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ABSTRACT
We present two measurements of the temperature–density relationship (TDR) of the intergalac-
tic medium (IGM) in the redshift range 2.55 < z < 2.95 using a sample of 13 high-quality
quasar spectra and high resolution numerical simulations of the IGM. Our approach is based on
fitting the neutral hydrogen column density NH I and the Doppler parameter b of the absorption
lines in the Lyα forest. The first measurement is obtained using a novel Bayesian scheme that
takes into account the statistical correlations between the parameters characterizing the lower
cut-off of the b–NH I distribution and the power-law parameters T0 and γ describing the TDR.
This approach yields T0/103 K = 15.6 ± 4.4 and γ = 1.45 ± 0.17 independent of the assumed
pressure smoothing of the small-scale density field. In order to explore the information con-
tained in the overall b–NH I distribution rather than only the lower cut-off, we obtain a second
measurement based on a similar Bayesian analysis of the median Doppler parameter for sep-
arate column-density ranges of the absorbers. In this case, we obtain T0/103 K = 14.6 ± 3.7
and γ = 1.37 ± 0.17 in good agreement with the first measurement. Our Bayesian analysis
reveals strong anticorrelations between the inferred T0 and γ for both methods as well as an
anticorrelation of the inferred T0 and the pressure smoothing length for the second method,
suggesting that the measurement accuracy can in the latter case be substantially increased if
independent constraints on the smoothing are obtained. Our results are in good agreement
with other recent measurements of the thermal state of the IGM probing similar (over-)density
ranges.
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1 IN T RO D U C T I O N

The intergalactic medium (IGM), containing the overwhelming ma-
jority of the Universe’s baryons, retains key information about the
cosmic transformations that occurred during helium and hydrogen
reionization (e.g. Hui & Gnedin 1997; Gnedin & Hui 1998; Theuns,
Mo & Schaye 2001; Theuns et al. 2002; Hui & Haiman 2003). Many
authors have studied the signature of thermal heating caused by the
ionizing photons in the absorption profiles of the Lyα forest, with the
goal of probing the temperature–density relation (TDR) of the IGM
at z = 2–4 (e.g. Haehnelt & Steinmetz 1998; Schaye et al. 1999;
McDonald et al. 2001; Zaldarriaga, Hui & Tegmark 2001; Lidz
et al. 2010). These works have been motivated by the simple form
that the low-density TDR should take according to theoretical pre-
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dictions, and by the potential implications for the history of reion-
ization. Analytical studies and hydrodynamics simulations have in-
dicated that the low-density gas in the IGM should be concentrated
in a narrow region of the temperature–density plane along a power
law

T = T0�
γ−1, (1)

where T0 is the temperature at mean density, � is the density divided
by the mean of the Universe and γ is the index of the power-law
relation (Hui & Gnedin 1997). The shape of the TDR at different
redshifts is dependent on the timing of reionization, on the nature of
the sources and physical mechanisms responsible for the heating.
If photoheating of residual neutral hydrogen is the dominant heat
source, then it is predicted that γ ≈ 1.6 well after reionization (Hui
& Gnedin 1997; McQuinn & Upton Sanderbeck 2016).

Although several statistical analyses of the Lyα forest find values
of γ close to this prediction (Rudie, Steidel & Pettini 2012; Bolton
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Table 1. List of spectra analysed in this work. Listed, from left- to right-hand side, are the object name, redshift, Lyα absorption redshift
range used, the instrument used for observation, the signal-to-noise range (per pixel) at the continuum level, the reduced data pixel size,
and either the ESO program number (UVES) or the source of the data (HIRES).

Object zem �z Source S/N pixel size ESO program/reference

PKS 2126−158 3.28 0.0939 UVES 40–90 2.5 km s−1 166.A-0106(A)
Q0347−383 3.23 0.1485 UVES 50–55 2.5 km s−1 68.B-0115(A)
J134258−135559 3.21 0.2545 UVES 30–50 2.5 km s−1 68.A-0492(A)
HS1425+6039 3.18 0.2356 HIRES 55–75 0.04 A Sargent
Q0636+6801 3.17 0.3152 HIRES 35–60 0.04 A Sargent
J210025−064146 3.14 0.1356 HIRES 20–25 1.3 km s−1 KODIAQ O’Meara et al. (2015)
Q0420−388 3.12 0.2884 UVES 75–120 2.5 km s−1 166.A-0106(A)
HE0940−1050 3.08 0.2910 UVES 35–70 2.5 km s−1 166.A-0106(A)
GB1759+7539 3.05 0.1859 HIRES 27–32 2.0 km s−1 Outram, Chaffee & Carswell (1999)
J013301−400628 3.02 0.1929 UVES 25–35 2.5 km s−1 69.A-0613(A),073.A-0071(A),074.A-0306(A)
J040718−441013 3.02 0.0962 UVES 40–115 2.5 km s−1 68.A-0361(A),68.A-0600(A),70.A-0017(A)
J224708−601545 3.00 0.3293 UVES 35–75 2.5 km s−1 075A-158(B)
HE2347−2547 2.88 0.2205 UVES 95–125 2.5 km s−1 077.A-0646(A),166.A-0106(A)

et al. 2014; Boera et al. 2016), other measurements, which consider
the Lyα flux probability distribution function (PDF), have claimed
evidence for an inverted (γ < 1) TDR (Bolton et al. 2008; Viel,
Bolton & Haehnelt 2009; Calura et al. 2012; Garzilli et al. 2012)
for which unconventional heating mechanisms such as blazar heat-
ing have been invoked as an explanation (Broderick, Chang &
Pfrommer 2012; Chang, Broderick & Pfrommer 2012; Pfrom-
mer, Chang & Broderick 2012; Puchwein et al. 2012; Lamberts
et al. 2015). Some authors have suggested that this discrepancy
could be ascribable to unaccounted effects from systematic un-
certainties due to ‘continuum fitting’ of QSO absorption spectra
necessary for the calculation of the flux PDF (Lee 2012) or to
an overestimation of the statistical significance of the measure-
ments (Rollinde et al. 2013). An alternative solution to recon-
cile the apparent discrepancies between the measurements and the
expected thermal state of a photo-heated IGM was proposed in
Rorai et al. (2017b), who analysed the PDF of the low-opacity
pixels in a very high signal-to-noise quasar spectra in order to
constrain the TDR in the low-density IGM. Rorai et al. (2017b)
found that uncertainties in the continuum placement alone can-
not explain the discrepancy with conventional models for the ther-
mal state of the IGM. Instead, they found that a flat or inverse
TDR (with high temperature in underdense regions) is indeed
favoured by the PDF, though perhaps only at very low densities
(� � 1). They also showed that different Lyα forest statistics that
give discrepant results, like the power spectrum or those based
on line-fitting methods, are sensitive to disjoint density ranges
(� � 2–3). Rorai et al. (2017b) thus challenged the description
of the low-density TDR as a single spatially invariant power law.

To investigate the low density TDR further, here we undertake
a traditional Voigt-profile fitting decomposition of the Lyα forest
absorption in the redshift range 2.55 < z < 2.95 for a sample of
13 quasar spectra. We use a set of IGM models obtained by post-
processing high resolution hydrodynamics simulations and generate
model spectra with the same noise and resolution characteristics.
We apply the same Voigt decomposition to the these spectra so
that they may then be compared directly with the telescope data.
Following Schaye et al. (1999, 2000), Ricotti, Gnedin & Shull
(2000), Rudie et al. (2012) and Bolton et al. (2014), we analyse
the shape of the cut-off for narrow lines in the plane defined by
the column density NH I and the line width b. Moreover, we introduce
a Bayesian formalism to study not only the uncertainties on the
inferred thermal parameters, including the pressure smoothing, but

also their degeneracies. We further develop a new technique based
on the medians of the b distribution for separate column-density
ranges, in order to exploit the information contained in the bulk of
the distribution in the NH I–b plane.

This article is structured as follows. We start by presenting in
Section 2 the sample of quasar spectra we use in our analysis and
how these data are treated, in particular with respect to metal con-
taminants. We then describe the hydrodynamics simulations and
the models to which we compare the data (Section 3). In Section 4,
we explain how we analyse the statistical properties of Lyα lines
in the forest to extract the information about the thermal properties
of the IGM. The results of this analyses are illustrated in Section 5
and subsequently discussed in Section 6, where we also examine
agreements and disagreements with previous studies. We draw our
final conclusions in Section 7.

2 DATA

A sample of high signal-to-noise ratio quasar spectra from ESO
Ultraviolet and Visual Echelle Spectrograph (UVES, Dekker
et al. 2000) and Keck high resolution echelle spectrograph (HIRES,
Vogt et al. 1994) archival data with coverage of the Lyα forest in the
redshift range 2.55 < z < 2.95 was selected. This redshift range is
chosen to complement the reanalysis by Bolton et al. (2014) of the
data presented by Rudie et al. (2012), which provided constraints
on the TDR parameters at lower redshift. Note that the methods
illustrated in this paper can, in principle, be applied to higher red-
shift data, but we found that at z > 3.2, the stronger blending of
Lyα lines makes the decomposition into Voigt profiles increasingly
ambiguous. To have a large segment of the chosen absorption red-
shift range clear of the quasar proximity region (chosen to be within
4000 km s−1 of the quasar redshift) requires that the emission red-
shift zem � 2.85, and the need to avoid Lyβ blending with the
Lyα forest leads to zem � 3.30. A list of the 13 objects used, and
the characteristics of the reduced spectra, is given in Table 1. The
exposures for the nine UVES spectra were reduced using the Euro-
pean Southern Observatory (ESO) UVES CPL (Common Pipeline
Language) software (v4.2.8) and combined using UVES_popler
(Murphy 2016), as described in detail in Boera et al. (2014). The
two spectra kindly provided by W. L. W. Sargent were reduced
using MAKEE (Barlow 2008). Continuum estimates in the forest are
based on fitting low order curves to the high points in the spectra.
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Here, we wish to compare the results of fitting Voigt profiles to the
Lyα forest using VPFIT (Carswell & Webb 2014) to the observational
spectra with those from simulated data (see Section 3), so we have
to be aware of some features in the data that cannot be reproduced
in the simulations, and some restrictions the simulations may place
on the way the observations are analysed. These are as follows:

(i) The resolution of the object spectra is not accurately known,
since the observations were not always slit limited and nor would the
seeing have been constant. Here, we assume a Gaussian resolution
element with a full width at half-maximum (FWHM) of 6.5 km s−1,
which is a reasonable approximation for both the HIRES and UVES
data. Most Lyα features have Doppler parameters b � 15 km s−1,
and for sample inclusion, we choose b > 8 km s−1 (correspond-
ing to FWHM 13.3 km s−1 ), so even 10 per cent uncertainties in
the instrumental FWHM do not make a significant difference. We
therefore convolve all simulated spectra with a Gaussian kernel with
FWHM = 6.5 km s−1.

(ii) The continuum estimates are based on large-scale high points
in the observational data, and maybe in error. VPFIT allows a linear
continuum adjustment as a function of wavelength over the fitting
region, and inserts this adjustment automatically when the overall
fit accuracy comes down to a specified level. To be consistent, this
was used both for the observational data and for the simulations.

(iii) VPFIT occasionally introduces very large Doppler parameter
lines, which appear to be better described as long range continuum
adjustments. To remove these, we omitted features with Doppler
parameters >100 km s−1.

(iv) The zero level may be offset by a small amount in the ob-
served spectra while it is accurately known in the simulated ones.
A zero level adjustment was introduced during the automatic fitting
process when the normalized χ2 became <5 if there were five or
more contiguous pixels of the fitted profile below 5 × 10−3 of the
continuum value. The details are given in Sections 6.5 and 7.4 of
the VPFIT documentation (Carswell & Webb 2014).

(v) Heavy element lines contaminate the Lyα forest in the ob-
servational data, but are absent in the simulations. We identified as
many as we could from systems that showed heavy element lines
longward of the Lyα emission and then chose wavelength regions
within the forest to avoid the stronger ones. Heavy element lines are
usually narrow, so the 8 km s−1 threshold adopted for this analysis
will remove most of the ones we have not identified. Also in the
cases where metal lines are clustered in groups, they are still fitted
as separate narrow components for the signal-to-noise ratios in our
data sample.

(vi) The simulated spectra cover a fixed small range of just over
1000 km s−1 (or 15.5 Å at redshift z = 2.75), and all lines in each of
these spectra were fitted simultaneously. In the observed data, VPFIT

was applied to regions of varying size, depending on the local line
density and the positions of heavy element lines, but were chosen
to be between 10 and 25 Å long, with an average of ∼16 Å.

(vii) The flux noise in the observational data is not constant
from object to object, or even within an object spectrum, where
it depends on the signal. The continuum level noise, σ c, may be
estimated by interpolating between regions of the spectrum where
there is little absorption, and the zero level noise, σ 0, by doing so
between saturated Lyα lines. Then for the simulations the noise can
be set using σ =

√
σ 2

0 + F (σ 2
c − σ 2

0 ), where F is the transmitted
flux normalized by the continuum. We identified 53 spectral sections
characterized by different (σ c, σ 0) pairs. To account for this, the
simulated sight-lines are divided into 53 subsets with path length
proportional to the path lengths of the 53 sections. To each of them

we add flux-dependent Gaussian noise using the appropriate value
of σ c and σ 0.

(viii) Since flux noise is estimated on a pixel-by-pixel basis, we
rebin the simulated flux in pixels of 2.5 km s−1, which is the pixel
scale used in most of the data sample. For simplicity, in the few
cases where the pixel size, �v, of the data is not 2.5 km s−1, σ 0 and
σ c of the corresponding simulated sets are rescaled by

√
�v/2.5

before adding noise. We have checked, for a sample of spectra, that
this rescaling procedure produces consistent fits with those in which
the same pixel size and noise level as the data was used.

(ix) VPFIT adds as many components as necessary until a satis-
factory fit is obtained. However, it may fail to converge to give an
acceptable fit to either observational or model data, sometimes, for
example, if there is a saturated Lyα line. Where this happens, the
fits from those regions are omitted. Model spectral regions were
chosen with noise characteristics mimicking the observational ones
with acceptable fits and, in cases where convergence failed, differ-
ent sightlines through the model were chosen until an acceptable fit
was obtained.

All fitted components are characterized by their central redshift z,
column density NH I (in cm−2) and Doppler parameter b (in km s−1),
and VPFIT provides estimates and uncertainties for all these quanti-
ties. The observational data yielded 2271 fitted Lyα components in
a total path length of �z = 2.788. A potential problem with the ap-
proach taken to avoid metal line contamination is that possible C IV

and Mg II doublets may occur without counterparts redwards of the
Lyα emission line and would not be identified inside the forest. To
assess the impact of these contaminants we have compiled a sample
of lower redshift quasars (2.13 < zem < 2.54) and identified C IV

and Mg II doublets lying in the range 4316–4802 Å, i.e. the range
covered by the Lyα data (the same data were recently analysed
by Kim et al. 2016). For consistency, we only consider doublets
with no associated lines from lower ions (and longer wavelength
transitions), which would have been detected in the first place by
our identification process. The Voigt-profile fit parameters from this
sample are then used to add the opacity of these contaminants to the
simulated spectra and estimate the impact on our results. We have
checked that by doing so the results of this paper are not signifi-
cantly affected, once our chosen cuts on b and NH I are applied (see
below).

3 MO D E L S

In order to predict the observed statistical properties of the Lyα

forest, we used simulated spectra from the set of hydrodynamics
simulations described in Becker et al. (2011, hereafter B11). The
simulations were run using the parallel Tree-smoothed particle hy-
drodynamics (SPH) code GADGET-3, which is an updated version of
the publicly available code GADGET-2 (Springel 2005). The fiducial
simulation volume is a 10 Mpc h−1 periodic box containing 2 × 5123

gas and dark matter particles. This resolution is chosen specifically
to resolve the Lyα forest at redshift z ∼ 4–5 (Bolton & Becker 2009).
The simulations were all started at z = 99, with initial conditions
generated using the transfer function of Eisenstein & Hu (1999).
The cosmological parameters are 	m = 0.26, 	λ = 0.74,
	bh2 = 0.023, h = 0.72, σ 8 = 0.80, ns = 0.96, consistent with
constraints of the cosmic microwave background from WMAP9
(Reichardt et al. 2009; Jarosik et al. 2011). The IGM is assumed
to be of primordial composition with a helium fraction by mass
of Y = 0.24 (Olive & Skillman 2004). The gravitational softening
length was set to 1/30th of the mean linear interparticle spacing,
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and star formation was included using a simplified prescription
that converts all gas particles with overdensity � = ρ/ρ̄ > 103 and
temperature T < 105 K into collisionless stars. In this work, we will
only use the outputs at z = 2.735.

The gas in the simulations is assumed to be optically thin and
in ionization equilibrium with a spatially uniform ultraviolet back-
ground (UVB). The UVB corresponds to the galaxies and quasars
emission model of (Haardt & Madau 2001, hereafter HM01). Hy-
drogen is reionized at z = 9, and gas with � � 10 subsequently
follows a tight power-law TDR, T = T0�

γ − 1, where T0 is the tem-
perature of the IGM at mean density (Hui & Gnedin 1997; Valageas,
Schaeffer & Silk 2002). As in B11, the photo-heating rates from
HM01 are rescaled by different constant factors, in order to explore
a variety of thermal histories. Here, we assume the photoheating
rates εi = ξεHM01

i , where εHM01
i are the HM01 photoheating rates

for species i = [H I, He I, He II] and ξ is a free parameter. Note
that, different from B11, we do not consider models where the heat-
ing rates are density-dependent. In fact, we vary ξ with the only
purpose of varying the degree of pressure smoothing in the IGM,
while the TDR is imposed in post-processing. In practice, we only
use the hydrodynamics simulation to obtain realistic density and
velocity fields. For this reason, we will refer to ξ as the ‘smoothing
parameter’. We then impose a specific TDR on top of the density
distribution, instead of assuming the temperature calculated in the
original hydrodynamics simulation. This means that in our models
the temperature is only a function of the density, strictly following
equation (1) at all densities up to � = 10. As done in Rorai et al.
(2017b), we set the temperature to be constant at higher densities,
i.e. T(� > 10) = T(� = 10), in order to avoid unphysically high
values. Note however that such densities correspond to strongly
saturated Lyα absorbers, which are not used in our analysis (see
below). We opt for this strategy in order to explore a wide range
of parametrizations of the thermal state of the IGM, at the price of
reducing the temperature–density diagram of the gas to a determin-
istic relation between T and ρ. In this work, we use a total of 107
models based on hydrodynamics simulations with ξ = 0.3, 0.8 and
1.45. The grid of parameters spans values between 0.4 and 1.9 for
γ and between 5000 and 35 000 K for T0.

Finally, we calculate the optical depth to Lyα photons for a set
of 1024 synthetic spectra in each model, assuming that the gas is
optically thin, taking into account peculiar motions and thermal
broadening. We scale the UV background photoionization rate in
order to match the observed mean flux of the forest at the central red-
shift of the sample1 [F̄obs(z = 2.75) = 0.7371; Becker et al. 2013].

We stress that in this scheme the pressure smoothing and the
temperature are set independently. Although not entirely physical,
this allows us to separate the impact on the Lyα forest from instan-
taneous temperature, which depends mostly on the heating at the
current redshift, from pressure smoothing, which is a result of the
integrated interplay between pressure and gravity across the whole
thermal history (Gnedin & Hui 1998).

3.1 Parametrization of the pressure smoothing

Varying the smoothing parameter ξ allows us to test the effect of
different thermal histories on the structure of the IGM density field.
In order to characterize it in a model-independent way, we adopt

1 In reality the average transmission of the Lyα forest evolves throughout
this redshift bin. We have verified, however, that modelling the forest using a
single value for the mean flux over this redshift range has only a small effect
on the results when compared to the statistical uncertainties (see appendix).

the definition proposed by Kulkarni et al. (2015) for the pressure
smoothing length in hydrodynamics simulations λP. This is based
on the real-space Lyα flux Freal, calculated as the transmitted flux
of Lyα photons in the fluctuating Gunn-Petersson approximation

Freal(x) = exp

[
− 3λ3

α�α

8πH (z)
nH I

]
, (2)

where λα = 1216 Å is the rest-frame Lyα wavelength, �α is the
Einstein A coefficient of the transition, H(z) is the Hubble parameter
and nH I(x) is the neutral hydrogen number density at the point x.
Critically, Freal does not include the effects of thermal broadening
or peculiar velocities on the transmitted flux. In the optically thin
regime, where nH I ∝ ρ2, this is a non-linear transformation of the
density field that suppresses high densities, but preserves isotropy.
In Kulkarni et al. (2015), it is shown that the Freal power spectrum
is sensitive to the thermal history of the low-density IGM, and is
well approximated by the function

�F (k) = Akn exp[−(kλP )2], (3)

where k is the Fourier wavenumber and A, n and λP are the free
parameters. We calculate the Freal field for our hydrodynamics sim-
ulations, using the nH I output at z = 2.735. Consistently to what we
have done for the post-processed models described in the previous
section, we rescale nH I so that the mean flux in a set of synthetic
Lyα spectra extracted from the simulations matches the observed
values at the correspondent redshift. We obtain λP from the fit of the
power spectrum. This gives λP = 69, 93 and 108 kpc for ξ = 0.3, 0.8
and 1.45, respectively. Here and elsewhere in this paper, we always
express the smoothing length in comoving kpc.

4 M E T H O D O L O G Y

Simulated spectra for various IGM models were produced to be
compared with the data, and we derived Doppler parameter b and
column densities NH I for the Lyα lines using VPFIT in exactly the
same way as for the telescope data (see Sections 2 and 3). The
distribution of lines in the b–NH I plane forms the basis for our sta-
tistical analysis. For both the data and the simulations, there may be
velocity structure which is not well represented by Voigt profiles.
In the fitting process, this can result in a number of non-physical
components, which can be quite close together, or in blended, broad
but weak lines. A feature of these is that the error estimates tend to
be large as a consequence of the presence of neighbouring systems.
An example can be seen in Fig. 1, showing the results of applying
the algorithm to a simulated spectrum. To remove many of these,
and to prevent the b–NH I distributions being dominated by noise,
we require the relative error estimate in the Doppler parameter to
be smaller than 50 per cent, and the error on log NH I smaller than
0.3. Additionally, for log NH I > 14.5, the Lyα line is usually sat-
urated to a level where the column densities derived from fitting
only the Lyα transition are unreliable. So we exclude systems with
higher column densities from the analysis. Finally, for the highest
b-values in the range, the line detection limit is log NH I ∼ 12.5,
so we adopt this as a lower limit for the comparison samples. To
summarize, our statistical analysis is based on the absorption com-
ponents with 8 < b < 100 km s−1, 12.5 < log(NH I/cm−2) < 14.5,
Doppler parameter relative error smaller than 50 per cent and log
column density error <0.3. With these restrictions, the observa-
tional data sample consists of 1625 points in the b–NH I space. The
line distribution for the data and for three different models is shown
in Fig. 2.
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Figure 1. Decomposition of the Lyα forest in individual absorption lines. Top panel: the black histogram represents the Lyα absorption in a sight line from
one of our models shown in velocity space. The average signal-to-noise level of this spectrum is 33.2. The red dashed curves are the individual fitted absorbers,
whereas the total reconstructed absorption is shown as the blue dot–dashed curve. The red dotted line follows the continuum (F = 1). Bottom panel: the
deviation of the reconstructed flux Ffit from the original spectrum F, compared with the assumed noise level for this synthetic spectrum (delimited by the red
solid lines). Overall, the combined fit is a good approximation to the original spectrum, except in regions characterized by flat absorption profiles (for example
around v = 200–300 km s−1), which cannot be decomposed into individual lines. Note also that rather broad lines are sometimes required to reproduce the
absorption profile, which are not obviously interpretable as single absorbers (e.g. in the case of the line centred around v ∼ 450 km s−1). The parameters of
these broad lines are also particularly sensitive to systematic uncertainties due to the continuum placement.

Figure 2. Distributions in the log NHI–b plane for the lines fitted in the quasar data sample (left-hand panel) and in three IGM models with T0 = 25000 K,
γ = 1.6 (centre left-hand panel), T0 = 15000 K, γ = 1.6 (centre right-hand panel) and T0 = 15000 K, γ = 1 (right-hand panel). All three models have
smoothing parameter ξ = 0.8, corresponding to a smoothing length λP = 93 kpc (comoving). The red solid lines represent the fitted power law to the cut-off
of the distribution, which is sensitive to the thermal parameters of the IGM. The behaviour of these lines in the three models illustrates the sensitivity of the
cut-off to the thermal parameters, which has been used in the past to constrain the thermal parameters (e.g. Schaye et al. 1999; Rudie et al. 2012), and the
difference in T0 between the second and third panels determines a clear change in the intercept of the fitted line. Conversely, the lower slope of the TDR used
in the right-hand panel, which shows an isothermal model, makes the cut-off much flatter than in the other two cases.

4.1 The lower cut-off in the b–N distribution

As noted previously (Schaye et al. 1999; Theuns, Schaye &
Haehnelt 2000; McDonald et al. 2001), the b–N distribution shows
a pronounced cut-off at low values of b. This is usually in-
terpreted as a signature of thermal broadening setting a lower
limit to the absorption line widths. The position of this cut-off
is dependent on the column density, suggesting that the temper-
ature systematically varies with the density of the gas. This mo-
tivated several studies to use the slope and normalization of the
lower of the b–N distribution as a direct probe of the TDR of
the IGM. Pressure smoothing also broadens the lines by increas-
ing the physical size of absorbers, which increases their veloc-
ity width due to the Hubble flow. This effect can be taken into
account by means of theoretical/analytical arguments or hydrody-
namics simulations (Schaye et al. 1999; Theuns et al. 2000; Garzilli,
Theuns & Schaye 2015).

The lower cut-off in the b–N distribution is generally assumed to
be a power-law relation between line width and column density,

b = b0

(
NHI

NHI,0

)�−1

, (4)

where b0 and � are the parameters connected with the TDR and
NHI, 0 is a reference value which is often chosen as the column den-
sity corresponding to gas at the mean density � = 1 (see Bolton
et al. 2014, for a discussion). In Fig. 2, we show the fitted cut-off
for our observed absorption line sample and samples of simulated
absorption lines for three different thermal models. In our anal-
ysis, we arbitrarily fix NHI, 0 = 1013 cm−2, but we will relax the
assumptions on the functional dependencies between b0, � and the
thermal parameters. The standard algorithm used to fit this cut-off,
which we also adopt, was first introduced by Schaye et al. (1999)
and is based on a recursive rejection process: The expression in
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Figure 3. Calibrated relations between the parameters b0 and � describing the normalization and slope of the lower cut-off in the b–N distribution and the
thermal parameters T0 and γ describing the TDR. Left-hand column: cut-off normalization log b0 at log NHI, 0/cm−2 = 13 as a function of log T0 (upper panel)
and slope of the fitted � as a function of the index γ of the TDR (lower panel). Each point represents a different model in the grid and errors are estimated
by bootstrapping the simulated line samples. The red bands delimit the values of log b0 and � measured from the data within the 1σ error. The calibrated
function log b0(log T0) is obtained via a linear fit of these points (dashed lines). The two relations shown in this plot are reasonably tight, but the level of
scatter appears higher than what the error bars warrant, suggesting that dependencies on other parameters are not negligible. This can have an effect on the
inference of the thermal parameters. Right-hand column: same as the left-hand panel, but using the generalized combination of thermal parameters described
in Section 4.2. Each point represents the mean of the MCMC posterior distribution for the combinations used to describe log b0 (upper panel) and � (lower
panel). The (small) horizontal error bars represent the propagated uncertainties on the combination coefficients as obtained from the posterior distribution. The
dashed lines represent the identity. Adopting the generalized scheme substantially improves the fits: the chi-square for the four plots, divided by the number of
points, is 3.49 (top left-hand panel), 2.70 (top right-hand panel), 4.16 (bottom left-hand panel) and 2.56 (bottom right-hand panel).

equation (4) is fitted to the line distribution to obtain bfit(NH I). We
then calculate the mean absolute deviation |σ b| of the points from
the fit in the b dimension, and discard all lines whose value of b
is greater than the fitted relation by more than |σ b|. The fit and
the rejection of upper outliers are iteratively repeated until con-
vergence, i.e. when all points lie below the upper mean deviation
and the only outliers are below the fit. At that stage, the lines with
b < bfit(NH I) − |σb| are discarded and the fit is repeated one last
time to define the final values of b0 and �. The errors associated
with log b0 (it is convenient to operate in logarithmic space) and �

are estimated via a bootstrap technique applied to the line sample.
In a first approximation, we follow the standard practice of con-
sidering log b0 and � as statistically independent and treat them
separately. Correlations between these parameters are addressed in
the next section.

One may notice from Fig. 2 that the lines fitted in the data sample
(left-hand panel) present more outliers below the cut-off compared
to the models (right-hand three plots). To understand what could
generate this difference, we visually inspected all individual ab-
sorbers in the data with width lower than the cut-off by more than
log b = 0.1. Among 29 outliers, we found 7 that are compatible with
being unidentified metal lines and other 7 that are Lyα absorbers

associated with metals at the same redshift. The latters are metal-
enriched systems whose temperature might be affected by metal
cooling, which is not accounted for in our models. We have tested
the effect of removing these 14 lines and to re-apply the cut-off
fitting procedure. This did not significantly change the estimated
cut-off parameters, but it reduced the uncertainty on log b0 by about
20 per cent. For this reason, we consider keeping all the outliers to
be the most conservative choice.

In the published literature, the relations between the narrow line
cut-off parameters and the thermal parameters (T0, γ and in this
work also λP) were based on theoretical arguments set out by Schaye
et al. (1999) (see also Rudie et al. 2012) or calibrated with hydro-
dynamics simulations (Bolton et al. 2014). Here, we will first make
the ansatz that such relations can be written in the form

log T0 = A + B log b0, (5)

γ − 1 = C + D(� − 1), (6)

where A, B, C, D are determined using the full set of models de-
scribed in Section 3 (see Fig. 3). Analogous to previous works, we
for now assume no dependency on the pressure smoothing length λP,
which for standard hydrodynamics simulations implicitly assumes
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that the thermal history is correct and hence consistently taken into
account. Note that these relations are slightly different than what
is usually assumed in other works. We will later check/verify the
validity of this ansatz a posteriori using the model grid (see Fig. 3).

In the next section, we discuss how we abandon these assumptions
in order to include a more general relation between the parameters
describing the lower cut-off of the b–N distribution and parameters
describing the thermal state and history of the IGM, including the
smoothing length λP.

4.2 Generalizing the calibration of the cut-off parameters

The relations described by equations (5) and (6) are based on the
heuristic argument that the renormalization of the TDR changes the
line widths at all column densities by a similar proportion, at least
for lines that fall near the cut-off. Although Fig. 3 suggests that
such an approximation is reasonable, we would like to consider the
possibility of more general dependencies in order to find a scheme to
quantify the effect of the pressure smoothing on the line distribution.

We approach this problem by starting with the assumption that a
generic observable φ can be approximated by a linear combination
of the logarithm of the relevant parameters. More precisely, we
define the combination ψ as

ψ = a + b log T0 + c(γ − 1) + d log λP , (7)

where a, b, c, d are free parameters. The choice of using logarithmic
quantities (except for γ , which is an index) is equivalent to assuming
a power-law relation with T0 and λP. Note that changing the units
in which T0 and λP are expressed would only affect the offset a.
In general, φ could be a more general function of the parameters
than a linear relation, so the validity of this approximation will
need to be verified a posteriori. If ψ is not a good description of
the observable, or if there are statistical uncertainties in the models
(e.g. due to finite box size), it is natural to expect some scatter. This
can be accounted for by introducing some flexibility in choosing
{a, b, c, d}.

A convenient way of doing so is to implement a likelihood proba-
bility for fitting φ with ψ and to include it in a Markov chain Monte
Carlo (MCMC) algorithm in the space of coefficients. This can be
combined with a likelihood of the measured observable φd when
compared to the value of ψ for a given choice of the coefficients
and of the thermal parameters. This allows us to draw quantitative
inferences on the calibration coefficients {a, b, c, d} and on the
thermal parameters {T0, γ , λP} at the same time.

In our analysis, the total likelihood is therefore composed of two
parts. The first part quantifies how well the parameter combination
ψ defined by a, b, c, d fits the points in the training grid of models.
Given the observable φ, this can be written as

log L1 = −
∑

i

[a + b log T0,i + c(γi − 1) + d log λP,i − φi]2

2σ 2
φ,i

,

(8)

where the sum is performed over all the models in the grid and
σ 2

φ,i is the uncertainty on φi, both relative to the ith model. An
MCMC run that employs L1 as likelihood suffices to estimate the
posterior distribution for the calibration coefficients a, b, c, d, i.e.
the range of parameter combinations that can be used to relate the
observable φ to the IGM parameters via equation (7). In principle,
this distribution could be used as a prior for a second MCMC run,
which includes the thermal parameters. However, we find it more
practical to combine log L1 with a likelihood where the same values

of a, b, c, d are employed to make a prediction for φ(T0, γ , λP) and
test it against the data. Assuming the error is Gaussian, this can be
simply expressed as

log L2 = − [a + b log T0 + c(γ − 1) + d log λP − φd ]2

2σ 2
φ,d

, (9)

where φd and σφ, d are estimated from the data. The two parts of
the likelihood can then be summed to obtain the total likelihood
which we use to run an MCMC in the 7-dimensional space of the
calibration and thermal parameters {a, b, c, d, T0, γ , λP} .

This scheme is computationally inexpensive and achieves several
goals:

(i) It generalizes the simple power-law calibration assumed in
equation (5).

(ii) It finds the parameter combinations to which the observable
is sensitive, providing a way to quantitatively express its degeneracy
direction.

(iii) The uncertainty of this calibration can be determined based
on the scatter of the simulated points and their uncertainties.

(iv) It returns the constraints on the thermal parameters,
marginalizing over the uncertainty on the coefficients of
equation (7).

The main drawback is that the validity of equation (7) as an approx-
imation of the observable φ must be verified a posteriori, using the
estimated coefficients from the MCMC run.

In the case where the observable φ is not a scalar but a vector, it
is possible to generalize the likelihood expressions 8 and 9 to multi-
variate Gaussian likelihoods. This will increase the dimensionality
of the calculation because there must be four coefficients {a, b,
c, d} for each observable component. It will also be necessary to
calculate the full covariance matrix of the different components of
φ.

In this work, we have applied this formalism to the observables
(log b0, �) that describe the lower cut-off of the b–N distribution
and to the differential median parameters (m1, α) that we will define
in the next section. In both cases, this involved an 11-parameter
MCMC analysis and adopting a bivariate Gaussian likelihood, both
for equation (8) and (9). The correlation between log b0 and � has
been calculated by bootstrapping the sample of absorption lines, as
it was done for the standard deviations.

4.3 Differential median of the line width distribution

Although the cut-off is certainly the most prominent feature of the
distribution, it is reasonable to expect that the thermal properties
of the IGM do not only affect the narrowest lines in the Lyα for-
est. Taking advantage of the additional information contained by
the bulk of the line population is an obvious way of trying to re-
fine the constraints achievable with a Voigt-profile decomposition
approach. Some of our preliminary efforts to do so encountered
systematic issues related to very broad lines (b > 60 km s−1). Our
models were not able to reproduce the observed line distribution in
that range, and, more problematically, inferences on the thermal pa-
rameters from various fitting schemes were strongly dependent on
the way the upper b range was chosen or on the statistic employed
to characterize the line distribution. We concluded that the broad
lines are in most cases probably an artefact of the fitting procedure
and do not represent physical properties of the IGM (see for exam-
ple Fig. 1) and are therefore more subject to systematic errors, in
particular, due to the uncertainty of the continuum placement.
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Figure 4. Representation of the differential median statistic. The points in the four panels show the b–N distribution of the data and the simulation for the same
three thermal models as in Fig. 2. The vertical dotted lines separate the two NH I ranges for which the two medians m1 and m2 (shown in dashed red horizontal
lines) are calculated. The blue lines describe the equation b = m′

1 − α(log NH I − 13) chosen so that they horizontally divide both column-density ranges into
two parts with an equal numbers of points (see text for details). m1 and α are the two parameters used in the analysis. The plot illustrates their sensitivity to the
thermal parameters γ and T0.

For this reason, we turned our attention to a statistical estimator
which is not sensitive to the distribution of lines at extreme val-
ues of b. A natural choice is the median. In order to capture the
column-density dependency of the Doppler-parameter distribution,
we adopt the following approach. We define m1 as the median of
the line width distribution for 1012.5 < NH I < 1013.5 cm−2 and m2 as
the median for 1013.5 < NH I < 1014.5 cm−2. We then apply a linear
transformation to log b parametrized as

log b′ = log b + α log

[
NH I

1013 cm−2

]
, (10)

where the transformation coefficient α is such that the medians m′
1

and m′
2 of the new quantity log b′ are identical (for the same NH I

domains defined above). It is straightforward to determine α iter-
atively. This calculation is different from simply considering the
differences of the median m2 − m1, because α depends on the posi-
tions of all individual lines in the plane and not just on the median
of log b in the two parts. However, for simplicity, we will refer to
this method as the ‘differential median’ method. We choose m1 (the
median calculated before the transformation) and α as our final ob-
servables to estimate the thermal parameters, to which we apply the
analysis technique illustrated in the previous section. Analogously
to the cut-off method, we calculate uncertainties and covariance for
m1 and α by bootstrapping the line sample. An illustration of our
differential median statistic is shown in Fig. 4, both for the data and
for the same three thermal models shown in Fig. 2. Its sensitivity
to the parameters of the TDR is shown by the different slopes and
normalizations of the lines for the different thermal models, which
qualitatively have the same parameter dependencies as the cut-off.

5 R ESULTS

In the left-hand panels of Fig. 3, we show the values of log b0 in the
simulations as a function of the temperature at mean density and � as
a function of the slope of the TDR γ . When fitting the linear relations
in equation (5), we obtain A = 2.06, B = 1.76; C = −0.07 and D =
3.28 (corresponding to the black dashed lines). The cut-off-fitting
algorithm applied to the data returns log b0 = 1.186 ± 0.084 and
� = 0.180 ± 0.062, marked as the red shaded region in the plot.
By applying the above coefficients to convert these numbers to a
measurement of the TDR parameters, we get T0/103 K = 14.3 ± 5.0

and γ = 1.52 ± 0.22. The reported uncertainties take into account
the propagated (small) errors of the cut-off calibration coefficients.

The generalization of the relation between the thermal param-
eters T0 and γ , and the parameters characterizing the lower cut-
off of the b–N distribution described in Section 4.2 is shown in
the right-hand panels of Fig. 3. These plots are analogous to the
left-hand panels except that the x-axes are combinations of the
thermal parameters as defined in equation (7). The coefficients for
equation (7) are picked from the mean values of the MCMC poste-
rior distribution, applying the method described in Section 4.2 to a
joint analysis of � and log b0. More precisely, the average combi-
nations are ψ1 = −1.03 + 0.55 log T0 − 0.02(γ − 1) − 0.02 log λP

and ψ2 = 0.10 − 0.06 log T0 + 0.27(γ − 1) + 0.09 log λP. These re-
lations do not represent a new ‘calibration’ in which the coefficients
are free to vary consistently with the uncertainties on the values
extracted from the simulations. However, showing that the relations
between the observables and the typical combinations from the
MCMC fall close to the identity relation (dashed line) is necessary
to validate our approach. The constraints on the thermal parameters
derived from the same MCMC analysis are shown in the green con-
tour plots in Fig. 6. A degeneracy between the inferred values of
T0 and γ is evident, which is a consequence of taking the statistical
correlation between the measured � and log b0 into account. The
right-most panel demonstrates that the lower cut-off in the simulated
b–N distribution is not sensitive to the smoothing length λP. When
marginalized over all parameters of the MCMC analysis, including
the coefficients for ψ1 and ψ2, the values inferred for the TDR pa-
rameters are T0/103 K = 15.6 ± 4.4 and γ = 1.45 ± 0.17 (quoted as
mean and standard deviation from the posterior distribution). The
uncertainties are smaller than those inferred from the lower cut-off,
and the two measurements are in good agreement.

The results obtained from the differential median technique
are presented in Fig. 5. The two panels show that the quanti-
ties m1 and α are reasonably approximated by a combination
of the form of equation (7), although the scatter is not negli-
gible. As in Fig. 3, the red bands trace the 1σ limits for the
measured parameters: m1 = 1.446 ± 0.020 (left-hand panels)
and α = 0.007 ± 0.016. The relations are well described by
ψ1 = −0.433 + 0.256 log T0 + 0.038(γ − 1) + 0.409 log λP

and ψ2 = 0.285 − 0.141log T0 − 0.194(γ − 1) + 0.200 log λP.
The posterior distribution of the thermal parameters, shown as blue
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Figure 5. Same as Fig. 3 (right-hand column), but for the differential median method, showing the relation between the low-column-density median m1 and
the differential coefficients α with the respective average parameter combinations obtained by the MCMC analysis, ψ1 and ψ2.

Figure 6. Constraints on the thermal parameters from the two analyses presented in this work. In green we show the 1σ (dark) and 2σ (light) confidence levels
in the T0–γ and T0–λP planes, derived from the cut-off method. The analysis takes into account the statistical correlation between the uncertainties of the two
observables, log b0 and �. Mainly due to this correlation, there is a strong degeneracy between the estimated values of T0 and γ , although the marginalized
uncertainty of the two parameters of the TDR is comparable to the one achieved in the standard method. The right-hand panel shows that the temperature
T0 inferred from the lower cut-off of the b–N distribution is not sensitive to the smoothing scale λP of the numerical simulations used for calibration. The
blue contours are the 1σ (dark) and 2σ (light) confidence levels for the differential median method. Similar to the analysis based on the lower cut-off of
the b–N distribution, there is a strong degeneracy between the inferred T0 and γ ; however, for this method, the temperature is also strongly degenerate with
the smoothing length λP. The range for λP shown in this plot is consistent with recent measurements from Rorai et al. (2017a) at z ∈ 2.2–2.7 (shown as a red
circle with errorbars) and z ∈ 2.7–3.3 (black, the vertical position of these two points is arbitrary). The vertical dashed line shows the value of λP measured in
the non-equilibrium hydrodynamics model by Puchwein et al. (2015) at z = 2.79. Stronger constraints on the pressure smoothing will eventually help break
the degeneracy shown in this plot and significantly improve the precision achievable with this technique.

contours in Fig. 6, reveals degeneracies between the inferred values
of all three considered parameters. In particular, and in contrast to
the cut-off method, there is a significant sensitivity to the pressure
smoothing length λP. This confirms that the overall b–N distribution
contains information about the spatial smoothing of the IGM gas, as
already noted by Garzilli et al. (2015). The marginalized uncertain-
ties for the TDR parameters are in this case T0/103 K = 14.6 ± 3.7 K
and γ = 1.37 ± 0.17, in good agreement with those inferred from
the lower cut-off of the b–N distribution. The fact that using the
full distribution does not substantially improve the accuracy of the
constraints, compared to using just the lower cut-off, is due to
the degeneracy with λP, which was negligible for the lower cut-
off method. On the other hand, the emergence of such degeneracy
implies that the precision can be substantially improved by combin-
ing these results with independent measurement of the smoothing
length. At the moment, the only constraints available on λP are

those obtained by the analysis of correlated Lyα absorption in close
quasar pairs (Rorai, Hennawi & White 2013; Rorai et al. 2017a).
The horizontal bars in Fig. 6 represent the result from Rorai et al.
(2017a) in the redshift bins 2.2–2.7 (red) and 2.7–3.3 (black), both
overlapping with the redshift range analysed in the present work.
The nominal value of the λP measurement has been decreased by
10 per cent, in order to match the definition of pressure smoothing
as given by the Freal cut-off (see section 3.1 and fig. S11 in Rorai
et al. 2017a). As it can be seen, the whole range for λP considered
in this paper is consistent with either of the two data points. More
precise measurements of the smoothing, or an analysis conducted
on the same redshift limits used in this work, are required in order
to break the degeneracy and improve the accuracy on T0 and γ

achievable with the differential median technique.
An alternative way of visualizing our results is to look at the con-

straints in the temperature–density plane. This does not require us
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Figure 7. Constraints on the TDR in the temperature–density plane. The
black dashed lines show the 16th and 84th percentile of the temperature
posterior distribution as a function of density, obtained from our analysis of
the lower cut-off of the b–N distribution. Analogous limits for the differential
median method are shown by the red shaded area. The two measurements
are in good agreement with each other. The red square and pentagon report
the measurements of T(�) at the same redshift from BB11 and Boera et al.
(2014), respectively. For comparison, we also report the results for T0 at
z = 2.4 from Bolton et al. (2014) (blue circle) and the propagated 1σ limits
at all densities considering the measurement of γ from the same work (light
blue shaded area). The blue square and pentagons are the values of T(�)
obtained in BB11 and Boera et al. (2014) at this redshift.

to reduce the posterior distribution to two parameters with relative
uncertainties. It also allows a straightforward comparison with the
measurement of the temperature at overdensity �̄ obtained with the
‘curvature’ statistic in BB11 and Boera et al. (2014), without re-
quiring error propagation by which some information might be lost.
The way we do this is the following: given the posterior distribution
for T0 and γ obtained from one of our MCMCs, we calculate the
marginalized distribution of T0�

γ − 1 for the range of overdensities
� we are interested in. We then plot the 16th and the 84th percentile
as a function of � as the 1σ limits in the temperature–density plane.
The results for the various techniques described in this paper are
shown in Fig. 7. The black dotted lines show the 16th and 84th
percentiles of the temperature distributions obtained from the lower
cut-off MCMC analysis, whereas the red shaded region shows the
same for the differential median method. Note that the curvature
results do not include uncertainties related to pressure smoothing.
There is good agreement between the two measurements, and there
is also good consistency with the results from BB11 and Boera
et al. (2014) at the same redshift (red square and pentagon, re-
spectively), although our data set partially overlap with the sample
used in Boera et al. (2014). Note that the uncertainties of the tem-
perature measured with the median technique are lower at mild
overdensities (� ∼ 2.5–3.5) than at the mean density. This is a con-
sequence of the particular degeneracy direction in the T0–γ plane
of Fig. 5.

For reference, we also show an analogous comparison at z = 2.4
between the results of BB11 (blue square), Boera et al. (2014) (blue
pentagon) and b-NH I cut-off results from Bolton et al. (2014) (blue
circle). These limits assume that T0 and γ are uncorrelated, which
is likely incorrect given the results of our analysis at slightly higher
redshifts. The light blue shaded area in the background represent
the propagated 1σ limits on T(�), assuming the measured value
and uncertainties of T0 and γ from Bolton et al. (2014).

Figure 8. A summary of recent constraints on the TDR parameters from the
literature, as a function of redshift. Our constraints on T0 and γ derived from
the lower cut-off of the b–N distribution (red triangles) and the differential
median (red squares) methods are compared to the hydrodynamics model
of Puchwein et al. (2015, black line) and the extrapolated values of T0

from the curvature measurement of BB11 (dark blue connected circles).
The latter values are obtained from the temperatures at a redshift-dependent
overdensity �̄(z) by assuming the value of γ from the Puchwein et al. (2015)
model (black line in the lower panel). The light-blue shaded area represents
the range of values extrapolated from BB11 assuming a flat prior on γ in the
interval 1–1.6. We also plot the constraints from Bolton et al. (2014, blue
circles) at somewhat lower redshift. The orange triangles are the values of
T0 extrapolated from a recalibrated version of the curvature measurement
from Boera et al. (2014) and Boera (private communication), obtained in the
same way as for BB11. The cyan triangles show the constraints on T0 from
Lidz et al. (2010) and the grey pentagons those from Garzilli et al. (2012),
both obtained with a wavelet analysis (combined with the flux PDF in the
latter). The grey pentagons in the lower panel are also from the PDF-Wavelet
combined analysis of Garzilli et al. (2012). The tension between the points
at z = 2.9 with our measurements is discussed in the text.

6 D I SCUSSI ON

A more comprehensive comparison of the main results of this work
with recent constraints on the thermal state of the IGM from the
literature is presented in Fig. 8, where we show the evolution of T0

(upper panel) and γ (lower panel) as a function of redshift. The red
triangles correspond to the constraints from our fit to the lower cut-
off of the b–N distribution (Section 4.2), whereas the red squares are
those obtained from the differential median method (Section 4.3).
The black solid lines are the predictions of a recent hydrodynamics
simulation from Puchwein et al. (2015), where the UV background
is assumed to follow the model by Haardt & Madau (2012). This
simulation fits well both the observational points from this work and
those reported by Bolton et al. (2014) (blue circles). If we assume a
slope of the TDR as in the Puchwein et al. (2015) simulation, (i.e.
the black line in the lower panel), we can extrapolate the curvature
measurements of T(�) (BB11, Boera et al. 2014) to mean density.
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The corresponding values of T0 are shown as the dark blue connected
circles for BB11, and the orange connected triangles for an updated
version of the results of Boera et al. (2014) and Boera, private
communication. The good agreement of our measurements of T0 and
the evolution of T0 inferred from the extrapolation of the temperature
measurements with the curvature method to mean density based on
the γ values predicted by the Puchwein et al. (2015) simulation
is a non-trivial result that suggests that our understanding of the
thermal state IGM is converging from multiple different approaches.
Convergence of results is also suggested by the measurements of
T0 obtained with a wavelet-analysis technique by Lidz et al. (2010)
(cyan triangles) and Garzilli et al. (2012) (grey pentagons). The
discrepancy with their measurements in the redshift bins close to
that of our measurement is less than 1σ .

In the lower panel, the measurement of γ at z = 2.9 derived
from a joint analysis of the flux PDF and the wavelet coefficients
(Garzilli et al. 2012) is clearly in tension with our work presented
here and the analysis of Bolton et al. (2014). As discussed earlier,
other measurements based on the flux PDF (e.g. Viel et al. 2009;
Calura et al. 2012) also have claimed that an ‘inverted’ TDR (γ < 1)
is required to match the data (but see Lee 2012; Rollinde et al. 2013;
Lee et al. 2015). This apparent discrepancy has been recognized for
some time and was recently discussed in considerable detail by
Rorai et al. (2017b). By analysing a high signal-to-noise quasar
spectrum at z = 3, Rorai et al. (2017b) confirmed that the flux PDF
constrains the TDR to be flat or to rise towards low density; how-
ever, as they point out, this is true only for gas around and below
the mean density, to which the PDF statistic is most sensitive. Rorai
et al. (2017b) further show that techniques for measuring the IGM
temperature that rely on quantifying the smoothness of the absorp-
tion profile, such as those discussed in this paper or the curvature
method developed by B11, are mainly sensitive to overdense gas,
i.e. � > 1. This has also been highlighted in Bolton et al. (2014),
where they show the relation between column density and optical
depth-weighted density (see fig.1 in their paper). The fact that our
work presented here constrains a spatially invariant TDR to have
γ > 1 corroborates the conclusion of Rorai et al. (2017b) that a sin-
gle, spatially invariant power law is not able to describe the TDR of
the low density IGM. This may perhaps be explained by simulations
of He II reionization where radiative transfer effects have been im-
plemented (Abel & Haehnelt 1999; Paschos et al. 2007; McQuinn
et al. 2009; Compostella, Cantalupo & Porciani 2013; La Plante
et al. 2017), in which the lower densities show a bimodal tempera-
ture distribution with increased temperatures and a flattening of the
relation between temperature and density in regions where helium
has most recently become doubly ionized.

Finally, we note that in a recent work, Garzilli et al. (2015) found
that the cut-off of the line distribution is significantly sensitive to
the pressure smoothing, different from what our analysis shows (see
Fig. 6). This could be possibly due to the differences in the fitting
algorithms, both for the individual Lyα lines and for the cut-off, but
it is most likely related to the particular range of column density
we have selected. Fig. 8 in their paper suggests that the effect of
pressure smoothing on the low-b lines is most prominent for lines
with low column densities, whereas here we have considered only
those with NH I > 1012.5 cm−2, for which the line width is dominated
by thermal broadening, as argued also by Bolton et al. (2014).

7 C O N C L U S I O N S

We have analysed the Lyα forest of a sample of 13 high-resolution
quasar spectra in the redshift range 2.55 < z < 2.95 with the help of

high resolution numerical simulations of the IGM. The continuum-
normalized spectra were decomposed into individual H I absorbers
using VPFIT, and we have carefully identified and excluded regions
potentially contaminated by metal lines. We have then used the
lower cut-off in the b–NH I distribution and a newly introduced
statistic based on the medians of the line-width distribution in sep-
arate column density ranges to obtain two new measurements of
the temperature of the IGM. In both cases, we employed Bayesian
MCMC techniques to constrain thermal parameters, using a grid of
thermal models where the TDR has been imposed in post process-
ing. Our results can be summarized as follows.

(i) Fitting the lower cut-off of the b–N distribution in the standard
way gives T0/103 K = 14.3 ± 5.0 K and γ = 1.52 ± 0.22.

(ii) The parameters describing the lower cut-off and that describ-
ing the TDR are strongly correlated in simulations, but there is
significant scatter due to the residual dependence on other thermal
parameters (in particular, the smoothing length λP).

(iii) We have introduced a new calibration of the temperature
measurement based on a linear combination of the thermal param-
eters (in logarithmic space) whose coefficients are left free to vary.
For this new calibration, we have implemented an MCMC analysis
in which the calibration coefficients are estimated together with the
thermal quantities T0, γ and λP.

(iv) Including the correlation between the statistical uncer-
tainties of log b0 and � in our likelihood, analysis gives
T0/103 K = 15.6 ± 4.4 K and γ = 1.45 ± 0.17. Taking the cor-
relation between T0 and γ shows that the inferred values for the
two parameters are strongly degenerate. Conversely, no sensitivity
is found to the smoothing length λP.

(v) We have introduced an alternative statistical estimator for
the thermal parameters which is based on the medians m1 and m2

of the line-width distribution for N < 1013.5 and N > 1013.5 cm−2,
respectively. For this, we have defined the transformation log b′ =
log b + α(log NH I − 13), with α chosen such that m1 = m2 for b′.

(vi) By applying the parameters m1 and α to the same
MCMC technique used for the lower cut-off method, we obtain
T0/103 K = 14.6 ± 3.7 K and γ = 1.37 ± 0.17, in good agreement
with our measurement from the lower cut-off. For the measurement
based on the differential median method, we find a strong degener-
acy with the smoothing length λP, suggesting, unsurprisingly, that
the overall b–N distributions contains information about the small-
scale spatial structure of the IGM.

(vii) When we use the posterior distribution for the TDR param-
eters to infer the temperature at � ≈ 3, we obtain values consistent
with the measurements at the same redshift from BB11 and Boera
et al. (2014).

(viii) Our measurements are also in good agreement with the
theoretical predictions from the hydrodynamics model of Puchwein
et al. (2015) and with the measurements of T0 at similar redshifts
from Lidz et al. (2010) and Garzilli et al. (2012).

(ix) Our constraints on γ are in disagreement with claims of an
inverted TDR based on the flux PDF, similar to published results
using statistics based on the smoothness of the absorption. Our find-
ings further corroborate those of Rorai et al. (2017b), who argued
that this is due to the different overdensity range probed by the PDF.

The work presented here marks a further step towards a consistent
characterization of the thermal state of the IGM at z � 3. The agree-
ment with other recent measurements at the same redshift and with
high resolution hydrodynamics models is an encouraging sign that
our understanding of the thermal state of the IGM is converging. The
techniques developed and presented here can be easily applied to
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data sets at other redshifts and should improve the well-established
approach of characterizing the thermal state of the IGM with help of
the b–N distribution of Lyα forest absorbers. Our analysis takes into
account the uncertainties in the calibration between the lower cut-
off (or the median b-parameters in different column density ranges)
and the thermal parameters, as well as parameter correlations and
second-order dependencies which were previously neglected. The
degeneracies we find, especially in our analysis based on the differ-
ential median, suggest that a joint analysis with different statistics
constraining the pressure smoothing length will significantly im-
prove the precision of current constraints on the thermal state of the
IGM.
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A P P E N D I X : E F F E C T O F T E M P E R AT U R E A N D
O P T I C A L D E P T H VA R I AT I O N

To understand the effect of an evolving optical depth and a possible
variation in temperature, we conducted the following test:
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Figure A1. Effect of mixed temperatures or effective optical depths on the cut off and on the differential median. Left-hand panel: a combination of three
models with T0 = 10 000 K (blue diamonds and lines), T0 = 15 000 K (black crosses and lines) and T0 = 20 000 K (red squares and lines). The differential
median is represented as in Fig. 4, by dashed lines for the individual models and by a thick solid black line for the combination of all of them. The same is
done for the lower cut-off. Right-hand panel: same as the left-hand panel, but for a combination of four models with different effective optical depth τ = 0.33
(blue) τ = 0.30 (blue) τ = 0.29 (blue) τ = 0.27 (blue).

(i) We created a model which is a mixture of four mod-
els with different effective optical depth, τeff = − log F̄ =
0.33, 0.3, 0.29, 0.27. This values encompass the evolution of the
mean transmission across our redshift bin.

(ii) We created another model which is a mixture of three models
with different temperatures at mean density T0 = 10 000, 15 000,
20 000 K. This mixture could be interpreted either as a (rather ex-
treme) temperature evolution with redshift or as spatial fluctuations.

We then calculated the cut-off and the differential median statistic
for the two mixed models and for their individual components. The
results are shown in Fig. A1.

In the case of the optical depth mixture (right-hand panel), the
differences between the total model (black solid lines) and the four
components (coloured dashed lines) are minimal, especially for
the differential median statistic. One of the four cut-offs slightly
deviates from the others at low column densities, but given that
there is no clear trend and given the magnitude of the error (the

outlier model has an uncertainty of �log b0 = 0.065, four times
larger than the other models), we consider it a statistical fluctuation
due to the noise/bootstrap realizations.

In the case of the temperature mixture (left-hand panel), it ap-
pears evident that the differential median of the total model (black
solid) depends on the average temperature, i.e. coincides with the
middle of the three components, whereas the cut-off picks the cold-
est of the three. This suggests that if there is significant temperature
evolution or fluctuation, measurements based on the cut-off will be
biased towards the lower values, differently from the median statis-
tic. However, our measurements based on the two methods are in
good agreement, and if anything, the cut-off analysis points towards
slightly higher temperatures, which leads us to conclude that this
effect is negligible at this level of precision.
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