On the Off-Center Dipole Model for Polar Gases*

T. H. SPURRLEINO AND E. A. MAISON

Institute for Molecular Physics, University of Maryland
College Park, Maryland
(Received 5 August 1966)

The off-center dipole model has recently1,2 been used to calculate the ordinary (B) and the dielectric (δ) second virial coefficients for dipolar gases. In this model a rigid point dipole (μ) is presumed to be displaced a distance a from the center of the repulsive and dispersion forces, which are represented by a modified Lennard-Jones (12–6) potential. The rather extensive numerical integrations required in the calculations of the virial coefficients have been performed and the results applied to a few dipolar gases.2

An off-center dipole is equivalent to an infinite number of linear multipoles centered on the origin, the n-th multipole being given by

\[M^{(n)} = n a^{n-1} \mu. \]

(1)

Table I. Comparison of calculations of the ordinary second virial coefficient B (cm³/mole) and the dielectric second virial coefficient δ (10³ cm³/mole) for fluoroform.

<table>
<thead>
<tr>
<th>Temp (°C)</th>
<th>B(OCID)</th>
<th>B(μ, Θ)</th>
<th>B(polarizability)</th>
<th>B(steric)</th>
<th>Expl error</th>
</tr>
</thead>
<tbody>
<tr>
<td>60°C</td>
<td>-137.3</td>
<td>-139</td>
<td>-3.8</td>
<td>-1</td>
<td>±0.5</td>
</tr>
<tr>
<td>80.5°C</td>
<td>-0.3</td>
<td>-0.28</td>
<td>+1</td>
<td>-0.3</td>
<td>±1.4</td>
</tr>
</tbody>
</table>

It is of interest to know how significant a contribution to the virial coefficients is made by the third (octopole) and higher multipoles. For if the first and second (dipole and quadrupole) moments only are sufficient, then the virial coefficients can be calculated more conveniently with the well-known series expansions.4,5 Furthermore, other contributions to the potential, such as that due to the molecular polarizability, can be included with much simpler numerical work in the central multipole formulation than in the off-center dipole formulation.

Both the ordinary and dielectric second virial coefficients of fluoroform (CF₃) have been calculated by Dymond and Smith6 for the off-center dipole model with the parameters \(a = 4.16 \ A, \ \epsilon/k = 206.4{\text{K}}, a = 0.946 \ A, \ \mu = 1.645 \ \text{D} \) (where \(\sigma \) is the zero of the modified 12–6 potential and \(\epsilon \) its potential well depth). These values of \(a \) and \(\mu \) correspond to a linear quadrupole moment of \(\Theta = 3.115 \times 10^{-26} \text{esu} \) (origin at the center of mass). We have calculated \(B \) and \(\delta \) at 60° and 80.5°C, respectively, using the above values of \(\sigma, \epsilon/k, \mu, \Theta \) with the series-expansion method4,6 to an accuracy of about 1 in 1000. The difference between the values calculated for the off-center dipole model (OCID) and our values (μ, Θ) correspond to the contributions of the octopole and higher moments, and to the effect of the rigid core used by Dymond and Smith6 to prevent the off-center dipoles from ever coinciding. It can be seen (Table I) that for the representative substance chosen, these contributions are within the errors of the experimental measurements.

A good estimate of the contributions to the virial coefficients of the polarizability of the molecule and of the anisotropy of its repulsive forces is given by their leading terms in the series expansions for the virial coefficients. We have added such terms to the potential model and calculated their leading contributions to \(B \) and \(\delta \), using a mean polarizability7 of \(\sigma = -3.28 \times 10^{-26} \text{cm}^3 \) and a repulsion anisotropy parameter of \(D = 0.1 \). Results are shown in Table I, as calculated from Eq. (3.9) of Ref. 4 and Eq. (6.5) of Ref. 6 for \(B(\text{polarizability}), \) Eq. (3.14) of Ref. 4 for \(B(\text{steric}), \) and Eqs. (3.3) and (3.5) of Ref. 5 for \(\delta(\text{polarizability}) \) and \(\delta(\text{steric}) \), respectively. It can be seen that the contribution to \(B \) from the octopole and higher moments

* Issued as N.R.C. No. 9309.
4 The following totally deuterated hydrocarbons are included in Fig. 1 (in the order of decreasing \(\gamma \)) benzene, triphenylene, acenaphthene, naphthalene, phenanthrene, chrysene, biphenyl, \(\beta \)-terphenyl, pyrene, 1,2-benzanthracene, anthracene.
6 These hydrocarbons were obtained from Merck, Sharp & Dohme and purified by zone refining. For the measurement of the phosphorescence lifetime of anthracene-d₁₀ a time-averaging computer was necessary.
is comparable to that from the polarizability and steric anisotropy, but that for δ the octopole and higher-moment contributions are much less than either of the latter two.

We conclude that the off-center dipole model can often be replaced by an equivalent central dipole-quadrupole model, for which calculations are easier.

T. H. Spurling thanks the CSIRO (Australia) for the award of an Overseas Studentship.

* Supported in part by the National Aeronautics and Space Administration (Grants No. G-5-59 and No. G-398).

Intersystem Crossing in Pyrene

B. Stevens, M. F. Thomas,* and J. Jones
Department of Chemistry, Sheffield University, Sheffield, England
(Received 8 August 1966)

EXPOENTIAL molecular fluorescence decay curves of pyrene $(2 \times 10^{-6} \text{M})$ in outgassed ethanol have been recorded as a function of temperature in the range 77°-415°K using the pulsed-flash technique1; the temperature dependence of the corresponding lifetime τ is shown in Fig. 1.

In the absence of photoassociation and diffusional quenching under these conditions, the processes competing with fluorescence emission (F) are limited to internal conversion (IC) and intersystem crossing (IS) whence

$$\frac{1}{\tau} = k_F + k_{IC} + k_{IS}.$$

At room temperature, where the quantum yield of molecular fluorescence γ_F is 0.65,2 internal conversion is negligible,3,4 i.e.,

$$k_{IC} < k_F + k_{IS} = k_F/0.65,$$

although this may become significant at higher temperatures if it requires an activation energy. Accordingly at lower temperatures

$$\frac{1}{\tau} = k_F + k_{IS} = k_F + k_{IS}^0 \exp(-E_{IS}/RT) \quad (1)$$

(E_{IS} in calories per mole) and the solid curve in Fig. 1 is drawn with

$$\frac{1}{\tau} = 1.33 \times 10^6 + 3.3 \times 10^6 \exp(-2270/RT) \text{ sec}^{-1}, \quad (2)$$

which provides a value for the quantum yield of fluorescence

$$\gamma_F = k_F/(k_F + k_{IS}) = 0.65$$

at 23°C, identical with the value obtained spectrophotometrically at the same temperature5; the assumption that $\gamma_F = 1$ at 77°K, used to evaluate k_{IS}^0 and E_{IS} from Eq. (1) is vindicated and the validity of Eq. (2) over the whole temperature range eliminates internal conversion as a significant competing process.

Since E_{IS} is close to the activation energy for viscous flow $(E_r \sim 3 \text{ kcal mole}^{-1})$ of this solvent, similar measurements were made with pyrene (10^{-4}M) in liquid paraffin $(E_r \sim 12 \text{ kcal mole}^{-1})$ to eliminate the possibility that k_{IS} describes diffusional quenching by an unspeci

![Fig. 1. Temperature dependence of fluorescence lifetime τ (nanosecond) of pyrene, O_1 in ethanol $(2 \times 10^{-6} \text{M})$; \bullet, in liquid paraffin (10^{-4}M).](https://example.com/fig1)

The authors gratefully acknowledge the award of a