

 Swinburne Research Bank
 http://researchbank.swinburne.edu.au

Montgomery, J. (2007). Alternative solution representations for the job shop scheduling

problem in ant colony optimisation.

Originally published in Progress in Artificial Life (pp. 1–12). Berlin: Springer.
Available at: http://dx.doi.org/10.1007/978-3-540-76931-6_1

Copyright © Springer-Verlag Berlin Heidelberg 2007.

The original publication is available at www.springerlink.com.

This is the author’s version of the work. It is posted here with the permission of the publisher for
your personal use. No further distribution is permitted. If your Library has a subscription to

these conference proceedings, you may also be able to access the published version via the
library catalogue.

http://dx.doi.org/10.1007/978-3-540-76931-6_1

Alternative Solution Representations for the Job
Shop Scheduling Problem in Ant Colony

Optimisation

James Montgomery

Complex Intelligent Systems Laboratory
Centre for Information Technology Research

Faculty of Information & Communication Technologies
Swinburne University of Technology

Melbourne, Australia
jmontgomery@ict.swin.edu.au

Abstract. Ant colony optimisation (ACO), a constructive metaheuris-
tic inspired by the foraging behaviour of ants, has frequently been applied
to shop scheduling problems such as the job shop, in which a collection of
operations (grouped into jobs) must be scheduled for processing on dif-
ferent machines. In typical ACO applications solutions are generated by
constructing a permutation of the operations, from which a determinis-
tic algorithm can generate the actual schedule. An alternative approach
is to assign each machine one of a number of alternative dispatching
rules to determine its individual processing order. This representation
creates a substantially smaller search space biased towards good so-
lutions. A previous study compared the two alternatives applied to a
complex real-world instance and found that the new approach produced
better solutions more quickly than the original. This paper considers its
application to a wider set of standard benchmark job shop instances.
More detailed analysis of the resultant search space reveals that, while
it focuses on a smaller region of good solutions, it also excludes the
optimal solution. Nevertheless, comparison of the performance of ACO
algorithms using the different solution representations shows that, using
this solution space, ACO can find better solutions than with the typical
representation. Hence, it may offer a promising alternative for quickly
generating good solutions to seed a local search procedure which can
take those solutions to optimality.

Keywords: Ant colony optimisation, job shop scheduling, solution represen-
tation.

1 Introduction

Ant colony optimisation (ACO) is a constructive metaheuristic, inspired by the
foraging behaviour of ant colonies, that produces a number of solutions over
successive iterations of solution construction. During each iteration, a number of
artificial ants build solutions by probabilistically selecting from problem-specific

solution components, influenced by a parameterised model of solutions (called
a pheromone model in reference to ant trail pheromones). The parameters of
this model are updated at the end of each iteration using the solutions produced
so that, over time, the algorithm learns which solution components should be
combined to produce the best solutions. When adapting ACO to suit a problem
an algorithm designer must first decide how solutions are to be represented and
built (i.e., what base components are to be combined to form solutions) and then
what characteristics of the chosen representation are to be modelled.

Shop scheduling problems consist of a number of jobs, made up of a set of
operations, each of which must be scheduled for processing on one of a number
of machines. Precedence constraints are imposed on the operations of each job.
The majority of ACO algorithms for these problems represent solutions as per-
mutations of the operations to be scheduled (operations are the base components
of solutions), which determines the relative order of operations that require the
same machine (see, e.g., [1,2,3,4]). A deterministic algorithm can then produce
the best possible schedule given the precedence constraints established by the
permutation. This approach is more generally referred to as the list scheduler
algorithm [2].

An alternative approach is to assign different heuristics to each machine
which determine the relative processing order of operations, thereby searching
the reduced space of schedules that can be produced by different combinations
of the heuristics. Building solutions in this manner may offer an advantage by
concentrating the search on heuristically good solutions. A previous study com-
pared these two solution representations in ACO algorithms for a real-world job
shop scheduling problem (JSP) with staggered release and due dates modelled
using fuzzy sets [5]. Applied to that single real-world instance the alternative ap-
proach performed extremely well, finding better solutions than the list scheduler
ACO in considerably less time. An open question was whether the same relative
performance would be observed on other, benchmark JSP instances.

This paper examines, in greater detail than in [5], the search space produced
by the alternative solution representation when applied to a number of com-
monly used benchmark JSP instances (Section 4). An empirical comparison is
subsequently made of ACO algorithms using the typical and alternative solution
construction approaches (Sections 5–6). Section 7 describes the implications of
the results for the future application of ACO to such problems. A formal descrip-
tion of the JSP and further details of the typical solution construction approach
are given first.

2 Job Shop Scheduling

The JSP examined in this study is of the n × m form, with a set of n jobs
J1, . . . , Jn and m machines M1, . . . ,Mm. Each job consists of a predetermined
sequence of m operations, each of which requires one of the m machines. Only
one operation from a job may be processed at any given time, only one operation
may use a machine at any given time and operations may not be pre-empted.

Table 1. JSP instances used in this study

Instance Best known n m

abz5 1234 10 10
abz6 943 10 10
abz7 656 20 15
abz8 669 20 15
abz9 679 20 15
ft10 930 10 10
ft20 1165 20 5
la21 1046 15 10
la24 935 15 10
la25 977 15 10
la27 1235 20 10
la29 1152 20 10
la38 1196 15 15
la40 1222 15 15
orb08 899 10 10
orb09 934 10 10

The objective is to schedule operations for processing on machines such that the
total time to complete all jobs, the makespan, is minimised. The makespan of a
solution s is denoted Cmax(s).

Table 1 describes the instances used in this study to compare the alternative
solution representations. They are commonly used benchmarks in the ACO and
wider operations research literature and are all available from the OR-Library [6].

3 Typical Solution Construction for the JSP

To generate a solution to the JSP it is sufficient to determine the relative process-
ing order of operations that require the same machine. A deterministic algorithm
can then produce the best possible schedule given those constraints. Indeed, it
is common in ACO applications for the JSP and other related scheduling prob-
lems to generate a permutation of the operations, which implicitly determines
this relative order (e.g., [1,2,3,4,7]). These algorithms are restricted to creating
permutations that respect the required processing order of operations within
each job, which can consequently be called feasible permutations.

Different approaches to constructing solutions produce different search spaces.
The space of feasible permutations of operations for a JSP is very large (a weak
upper bound is O(k!), where k = n ·m is the number of operations) and is cer-
tainly much larger than the space of feasible schedules [8]. This space also has a
slight bias towards good solutions, which can be exploited by some pheromone
models and proves disastrous for others. Another notable feature of this search
space is that while all solutions can be reached, solutions (schedules) are repre-

sented by differing numbers of permutations. These issues are discussed in some
detail by Montgomery, Randall and Hendtlass [8,9].

4 Search Space Created by Dispatching Rules

An alternative approach to building solutions is to assign different dispatching
rules (i.e., ordering heuristics) to each machine, which subsequently build the
actual schedule. The search space then becomes the space of all possible com-
binations of rules assigned to machines, which is O(|D|m) where D is the set of
rules and m the number of machines. Given a small number of dispatching rules
this search space will correspond to a subset of the space of all feasible schedules.
Further, given that dispatching rules are chosen with the aim of minimising the
makespan or number of tardy jobs, this is probably the case even for large sets of
rules. However, if the dispatching rules individually perform well it is expected
that this reduced space largely consists of good quality schedules.

Clearly, such an approach is inappropriate for single machine scheduling prob-
lems or problems in which too few criteria are available to heuristically determine
the processing order of competing operations, as in either situation the search
space is reduced by too great an amount. It is, however, entirely appropriate for
problems with multiple machines and various criteria upon which to judge com-
peting operations. This study examines its application to a number of common
benchmark JSPs using four dispatching rules. The remainder of this section
examines whether, for these instances using these four rules, the approach is
appropriate.

The four rules used in this study are Earliest Starting Time (EST), Shortest
Processing Time (SPT), Longest Processing Time (LPT) and Longest Remain-
ing Processing Time (LRPT). SPT and LPT relate to an individual operation’s
processing time while LRPT refers to the remaining processing time of a candi-
date operation’s containing job. EST is perhaps the simplest heuristic, choosing
the operation that can start the soonest, with ties broken randomly. Note that
the three other rules are not followed blindly: the earliest available operation is
always chosen except when there are two or more such operations, in which case
the rule determines which is given preference.

For small instances and a set of four rules it is possible to completely enumer-
ate the set of assignment solutions.1 This was performed for the test instances
with up to 200 operations to discover the distribution of the cost of schedules
described. The distributions for the larger instances were estimated by sampling
4×106 randomly generated solutions. Note that as the EST rule breaks ties ran-
domly, there is some degree of error in the lower and upper bounds presented,
although it is likely the distributions described here are good approximations of
the true distributions. Fig. 1 presents box-plots of the distributions discovered,

1 Although complete enumeration of the search space obviates the need for a meta-
heuristic, on any moderate-sized instance or as the number of rules grows it quickly
becomes impractical.

expressed in terms of the relative percentage deviation (RPD) from the best
known cost, defined as

RPD =
Cmax(s)− Cmax(s∗)

Cmax(s∗)
· 100 (1)

where s is a solution and s∗ is the best known solution.
The most striking feature of the distributions is that they do not include the

optimum. Additionally, tests with a smaller number of rules found that many
unique assignment solutions generate the same schedule, as was anticipated.2

Nevertheless, it is still possible that the assignment approach does focus on a
good region of the space of schedules, and thus may present a good starting
point for the subsequent application of a local search algorithm. As the worst
cost is not known for these instances it cannot be proved that these distributions
are biased towards good solutions. However, examination of the cost distribution
of schedules produced by randomly generated feasible permutations lends some
support to that conjecture. Fig. 2 presents box-plots for the cost distributions for
4×106 randomly generated feasible permutations. Notably, the minima of those
distributions are in most cases above the median of those for assignment solutions
while the body of those distributions typically lies above the maximum of that
for assignment solutions. Of course, sample distributions for the permutation
approach do not represent the full space of solutions that can be represented
by permutations and indeed an ACO algorithm constructing permutations can
improve on the minima of those randomly generated samples (see Section 6 for
such results).

Table 2 summarises the characteristics of the search spaces created by the
alternative construction approaches. With respect to search space size, the space
of assignments of rules to machines (for four rules) for the instances studied is
hundreds of orders of magnitude smaller than the upper bound on the space of
feasible permutations.

Clearly, the two alternative approaches offer a mixture of advantages and
disadvantages to any heuristic that uses them. The likelihood that, across a
wider range of instances, the dispatching rules approach excludes the optimal
certainly impacts on its utility. However, a previous comparative study of ACO
algorithms using both approaches applied to a large, complex JSP instance found
that the approach outperformed an ACO algorithm that constructs permutations
in terms of both solution quality and computation time [5].3

Nevertheless, in a practical application of the approach, a local search com-
ponent is required if the schedules described by dispatching rules are to be fully
optimised. Furthermore, the local search cannot operate on the assignments di-
rectly, as that space does not contain the optimum. The next section compares
ACO algorithms using both solution construction approaches. To avoid the con-

2 Determining the number of distinct solutions was impractical with four rules.
3 The number of construction steps per solution in ACO for the JSP is n ·m when

constructing permutations but only m when assigning dispatching rules.

0

20

40

60

80

100

120

140

160

a b
z 5

a b
z 6

* a
b z

7

* a
b z

8

* a
b z

9

ft 1
0

ft 2
0

la
2 1

la
2 4

la
2 5

la
2 7

la
2 9

*
la

38

*
la

40

o r
b 0

8

o r
b 0

9

RP
D

Fig. 1. Cost distributions (expressed as relative percentage deviation (RPD) from the
best known) for solutions obtainable using EST, SPT, LPT and LRPT rules. Distri-
butions marked with * are approximations based on 4× 106 sampled solutions

0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

a b
z 5

a b
z 6

a b
z 7

a b
z 8

a b
z 9 ft 1
0

ft 2
0

la
2 1

la
2 4

la
2 5

la
2 7

la
2 9

la
3 8

la
4 0

o r
b 0

8

o r
b 0

9

RP
D

Fig. 2. Cost distributions (expressed as relative percentage deviation (RPD) from the
best known) for 4 × 106 randomly generated permutation solutions. While the search
space includes the optimum, it is unlikely to be found using random search

Table 2. Comparison of permutation and dispatching rules search spaces. k is number
of operations, D is set of dispatching rules, m is number of machines. Typically |D| <
m < k. Notes: # this result is true for the rules and instances used in this study

Solution approach
Search space feature permutation dispatching rules

Size � O(k!) O(|D|m)

Includes optimal solution yes no#

Solution representation bias yes yes
Biased towards good solutions yes, but not yes

practically so [8,9]

founding effects of an integrated local search procedure, local search has not
been included in the algorithms compared in this paper.

5 Comparison ACO Algorithm Details

Two ACO algorithms were developed based on the MAX −MIN Ant Sys-
tem (MMAS), which has been found to work well in practice [10]. The first
of these, denoted MMAS-P, constructs solutions as permutations of the oper-
ations, while the second, denoted MMAS-R, assigns dispatching rules to ma-
chines. The set of dispatching rules D consists of the four rules described in
Section 4. Although local search is considered an integral part of state-of-the-art
ACO applications [11,12], in order to observe the differences between the two
approaches, local search is not incorporated into either.

The two solution representations require different pheromone models. The
models chosen have been found to produce the best performance for their re-
spective solution representations [9]. ForMMAS-P, a pheromone value, denoted
τ(oi, oj),4 exists for each directed pair of operations that use the same machine,
and represents the learned utility of operation oi preceding operation oj [13].
There may be several such precedence relations affected by the selection of a
single operation. During solution construction, the set of unscheduled opera-
tions that require the same machine as a candidate operation o is denoted by
Orel

o . Blum and Sampels [13] recommend taking the minimum of the relevant
pheromone values. This approach, like many ACO algorithms, benefits from the
incorporation of heuristic information in the construction decision, by conven-
tion denoted η. While any dispatching rule could conceivably be used for this
purpose, Blum and Sampels [2] have found that the EST rule works well on a
range of instances. Accordingly,

η(o) =
1

tes(o, sp)
(2)

4 τ is historically used in ACO due to the pheromone model’s inspiration in ant trail
pheromones.

where tes(o, sp) is the earliest time operation o could start given the current
partial solution sp. Combining this measure with the pheromone information, at
each step of solution construction, the probability of selecting an operation o to
add to the partial permutation p is given by

P (o, p) =

(
minor∈Orel

o
τ(o, or)

)
· η(o)∑

o′ 6∈p

(
minor∈Orel

o′
τ(o′, or)

)
· η(o′)

if o 6∈ p and |Orel
o | > 0

1 if o 6∈ p and |Orel
o | = 0

0 otherwise.

(3)

Note that the second branch is required so that the last operation on each
machine is scheduled immediately, as there is no meaningful pheromone value
that can be used.

For MMAS-R, a pheromone value τ(Mk, d) is associated with each combi-
nation of machine and dispatching rule (Mk, d) ∈ M × D, where M is the set
of machines. At each step of solution construction, a machine is assigned a dis-
patching rule. Although the order in which assignments are made is significant
in problems where certain items may only be assigned a limited number of times
(e.g., in the generalised assignment problem [14]), here there is no limit to the
number of times a rule can be used, so the assignment order is immaterial [5].
The probability of assigning a dispatching rule d ∈ D to machine Mk is given by

P (Mk, d) =
τ(Mk, d)∑

d′∈D\{d} τ(Mk, d′)
. (4)

Pheromone values are updated the same way in both algorithms, with each
value τ (corresponding to some value from either model) updated according to

τ ← (ρ− 1)τ + ρ ·∆τ (5)

where ρ is the pheromone evaporation rate and ∆τ is the amount of reinforce-
ment given to a particular pheromone value determined by

∆τ =

1

Cmax(s)
if τ is part of iteration best solution

0 otherwise
(6)

where Cmax(s) is the makespan of the solution s. Pheromone values are bounded
by [τmin, τmax], the values of which are controlled using the value of the current
best solution and size of the pheromone update in accordance with the rules
defined by Stützle and Hoos [10].

6 Computational Results

The performance of the algorithms was compared on the benchmark instances
described in Table 1. The algorithms were implemented in the C language and

Table 3. Minimum, median, maximum and interquartile range (IQR) of solution cost
(in RPD) for MMAS-P and MMAS-R. The last column shows the estimated best
possible RPD in the space of dispatching rules used in this study. Bold values indicate
the smaller value for that measure and that instance betweenMMAS-P andMMAS-
R. M-W test indicates the direction of the difference between the distributions of RPD
scores if the difference is statistically significant for α ≤ 0.05

MMAS-P M-W MMAS-R lower
Instance min med max IQR test min med max IQR bound

abz5 2.6 4.3 6.3 1.2 < 5.3 5.3 5.3 0.0 5.3
abz6 0.4 2.4 4.0 1.8 < 7.1 7.1 7.3 0.0 7.1
ft10 8.6 13.5 14.8 2.5 < 11.7 15.6 15.6 0.4 11.7
ft20 12.8 17.5 24.8 8.3 > 5.9 7.1 8.2 0.6 5.8
orb08 9.7 19.6 21.9 6.5 14.9 18.0 18.4 0.3 14.9
orb09 1.5 6.3 9.3 3.6 < 6.1 9.2 12.0 3.5 6.1
la21 7.0 9.2 11.6 2.3 7.8 9.3 10.7 1.6 7.6
la24 7.6 10.0 12.7 2.8 9.5 9.5 9.5 0.0 9.5
la25 8.2 12.3 13.8 4.5 12.5 13.1 13.3 0.4 11.2
la27 11.3 14.0 18.0 3.4 > 8.3 10.1 10.9 1.5 8.3
la29 15.5 16.8 20.0 1.0 > 15.6 16.1 16.2 0.4 15.1
la38 12.7 14.7 17.1 2.3 < 16.6 18.4 19.7 2.6 15.7
la40 6.5 8.1 10.1 1.7 < 7.4 9.0 10.4 2.0 7.4
abz7 12.2 14.1 19.1 2.7 > 10.1 10.9 11.7 0.9 9.9
abz8 14.1 16.2 19.1 3.4 > 12.1 12.6 15.2 1.4 12.1
abz9 18.3 20.3 27.5 2.0 > 13.8 15.5 16.9 1.9 13.8

executed under Linux on a 3.2GHz Xeon processor. Each run used 100 ants
and executed 500 iterations of solution construction. The MMAS pheromone
decay control parameter ρ = 0.1. These settings were found to produce the best
performance in both algorithms. Each algorithm and instance combination was
executed across 10 random seeds.

6.1 Makespan

Table 3 describes, for each instance, the distributions of best solution cost (ex-
pressed in RPD) for MMAS-P and MMAS-R found across multiple runs of
each algorithm. The instances appear in non-decreasing order of number of oper-
ations. Bold values indicate the smaller result within that instance and measure
(min, median, max or interquartile range (IQR)) between the alternative al-
gorithms. Although smaller values for IQR are not necessarily an indicator of
better performance, they do indicate more consistent performance. To give an
indication of the performance of MMAS-R in exploring the space of assign-
ments of dispatching rules, the last column gives the estimated lower bound on
solution cost for each instance. Mann-Whitney tests were used to compare the
distributions within each instance. Where those tests indicated a statistically

Table 4. Median CPU time in seconds used to complete 500 iterations and until best
solution found, and iteration when best solution found, forMMAS-P andMMAS-R

Mean CPU time (s) Iteration when
Instance total best solution best found

MMAS-PMMAS-RMMAS-PMMAS-RMMAS-PMMAS-R

abz5 23.7 3.1 2.7 0.1 58 11
abz6 23.7 2.9 2.5 0.7 52 124
ft10 23.5 2.9 5.3 0.1 113 17
ft20 46.4 3.7 17.5 1.7 189 238
orb08 22.9 2.9 4.6 0.6 100 102
orb09 23.6 3.1 4.7 2.0 100 324
la21 63.6 5.3 28.6 0.6 225 53
la24 63.3 5.2 19.6 0.3 155 31
la25 63.6 5.0 19.0 0.3 150 25
la27 130.6 8.1 58.9 1.9 226 114
la29 130.8 7.7 54.0 0.5 206 30
la38 118.3 8.4 32.2 0.6 136 35
la40 117.9 8.8 40.0 0.9 170 49
abz7 247.2 12.8 71.1 1.5 144 59
abz8 247.6 12.9 71.1 2.0 144 78
abz9 246.5 12.8 118.1 1.2 240 49

significant result (at or below the 5% level), the central column indicates the
direction of the difference (i.e., < means MMAS-P outperformed MMAS-R
while > indicates the opposite).

Based on these results, neither algorithm is clearly better than the other
across all instances studied. The apparently aberrant statistical result for the
la29 instance is because, even though MMAS-P found a better solution on
one of its runs, MMAS-R produced solutions of similar cost more consistently.
Considering just those instances where statistically significant differences were
found there is an apparent trend showing better performance fromMMAS-R on
larger instances, although this may be an effect of the actual instances used. In
several casesMMAS-R was able to locate assignment solutions at the estimated
(for large instances) lower bound for the space it searches. Notably, it appears
that, in the absence of a local search procedure, the traditional construction
approach is unable to find the optimal solution even though it exists in the
space of solutions it searches. Thus both algorithms require local search in order
to find optimal solutions.

6.2 CPU time

Table 4 summarises the median computation time required to complete 500
iterations and until the best solution was found, as well as the iteration in which
the best solution was found. As predicted,MMAS-R is significantly faster than

MMAS-P due to the difference in the number of required construction steps
each iteration—as the number of operations grows the ratio between MMAS-
P’s andMMAS-R’s runtimes approaches the number of jobs n.MMAS-R also
frequently locates its best solution after fewer iterations than MMAS-P. The
faster execution ofMMAS-R commends it as a good alternative for integration
with a potentially computationally intensive local search, and would also allow
for a greater number of separate runs of the algorithm to be performed than
MMAS-P given the same amount of time.

7 Conclusions

Typical ACO algorithms for shop scheduling problems such as the JSP build
solutions as permutations of the operations to be scheduled, from which ac-
tual schedules are generated deterministically. An alternative approach when
the problem has multiple machines and various criteria upon which to judge the
urgency of competing operations is to assign different dispatching rules to each
machine. The chosen dispatching rules are then responsible for determining the
relative processing order of operations on each machine.

This paper examined the solution space produced by the space of dispatching
rule assignments on a number of commonly studied benchmark JSP instances.
Crucially, when using the four dispatching rules examined in this paper, that
space does not contain the optimal solution. Given that dispatching rules are
themselves simple heuristics, it is plausible that even with a vastly expanded
range of rules the optimal solution may still be out of reach. Consequently, any
real-world application employing this solution representation not only requires a
local search component, but that local search must work directly on the schedules
described by the dispatching rules and not the pattern of assignments.

Despite this severe drawback to the alternative solution representation, it
does appear to concentrate the search on promising areas of the solution space
and, in a constructive algorithm such as ACO, leads to a dramatic reduction
in required computation. A comparison of ACO algorithms employing both the
traditional solution representation and the alternative show a mixture of results,
with neither algorithm clearly outperforming the other across the test instances.
However, a slight trend for better performance from the new approach on the
larger instances, coupled with its reduced computation times, suggest that it is a
good candidate for seeding a local search procedure. As there is an unavoidable
interaction between ACO and the local search procedure it uses (as the locally
optimised solutions are used to update pheromone information), future work
could examine the relative performance of the two approaches when local search
is incorporated.

References

1. Bauer, A., Bullnheimer, B., Hartl, R.F., Strauss, C.: Minimizing total tardiness on
a single machine using ant colony optimization. Cent. Eur. J. Oper. Res. 8 (2000)
125–141

2. Blum, C., Sampels, M.: An ant colony optimization algorithm for shop scheduling
problems. J. Math. Model. Algorithms 3 (2004) 285–308

3. Colorni, A., Dorigo, M., Maniezzo, V., Trubian, M.: Ant system for job-shop
scheduling. JORBEL 34 (1994) 39–53

4. Stützle, T.: An ant approach to the flow shop problem. In: 6th European Congress
on Intelligent Techniques & Soft Computing (EUFIT ’98), Aachen, Germany. Ver-
lag Mainz (1998) 1560–1564

5. Montgomery, J., Fayad, C., Petrovic, S.: Solution representation for job shop
scheduling problems in ant colony optimisation. In Dorigo, M., et al., eds.: 5th In-
ternational Workshop on Ant Colony Optimization and Swarm Intelligence, ANTS
2006, Brussels, Belgium. Lecture Notes in Computer Science, Vol. 4150. Springer
Verlag (2006) 484–491

6. Beasley, J.E.: OR-Library, http://people.brunel.ac.uk/˜mastjjb/jeb/info.html
(2005)

7. van der Zwaan, S., Marques, C.: Ant colony optimisation for job shop scheduling.
In: 3rd Workshop on Genetic Algorithms and Artificial Life (GAAL 99). (1999)

8. Montgomery, J., Randall, M., Hendtlass, T.: Structural advantages for ant colony
optimisation inherent in permutation scheduling problems. In Ali, M., Esposito,
F., eds.: 18th International Conference on Industrial and Engineering Applications
of Artificial Intelligence and Expert Systems (IEA/AIE 2005), Bari, Italy. Lecture
Notes in Artificial Intelligence, Vol. 3533. Springer-Verlag (2005) 218–228

9. Montgomery, J., Randall, M., Hendtlass, T.: Solution bias in ant colony optimisa-
tion: Lessons for selecting pheromone models. Computers & Operations Research
(in press) Available online: doi:10.1016/j.cor.2006.12.014

10. Stützle, T., Hoos, H.: MAX −MIN ant system. Future Gen. Comp. Sys. 16
(2000) 889–914

11. Dorigo, M., Stützle, T.: The ant colony optimisation metaheuristic: Algorithms,
applications and advances. In Glover, F., Kochenberger, G., eds.: Handbook of
Metaheuristics. International Series in Operations Research and Management Sci-
ence, Vol. 57. Kluwer Academic Publishers, Boston, MA (2002) 251–285

12. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press (2004)
13. Blum, C., Sampels, M.: Ant colony optimization for FOP shop scheduling: A case

study on different pheromone representations. In: 2002 Congress on Evolutionary
Computation. (2002) 1558–1563

14. Montgomery, J., Randall, M., Hendtlass, T.: Search bias in constructive meta-
heuristics and implications for ant colony optimisation. In Dorigo, M., et al., eds.:
4th Int’l Workshop on Ant Colony Optimization and Swarm Intelligence, ANTS
2004, Brussels, Belgium. Lecture Notes in Computer Science, Vol. 3172. Springer-
Verlag (2004) 390–397

	Cover sheet
	Author's final draft
	Introduction
	Job Shop Scheduling
	Typical Solution Construction for the JSP
	Search Space Created by Dispatching Rules
	Comparison ACO Algorithm Details
	Computational Results
	Makespan
	CPU time

	Conclusions

