
Model-driven Development of Mobile Personal Health Care Applications

Abizer Khambati, John Grundy, James Warren and John Hosking

Department of Computer Science and Department of Electrical and Computer Engineering
University of Auckland, Private Bag 92019, Auckland, New Zealand

akmail049@gmail.com, {john-g, jim, john}@ cs.auckland.ac.nz

Abstract
Personal health care applications on mobile devices

allow patients to enhance their health via reminders,
monitoring and feedback to health care providers.
Engineering such applications is challenging with a need
for health care plan meta-models, per-patient instantiation
of care plans, and development and deployment of
supporting web and mobile device applications. We
describe a novel prototype environment for visually
modelling health care plans and automated plan and
mobile device application code generation.

1. Introduction
Research shows that current health care systems cater

well for patients suffering from acute illnesses but are
much less suited to patients suffering from long term
chronic illnesses [1]. Technological solutions for providing
support to chronically ill patients and their health care
providers are numerous. Visual modelling suites such as
Protégé and Asbru [5][9] give health care providers the
ability to digitally represent clinical guidelines. Others,
such as Logician, allow health care providers to model and
schedule patient’s tasks and activities [9]. These systems
aid health care providers by providing them ways to reuse
health information without concern for how this supports
the patient in proactive disease management.

Several approaches support the patient in managing
their health. The weight wellness monitor (WWWM) [10]
provides a wireless architecture to monitor and manage
weight loss in overweight individuals. It focuses on
capturing weight data from bluetooth devices to a “home
health server”. The Patient centred application mobile
energy balance (PmEB) [11] is aimed at people with eating
disorders which lead to them being overweight or obese.
The web-based My Health, My Life (MHML) [7] wellness
application is aimed at patients suffering from various long
term illnesses such as diabetes, high blood cholesterol, or
obesity. These solutions focus on how health care
information is represented to patients for support but lack
concern for how this information is captured or structured.

We have developed a new approach to modelling care
plans for chronic disease using two domain-specific visual
languages (DSVLs). The first allows health care providers
to model complex care plans, health activities,
performance measurements and sub-care plans. The second
DSVL describes a mobile device interface for the care

plan. A code generator synthesizes a mobile device
implementation of this care plan application.

2. Motivation
Consider the case of John Doe, a 35 year old engineer

who suffers from class 1 obesity. Because of his condition
he faces many risks: e.g. diabetes, high cholesterol
problems, or potential heart problems. John decides to see
his health care provider to take control of his condition.
After John’s health care provider analyses his condition he
decides to design a care plan for John containing: general
health advice; performance goals e.g. reduce weight and
improve eating habits; health care activities e.g. exercise,
monitor blood pressure and weight; and assessment tips
e.g. amount of donuts eaten today less than target.
However it is hard for John to adhere to such a complex
care plan. He has trouble gauging his progress and easily
becomes disheartened. His health care provider can not
easily monitor how well John is doing against his plan.

In an earlier project we developed a prototype mobile
health care application for chronic disease management
(e.g. diabetes, asthma, obesity) [4]. As part of this work we
developed a preliminary conceptual model for representing
such health care plans and storing them in an XML format
for reuse. Developing these care plan models and the
mobile-hosted care plan applications, however, proved
hard. Health Care providers could not directly author the
UML-based care plan models due to the low closeness of
mapping [2] of the modelling language used. Instantiating
the care plan required complex editing of XML-based
models. Developing a care plan application with .NET
Compact produced a “nice” interface but customisation for
other care plans and patients requiring much coding.

We wanted to provide health care providers with a
more accessible modelling language to develop their care
plans and to fully generate code for a mobile care plan
application from the models. In our approach a health care
provider (doctor, nurse, specialist) develops one or more
care plans using a domain-specific visual language
(DSVL) tool based on an extension to our earlier generic
health care plan model. Our health care plans comprise
structured information about health advice, performance
targets, care activities, assessment/evaluation approaches
and possibly “sub-care plans” to enable structuring of
complex care plans. For example the Obesity Care plan
shown in Figure 1 has a number of sub-care plans e.g.

978-1-4244-2188-6/08/$25.00 ©2008 IEEE 467

Figure 1. High-level health care example care plan.

physical, dietary and medication, some of which may be
shared with other plans.

These care plans are stored and a reused by
“instantiating” (customizing) them for a particular patient.
Typically this means setting appropriate dates, times,
medication amounts, exercise durations and timings,
performance measurement targets, and deleting
inappropriate sub-care plans. A trained visualisation
modeller then develops one or more visualisation
specifications using a second DSVL. This describes how
sets of items in a care plan model are related to visual
elements – screens, text boxes, labels, dates, edit boxes,
radio buttons etc. This DSVL is “platform neutral” i.e.
does not depend on a particular implementation technology
to realise the care plan interfaces. Multiple visualisation
specifications can be defined for the same health care plan
as well as patient specific visualisations. The instantiated
patient care plan and chosen visualisation are used to
synthesize a care plan application. Currently we generate
an OpenLaszlo implementation [8] which is compiled
dynamically to Flash Shockwave or DHTML/ JavaScript
for rendering in a web browser. Web services read/write
patient information for viewing by a health care provider.

3. Example Usage
Our VCPML (Visual Care Plan Modelling Language)

was designed for health care providers to capture health
treatment and management information commonly
contained in guidelines for chronic illness treatment into a
more formal, structured and digital manner. Figure 2 (left)
shows a generic obesity management plan using VCPML.
This care plan (centre Care Plan icon) is composed of five
sub care plans (right hand side), an obesity treatment
algorithm (an assessment module, top) two performance
metrics (targets for BMI and waist measurements, left hand
top) and an obesity review activity (3 monthly requiring a
nurse and consulting room to perform, bottom).

This obesity care plan was constructed by referring to
the common treatment procedures outlined in an obesity
management treatment guideline [6]. Figure 2 (right)
elaborates the Physical Therapy sub care plan. into a more
detailed view. Two extra activities are defined, Jogging

and Swimming (the conceptual schema is recursive; sub
care plans can have the same components as care plans).
Each has a set of instructions specifying warm up actions
and a routine schedule. The Obesity Treatment assessment
module also encapsulates a visually specified algorithm for
deciding on treatment options. This consists of various
assessment activities, choice points and treatment
recommendations in a flow chart formalism (not shown)
that mirrors the obesity guideline’s notation [6].

Using VCPML the health care provider can design care
plan templates. However the care plan model at this stage
is a generic one which can be applied to any patient.
Instantiation personalises for a particular patient. This
includes discussing with the patient their lifestyle and their
daily routines. Then, using our “care plan instantiation
tool”, the health care provider can load a VCPML care
plan template and: add care plan components to match the
patient’s needs, such as extra health care activities or care
plans, through an inbuilt wizard; de-select components of
the plan; and/or modify the activity schedules specified.

An instantiated health care plan contains the
information needed for a patient to self manage their
chronic ailment. However this information needs to be
provided to the patient in an accessible way. The next step
therefore is to design a mobile device application for the
patient to graphically present the care plan instance to the
patient, and allow the patient to interact with it. This uses a
second DSVL, VPAM (Visual Patient Application
Modeller) to map the data structures implied by a VCPML
care plan to high level GUI interaction models. VPAM
allows the user to define the look and feel of a patient
application, by describing how each part of the care plan
instance will be graphically represented by GUI elements.
An application generator generates the patient application
in OpenLaszlo [8]. The application can then be compiled
to FLASH or DHTML. These formats were chosen as
they run on most mobile devices (particularly FLASH), so
are largely device and platform independent.

Figure 3 (left) is a VPAM model for the main screen of
John’s care plan application. This specification maps
elements from a care plan repository (specifically names of
available care plans) to a navigation list on the main
screen. The generated Flash screen (with just an obesity
plan loaded) overlays the figure. Figure 3 (right) shows a
more complex screen specification and generated form to
capture a Blood Glucose measurement. This extracts
details from an Appointment data element, arranges the
fixed values as labels, the data value to capture as a
textbox and a button that causes the response to be saved.

4. Design and Implementation
We designed and developed our two domain-specific

visual languages using the Marama meta-tools [3]. We
translated our generic care plan meta-model into a more
detailed Marama meta-model describing care plan
components and their properties. Visual shapes to

468

Figure 2. VCPML models of an obesity treatment plan.

Figure 3. VPAM describing parts of mobile patient application user interface and two example generated interfaces.
represent care plan components in the meta-model were
then designed and mappings between the components in
the care plan meta-model and their respective shapes
specified. The Marama meta tool then generated the care
plan DSVL as an Eclipse plugin. Health care plans
modelled in the DSVL are saved to XMI and then
transformed via XSLT scripts into a custom health care
plan XML format we have developed. The care plan
instantiation tool is a .NET application that loads a selected
care plan XML model and allows the health care provider
to tailor it for specific patient. The VPAM tool is used to
design a mobile application interface for a care plan model.
Our application generator takes the instantiated patient care

plan, VPAM interface specification, and generates an
OpenLaszlo implementation using XSLT.

5. Evaluation
We have carried out two evaluations of our approach.

A Cognitive Dimensions [2] (CD) analysis assessed the
visual languages and support environment. An informal
user evaluation assessed the care plan visual modelling
language, application interface modelling language and
overall approach to modelling and generating health care
applications. VCPML provides good closeness of mapping
for the target end users. Despite dealing with fairly abstract
concepts the abstractions present (both for the care plans

469

and the algorithm specifications) are relatively familiar to
the target end users so VPCML has a low abstraction
gradient. The language is terse (only 12 different symbols)
so there are not a large number of concepts to learn. As
with most box and connector diagrams, VCPML suffers
from viscosity problems (inability to easily modify things)
as layouts usually need manual rearrangement to fit in
additional components. The use of multiple views
alleviates the viscosity problem but introduces hidden
dependencies. We feel that these are manageable as they
do not involve cross cutting relationships, just elaborations
with a single point of connection. A number of other minor
hidden dependencies arise in VCPML between resources,
routines and instructions, and ownership of sub-care plan
elements, but these are relatively minor in our opinion.

VPAM is more of a work in progress. It has a lower
closeness of mapping: the notation used for the interaction
components is quite abstract and by no means WYSIWIG.
The abstraction gradient for this target group is low
though as the abstractions are all familiar. The language is
more verbose than VCPML as it needs to represent a large
range of widget types. The relative similarity between the
iconic forms is thus problematic so VPAM is likely to be
more error prone. VPAM has similar viscosity and hidden
dependency problems to VCPML.

The informal user evaluation provided initial feedback
on the usability of the care plan modelling system and the
value of the general approach. The user group consisted of
three experienced software developers. The first two
sections of the evaluation provided users with VPCML and
VPAM modelling scenarios. The users were asked
questions on their understanding of the DSVL models. All
participants were able to answer all the questions related to
VCPML successfully, showing that the care plan and
assessment module models can be easily read and
understood and with ease of understanding of the VCPML
models rated as 8 out of 10. The main deficiencies noted
related to hidden dependencies, in line with the CD
analysis. Participants could also answer all questions
related to the VPAM models. However all found this
graphical notation to be inadequate to the modelling task
due to its abstractness; the rating for ease of understanding
was 6 out of 10, also in line with the CD analysis.

 The last evaluation section focussed on the overall
approach. Participants rated it as being innovative; all
participants agreed the underlying concept was a good one
and rated the overall approach at 7 out of 10. Advantages
for health care providers noted were that the approach
supported a “collaborative” and “proactive” approach as
patients and health care providers together design patient
health care strategies. Participants suggested that the
approach allows reuse of health care plans and is useful in
transferring some responsibility of care to the patient.
These responses were in line with our original motivations
for developing the care plan modelling system.

Patient advantages were that it “passes responsibility”
to the patient, by converting a static care plan into
something “operational”, “executable” directly related to
the patient, keeping the patient connected to the care plan.
Participants indicated that using mobile device deployment
was a good idea as care plans are made portable. However,
they noted that much care is needed to ensure that
technologies used are fully tested and error free.

A more complete evaluation with the target end user
groups together with the cognitive dimensions analysis
provides us with sufficient indicative feedback to suggest
that the approach we have taken is a sensible one with
sufficient merit to develop beyond the proof of concept
system reported here. It is clear that while the conceptual
VPAM model is adequate enough its surface formalism
requires additional development. However, prior to
redeveloping this formalism our immediate focus will be
on using the existing formalism on a much broader range
of example care plans. Our feeling is that this will suggest
a set of higher level more “business oriented” primitives
for designing the GUI elements of patient applications and
that these higher level primitives will form the basis for the
revision of the VPAM formalism.

References
[1] Alaoui, A., et al. Diabetes Home Monitoring Project. in

Medical Technology Symposium. 1998. Pacific.
[2] Green, T.R.G. & Petre, M. Usability analysis of visual

programming environments: a ‘cognitive dimensions’
framework. JVLC 1996 (7), pp. 131-174.

[3] Grundy, J.C., Hosking, J.G., Huh, J. and Li, N., Marama:
an Eclipse Meta-toolset for Generating Multi-view
Environments, ICSE 2008, Leipzig, Germany, 2008, ACM.

[4] Khambati, A. and S. Kanade, Care Plan Modelling
Framework, University of Auckland Part 4 Software
Engineering Project Reports, 2006.

[5] Miksch, S., Y. Shahar, and P. Johnson, Asbru: A Task-
Specific, Intension-based, and Time-oriented Language for
Representing Skeletal Plans, in 7th Workshop on
Knowledge Engineering: Methods & Languages. 1997:
Milton Keynes, United Kingdom. p. 25.

[6] National Institute Of Health, N.H., Blood and Lung
Institute, Clinical Guidelines On the Identification,
Evaluation, And Treatment Of Overweight And Obesity In
Adults. 1998. p. 228.

[7] Nuschke, P., T. Holmes, et al. (2006). My Health, My Life:
A Web-Based Health Monitoring Application. Human
Factors in Computer Systems. Montreal, Quebec, ACM.

[8] OpenLaszlo, 2007: http://www.openlaszlo.org/.
[9] Open Clinical: Knowledge Management for Medical care,

Guideline Modelling Methods and Technologies, 2007,
http://www.openclinical.org/gmm_protege.html.

[10] Pärkkä, J., et al. A Wireless Wellness Monitor for Personal
Weight Management, Information Technology Applications
in Biomedicine. 2000.

[11] Tsai, C. c., G. Lee, et al. Usability and Feasability of
PmEB: A mobile phone applicaiton for monitoring real
time caloric balance, Mobile Network Applications 12:
173-184.

470

