
Improved coexistence and loss tolerance for delay
based TCP congestion control

David A. Hayes∗, and Grenville Armitage∗

∗Centre for Advanced Internet Architectures,

Swinburne University of Technology Melbourne, Australia

Email: {dahayes,garmitage}@swin.edu.au

Abstract—Loss based TCP congestion control has been shown
to not perform well in environments were there is non-congestion
related packet losses. Delay based TCP congestion control al-
gorithms provide a low latency connection with no congestion
related packet losses, and have the potential for being tolerant
to non-congestion related losses. Unfortunately, delay based TCP
does not compete well with loss based TCP, currently limiting
its deployment.

We propose a delay based algorithm which extends work
by Budzisz et al. [1] to provide tolerance to non-congestion related
losses, and better coexistence with loss based TCP in lightly
multiplexed environments. We demonstrate that our algorithm
improves the throughput when there are 1 % packet losses by
about 150 %, and gives more than 50 % improvement in the
ability to share capacity with NewReno in lightly multiplexed
environments.

I. INTRODUCTION

The internet’s wide-spread utility over the past 25+ years

owes much to the transmission control protocol (TCP) [2], the

dominant transport protocol for internet-based applications [3].

The relatively modern NewReno variant [4] balances two key

goals: Provide reliable transfer of byte-streams across the

IP layer’s unpredictable packet-based service, and minimise

congestion inside end hosts and the underlying IP network(s)

while maximising throughput [5]. The latter goal has been an

active and challenging area for academic and industry research

into congestion control (CC) techniques [6].

Most approaches to TCP CC have traditionally treated

packet loss as an indicator of network or end-host conges-

tion (not only retransmitting the lost packet, but temporarily

slowing down their transmission rate). While probing for a

path’s maximum capacity, traditional TCP will itself also tend

to induce packet losses (as it has no other way of determining

when the path’s capacity is reached).

This behaviour is broadly reasonable where internet traffic

flows over link layers with extremely low intrinsic bit error

rates (such as wires or optical fibers) and the traffic is

largely loss-tolerant. However, it is increasingly unreasonable
in today’s internet where we see a mix of loss-tolerant and

loss-sensitive traffic (such as TCP intermingled with UDP-

based interactive online games or Voice over IP) flowing over

a mixture of fixed and wireless link layer technologies (such

as 802.11-based wireless LANs, 802.16 WiMAX last-mile

services, IEEE 802.15.4 ZigBee wireless links to smart energy

meters, as so on).

We face two issues. Loss-sensitive applications tend not

to appreciate the packet losses induced as intermingled TCP

flows cyclically probe for path capacity. Wireless link tech-

nologies often exhibit low levels of intrinsic packet loss

entirely unrelated to congestion, so TCP’s traditional response

of “slowing down” can be a counter-productive.

There is emerging interest in a different category of TCP –

delay-based CC algorithms that utilise trends in round trip

time (RTT) estimates to infer congestion along an end to

end path. Such algorithms can optimise their transmission

rates without inducing packet losses, and offer the potential

to be insensitive to packet losses that aren’t being caused by

congestion.

In this paper we propose a significant enhancement to a

delay-based TCP algorithm first proposed by Budzisz et al.

[1]. Our approach shows improved performance in the face of

packet losses, and can better share capacity with traditional

NewReno TCP in lightly multiplexed environments (such as

home Internet scenarios).

The rest of our paper is structured as follows. Section II

summarises the key delay-based CC algorithms to date. Sec-

tion III summarises the algorithm of Budzisz et al. [1], whilst

our proposed algorithm is described in Section IV. Section V

covers our experimental analysis and results, while future

work and conclusions are covered in sections VI and VII

respectively.

II. BACKGROUND

Proposals for using delay based congestion indications for

TCP have been around since 1989, when Jain [7] proposed

his CARD (Congestion Avoidance using Round-trip Delay)

algorithm. Table I summarizes some of the key proposals

since then that have sought to utilise variations in packet

transit delay as an earlier indication of congestion than may

be achieved by waiting for packet loss. These proposals may

be distinguished by:

• the way they measure delay — RTT, one way delay, per

packet measurements, etc;

• how they infer congestion — set thresholds, etc;

35th Annual IEEE Conference on Local Computer Networks LCN 2010, Denver, Colorado

978-1-4244-8389-1/10/$26.00 ©2010 IEEE 24

• how they react to congestion by changing the congestion

window (cwnd) — traditional TCP’s Additive Increase

Multiplicative Decrease (AIMD), Additive Increase Ad-

ditive Decrease (AIAD), Multiplicative Increase Multi-

plicative Decrease (MIMD), and equation based window

size setting.

All delay based methods of inferring congestion rely on

there being a correlation between delay and congestion. Stud-

ies by Martin et al. [17] look at a number of TCP traces and

show that there is only a low correlation between loss events

and increases in RTT. McCullagh and Leith [18] show that

this is not an obstacle to congestion control, since it is the

aggregate behaviour of flows which is important.

Despite their promise of low delay and zero congestion

related loss, delay based TCPs are difficult to deploy due to

the way they interact with standard loss based TCP.

III. HAMILTON DELAY BASED CONGESTION CONTROL

ALGORITHM (HD)

Leith et al. [16] expound the case for delay-based Additive

Increase Multiplicative Decrease (AIMD) congestion control,

which promises to provide end to end control with high

utilization, low delay and zero congestion-induced packet loss.

This idea was enhanced (in a similar manner to PERT [15, 19])

by Budzisz et al. [1] to improve fair coexistence with loss

based TCP algorithms1.

On receipt of every ack, cwnd (w) is evaluated as follows:

wi+1 =

{
wi

2 X < g(qi)
wi + 1

wi
otherwise

(1)

where g(qi) is the backoff probability function shown in

figure 1, X ∈ [0, 1] is random number, pmax is the maximum

probability of backoff, qmax = RTTmax − RTTmin is an es-

timate of the maximum observed queueing delay, qmin is a

target minimum queueing delay, and qth is a threshold that

divides regions A and B.

When loss based flows are on the link, the queue is pushed

into region B. The delay based flows have a lower probability

of backoff in this region, enabling them to receive a fairer

share of the available bandwidth. When loss based flows are

no longer on the bottleneck link region B is unstable, ensuring

delay based flows converge to a low delay state in region A.

A. Shortcomings of HD

Delay based congestion control algorithms in general react

to congestion much earlier than loss based algorithms. This

makes it hard for them to compete fairly with loss based flows.

But HD has two specific shortcomings.

1) Probability of backoff per RTT: The probability of back-

off per RTT increase with increasing cwnd. This helps ensure

flows with smaller cwnds can compete better, but diminishes

the performance of flows with large cwnd.

1We call this “Hamilton” delay based (HD) congestion control as the
primary authors are from the Hamilton Institute

Per−packet

delay
Queuing

probability
backoff

A B

backoff
probability

qmax

pmax

qmin qth

g(q)

Fig. 1. Per-packet backoff probability as a function estimated queueing
delay[1]

2) Probability of backoff when competing with loss based
flows: Traditional loss based TCP congestion control algo-

rithms keep increasing cwnd, and thus their potential trans-

mission rates, until they detect loss. When enough loss based

flows concurrently use a bottleneck link, this has the effect of

keeping the bottleneck queue close to maximum capacity. As

shown in Figure 1’s region B, HD decreases its probability

of backing off due to delay based congestion to zero at

the maximum inferred queueing delay. However, the inferred

queueing delay will fluctuate up to qmax. Consequently HD

will backoff due to delay as well as loss, giving it a smaller

share of the available bandwidth than the competing loss based

flows.

With HD, the probability of having these extra backoffs in

a given RTT will increase as cwnd increases. This problem

is exacerbated when fewer flows are multiplexed together

on the bottleneck link, as this tends result in wider queue

fluctuations. Having a relatively small number of TCP flows

share a bottleneck link is common in, for example, home

internet access scenarios.

IV. CAIA–HAMILTON DELAY BASED CONGESTION

CONTROL ALGORITHM (CHD)

Our novel modification to Budzisz et al. [1] (CHD) uses the

same probability function shown in Figure 1, but with three

key modifications:

• Delay based cwnd operations are performed only once

per RTT

• We infer (and tolerate) when packet losses may be

unrelated to congestion

• We improve coexistence with loss based TCP algorithms

As with HD, CHD only modifies the TCP sender’s be-

haviour. No change is required to existing TCP receivers.

A. Delay based window updates

Our modified delay based backoff operates on cwnd in

a similar way to equation (1), except that we update once

every RTT and use the maximum queueing delay experienced

during the last RTT2. In other words, if hr = maxr(qi) is the

2We measure an RTT from the time a marked packet is sent to when the
acknowledgement for that packet (or nearest equivalent when packet losses
occur) is received. Then the next packet sent is marked, and so on. The process
starts with the first data packet. See [20] for details.

25

Delay
measurements

Congestion Inference Congestion Control

Congestion Avoidance using
Round-trip Delay (CARD) [7]

RTT Normalized Delay Gradient,(
τi−τi−1
τi+τi−1

)
> 0

AIMD (β = 7
8

)

DUAL [8] every 2nd RTT τi >
(τmin+τmax)

2
AIMD (β = 7

8
)

Vegas[9] RTT τi > τmin+θ, normalized by the data
sent

AIAD

Fast TCP [10, 11] smoothed RTT similar to Vegas smoothed equation based window update at regular (not
RTT) intervals(MIMD)

TCP-LP [12] smoothed one way
delay using TCP
time stamps

di > dmin + δ(dmax − dmin)
AIMD with a minimum time between successive window
decreases

TCP-Africa [13] smoothed RTT similar to Vegas Dual mode: equation based window increase when delay
is low, otherwise additive increase. Multiplicative de-
crease on loss.

Compound TCP (CTCP) [14] smoothed RTT similar to Vegas Dual mode: When delay conditions are favorable it is
Reno AMID plus MIMD (two windows are used (delay
and loss), otherwise it is Reno AIMD

Probabilistic Early Response
TCP (PERT) [15]

RTT and smoothed
RTT

dynamic thresholds based on inferred
queueing delay (qj = τj − τmin)

Random Early Discard (RED) inspired probabilistic re-
action to queueing delay, with loss probability matching
when qj ≥ 0.5qmax.

Hamilton Delay [1, 16] RTT threshold based on inferred queueing
delay

Probabilistic reaction based on queueing delay and a back
off function (see III)

TABLE I
OVERVIEW OF KEY DELAY BASED TCP ALGORITHMS IN TERMS OF DELAY MEASUREMENTS, CONGESTION INFERENCE AND CONTROL

WHERE β IS THE MULTIPLICATIVE DECREASE FACTOR, θ REPRESENTS A DELAY THRESHOLD, iTH RTT MEASUREMENT = τi , SMALLEST RTT = τmin ,
LARGEST RTT = τmax , AND THE iTH ONE WAY DELAY = di

maximum queueing delay observed in RTT r, we update w as

follows:

wi+1 =

{
wi

2 X < g(hr)
wi + 1

wi
otherwise

(2)

The case where X < g(hr) represents a delay triggered

window reduction.

B. Loss based window updates

CHD’s ability to compete fairly with loss based flows

involves the use of a shadow window. The shadow window,

s, is initialised to w at the first hint of competing with a loss

based flow, and then kept in check with every delay triggered

window reduction.

The heuristic used to keep s and w in check follows:

si+1 =

⎧⎪⎨
⎪⎩

max(wi, si) X < g(hr) ∧ A
max(wi, si) X < g(hr) ∧ hr > qth

0 otherwise

(3)

whereA = hr < qth ∧ hr > hb, and hb is the value of hr when

the last delay triggered w reduction occurred.

The first hint of competing with a loss based flow occurs

when the queueing delay begins to increase. Therefore if hr

is in region A, and the delay that triggered the previous

congestion indication hb < hr, then si+1 = max(wi, si). If hr

is in region B, s is set at every delay based trigger. Otherwise,

s = 0, since the heuristic guesses CHD is not competing with

any loss based flows.

When s �= 0 the shadow window mimics the behaviour of

NewReno’s congestion window, and is used if a packet loss

occurs when the last recorded h was in region B. If a packet

pa
ck

et
s

lost packet

delay based congestion

number of round trip times

1©

s sync

w

w recovery

without w recovery

transmission
lost

opportunity gained
transmission
opportunity

s

s = 0

2©

3©

4©

5©

Fig. 2. Interaction of the shadow window, s, and the congestion window w
when competing with loss based CC flows.

loss occurs in region A, w remains unchanged (since it is

assumed that this is a non-congestion related loss). CHD’s

rule for updating w on packet loss is:

wi+1 =

{
max(wi,si)

2 packet loss ∧ hr > qth

wi otherwise
(4)

Equations (2), (3) and (4) allow CHD to both tolerate non-

congestion related losses and lose less transmission capacity

to loss based TCP flows.

Figure 2 illustrates how this mechanism works3. Referring

3Although our actual implementation uses byte based windows, a packet
based window is shown for simplicity

26

(FreeBSD)

20ms

20ms

NewReno Sources
(FreeBSD)

Delay CC Sources
(FreeBSD)

Delay CC Sink

NewReno Sink
(FreeBSD)

(FreeBSD)

Dummynet Router

Fig. 3. Experimental Testbed

to the regions indicated by circled numbers:

1) w grows as normal for TCP congestion avoidance,

increasing by 1 packet per RTT.

2) When acting on a delay based congestion indication

meeting equation (3)’s criteria, s is synchronised to w.

3) w continues to react to delay based congestion

4) s is incremented as NewReno would have been.

5) A packet loss occurs in region B, and w is set to s
2 rather

than w
2 (per equation (4))

Our addition of the shadow window s improves CHD’s

coexistence with loss based flows. We do not reclaim the lost

transmission opportunities, but our approach does lessen the

impact of the extra delay based backoffs4. (Note that the extra

delay based backoffs are still necessary to provide the back

pressure that ensures queueing delays revert to region A when

there are no loss based flows competing.)

V. EXPERIMENTAL ANALYSIS

We experimentally verified the performance of HD and

CHD against NewReno using a FreeBSD-based testbed as

depicted in Figure 3. As part of our NewTCP project [21] we

implemented both HD and CHD algorithms as new sender-

side modules in the FreeBSD 9.0 kernel, using our modular

congestion control framework [22] with extensions to better

measure the RTT [20].

Our experiments compare the following aspects of

NewReno, HD, and CHD

• Tolerance of NewReno, HD, and CHD to non-congestion

related losses.

• Sharing dynamics between three homogeneous flows.

• Competition of up to two NewReno flows and up to two

HD or CHD flows.

Tests are conducted with Gigabit Ethernet connected

through a 10 Mbps bottleneck link created using dum-

mynet [23], with a base round trip time of 40 ms (20 ms

in each direction). The bottleneck queue is 84 packets long,

corresponding to a maximum queueing delay of about 100 ms

with 1500 byte packets.

TCP traffic is generated using Netperf [24]. NewReno flows

use the default parameters. HD and CHD both use qmin = 5 ms

and qth = 30 ms. qmax is dynamic, equal to the connections

4This concept is also different to Compound TCP [14]. They supplement
their loss based window with a delay based window to allow for a faster
growth in cwnd if path delay characteristics allow.

0 0.01 0.02 0.03 0.04 0.05
0

2

4

6

8

10
x 10

6

G
oo

dp
ut

 (
bp

s)

Probability of non−congestion related loss

NewReno
HD
CHD
1/sqrt(p)

Fig. 4. Comparison of the goodput of NewReno, HD, and CHD when there
are non-congestion related losses

maximum observed queueing delay (as inferred by RTT mea-

surements). For HD, the per packet pmax = 0.02. For CHD,

which makes decisions once per RTT, a pmax = 0.25 gives

comparable queueing delay backoff dynamics.

The non-congestion related loss is implemented as random

packet loss introduced by dummynet in the the forward (data)

path. No random loss is applied to the return (ACK) path. Each

experiment is repeated 10 times. Where appropriate, graphs

show the 20th, 50th, and 80th percentiles (marker at the median,

and error bars spanning the 20th to 80th percentiles).

As neither HD nor CHD require changes to the receivers,

the “sinks” in Figure 3 are standard FreeBSD hosts.

A. Tolerance to non-congestion related losses

Our first experiment looks at how non-congestion related

losses effect the goodput5 of a TCP session. Each CC al-

gorithms transmits separately for 60 s. Figure 4 shows the

average goodput over 60 s plotted against the probability of

non-congestion related packet loss.

NewReno and HD perform similarly over the range of

loss probabilities. For comparison we also plot the theoretical

maximum throughput under loss conditions given by the

1/sqrt(p) model first proposed by Mathis et al. [25]:

B =
pkt size

rtt

C√
p

(5)

where B is the expected throughput, rtt = 40 ms, p is the

probability of packet loss, and C =
√

3
2 .

CHD performs substantially better, maintaining a high

goodput on losses of up to 1 %, and much better goodput than

either HD and NewReno at even higher loss probabilities. This

is a direct consequence of CHD reacting differently to loss

while operating in Figure 1’s region A versus region B. If a

5Defined as usable data transferred per unit time, excluding the payloads
of retransmitted packets

27

loss occurs in region A, CHD recovers the lost packet but does

not reduce cwnd. And since CHD’s operation keeps queueing

delays low, it is almost always operating within region A.

CHD’s reaction to non-congestion related losses is delib-

erately conservative, in that it does not increase its window

during the RTT that a lost packet is recovered. As a result

goodput drops at higher loss probabilities because CHD spends

more time retransmitting without getting much chance to grow

cwnd. (CHD does not allow cwnd to increase during the

recovery process, even though it would make CHD even more

robust in high loss environments. If such a modified CHD

incorrectly decided recent losses were unrelated to conges-

tion, increasing cwnd would exacerbate whatever congestion

caused the recent losses.)

B. Homogeneous Sharing Dynamics

Now we explore how each CC algorithm shares bandwidth

with other instances of its own ‘type’. Each experiment

involves three 60 s flows using the same CC algorithm and

sharing the bottleneck link, with the first, second and third

flows starting at 0 s, 20 s and 40 s respectively.

Figure 5 shows the capacity sharing dynamics when there

is no non-congestion related packet loss. Each goodput point

is the average of 4 s of data transfer, plotted at the middle of

each 4 s period. All CC algorithms share quite fairly among

themselves.

First looking at NewReno (Figure 5(a)), the first flow starts

sending with slow start, increasing cwnd until the queue

overflows. At this point there is a 140 ms RTT (40 ms base

RTT plus 100 ms queueing delay). As a result NewReno

continues to increase its send rate until it detects the loss

140 ms later. This results in a large number of lost packets,

NewReno backing off, and the lower initial goodput. Another

thing to notice, is the comparatively slower convergence to a

fair rate. This is due to the queueing delay being much longer

for NewReno than for the delay based CC algorithms, resulting

in a feeback loop (RTT) of up to 140 ms, compared with less

than 70 ms (40 ms + qth) in this scenario.

Both HD and CHD share the available capacity among

themselves well. Since the flows begin to back-off once qi or

hr is above qmin, keeping the delays within Figure 1’s region

A, the average RTT is much smaller than in the NewReno

case. Consequently, the sharing converges much faster.

Figure 6 illustrates the same dynamic sharing when there

is a probability of non-congestion related loss of 0.01. Both

NewReno and HD are unable to utilise the available capacity,

their send rates limited by the non-congestion related losses.

CHD manages to use more of the available capacity due to its

better tolerance to non-congestion related losses, while still

sharing the available capacity evenly among the competing

CHD flows.

C. Competing with NewReno

Finally we evaluate how HD or CHD flows compete against

NewReno for available capacity. Each experiment consists of

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10
x 10

6

Time (s)

G
oo

dp
ut

 (
bp

s)

flow 1
flow 2
flow 3

(a) New Reno sharing dynamics

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10
x 10

6

Time (s)

G
oo

dp
ut

 (
bp

s)

flow 1
flow 2
flow 3

(b) HD sharing dynamics

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10
x 10

6

Time (s)

G
oo

dp
ut

 (
bp

s)

flow 1
flow 2
flow 3

(c) CHD sharing dynamics

Fig. 5. Homogeneous capacity sharing dynamics between three flows with
no non-congestion related losses. Each flow transmits for 60 s, starting at 20 s
intervals. Points are 4 s averages, with the point at the beginning of the 4 s
interval.

four flows transmitting for 80 s each, and starting up at 20 s

intervals. The flows start in this order:

1) delay based CC (HD or CHD)

2) loss based CC (NewReno)

3) loss based CC (NewReno)

4) delay based CC (HD or CHD)

Figure 7 shows how HD and CHD coexist respectively with

NewReno in a lightly multiplexed environment. Figure 7(a)

shows that HD does not compete very well with NewReno

28

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10
x 10

6

Time (s)

G
oo

dp
ut

 (
bp

s)

flow 1
flow 2
flow 3

(a) New Reno sharing dynamics

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10
x 10

6

Time (s)

G
oo

dp
ut

 (
bp

s)

flow 1
flow 2
flow 3

(b) HD sharing dynamics

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10
x 10

6

Time (s)

G
oo

dp
ut

 (
bp

s)

flow 1
flow 2
flow 3

(c) CHD sharing dynamics

Fig. 6. Homogeneous capacity sharing dynamics between three flows with a
1 % random probability of non-congestion related losses. Each flow transmits
for 60 s, starting at 20 s intervals. Points are 4 s averages, with the point in
the middle of the 4 s interval.

here6. Both the NewReno and HD flows compete well among

themselves, but not with each other. Real traffic flows do not

behave as fluid models, so the dynamics of the measured

queue size results in HD reacting to a significant number of

delay based congestion indications as wells as the loss based

indications, halving cwnd for both cases.

Figure 7(b) shows the benefit of CHD keeping a NewReno-

like shadow window. Although CHD still backs off to delay

based congestion indications in Figure 1’s region B (a neces-

sity so that CHD will move back from region B to region

6Budzisz et al. [1] show that in NS2 simulations of highly multiplexed
environments HD is able to coexist with NewReno relatively well, though
still at a disadvantage. However, most home internet scenarios will be lightly
multiplexed

0 20 40 60 80 100 120 140
0

2

4

6

8

10
x 10

6

Time (s)

G
oo

dp
ut

 (
bp

s)

HD
NewReno
NewReno
HD

(a) HD–NewReno coexistence

0 20 40 60 80 100 120 140
0

2

4

6

8

10
x 10

6

Time (s)

G
oo

dp
ut

 (
bp

s)

CHD
NewReno
NewReno
CHD

(b) CHD–NewReno coexistence

Fig. 7. Coexistence between loss and delay based CC algorithms with no
non-congestion related losses. Points show 20 s averaged goodput (plotted
point is in the middle of the averaging period).

A once it is no longer competing with loss based flows),

CHD regains some lost transmission capability if it detects

a loss while in region B. NewReno still has a higher share

of the available capacity than CHD, however CHD’s use of

the shadow window ensures it gains a fairer share than HD

can. Once the NewReno flows have finished, the CHD flows

quickly utilise the available capacity.

A single run of the same experiment is shown in Figure 8

at 1 s averages. This shows the dynamics of the loss–delay

based congestion control interaction. In both cases when the

first NewReno flow starts at about 20 s, it quickly captures

most of the available capacity. HD is unable to reclaim much

of its share of the capacity when congestion related losses

occur (Figure 8(a)). However, as the NewReno flow fills the

queue, and generates packet loss for itself and the CHD flow, it

backs off while the CHD flow reclaims some of the capacity

it lost to NewReno (Figure 8(b)). This activity continues as

the next NewReno flow starts at 40 s and the final CHD flow

starts at 60 s.

When non-congestion related packet loss is introduced, the

dynamics change. Figure 9 shows the 20 s averaged goodput

plots for HD and CHD coexisting with NewReno when there is

a 1 % non-congestion related probability of loss. Both HD and

NewReno are unable to fully utilise the available capacity in

this scenario, but share fairly (see Figure 9(a)). CHD however

is better able to use the available capacity in the presence of

non-congestion related loss. It captures more of the available

29

0 20 40 60 80 100 120 140
0

2

4

6

8

10
x 10

6

Time (s)

G
oo

dp
ut

 (
bp

s)

HD NewReno NewReno HD

(a) HD–NewReno coexistence

0 20 40 60 80 100 120 140
0

2

4

6

8

10
x 10

6

Time (s)

G
oo

dp
ut

 (
bp

s)

CHD NewReno NewReno CHD

(b) CHD–NewReno coexistence

Fig. 8. Coexistence between loss and delay based CC algorithms with no
non-congestion related losses. Points show 1 s averaged goodput of a single
experiment run.

0 20 40 60 80 100 120 140
0

2

4

6

8

10
x 10

6

Time (s)

G
oo

dp
ut

 (
bp

s)

HD
NewReno
NewReno
HD

(a) HD–NewReno coexistence

0 20 40 60 80 100 120 140
0

2

4

6

8

10
x 10

6

Time (s)

G
oo

dp
ut

 (
bp

s)

CHD
NewReno
NewReno
CHD

(b) CHD–NewReno coexistence

Fig. 9. Coexistence between loss and delay based CC algorithms with a 1 %
probability of non-ongestion related loss. Points show 20 s averaged goodput
(plotted point is in the middle of the averaging period).

capacity than NewReno is able to, but not at the expense of

NewReno, rather it is capacity that NewReno is unable to use.

VI. FURTHER WORK

A key issue for both CHD and HD is setting the various

thresholds. This paper attempts to show HD and CHD at their

best for the given scenario. However, for mass deployment it

will be necessary for CHD to be able to cope with the Inter-

net’s widely varying delay characteristics and automatically

choose appropriate values of qth and possibly pmax.

Since delay based CC reacts to congestion much earlier than

loss based CC, it seems reasonable for them reduce cwnd by

less than half on delay based congestion triggers. This may

have fairness and convergence ramifications, so needs further

investigation.

An intrinsic problem with delay based congestion indica-

tions, is that they rely on an accurate estimate of the base

RTT in order to accurately infer congestion. Differences in

the base RTT estimate among competing sources can cause

unfairness in the way they share available capacity.

CHD reacts conservatively to what it infers to be non-

congestion related loss, by holding its congestion window at

the pre-loss value until the lost packet has been recovered.

This conservative approach is fine for low loss scenarios, but

prevents CHD from making use of the available capacity. If

a less conservative approach was adopted that allowed the

congestion window to grow during the recovery process, even

by the single packet additive increase, CHD would be able to

operate in much higher loss environments.

VII. CONCLUSION

We have proposed and demonstrated CHD, a significant

enhancement to a delay-based TCP algorithm first proposed

by Budzisz et al. [1] (HD). CHD is a sender-side algorithm

that requires no changes to existing TCP receivers. Relative

to HD, CHD provides improved tolerance to non-congestion

related packet losses and improved coexistence with loss

based TCP. This is achieved by performing delay based cwnd

operations only once per RTT, and introducing a shadow
window that mimics NewReno-like behaviour to allow better

responsiveness when competing with loss based flows.

Using actual implementations of CHD, HD and NewReno

under FreeBSD 9.0 we have examined two issues:

• The effect of low levels of non-congestion related packet

loss (such as in wireless link technologies) on TCP

congestion control;

• The coexistence of delay and loss based TCP congestion

control algorithms on lightly multiplexed bottleneck links

(such as home internet access scenarios).

CHD was found to provide good non-congestion related loss

tolerance with a single flow achieving 82 % of the available

capacity at 1 % packet loss, compared to 33 % and 30 %

for HD and NewReno respectively (a 150 % improvement).

CHD’s concept of a shadow window helps it to recover

from extra delay based congestion back-offs when competing

with loss based TCP algorithms such as NewReno, with

30

improvements of over 50 % over those achieved by HD in

the lightly multiplexed scenarios.

ACKNOWLEDGMENT

The development of delay based congestion control for

FreeBSD is part of the newTCP project and was made possible

in part by a grant from the Cisco University Research Program

Fund at Community Foundation Silicon Valley.

REFERENCES

[1] L. Budzisz, R. Stanojevic, R. Shorten, and F. Baker,

“A strategy for fair coexistence of loss and delay-based

congestion control algorithms,” IEEE Commun. Lett.,
vol. 13, no. 7, pp. 555–557, Jul. 2009.

[2] J. Postel, “Transmission Control Protocol,” RFC 793

(Standard), Sep. 1981, updated by RFC 3168. [Online].

Available: http://www.ietf.org/rfc/rfc793.txt

[3] M. Fomenkov, K. Keys, D. Moore, and K. Claffy,

“Longitudinal study of internet traffic in 1998-2003,”

in Winter International Symposium on Information and
Communication Technologies (WISICT), Cancun, Mex-

ico, Jan. 2004. [Online]. Available: http://www.caida.

org/publications/papers/2003/nlanr/nlanr overview.pdf

[4] S. Floyd, T. Henderson, and A. Gurtov, “The NewReno

Modification to TCP’s Fast Recovery Algorithm,”

RFC 3782 (Proposed Standard), Apr. 2004. [Online].

Available: http://www.ietf.org/rfc/rfc3782.txt

[5] M. Allman, V. Paxson, and W. Stevens, “TCP

Congestion Control ,” RFC 2581 (Proposed Standard),

Apr. 1999, updated by RFC 3390. [Online]. Available:

http://www.ietf.org/rfc/rfc2581.txt

[6] S. Floyd, “Congestion Control Principles,” RFC 2914

(Best Current Practice), Sep. 2000. [Online]. Available:

http://www.ietf.org/rfc/rfc2914.txt

[7] R. Jain, “A delay-based approach for congestion avoid-

ance in interconnected heterogeneous computer net-

works,” SIGCOMM Comput. Commun. Rev., vol. 19,

no. 5, pp. 56–71, 1989.

[8] Z. Wang and J. Crowcroft, “Eliminating periodic packet

losses in the 4.3-Tahoe BSD TCP congestion control

algorithm,” SIGCOMM Comput. Commun. Rev., vol. 22,

no. 2, pp. 9–16, Apr. 1992.

[9] L. S. Brakmo and L. L. Peterson, “TCP Vegas: end to

end congestion avoidance on a global internet,” IEEE J.
Sel. Areas Commun., vol. 13, no. 8, pp. 1465–1480, Oct.

1995.

[10] C. Jin, D. Wei, and S. Low, “FAST TCP: motivation,

architecture, algorithms, performance,” in INFOCOM
2004. Twenty-third AnnualJoint Conference of the IEEE
Computer and Communications Societies, vol. 4, Mar.

2004, pp. 2490–2501.

[11] D. X. Wei, C. Jin, S. H. Low, and S. Hegde, “FAST

TCP: Motivation, architecture, algorithms, performance,”

IEEE/ACM Trans. Netw., vol. 14, no. 6, pp. 1246–1259,

Dec. 2006.

[12] A. Kuzmanovic and E. Knightly, “TCP-LP: low-priority

service via end-point congestion control,” IEEE/ACM
Trans. Netw., vol. 14, no. 4, pp. 739–752, Aug. 2006.

[13] R. King, R. Baraniuk, and R. Riedi, “TCP-Africa: An

adaptive and fair rapid increase rule for scalable TCP,”

in IEEE INFOCOM 2005, 2005, pp. 1838–1848.

[14] K. Tan, J. Song, Q. Zhang, and M. Sridharan, “A com-

pound TCP approach for high-speed and long distance

networks,” in INFOCOM 2006. 25th IEEE International
Conference on Computer Communications. Proceedings,

Apr. 2006, pp. 1–12.

[15] S. Bhandarkar, A. L. N. Reddy, Y. Zhang, and D. Logu-

inov, “Emulating AQM from end hosts,” in SIGCOMM
’07: Proceedings of the 2007 conference on Applications,
technologies, architectures, and protocols for computer
communications. New York, NY, USA: ACM, 2007,

pp. 349–360.

[16] D. Leith, R.Shorten, G.McCullagh, J.Heffner, L.Dunn,

and F.Baker, “Delay-based AIMD congestion control,”

in Proc. Protocols for Fast Long Distance Networks,

California, 2007.

[17] J. Martin, A. Nilsson, and I. Rhee, “Delay-based conges-

tion avoidance for tcp,” IEEE/ACM Trans. Netw., vol. 11,

no. 3, pp. 356–369, Jun. 2003.

[18] G. McCullagh and D. J. Leith, “Delay-based conges-

tion control: Sampling and correlation issues revisited,”

Hamilton Institute – - National University of Ireland,

Maynooth, Tech. Rep., 2008.

[19] K. Kotla and A. Reddy, “Making a delay-based protocol

adaptive to heterogeneous environments,” in Quality of
Service, 2008. IWQoS 2008. 16th International Workshop
on, Jun. 2008, pp. 100–109.

[20] D. Hayes, “Timing enhancements to the FreeBSD kernel

to support delay and rate based TCP mechanisms,”

Centre for Advanced Internet Architectures, Swinburne

University of Technology, Melbourne, Australia,

Tech. Rep. 100219A, 19 February 2010. [On-

line]. Available: http://caia.swin.edu.au/reports/100219A/

CAIA-TR-100219A.pdf

[21] “NewTCP project tools,” [Accessed 26 April 2010].

[Online]. Available: http://caia.swin.edu.au/urp/newtcp/

tools.html

[22] L. Stewart and J. Healy, “Light-weight modular TCP

congestion control for FreeBSD 7,” CAIA, Tech. Rep.

071218A, Dec. 2007. [Online]. Available: http://caia.

swin.edu.au/reports/070717B/CAIA-TR-070717B.pdf

[23] L. Rizzo, “Dummynet: a simple approach to the evalua-

tion of network protocols,” ACM SIGCOMM Computer
Communication Review, vol. 27, no. 1, pp. 31–41, 1997.

[24] R. Jones, “Netperf homepage,” [Accessed 26 April

2010]. [Online]. Available: http://www.netperf.org/

[25] M. Mathis, J. Semke, J. Mahdavi, and T. Ott, “The

macroscopic behavior of the tcp congestion avoidance

algorithm,” SIGCOMM Comput. Commun. Rev., vol. 27,

no. 3, pp. 67–82, 1997.

31

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

