
Swinburne Research Bank
http://researchbank.swinburne.edu.au

Author: Avazpour, Iman; Ruegg, Ulf; Grundy, John
Title: CONVErT Meets KIELER: Integrating Advanced

Layout Algorithms into By-Example Visualisations
Editor: Scott D. Fleming, Andrew Fish, Christopher

Scaffidi
Conference name: The 2014 IEEE Symposium on Visual Languages

and Human-Centric Computing (VL/HCC)
Conference location: Melbourne, Australia
Conference dates: 28 July-01 August 2014
Place published: United States
Publisher: IEEE
Year: 2014
Pages: 199-200
URL: http://hdl.handle.net/1959.3/393510

Copyright: Copyright © 2014 IEEE. The accepted manuscript
of the paper is reproduced here in accordance
with the copyright policy of the publisher.
Personal use of this material is permitted.
However, permission to reprint/republish this
material for advertising or promotional purposes
or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any
copyrighted component of this work in other
works must be obtained from the IEEE.

This is the author’s version of the work, posted here with the permission of the publisher for your
personal use. No further distribution is permitted. You may also be able to access the published
version from your library.

The definitive version is available at: http://doi.org/10.1109/VLHCC.2014.6883054

Powered by TCPDF (www.tcpdf.org)

Swinburne University of Technology | CRICOS Provider 00111D | swinburne.edu.au

http://www.tcpdf.org

CONVErT Meets KIELER: Integrating Advanced
Layout Algorithms into By-Example Visualisations

Iman Avazpour⇤
SUCCESS Centre

Swinburne University of Technology
Hawthorn, VIC, Australia

Email: iavazpour@swin.edu.au

Ulf Rüegg†
Department of Computer Science

Christian-Albrechts-Universität zu Kiel
Email: uru@informatik.uni-kiel.de

John Grundy
SUCCESS Centre

Swinburne University of Technology
Hawthorn, VIC, Australia

Email: jgrundy@swin.edu.au

Abstract—The CONcrete Visual assistEd Transformation
(CONVErT) framework provides facilities to generate reusable
notations and compose them to form a wide variety of visual-
isations. With an increased number of notations in large scale
visualisations, it is crucial to use advanced layout algorithms to
improve understandability of such complex visualisations. This
showpiece paper demonstrates how advanced layout algorithms
can be integrated into the notation specifications of CONVErT
to generate layouts of complex visualisations.

I. INTRODUCTION

The CONcrete Visual assistEd Transformation (CONVErT)
framework1 provides a user-centric approach to generating
visualisations for a wide variety of application domains using
drag and drop of visual notations [1]. It uses by-example
model transformations in the visualisation process and for
mapping of the notations’ models to their views, mapping
varieties of inputs to notations, and to compose notations to
generate visualisations. CONVErT allows layout specifications
to be included in notation views. These layout specifications
however are hard coded for specific visualisations and altering
them requires advanced knowledge of the used visualisations
as well as complex low level coding. Therefore, using and
updating layouts in CONVErT is not as user-centric as defining
visualisations.

We have previously experienced the effectiveness of au-
tomatic layout algorithms in improving the comprehension
and the aesthetics of complex diagrams [2]. This motivated
us to integrate advanced layout mechanisms into the by-
example specification of visualisations in CONVErT. The
Kiel Integrated Environment for Layout Eclipse Rich Client
(KIELER) framework2 provides a meta layout infrastructure
that allows using various layout algorithms from libraries
such as GraphViz3 and OGDF4 and graph formats such as
GraphViz’s dot and KIELER’s JSON graph [3]. As a result,
KIELER is a good candidate for layout specification and
integration in CONVErT. This showpiece paper demonstrates
how advanced layout algorithms provided by KIELER are
integrated into CONVErT to generate complex, graph-like
visualisations.

1https://sites.google.com/site/swinmosaic/projects/convert
2http://www.informatik.uni-kiel.de/rtsys/kieler/
3http://www.graphviz.org/
4http://www.ogdf.net/

II. USAGE DEMONSTRATION

This section provides an example of visualising UML class
diagrams in CONVErT using graph-based layout algorithms
provided by KIELER. UML class diagrams comprise of classes
(graph nodes) and different associations (edges) between these
classes. Each class notation is shown as a box with three
compartments for name of the class, set of attributes, and set
of operations. The attributes and the operations are arranged
in vertical lists and separated by a line. Associations, in our
adoption of class diagram, are directed lines that connect
two classes. Associations provide two labels for showing the
cardinality and a name.

CONVErT uses a three step approach to generate visuali-
sations: 1. Create the notations to be used in the visualisation
(or reuse existing notations). This is done by importing already
existing visualisations as views, providing the notation’s model
in XML, and annotating the imported visualisations to generate
the mapping between the notation’s model and the view. 2.
The notations are mapped to input data by a drag and drop
process of corresponding input elements on the notation’s
data elements. The drag and drop interactions are translated
into rule-based model transformation scripts to transform the
input model elements into the notation’s model. This step
allows to reuse the generated notations for multiple different
input files. For example, a bar notation of a bar chart can be
reused for visualising sales records, a city’s population, and
the frequency of cars passing an intersection. 3. The mapped-
to-input notations are composed to generate the complete
visualisation. Here, for example, a bar notation is included
in a chart or map notation.

CONVErT’s architecture allows a separation of concerns
in generating a notation’s view and its model, i.e. notations in
CONVErT can be generated from already existing visualisa-
tions or can be designed in the provided facilities for drawing
visual shapes as views, while mapping the notation’s model
to its view is done separately by using model transformation
scripts. This allows the use of different technologies and
approaches for generating notation views. For example, in
our class diagram example, the view representing a class
is designed first and then the correspondences between the
view and the class’s model are annotated in the view. These
annotations define one-to-one or one-to-many mapping corre-
spondences between a notation’s model and its view. The name
of a class corresponds to the name provided in the model,
and the class includes multiple attributes which result in a

jgrundy
In Proceedings of the 2014 IEEE Symposium on Visual Languages and Human-Centric Computing, Melbourne,Australia, July 27-Aug 1 2014 © IEEE

jgrundy

(a) With ad-hoc grid layout. (b) With advanced graph layout provided by KIELER.

Fig. 1. Samples of class diagram visualisations.

one-to-many relationship. Using these annotations, CONVErT
automatically generates the transformation scripts to map class
notation models to class views.

To map the notations to input data, examples of the
data should be provided to CONVErT. For example, a class
diagram’s data (in XML or XMI) that should be visualised is
presented in CONVErT and the user can drag and drop its
elements to the notations. This drag and drop generates trans-
formations to map the input model to visual notations. Once
this mapping is done, the mapped notations are composed to
generate the full visualisation. The composition step defines
what type of notations are included in the host notations.
For example, a class diagram includes classes, while a class
includes attributes and operations. This composition needs
to be specified using one instance of each notation and the
resulting transformation script is applied to the example inputs.
Once the transformation is applied, depending on the number
of classes that exist in the example input, the class view is
generated and included in the class diagram notation.

The positioning and layout of visual elements in CONVErT
is delegated to notation views. For example, the arrangement
of attributes in vertical lists in classes is delegated to the class
notation. Similarly, the arrangement of classes in the class
diagram itself is done by the class diagram notation. This
architecture allows the use of third party layout mechanisms
(in this case, KIELER) during the visualisation procedure.

KIELER provides a common interface to select and config-
ure the desired layout algorithm. The KWebS project allows to
access the layout infrastructure from different languages (e. g.,
JavaScript and C#), locally or over the web. We use this service
to enable the class diagram notation to position the classes
it is comprised of. A routine is provided in CONVErT for
generating a JSON graph representation of the class diagram
and requesting KIELER to apply a certain layout algorithm.
The JSON-encoded class diagram is sent to the layout ser-
vice. The desired layout algorithm is configured by additional
options that are added to the JSON. KIELER enriches the
graph with coordinates for every element and returns the
result. The returned results are passed to the class diagram
notation which reorganises the classes and their association
links according to the returned positions. Figure 1(a) depicts
an example class diagram visualisation before the integration
of advanced KIELER layouts, while Figure 1(b) demonstrates
the same class diagram using the automatic layout mechanism.
Note the improved arrangement of associations and their labels

as well as class notations. A similar procedure can be applied
for other visualisation examples.

To check the validity of the visualisation, certain consis-
tency checks are provided. For instance, it is possible to check
whether the notations being inserted inside a class diagram
notation are in fact classes and associations. CONVErT pro-
vides facilities to report inconsistencies as exceptions. Also,
notations in CONVErT can be altered to use flexible layout
algorithms depending on user interests. A notation’s model can
be updated to include a feature for specifying the name of the
desired layout algorithm, to allow users to specify the layout
algorithm during the modelling process. The desired layout
algorithm is then sent to the notation’s view to generate the
notation specific KIELER layout request.

III. SUMMARY AND PRESENTATION

This showpiece demonstrates the integration of KIELER’s
advanced layout mechanism into the by-example visualisations
of CONVErT. The provided example of a UML class diagram
visualisation shows how class notations in CONVErT can be
laid out using these methods. The approach and tool integration
presented by this showpiece paper will be further demonstrated
using a screen-cast video and an accompanying poster.

ACKNOWLEDGMENT

⇤ This work is partially supported by an ARC Discovery
Project and ARC Future Fellowship. Support for the Iman
Avazpour from Swinburne University of Technology is grate-
fully acknowledged.
† Ulf Rüegg is funded by a doctoral scholarship (FITweltweit)
of the German Academic Exchange Service.

REFERENCES

[1] I. Avazpour and J. Grundy, “CONVErT: A framework for complex
model visualisation and transformation,” in IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC’12), Innsbruck,
Austria, 2012, pp. 237–238.

[2] P. S. Yap, J. Hosking, and J. Grundy, “Automatic diagram layout support
for the marama meta-toolset,” in IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC’11), Pittsburgh, PA, 2011, pp.
61–64.

[3] M. Spönemann, C. D. Schulze, C. Motika, C. Schneider, and R. von
Hanxleden, “KIELER: building on automatic layout for pragmatics-
aware modeling,” in IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC’13), San Jose, CA, USA, 2013, pp. 195–
196.

	cover_page-3
	vlhcc2014_3

