂), (A6)

and the orthogonality condition of the spherical harmonic functions∫∫
(−1)m

′
Y�,mY�′,−m′ sin θdθdφ = δ�,�′δm,−m′ (A7)

to determine which terms will remain in the expansion. This is the
same method as presented by Ma et al. (2011). We begin with an
example of the method by deriving the commonly known result for
the galaxy overdensity autocovariance, before moving on to quote
the result for the peculiar velocity autocovariance, and derive the
result for the cross-covariance.

A1 Galaxy overdensity autocovariance

Taking the ensemble average of the product of the configuration-
space galaxy overdensity field and its complex conjugate:

Cδgδg (xs , xt ) = 〈δg(xs)δg(xt )
∗〉 (A8)

= b2〈δm(xs)δm∗ (xt )〉 (A9)
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= b2
∫

1

(2π)3
e−ik·xs

∫
1

(2π)3
eik′ ·xt

× 〈δm(k′)δm(k)〉d3k′d3k. (A10)

Taking 〈δm(k′)δm(k)〉 = (2π)3Pmm(k′)δ3
D(k′ − k) gives

Cδgδg (xs , xt ) = b2
∫

1

(2π)3
eik·(xt −xs )Pmm(k)d3k (A11)

= b2

2π2

∫ ∞

0
Pmm(k)k2

×
∫ π

0

∫ 2π

0

1

4π
eik·r sin(θ )dφdθdk. (A12)

From equation (A6), and the fact that there are no other functions
within equation (A12) that can be written in terms of spherical
harmonics, the orthogonality condition, equation (A7), ensures that
only the � = 0 term of the expansion remains, giving

Cδgδg (xs , xt ) = b2

2π2

∫ ∞

0
Pmm(k)k2

×
∫ π

0

∫ 2π

0

1

4π
j0(kr) sin(θ )dφdθdk (A13)

= b2

2π2

∫
Pmm(k)k2j0(kr)dk, (A14)

which is a familiar result.

A2 Peculiar velocity autocovariance

Ma et al. (2011) already present the derivation of the peculiar ve-
locity autocovariance, so here we summarize the result, using the
same notation as above for clarity. Unlike the galaxy overdensity
autocovariance in equation (A14), the peculiar velocity autocovari-
ance also depends on the angle between the two vectors, defined
here as cos(α) = xs · xt .

Cvpvp (xs , xt ) = 〈vp(xs)vp(xt )
∗〉 (A15)

= 〈(v(xs) · x̂s)(v(xt )
∗ · x̂t )〉 (A16)

= (aHf )2
∫

1

(2π)3

k̂ · x̂s

k
e−ik·xs

×
∫

1

(2π)3

(k̂
′ · x̂t )

k′ eik′ ·xt 〈θ (k′)θ (k)〉d3k′d3k

(A17)

= (aHf )2
∫

1

(2π)3

(k̂ · x̂s)(k̂ · x̂t )

k2

× eik·(xt −xs )Pθθ (k)d3k (A18)

= (aHf )2

2π2

∫
Pθθ (k)

(
1

3
cos α[j0(kr) − 2j2(kr)]

+xsxt

r2
j2(kr) sin2 α

)
dk. (A19)

A3 Cross-covariance

We now repeat the process for the cross-covariance for a galaxy
overdensity located at xs and peculiar velocity located at xt :

Cδgvp (xs , xt ) = 〈δg(xs)vp(xt )
∗〉 (A20)

= 〈δg(xs)(v(xt )
∗ · x̂t )〉 (A21)

= iaHf b

∫
1

(2π)3
e−ik·xs

∫
1

(2π)3

(k̂′ · x̂t )

k′ eik′ ·xt

× 〈δm(k)θ (k′)〉d3k′d3k (A22)

= iaHf b

∫
1

(2π)3

1

k
Pmθ (k)(k̂ · x̂t )e

ik·(xt −xs )d3k

(A23)

= iaHf b

∫
1

2π2
Pmθ (k)k

∫∫
1

4π
(k̂ · x̂t )

× eik·r sin(θ ) dφdθdk. (A24)

To simplify the evaluation of the angular integral, we can express it
in terms of spherical harmonics, and utilize the orthogonality con-
dition (equation A7) as well as the formula for complex conjugation
Y ∗

l,m = (−1)mYl,−m. Beginning with the k̂ · x̂t term:

k̂ · x̂t = 1

xt

(
xtx sin θ cos φ + xty sin θ sin φ + xtz cos θ

)
(A25)

= 1

xt

(√
2π

3
xtx (Y1,−1 − Y1,1)

+ i

√
2π

3
xty (Y1,−1 + Y1,1) + 2

√
π

3
xtzY1,0

)
. (A26)

As for the exponential, we can utilize the plane wave expansion in
terms of the spherical Bessel functions and Legendre polynomials.
Given the form of equation (A26) and the orthogonality property
of the spherical harmonic functions, we can see that only the � =
0, 1 terms will possibly survive, since � = 0 does not contribute a
spherical harmonic term (P0(x) = 1), and � ≥ 2 will disappear due
to the Kronecker delta δ�,�′ . Thus, we can write the exponential as

eik·r = j0(kr) + 3ij1(kr)P1(k̂ · r̂) (A27)

= j0(kr) + 3ij1(kr)
1

r

(√
2π

3
rx(Y1,−1 − Y1,1)

+ i

√
2π

3
ry(Y1,−1 + Y1,1) + 2

√
π

3
rzY1,0

)
. (A28)

According to orthogonality and the conjugation rule, only the
Yl,mYl′,m′ terms satisfying m = −m′ will stay. This reduces the
angular equation to

A =
∫∫

1

4π
(k̂ · x̂t )e

ik·r sin(θ )dφdθ (A29)

=
∫∫

ij1(kr)
1

xt r
(−xtx rxY1,−1Y1,1 − xty ryY1,−1Y1,1

+ xtz rzY1,0Y1,0) sin(θ )dφdθ (A30)

= i(x̂t · r̂)j1(kr), (A31)

making the block off-diagonal covariance terms:

Cδgvp (xs , xt ) = −aHf b

2π2

∫
Pmθ (k)k(x̂t · r̂)j1(kr)dk (A32)

Cvpδg (xs , xt ) = aHf b

2π2

∫
Pθm(k)k(x̂s · r̂)j1(kr)dk. (A33)

We note here that the sign of the covariance is conditional on the
definition of the vector between the two positions, r . Since the
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equation is not symmetric, care must be taken when defining r .
We have found that the easiest way to do this is to define the
covariance relative to the galaxy overdensity and peculiar velocity
positions, rather than the abstract positions used in the derivation.
This means that a single equation can be used for both covariances,
without needing to change the sign. For galaxy overdensity at xδ

and peculiar velocity at xv :

r = xδ − xv (A34)

Cδgvp (xδ, xv) = aHf b

2π2

∫
Pmθ (k)k(x̂v · r̂)j1(kr)dk (A35)

Cvpδg (xv, xδ) = aHf b

2π2

∫
Pθm(k)k(x̂v · r̂)j1(kr)dk. (A36)

A P P E N D I X B: TH E O R E T I C A L C O N V E R S I O N
B E T W E E N P E C U L I A R V E L O C I T Y A N D
L O G A R I T H M I C D I S TA N C E R AT I O

The 6dFGS measures peculiar velocities using the Fundamental
Plane (see Magoulas et al. 2012; Springob et al. 2014). The trans-
formation between the measured quantity from the Fundamental
Plane, η = log10(Dz/Dr), to radial peculiar velocity vp is non-
trivial (see Springob et al. 2014; Scrimgeour et al. 2016). However,
the logarithmic distance ratio, η has Gaussian uncertainty, and is
consequently better suited for the likelihood analysis than pecu-
liar velocity, which has lognormal uncertainty. We opt to update
the models presented in Appendix A to model η instead of radial
peculiar velocity.

This has been previously considered for supernovae by Hui &
Greene (2006). We note that the convention for 6dFGS peculiar
velocities differs from the magnitude variation convention for su-
pernovae, altering the conversion. We now cover the analytic rela-
tionship between the radial peculiar velocity, vp, and the observed
logarithmic distance ratio, η. We begin with the definition of η:

η = log10

[
D(zobs)

D(zH )

]
, (B1)

where D is the comoving distance in h−1 Mpc calculated at the
observed redshift, zobs, and expansion redshift, zH. If the Hubble
constant is known as a function of redshift (generally assumed as a
part of the model), we can express the comoving distance as

D(z) = c

∫ z

0

dz′

H (z′)
. (B2)

Since we do not know zH we cannot directly evaluate equation (B1).
We can however perform a Taylor expansion of D(zobs) around zH:

D(zH ) = D(zobs) + c

H (zobs)
(zH − zobs). (B3)

Then, using the relationship between the observed, expansion and
peculiar velocity redshifts: (1 + zobs) = (1 + zH )(1 + zvp ) (where
zvp = vp/c), we can express the ratio between the comoving dis-
tances as

D(zH )

D(zobs)
= 1 + c

D(zobs)H (zobs)
(zH − zobs) (B4)

= 1 + c(1 + zobs)

D(zobs)H (zobs)

[
1

(1 + v/c)
− 1

]
. (B5)

Applying a Taylor series to the bracketed term around v/c = 0,

D(zH )

D(zobs)
= 1 − (1 + zobs)

D(zobs)H (zobs)
v. (B6)

We can then calculate η as a function of the radial peculiar velocity
by combining equations (B1) and (B6):

η = − log10

[
D(zH )

D(zobs)

]
(B7)

= − log10

[
1 − (1 + zobs)

D(zobs)H (zobs)
v

]
(B8)

= − 1

ln(10)
ln

[
D(zH )

D(zobs)

]
(B9)

= − 1

ln(10)
ln

[
1 − (1 + zobs)

D(zobs)H (zobs)
v

]
. (B10)

This can then be simplified further from the first order of the Maclau-
rin series ln (1 − x) ≈ −x:

η = 1

ln(10)

(1 + zobs)

D(zobs)H (zobs)
v. (B11)

We note that this final approximation will fail at very low redshift.

APPENDI X C : PECULI AR V ELOCI TY FIELD
I N FOURI ER SPAC E

C1 Velocity and matter overdensity in configuration space

The velocity field is related to the matter overdensity field through
the continuity equation:

∂

∂t
ρ(x, t) = −∇ · v(x, t)ρ(x, t), (C1)

where ρ is the average background matter density. Applying first-
order perturbation theory, we find

∂

∂t
δm(x, t) = − 1

a
∇ · v(x, t), (C2)

where δm(x, t) is the matter overdensity field and a is the scalefactor.
Since we are working with a partial differential equation, we may
rewrite the matter overdensity field as

δm(x, t) = δm(x)D1(t) + δm(x)D2(t), (C3)

where D1(t) describes growth, and D2(t) describes decay. At late
times, the growth mode dominates, leaving

δm(x)
d

dt
D1(t) = − 1

a
∇ · v(x, t). (C4)

Applying the chain rule, we may express the derivative as

d

dt
= da

dt

d ln(a)

da

d

d ln(a)
(C5)

= ȧ
1

a

d

d ln(a)
(C6)

= H
d

d ln(a)
, (C7)

where H is the Hubble constant. We may now express equation (C4)
as

∇ · v(x, a) = −aHδm(x)
d

d ln(a)
D1(a). (C8)
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It is common to express this final derivative in terms of the growth
rate of structure, f, where

f ≡ d ln(D1(a))

d ln(a)
= 1

D1(a)

d

d ln(a)
D1(a). (C9)

Substituting this we find

∇ · v(x, a) = −aHf δm(x)D1(a) (C10)

= −aHf δm(x, a). (C11)

We will be working in the low-redshift Universe, where time evo-
lution is negligible. For this reason, we ignore the scalefactor de-
pendence in both the velocity and matter overdensity fields.

C2 Expressing the velocity in terms of a scalar field in Fourier
space

The velocity field is a vector field, and the Helmholtz decomposition
theorem states that a vector field can be written as the sum of a
gradient of a scalar field, and the curl of a vector field. That is,

v(x) = −∇φ(x) + ∇ × w(x). (C12)

Assuming the field is irrotational, we can remove the curl term. We
note that this is a long-standing assumption, see Strauss & Willick
(1995), section 7.5. This leaves

v(x) = −∇φ(x). (C13)

We may now evaluate the velocity field in Fourier space as the
Fourier transform of equation (C13):

v(k) = −
∫∫∫

[∇φ(x)]eik·xd3x. (C14)

Letting g(k, x) = eik·x , we can rewrite the integrand using the chain
rule:

∇(gφ) = (∇g)φ + g(∇φ) (C15)

− g(∇φ) = (∇g)φ − ∇(gφ). (C16)

Substituting equation (C16) into equation (C14) we find

v(k) =
∫∫∫

∇ (
eik·x) φ(x)d3x

−
∫∫∫

∇ (
eik·xφ(x)

)
d3x. (C17)

We note that a variant of the Gauss’s theorem can be used to rewrite
the second term. For a scalar field, f (x):∫∫∫

V

∇f (x)d3x =
“

S

f (x)n̂dS, (C18)

where n is the vector normal to the surface. equation (C17) then
becomes

v(k) =
∫∫∫

∇ (
eik·x) φ(x)d3x −

“
S

eik·xφ(x)dS. (C19)

Integrals in this form converge to zero as long as the integrand,
f (x), falls off faster than 1/x as x goes to infinity. We take this to
be true for eik·xφ(x), leaving

v(k) =
∫∫∫

∇(eik·x)φ(x)d3x. (C20)

The gradient of the exponential function evaluates to

∇eik·x = ikeik·x, (C21)

leaving

v(k) = ik
∫∫∫

φ(x)eik·xd3x (C22)

= ikφ(k). (C23)

C3 Velocity and matter overdensity in Fourier space

We may now use the results from the previous two sections to
express the velocity field in terms of the matter overdensity field in
Fourier space. Combining equations (C11) and (C13):

∇ · (−∇φ(x)) = −aHf δm(x). (C24)

We can then express each field in terms of its Fourier transform:

−∇2

(2π)3

∫∫∫
φ(k)e−ik·xd3k = −aHf

(2π)3

∫∫∫
δm(k)e−ik·xd3k. (C25)

The gradient operator then only applies to the exponential, which
gives∫∫∫

k2φ(k)e−ik·xd3k = −aHf

∫∫∫
δm(k)e−ik·xd3k, (C26)

which leads to

k2φ(k) = −aHf δm(k) (C27)

v(k) = −ikaHf

k2
δm(k). (C28)
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