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Abstract 

Online social networks connect people from all over the world based on the shared 

interests, ideas and associations. Well-known social networks such as Facebook and 

Twitter have hundreds of millions or even billions of users scattered all around the 

world sharing interconnected data. These networks are organised around users who 

have certain expectations from their network providers, such as low latency access to 

both their own data and their friends’ data, often very large, e.g. videos, images etc. 

Replication of data can be utilised for meeting these requirements, however, social 

network service providers often have a limited monetary capital to run their own 

private datacentres and store every piece of data everywhere in order to minimise 

users’ data access latency. Thus, there is always a trade-off between social network 

users’ and providers’ requirements.  

Geo-distributed cloud services with virtually unlimited capabilities are suitable for 

such large scale data storage. However, as cloud datacentre storage, access and 

transmission need to be paid for, the cost for storing data and updating data would be 

still huge if the social network providers store the users’ data in all datacentres. 

Therefore, it is crucial to have optimised data placement and replication to fulfil the 

users’ acceptable latency requirement while incurring the minimum cost for social 

network providers. In this domain, key problems for fulfilling both users’ and service 

providers’ objectives include how to find the optimal number of replicas, how to 

optimally place the data, how to distribute the requests to different datacentres, and 

how to adapt the data placement and replication based on the changes in the social 

network over time.  

The aim of this research is to find the optimal number of replicas for every user’s data 

and an optimal placement and replication of replicas to minimise monetary cost and 

satisfying quality of service requirements for all users while considering the dynamic 

nature of the social networks by applying adaptive strategies. In the real world, social 

networks have a dynamic and growing nature due to the users’ mobility and dynamic 

activities and thus any data replicas need to be adaptable according to the environment, 

users’ behaviours, social network topology, and workload at runtime. Hence, it is not 
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only crucial to have an optimised data placement and replication as well as data access 

request distribution – meeting individual users’ acceptable latency requirements while 

incurring minimum cost for service providers – but the data placement and replication 

must be adapted based on changes in the social network to remain efficient and 

effective over time.  

We start with introducing a motivating example from Facebook social network and 

analysing the problem of data placement and replication in the cloud. Based on the 

requirements identified, after preliminary experiments using genetic algorithm, we 

formulate the overall data placement and replication problem and propose the cost and 

latency model in the cloud. The static data placement and replication is modelled as a 

set cover problem and a greedy algorithm is presented to solve it. The dynamic 

adaptation is also modelled as a dynamic set cover problem, and a framework 

consisting of a combination of a greedy algorithm and a modified dynamic greedy 

algorithm is used to solve it. Experiments on a large scale Facebook dataset and a 

location based Gowala dataset using real latencies derived from Amazon cloud 

datacentres demonstrate our novel strategy’s efficiency and effectiveness in 

outperforming other representative strategies.  

To the best of our knowledge, this thesis is the first comprehensive and systematic 

work investigating the issue of dynamic data placement and replication in the cloud 

in order to reduce the overall storage, transfer, updating, and synchronisation cost 

while guaranteeing that the Pth percentile of individual latencies, instead of misleading 

average latencies commonly investigated, is no more than the acceptable latency. By 

proposing innovative concepts, theorems and algorithms, the major contribution of 

this thesis is that it helps bring the cost down dramatically for social network providers 

to place and replicate data of social network users in the cloud while guaranteeing an 

almost unnoticeable latency of less than 250 ms for, for example, up to 99.99 

percentile of all the individual operations over time. 
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Chapter 1  
Introduction 

This thesis investigates static and dynamic social network data placement and 

replication in the cloud. This is an important issue for storing the data of dynamic and 

growing social networks in a pay-as-you-go model in the cloud. This thesis proposes 

a novel approach to reduce the cost of storing, requesting, transferring, and 

synchronising large data items in the cloud for social network providers while 

guaranteeing the latency requirement for social network users. A framework 

consisting of comprehensive cost and latency models and static and dynamic data 

placement and replication strategies was designed and developed. This is supported 

by new concepts, solid theorems and innovative algorithms. Experimental evaluation 

and case studies demonstrate that our work helps to bring the cost down dramatically 

for social network providers in the cloud while guaranteeing the latency requirement 

for individual users to access not only their own data but also the data of all their 

friends. In this thesis, for every user, the friendship is defined as any kind of accessing 

data of other social network users no matter how often one or both of them access 

each other’s data and how genuine their real friendship is.  

This chapter introduces the background and key issues for this research. It is organised 

as follows. Section 1.1 gives a brief introduction to the challenges in social network 

data storage. More specifically, Section 1.2 discusses the idea of social network data 

placement and replication in the cloud and the related issues. Section 1.3 outlines the 

key issues of this research. Section 1.4 summarises the key findings of this research 

while Section 1.5 presents an overview for the remainder of this thesis. Finally, this 

chapter is concluded with a summary in Section 1.6. 
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1.1 Challenges in Social Network Data Storage 

Based on a recent report, there are 2.80 billion global social media users in 2017, or 

roughly 37% of the population of the world, with more than 20% growth over the past 

12 months [1]. Users are geographically scattered around the world often having 

friendships with users from elsewhere. Participating users join a social network, create 

friendships with any other users with whom they associate, and publish various 

content – some such as videos and images being very large – to share with each other. 

Facebook (2 billion monthly active users), YouTube (1.5 billion monthly active 

users), WhatsApp (1.2 billion monthly active users), and Instagram (700 million 

monthly active users) are some examples of popular social networks [2] with large 

social media data content.  

Social network data storage is a very important and challenging problem since social 

network users have QoS (quality of service) expectations from their social network 

service provider, including low latency, data consistency and availability, and privacy 

requirements. In terms of latency, users can endure a certain threshold to access their 

own data and the data of their friends. Not being able to access the data in a desirable 

timeframe is likely to lead users to becoming frustrated, lowering their usage and 

possibly even leaving the social network. Switching of the users to the other 

competitor social networks can lead to a huge lost in revenue and profit for social 

network providers. To avoid this problem, replication of data can be utilised to meet 

these user performance requirements. However, social network providers cannot 

always afford having their own private datacentres in distributed geographical 

locations and continuously extend the datacentres in order to minimise users’ data 

access latency by storing every piece of data everywhere. 

1.2 Social Network Data Placement and Replication in the Cloud 

Geo-distributed cloud services with virtually unlimited capabilities are suitable for 

such large-scale data storage and there are many cloud service providers maintaining 

storage infrastructure based on a pay-as-you-go model [3, 4]. Amazon S3 [5], Google 
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Cloud storage [6], and Microsoft Azure [7] are some examples. Cloud services 

provide “Infrastructure-as-a-Service” that give the social network providers the 

capability to deploy their services in the cloud, which are built and operated by cloud 

providers, and pay for cloud resources that they use. Therefore, social network 

providers do not have to build and maintain their own datacentres. Deploying the 

services in the cloud has many advantages such as getting ready to use and virtually 

unlimited resources based on a “pay-as-you-go” model. However, such “pay-as-you-

go” cloud rental could be extremely costly if we simply use naïve full replication for 

huge and growing social media data to minimise the latency, ensure availability and 

meet the other requirements. 

For example, in Figure 1-1, let us consider AWS infrastructure [8] and two of the users, 

one in Singapore and the other in California, sharing data with each other. One solution 

could be storing and replicating their data in both S3’s North California datacentre and 

Singapore datacentre, and pay for the storage cost in both datacentres. Another solution 

could be storing data in just one of these datacentres to reduce the storage cost. 

However, by doing so, one of the users has to suffer a higher latency. A more 

appropriate solution could be to store their data in a datacentre in between, which has 

relatively low latency to both users, such as S3’s Tokyo datacentre. Thus, both users 

can have a tolerable latency by paying only one time storage cost. Hence, we need to 

explore all possible placement strategies to find out the best one. 

 

Figure 1-1. Example of using Amazon cloud datacentres  
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Moreover, as different replicas of users’ data may need periodical synchronisation, 

such a huge cost becomes uneconomical due to the very large size of data. Based on 

a Facebook statistics for 2016 [9], Facebook generates four petabytes of new data per 

day for the 1.083 billion daily active users at that time. Furthermore, social networks 

have a dynamic and growing nature. Users can join or leave the network at any time; 

add, delete or update data; travel and move to any other location in the world; and also 

create or break friendships. Different users have different levels of activeness and 

similarly their friends have various frequencies of accessing, updating and adding to 

their data. Users can become less or more active and gain less or more interest in their 

friends’ shared content. Finally, sometimes, new datacentres can be added to be used 

by the social network or the existing datacentres can be out of use, hence removed. 

Therefore, an optimised data placement and replication strategy needs to consider all 

these scenarios. 

1.3 Key Issues of this Research 

Based on these facts, having an optimised data placement and replication approach 

which is capable of finding the most cost effective solution while fulfilling individual 

users’ acceptable latency requirement is required. Furthermore, the data placement 

and replication needs to be able to cope with the dynamic changes in the environment, 

e.g., users’ behaviours, social network topology, and workload at runtime. Hence, 

finding the optimal placement of data in different datacentres with minimum cost 

while keeping the placement optimised over time is the challenge addressed in this 

research.  

Furthermore, we need to adapt this placement due to dynamic changes in the social 

network continuously in order to have the latency requirement fulfilled for individual 

users with a minimum cost for social network providers over time. We aim to 

guarantee the latency requirement for the Pth percentile of all individual requests 

between all friends, i.e., over P% of all individual operations meet the specified 

latency requirement. Therefore, the key issues we need to solve in order to address 

the challenge and fulfil the objectives are as follows: 
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 Finding the optimum number of replicas for users. In order to overcome this 

issue, we need to find the minimum number of the replicas for every user’s 

data to have the latency requirement fulfilled not only for this user but also for 

all his/her friends. We need to address how to find the optimum number of 

replicas for every user. 

 Finding the suitable datacentres to place the replicas. To have the minimum 

cost for social network providers while fulfilling the latency requirement for 

the users, it is not only necessary to find the minimum number of replicas but 

also to find out how to place these replicas in different datacentre. 

 Redirecting different requests to appropriate datacentres. By having the 

minimum number of replicas and their placement, the next issue we need to 

solve is how to redirect different requests from users located in a variety of 

geographically distributed locations with different access frequencies to the 

replicas placed in different datacentres to meet the latency requirement and 

minimise the cost.  

 Adapting the placement and replication based on the changes in the network. 

Social network is changing over time and we need to continuously adapting 

the placement and replication based on the changes in the system in order to 

have the latency requirement fulfilled for all the users with the minimum cost 

for social network providers over time. 

 Synchronising replicas. Primary and secondary replicas become 

unsynchronised after adapting the placement and replication. We need to find 

out when and how to synchronise the secondary replicas with the primary data 

in a cost-effective manner. 

1.4 Key Findings of this Research 

All the key issues listed in Section 1.3 are addressed in this thesis. In order to solve 

these issues, the research is divided to two general phases of static and dynamic social 

network data placement and replication. The static data placement and replication 
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problem includes 1) finding the minimum number of replicas for every user’s data, 2) 

finding the suitable datacentres to store these replicas in order to guarantee the latency 

requirement for all of his/her friends, and 3) redirecting different request to 

appropriate datacentres. The first phase of static data placement and replication is then 

used as a foundation for the next phase which is dynamic data placement and 

replication. The dynamic phase includes 1) adapting the data placement and 

replication based on the changes in data, users, connection, access frequencies, and 

datacentres, and 2) synchronising the secondary replicas with the primary replicas.  

To carry out our research for each phase, we take 1) modelling, 2) problem 

formulation, 3) algorithm deployment, 4) evaluation, and 5) discussion steps. Firstly, 

we mathematically model the problems of static and dynamic data placement and 

replication in the cloud by considering reasonable assumptions and conditions. Then, 

based on the models including the cost and latency models, we formulate the data 

placement and replication problem as a set cover optimisation problem. Furthermore, 

we propose effective and efficient algorithms to find suitable solutions. Then, we use 

real-world large-scale social network data as inputs to extensively evaluate our 

algorithms using real cloud datacentres. The outputs are compared with the other 

strategies or baseline approaches. We finally explain the evaluation results and discuss 

various aspects such as complexity and optimality. We present a novel dynamic 

strategy to cope with data placement and replication that is applicable in dynamic 

environments where users can join, leave, move or change their friendships in the 

social network; data can be added, removed and updated as needed; and datacentres 

can also be added or removed. To the best of our knowledge, comparing to the state-

of-the-arts, our work is the only comprehensive and systematic work dedicated to all 

different scenarios that happen in a social network for data placement and replication. 

Five significant key findings, i.e. contributions of this research are:  

 Guaranteeing a very low – almost unnoticeable – individual latency of less 

than 250 ms (milliseconds) [10] not only for users to access their own data but 

also for all their friends to access their data.  

 Fulfilling the Pth percentile requirement of individual access latencies of all 

users. Taking individual instead of average latencies into account makes our 
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work much more practical and significantly distinct from other existing works.  

 Developing a novel static data placement and replication strategy which finds 

the initial minimum number of replicas and their placement for every user and 

relay different requests to the best datacentres in order to ensure the latency 

requirement. 

 Presenting a novel dynamic strategy that continuously guarantees the 

optimality of the social network data placement and replication over time. Our 

dynamic strategy is based on our static minimum cost replication strategy in 

order to make it practical in the real world where social networks change 

rapidly. 

 Carrying out extensive experiments on Facebook and Gowala datasets by 

considering real cloud datacentres. Two large-scale open datasets, Facebook 

dataset [11] and location based Gowala dataset [12], are used to evaluate our 

novel strategy and demonstrate its efficiency and effectiveness. Real Amazon 

datacentres are tested for real-world datacentre latency measurements. As 

verified by simulation experiments, our dynamic strategy to solve the data 

placement and replication as a dynamic set cover problem is capable of finding 

the optimal solution. 

1.5 Overview of this Thesis 

In particular, this thesis includes new concepts, solid theorems and complex 

algorithms, which form a suite of comprehensive and systematic solutions to deal with 

the issue of cost effective data placement and replication in the cloud for efficient 

access of social networks.  

The outcome of this research can directly impact social network providers by saving 

millions of dollars per month for them; cloud computing provider companies by 

selling their products; social network users by giving them a better experience of 

having a very low latency in accessing social network content; and also indirectly all 

different businesses working with social networks. To conclude this chapter, the thesis 
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structure is depicted in Figure 1-2. 

In Chapter 2, we introduce the related work to this research. We start from introducing 

data management for social networks, and then we move to static data placement and 

replication in the cloud. By introducing geo-distributed cloud datacentres for data 

placement and replication, we raise the issue of static cost-effective data placement 

and replication in the cloud. Finally, we introduce some of the research which is done 

on dynamic data placement and replication in the cloud to compare with our work. 

In Chapter 3, we first introduce a motivating example, which is based on a real world 

popular social network, Facebook, and the issues with data placement and replication 

for Facebook. Based on this example, we identify and analyse our research problems.  

In Chapter 4, we present our preliminary work done in the field of data placement and 

replication followed by discussing the limitations and the later works done in the next 

chapters to overcome these limitations. 

In Chapter 5, we formulate the problem of social network data placement and 

replication in the cloud. Moreover, the efficiency and effectiveness of both static and 

dynamic strategies, i.e. latency, time overhead, cost, competitive ratio, and recourse 

are introduced and modelled.  

In Chapter 6, we present our static data placement and replication strategy in order to 

find the initial data placement and replication as a foundation for our follow up 

dynamic data placement and replication strategy. 

In Chapter 7, we develop a novel framework for dynamic data placement and 

replication in the cloud. Our model adapts the data placement and replication based 

on the changes in the system and synchronises the replicas. Some of the adaptations 

are done on the fly and some based on a regular basis, depending on the scenarios. 

In Chapter 8, we demonstrate experiment results to evaluate our work described in the 

entire thesis. First, we introduce our cloud computing simulation environment and 

settings. Then, we demonstrate our two case studies including Facebook and Gowala 

social networks. For each case study, we first simulate and compare several alternative 

data placement and replication strategies with our static strategy, and then evaluate 
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the cost and latency of our dynamic data placement and replication over time. Finally, 

we analyse the efficiency and effectiveness of our static and dynamic data placement 

and replication strategies for two case studies.  

 

Finally, in Chapter 9, we summarise the new ideas presented in this thesis, the major 

contributions of this research, and consequent further research works. 

 

Figure 1-2. Thesis structure 
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In order to improve the readability of this thesis, we put the latency of pinging Amazon 

datacentres in Appendix A, graph partitioning as a part of our preliminary work in 

Appendix B, the notation index in Appendix C, the storage, request, and transfer price 

of different Amazon datacentres in Appendix D, and distribution of Facebook users 

in different locations in Appendix E. 

1.6 Summary 

An introduction to the social networks, challenges in social network data storage, and 

social network data placement and replication in the cloud is provided in this Chapter. 

Key issues as well as the key findings of the research are also discussed and an 

overview of the thesis is depicted. To summarise, Chapter 2 presents a comprehensive 

literature review on social network data placement and replication in the cloud. 

Chapter 3 provides a motivating example with the problem analysis. Chapter 4 details 

our preliminary work done in the field of data placement and replication in the cloud. 

Chapter 5 introduces a comprehensive problem formulation. Chapter 6 presents our 

static data placement and replication strategy while Chapter 7 discusses our dynamic 

framework in more detail. Chapter 8 demonstrates the simulation results and the 

evaluation. Finally, Chapter 9 summarises conclusions and key areas for future 

research.  
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Chapter 2  
Literature Review 

In this chapter, we review the existing literature related to the research conducted in 

this thesis. A comprehensive literature review has been done across several fields 

related to the social network data placement and replication in the cloud. Many papers 

in the literature focus on energy efficient workload placement [13], virtual machine 

placement [14, 15], applications deployment [16], load balancing [17], job scheduling 

[18, 19], and resource allocation [20, 21]. Besides conventional performance metrics, 

there also exists rich research work on optimising cloud services using metrics such 

as service latency, energy and carbon optimisation [22-26] as well as cloud resource 

pricing [27] and allocation [28]. Except [26], they often assume full data replication 

across datacentres and they cannot fulfil our objectives. The papers within these fields 

are not comparable with our work as we focus on finding an efficient and effective 

data placement and replication in the cloud. Therefore, in this chapter, we focus on 

cloud based data placement and replication for social networks and compare our work 

with existing literature in three categories. These categories are 1) optimisation of 

social network services, 2) static data placement and replication in the cloud, and 3) 

dynamic data placement and replication in the cloud.  

This chapter is organised as follows. In Section 2.1, we review the literature in the 

field of optimising social network services. In Section 2.2, we summarise the work 

done on static data placement and replication in the cloud. In Section 2.3, we review 

dynamic data placement and replication in the cloud, which is the most related to our 

work. Finally, Section 2.4 summarises this chapter. 
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2.1 Optimisation of Social Network Services 

For social networks across multiple sites, some propose selective replication of data 

across datacentres to reduce the total inter-datacentre traffic, while others propose 

frameworks that capture and optimise multiple dimensions of the social network 

system objectives concurrently [29]. The trade-off involving the “freshness” of the 

information available to the users and WAN bandwidth costs are analysed and 

explored in [30]. Moreover, self-similarities, that is a feature found in social network 

interactions and does not exist in social network social relations is explored in [31] to 

tackle the same problem. This method places users in the same self-similar subtree at 

the same server in order to minimise the inter-server communication according to the 

interaction-locality-based structure. These works do not involve response time QoS 

as in our geo-distribution data placement and replication problem.  

Mobile social video sharing (MSVS), which facilitates mobile users to create ultra-

short video clips and instantaneously share them online, has developed as one of the 

most important social network services. Because of the enormous volume of videos 

and limited accessible bandwidth of wireless infrastructure, distributing these massive 

videos to mobile users with acceptable QoS is very challenging. A hierarchical 

structure is utilised in [32] to divide this problem into two sub-problems, (1) bitrate 

adjustment and (2) spectrum allocation problems. For the bitrate adjustment problem, 

a QoS approximation model is presented which is based on the large deviation 

principle. An online bitrate adjustment strategy is developed without depending on 

any knowledge of neither network environment nor video traffic by introducing a 

sliding window method to develop the online approximation. For the spectrum 

allocation problem, the problem is proved to be a potential game. They formulate a 

decentralised algorithm to find the Nash equilibrium, and analyse the convergence 

rate and the performance gap with the centralised optimisation solution. This work is 

not deployed on the cloud.  

Customising data stores to meet application service level agreements is tackled in [33] 

in the context of quorum-based systems, an important class of cloud storage systems. 

Models are presented to optimise percentiles of response time under normal operation 



13 
 

and under datacentre failure. They consider factors such as the geographic spread of 

users, datacentre locations, consistency requirements and inter-datacentre 

communication costs. Besides, one of the objectives in [34] is to cut the average 

response time in half for the Facebook social graph without considering the data 

placement cost. They solve the problem of assigning user requests to compute servers 

and data records to storage subsystems using a social hash framework in two steps. 

However, these papers do not consider the monetary cost for replicating data in their 

work.  

A multi-cloud hosting system is formulated in [35] and the trade-off between 

satisfying users with their ideal cloud service providers, and reducing the inter-cloud 

data propagation cost is demonstrated. A heuristic algorithm with acceptable 

complexity is presented in this paper to solve the optimisation problem, by 

partitioning a propagation-weighted social graph in two phases: a preference-aware 

initial cloud provider selection and a propagation-aware re-hosting. Furthermore, a 

dynamic, cost-aware, optimised data replication strategy is presented in [36] in which 

the concept of knapsack is used to optimise the cost by identifying the minimum 

number of replicas required to ensure the desired availability. However, latency is not 

considered as a requirement in these papers.  

The inter-datacentre communication of the social network services is focused in [37, 

38]. Maintaining a replica of a remote user’s data at a local datacentre reduces the 

inter-datacentre read operations while incurs the inter-datacentre update operations 

due to updating with remote replicas to fulfil the consistency requirement. The goal 

in this paper is to reduce the inter-datacentre network load and service latency by 

replicating only the data of the selected users across datacentres by considering both 

update rate and read rate of the users. Furthermore, they atomise user's different types 

of data such as status update and friend post for replication to reduce inter-datacentre 

communication. However, they do not consider the cost for replicating data in their 

work. 

It is claimed in [39] that Facebook had slow response to the users outside of the United 

States and also the Internet bandwidth was wasted when users all around the world 

demanded the same content. The multiple round trips of Facebook communication 
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protocols as well as the high network latency between the users and Facebook 

datacentres in United States are found as the reasons for the slow response in this 

paper. Moreover, it is also observed that most of the communications are among the 

users within the same geographical region. The authors proposed to use local servers 

as TCP proxies and caching servers to improve service responsiveness and efficiency, 

focusing on the interaction between user behaviour, social network mechanisms, and 

network characteristics.  

A body of existing literature tackles the problem of partitioning and replicating the 

data of social network users across servers in a single datacentre. Distributed hashing 

is often adopted to partition the data across servers [40] in social networks. However, 

this method leads to poor performance such as unpredictable response time due to the 

inter-server multi-get operations. Since the social network users’ queries are mostly 

for the most recent messages of friends, dividing the messages according to the time 

range in different servers is considered in [41] instead of partitioning messages only 

based on social network friendships. Their strategy of partitioning along the time 

dimension also optimises the social network performance. Finally, social network 

content are partitioned across servers in [42] based on not only the social relations but 

also the user access patterns to each file. The authors formulate the problem as an 

optimisation problem and solve it to preserve social relations and to balance the 

workload between different servers.  

2.1.1 Social Locality 

There are also some other works in literature maintaining social locality to address the 

social network data placement at a single site issue. SPAR [43] minimises the total 

number of slave replicas by maintaining social locality for every user and balancing 

the number of master replicas in each position. Also, S-CLONE [44] tries to maximise 

the number of users whose social locality can be maintained while having a fixed 

number of replicas for every user.  

S-CLONE [44] is a socially-aware data replication method, which was proposed to 

find an efficient way to store K replicas for each user’s data on the M servers. Cloud 

datacentres are not used in this paper and storage is done in servers. They aim is 
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having an efficient replication as their main objective while balancing the server load 

as the secondary objective. For the static case, they replicate data for a fixed social 

graph, and then for the dynamic scenario they adapt the static replication to changes 

in the social graph. The social locality assumption in which they have to keep all 

friends’ replicas in one’s main datacentre is maintained in some other works. In cloud 

based social network data placement, social locality is maintained in [29] for 

optimising multiple social network objectives. The problem of traffic minimisation 

for social networks data storage is investigated in [45] by preserving both social 

locality and distance locality. The problem is formulated as two sub-problems, 

hypergraph partitioning and partition-to-server mapping, and a two-phase data 

placement (TDP) scheme is proposed to solve it.  

However, the social locality assumption incurs a very high cost due to the replication 

of data in unnecessary datacentres. For social network data placement across multiple 

sites, some propose selective replication of data across datacentres to reduce the total 

inter-datacentre traffic. There are also other works proposing a framework that 

captures and optimises multiple dimensions of the social network system objectives 

simultaneously [29]. Other works do not involve QoS such as latency and availability 

as in our geo distribution scenario. 

2.1.2 Graph Partitioning 

Graph partitioning is another method that is often used for social network optimisation. 

A graph partitioning algorithm to reduce the latency and bandwidth in social networks 

is proposed in [46]. They propose a decentralised community detection algorithm to 

partition a distributed structure into a set of computing clusters. However, they did 

not consider the cost. The social data storage problem is modelled as a social graph-

partitioning problem in [47], and an evolutionary algorithm is employed to find a 

Pareto-optimal solution. Moreover, a parallel graph partitioning technique based on 

parallel GA is proposed in [48].  

A data placement method which improves the co-location of associated data while 

keeping the balance between nodes is proposed in [49]. They use the hypergraph 

partitioning technique to partition the set of data items and place them in the 
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distributed nodes. They also take the incremental adjustment of replicas into their 

considerations. However, as they do not use cloud datacentres to store their data, they 

have the capacity concern in the nodes which makes their work not comparable with 

ours. Moreover, data partitioning and replication among a cluster of servers within 

one cloud datacentre is considered in [50]. The physical capacity limit problem also 

exists in this paper and to assure the service performance, the servers should not 

become overloaded. 

The works in this field either are not deployed on the cloud or do not involve QoS 

such as latency and availability while minimising the monetary cost as in our geo 

distribution scenario. Our geo-distributed data placement and replication strategy 

minimises the monetary cost for social network providers while guaranteeing the 

individual access latency and availability requirements for social network users. 

2.2 Static Data Placement and Replication in the Cloud 

In the category of data placement and replication in the cloud, a novel framework is 

constructed in [51] that can lead to profit aware multimedia contents handling by using 

kernel support vector machine to create the user profile that includes information 

about user services, so that resource utilisation can be optimised in case of current 

resource failure. The resource handling is optimised by keeping both private clouds 

for permanent storage and public clouds for temporary and emergency storage. Fast 

Quadratic Lyapunov algorithms are used in different time granularities in order to 

Schedule and reschedule multimedia contents storage level. Finally, popularity based 

cache management is presented to reduce the undesirable cost consumption while 

downloading same multimedia content for several times.  

The best trade-off between computation and storage cost is achieved in [52, 53] by 

automatically storing the most appropriate intermediate datasets in the cloud 

datacentres. An intermediate data dependency graph (IDG) is built from the data 

provenances in scientific workflows to decide whether to store data or recompute later 

in the runtime. They achieve significant cost reduction by using AWS cost model. 

However, they do not consider the QoS requirements such as latency in our model. 
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A geo-cloud based dynamic replica creation method in large global websites such as 

Facebook is presented in [54]. Their aim is to improve data availability and to 

minimise cross-datacentre bandwidth consumption and average read access time with 

constraints of policy and commodity node capacity. They have some policies on the 

minimum number of replicas based on the data importance, and list of forbidden and 

necessary datacentres to locate data. They rate data based on the total request number 

on the data, the access frequency of the data and last access time of the data. They do 

not consider the monetary cost in their model. 

Optimising the total cost of cloud resources while considering satisfactory QoS and 

data availability to social network users is considered in [29]. Given an existing data 

placement, their problem is to find the optimal data placement with minimum 

monetary cost while guaranteeing QoS and data availability requirements defined. 

They replicate every user’s data in all of their friends’ datacentres without considering 

the number of the friends in that datacentre.  

Volley [55] addresses the automated data placement challenge which deals with WAN 

bandwidth expenses and datacentre capacity limitations while minimising users 

latency. Cloud services use Volley by sending the datacentre requests logs. Volley 

relies on access logs to determine data locations by analysing the logs using an 

iterative optimisation algorithm by considering data access rates and users’ locations, 

and submits migration recommendations as the output to the cloud service. Their goal 

is to improve datacentre capacity skew, inter-datacentre traffic, and client latency. 

Volley does not take into account the monetary costs. 

A selective geo replication method for large databases is introduced in [56]. The main 

goal is to minimise the bandwidth to send updates and forward reads to remote 

datacentres regarding policy constraints. They have also proposed a dynamic 

placement algorithm which responds to the access pattern changes by creating and 

deleting replicas. They replicate all records everywhere either as a full copy or as the 

primary-key and metadata copy. A metadata replica becomes full after delivering a 

read operation to its location, and a full replica downgrades by observing a write 

operation in another location or if no read operation observes at that location for a 
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period. The primary replica never changes in this work. Moreover, once data is 

inserted into a tablet, policy constraints cannot be changed. 

Multi-objective optimisation to reduce the cloud resources usage, to deliver good 

service quality to users and to minimise the carbon footprint is studied in [57]. They 

present an optimisation graph cut strategy that decomposes their main problem into 

two sub-problems and solves them consecutively. They consider latency as an 

objective instead of constraint which makes it not comparable with our work. 

The cloud storage reconfiguration while respecting application-defined constraints to 

adapt to changes in users’ geographical locations or access request rates is addressed 

[58]. They consider time zones and access patterns in different geographical locations. 

Their solution is to configure their replicas automatically and periodically while 

satisfying consistency and latency requirements and respecting replication and cost 

constraints. They consider cost as a constraint instead of a goal to be minimised. 

Skute [59] is a cost efficient dynamic key-value store that allocates the resources of a 

data cloud to different applications. It splits the data of an application to M partitions 

and assumes them as autonomous agents who place their replicas in different servers. 

It is a dynamic approach which maintains different availability levels for different 

applications. A virtual economy in which data partitions act as individual optimisers 

to get decisions regarding the migration, replication or removal of themselves based 

on the partitions’ storage and maintenance cost is employed in this paper. As a game-

theoretical model, no migrations or replications happen at equilibrium, which is 

reached once the access query load and the used storage are steady. 

The primary focus in [60] is to minimise the monetary cost of latency-sensitive 

application providers while fulfilling consistency and fault-tolerance requirements 

with taking workload properties into account. Two data object placement algorithms 

are presented in [61] to minimise the cost of data storage management in the cloud, 

one optimal and another near optimal. These algorithms minimise residential (i.e., 

storage, data access operations), delay, and potential migration costs in a dual cloud 

based storage architecture. However, latency definition in their work makes it not 

comparable with our work. Moreover, they do not consider the online nature of social 

networks and they consider fixed set of users in their experiments.  
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Cloud storage issues such as availability, vendor lock-in and security are considered 

in [62]. In this paper, an optimal provider subset between a set of providers in multi-

cloud storage architecture is selected for data placement. They aim to achieve good 

trade-off among storage cost, algorithm cost, vendor lock-in, transmission 

performance and data availability. Moreover, an integer-programming-based data 

placement model is proposed in [63] that addresses data access cost optimisation 

while considering the storage capacity limitations as a Non-deterministic Polynomial-

time (NP)-hard problem. In addition, a Lagrangian relaxation based heuristics 

algorithm is used to obtain ideal data placement solutions. However, they did not 

consider the latency requirement in their work. 

Magicube [64], a storage architecture with high reliability and low space overhead for 

cloud computing, finds a solution to make a trade-off between high reliability and low 

space overhead for cloud storage systems. To reduce the space overhead of file storage, 

Magicube keeps only one copy of each file, and to achieve high reliability, it uses a 

special encoding algorithm for fault-tolerance. Based on the research paper, to achieve 

high reliability and low space cost, several methods can be used, such as triplication 

at the beginning, file splitting and distribution, extra replication deletion and file repair. 

In order to reduce the storage cost while meeting the data reliability requirement at 

the same time, a novel cost-effective dynamic data replication strategy is proposed in 

[65]. It is stated that during the execution, huge volumes of intermediate data, which 

could be much larger than the original data, are generated and mostly are used 

temporary. All of these intermediate data are deleted after being used or some of these 

will be stored for later use, but for an inexact time period. They claimed that the 

reliability assurance and storage duration is sufficient to meet the requirement of most 

intermediate data in scientific applications without additional data replication. Thus, 

in order to reduce the storage cost and completely utilise the storage resource in 

existing cloud systems, it proposes an incremental replication method that calculates 

the replica creation time based on prediction, which specifies the storage period to 

meet the reliability.  

The QoS aware data replication problem for cost minimisation in cloud computing 

systems is investigated in [66]. Two algorithms are presented in cloud computing 
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systems. The first algorithm adopts the intuitive idea of high QoS first-replication 

(HQFR) to perform data replication. In order to minimise the data replication cost and 

the number of QoS violated data replicas, the second algorithm transforms the 

problem into the well-known minimum-cost maximum-flow (MCMF) problem. Node 

combination techniques are also proposed to reduce the possibly of large data 

replication time due to the large number of nodes in cloud computing systems. 

However, unlike our problem that finds the minimum number of replicas for every 

user, the number of replicas for a data block is fixed in this paper. 

Finally, local processing, i.e. collecting and processing user-generated content at local 

clouds, and global distribution, i.e. delivering the processed content to users via geo-

distributed clouds, are proposed in [67]. It is considered as a new principle to deploy 

social applications across clouds, and protocols are designed to connect these two 

components together. In order to determine computation allocation and content 

replication across clouds, they model and solve optimisation problems and build 

prototypes in real-world clouds to verify the advantages of their design.  

2.2.1 Use of Evolutionary Algorithms for Data Placement and Replication 

Evolutionary algorithms such as Genetic Algorithms (GA) are used to solve the data 

placement and replication problem in the cloud. To decrease the network traffic and 

undesired long delays in the Internet as a large distributed system, some of the objects 

are replicating at multiple sites using GA in [68]. Normal GA is considered for static 

situations and a hybrid GA is proposed that takes current replica distribution as input 

and then computes a new replica distribution using the network attributes knowledge 

and the changes occurred. Furthermore, the problem of co-scheduling job dispatching 

and data replication in wide-area distributed systems in an integrated manner is 

addressed in [69]. They take into account three variables including the order of the 

jobs, the individual compute nodes assignment of the jobs, and the assignment of data 

objects to the local datacentres. A GA is used to find the optimal placement. However, 

these works do not consider the social network data placement and replication 

problem in the cloud. 
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Some data placement strategies based on GAs are proposed in [70] and [71] to reduce 

data scheduling between cloud datacentres and the distributed transaction costs as 

much as possible. Additionally, the problem of placing the components of a SaaS and 

their related data in the cloud is addresses in [72] using a penalty based GA. However, 

data replication is not considered in these papers. 

2.2.2 Content Delivery Networks (CDNs) 

Data replication problem in a CDN or cache network which is a very related field to 

ours is addressed in many studies. A cloud CDN model [73] is depicted in Figure 2-1. 

 

Figure 2-1. Cloud CDN model [73] 

In the field of CDNs, a light-weight cooperative cache management algorithms is 

developed in [74] aiming at maximising the traffic volume served from cache and 

minimising the bandwidth cost. Caching strategies provide an effective mechanism 

for mitigating the massive bandwidth requirements for delivery of video content by 

replicating the most popular content closer to the network edge, rather than storing it 

in a central site. The reduction in the traffic load reduces the required transport 

capacity and capital expense, and improves performance bottlenecks. The content 

placement problem is formulated as a linear program in order to benchmark the 

globally optimal performance. Moreover, a novel QoS based algorithm for media 

streaming is proposed in [75] using proxy caching. They employ layered coding and 

transmission, and jointly consider the problems of caching and scheduling to improve 

the QoS for the clients. 
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Building CDNs on top of the cloud infrastructure is advocated in [76]. In comparison 

with traditional CDNs, cloud based CDNs offer cost effectively hosting storage and 

services to web content and social network providers without owning infrastructure. 

However, existing work on replica placement in CDNs does not readily apply in the 

cloud [76]. The joint problem of building distribution paths and placing web server 

replicas in cloud CDNs is investigated in this paper in order to minimise the cost 

incurred on the CDN providers while satisfying QoS requirements for user requests. 

A collection of offline, online-static and online-dynamic heuristic algorithms is 

developed that takes the network topology and work load information such as user 

location and request rates as input. The heuristics are then evaluated via web trace-

based simulation. 

Cache placement on a cooperative cache built from individual client caches in a social 

network or web service is investigated in [77] by employing social link information 

and client preferences. They use a service that maintains a mapping between content 

and the clients that cache it, proposes cache placement schemes that leverage 

relationships between clients and workload statistics, and proactively places content 

on clients that are likely to access it. 

Resource provisioning and replica placement problems for cloud based CDNs are 

addressed in [73] with an emphasis on handling dynamic demand patterns. To deal 

with the dynamic nature of demand patterns in resource provisioning and replica 

placement problems, this paper proposes a set of novel algorithms to solve the joint 

problem of resource provisioning and caching (i.e., replica placement) for cloud based 

CDNs. They propose a provisioning and caching algorithm framework called the 

Differential Provisioning and Caching (DPC) algorithm. Their algorithm aims to rent 

cloud resources to build CDNs and cache contents so that the total rental cost can be 

minimised while all demands are served. DPC maximises total demands supported by 

unexpired resources and minimises the total rental cost for new resources to serve all 

remaining demands. Moreover, to dynamically adjust the placement of contents and 

route maps, they further propose the Caching and Request Balancing (CRB) algorithm, 

which is lightweight and thus can be frequently executed as a companion of DPC to 

maximise the total demands.  
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Trend-Caching [78] and Popularity-Driven Content Caching (PopCaching) [79] are 

novel cache replacement methods that optimise cache performance according to the 

trends of video content. They explicitly learn the popularity trend of video content and 

use it to determine which video it should store and which it should remove from the 

cache. Popularity is learned in an online fashion and requires no training phase and 

therefore it is more responsive to continuously changing trends of videos.  

Finally, a CDN based social video replication and user request dispatching mechanism 

in the cloud architecture, with the aim of minimising the total system monetary cost, 

while satisfying the averaged time delay is investigated in [80]. They present a 

community classification technique that clusters social users with social relationships, 

close geo-locations, and similar video watching interests into various communities. 

Then, a large-scale measurement is conducted on a real social network system to study 

the diversities of social video propagation and the effectiveness of the communities 

on smoothing the diversity. Their community-based video replication and request 

dispatching strategy is formulated as a constrained optimisation problem.  

Based on [81], CDN methods mostly handle designing optimal strategies for the case 

where the number of contents and the scale of user requests are fixed, which is the 

case in static data placement and replication methods. However, the very challenging 

issue, which is addressed in this thesis is to present a dynamic strategy that can place 

dynamic contents and requests related to the growing number of users and connections 

on the fly and continuously ensure the optimality attained by the optimal static 

solution with complete knowledge of the social network over time. 

2.3 Dynamic Data Placement and Replication in the Cloud 

In this section, we study the research done in the field of dynamic data placement and 

replication in the cloud, which is the most related field to our work. In this category, 

an efficient proactive algorithm for dynamic, optimal scaling of a social media 

application in a geo-distributed cloud is proposed in [81]. However, the number of 

videos increases in the system, while the total number of users and also the datacentres 

are fixed.  
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An efficient proactive algorithm for dynamic, optimal scaling of a social media 

application in a geo-distributed cloud is proposed in [82]. Their objective is to ensure 

that the average response delay meets the QoS target at the lowest cost. To address 

the challenges for storing and migrating social network data dynamically in the cloud 

datacentres for timely response and reasonable expense, a set of algorithms with the 

ability to do online data migration and request distribution over consecutive time 

periods using Lyapunov optimisation techniques is proposed. They predict the user 

demands using the social influence among users; leveraging the predicted information, 

their algorithms can also adjust the online optimisation result based on the static 

optimal solution. However, in their experiments, the number of users is fixed and they 

only show the simulation results while increasing the number of videos in the system. 

Moreover, they limited the data type to only videos. 

Clockwork [83] is a third-party cloud service, which meets dynamic users request 

demand by redistributing delay-tolerant requests and prioritising delay-sensitive 

requests, so that adequate capacity can be provided with a reduced cost and 

expenditure. Machine learning algorithms and user requests scheduling on a shorter 

timescale through a fair and Pareto-optimal rate allocation are used in Clockwork. It 

plans the optimal backend capacity on a relatively long timescale based on future 

demand estimated. 

An integrated manner of optimising partitioning and replication simultaneously 

without distinguishing replica's role is explored in [84]. A lightweight replica 

placement (LRP) scheme, which conducts optimisations in a distributed manner and 

is well adapted to dynamic scenarios is presented in this paper. A dynamic algorithm 

is presented to handle the social network dynamics such as addition or removal of 

users or relations. Furthermore, the problem of social network data placement in a 

distributed cloud with the aim to minimise the operational cost of a cloud service 

provider is investigated in [85]. The distributed cloud in this paper consists of multiple 

datacentres located at different geographical regions and interconnected by Internet 

links. This algorithm uses the community concept, by grouping users of a social 

network into different communities and placing the master replicas of the users in the 

same community to a datacentre, and replicating their slave replicas into nearby 

datacentres. They deal with the dynamic maintenance of the placed data, where new 
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users join in the network and existing users leave the network at any time, or existing 

users change their read and update rates over time. In order to avoid server overhead, 

data balancing technique is used in [86], which locates data from a cloud to another 

according to the amount of traffic. To provide acceptable latency delay, it also 

considers the relationship between users and the distance between user and cloud 

when transferring data. Adaptive dynamic data placement is also enabled to 

effectively and dynamically distribute user requests via their data placement method.  

However, none of these papers address all different dynamic scenarios as part of the 

dynamic maintenance of the social network as our strategy does. We consider all the 

scenarios in a dynamic social network including addition and deletion of the users and 

friendships, changes in workload and access frequencies, changes of the users’ 

location as well as addition and removal of the datacentres.  

2.4 Summary 

In this chapter, a comprehensive literature review is conducted in the field of social 

network data placement and replication in the cloud. Social network service 

optimisation methods including social locality and graph partitioning methods are 

described. The works on static data placement and replication in the cloud such as 

evolutionary based strategies and content delivery networks are summarised. Finally, 

a review on existing dynamic data placement and replication methods in the cloud is 

presented. 
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Chapter 3  
Motivation and Research Questions 

The research in this thesis is motivated by challenges in data placement and replication 

faced by real world online social network applications. Section 3.1 introduces a 

motivating example of Facebook online social network application. Section 3.2 

analyses the problems and challenges of online social network data storage in the 

cloud. Then the research gaps and how our research seals these gaps are discussed in 

Section 3.3. Section 3.4 describes the key research questions of this thesis in detail. 

Finally, the chapter is concluded with a brief summary in Section 3.5.  

3.1 A Motivating Example 

Online social networks normally deal with an extremely large number of users 

distributed all around the world sharing a rapidly growing volume of interconnected 

and often large data items. Users typically have friends in diverse places who expect 

to access their data promptly, i.e., with a very small latency. One of the market leaders, 

Facebook, has recently surpassed 2 billion monthly active users in 2017 [2]. The 

newly added data per day generated by Facebook in 2016 for the 1.083 billion daily 

active users was four petabytes [9]. 

Social network users are scattered all around the world and users have friendships 

from the other parts of the world. Consider a user who has active friends in North 

America, India, Europe and Australia. They share text, images, videos, audio, and 

frequently add new content on a daily basis. They may also periodically update 

existing content, e.g. modifying, replacing, or deleting a variety of data. Friends share 
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any information with different levels of addition and update frequencies. A number 

of datacentres located all around the world can be used by the social network provider. 

Some geographic locations may have several datacentres and some none. The friends 

expect to be able to receive updated data including news and event feeds from their 

friends, some made up of data in large size like images and videos, with a very small 

latency, no matter where their geographic locations are. Data is accessed often by 

mobile devices in different locations. Constantly slow updates or problems in timely 

playing quality videos/audios, viewing images or interacting with other dynamic 

social media contents are unacceptable to the users. 

As discussed in Chapter 1, replication of data in geo-distributed cloud services with 

virtually unlimited capabilities is utilised for such large-scale data storage. However, 

as cloud datacentre storage, access and transmission need to be paid for, cloud rental 

is extremely costly if the social network providers use naïve full replication of data to 

minimise the latency requirement for these geographically scattered users having 

widespread relationships. As a real example, Amazon charges US$0.03 per GB per 

month storage price, US$0.004 per 10,000 requests request price, and US$0.09 per 

GB transfer price for its Virginia datacentre [87]. With 2 billion monthly active users 

and more than four petabytes of daily generated data, the total payment over years 

would be a huge burden even for a famous and prosperous company such as Facebook. 

Furthermore, in reality, social networks have a dynamic and growing nature where 

based on the changes in data, users, connections and datacentres, many different 

scenarios might happen. These scenarios are identified based on their decreasing 

frequency of happening as follows: 

 Scenario 1 (S1): New data are added and existing data are updated or deleted 

 Scenario 2 (S2): Replicas become unsynchronised from time to time and 

synchronisation is required to fulfil the consistency  

 Scenario 3 (S3): New users join the social network 

 Scenario 4 (S4): Users create new friendships 

 Scenario 5 (S5): Workload and access frequencies change over time 
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 Scenario 6 (S6): Existing friendships could be broken 

 Scenario 7 (S7): Users move and change their locations 

 Scenario 8 (S8): Existing users may leave the social network temporarily 

and/or delete their accounts permanently 

 Scenario 9 (S9): New datacentres might be added or existing datacentres 

might be removed  

Scenarios 1-4 happen more frequently in a social network while scenarios 5-7 happen 

less frequently. Scenario 8 is a relatively rare scenario and finally, scenario 9 is a very 

rare scenario yet possible, which needs to be considered since it could have 

irretrievable outcomes if happens. To highlight the importance, Facebook has recently 

announced two new datacentre locations, which will cost hundreds of millions of 

dollars [88]. Even when using cloud datacentres, Amazon as a cloud provider has 

increased its datacentre locations from 9 in 2014, to 18 in 2018 and is planning to add 

4 more datacentres soon [8]. The scenarios are explained in more detail with some 

real examples below.  

S1: 

Let us consider Facebook as a social network with A as a user. User A shares images 

and videos regularly with her/his friends. Every time she/he shares an image or video, 

her/his primary replica and accordingly her/his storage cost need to be updated on the 

fly.  

S2: 

User A has three friends, B, C, and D and suppose our strategy has placed three replicas 

for her/him in three different datacentres, DC1, DC2, and DC3, the replica in DC1 as 

the primary replica and the other two as secondary replicas. Friend B reads user A’s 

replica from DC2, friend C from DC3, and friend D from DC1. Every time user A 

shares items, the primary replica is updated that causes the replicas to be 

unsynchronised after a while. Therefore, the secondary replicas need to be updated in 

different time periods and the updating cost needs to be calculated accordingly. 
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Therefore, user A and friend D always read the updated version of user A’s data and 

friends B and C read the updated data with a delay.  

S3: 

User F joins Facebook and starts to make some new connections once joining. The 

number of replicas and their placement need to be decided for this user on the fly.  

S4: 

User A adds user F in her/his friend list. The nearest datacentre for user F to access 

user’s A replica is DC2 but the latency to access this datacentre is more than the 

Facebook desirable latency. Thus, a new replica needs to be created for user F to 

access user A’s data.  

S5: 

User B was accessing user A’s data very frequently while users C and D were not 

active users. After a period of time, user B becomes not very interested in the new 

items user A shares and accesses user A’s data less frequently while user C becomes 

active and accesses user A’s data from time to time, and user D remains inactive. The 

solution must be adapted based on these changes. However, as there are many other 

users with their own friends, it is impossible to update the solutions on the fly. 

Moreover, the workload must be ideally predicted in advance so that the friends get 

the data when they need instead of waiting for a period of time to get the desirable 

data. The workload prediction is out of scope of our work. However, the solution is 

updated in different time periods based on the new random activeness levels and 

access frequencies.  

S6: 

Users may break their friendships occasionally based on their mutual 

interests/conflicts or even private issues. In our scenario, user B becomes less 

interested in the new items user A shares and may decide to unfriend user A. The 

replication for user B needs to be updated based on the changes in the list of the friends 

for this user on the fly. 
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S7: 

User A immigrates to another country after a while and starts to make new friendships 

in the new country. The social network automatically detects the new location of this 

user and changes the primary datacentre for user A to the nearest datacentre to her/his 

new location, which is DC4. If there is a secondary replica in the new primary 

datacentre, it becomes a primary replica, otherwise a new replica is created in this new 

primary datacentre and the existing replica in DC1 becomes the secondary replica. If 

the new primary datacentre is close to any of friends B, C, and D, they read data from 

the new replica. For instance, users B and D are close to DC4 and therefore access the 

replica of user A from DC4 since then. Then user A is asked if the change is temporary 

or permanent. If it is permanent, the replicas in DC1 and DC3 will be deleted, as there 

is no request for them.  

S8: 

User B decides to leave Facebook due to her/his privacy issues and decides to delete 

all her/his information from this social network. When she/he goes through the 

deactivating process, she/he is asked whether (1) she/he has decided to leave the social 

network forever or (2) she/he will be back after a while. If she/he chooses option 1, 

all her/his data needs to be deleted from all datacentres and she/he will also be 

removed from the friends list of all her/his friends. Therefore, this action is counted 

as an unfriending scenario for all her/his friends and the replications for all her/his 

friends need to be updated as well. Otherwise, if she/he chooses option 2, the primary 

replica of this user will not be deleted and the replicas for her/his friends would not 

be changed as well. 

S9: 

Finally, a very rare yet important scenario that may happen in an online social network 

is adding or removing of datacentres. One of the datacentres might be removed or 

Facebook might have a new datacentre, which is necessary to automatically update 

the replicas based on the existing datacentres.  
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3.2 Problem Analysis  

Based on the problems and requirements in our motivating example discussed in 

Section 3.1, and as noted in the introduction of the thesis, geo-distributed cloud 

services is utilised for the large-scale social network data placement and replication. 

With the emergence of cloud computing [89], online social network providers can 

store data in cloud datacentres with a lower cost. When using geo-distributed cloud 

datacentres to store social media data, the service provider needs to have the minimum 

possible number of replicas stored for every user that are capable of ensuring the 

latency requirement for their friends who are accessing their data. The problem that 

service providers face is to have the most affordable system by considering the trade-

off between monetary cost and latency. Therefore, we need a minimum cost storage 

strategy for data placement and replication in the cloud to find the minimum possible 

number of replicas for every user’s data and their locations that can guarantee key 

service level agreement constraints such as latency and availability. As social 

networks are dynamic, replicas and their placement need to be updated based on 

ongoing changes in the social network over time. Thus, we must make online, real-

time replica placement updates based on these changes. 

Cloud services can be divided to three delivery models based on the type of provided 

capability: IaaS (Infrastructure as a Service), PaaS (Platform as a Service) and SaaS 

(Software as a Service). My research focuses on the level of IaaS which makes use of 

cloud computing infrastructure to distribute one application to many users, regardless 

of their location [90]. There are several objectives that need to be considered while 

providing a social network application [60]. 

 Respect latency requirement: The latency of each request is the time for the 

friend sending this request to access the data from the nearest datacentre containing 

any replica of the requested data. The final latency for every user is the Pth 

percentile of latencies of all individual requests from all friends to access this user’s 

data. As the percentage of more than 90% makes much more sense in most 

applications [91], requirements are assumed as 90%, 95%, 99%, and 99.9% of the 

individual latencies are no more than 250 ms which is considered as acceptable 
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latency in the research at Google [10]. The goal is to have the Pth percentile of 

individual latencies for all users and all their friends no more than the acceptable 

latency, i.e., over P% of all individual operations are within the specified latency 

requirement. 

 Minimise cost requirement: The primary goal is to optimise service 

provider’s monetary expenses in using resources of geo-distributed clouds. Every 

user has primary data replica located in their primary datacentre, which is the nearest 

datacentre to their location. It is assumed that all users read their own data from 

their primary datacentre and every friend of them reads their data from their nearest 

datacentre which stores any replica of these users’ data, either the primary or a 

secondary replica. It is also assumed that every write operation goes to the primary 

datacentre. Cost as used in this research is the rate for storing data replicas, 

requesting them, transferring them from different datacentres, and synchronising 

different replicas. More specifically, cost rate is the total monetary cost of storing 

replicas of all users’ data in different datacentres for a specific duration, requesting 

and transferring all users’ and friends’ data replicas from different datacentres, and 

synchronising all secondary replicas from primary data. Thus, while guaranteeing 

that Pth percentile of individual latencies is less than the desirable latency, we aim 

to minimise the cost for service providers. 

 Availability: To ensure the availability of all operations while having 

minimised cost, we need to store a minimum number of primary and secondary 

replicas, which can ensure the availability.  

 Consistency: Different applications may have different consistency 

requirements for their users’ stored data. For instance, a document sharing 

application requires strong consistency while a social networking application can 

usually tolerate eventual consistency [60].  

In our research, we pursue two main objectives. First, the bottom line is to keep the 

Pth percentile of individual access latencies lower than 250 ms. With such a short 

latency, a user is unlikely to notice any delay for the best user experience possible, 

based on research at Google [10]. Considering the individual latency of all friends for 



33 
 

all users makes our work significantly distinct from others using such as average 

latency.  

Second, based on achieving the above, the goal is to cut the replication cost to a 

minimum without sacrificing the QoS, i.e., the user’s minimum latency requirement. 

There is a huge difference between average latencies and percentile individual 

latencies considered in this paper. For example, consider the Amazon datacentre in 

Sydney with 70% of users located in London and 30% of users located in Melbourne. 

London users access the data placed in this datacentre in almost 332 ms while 

Melbourne users accessing the same data in about 56 ms (see Appendix A). The 

average latency to access the data placed in the Sydney datacentre by all users is 249.2 

ms, i.e., lower than the target requirement of 250 ms. However, in reality, the latency 

requirement is not met by the majority of the users, i.e., 70% of the users in this 

example. In contrast, a Pth percentile tells us the value greater than or equal to P% of 

our data. For this example, the latency requirement is fulfilled for only 30th percentile 

of the users, i.e., 30%, which is very poor but reflects the reality. In contrast, for a 

reasonable service level agreement, the Pth percentile is normally much higher, such 

as 90% or above [91]. Note it is theoretically impossible to guarantee latency 

requirement for 100% of users as some users might be located in areas with no nearby 

datacentre. 

3.3 Research Gaps 

Placing and replicating the data related to social networks is an issue that is addressed 

in the reviewed literature. As there are millions of users who are scattered all around 

the world, finding an optimal way to place and replicate the data related to them in a 

cost effective way while guaranteeing service level agreements is still a considerable 

challenge. We pursue two main objectives in our work. First, the bottom line is to 

keep the Pth percentile of individual access latencies lower than 250 ms. Considering 

the latency of all friends for all users makes our work significantly distinct from others 

using such as misleading average latency. There is a huge difference between average 

latencies and percentile latencies considered in this thesis. Averages are simple to 

understand and calculate, however, they can hide the truth. A Pth percentile tells us 
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the value greater than or equal to P% of our data. Please note, no one can guarantee 

the latency requirement for all users because of the users located in areas with no 

datacentre nearby. Second, based on achieving the above, the primary goal of our 

work is to cut the replication cost to a minimum without sacrificing the QoS, i.e. the 

user’s minimum latency requirement. 

Moreover, the main contribution of this thesis is to solve the dynamic data placement 

and replication problem for social networks. Cloud based data placement and 

replication in dynamic environments where users join, leave, move or change their 

friendships, data are added, removed and updated as needed, and datacentres are 

added and removed on the fly is an unsolved problem. All dynamic scenarios that may 

happen in a social network are handled in this thesis while the efficiency and 

effectiveness are also fulfilled over time. To the best of our knowledge, our work is 

the only comprehensive work considering all different dynamic scenarios that happen 

in the social network data placement and replication scenario. 

3.4 Key Research Questions 

The key research questions for this PhD research are summarised as follows. 

Given a dynamic social network with users scattered all around the world sharing 

huge and growing amount of data with each other, how can we carry out data 

placement and replication to minimise cost for the service provider while ensuring 

QoS expectations for users, such as latency, consistency, and availability? 

RQ 1: How do we optimally place the data and replicas to minimise replication costs 

but meet the latency requirements for all users? 

 How do we find the optimum number of replicas for every user? What is the 

best strategy to find the minimum number of replicas for every user so that this user 

and all his/her friends can access the data within the acceptable latency? 
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 How do we place the replicas in different datacentres? What is the best strategy 

to find out not only the minimum number of replicas but also the best datacentres 

to place them? 

 How do we redirect read and write requests to different datacentres in an initial 

static social network for users with different access frequencies and QoS 

requirements? Having the minimum number of replicas and their placement, how 

do we redirect the requests to the most suitable datacentres? 

RQ 2: Given the initial static data placement and replication in place, how do we 

adaptively update the social network system data placement and replication on the fly 

and synchronise data in a dynamic social network to minimise the cost while meeting 

the latency requirement for all users? 

 How do we adapt the placement and replication based on the changes in the 

system? Given the initial static data placement and replication, what is the best 

strategy to adapt the data placement and replication based on the dynamic changes 

in the network so that the latency requirement is always fulfilled with the minimum 

cost over time. 

 How do we synchronise the secondary replicas from the primary replicas? 

Finally, after finding the initial data placement and replication, redirecting the 

requests, and adapting the placement and replication based on the changes in the 

social network over time, we need to synchronise the secondary replicas with 

primary data. How and when to do such a synchronisation is our final research 

question. 

3.5 Summary 

In this chapter, based on a real world Facebook online social network application, the 

requirements of data placement and replication in social network applications are 

analysed and how cloud computing systems can fulfil these requirements is further 

discussed. These requirements include high availability and low latency for up to 99.9 

percentile of all the requests for all the users to access not only their own data but also 
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the data of all their friends. Then, the problems of online social network data placement 

and replication in the cloud, i.e. the high cost for storing, accessing, transferring, and 

synchronising replicas, are deliberated and therefore, the scope of this research is 

defined as cost effective data placement and replication for efficient access of social 

networks in the cloud. Based on the analysis, the research gaps are discussed and the 

detailed research questions of this thesis are presented as: 1) static data placement and 

replication in the cloud; which is the foundation for the next question, 2) dynamic data 

placement and replication in the cloud. To follow up the research questions discussed 

in this chapter, we present the preliminary work we conducted in Chapter 4, which 

leads to our comprehensive modelling and problem formulation in Chapter 5. Based 

on the problem formulation we further present our novel static and dynamic data 

placement and replication strategies in Chapters 6 and 7 respectively followed by the 

experiments and evaluations in Chapter 8.   
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Chapter 4  
Preliminary Work 

In this chapter, the preliminary work done in the field of static data placement and 

replication in the cloud is presented. During the first year of PhD, we investigated 

different existing data placement and replication approaches, and studied and 

evaluated various applicable datasets and cloud infrastructure compatible to our 

research problem. We formulated the problem, cost and latency model and proposed 

a novel Genetic Algorithm (GA) based strategy to find a near-optimal number of 

replicas for every user’s data and a near-optimal placement of replicas to minimise 

monetary cost while satisfying latency requirements for all individual users in a static 

case. Problems including how to optimally store and replicate huge social network 

data and how to distribute the requests to different datacentres are addressed using 

this strategy. Users’ number and location are fixed and the goal is to find a suitable 

number of replicas for every user and an effective placement of these replicas in order 

to fulfil the latency requirement while minimising the monetary cost for data storage. 

Simulation results on the SNAP Facebook dataset [92] show the effectiveness of the 

proposed strategy over existing approaches. Sections 4.1, 4.2, and 4.3 are based on a 

paper presented and published [93] in IEEE CLOUD 2016 conference.  

Section 4.1 introduces the preliminary problem formulation including the cost and 

latency models of social networks. Section 4.2 discusses the detailed genetic 

algorithm based strategy presented in this chapter. Section 4.3 demonstrates the 

simulation results and the evaluation. Limitations of our preliminary work are detailed 

in Section 4.4 and the later works to overcome these limitations are discussed in 

Section 4.5. Finally, the chapter is concluded with a brief summary in Section 4.6. 
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4.1 Problem Formulation 

As discussed earlier, the research problem addressed in this thesis is data placement 

and replication of social network services while optimising service provider’s 

monetary expenses in using resources of geo-distributed clouds and guaranteeing 

service level agreements such as latency for service users. In this preliminary work, we 

do not include the data transfer cost based on the assumption that data need to be 

transferred to the users regardless of where they are located, i.e. no extra data transfer 

cost is involved and it is reflected in latency. The data transfer cost is considered in the 

comprehensive data formulation which will be presented in Chapter 5. The data update 

cost is also not considered in this preliminary work because the system is assumed to 

be static here and handling updating of data will be described later, e.g. Chapter 7.  

Every user has a primary copy located in their primary datacentre, which is the nearest 

datacentre to their location. It is assumed that all users read their own data from their 

primary datacentre and every friend of them reads their data from their nearest 

datacentre which stores any secondary replicas of their data. It is also assumed that 

every write operation goes to the primary datacentre. There are m datacentres and n 

users, each with one set of data. 

The users and their collection of data stored in different datacentres are denoted 

respectively as: 

𝑈𝑠𝑒𝑟𝑠 = {1, 2, … , 𝑛} 

𝐷𝑎𝑡𝑎 = {𝑑𝑠1, 𝑑𝑠2, … , 𝑑𝑠𝑛} 

Datacentres in the system are denoted as: 

𝐷𝑎𝑡𝑎𝑐𝑒𝑛𝑡𝑟𝑒𝑠 = {1, 2, … , 𝑚} 

The solution space is a matrix S of size n×m as follows:  

𝑆𝑖𝑗 = {
1          𝐷𝑎𝑡𝑎 𝑜𝑓 𝑢𝑠𝑒𝑟 𝑖 𝑖𝑠 𝑠𝑡𝑜𝑟𝑒𝑑 𝑖𝑛 𝑑𝑎𝑡𝑎𝑐𝑒𝑛𝑡𝑒𝑟 𝑗
0                                                                    𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

           (4-1) 
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4.1.1 Cost Model 

Cost as used in this chapter is the cost for storing data in different datacentres. 

Considering n as the number of users, and ReplicaNumi as the number of replicas for 

user i, cost in the preliminary problem formulation is the total monetary cost of storing 

main copy and replicas of all users’ data in different datacentres for a specific duration 

and is calculated as follows: 

𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡($) = ∑ 𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐶𝑜𝑠𝑡𝑖
𝑛
𝑖=1                             (4-2) 

where 

𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐶𝑜𝑠𝑡𝑖 = 𝑈𝑛𝑖𝑡𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑃𝑟𝑖𝑐𝑒 × 𝑆𝑡𝑜𝑟𝑒𝑑𝐷𝑎𝑡𝑎𝑆𝑖𝑧𝑒𝑖 × (𝑅𝑒𝑝𝑙𝑖𝑐𝑎𝑁𝑢𝑚𝑖 + 1) 

The UnitStoragePrice is the price for storing one Gigabyte of data per month in a 

datacentre and StoredDataSizei is the data size for user i. Thus, the storage cost is the 

cost for storing user’s data and replicas for one month in different datacentres. 

4.1.2 Latency Model 

In the preliminary model, latency between users and datacentres is calculated using an 

approximation proposed in [82], which is based on distance. Every user has a primary 

datacentre that is the nearest datacentre to their location. It is assumed that every user 

has a latency of 20 ms with their primary datacentre and the latencies between the user 

and other datacentres are calculated based on (4-3) [82]: 

𝐿𝑎𝑡𝑒𝑛𝑐𝑦(𝑚𝑠) = {
20       𝑈𝑠𝑒𝑟 𝑎𝑛𝑑 𝑑𝑎𝑡𝑎𝑐𝑒𝑛𝑡𝑟𝑒 𝑎𝑟𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑟𝑒𝑔𝑖𝑜𝑛

0.02 × 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑘𝑚) + 5                               𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
         (4-3) 

Every user reads data from the nearest datacentre that has a copy of the data. Thus, the 

final latency for every user is the summation of the latency between them and their 

data and the latency between all their friends and the nearest secondary replicas to 

them. The targeted maximal average response delay per request is set to 150 ms and 

200 ms, since latency more than 200 ms will deteriorate the user experience 

significantly [82]1 . We can use alternative default latency to local datacentre and 

                                                             
1 Latency requirement in this chapter followed [81] as preliminary work. From Chapter 5 onwards, 250 ms is used as the 
latency requirement based on a research at Google [9]. 
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alternative coefficients for remote datacentres. We could also include time-of-day and 

other refinements that impact both latency and cost. 

4.1.3 Data Placement and Replication Problem Formulation 

We aim to minimise the cost while satisfying service level agreements, in our case 

primarily maximum permitted latency. We can also include other factors such as 

energy consumption (watts to store/retrieve/transmit), and reliability (retrieve/transmit 

fails). The problem using desired latency is formulated as follows: 

minimise: 

𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡 = 𝑆                 (4-4) 

Where 

𝑆 = ∑ 𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐶𝑜𝑠𝑡𝑖

𝑛

𝑖=1

 

is the cost for storing primary data and its secondary replicas, subject to: 

∑ 𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝑖
𝑛
𝑖=1 ≤ 𝐷𝑒𝑙𝑎𝑦                            (4-5) 

This constraint means that the latency for every user must be lower than the desired 

latency in order to ensure the latency requirement for every user. The latency is the 

latency for user i and all his/her friends to access his/her data. For every user i, we have 

the following constraints. 

∑ 𝑝𝑖𝑗 = 1                                      𝑚
𝑗=1 ∀𝑖 ∈ 𝑈𝑠𝑒𝑟𝑠                                                       (4-6) 

𝑝𝑖𝑗 + 𝑠𝑖𝑗 ≤ 1                                      ∀𝑖 ∈ 𝑈𝑠𝑒𝑟𝑠, ∀𝑗 ∈ 𝐷𝑎𝑡𝑎𝑐𝑒𝑛𝑡𝑟𝑒𝑠                       (4-7) 

∑ 𝑠𝑖𝑗 ≥ 𝑅𝑒𝑝𝑙𝑖𝑐𝑎𝑁𝑢𝑚𝑖               
𝑚
𝑗=1 ∀𝑖 ∈ 𝑈𝑠𝑒𝑟𝑠                                                       (4-8) 

In these constraints, pij and sij indicate existing primary and secondary replicas of user 

i’s data in datacentre j. Constraint (4-6) ensures every user has a single primary replica 

in all datacentres. Constraint (4-7) ensures that no primary and secondary replicas of 

the same user are co-located in a common datacentre. Finally, constraint (4-8) specifies 
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the minimum number of secondary replicas ReplicaNumi for every user i to ensure the 

data availability. 

4.2 Our Genetic Algorithm based Data Placement Strategy 

To minimise the monetary cost while guaranteeing latency requirement, we used a 

Genetic Algorithm (GA) to find the most suitable number of replicas and their 

placement for every user. Our GA is able to find solutions which could not be found 

by even complex rational strategies as it explores different random placements in order 

to find the best one. Our goal is to find a replication of a given set of users' data with 

minimum storage cost while guaranteeing that Pth percentile of individual latencies is 

less than the desirable latency, i.e. over P% of all operations are within the specified 

latency requirement.  

The data placement and replication problem has many decision variables due to the 

large number of social network users. Our GA based placement and replication strategy 

is proposed to find the most cost effective number of replicas for users’ data and their 

placement while guaranteeing latency requirement defined in service level agreement. 

GA is a search method often employed to find the exact or estimated solutions for 

optimisation and search problems. GA is a specific class of evolutionary algorithms 

inspired by evolutionary biology. In GA, every solution is represented with a string, 

also known as a chromosome, which follows the semantics defined by the encoding 

method. After the encoding phase, the candidate solutions, i.e., the initial population, 

are generated as the basic search space. In each generation, three basic GA operations, 

i.e., selection, crossover, and mutation, are conducted to emulate the process of 

evolution in nature. Finally, after the stopping condition is met, the chromosome with 

the best fitness value is returned, demonstrating the best solution found in the search 

space. This terminates the GA process [94]. 

An overview of our GA based social network data placement and replication strategy 

is presented in Algorithm 4-1. We have the social network graph of users and their 

connections, distance between different users and datacentres, and the desired latency 

requirement to calculate and compare the latency. Additionally, users’ data size and 
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the storage cost are used to determine the total cost. Latency and cost are calculated 

using the fitness function. To avoid violating latency by GA operations, after every 

crossover and mutation, latency is being checked. Primary data cannot be mutated as 

the primary data have to be stored in the user’s primary datacentre, the closest to their 

location. 

Algorithm 4-1. GA based data placement and replication pseudocode 

Inputs:  

Rate of crossover: rc 

Rate of mutation: rm 

Size of population: popsize 

Size of selected population: keep 

Number of iterations: epoch 

Outputs: 

Solution: S 

Algorithm 

// Initialisation 

1.  generate popsize feasible solutions randomly; 

2.  save them in the population pop; 

// Loop until the terminal condition 

3.  for i = 1 to epoch do 

// Crossover 

4.   for j = 1 to popsize-1 do 

5.    randomly select two solutions xa and xb from pop; 
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6.    generate xc and xd by two-point crossover from xa and xb under rate rc 

7.    if latency requirement is valid, save xc and xd to pool; 

8.     update newpop = pop + pool; 

9.   end for 

// Mutation 

10.  Len = size of newpop 

11.  for j = 1 to Len do 

12.   select a solution xj from newpop 

13.   mutate each bit of xj under rate rm and generate a new solution x’j 

14.   if latency requirement is valid, update xj with x’j in newpop; 

15.   end for 

16.  end for 

// Selection 

17.  using tournament selection, select keep solutions from newpop and save 

them in pop; 

// Returning the best solution 

18. return the best solution x in pop; 

 

Algorithm 4-1 is explained below: 

1. The rate of crossover (rc), rate of mutation (rm), size of population (popsize), 

size of selected population (keep), number of iterations (epoch) are retrieved 

as inputs. 

2. popsize feasible solutions are generated randomly and saved as the population 

(pop) (lines 1-3 in pseudocode). 
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For every iteration (epoch), steps 3-5 below are repeated until the termination condition 

is met: 

3. Crossover is applied to the popsize, two solutions xa and xb are randomly 

chosen, xc and xd are created by two-point crossover and the newpop is updated 

if the solution is valid (lines 4-9 in pseudocode). 

4. Mutation is applied to the random solution xj from newpop and it is updated if 

the mutated solution is valid (lines 10-16 in pseudocode). 

5. Tournament selection is used to select the best solutions (line 17 in 

pseudocode). 

Finally, the best solution (S) is returned as the solution set (line 18 in pseudocode) 

4.2.1 Initial Population Generation 

The strategy starts with the encoding of the users’ data replicas placement in different 

datacentres. Here, as depicted in Table 4-1, what we have employed is a two-

dimensional encoding where the first dimension denotes users’ ID as an indicator of 

users’ data and the second dimension denotes the ID of different datacentres. Matrix 

xij is initialised with random 1s and 0s showing whether user i’s data is stored in 

datacentre j or not respectively. 

Table 4-1. Problem encoding 

        DCs 

Users 
1 2 3 … m 

1 0 0 1 0 1 

2 0 1 1 1 1 

3 1 1 1 0 0 

…      

n 0 0 0 1 0 

 

The fitness function is considered as the cost of storing data replicas of all users in 

different datacentres. Hence, the fitness function is calculated as follows: 
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𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑆) = ∑ ∑ 𝑆𝑖𝑗 × 𝑈𝑛𝑖𝑡𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑃𝑟𝑖𝑐𝑒 × 𝑆𝑡𝑜𝑟𝑒𝑑𝐷𝑎𝑡𝑎𝑆𝑖𝑧𝑒𝑖
𝑚
𝑗=1

𝑛
𝑖=1             (4-9) 

A validation process where generated chromosomes are checked with desired latency 

is done during this step. The latency requirement is checked and the valid 

chromosomes are then kept and the invalid ones are discarded and replaced with newly 

generated chromosomes. 

The first genetic operation is selection, where tournament selection is used, which 

involves running several tournaments between a few chromosomes chosen at random 

from the population and the winner of each tournament is selected. The reason of using 

tournament selection is that it prevents very quick convergence same as rank selection 

while it is computationally more efficient, as there is no need to sort the whole 

population which is a potentially time consuming procedure [94]. 

4.2.2 Crossover Procedure 

The basic idea of the GA crossover operation is that a random crossover point is 

selected first and then the segments of parents are swapped at the selected point to 

produce new children. Thus, children inherit the features of both parents. For two 

random chromosomes, a two point crossover is used with a specific probability of 80%. 

An example of the crossover process is presented in Figure 4-1.   

 

Figure 4-1. Two point crossover used in our method 
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4.2.3 Mutation Procedure 

In GA based mutation, which is depicted in Figure 4-2, the stored user’s replica is 

mutated at a randomly selected cell of a chromosome. The mutation rate is set to a 

small probability rate such as 10% since mutation can easily destroy the correct 

topological order and result in invalid solutions.  

 

Figure 4-2. Mutation used in our method 

At the end of each generation, the chromosomes with the best fitness values of each 

generation are chosen and the children with the worst fitness value are removed from 

the considered population. The genetic evolution process repeats itself until the 

stopping condition is satisfied. Finally, the best solution is returned. 

4.3 Simulation Results 

Our new GA based data placement and replication strategy is generic and can be used 

in any social network application fitting our data placement and replication approach 

and social relationships graph. In this section, we demonstrate the simulation results 

and comparison of our benchmark with different placement and replication strategies. 

The SNAP (Stanford Network Analysis Project) real world Facebook dataset [92] was 

used to demonstrate how our algorithm finds an efficient data placement and 

replication with the minimised cost while satisfying the latency requirement. 
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4.3.1 Experimental Dataset and Settings 

SNAP is an undirected Facebook dataset with 4,039 users and 88,234 relationships 

which is used in the experiments. This dataset contains a social network graph of users 

IDs and the relations between them. Facebook data was collected from survey 

participants using their Facebook app. Two types of experiments were conducted: 

Section 4.3.2 evaluates the cost reduction of GA per iteration and its effectiveness 

while Section 4.3.3 shows the efficiency of our strategy comparing with other 

strategies. 

As we did not have the users’ information such as location in the introduced dataset, 

we generated random locations in the US for users based on their latitude and 

longitude. Moreover, 10 datacentres are assumed in the real locations of Facebook 

datacentres in Oregon, North Carolina, Altoona, Silicon Valley, Santa Clara, San Jose, 

San Francisco, Ashburn, Virginia, and Council Bluffs [95]. The nearest datacentre is 

chosen for every user as the primary datacentre. Number of users around each 

datacentre who choose this datacentre as their primary datacentre is shown in Figure 

4-3. The unit storage cost for data storage in all datacentres is considered as $0.125 per 

GB per month. This could be refined to use different values per datacentre if desired. 

 

Figure 4-3. Number of users located around different datacentres 

Based on [96], Facebook is collecting 500+ terabytes2 of people’s data every day and 

due to the 950 million population of Facebook and 550 million daily active users in 

                                                             
2 Since the preliminary work was conducted in 2015, the statistics for 2012 [94] was used. However, a later reference for 2016 
[8] is used from Chapter 5 onward. 
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2012 when this dataset was collected, on average, every active user stores 900 KB (500 

TB / 550 Million) information daily in a Facebook datacentre which is the amount of 

27 MB (900×30) monthly. This data size increases every month. We generated random 

sizes of data for users following a normal distribution with this average size as the 

mean. 

4.3.2 Evaluation of Cost Effectiveness 

To further explain the GA setting, chromosomes are considered as a matrix of n×m 

with n as the number of users and m as the number of datacentres. n is 4039 and m is 

10 in our experiments. Population size is considered as 30. Crossover with crossover 

rate of 0.8 and mutation by mutation rate of 0.1 are considered [97]. Selection is based 

on the tournament selection. In each iteration, half of the best parents and newly 

generated children are kept for the next iteration. Fitness function is considered as the 

cost of every solution as described before. Latency requirement is considered as a 

constraint and solutions which do not meet the latency requirement, are removed.  

 

Figure 4-4. Cost reduction per iteration using the genetic algorithm for different 

percentiles of a desired latency of 150ms 
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Figure 4-5. Cost reduction per iteration using the genetic algorithm for different 

percentiles of a desired latency of 200ms 

The termination condition is based on the number of iterations. 50 iterations were used 

as no more cost reduction was observed after 50 iterations. The cost reduction per 

iteration with different percentiles (50%-99%) of latencies (150 and 200 ms) fulfilled 

is depicted in Figure 4-4 and Figure 4-5. For instance, in Figure 4-5, the green line 

shows the cost reduction from the first iteration of GA data placement and replication 

until the final placement and replication while 90% of users have the latency less than 

200 ms for themselves and all their friends to access their own data. 

As an example, referring to Figure 4-5 with latency requirement of 90 percentile of 

latencies less than 200 ms, by considering the user size for all 4039 users and the unit 

storage cost as described previously, the initial cost resulted by the first iteration of GA 

is $66.633 with average number of replicas as 5. The minimum cost found by GA in 

the 50th iteration is $21.147 with an average replica number of 2. Moreover, the 90th 

percentile latencies for these two placements are 120.7639 ms and 199.9593 ms 

respectively which are both acceptable, based on the latency requirement of 200 ms. 

Thus, the cost reduction after 50 iterations for 4039 users with average data size of 27 

MB is $45.486. Time for running 50 iterations is 705.5696 minutes. We used a general 

purpose EC2 instance with vCPU=2, ECU=6.5, and Memory (GB) = 8 for our 
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simulations which costed $0.12 per hour. Thus, 705.5696 minutes, i.e. 11.75 hours, for 

running GA costs $1.41. Hence, the total cost reduction of $45.486 minus the EC2 

instance cost of $1.41 would be $44.076 for 4039 users. This means the cost reduction 

percentage of around 65% which could thus be millions of dollars per month for a 

social network application with the user size of Facebook. 

4.3.3 Evaluation of Different Strategies 

There are different strategies to place and replicate the described Facebook users’ data 

in different datacentres that were simulated and compared with our strategy as follows: 

 GA: The first strategy is our GA based algorithm in which one copy of data is 

stored in the nearest datacentre. Genetic algorithm, as one of the evolutionary 

algorithms, is used to find the near optimal number of replicas and the near 

optimal placement for them. 

 Random: Random placement and replication of data in different datacentres. 

The minimum number of replicas is 1 because we should have one primary 

copy of data and the maximum is 10 as we have 10 datacentres.  

 Random 1: Placing one copy of data in a random datacentre. 

 Random 2: Placing two copies of data in two random datacentres. 

 Random 3: Placing three copies of data in three random datacentres. 

 Full: Full replication of every data in all datacentres. (This method is claimed 

in [37] as the data placement and replication strategy used for Facebook) 

Datacentres are sorted based on the distance for every user in the next 3 strategies. 

Because long distance causes high latency, every user prefers to have a copy of data in 

his/her nearest datacentre.  

 Distance 1: One copy of data is stored in the most preferred datacentre of every 

user. 

 Distance 2: Two copies of data are stored in the first and second preferred 

datacentres. 
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 Distance 3: Three copies of data are stored in the three most preferred 

datacentres. 

Datacentres are sorted based on both distance as list1 and number of friends as list2 for 

every user in the next two strategies. Users prefer to have copies of data not only in 

their nearest datacentres but also in the datacentres containing most of their friends. 

 Friends 1: One copy of data is stored in the most preferred datacentre in list1 

and one more copy is stored in the most preferred datacentre in list2. 

 Friends 2: One copy of data is stored in the most preferred datacentre in list1 

and two more copies are stored in the two most preferred datacentres in list2. 

In order to compare the results of these strategies, different settings are assumed. These 

settings are based on the service level agreements on the latency requirement for users 

and their friends to access their data. Latency requirement is defined as: “Pth percentile 

latency must be lower than the desired latency” which means that over P percent of the 

latencies are less than the desirable latency. Requirements are assumed as 50%, 60%, 

70%, 80%, 90%, and 99% of the latencies are less than 150 ms and 200 ms.  

Based on Section 4.3.2, no more significant cost reduction was seen after 20 iterations. 

Therefore, for the purpose of time efficiency in repeating the experiments five times 

and comparing the average results, 20 iterations were used for GA in this step. As the 

percentage, more than 90% makes much more sense in most applications [91], the 

results for 99.99% latencies lower than 200 ms are depicted in Figure 4-6. We used 

99.99% to ensure that nearly all of the users can access their own data and all their 

friends in the desirable latency. 

As shown in Figure 4-6, the only strategy, except costly full replication, that can 

guarantee the latency requirement of “99.99% latencies lower than 200 ms” with a 

reasonable cost is GA which shows the outstanding performance of our strategy 

comparing with other strategies. Therefore, our GA based strategy can find the 

minimised cost while guaranteeing the latency requirement for nearly all users. 
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Figure 4-6. Comparison of different strategies with latency requirement of 99.99% 

lower than 200 ms 

4.4 Limitations of the Preliminary Work 

There are some limitations in our GA based strategy formulated in Section 4.1, 

presented in Section 4.2 and evaluated in 4.3. These limitations are listed below: 

1. The transfer and update cost are ignored in the preliminary work. However, 

transferring data from different datacentres in a social network with millions of 

connections is significant and cannot be ignored. Moreover, replicas need to be 

synchronised with each other which lead to an undeniable synchronisation and 

updating cost.  

2. The latency model is not very general. For the GA based strategy problem 

formulation, the latency is derived using the distance between user and 

different datacentres instead of considering real latencies between user and 

different datacentres. Moreover, datacentres are arbitrary considered to be in 

the locations of Facebook datacenters instead of considering real cloud 

datacentres.    
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3. The activeness levels and access frequency rates of the friends are ignored. In 

the preliminary work, we did not differentiate between different friends and the 

decision for replicating a user’s data in a datacentre is based on the number of 

friends in that datacentre no matter how frequently those friends access this 

user’s data. 

4. Even though our GA based strategy can find good results, it has serious 

scalability problem as it takes a very long time for convergence. For getting 

good results for a large dataset, we need to have a decent sized population and 

many generations, which can take days for finding the solution. Based on the 

scalability problem in using GA, a Graph Partitioning (GP) strategy based on 

the users’ locations and connections was also investigated. For a large scale 

dataset with millions of users, this algorithm consists of a partitioning step 

which is followed by a placement and replication step. During the partitioning 

step, the social network graph is partitioned into different groups of inter-

connected friends and the placement and replication strategy is applied to each 

partition. Our GP based strategy for pre-processing is detailed in Appendix B. 

However, The GP strategy needs to be followed by an effective and efficient 

data placement and replication strategy and based on the efficiency problems, 

GA based data placement and replication is not the best and it could be 

improved. 

5. Dynamic scenarios happening in a social network service are not considered in 

the preliminary work. A static social network is considered where the users, 

friendships, and datacenters are fixed and do not change over time.  

6. We used the SNAP Facebook dataset for experiments and based on the limited 

size of the users, it is assumed that they are located in the US and as mentioned 

earlier, real locations of Facebook datacentres in the US are considered as the 

datacentres in the system. However, this small dataset and the users and 

datacentres that are assumed to be in the US do not reflect the reality. 
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4.5 Later Works 

We have done some later works as presented in the rest of this thesis in order to 

overcome the limitations related to the preliminary work discussed in Section 4.4. The 

later works are summarised below. 

1. The cost model is improved in order to include the transfer cost between 

different datacentres and update cost to synchronise different replicas that were 

ignored in the preliminary work. Cost of requesting data and transferring them 

from different datacentres as well as updating replicas based on the addition, 

deletion and updating of data are considered in the adapted cost model.  

2. The latency model is extended to cover the latency related to different requests 

from all friends. Real latencies between users in different geographical 

locations and Amazon cloud datacentres are considered in the later works and 

the latency model is adapted accordingly.  

3. Different users have different levels of activeness and similarly their friends 

have various frequencies of accessing, updating and adding to their data. 

Moreover, different friends have different data access frequencies based on 

their relationships, common interests, and their locations compared to their 

friends. This consideration makes the data placement and replication process 

dependent on the latest workload of the system and eliminates the necessity to 

store data in locations with low access frequencies. Therefore, activeness levels 

of users and access frequencies of their friends are also taken into account in 

our next steps. We aim to guarantee the latency requirement for Pth percentile 

of all individual requests between all friends, i.e. over P% of all operations are 

within the specified latency requirement. Activeness level of the users is based 

on how many times they check their accounts per month. We use the 

percentages of different Facebook users and the number of times they check 

their accounts daily reported in [98]. The extended problem formulation based 

on the adapted cost, latency and access frequencies is presented in Chapter 5. 

4. The scalability and efficiency issues existed in using GA for a large scale data 

placement and replication problem led us to analyse and solve the problem 
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more efficiently. Consequently, our problem which includes finding the 

minimum number of replicas for every user’s data and finding the suitable 

datacentres to store these replicas in order to guarantee the latency requirement 

for all of his/her friends is modelled as a set cover problem and a greedy 

algorithm is presented to solve it. Therefore, we can model and map the 

complex problem of finding a cost effective data placement and replication 

strategy while fulfilling the latency requirement for individual requests to the 

well-known set cover problem. A static data placement and replication strategy 

that overcomes these issues is presented in Chapter 6. 

5. Furthermore, social networks have a dynamic and growing nature due to the 

users’ mobility and dynamic activities. All different dynamic scenarios 

happening in a social network are considered in the later works and a dynamic 

data placement and replication is presented to adapt the data placement and 

replication based on these changes. A dynamic data placement and replication 

strategy that adapts the static solution as new users come into the system and 

as the popularity and links of users evolve in a real time social network is 

presented in Chapter 7.  

6. We have conducted further experiments on large Facebook [11] and location 

based Gowala [12] datasets with real Amazon cloud datacentres located all 

around the world. The experimental results with the new static and dynamic 

strategies are presented in Chapter 8. 

An overall research framework, which clearly indicates the relationship and difference 

between the problems studied in this chapter as preliminary work and the later works 

proposed in Chapters 5-7 is depicted in Figure 4-7. 

In Figure 4-7, users and social network providers have their own individual 

requirements and objectives. Users, connections, users’ data and datacentres’ 

information are given to the framework as inputs. There are two steps in the data 

placement and replication framework; first, the problem needs to be formulated; and 

then a data placement and replication strategy is required to find the optimal solution 

for the formulated problem. Initially, a preliminary problem formulation and a GA 

based data placement and replication are presented in Chapter 4 to solve the problem. 

Based on the limitations discussed in Section 4.4, an extended set cover based problem 
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formulation is presented in Chapter 5, which is used in Chapter 6 to solve the static 

data placement and replication problem and make the foundation to eventually being 

used in Chapter 7 to solve the dynamic data placement and replication problem. 

 

 

Figure 4-7. Framework of our data placement and replication strategies 

4.6 Summary 

The preliminary work to solve our problem of data placement and replication in the 

cloud is introduced in this chapter. In Section 4.1, the preliminary problem formulation 

is presented while the novel use of a genetic algorithm for optimising social network 

data placement and replication in the cloud datacentres is detailed in Section 4.2. Our 

proposed strategy is compared with different placement strategies in Section 4.3, and 

based on the results, it can find the most affordable placement strategy while 

guaranteeing latency requirement for 99.99% of online social network users. However, 

while the results of the preliminary work were promising, there are some serious 
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problems pointed out in Section 4.4, which led to our final techniques presented in 

Chapters 5-7 and evaluated in Chapter 8, as addressed in Section 4.5. 
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Chapter 5  
Problem Formulation 

In this chapter, we present an extended formulation for our problem of social network 

data placement and replication in the cloud. An initial problem formulation was 

presented in Chapter 4 for our GA based preliminary work, which was based on 

arbitrary settings. However, real Google latency requirement, Facebook settings, and 

Amazon cloud datacentres are considered in the extended formulation presented in 

this chapter. The formulation presented in this Chapter, will be used in Chapters 6 and 

7 and will be experimented in Chapter 8. Chapters 5-8 are based on a paper submitted 

[99] to the Journal of Parallel and Distributed Computing (JPDC). Section 5.1 gives 

an overview of social network data placement and replication in the cloud. Sections 

5.2 and 5.3 further express the evaluation model of this research in detail including 

the efficiency and effectiveness models of the strategy respectively. Finally, the 

chapter is concluded with a brief summary in Section 5.4. 

5.1 Data Placement and Replication Formulation 

5.1.1 Problem Statement 

We address the research problem of dynamic data placement and replication in social 

networks, while minimising monetary expenses incurred in using resources of geo-

distributed clouds and guaranteeing social network users’ requirements, i.e., latency. 

We handle update and adaptation of the data placement and replication based on the 

dynamic environment of social networks.  

In order to place and replicate data dynamically, we need to find an initial static data 

placement and replication. In this initial stage, we assume the data, users, connections, 

access frequencies, and datacentres are fixed and we find the data placement and 
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replication for the initial snapshot of the dataset. We then use this initial placement and 

replication of data as a foundation for the dynamic data placement and replication as 

the social network changes over time. Our initial system is static with a rigid foundation 

where only the initial number of replicas and their placement are set. For every user, 

we create an initial latency matrix of all their friends from all different datacentres and 

formulate the problem as a set cover problem to find the initial placement of data.  

Next, we update the latency matrix of all users based on all changes in the social 

network and use dynamic set cover to adapt the placement based on these changes over 

time. The objective is to find and keep the most cost effective placement of data 

replicas of each user in different datacentres so that Pth percentile of individual requests 

from all friends of the user has the latency requirement fulfilled over time. Having the 

Pth percentile of latencies guarantees P percentage of the total requests have the latency 

no more than the acceptable latency. 

5.1.2 Problem Domain 

Our goal is to produce a strategy to optimally place data of every user into different 

cloud datacentres with different prices and proximities to his/her friends and send data 

requests to the datacentres such that the acceptable latency for all friends at the lowest 

cost can be achieved. For every user we need to find the delay matrix of all his/her 

friends from all datacentres and initially formulate the problem as a set cover problem.  

The set of n users and the set of data assigned to them in the social network are denoted 

as Users = {1, 2, …, n} and Data = {ds1, ds2, …, dsn}. 

The set of m different datacentres in the cloud environment is represented as 

Datacentres = {1, 2, …, m}.  

Users have relationships with each other, which are shown as a matrix of relationships 

with the rows as users and the columns as friends.  

Connections are denoted as Connections = {1, 2, …, c}. 

Every element is assigned to a row in the matrix of relationship which refers to a 

connection between a user and a friend.  
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Our overall data placement and replication problem is divided to two stages: static 

and dynamic placements, which are described in more detail in Section 5.1.3 and 

Section 5.1.4 respectively. Time is modelled as equal time periods ts; a static 

placement is used initially and the dynamic data placement and replication is applied 

during different time periods to adapt the current placement based on the changes in 

the social network.  

5.1.3 Static Data Placement and Replication 

We formulate the initial static data placement and replication problem as a set cover 

problem. Latency between users and different datacentres (DCs) is denoted as matrix 

L of size n×m: 

∀𝑖 ∈ 𝑈𝑠𝑒𝑟𝑠, ∀𝑗 ∈ 𝐷𝑎𝑡𝑎𝑐𝑒𝑛𝑡𝑒𝑟𝑠 

𝐿𝑖𝑗 = 𝑇ℎ𝑒 𝑑𝑒𝑙𝑎𝑦 𝑜𝑓 𝑢𝑠𝑒𝑟 𝑖 𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝐷𝐶 𝑗                                                         (5-1) 

For every user i, we find the number of friends FriendsNumi and let L’ present the 

latency of all his/her friends to access all datacentres which is a matrix of 

FriendsNumi×m. 

∀𝑖 ∈ 𝑈𝑠𝑒𝑟𝑠, ∀𝑗 ∈ 𝐷𝑎𝑡𝑎𝑐𝑒𝑛𝑡𝑒𝑟𝑠, ∀𝑘 ∈ 𝐹𝑟𝑖𝑒𝑛𝑑𝑠𝑁𝑢𝑚𝑖 

𝐿’𝑖𝑗𝑘 = 𝑇ℎ𝑒 𝑑𝑒𝑙𝑎𝑦 𝑜𝑓 𝑓𝑟𝑖𝑒𝑛𝑑 𝑘 𝑜𝑓 𝑢𝑠𝑒𝑟 𝑖 𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝐷𝐶 𝑗                                 (5-2) 

Finally, for every user, we create the delay matrix D of size FriendsNumi×m for all 

friends of this user. For a given latency requirement, e.g. Pth percentile no more than 

Delay, all elements in the delay matrix are compared with (P/100)×Delay.  

∀𝑖 ∈ 𝑈𝑠𝑒𝑟𝑠, ∀𝑗 ∈ 𝐷𝑎𝑡𝑎𝑐𝑒𝑛𝑡𝑟𝑒𝑠, ∀𝑘 ∈ 𝐹𝑟𝑖𝑒𝑛𝑑𝑠𝑁𝑢𝑚𝑖 

𝐷𝑖𝑗𝑘 = {
1               𝑖𝑓 𝐿𝑖𝑗𝑘  𝑖𝑠 𝑙𝑒𝑠𝑠 𝑡ℎ𝑎𝑛 (

𝑃

100
) × 𝐷𝑒𝑙𝑎𝑦

0                                                          𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                           (5-3) 

In our problem domain, for every user i, we have a set of elements Ui = {Ui1, …, 

UiFriendsNumi}, i.e. list of the friends for user i and a set of the subsets of Ui as Si = {Si1, 

..., Sim}, i.e. to store the data of user i in any datacentres 1 to m. Every element in Si is 
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considered as a subset of the elements in Ui because by replicating the data of user i in 

every datacentre in Si, a subset of the friends can have the latency requirement fulfilled.  

Our goal is to find a subset of Si for user i by which all friends of this user can access 

his/her data for Pth percentile of their requests with latencies no more than the 

acceptable latency. Therefore, our strategy is to find the minimum number of columns, 

i.e. datacentres in delay matrix Dijk that have the elements with value of 1 covering all 

the rows, i.e. friends. This problem equals to the “Set Cover Problem” which is NP-

complete [100].  

In the set cover problem, we are given a universe Ui for every user i, i.e. list of the 

friends for every user in our problem, such that |Ui|= FriendsNumi, i.e. number of all 

friends for user i, and sets S1, . . ., Sj ⊆ U, i.e. placement of replicas in all different 

datacentres which guarantees the latency requirement for a subset of the friends. A set 

cover is a collection S, i.e. the solution set in our problem and includes some of the sets 

from S1, . . ., Sj whose union covers the entire universe U.  

Formally, S is a set cover if ⋃ 𝑆𝑖 = 𝑈𝑆𝑖∈𝑆 . We would like to minimise |S|. In order to 

minimise |S|, a weight is defined, i.e. the storage cost of one replica per request in our 

problem, and is calculated by dividing the storage price of a datacentre to the number 

of requests made through the datacentre. 

Therefore, the solution space is as follows: 

∀𝑖 ∈ 𝑈𝑠𝑒𝑟𝑠, ∀𝑗 ∈ 𝐷𝑎𝑡𝑎𝑐𝑒𝑛𝑡𝑟𝑒𝑠  

𝑆𝑖𝑗 = {
1   𝐷𝑎𝑡𝑎 𝑜𝑓 𝑢𝑠𝑒𝑟 𝑖 𝑖𝑠 𝑠𝑡𝑜𝑟𝑒𝑑 𝑖𝑛 𝑑𝑎𝑡𝑎𝑐𝑒𝑛𝑡𝑟𝑒 𝑗
0                                                             𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

           (5-4) 

∑ 𝑆𝑖𝑗 ≥ 𝑀𝑖𝑛𝑅𝑒𝑝𝑙𝑖𝑐𝑎𝑖                ∀𝑖 ∈ 𝑈𝑠𝑒𝑟𝑠𝑚
𝑗=1             (5-5) 

MinReplica is set to 2 in order to ensure the availability of data for all users. In a cloud 

environment, maintaining high data availability is an important issue [36]. For every 

user i, if the final optimal number of replicas ReplicaNumi is less than the MinReplicai, 

(MinReplicai-ReplicaNumi), i.e. 1 extra replica will be simply placed in user i’s nearest 

datacentre that does not hold any replica of this user’s data in order to ensure their 
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availability. Finally, requests from different friends need to be routed to suitable 

replicas. We create a replica access table for every user in which requests are accessed 

from the nearest datacentre holding any replica of the requested data. 

Our static strategy finds the most affordable data placement and replication strategy, 

while guaranteeing the latency requirement for static social networks. However, it is 

not practical in dynamic social networks and therefore the static solution is used as an 

initial foundation for our dynamic data placement and replication strategy addressed 

next. 

5.1.4 Dynamic Data Placement and Replication 

After generating the initial placement of replicas for the social network using our static 

strategy, the next step is to adapt the data placement and replication based on the 

changes in the social network in an ongoing fashion so that we can have our key latency 

requirement fulfilled with minimum cost over time. Sets of Data, Users, Datacentres, 

and Connections are updated once there is a change in any of these sets such as a data 

item is added/deleted/updated, a friendship is created/broken, a user has joined/left, or 

a datacentre is added/removed. Any update in these sets updates the FriendsNumi, the 

delay matrix D and consequently the set of elements Ui = {Ui1, …, UiFriendsNumi} and 

the subsets of Ui as Si = {Si1, ..., Sim}.  

Our problem is a fully dynamic set cover problem [101] in which for every user, not 

only the subset of the universe, S, changes but also the universe itself, U, changes over 

time. Each update inserts or deletes an element, and the algorithm has to change the 

solution to restore its feasibility and approximation. In our domain, this dynamic set 

cover strategy is applied to different users, who also change over time, and users are 

recognised by location, which is dynamic as well. Notations used in this paper are 

shown in Appendix C. 

Efficiency and effectiveness objectives are modelled in Sections 5.2 and 5.3. At the 

end of different time periods, by having the final number of replicas, their locations, 

and the replica access table, the final latency and cost which are modelled in Sections 

5.2.1 and 5.3.1 can be calculated.  
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5.2 Efficiency Calculation 

Latency and time overhead are defined here, are utilised in Chapter 6 and Chapter 7, 

and are evaluated in Chapter 8. Latency is the time for users to access data and it is 

utilised in both our static and dynamic strategies. Time overhead is defined as (1) the 

overall time for our static strategy to find the best solution and (2) the update time 

taken for our dynamic strategy to adapt the solution. 

5.2.1 Latency 

In this research, latency between users and datacentres is determined by using the 

actual latency of real end users in different locations all around the world to access 

different cloud datacentres. Given a placement of data in different datacentres, every 

user accesses data from the nearest datacentre that holds a replica of the data. Thus, the 

final latency for every user is Pth percentile of latencies of all requests from all friends 

to access this user’s data. As the percentage of more than 90% makes much more sense 

in most applications [91], requirements are set as 90%, 95%, 99% and 99.9% of the 

latencies of no more than 250 ms, based on a research at Google [10] rather than the 

arbitrary latency of 200 ms which was considered as the threshold for our preliminary 

work in Chapter 4. The goal is to have Pth percentile of individual latencies (for all 

users and all their friends) of no more than the acceptable latency, i.e. Delay: 

𝑃𝑡ℎ(𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝑟(𝑡)) ≤ 𝐷𝑒𝑙𝑎𝑦                                                                                      (5-6) 

where 𝑟 = 1, … , ∑ ∑ 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑁𝑢𝑚𝑖𝑗
𝐹𝑟𝑖𝑒𝑛𝑑𝑠𝑁𝑢𝑚𝑖
𝑗=1

𝑛
𝑖=1 (𝑡) 

The latency of request r in time period ts is the time for the friend sending a request to 

access the data from the nearest datacentre containing the replica of the requested data. 

Different users have friends with different access frequencies, i.e., the number of times 

they access this user’s data. Access frequencies of friend k of user i in time period ts is 

shown by RequestNumik(ts). The total latency for every user is affected more by the 

friends who access this user’s data more frequently. 
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5.2.2 Time Overhead 

On one hand, we need to ensure the latency requirement for users. On the other hand, 

we should not jeopardise the time it takes for our strategy to solve the problem. The 

amount of time taken to find the initial solution S0 and update the solution St-1 to St is 

measured in order to model the time overhead. We use greedy and dynamic greedy 

algorithms with polynomial time approximation. The time complexity of static and 

dynamic strategies are described in Chapter 6 and Chapter 7 respectively and evaluated 

in Chapter 8.  

5.3 Effectiveness Calculation 

To ensure the effectiveness of the final solution, cost, competitive ratio and recourse 

are defined as effectiveness measures, are utilised in Chapter 6 and Chapter 7, and are 

evaluated in Chapter 8. Cost is the rate for storing data replicas, requesting them, 

transferring them from different datacentres, and finally synchronising different 

replicas. Competitive ratio is the worst-case ratio between the cost of our dynamic 

strategy and the theoretical optimal strategy. Recourse is the number of replicas added 

or dropped from the solution. Cost is utilised for both our static and dynamic strategies 

while competitive ratio and recourse are defined and used for our dynamic strategy. 

5.3.1 Cost 

With n users, the cost in time period ts is the total monetary cost of storing replicas of 

all users’ data in different datacentres during this time period, requesting and 

transferring all users’ and friends’ data replicas from different datacentres, and 

synchronising different replicas from the primary replica for all the users. The total 

cost over time is calculated as follows: 

𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡($) = ∫ ∑ (𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐶𝑜𝑠𝑡𝑖(𝑡𝑠) + 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝐶𝑜𝑠𝑡𝑖(𝑡𝑠) +𝑛
𝑖=1

𝑇

𝑡𝑠=1

𝑈𝑝𝑑𝑎𝑡𝑒𝐶𝑜𝑠𝑡𝑖(𝑡𝑠)) × 𝑑𝑡                                                                                         (5-7) 

where 

𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐶𝑜𝑠𝑡𝑖(𝑡𝑠) = ∑ 𝑆𝑖𝑗 × (𝑈𝑛𝑖𝑡𝑊𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑃𝑟𝑖𝑐𝑒𝑗(𝑡𝑠) +𝑚
𝑗=1
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𝑈𝑛𝑖𝑡𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑃𝑟𝑖𝑐𝑒𝑗(𝑡𝑠) × 𝑆𝑡𝑜𝑟𝑒𝑑𝐷𝑎𝑡𝑎𝑆𝑖𝑧𝑒𝑖(𝑡𝑠)                                                (5-8) 

UnitWRequestPricej(ts) is the price in time period ts for the write request in datacentre 

j. UnitStoragePricej(ts) is the price for storing one GB of data at the end of time period 

ts in datacentre j and StoredDataSizei(ts) is the data size for user i at the end of time 

period ts. Therefore, the storage cost is the cost for requesting to write and store user’s 

data and replicas in different datacentres during a time period: 

𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝐶𝑜𝑠𝑡𝑖(𝑡𝑠) = ∑ (𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑁𝑢𝑚𝑖𝑘(𝑡𝑠) ×
𝐹𝑟𝑖𝑒𝑛𝑑𝑠𝑁𝑢𝑚𝑖
𝑘=1

(𝑈𝑛𝑖𝑡𝑅𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑃𝑟𝑖𝑐𝑒𝑅𝑇𝑖𝑘
(𝑡𝑠) + 𝑈𝑛𝑖𝑡𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑃𝑟𝑖𝑐𝑒𝑅𝑇𝑖𝑘

(𝑡𝑠) ×

𝑆𝑡𝑜𝑟𝑒𝑑𝐷𝑎𝑡𝑎𝑆𝑖𝑧𝑒𝑖(𝑡𝑠))) 
                                                                                        

(5-9) 

UnitRRequestPricej(ts) is the price in time period ts for the read request in datacentre 

j. UnitTransferPricej(ts) is the price for transferring one GB of data from datacentre j 

in time period ts. Moreover, RT is the replica access table and RTik shows the 

datacentre from where friend k reads the data of user i. Thus, the transfer cost is the 

cost for requesting and transferring users’ data and replicas from different datacentres 

during one time period. 

𝑈𝑝𝑑𝑎𝑡𝑒𝐶𝑜𝑠𝑡𝑖(𝑡𝑠) = 𝑈𝑛𝑖𝑡𝑅𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑃𝑟𝑖𝑐𝑒𝐷𝐶𝑚𝑎𝑖𝑛𝑖
(𝑡𝑠) +

𝑈𝑛𝑖𝑡𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑃𝑟𝑖𝑐𝑒𝐷𝐶𝑚𝑎𝑖𝑛𝑖
(𝑡𝑠) × 𝑆𝑡𝑜𝑟𝑒𝑑𝐷𝑎𝑡𝑎𝑆𝑖𝑧𝑒𝑖(𝑡𝑠) + ∑ 𝑆𝑖𝑗 ×𝑚

𝑗=1,𝑗≠𝐷𝐶𝑚𝑎𝑖𝑛𝑖

(𝑈𝑛𝑖𝑡𝑊𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑃𝑟𝑖𝑐𝑒𝑗(𝑡𝑠) + 𝑈𝑛𝑖𝑡𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑃𝑟𝑖𝑐𝑒𝑗(𝑡𝑠) ×

(𝑆𝑡𝑜𝑟𝑒𝑑𝐷𝑎𝑡𝑎𝑆𝑖𝑧𝑒𝑖(𝑡𝑠) − 𝑆𝑡𝑜𝑟𝑒𝑑𝐷𝑎𝑡𝑎𝑆𝑖𝑧𝑒𝑖(𝑡𝑠 − 1))                                        (5-10) 

DCmain_i is the datacentre where the primary replica of user i is located, i.e., primary 

datacentre for user i. StoredDataSizei(ts-1) is the data size for user i at the end of time 

period ts-1 or at the beginning of time period ts. Consequently, the update cost is the 

cost for synchronising users’ replicas from their primary replicas at the end of a time 

period. More specifically, the synchronisation cost includes the cost for requesting 

and transferring users’ primary replicas from their primary datacentres and requesting 

to write and store user’s new data in different datacentres. Finally, the total cost is the 

summation of the storage cost, transfer cost and update cost during different time 

periods. For the initial static data placement and replication, as there is no 

synchronisation required and so the update cost is not applicable. 
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5.3.2 Competitive Ratio 

Dynamic algorithms are studied from the viewpoint of competitive analysis in [102, 

103]. The competitive ratio of a dynamic algorithm for an optimisation problem is 

defined as the approximation ratio achieved by the algorithm, that is, the worst-case 

ratio between the cost of the solution found by the algorithm and the cost of an optimal 

solution. The greedy algorithm is proved to be an O(log(n))-approximation algorithm 

for the set cover problem [103], thus the solution of this algorithm can be no more 

than log(n) times worse than the optimal solution in the worst case. The optimal 

solution is considered as log(n)×(static solution).  

5.3.3 Recourse 

The number of sets which are added or dropped from a set cover as a function of the 

length of the input sequence over the course of a dynamic algorithm, is defined as 

“recourse” is in [101]. A dynamic algorithm is called -competitive with r recourse if 

at every time period ts, solution St has the total cost at most .Optts, and the total 

recourse in the first ts time periods is at most r.ts. For r worst-case recourse, the total 

number of sets that are dropped at each time period cannot be more than r. The 

recourse of our strategy is also evaluated in Chapter 8. 

5.4 Summary 

In this chapter, the problem of social network data placement and replication in the 

cloud is introduced and formulated by precisely describing the concept of static and 

dynamic social network data placement and replication in the cloud. Then, to evaluate 

the final data placement and replication in the cloud, the efficiency and effectiveness 

of both static and dynamic strategies, i.e. latency, time overhead, cost, competitive 

ratio, and recourse are introduced and modelled. Latency, time overhead and cost will 

be utilised and evaluated for both our static and dynamic strategies. However, 

competitive ratio and recourse will specifically be used and evaluated for our dynamic 

data placement and replication strategy. 
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Chapter 6  
Static Data Placement and 

Replication Strategy 

In this chapter, we present our static data placement and replication strategy in the 

cloud that forms the foundation as initialisation for ongoing dynamic data placement 

and replication strategy, which will be presented in Chapter 7. As discussed in Chapter 

5, based on the scalability issues we faced during our preliminary work presented in 

Chapter 4, the concept of set cover is used to optimise the cost of data placement and 

replication in social network services with inter-connected data items. In this Chapter, 

a greedy algorithm [103], which is the optimal solution for set cover problem [104], is 

used to solve the static social network data placement and replication problem which 

is formulated as a set cover problem in Chapter 5. Our static strategy is generic and 

can be used in any social network application fitting our data placement and replication 

approach. Our strategy is presented in detail in Section 6.1 with a comprehensive time 

complexity analysis in Section 6.2. Finally, the chapter is concluded with a brief 

summary in Section 6.3. 

6.1 Our Data Placement and Replication Strategy 

We use a greedy algorithm to solve our set cover based static data placement and 

replication problem. Our greedy algorithm is able to find the minimum number of 

appropriate datacentres for every user that by replicating data in them, it is possible to 

have the latency requirement fulfilled for this user and all his/her friends. We will use 

this strategy as the initialisation for our dynamic data placement and replication 

strategy, which is presented in Chapter 7. Greedy algorithm is one of the most effective 
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heuristic algorithms to solve the set cover problem [104]. It has been shown and proved 

to be an O(log(n))-approximation algorithm for the set cover problem where n is the 

number of elements, i.e. friends for every user in our problem [103]. An approximation 

factor of log(n) for this algorithm indicates that the solution of this algorithm can only 

be log(n) times worse than the optimal solution in the worst case. As mentioned in 

[104], the approximation factor of log(n) cannot be beaten by any polynomial-time 

algorithm (under standard complexity assumptions). In this sense, the greedy algorithm 

is optimal for the set cover problem. 

Primal-dual algorithm is an alternative algorithm, which is often being used to solve 

the set cover problem, and in essence it can be viewed as greedy heuristic [105]. We 

have also implemented the primal-dual algorithm to solve our static data placement 

and replication problem. However, our experimental results show that the greedy 

algorithm performs slightly better than the primal-dual algorithm in our case. 

Furthermore, our greedy based strategy is more efficient in terms of running time. 

Hence, the overall results for the greedy algorithm is better than the primal dual 

algorithm for our problem domain. 

Greedy algorithm iteratively picks the most cost-effective set that contains the largest 

number of uncovered elements in each stage, and removes the covered elements, until 

all elements are covered. Let I be the set of elements already covered at the beginning 

of an iteration. During this iteration, let us define the cost effectiveness of a set S to be 

the average cost at which it covers new elements, i.e., Cost(S)/|S−I|. The weight of an 

element is the average cost at which it is covered. Equivalently, when a set S is picked, 

we can think of its cost being distributed equally among the new elements covered to 

set their weights [106]. In this Section, we describe our novel data placement and 

replication strategy followed by the analysis of its time complexity in the next Section. 

In our strategy, for every user i we find the set Si, i.e. the placement of user i’s data in 

different datacentres. Weight of every solution in greedy algorithm is considered as 

the storage cost of replicas in different datacentres divided by the number of requests 

being accessed within the acceptable latency. Our strategy is described by the 

pseudocode in Algorithm 6-1.  
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Algorithm 6-1. Static data placement and replication strategy pseudocode 

Inputs:  

Social network graph of users and connection (Users and Connections) 

Number of connections: c 

Number of users: n 

Number of datacentres: m 

Minimum number of Replicas: MinReplica 

Latency requirement with Delay and P 

Data size of different users (StoredDataSize)  

Costs of different datacentres (UnitStoragePrice, UnitWRequestPrice, 

UnitRRequestPrice, UnitTransferPrice) 

Latency between users and different datacentres (L) 

Access frequency rate of different users (RequestNum) 

Outputs: 

Solution set picked from {S1, S2, ..., Sm} for every user 

Number of replicas for every user 

Replica access table: RT 

Cost of the final placement 

Latency of the final placement 

Algorithm 

// Finding the friends number for every user 

1. for all connections c’ = 1 to c between user i and friend k 
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2.   Increase the FriendsNumi for user i  

3. end for 

// Choose the placement and replication method 

4. for all users i = 1 to n 

5.   if (FriendsNumi == 0) 

6.     Sort datacentres based on the latency  

7.     Place MinReplica replicas of data in the MinReplica nearest datacentres 

8.   else 

// Find the delay matrix for every user 

9.     Let Di represent the delay matrix of the friends of user i 

10.    for all friends of user i, j = 1 to FriendsNumi 

11.      for all datacentres, k = 1 to m 

12.        if (P percentile of the latency for friend j to access datacentre k is no 

more than Delay)  

13.          Dijk = 1  

14.        else 

15.          Dijk = 0 

16.      end for 

17.    end for 

// Greedy algorithm for set cover problem 

18.     Let I represent the set of friends having the latency requirement for all 

their requests fulfilled so far. Initialise I = {}.  
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19.     while (I covers all requests in RequestNumi) 

20.       for all k = 1 to m 

21.        |Sik| = number of rows having value equal to 1 in column k of delay 

matrix Dijk 

22.        Cost(Sk) = cost of storing replica of user i in datacentre k 

23.        |Sik - I| = number of newly added requests 

24.        Weight(Sik) = Cost(Sik) / |Sik - I| 

25.        Find the set Sik in {Si1, Si2, ... Sim} whose Weight is minimum  

26.        Increase ReplicaNumi by 1 

27.        Add elements of above picked Si to I 

28.       end for 

29.     end while 

30.   end if 

31. end for 

32. for all users i = 1 to n 

33.   if (ReplicaNumi <= MinReplica) 

34.     Sort datacentres based on the latency  

35.     Place (MinReplica - ReplicaNumi) replicas of data in the (MinReplica - 

ReplicaNumi) nearest datacentres which do not have any replica of user i 

36.   end if 

37. end for 

// Find the replica access table 
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38. Let RT represents the replica access table 

39. for all connections c’ = 1 to c between user i and friend j 

40.   find the datacentre with the lowest latency for user j which holds any 

replica of user i and assign it to RTc   

41. end for 

// Find the final cost and latency 

42. Return the solution set for every user 

43. Return the number of replicas for every user 

44. Return replica access table 

45. Return the final cost which is the total cost of storing all replicas of all 

users, requesting them, and transferring them from different datacentres  

46. Return the final latency which is the Pth percentile of all latencies of all 

connections  

 

Algorithm 6-1 is explained below: 

1. The social network graph of users (Users) and their connections (Connections), 

access frequency rates of different users (RequestNum), data size of different 

users (StoredDataSize), costs of different datacentres (UnitStoragePrice, 

UnitWRequestPrice, UnitRRequestPrice, UnitTransferPrice) , latency (L) 

information and minimum number of replicas (MinReplica) are retrieved as 

inputs.  

2. By counting the number of connections that this user has with the other users in 

Connections, the number of friends for every user is found as FriendsNumi (lines 

1-3 in pseudocode).  

For every user, steps 3-5 below are repeated until there are no more users in the social 

network graph: 

3. The data placement and replication method is chosen in this step based on 

FriendsNumi for every user (lines 4-8 in pseudocode) 
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o If this user does not have any friends, then the datacentres are sorted based on 

the latency and the MinReplica replicas of data are placed in the MinReplica 

nearest datacentres. Then, the algorithm continues from step 6.  

o Else, this problem is a set cover problem and greedy algorithm can be used to 

solve it. The algorithm continues from step 4. 

4. To formulate the problem as a set cover problem, the delay matrix D is needed 

for every user (lines 9-17 in pseudocode). To find the delay matrix for user i, the 

latency of all his/her friends are compared to the acceptable latency and a value 

of 0 or 1 is assigned to the delay matrix. By having this matrix, greedy algorithm 

can be applied as step 5. 

5. Greedy algorithm for set cover problem is used which is detailed as follows:  

o Initialise I = {} (line 18 in pseudocode), I is the set of friends having the 

latency requirement fulfilled so far. 

o While I covers all requests of all friends of user i, repeat the following 

instructions (lines 19-31 in pseudocode) 

 Costs of placing the replica of user i in different datacentres in addition to 

the number of requests having the latency requirement fulfilled by placing 

replicas in these datacentres are calculated. The datacentre that covers 

most of the requests with the acceptable latency and minimum Weight is 

found and user data is replicated in this datacentre.  

 If there is no possible solution, the algorithm exits this loop and continues 

from step 3 for the next user. 

 The friends whose requests have been fulfilled are added to I. 

 The solution Sij (replicating data of user i in datacentre j) is added to the 

solution space S. 

o If the number of replicas is less than MinReplica, more replicas are placed in 

the user’s nearest datacentres which do not hold any replica of this user’s data 

until the number of replicas equals to MinReplica (lines 32-37 in pseudocode). 

6. By having the final replicas, the replica access table is found (lines 38-41 in 

pseudocode). To find the replica access table, the connections are checked one by 

one and the datacentres are sorted for every connection. The nearest datacentre 

for every friend holding any replica of every user is used to read the replica.  

7. The final cost and latency of all users are found in this step using the replica 
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access table, final solution (S), access frequency rates of different users 

(RequestNum), data size of different users (StoredDataSize), and cost 

(UnitStoragePrice, UnitWRequestPrice, UnitRRequestPrice, and 

UnitTransferPrice) and latency (L) information. 

8. Finally, the solution with the number of replicas, cost, latency and the replica 

access table are returned (lines 42-46 in pseudocode). 

6.2 Analysis of Greedy Algorithm for Static Data Placement and 

Replication 

In this section, we analyse the time complexity of our static data placement and 

replication strategy. The greedy algorithm has been shown and proved to be an 

O(log(n))-approximation algorithm for solving the set cover problem [103]. To 

calculate the time complexity of our strategy, we need to find the time complexity of 

Algorithm 6-1. For Algorithm 6-1, to find the number of friends for every user, as 

explained in step 2, since we go through the connections one by one to find the number 

of friends for every user, the time complexity for this step is O(c). The time complexity 

for step 3 is the time complexity of sorting the datacentres for different users which is 

O(n×m×log(m)). The time complexity for step 4 is to create the delay matrix of user i 

in O(n×F) in which F = max(FriendsNum). The time complexity for greedy algorithm 

explained in step 5 is O(n×log(F)) which is proved in Section 6.2.1. For step 6, as the 

connections are checked one by one and the datacentres are sorted for every 

connection, the time complexity for this step is O(c× m×log(m)). For step 7, the final 

cost and latency of all users are found by time complexity of O(n). Therefore, the 

overall time complexity for our strategy is O(n×(F+log(F)+ m×log(m))+c×m×log(m)) 

which is effectively O(n×F+(c+n)×m×log(m)) given log(F) is much smaller than F. 

Moreover, our greedy algorithm finds a solution no worse than any other arbitrary 

solution found by any other algorithm in polynomial time. The proof is provided in 

Section 6.2.2. 
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6.2.1 Proof of the Greedy Algorithm Time Complexity 

The time complexity for the greedy algorithm is O(n×log(F)) for data placement and 

replication in a social network with n users and F friends for every user. It can be proved 

as follows: 

Let universe U contain F points (number of friends for every user), and suppose that 

the optimal solution has size R (number of replicas). The first set picked by the greedy 

algorithm has size of at least F/R. Therefore, the number of elements of U that we still 

have to cover after the first set is picked is 

 1 / 1 1/F F F R F R                                                                         (6-1) 

Now we are left with F1 elements that we have to cover. At least one of the remaining 

sets Si must contain at least F1/(R−1) of such points because otherwise the optimum 

solution would have to contain more than R sets. After the greedy algorithm picks the 

set that contains the largest number of uncovered points, it is left with F2≤F1−F1/(R−1) 

uncovered points. Note that F2≤F1(1−1/(R−1))≤F1(1−1/R)≤F(1−1/R)2. In general, we 

then have: 

1
1( )1 1/ 1( / )1i

i
iF F R F R

                                                                           (6-2) 

To determine the number of stages after which the greedy algorithm will have covered 

all elements of U is corresponding to the maximum number of sets that the greedy 

algorithm has to pick in order to cover the entire universe U. Suppose that it takes k 

stages to cover U, by (6-2), we have Fk ≤ F(1−1/R)k, and we need this to be less than 

one. 
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From this we can see that the size of the set cover picked by the greedy algorithm is 

bounded from the above by R×log(F). It is just shown that the greedy algorithm gives 

a O(log(F)) approximation to the optimal solution of the set cover problem. For n 
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users of a social network, the time complexity is O(n×log(F)). In fact, no polynomial 

time algorithm can give a better approximation unless P = NP. 

6.2.2 Proof of the Greedy Algorithm Effectiveness 

Let us consider X={x1, x2, …, xxn} as our greedy solution and assume that there is a 

solution X*={x*1, x*2, …, x*x*n} as an arbitrary feasible solution. If X is not the same 

as X*, one of these situations might happen: 

 There is a datacentre d in X which is not in X*. 

 There is a datacentre d in X which is not in X* and a datacentre d* in X* which 

is not in X. 

The reason that datacentre d is in X must be that the cost for datacentre d was less than 

the next chosen datacentres; however, the friends’ access latency is fulfilled by those 

datacentres. Moreover, the reason that datacentre d is in X which is not in X* and 

datacentre d* is in X* which is not in X must be that the cost of the datacentre d was 

less than or equal to d* but the total cost of all datacentres might be more.  

 

For the first case, we can remove the datacentre d from X and have a solution with a 

lower cost. For the second case, the datacentres in the two solutions can be swapped. 

This can be done for every datacentre that differ between X and X*. The two solutions 

differ on at most all m datacentres for every user, so after m×n steps which is a 

polynomial number of steps we can eliminate all differences between X and X* for all 

users and obtain the solution X of no more cost than X* without worsening the quality 

of the solution. Thus, the greedy solution produced is just as good as any arbitrary 

solution found by any other algorithm. 

6.3 Summary 

In this chapter, our set cover based static data placement and replication strategy is 

introduced and a greedy algorithm is presented to solve it. Then, a detailed pseudocode 

of our static strategy is presented and discussed. Finally, greedy algorithm for our static 

data placement and replication is analysed. This static data placement and replication 
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strategy will be used in Chapter 7 as the foundation to find the solution for our dynamic 

data placement and replication strategy. 
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Chapter 7  
Dynamic Data Placement and 

Replication Strategy  

In this chapter, we present our dynamic data placement and replication strategy in the 

cloud. As discussed in Chapter 3, real-world social networks are not static, as assumed 

by the static placement algorithm in Chapter 6, but undergo continuous dynamic 

changes. Our dynamic data placement and replication strategy proposed in this 

chapter uses the static data placement and replication strategy presented in Chapter 6 

to generate its initial data placement and replication. It then adapts this placement for 

different changes that are happening in the social network dynamically. Our dynamic 

strategy is generic and can be used in any social network application fitting our data 

placement and replication approach.  

An overview of a dynamic greedy algorithm is presented in Section 7.1. Our dynamic 

data placement and replication strategy is then presented in detail in Section 7.2. A 

comprehensive time complexity analysis is discussed in Section 7.3. Finally, the 

chapter is concluded with a brief summary in Section 7.4. 

7.1 Overview of Dynamic Greedy Algorithm 

Dynamic greedy algorithm, which is used as a part of our dynamic strategy, is 

presented in this section. An obstacle to make greedy algorithms dynamic is their 

sequential nature and insertions/deletions of elements can further disorganise the 

sequence. However, greedy algorithms can be maintained fast, and with small 

amounts of recourse using simple “local” moves [101]. 
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In the dynamic greedy algorithm presented in [101], the input is a set system (U, S), 

which is the solution of a static set cover. U is the list of friends for every user in our 

problem, and S is the placement of replicas in all different datacentres. The input 

sequence is σ = <σ1, σ2, …>, where request σt is either (et, +) or (et, -). At ⊆ U denotes 

the active elements at time t with the initial active set as A0 = Ø. If σt = (et, +), then 

At←At-1 ∪ {et}; if σt = (et, -) then At←At-1\{et}. At time t, only the elements seen so far 

and which sets they belong to are known, and there is no need to know either U or S 

upfront. When a new element arrives, it reveals the sets containing it. We maintain a 

feasible set cover St ⊆ S, i.e., the sets in St must cover the active elements At.  

Let Optt be the cost of the optimal set cover for the set system (At, S). Let nt denote 

the number of elements that needs to be covered at time t, i.e., nt := |At|, and n denote 

the maximum value of nt, i.e., n = maxt nt. For the fully dynamic set cover problem, 

there is an O(log(n)) competitive deterministic algorithm for the dynamic set cover 

problem, with O(1) non-amortised recourse per input step. 

If all of the sets have the same unweighted set cover cost, then the competitive ratio 

improves to O(1). This dynamic greedy algorithm chooses sets one by one, 

minimising the incremental cost per element covered at each step. It is shown that the 

number of elements covered at incremental-costs ≈ 2i(Opt/n) is no more than n/2i, 

which leads to the desired O(log(n)) bound for approximation factor. Detailed key 

steps of this algorithm are described in [101] and summarised in three steps as follows:  
 

1. Arrival of e (a new friend connects): 

Add the cheapest set covering e to St, where St is denoted as the solution at time t, and 

run the Stabilise function defined in step 3. 

2. Departure of e (an old friend leaves):  

Remove e from its covering set S = ϕt−1(e), where ϕt(e) is the assignment of each active 

element e to a unique set in St covering it, and update S’s density and covt(S) = 

covt−1(S)\{e}. At each time t, the density of a set S in St is defined as the ratio of its 

cost and the volume of elements it covers as 𝜌𝑡(𝑆) = 𝑐(𝑆)/ ∑ 𝑣𝑜𝑙(𝑒)𝑒∈𝑐𝑜𝑣𝑡(𝑆) . For 

concreteness, think of vol(e) = 1 for all e, and hence the density of a set S is the 

standard notion of per-element-cost of covering elements in covt(S). Moreover, at each 
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time t, the volume is maintained as vol(e) >0 for every element. If covt(S) = φ, delete 

S from St. Else, if its density falls outside the range of its level, move it to the highest 

level which can accommodate it. Run the Stabilise function below. 

3. Stabilise:  

Each set in St is assigned to different density levels. Each density level ℓ has an 

associated range Rℓ := [2ℓ, 2ℓ+10] of densities. Any set S which is at level ℓ needs to 

have density ρt(S) in the interval Rℓ. It is assumed that element e is at level ℓ if its 

covering set ϕt(e) is at level ℓ. A solution St is called stable in [101], if for every density 

level ℓ, there is no subset X of elements currently at level ℓ which is probably covered 

by different sets that can all be covered by some set S, such that the density of the 

resulting set 𝑐(𝑆)/ ∑ 𝑣𝑜𝑙(𝑒) <  2𝑙
𝑒∈𝑋 , i.e., the set S (in case it is added to St) and these 

elements X would belong to a strictly lower density level. In the Stabilise function, 

the following steps are repeatedly performed until the solution is stable:  

 if there exists level ℓ and elements X currently at level ℓ, such that X ⊆ S for 

some S ∈ U, and the density  ( ) /
e X

c S vo el


  < 2ℓ:  

o add S to St, and reassign the elements in X to S by updating ϕt(·) for 

elements in X;  

o place S at the highest density level possible. Also update covt(·) for the 

sets previously covering elements in X. As a result, if the updated 

density of such a set S′ previously covering some elements in X 

increases beyond 2ℓ+10, we move it to the highest level that can 

accommodate it.  

7.2 Our Dynamic Data Placement and Replication Approach 

The concept of dynamic set cover is extended and used in this research to optimise 

the cost of data placement and replication in social network services with inter-

connected data. Our overall goal is to continuously adapt the data placement and 

replication for a given set of users’ data replicas based on the changes to the social 

network so that we have the minimum storage, transfer and synchronisation cost while 

guaranteeing that the Pth percentile of individual latencies is no more than the 



81 
 

acceptable latency. We use a framework consisting of greedy and dynamic greedy 

algorithms [101] to solve the social network data placement and replication problem. 

Static data placement and replication introduced in Chapter 6, is first used to find the 

initial data placement and replication. Then, our fully dynamic adaptation strategy is 

divided to two phases of eager and lazy adaptations. Dynamic adaptation is done on 

the fly except for the scenarios of synchronising the replicas (S2, i.e., scenario 2 

introduced in Chapter 3) and adapting the workload and access frequencies of the 

friends (S5). For S2 and S5, due to the high rates of change and lower occurrence 

frequency, the adaptation is postponed and done during different time periods. This is 

not critical since eventual consistency is sufficient to be kept in social network 

applications [60]. Lazy adaptation is based on the greedy algorithm while eager 

adaptation is based on greedy and dynamic greedy algorithms when appropriate. 

Figure 7-1 provides an overview of our dynamic data placement and replication 

strategy. 

Figure 7-1. Dynamic data placement and replication process 
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7.2.1 Initial Static Data Placement and Replication 

The static data placement and replication strategy presented in Chapter 6 is used to 

find the initial placement and replication of data. As discussed in Chapter 6, the 

concept of set cover is used to optimise the initial cost of data placement and 

replication and a greedy algorithm is used to solve the initial static social network data 

placement and replication problem. For every user i, the set Si, i.e., the placement of 

user i’s data in different datacentres found by the initial static data placement and 

replication is given as input to the dynamic data placement and replication which is 

presented in this chapter.  

After finding the initial data placement and replication using our static data placement 

and replication strategy, equal time periods are considered. For every user i we 

initially find the set Si, i.e., the placement of user i’s data in different datacentres. 

Users, connections, data, and datacentres are updated once a change happens in the 

social network. To find a suitable solution based on different scenarios, the dynamic 

strategy is divided to two phases of eager and lazy adaptations. Eager adaptation is 

iteratively applied during a time period in order to update the solution based on any 

changes in data (S1, i.e., scenario 1 introduced in Chapter 3), users joining (S3), new 

friendships (S4), friendships broken (S6), users moving (S7), users leaving (S8), and 

changes in datacentres (S9). Once a time period is finished, lazy adaptation is applied 

in which synchronisation is done (S2) and the solutions are updated based on the new 

workload and access frequencies (S5). Finally, the replica access table is updated and 

the final cost and latency for the adapted placement and replication is calculated.  

7.2.2 Eager Adaptation 

Eager adaptation, as depicted in Figure 7-2, is used to address social network changes 

for scenarios 1, 3, 4, 6-9 described in Chapter 3. The replica placement adaptation is 

done on the fly during different time periods. For all the scenarios, the list of the users, 

data, connections, and datacentres are updated when needed. Then the suitable action 

is taken based on the scenario. The replication strategy updates are explained below 

for each corresponding scenario: 
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S1. Adding/Deleting data: Data sizes increase on a daily basis, i.e., at any time during 

different time periods, for all the users based on their workload. Data sizes and storage 

costs are updated accordingly. 

S3. Joining of users: Once a new user joins, latencies for accessing different 

datacentres, list of friends for this user, initial data storage size, matrix of friends’ 

latencies, workload and access frequencies of the friends are created. The data 

placement and replication problem is mapped to a set cover problem for the user and 

the greedy algorithm is used to solve it. 

S4. New friendships: Once a new friendship is created, the list of friends and access 

frequencies for the user who created the relationship is updated. The replica access 

table is also updated to find the nearest datacentre to the new friend. If the latency 

requirement is fulfilled for this user with the current solution, no new replica is 

created. Otherwise, the problem is mapped to a dynamic set cover problem and 

dynamic greedy algorithm is used to solve it.  

S6. Breaking friendships: When users unfriend each other, the problem is mapped to 

a dynamic set cover problem using the dynamic greedy algorithm to solve it. 

Figure 7-2. Eager adaptation process 
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S7. Changing user’s location: Users may move temporarily or permanently. Once a 

user moves, a replica is created in the nearest datacentre as the new primary replica 

and all write requests for this user are directed to the new primary replica. The replica 

access table is updated and the user is asked if the change is temporary or permanent. 

For a permanent move, if there is no request from friends for the old primary replica, 

the old primary replica is deleted.  

S8. Leaving of users: Quitting could be a temporary leave-taking or permanently 

deleting the account. Temporary quits, e.g. deactivating in Facebook, are ignored and 

data are kept in case the users re-join. For permanent quits, not only all the replicas 

for the user need to be deleted, but also the “breaking friendship” scenario needs to be 

considered for all the friends of this user. 

S9. Adding/Removing datacentres: If a new datacentre is added, the sorted list of 

datacentres for all the users needs to be updated. If the new datacentre could be a 

primary datacentre for any users or their friends, the placement and replication is 

redone for this user using the greedy algorithm. If one of the current datacentres is 

removed or unavailable, the replica access table is updated to redirect the requests of 

this datacentre to another datacentre. If there is a user who cannot have the latency 

requirement fulfilled due to the removed datacentre, a new solution needs to be found 

for this user using the greedy algorithm. 

7.2.3 Lazy Adaptation 

We use lazy adaptation, as depicted in Figure 7-3, to address scenarios 2 and 5 

described in Chapter 3. The adaptation is done at the end of every time period and 

adaptation is only applied to the necessary users without any static replication with 

complete re-computation needed at any point. The replication strategy updates are 

explained below for each corresponding scenario: 

S2. Synchronisation of replicas: During every time period, all the write requests from 

the users are routed to the primary replicas and the read requests from the friends are 

redirected to either the primary replica or one of the secondary replicas based on their 

proximity. At the end of every time period, the secondary replicas of all users are 
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synchronised with the primary replicas and the update cost is calculated. 

Synchronisation could be done in an eager fashion as there could be some 

inconsistency during a time period. However, it is not very critical in social network 

applications since eventual consistency suffices [60].  

S5. Changes in workload and access frequencies: Since the workload and access 

frequencies change for all the users and their friends, it is not practical to adapt the 

solution on the fly based on such changes. Therefore, at the end of every time period, 

the solution is adapted based on the changes in workload and access frequencies of 

friends. Instead of adapting the solution for all users, the replica access table is updated 

for the users given the new workload, access frequencies and existing solution. If the 

latency requirement is not fulfilled for any users with the current solution, the greedy 

algorithm is used to find a solution for the user using the new workload and access 

frequencies.  

7.2.4 Data Placement and Replication Strategy  

Our strategy is described by the pseudocode in Algorithm 7-1 whilst the details of our 

static data placement and replication are presented before as Algorithm 6-1 in Chapter 

6. Eager adaptation and lazy adaptation algorithm pseudocodes are also presented as 

Algorithm 7-2 and Algorithm 7-3.  

Figure 7-3. Lazy adaptation process 
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Algorithm 7-1. Dynamic data placement and replication strategy pseudocode 

Inputs:  

Social network graph (Users and Connections) 

Existing solution set {S1, S2, ..., Sm} for every user 

Time period duration: interval 

Number of connections: c 

Number of users: n 

Number of datacentres: m 

Latency requirement with Delay and P 

Outputs: 

Adapted solution set {S1, S2, ..., Sm} for every user 

Replica access table: RT 

Cost and latency of the final placement 

Algorithm 

1. StaticDataPlacement();         //Referring to Algorithm 6-1 which is run 

once only for initialisation 

// Check for the changes until time period is finished 

2. for each time period ts 

3.    StartTime = the current time; 

4.    while ((CurrentTime - StartTime ) <= interval) 

5.        EagerAdaptation();        //Referring to Algorithm 7-2  

6.        CurrentTime = the current time;  
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7.    end while 

8.    LazyAdaptation();              //Referring to Algorithm 7-3 

// Update the replica access table 

9.    Let RT represent the replica access table 

10.  for all connections c’ = 1 to c of user i and friend j 

11.      RTc = the datacentre with the lowest latency for user j which holds 

a replica of user i  

12.  end for 

13.  Update and return the final cost and latency 

14.  Return the solution set for every user 

15.  Return the number of replicas for every user 

16.  Return replica access table 

17. end for 

 

Algorithm 7-1 is explained below: 

1. The initial social network graph of users (Users) and their connections 

(Connections), the current number of connections (c), users (n), datacentres 

(m), as well as existing solution set with current setting in addition to the 

duration of the time periods (interval) are retrieved as inputs.  

2. Static data placement and replication is initially carried out once only (line 1) 

3. For each time period ts, repeat the following instructions (lines 2-17) 

o While ts is not finished, i.e., the duration of ts is lower than interval, repeat 

the following instructions (lines 4-7) 

 Call EagerAdaptation() for any scenarios of S1, S3-S4, S6-S9 

happening in order to adapt the solution  

o Call LazyAdaptation() to adapt the solution (line 8) 

o Using the final replicas, the replica access table is updated (lines 9-12). To 
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create the replica access table, the connections are checked one by one and 

the datacentres are sorted for every connection. The nearest datacentre for 

every friend holding any replica of every user is used to access the data.  

o The final cost and latency of all the users are updated in this step. Finally, 

the solution with the number of replicas, cost, latency and the replica 

access table for the current time period are returned (lines 13-16). 

o Continue to the next time period by repeating step 3 (line 17). 
 
 

Algorithm 7-2. Eager adaptation pseudocode 

Inputs:  

Existing solution set {S1, S2, ..., Sm} for every user 

Current time period: ts 

Data is updated: addData, userID 

A user is added: addUser, userID 

A user is removed: removeUser, userID 

A user is moved: moveUser, userID, userLocation 

A friend is added: addFriend, userID 

A friend is removed: removeFriend, userID, friendID 

A datacentre is added: addDC, datacentreID, datacentreLocation 

A datacentre is removed: removeDC, datacentreID 

Number of datacentres: m 

Latency requirement with Delay and P 

Data size of different users: StoredDataSize  

Outputs: 
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Adapted solution set {S1, S2, ..., Sm} for every user  

Number of replicas for every user 

Replica access table: RT 

Algorithm 

// Continuously check if there is a change in data, users, friends, and 

datacentre 

// Data is updated, Scenario 1 

1.   if addData is true 

2.       update the StoredDataSize and the primary replica for user userID; 

3.   end 

// A new user is added, Scenario 3 

4.   if addUser is true 

5.       find sts(userID) using greedy algorithm; 

6.   end 

// A new friendship is created, Scenario 4 

7. if addFriend is true 

8.    Check if the new friend has the latency requirement fulfilled for 

accessing the user’s data 

9.    if the latency requirement is not fulfilled for the new friend 

10.        sts(userID) = Dynamic set cover strategy; 

11.    end if 

12. end if 
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// A friendship is broken, Scenario 6 

13. if removeFriend is true 

14.    sts(userID) = Dynamic set cover strategy; 

15. end if 

// If a user changes location, Scenario 7 

16.  if moveUser is true 

17.   Find the primary datacentre of user i and create a replica in the primary 

datacentre 

18.   Update the replica access table RT for user i 

19.    if (change is permanently and no friends of user i accesses the old 

primary datacentre of user i) 

20.        Delete the old replica 

21.    else 

22.       Keep the old replica 

23.    end if 

24.  end if 

// A user is removed, Scenario 8 

25.  if removeUser is true 

26.     if the user is removed permanently 

27.        Delete the data of this user 

28.        Update the list of friends for this user’s friends 

29.        for all the friends of this user 
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30.              removeFriend = true and adapt the solution set for all the friends 

31.        end 

32.    end if 

33.  end if 

// Datacentres are added or removed, Scenario 9 

// A new datacentre is added 

34. if addDC is true 

35.    m = m + 1; 

36.    for all users i = 1 to n 

37.       Sort the datacentres for user i 

38.       if datacentreID is the nearest datacentre to any of the users 

39.           find sts(i) using greedy algorithm; 

40.       end if 

41.    end for 

42. end if 

// A datacentre is removed 

43. if removeDC is true 

44.    m = m - 1; 

45.    Remove the datacentre from the list of the solution for all users 

46.    Update the replica access table RT for all users 

47.    for all users i = 1 to n 

48.       Update the final latency for user i 
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49.       if the latency requirement is not fulfilled for user i 

50.         find sts(i) using greedy algorithm; 

51.       end if 

52.    end for 

53. end if 

// Update the replica access table 

54. Let RT represent the replica access table 

55. for all connections c’ = 1 to c of user i and friend j 

56.   find the datacentre with the lowest latency for user j which holds any 

replica of user i and assign it to RTc   

57. end for 

// Update the final cost and latency 

58. Return the updated solution set for every user 

59. Return the number of replicas for every user 

60. Return replica access table 

 

Algorithm 7-2 is explained below: 

1. The existing solution set for all the users, the current time period (ts), flags 

related to different scenarios (addData, addUser, removeUser, moveUser, 

addFriend, removeFriend, addDC, removeDC, userID, friendID, 

datacentreID, userLocation, and datacentreLocation), Number of datacentres 

(m), Latency requirements (Delay and P), and Data size of different users 

(StoredDataSize) are retrieved as inputs. The existing solution set is given as 

input to the EagerAdaptation() function. The EagerAdaptation() function then 

proactively checks whether data is updated (addData) for user with userID 

(S1); a user userID is added (addUser) (S3); a friend is added (addFriend) to 
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the list of friends of user userID (S4); a friend friendID breaks the friendship 

with user userID (removeFriend) (S6); a user userID moves to a new location 

userLocation (moveUser) (S7); a user userID has been removed (removeUser) 

(S8); a new datacentre datacentreID is added in datacentreLocation (addDC) 

or an existing datacentre datacentreID is removed (removeDC) (S9). 

2. S1: If (addData is true) (lines 1-3 in pseudocode) 

o Update the StoredDataSize and the primary replica for user userID 

3. S3: If (addUser is true) (lines 4-6 in pseudocode) 

o Find sts(userID) using greedy algorithm 

4. S4: If (addFriend is true) (lines 7-12 in pseudocode) 

o If the latency requirement is not fulfilled for the new friend using the 

current solution, dynamic greedy algorithm is called to adapt the solution 

for user userID 

5. S6: If (removeFriend is true) (lines 13-15 in pseudocode) 

o Dynamic greedy algorithm is called to adapt the solution for user userID 

6. S7: If (moveUser is true) (lines 16-24 in pseudocode) 

o The new primary datacentre of user userID is found based on the new 

location of this user userLocation and a replica is created in the new 

primary datacentre 

o The replica access table is found for user userID 

o If the change is permanent and no friends of user userID accesses the old 

primary datacentre of user userID, the old replica is being deleted 

otherwise, the old replica is being kept 

7. S8: If (removeUser is true) (lines 25-33 in pseudocode) 

 If the user is removed permanently, we delete all the replicas for this 

user, and delete this user from the list of friends of all user userID’s 

friends 

 The removeFriend is set to true and EagerAdaptation() is called for 

scenario S6 

8. S9: If (addDC is true) (lines 34-42 in pseudocode) 

o Increase the number of datacentres (m) by 1  

o For all the existing users, the datacentres are sorted based on the distance 

to the location of every user and if the new datacentre, datacentreID is the 
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nearest datacentre to any of the users, a new solution is found for this user 

using the greedy algorithm 

If (removeDC is true) (lines 43-53 in pseudocode) 

o Decrease the number of datacentres (m) by 1  

o For all the existing users, remove the datacentre datacentreID from the list 

of the solution for this user and update the replica access table and the final 

latency for the user 

o If the latency requirement is not fulfilled for this user, adapt the solution 

for this user using greedy algorithm 

9. By having the final replicas, the replica access table is found (lines 54-57 in 

pseudocode). To update the replica access table, the connections are checked 

one by one and the datacentres are sorted for every connection. The nearest 

datacentre for every friend holding any replica of every user is used to read 

the replica.  

10. The final cost and latency of all users are found in this step using the replica 

access table, final solution (S), access frequency rates of different users 

(RequestNum), data size of different users (StoredDataSize), and cost 

(UnitStoragePrice, UnitWRequestPrice, UnitRRequestPrice, and 

UnitTransferPrice) and latency (L) information. 

11. Finally, the solution with the number of replicas, and the replica access table 

are returned (lines 58-60 in pseudocode). 

Algorithm 7-3. Lazy adaptation pseudocode 

Inputs:  

Current time period: ts 

Solution set for all the users: sts-1 

Access frequency rates in time period ts: RequestNum(ts) 

Number of connections: c 

Number of users: n 
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Number of datacentres: m 

Latency requirement with Delay and P 

Data size of different users: StoredDataSize 

Outputs: 

Adapted solution set {S1, S2, ..., Sm} for every user  

Number of replicas for every user 

Replica access table: RT 

Algorithm 

// Access frequencies are updated, Scenario 5 

1. find the total latency using sts-1 and RequestNum(ts) 

2. if the total latency is greater than Delay 

3.    for all users i = 1 to n 

4.        if the latency of user i is greater than Delay 

5.           find sts(i) using greedy algorithm; 

6.        end if  

7.    end for 

8. end if 

// Update the replica access table 

9.   Let RT represent the replica access table 

10. for all connections c’ = 1 to c of user i and friend j 

11.   find the datacentre with the lowest latency for user j which holds 

any replica of user i and assign it to RTc   
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12. end for 

// Synchronise replicas, Scenario 2 

13. for all users i = 1 to n 

14.    Synchronise different replicas for user i based on StoredDataSize 

15.    Find the updating cost for user i 

16. end for 

// Update the final cost and latency 

17. Return the solution set for every user 

18. Return the number of replicas for every user 

19. Return replica access table 

 

Algorithm 7-3 is explained below: 

1. Current time period (ts), solution set for all the users (sts-1), access frequency 

rates in time period ts (RequestNum(ts)), number of connections (c), number 

of users (n), number of datacentres (m), latency requirement (Delay and P), 

and data size of different users (StoredDataSize) are retrieved as inputs. The 

current time period (ts), final solution sets for all the users which were adapted 

during the EagerAdaptation() as well as the new activeness levels and access 

frequency rates for time period ts (RequestNum(ts)) are given as input to the 

LazyAdaptation() function. 

2. S5: The total latency is calculated using the existing solution set sts-1 and 

RequestNum(ts) (lines 1-8 in pseudocode) 

o If the total latency is greater than Delay, for all users, repeats the following 

steps 

o If the latency for this user is greater than Delay, adapt the solution for this 

user using greedy algorithm 

3. By using the final replicas, the replica access table is found (lines 9-12 in 

pseudocode). To update the replica access table, the connections are checked 
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one by one and the datacentres are sorted for every connection. The nearest 

datacentre for every friend holding any replica of every user is used to read 

replica.  

4. S2: After updating the replica access table, all the secondary replicas are 

updated from the primary replicas for all the users and the updating cost is 

calculated (lines 13-16 in pseudocode). 

5. The final cost and latency of the all users are found in this step using the replica 

access table, final solution (S), access frequency rates of different users 

(RequestNum), data size of different users (StoredDataSize), cost 

(UnitStoragePrice, UnitWRequestPrice, UnitRRequestPrice, and 

UnitTransferPrice) and latency (L) information. 

6. Finally, the solution with the number of replicas, and the replica access table 

are returned (lines 17-19 in pseudocode). 

7.3 Time Complexity of the Dynamic Data Placement and 

Replication  

Time complexity of our dynamic strategy, which consists of greedy and dynamic 

greedy based algorithms, is analysed here. As discussed in Chapter 6, the greedy 

algorithm has been shown and proved to be an O(log(n))-approximation algorithm for 

solving the set cover problem [103]. Moreover, the results presented in [101] which 

are based on a novel dynamic greedy algorithm for dynamic set cover problem, 

obtains O(log(n))-competitive results. Given the time complexity for greedy 

algorithm in our problem is O(n×log(F)) where n is the number of users, m is the 

number of datacentres and F = max(FriendsNum), the overall time complexity for the 

initial data placement and replication, as proved in Chapter 6, is effectively 

O(n×F+(c+n)×m×log(m)). Time complexity of our dynamic data placement and 

replication strategy is the time complexity of Algorithm 7-1. To find out the time 

complexity of Algorithm 7-1, i.e. our dynamic data placement and replication strategy, 

we need to find out the time complexity of Algorithm 7-2 and Algorithm 7-3 first.  

To find out the time complexity of Algorithm 7-2, for step 1 (lines 1-53 in 

pseudocode), the time complexity for S1 (lines 1-3 in pseudocode) is to update the 
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data size for a specific user which is O(1); for S3 (lines 4-6 in pseudocode), to apply 

the greedy algorithm for a new user which is O(log(F)); for S4 (lines 7-12 in 

pseudocode) and S6 (lines 13-15 in pseudocode), dynamic greedy algorithm is used 

with the time complexity of O(log(F)); for S7 (lines 16-24 in pseudocode), to find the 

new primary datacentre which is O(m×log(m)), and then to update the replica access 

table for the user and check if the old primary one is being accessed by any of the 

friends which is O(c×m×log(m)); for S8 (lines 25-33 in pseudocode), to update the list 

of friends and apply dynamic greedy algorithm for all of the friends of the removed 

user which is F×log(F); finally, for S9, for adding a datacentre (lines 34-42 in 

pseudocode), to sort datacentres and apply greedy algorithm for some of the users 

which is O(n×log(m)+n×log(F)) and for removing a datacentre (lines 43-53 in 

pseudocode), to update the replica access table and apply greedy algorithm for some 

of the users which is O(c×m×log(m)+n×log(F)). For step 2 (lines 54-57 in 

pseudocode), as the connections are checked one by one and the datacentres are sorted 

for every connection, the time complexity for this step is O(c×m×log(m)). For step 3 

(lines 58-60 in pseudocode), the final cost and latency of all users are found with time 

complexity of O(n). Finally, the results are returned in step 4 (lines 58-60 in 

pseudocode) with time complexity of O(1). Hence, the overall time complexity for 

Algorithm 7-2 is O(F×log(F)+c×m×log(m)+n×log(m)+n×log(F)) which is effectively 

O((c×m+n)×log(m)+n×log(F)) given that log(F) << F << n. 

The time complexity of Algorithm 7-3 is to retrieve the inputs in step 1 and adapt the 

solution for the user whose latency requirement is not fulfilled in step 2 (lines 1-8 in 

pseudocode) which are O(1) and O(n×log(F)) respectively. For step 3 (lines 9-12 in 

pseudocode), to update the replica access table which is O(c×m×log(m)) and finally 

to calculate the updating cost, total cost and latency in steps 4 and 5 (lines 13-16 in 

pseudocode) with time complexity of O(n). Hence, the overall time complexity for 

Algorithm 7-3 is O(n×log(F)+c×m×log(m)).  

Therefore, the time complexity of Algorithm 7-1 is the time complexity of Algorithm 

7-2 and Algorithm 7-3 in addition to update the replica access table with 

O(c×m×log(m)) and to calculate the total cost and latency with O(n) that is 

O(((c×m+n)×log(m)+n×log(F)). Finally, the overall time complexity of our dynamic 

data placement and replication strategy considering  as the number of changes in the 
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network, is O( ×(((c×m+n)×log(m)+n×log(F))). Therefore, the overall time 

complexity of our dynamic data placement and replication strategy is proved to be 

O(((c×m+n)×log(m)+n×log(F)) in this section. 

7.4 Summary 

In this chapter, a brief overview of dynamic greedy algorithm that is used as part of 

our solution for dynamic data placement and replication in the cloud is presented. In 

order to solve the problem of finding a cost effective data placement and replication 

strategy and coping with the changes in the social network while fulfilling the latency 

requirement for individual requests efficiently and effectively, the complex problem 

is modelled and mapped to the well-known (dynamic) set cover problem. Our 

dynamic set cover based data placement and replication strategy including eager and 

lazy adaptation strategies is then introduced. To derive the most cost effective 

solution, a framework consisting a combination of greedy and dynamic greedy 

algorithms is presented to find the most affordable solution. Detailed pseudocodes of 

our dynamic strategy, eager adaptation, and lazy adaptation are also presented and 

discussed. Finally, time complexity of our dynamic data placement and replication 

strategy is systematically explained. 
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Chapter 8  
Experiments and Evaluations 

In this chapter, we evaluate our proposed static and dynamic data placement and 

replication strategies by running a variety of simulations on the cloud. We start with 

the experimental setting described in Section 8.1. We introduce two real world social 

network datasets used to demonstrate how our strategy finds an efficient and effective 

placement and replication of data with the minimised cost while satisfying the latency 

requirement. The first dataset is a Facebook social network graph [11] with 63,731 

nodes, i.e. users, and 1,545,686 edges, i.e. connections, and the second dataset used 

in our experiments is SNAP location based Gowala social network graph [12] with 

196,591 nodes and 950,327 edges. In Section 8.2, we demonstrate and analyse the 

simulation results of both datasets for the static strategy and compare our strategy with 

other representative counterparts with having different percentiles of latency 

requirement. Furthermore, in Sections 8.3, the simulation results of both datasets for 

the dynamic strategy comparing to our static strategy and the full replication strategy 

as the benchmark, with having different percentiles of latency requirement are 

demonstrated and analysed. Then, in Section 8.4, threats to validity of the results are 

discussed. Finally, this chapter is summarised in Section 8.5. 

8.1 Experimental Settings 

For our simulations, 9 real Amazon datacentres in Virginia, California, Oregon, 

Ireland, Frankfurt, Singapore, Sydney, Tokyo, and Sao Paulo are considered and the 

real unit storage cost for data storage per GB per month, request cost per request and 
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transfer cost per GB [87] in all these datacentres are taken into account. This is an 

extended model comparing to our preliminary work where we assumed 10 datacentres 

in real location of Facebook datacentres and used a distance based formula presented 

in [82] to calculate the latencies. The UnitStoragePricej, UnitWRequestPricej, 

UnitRRequestPricej, and UnitTransferPricej for Amazon datacentres used in our 

experiments are shown in Appendix D. The final cost of a strategy is the summation 

of the storage cost, i.e. to store all replicas of all users, the transfer cost, i.e. to request 

and transfer all replicas from different datacentres based on all requests from all users 

and their friends, and the update cost, i.e., to synchronise all secondary replicas of all 

users with their primary replicas. The update cost is equal to zero for the static strategy 

as no synchronisation is done in the initial data placement and replication.  

To find the latency of these datacentres, we had 19 different users in 19 different cities 

around the world pinging different Amazon datacentres from their locations ten times 

each. The average latencies found are shown in Appendix A. To reflect the latency of 

different users to access Amazon datacentres and in order to assign these latencies to a 

different number of users in these locations, we generate latencies based on normal 

distributions with the collected latencies as the mean for our simulations. 

To measure the workload of the social network, we define a term called “activeness 

level”. Activeness level of the users is based on how many times they check their 

accounts per day. Percentages of different Facebook users and the number of times 

they check their accounts daily is reported in [98]. We use the same proportion for 

different percentages of the users, as in Table 8-1. To find the access frequency rates 

of different users to access their friends’ data, as users may or may not check their 

friends’ accounts every time when they check their own accounts, the access frequency 

rates of users to access their friends’ data can be set randomly between 1 and every 

user’s activeness level. 
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Table 8-1. Percentages of users and their activeness levels 

Percentage Activeness level 

8 12 

15 8 

12 4 

14 2 

27 1 

remaining 0 (inactive, hence not in simulation) 

8.1.1 Benchmarking Strategies 

Several alternative data placement and replication strategies are simulated and 

compared with our strategy to show the efficiency and effectiveness of each. We 

compared our strategy with 11 different strategies which are applied to both Facebook 

and Gowala datasets. The minimum number of replicas for our strategy and all other 

strategies are considered as 2 in order to ensure the data availability of the system. 

These strategies can be classified to 6 different groups: 3 random-based strategies, 1 

full replication strategy, 2 distance-based strategies, 2 friend-based strategies, 2 

request-based strategies, and 1 social locality based strategy. These strategies (A1-

A12) are explained in more detail below: 

Random-based strategies: 

A1: Random number of replicas (between 2 and the maximum number of datacentres) 

are placed in random datacentres. 

A2: Two replicas are placed in two random datacentres. 

A3: Three replicas are placed in three random datacentres. 

Full-replication strategy: 

A4: Full replication of data in all datacentres that is claimed in [37] as the data 

placement and replication strategy used for Facebook. This strategy has the lowest 
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possible latency and can be deemed as the minimum latency benchmark. 

Distance-based strategies:  

Because long distance incurs high latency, every user prefers to have a replica of data 

in their nearest datacentre. In this group of strategies, datacentres are sorted based on 

the distance for every user as list1.  

A5: Two replicas are placed in the first and second preferred datacentres in list1. 

A6: Three replicas are placed in the three most preferred datacentres in list1. 

Friend-based strategies:  

Users prefer to have replicas not only in their nearest datacentres but also in the nearest 

datacentres to the most of their friends. In this group of strategies, datacentres are 

sorted based on both distance as list1 and number of friends around different 

datacentres as list2 for every user.  

A7: One replica is placed in the most preferred datacentre in list1 and one more replica 

is placed in the datacentre with the most number of friends in list2. 

A8: One replica is placed in the most preferred datacentre in list1 and two more 

replicas are placed in the two most preferred datacentres in list2. 

Request-based strategies:  

Users prefer to have replicas not only in their nearest datacentres but also in the 

datacentres where most of the requests are from the friends around them. In this group 

of strategies, datacentres are sorted based on both distance as list1 and number of 

requests as list3 for every user.  

A9: One replica is placed in the most preferred datacentre in list1 and one more replica 

is placed in the most preferred datacentre in list3. 

A10: One replica is placed in the most preferred datacentre in list1 and two more 

replicas are placed in the two most preferred datacentres in list3. 

Social locality based strategy:  

A11: In social locality strategy, which is maintained in [29], the data of all friends are 

placed in every user’s server. We further consider the transfer cost in our cost model 

that is ignored in their work. 
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Our strategy:  

A12: Our static strategy.  

8.1.2 Case Studies 

Two real world social network datasets used to demonstrate the efficiency and 

effectiveness of our data placement and replication strategy with the minimised cost 

while satisfying the latency requirement are demonstrated in this section. 

8.1.2.1 Facebook dataset: a general case with locations randomly generated 

The Max Plank institute Facebook dataset which contains user-to-user links from the 

Facebook New Orleans networks is used in the experiments. All links are treated as 

directed, even though they are undirected on Facebook [11]. While the users’ location 

information is not provided in the dataset, as mentioned earlier, we generated random 

locations in 19 different cities as shown in Appendix A based on the real distribution 

of Facebook users’ locations [107]. Percentage of users in different locations and the 

number of users around each datacentre are shown in Figure 8-1 and Figure 8-2 

respectively. In our user distribution, as shown in Figure 8-1 and Figure 8-2, we use 

a similar proportion of the users’ locations consistent with that of Facebook and 

random locations are added to the list. As discussed earlier, parameters such as pricing 

and latency from Amazon cloud datacentres are used in our simulation experiments 

to benefit from storage in public cloud datacentres.  

 

Figure 8-1 Percentage of users in different locations for Facebook 
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Figure 8-2 Number of users located around different datacentres for Facebook 

8.1.2.2 Gowala dataset: a specific case with locations already fixed 

Gowalla is a location-based social network website where users share their locations 

by checking-in. The friendship network is undirected and was collected using their 

public API, and consists of 196,591 nodes and 950,327 edges. A total of 6,442,890 

check-ins of these users is collected over the period of Feb. 2009 - Oct. 2010 [12]. 

Based on the location provided for users in this dataset, we assigned users to one of 

the 19 cities and used the real latencies collected from end users. For some of the users 

whose locations are not defined, a random location is generated. The nearest 

datacentre is chosen for every user as the primary datacentre. Percentage of users in 

different locations and the number of users around each datacentre is shown in Figure 

8-3 and Figure 8-4 respectively. 

 

Figure 8-3. Percentage of users in different locations for Gowala 
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Figure 8-4. Number of users located around different datacentres for Gowala 
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In this section, our static strategy is compared with the alternative strategies described 

in Section 8.1.1 and the results are shown for Facebook and Gowala datasets in Section 

8.2.1 and Section 8.2.2 and analysed from two aspects in Section 8.2.3. Several 

different settings are used to compare the results of these strategies. These settings are 

based on the service level agreements on the latency requirement for users and their 

friends to access their data. Latency requirement is defined as: “Pth percentile of all 

requests must be accessed in the acceptable latency”. This means that over P percent 

of the latencies are no more than the acceptable latency. As explained before, 

requirements are set as 90%, 95%, 99%, and 99.9% of the latencies being no more than 

250 ms.  

8.2.1 Results for the Facebook Dataset 

Using statistics for 2016 [8], Facebook generates 4 PB of new data per day for the 

1.083 billion daily active users. Hence, on average, every active user stores around 3.6 

MB (4 PB/1.083 billion) information daily in Facebook datacentres. We generate 

random sizes of data for users following a normal distribution with average size as the 

mean initially. Data size increases daily for all users based on activeness levels. For 

Facebook dataset, the simulation results including the cost and latency of these 

0

5000

10000

15000

20000

25000

30000

35000

40000

N
u

m
b

e
r 

o
f 

u
se

rs

Datacentres



107 
 

strategies, for a duration of one month with different latency requirements are shown 

in Figure 8-5, Figure 8-6, Figure 8-7, and Figure 8-8. An arrow in these figures points 

to our strategy. 

As shown in the results for Facebook dataset, having less replicas might cause a higher 

total cost due to the extra transfer cost since the storage cost is much lower than the 

transfer cost. For example, strategy A5 with two replicas has a higher cost than strategy 

A6 with three replicas. 

Based on the simulation results shown in Figure 8-5, Figure 8-6, Figure 8-7 and Figure 

8-8, our static strategy (A12) is able to guarantee the latency requirement in all cases 

with the lowest storage and transfer cost comparing to the other strategies. Moreover, 

the only strategy, except costly full replication (A4) and social locality (A11) based 

strategies that can guarantee the acceptable latency for 95, 99, and 99.9 percentiles of 

all requests with a low cost is our greedy algorithm for set cover strategy. 

 

Figure 8-5 Comparison of different strategies with latency requirement of 90% 

lower than 250 ms for Facebook 
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Figure 8-6 Comparison of different strategies with latency requirement of 95% 

lower than 250 ms for Facebook 

 

Figure 8-7 Comparison of different strategies with latency requirement of 99% 

lower than 250 ms for Facebook 
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Figure 8-8 Comparison of different strategies with latency requirement of 99.9% 

lower than 250 ms for Facebook 

8.2.2 Results for the Gowala Dataset 

For our experiments with the Gowala dataset, the data sizes, users’ activeness levels 

and friends’ access frequency rates for Gowala users are considered to be the same as 

for the Facebook dataset. The same strategies and settings as Facebook dataset are used 

to place the described Gowala users’ data in different datacentres and the results are 

shown in Figure 8-9, Figure 8-10, Figure 8-11, and Figure 8-12. An arrow in these 

figures again points to our strategy. 

The results are consistent to those for the Facebook data which are also analysed from 

two aspects in Section 8.2.3. Based on the simulation results shown in Figure 8-9, 

Figure 8-10, Figure 8-11, and Figure 8-12, our static strategy is able to guarantee the 

latency requirement in all cases with the lowest storage and transfer cost comparing to 

the other strategies. Furthermore, as claimed for Facebook dataset, the only strategy, 

except costly full replication (A4) and social locality (A11) based strategies, that can 

guarantee the acceptable latency for 99 and 99.9 percentiles of all requests with a low 

cost is our greedy algorithm for set cover strategy (A12). 
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Figure 8-9. Comparison of different strategies with latency requirement of 90% 

lower than 250 ms for Gowala 

 

Figure 8-10. Comparison of different strategies with latency requirement of 95% 

lower than 250 ms for Gowala 
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Figure 8-11. Comparison of different strategies with latency requirement of 99% 

lower than 250 ms for Gowala 

 

Figure 8-12. Comparison of different strategies with latency requirement of 99.9% 

lower than 250 ms for Gowala 

8.2.3 Analyses of the Static Results 

Based on our experimental results, we discuss the superiority of our static strategy from 

two aspects. Section 8.2.3.1 shows the efficiency of our strategy by comparing the latency 
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of our strategy with other strategies as well as evaluating the time overhead of our strategy. 

The effectiveness of our strategy is shown in Section 8.2.3.2 by comparing the cost of our 

strategy with other strategies.  

8.2.3.1 Efficiency evaluation 

Efficiency of our strategy can be evaluated in terms of 1) the time it takes for every user 

and all his/her friends to access his/her data, i.e. latency, and 2) the time it takes to run the 

algorithm, i.e. time overhead. It is not only necessary to guarantee the latency requirement 

for all users by having an optimal data placement and replication, but also to find the 

optimal data placement and replication in an acceptable time. 

From the latency requirement perspective, our strategy is able to guarantee the latency 

requirement in all cases. The latency requirement is calculated by having P, i.e. 

percentile and latency requirements and our strategy finds the minimum number of 

replicas to fulfil the latency requirement for every user.  

As shown in Figure 8-5 to Figure 8-8 for the Facebook dataset, and Figure 8-9 to Figure 

8-12 for the Gowala dataset, with 90 and 95 percentile latency requirements, some 

strategies such as friend-based and request-based strategies can guarantee the latency 

requirement in some cases. However, our strategy can guarantee the latency with much 

lower storage and transfer cost. Moreover, the only strategy, except costly full 

replication and social locality based strategies, that can guarantee the acceptable 

latency for 99 and 99.9 percentiles of all requests with a reasonable cost is our greedy 

algorithm for set cover strategy. The results for Gowala dataset are consistent with the 

Facebook results. 

We used a computer system with Intel core i5-4570 CPU, 8 GB RAM Memory, and 

windows 7 operating system for our simulations. The time it takes for our strategy to fulfil 

different latency requirements is around 10 seconds for Facebook dataset with 63,731 

users and around 12 seconds for Gowala dataset with 196,591 users. This shows that our 

strategy is extremely efficient and does not jeopardise the time taken to build the solution 

in order to have efficient results. 
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8.2.3.2 Effectiveness evaluation 

Effectiveness of our strategy can be evaluated in terms of the total cost of the data 

placement and replication. Data storage and transfer cost in US dollar for one month are 

shown in Figure 8-5 to Figure 8-8 for the Facebook dataset and Figure 8-9 to Figure 

8-12 for the Gowala dataset. Based on the costs, our strategy can find the minimised 

storage and transfer cost while guaranteeing the latency requirement for different 

percentile of requests based on the latency requirements. Several strategies are able to 

guarantee the latency requirement of 90% and 95% lower than 250 ms, however, our 

strategy is the most affordable one. For high latency requirement of 99% and 99.9%, the 

only strategies being able to guarantee the latency requirement are full replication strategy, 

the social locality based strategy and our strategy with a significant amount of cost saving 

comparing to the previous two strategies. The full replication and social locality-based 

strategies are much more expensive than our strategy which is quite significant. 

8.3 Simulation Results for Dynamic Data Placement and 

Replication 

In the experiments for our dynamic strategy, we simulate a social network over one 

year as close to reality as possible by using real world data. We considered 365 time 

periods, denoted as “timeslots” in the experiments, and each takes about 100 seconds 

and is mapped to one physical day in order to simulate a real social network over one 

year. In every timeslot, all scenarios introduced in Section 7.2.2 could possibly happen 

at any time during the timeslot and the solution is adapted on the fly once these changes 

occur. At the end of every timeslot, the solution is adapted based on the scenarios 

introduced in Section 7.2.3. The growth rate of the users is considered as 18 percent 

increase year over year, based on a Facebook report published in May 2017 [108]. We 

consider 28 percent of the friends for different users as the initial number of the friends 

based on a report indicating 28 percent of the friends for every user to be “genuine”, 

or close friends [109]. The number of friends is randomly increased over time because 

the growth rate of the friends depends on factors such as days they were active, content 

uploaded, and so on [110]. We assume dynamic scenarios randomly happen during 
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different timeslots based on the frequency of nine scenarios (S1 to S9), as described in 

Chapter 3. The activeness levels and access frequencies may change at the end of each 

timeslot. Addition and removal of datacentres are considered to happen only once 

during our entire simulations. 

The cost and latency for static, dynamic, and full replication strategies are compared 

at the end of different timeslots. Our original static strategy is our reference strategy, 

which finds the static solution from scratch based on the existing setting in every 

timeslot. Our dynamic strategy adapts the solution of the previous timeslot based on 

all the changes during the current timeslot. The full replication strategy is to have 

replication of data in all datacentres, which has the lowest possible latency but incurs 

the highest cost. The results are analysed based on the cost and latency and several 

settings are used to compare the results. These settings are based on the latency 

requirement for users and their friends to access data. Latency requirement is defined 

as: “Pth percentile of all individual requests must be accessed in the acceptable 

latency”. This means that over P percent of the individual latencies are no more than 

the acceptable latency. Requirements are set as 90%, 95%, 99% and 99.9% of 

individual latencies no more than 250 ms. 

The simulation results for our dynamic strategy using Facebook and Gowala datasets 

are presented in Sections 8.3.1 and 8.3.2, and the results are analysed from two aspects 

of efficiency and effectiveness in Section 8.3.3.  

8.3.1 Results for the Facebook Dataset 

Different combinations of dynamic scenarios for the eager and lazy adaptations and 

the combination of eager and lazy adaptations for the Facebook dataset were 

considered and the results for dynamic, static and full replication strategies are 

compared in this section. 

8.3.1.1 Simulation results for eager adaptation 

We simulated four different combinations of the scenarios for the eager adaptation. 

The first experiment (Figure 8-13) was to keep the datacentres and locations fixed and 
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to start from an initial number of connections and add new users and friends until 

covering all the friends and users. 

 

Figure 8-13. Comparing cost and latency when new users and friends are added 

The update time for adapting the solution when a new user/friends has joined is around 

0.14 ms. In Figure 8-13, our dynamic strategy can fulfil the latency requirement of 250 

ms for: 

 90 percentile of the requests with a competitive ratio of 0.98 comparing to the 

static strategy, which is up to 26% lower than the cost of the full replication 

strategy. 

 95 percentile of the requests with a competitive ratio of 1 comparing to the 

static strategy, which is up to 24% lower than the cost of the full replication 

strategy. 
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 99 percentile of the requests with a competitive ratio of 0.96 comparing to the 

static strategy, which is up to 26% lower than the cost of the full replication 

strategy. 

 99.9 percentile of the requests with a competitive ratio of 0.95 comparing to 

the static strategy, which is up to 24% lower than the cost of the full replication 

strategy. 

The second experiment (Figure 8-14) was to keep the datacentres and locations fixed 

and to start from the total number of users and friends and delete friends and users 

during different timeslots.  

 
Figure 8-14. Comparing cost and latency when users and friends are removed 

The update time for adapting the solution when an existing user/friends has left is 

around 2.8 ms. In Figure 8-14, our dynamic strategy can fulfil the latency requirement 

of 250 ms for: 
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 90 percentile of the requests with a competitive ratio of 0.94 comparing to the 

static strategy, which is up to 23% lower than the cost of the full replication 

strategy. 

 95 percentile of the requests with a competitive ratio of 0.98 comparing to the 

static strategy, which is up to 20% lower than the cost of the full replication 

strategy. 

 99 percentile of the requests with a competitive ratio of 0.93 comparing to the 

static strategy, which is up to 22% lower than the cost of the full replication 

strategy. 

 99.9 percentile of the requests with a competitive ratio of 0.95 comparing to 

the static strategy, which is up to 21% lower than the cost of the full replication 

strategy. 

The next experiment (Figure 8-15) was to keep the users, friends and datacentres fixed 

and to start from the total number of users and friends and change the location of 

random users in different time during different timeslots.  

The update time for adapting the solution when a user has moved is around 12.4 ms. 

In Figure 8-15, our dynamic strategy can fulfil the latency requirement of 250 ms for: 

 90 percentile of the requests with a competitive ratio of 0.94 comparing to the 

static strategy, which is up to 23% lower than the cost of the full replication 

strategy. 

 95 percentile of the requests with a competitive ratio of 0.97 comparing to the 

static strategy, which is up to 21% lower than the cost of the full replication 

strategy. 

 99 percentile of the requests with a competitive ratio of 0.93 comparing to the 

static strategy, which is up to 22% lower than the cost of the full replication 

strategy. 
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 99.9 percentile of the requests with a competitive ratio of 0.94 comparing to 

the static strategy, which is up to 20% lower than the cost of the full replication 

strategy. 

 

Figure 8-15. Comparing cost and latency when users move 

Finally, the last experiment related to the eager adaptation (Figure 8-16 and Figure 

8-17) was to keep the users, friends and locations fixed and to start with the total 

number of users and friends and 1) the complete list of datacentres, remove datacentres 

one by one, and 2) the minimum number of datacentres, add datacentres one by one. 

The update time for adapting the solution when a new datacentre is added is around 

0.21 seconds. In Figure 8-16, our dynamic strategy can fulfil the latency requirement 

of 250 ms for: 
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 90 percentile of the requests with a competitive ratio of 0.99 comparing to the 

static strategy, which is up to 25% lower than the cost of the full replication 

strategy. 

 95 percentile of the requests with a competitive ratio of 0.97 comparing to the 

static strategy, which is up to 24% lower than the cost of the full replication 

strategy. 

 99 percentile of the requests with a competitive ratio of 0.95 comparing to the 

static strategy, which is up to 26% lower than the cost of the full replication 

strategy. 

 99.9 percentile of the requests with a competitive ratio of 0.96 comparing to 

the static strategy, which is up to 26% lower than the cost of the full replication 

strategy. 

 

Figure 8-16. Comparing cost and latency when datacentres are added 
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Figure 8-17. Comparing cost and latency when datacentres are removed 

The update time for adapting the solution when an existing datacentre is removed is 

around 0.55 seconds. In Figure 8-17, our dynamic strategy can fulfil the latency 

requirement of 250 ms for: 

 90 percentile of the requests with a competitive ratio of 1.02 comparing to the 

static strategy, which is up to 9% lower than the cost of the full replication 

strategy. The competitive ratio in some of the cases such as this case is greater 

than 1, which means the cost found by our dynamic strategy is lower than the 

cost that could be found by our static strategy. This could happen sometimes 

because of the stabilisation step in our dynamic strategy, which may remove 

some of the replicas and decrease the total cost. 

 95 percentile of the requests with a competitive ratio of 1.03 comparing to the 

static strategy, which is up to 7% lower than the cost of the full replication 

strategy. 
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 99 percentile of the requests with a competitive ratio of 1.01 comparing to the 

static strategy, which is up to 5% lower than the cost of the full replication 

strategy. 

 99.9 percentile of the requests with a competitive ratio of 1.01 comparing to 

the static strategy, which is up to 4% lower than the cost of the full replication 

strategy. 

8.3.1.2 Simulation results for lazy adaptation 

For lazy adaptation, the cost and latency of the latest solution with the new workload 

and access frequencies in different time periods, by applying different strategies as 

static, dynamic, and full replication are shown and compared in Figure 8-18. 

The update time for adapting the solution for all of the users when the activeness levels 

and access frequency rates are updated is around 0.08 seconds, which equals to about 

only 0.0013 ms for every user. In Figure 8-18, our dynamic strategy can fulfil the 

latency requirement of 250 ms for: 

 90 percentile of the requests with a competitive ratio of 0.98 comparing to the 

static strategy, which is up to 11% lower than the cost of the full replication 

strategy. 

 95 percentile of the requests with a competitive ratio of 1.01 comparing to the 

static strategy, which is up to 10% lower than the cost of the full replication 

strategy. 

 99 percentile of the requests with a competitive ratio of 0.96 comparing to the 

static strategy, which is up to 10% lower than the cost of the full replication 

strategy. 

 99.9 percentile of the requests with a competitive ratio of 0.99 comparing to 

the static strategy, which is up to 6% lower than the cost of the full replication 

strategy. 
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Figure 8-18. Comparing cost and latency when activeness levels and access 

frequencies are changed 

In Figure 8-19, the latency of the existing solution with the new activeness levels and 

access frequency rates is compared with the latency of our adapted solution as well as 

the static strategy and full replication. As it is shown, the latency of the existing 

solution with the new activeness levels and access frequency rates is greater than the 

desirable latency in the first few timeslots. However, our dynamic strategy can adapt 

the solution to fulfil the latency requirement of 250 ms after a few timeslots. Moreover, 

by adding more replicas to fulfil the latency requirement during the time, our dynamic 

strategy is capable of fulfilling the latency requirement without any adaptation needed 

after being adapted for a few timeslots. 
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Figure 8-19. Comparing latency before and after adaptation when activeness 

levels and access frequencies are changed 

8.3.1.3 Simulation results for the combination of eager and lazy adaptations 

All the scenarios are combined and simulated together for 90, 95, 99, 99.9 percentiles 

of latencies and the cost and latency of static, dynamic, and full replication are shown 

in Figure 8-20. Frequency of the scenarios in different timeslots is shown in Table 8-2. 

Table 8-2. Frequency of different scenarios 

Scenario Frequency in every timeslot 

S1 Average of 3.6 MB of data is added for every user during every 

timeslot  

S2 At the end of each timeslot 

S3 and S4 18%/365 (0.05%) of the initial users and random number of 

friends are added in each timeslot which is more than 3000 new 
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connections during each timeslot 

S5  Random new rates at the end of each timeslot 

S6 Random number of friendships between 0-6 in different times 

during each timeslot 

S7 Random number of users between 0-2 in different times during 

each timeslot 

S8 Random number of users between 0-1 in different times during 

each timeslot 

S9 Once randomly in 365 timeslots 

 

 

Figure 8-20. Comparing cost and latency when all different scenarios happen 

In Figure 8-20, our dynamic strategy can fulfil the latency requirement of 250 ms for: 
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 90 percentile of the requests with a competitive ratio of 0.96 comparing to the 

static strategy, which is up to 26% lower than the cost of the full replication 

strategy. 

 95 percentile of the requests with a competitive ratio of 0.98 comparing to the 

static strategy, which is up to 24% lower than the cost of the full replication 

strategy. 

 99 percentile of the requests with a competitive ratio of 0.95 comparing to the 

static strategy, which is up to 26% lower than the cost of the full replication 

strategy. 

 99.9 percentile of the requests with a competitive ratio of 0.95 comparing to 

the static strategy, which is up to 24% lower than the cost of the full replication 

strategy. 

Recourse, i.e. the number of changes for every user’s solution to be adapted based on 

any changes in different scenarios is either 0 or 1 which means there is at most 1 

change in the replicas in order to adapt the solution based on the changes. 

The total cost for our static strategy, our dynamic strategy, and the full replication, as 

well as the cost ratio between the dynamic strategy and its static counterpart, and the 

cost saving of our dynamic strategy comparing to the full replication for different 

latency requirements for Facebook dataset are detailed in Table 8-3. 

Table 8-3. Cost analysis for Facebook dataset 

Exp Percentiles Static 
strategy 
cost ($) 

Full 
replication 
cost ($) 

Dynamic 
strategy 
cost ($) 

Cost 
ratio of 
dynamic 
and static 
strategies 

Cost 
saving 

Cost 
saving 
percentage 
(%) 

1  
(S1, 
S2, 
S3, 
S4) 

90 380766.09 496964.69 372753.71 0.98 124210.98 25% 

95 334634.75 441634.84 335182.06 1 106452.78 24% 

99 387937.89 497383.31 370537.16 0.96 126846.15 26% 

99.9 404881.58 501459.48 383382.63 0.95 118076.85 24% 

2  
(S1, 
S2, 

90 405454.24 496350.93 382230.35 0.94 114120.58 23% 

95 404300.69 493516.73 394477.3 0.98 99039.43 20% 
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S6, 
S8) 

99 414441.99 496046.94 385586.63 0.93 110460.31 22% 

99.9 400937.81 482986.17 381290.07 0.95 101696.1 21% 

3  
(S1, 
S2, 
S7) 

90 417339.72 508787.82 392168.24 0.94 116619.58 23% 

95 409832.08 506897.25 399479.76 0.97 107417.49 21% 

99 424052.2 508740.82 395316.77 0.93 113424.05 22% 

99.9 432342.18 509097.81 405441.91 0.94 103655.9 20% 

4 
(S9.1) 

90 1058.0496 1400.0555 1046.5833 0.99 353.4722 25% 

95 1081.3878 1389.0609 1051.9933 0.97 337.0676 24% 

99 1084.443 1386.9013 1025.9151 0.95 360.9862 26% 

99.9 1064.7419 1382.2356 1022.5903 0.96 359.6453 26% 

5 
(S9.2) 

90 1001.8019 1118.7906 1018.0418 1.02 100.7488 9% 

95 1014.5766 1114.7224 1041.7794 1.03 72.943 7% 

99 1039.0849 1101.9359 1047.6728 1.01 54.2631 5% 

99.9 1072.4125 1121.4175 1079.5174 1.01 41.9001 4% 

6  
(S1, 
S2, 
S5) 

90 363965.81 400395.23 358111.92 0.98 42283.31 11% 

95 363162.29 407724.74 365919.21 1.01 41805.53 10% 

99 380353.59 404473.1 365960.1 0.96 38513 10% 

99.9 389404.58 408162.22 383825.04 0.99 24337.18 6% 

7  
(S1-
S9) 

90 348031.6 449739.7 332636.64 0.96 117103.06 26% 

95 315757.75 410493.22 310194.43 0.98 100298.79 24% 

99 342650.03 437825.46 324613.36 0.95 113212.1 26% 

99.9 384529.13 484724.11 367192.58 0.95 117531.53 24% 

8.3.2 Results for the Gowala Dataset 

Similarly, the simulation results for the eager and lazy adaptations and the combination 

of eager and lazy adaptations for the Gowala dataset are presented in this section. 
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8.3.2.1 Simulation results for eager adaptation 

We simulated four different combinations of the scenarios for the eager adaptation. 

The first experiment (Figure 8-21) was to keep the datacentres and locations fixed and 

to start from an initial number of connections and add new users and friends until 

covering all the friends and users. 

 

Figure 8-21. Comparing cost and latency when new users and friends are added 

The update time for adapting the solution when a new user/friends has joined is around 

0.66 ms. In Figure 8-21, our dynamic strategy can fulfil the latency requirement of 250 

ms for: 

 90 percentile of the requests with a competitive ratio of 0.99 comparing to the 

static strategy, which is up to 15% lower than the cost of the full replication 

strategy. 
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 95 percentile of the requests with a competitive ratio of 0.99 comparing to the 

static strategy, which is up to 16% lower than the cost of the full replication 

strategy. 

 99 percentile of the requests with a competitive ratio of 0.98 comparing to the 

static strategy, which is up to 14% lower than the cost of the full replication 

strategy. 

 99.9 percentile of the requests with a competitive ratio of 0.98 comparing to 

the static strategy, which is up to 14% lower than the cost of the full replication 

strategy. 

The second experiment (Figure 8-22) was to keep the datacentres and locations fixed 

and to start from the total number of users and friends and delete friends and users 

during different timeslots.  

 

Figure 8-22. Comparing cost and latency when users and friends are removed 
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The update time for adapting the solution when an existing user/friends has left is 

around 5.1 ms. In Figure 8-22, our dynamic strategy can fulfil the latency requirement 

of 250 ms for: 

 90 percentile of the requests with a competitive ratio of 1 comparing to the 

static strategy, which is up to 19% lower than the cost of the full replication 

strategy. 

 95 percentile of the requests with a competitive ratio of 1 comparing to the 

static strategy, which is up to 20% lower than the cost of the full replication 

strategy. 

 99 percentile of the requests with a competitive ratio of 1 comparing to the 

static strategy, which is up to 15% lower than the cost of the full replication 

strategy. 

 99.9 percentile of the requests with a competitive ratio of 1 comparing to the 

static strategy, which is up to 16% lower than the cost of the full replication 

strategy. 

The next experiment (Figure 8-23) was to keep the users, friends and datacentres fixed 

and to start from the total number of users and friends and change the location of 

random users in different time during different timeslots.  

The update time for adapting the solution when a user has moved is around 0.53 

seconds. In Figure 8-23, our dynamic strategy can fulfil the latency requirement of 250 

ms for: 

 90 percentile of the requests with a competitive ratio of 1 comparing to the 

static strategy, which is up to 19% lower than the cost of the full replication 

strategy. 

 95 percentile of the requests with a competitive ratio of 1 comparing to the 

static strategy, which is up to 19% lower than the cost of the full replication 

strategy. 
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 99 percentile of the requests with a competitive ratio of 1 comparing to the 

static strategy, which is up to 15% lower than the cost of the full replication 

strategy. 

 99.9 percentile of the requests with a competitive ratio of 1 comparing to the 

static strategy, which is up to 15% lower than the cost of the full replication 

strategy. 

 

Figure 8-23. Comparing cost and latency when users move 

Finally, the last experiment related to the eager adaptation (Figure 8-24 and Figure 

8-25) and was to keep the users, friends and locations fixed and to start with the total 

number of users and friends and 1) the complete list of datacentres, remove datacentres 

one by one, and 2) the minimum number of datacentres, add datacentres one by one.  
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Figure 8-24. Comparing cost and latency when datacentres are added 

The update time for adapting the solution when a new datacentre is added is around 

4.8 seconds. In Figure 8-24, our dynamic strategy can fulfil the latency requirement of 

250 ms for: 

 90 percentile of the requests with a competitive ratio of 0.99 comparing to the 

static strategy, which is up to 18% lower than the cost of the full replication 

strategy. 

 95 percentile of the requests with a competitive ratio of 1 comparing to the 

static strategy, which is up to 22% lower than the cost of the full replication 

strategy. 

 99 percentile of the requests with a competitive ratio of 1 comparing to the 

static strategy, which is up to 21% lower than the cost of the full replication 

strategy. 
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 99.9 percentile of the requests with a competitive ratio of 1 comparing to the 

static strategy, which is up to 22% lower than the cost of the full replication 

strategy. 

 

Figure 8-25. Comparing cost and latency when datacentres are removed 

The update time for adapting the solution when an existing datacentre is removed is 

around 4.5 seconds. In Figure 8-25, our dynamic strategy can fulfil the latency 

requirement of 250 ms for: 

 90 percentile of the requests with a competitive ratio of 0.97 comparing to the 

static strategy, which is up to 10% lower than the cost of the full replication 

strategy. 

 95 percentile of the requests with a competitive ratio of 0.99 comparing to the 

static strategy, which is up to 10% lower than the cost of the full replication 

strategy. 
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 99 percentile of the requests with a competitive ratio of 1 comparing to the 

static strategy, which is up to 6% lower than the cost of the full replication 

strategy. 

 99.9 percentile of the requests with a competitive ratio of 1 comparing to the 

static strategy, which is up to 7% lower than the cost of the full replication 

strategy. 

8.3.2.2 Simulation results for lazy adaptation 

For lazy adaptation, the cost and latency of the latest solution with the new workload 

and access frequencies in different time periods, by applying different strategies as 

static, dynamic, and full replication are shown and compared in Figure 8-26. 

The update time for adapting the solution for all of the users when the activeness levels 

and access frequency rates are updated is around 0.33 seconds, which equals to 0.0017 

ms for every user. In Figure 8-26, our dynamic strategy can fulfil the latency 

requirement of 250 ms for: 

 90 percentile of the requests with a competitive ratio of 1.02 comparing to the 

static strategy, which is up to 19% lower than the cost of the full replication 

strategy. 

 95 percentile of the requests with a competitive ratio of 0.95 comparing to the 

static strategy, which is up to 21% lower than the cost of the full replication 

strategy. 

 99 percentile of the requests with a competitive ratio of 0.95 comparing to the 

static strategy, which is up to 17% lower than the cost of the full replication 

strategy. 

 99.9 percentile of the requests with a competitive ratio of 0.98 comparing to 

the static strategy, which is up to 16% lower than the cost of the full replication 

strategy. 
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Figure 8-26. Comparing cost and latency when activeness levels and access 

frequencies are changed 

In Figure 8-27, the latency of the existing solution with the new activeness levels and 

access frequency rates is compared with the latency of our adapted solution as well as 

the static strategy and full replication. As it is shown, the latency of the existing data 

placement and replication is greater than the desirable latency when the activeness 

levels and access frequencies change. However, our dynamic strategy is able to adapt 

the solution to fulfil the latency requirement of 250 ms. 
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Figure 8-27. Comparing latency before and after adaptation when activeness 

levels and access frequencies are changed 

8.3.2.3 Simulation results for the combination of eager and lazy adaptations 

All the scenarios are combined and simulated together for 90, 95, 99, 99.9 percentiles 

of latencies and the cost and latency of static, dynamic, and full replication are shown 

in Figure 8-28. Frequency of the scenarios in different timeslots is considered the same 

as the Facebook dataset. 

In Figure 8-28, our dynamic strategy can fulfil the latency requirement of 250 ms for: 

 90 percentile of the requests with a competitive ratio of 0.99 comparing to the 

static strategy, which is up to 16% lower than the cost of the full replication 

strategy. 
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 95 percentile of the requests with a competitive ratio of 0.98 comparing to the 

static strategy, which is up to 16% lower than the cost of the full replication 

strategy. 

 99 percentile of the requests with a competitive ratio of 0.98 comparing to the 

static strategy, which is up to 15% lower than the cost of the full replication 

strategy. 

 99.9 percentile of the requests with a competitive ratio of 0.98 comparing to 

the static strategy, which is up to 15% lower than the cost of the full replication 

strategy. 

 

Figure 8-28. Comparing cost and latency when all different scenarios happen 

Recourse, i.e., the number of changes for every user’s solution to be adapted based on 

any changes in different scenarios is either 0 or 1 which means there is at most 1 change 

in the replicas in order to adapt the solution based on the changes. 
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The total cost for our static strategy, our dynamic strategy, and the full replication, as 

well as the cost ratio between the dynamic strategy and its static counterpart, and the 

cost saving of our dynamic strategy comparing to the full replication for different 

latency requirements for the Gowala dataset are detailed in Table 8-4. 

Table 8-4. Cost Analysis for Gowala dataset 

Exp Percentiles Static 
strategy 
cost ($) 

Full 
replication 
cost ($) 

Dynamic 
strategy 
cost ($) 

Cost 
ratio of 
dynamic 
and 
static 
strategies 

Cost saving Cost 
saving 
percentage 
(%) 

1  
(S1, 
S2, 
S3, 
S4) 

90 326594.64 382233.451 324063.12 0.99 58170.331 15% 

95 324409.25 379966.633 320266.25 0.99 59700.383 16% 

99 341905.71 392509.07 335725.92 0.98 56783.15 14% 

99.9 333848.79 381893.975 327916.43 0.98 53977.545 14% 

2  
(S1, 
S2, 
S6, 
S8) 

90 466053.15 577082.268 465372.87 1 111709.398 19% 

95 465421.17 579821.216 464303.04 1 115518.176 20% 

99 488985.82 574291.312 487796.47 1 86494.842 15% 

99.9 491009.26 581944.028 489772.06 1 92171.968 16% 

3  
(S1, 
S2, 
S7) 

90 472580.53 584597.569 470819.63 1 113777.939 19% 

95 470037.57 580026.27 468977.37 1 111048.9 19% 

99 492837.63 579686.627 491599.09 1 88087.537 15% 

99.9 495724.03 580347.977 494268.39 1 86079.587 15% 

4 
(S9.1) 

90 1353.1347 1630.8322 1343.3977 0.99 287.4345 18% 

95 1266.4076 1615.725 1264.1265 1 351.5985 22% 

99 1293.627 1623.7828 1289.073 1 334.7098 21% 

99.9 1270.6456 1614.5606 1266.8331 1 347.7275 22% 

5 
(S9.2) 

90 1302.2666 1411.8575 1265.0884 0.97 146.7691 10% 

95 1283.4914 1409.5781 1270.6925 0.99 138.8856 10% 
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99 1362.8993 1450.9343 1359.115 1 91.8193 6% 

99.9 1306.9607 1414.0458 1310.214 1 103.8318 7% 

6  
(S1, 
S2, 
S5) 

90 467467.91 586898.336 475435.64 1.02 111462.696 19% 

95 486585.29 584489.162 461566.83 0.95 122922.332 21% 

99 514631.26 589425.747 490832.7 0.95 98593.047 17% 

99.9 486459 572676.379 478718.78 0.98 93957.599 16% 

7  
(S1-
S9) 

90 369869.1 431594.791 364631.77 0.99 66963.021 16% 

95 343596.21 399887.491 335953.34 0.98 63934.151 16% 

99 346568.05 400886.698 341079.24 0.98 59807.458 15% 

99.9 343869.34 394439.892 336132.93 0.98 58306.962 15% 

8.3.3 Analysis of the Dynamic Results 

Based on the results, the superiority of our dynamic strategy is discussed from two aspects 

in this section. Section 8.3.3.1 shows the efficiency of our strategy by comparing the 

latency of our strategy with other strategies as well as evaluating the time overhead of our 

strategy. The effectiveness of our strategy is shown in Section 8.3.3.2 by comparing the 

cost of our strategy with other strategies as well as presenting the competitive ratio and 

recourse.  

8.3.3.1 Efficiency evaluation 

Efficiency of our strategy can be evaluated in terms of 1) the time it takes for every 

user and all their friends to access their data, i.e., latency, and 2) the time it takes to 

run the algorithm and do the adaptation, i.e., time overhead. It is necessary to not only 

guarantee the latency requirement for all users by having an optimal data placement 

and replication, but also find the optimal data placement and replication in an 

acceptable time. 

From the latency requirement perspective, our strategy is able to guarantee the latency 

requirement in all cases. The latency requirement is calculated by having P, i.e., 

percentile, and delay, i.e., acceptable latency requirements. Our strategy finds the 
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minimum number of replicas to fulfil the latency requirement for every user. As shown 

in Figure 8-13 to Figure 8-20 for the Facebook dataset and Figure 8-21 to Figure 8-28 

for the Gowala dataset, our strategy can guarantee the latency with much lower total 

cost.  

Moreover, our dynamic strategy is efficient in terms of time overhead. For our 

simulations, six virtual machines on our local cloud testbed, all with Intel core i5-

4570 CPU, 8 GB RAM Memory, and windows 7 operating system are used. The time 

it takes for the static strategy to find the initial data placement and replication is about 

10 seconds and the time it takes for our dynamic strategy to adapt the solution, as 

shown in Table 8-5, for the most frequent scenarios of updating data and joining new 

users/friends is around 0.00014 seconds for the Facebook dataset. For the Gowala 

dataset, it takes about 12 seconds to find the initial data placement and replication 

using the static strategy and around 0.00066 seconds to adapt the solution for these 

most dominant scenarios. Therefore, the results show that it takes only around 0.00014 

seconds for adapting the solution whilst without having a dynamic strategy to adapt 

the solution; it takes around 10 seconds by using the static strategy to reconstruct the 

solutions. Thus, our dynamic strategy is about 70000 times more efficient 

(10s/0.00014s) than reconstructing the solution by the static strategy for Facebook 

dataset and about 18000 times more efficient (12s/0.00066s) than applying the static 

strategy for the Gowala dataset.  

Our experiments show that although our static strategy is effective and efficient, our 

dynamic data placement and replication strategy is required to make it practical in 

dynamic environments with very frequent changes needed. Update time of different 

scenarios, shown in Table 8-5, shows that our dynamic strategy is extremely efficient 

and does not jeopardise the time taken to build the solution in order to have efficient 

results. Since Exp7 is a mixture of different scenarios and the number and frequency 

of scenarios are different, it does not make sense to measure and show the update time 

of Exp7. As results show, our dynamic strategy can save a lot of time comparing to 

the static data placement and replication strategy.  
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Table 8-5. Update time of different scenarios 

Update Time  
(Seconds) 

Exp1 
(S1, S2, 
S3, S4) 

Exp2 
(S1, S2, 
S6, S8) 

Exp3 
(S1, S2, 

S7) 

Exp4 
(S9.1) 

Exp5 
(S9.2) 

Exp6 
(S1, S2, 

S5) 

Facebook 0.00014 0.0028 0.0124 0.21 0.55 0.08 
Gowala 0.00066 0.0051 0.53 4.8 4.5 0.33 

 

8.3.3.2 Effectiveness evaluation 

Effectiveness of our strategy can be evaluated in terms of 1) the total cost of the data 

placement and replication, 2) the ratio between the cost of our strategy and the optimal 

strategy, i.e., competitive ratio, and 3) the number of replicas added or dropped from 

the solution, i.e., recourse.  

As shown in Figure 8-13 to Figure 8-20 for the Facebook dataset and Figure 8-21 to 

Figure 8-28 for the Gowala dataset, our strategy can find the minimised storage, 

transfer, and update cost while guaranteeing the latency requirement for different 

percentiles of individual requests based on the latency requirements. Percentages of 

cost savings comparing to the full replication strategy are shown in Table 8-6. The 

cost saving percentages for different percentiles of latencies are calculated after 

finishing the experiments, which is 365 timeslots for all the scenarios. Exp4 (adding 

datacentres) and Exp5 (removing datacentres) happen only once during the 

experiments. As shown in Table 8-6, our strategy can save up to 26% comparing to 

the full replication i.e., $5 billion out of $21 billion cost saving per month for the real 

size of Facebook with 2.80 billion users [1]. 

Table 8-6. Cost analysis of different scenarios 

Cost  
Saving (%) 

Exp1 
 

Exp2 
 

Exp3 
 

Exp4 
 

Exp5 
 

Exp6 
 

Exp7 
 

Facebook 26 23 23 26 9 11 26 
Gowala 16 20 19 22 10 21 16 

The cost ratio between the dynamic strategy and its static counterpart is close to 1 for 

both Facebook and Gowala datasets in all scenarios. This shows our dynamic strategy 

finds a solution as good as the static strategy. As discussed in Section 5.3.2, by having 

dynamic to static ratio of 1, the competitive ratio for the dynamic set cover strategy 
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will be log(n). This means the solution of our dynamic strategy, in the worst case, is 

log(n) times worse than the optimal solution. 

Finally, recourse, i.e., the number of changes for every user’s solution to be adapted 

in different scenarios is either 0 or 1 which means there is at most 1 change in the 

replicas in order to adapt the solution. This is a very promising outcome as 

creating/deleting replicas incurs extra cost, latency and inconsistency. 

Based on this analysis, we determine that our dynamic strategy is able to find an 

efficient and effective solution without applying a static data placement and 

replication from scratch for every change. Therefore, our dynamic strategy is practical 

for dynamic environments efficiently and effectively. 

8.4 Threats to Validity 

There are several threads to the construct, internal and external validity of our 

simulation for the results. We discuss the threats to the construct validity, followed by 

the threats to the internal and external validities. 

The main threat to the construct validity of our strategy evaluation is the 

comprehensiveness of both our static and dynamic comparisons. Greedy algorithm, 

which is used as the basis in our static strategy, is one of the most effective heuristic 

algorithms to solve the set cover problem [104]. We have proved that our greedy 

algorithm finds a solution no worse than any other arbitrary solution found by any 

other algorithm in polynomial time and cannot be beaten by any polynomial-time 

algorithm (under standard complexity assumptions) [103]. In addition, the main threat 

to the construct validity for our static data placement and replication is whether the 

comparison with the other data placement and replication strategies can properly 

demonstrate the success of our static strategy in finding a cost effective and latency 

efficient solution. Moreover, for our dynamic data placement and replication, the main 

threat to construct validity is whether the comparison with our static data placement 

and replication and full replication strategies can properly demonstrate the 

effectiveness of our static strategy in finding a cost effective and latency efficient 

solution over time. To minimise this threat, other than the strategies used in literature, 
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several extra strategies that make use of a variety of factors such as distance, friends’ 

locations, and requests locations are also considered and compared. Furthermore, to 

measure our objectives, the measured factors of cost and latency are based on real cost 

and latency of Amazon datacentres. Additionally, for our dynamic strategy, since 

different scenarios may have different effects, we have simulated different 

experiments with different scenarios happening individually or at the same time. By 

doing so, we could evaluate our dynamic strategy by not only comparing with the 

static strategy indirectly, but also demonstrating how the changes in different 

scenarios affect the results obtained by our dynamic strategy. 

The main threat to the internal validity comes from the setting of users’ activeness 

levels. In this thesis, in order to minimise this threat, we set the access frequencies of 

users’ data according to real Facebook statistics on the times of Facebook users 

checking their accounts daily for both Facebook and Gowala datasets. However, the 

real access frequencies in different timeslots should be obtained from system logs, 

where much research has been done in this area [111, 112]. They can be utilised, 

however, it is out of the scope of this thesis. In fact, we argue that real Facebook 

statistics should be close enough to the reality.  

In terms of threat to the external validity, in this thesis, we ran simulations on 

Facebook and Gowala social network datasets (social network graphs) in order to 

demonstrate that our strategy can be utilised in real world applications. The main 

threat to the external validity of our evaluation is the representativeness of the social 

network graphs and the requests assigned to different friends. Social network graphs 

used in the experiments are well-known Facebook social network graph [11] and the 

SNAP location based Gowala social network graph [12]. We used Facebook, as one 

of the market leaders, which is widely used in research and Gowala because of the 

availability of the user locations in this dataset. Hence, we believe that the results are 

valid in evaluating the cost effectiveness of our optimisation based storage strategy. 
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8.5 Summary 

In this chapter, first a brief overview of our experimental settings including the 

benchmarking strategies and case studies is presented. Then, simulation results for both 

our static and dynamic data placement and replication strategies with Facebook and 

Gowala datasets followed by the analysis of the results are detailed. Based on the results 

presented in this chapter, our dynamic strategy is superior from both aspects of efficiency 

and effectiveness. Finally, the construct, internal and external threats to validity of our 

simulation are discussed.  
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Chapter 9  
Conclusions and Future Work 

This chapter summarises the research we have done in this thesis on cost effective 

data placement and replication in the cloud for efficient access of social networks. 

The main findings and key contributions of this research as well as the future work 

are highlighted in this chapter. Section 9.1 presents a summary of the thesis. A 

discussion on the outcomes and impacts is presented in Section 9.2. The key 

contributions of this thesis are then summarised in Section 9.3. Section 9.4 outlines 

the limitations of this research followed by the future work in Section 9.5. Finally, the 

thesis is ended with the concluding remarks in Section 9.6. 

9.1 Summary of This Thesis 

The research objective described in this thesis is to place and replicate the data of 

different social network users in cloud datacentres and dynamically adapt the 

placement and replication based on the changes in the network in order to have a 

minimum cost for social network providers while guaranteeing the latency 

requirement for social network users. The thesis was organised as follows: 

 Chapter 1 introduced the data placement and replication challenges in social 

networks as well as data storage in the cloud, which is the background of this 

research. Chapter 1 also described the aims of this work, the key issues to be 

addressed in this thesis and the primary structure of this thesis. 

 Chapter 2 reviewed the literature in the field of this research including data 

management for social networks, static data placement and replication for 

social network in the cloud, and finally social network dynamic data 
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placement and replication in the cloud.  

 Chapter 3 introduced a motivating example based on a real world popular 

social network, Facebook, and the issues with cost-effective data placement 

and replication for the Facebook social network. Our research problems are 

then identified and analysed based on the motivating example.  

 Chapter 4 presented the preliminary work of GA (Genetic Algorithm) based 

data placement and replication in the cloud. It is then followed by discussing 

the limitations and the later works to overcome these limitations.  

 Chapter 5 presented a problem formulation for our domain of social network 

data placement and replication in the cloud. Moreover, the efficiency and 

effectiveness measures of both static and dynamic strategies, i.e. latency, time 

overhead, cost, competitive ratio, and recourse are introduced and modelled.  

 Chapter 6 introduced our novel strategy for static data placement and 

replication strategy in order to form a foundation for our dynamic data 

placement and replication strategy presented in Chapter 7.  

 Chapter 7 presented our novel strategy for dynamic data placement and 

replication in the cloud. Our strategy is capable of adapting the data placement 

and replication based on the changes in the system and synchronises the 

replicas either on the fly or based on a regular basis depending on the scenario. 

 Chapter 8 demonstrated the experiment results to evaluate both our static and 

dynamic data placement and replication strategies. Our cloud computing 

simulation environment and settings as well as our case studies and the 

benchmarking strategies are introduced in this chapter. Finally, the efficiency 

and effectiveness of our static and dynamic data placement and replication 

strategies are analysed.  
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9.2 Discussion 

The purpose of this research was to analyse and emphasise the importance of data 

storage for social network providers and to highlight how fully replicating data in 

private datacentres can have huge expenses for social network providers over time. It 

also explored state-of-the-arts within this field, and showed how an optimised data 

placement and replication can have invaluable advantages. Our study and findings 

bring the value to social network providers, cloud computing providers, social network 

users and also the businesses directly or indirectly benefiting from social networks. 

The significance of this research is that we have mapped the very complex problem of 

social networks dynamic data placement and replication in the cloud using the well 

known dynamic set cover problem. We have proposed a static strategy which is able to 

find the most effective and efficient solution comparing to the other representative 

counterparts and our dynamic strategy makes our effective and efficient solution 

applicable in dynamic environments where users join, leave, move or change their 

friendships in the social network, and data are added, removed and updated as needed. 

Addition and removal of datacentres are also taken into account. This thesis provided 

a novel way to minimise the cost for social network provider while guaranteeing the 

latency, availability, and consistency requirements for social network users over time.  

Our research results in this thesis show that our novel dynamic data placement and 

replication strategy is able to adapt according to the changing environment at runtime. 

A framework consisting a combination of greedy and dynamic greedy algorithms is 

presented to guarantee that even up to 99.9 percentiles of individual latencies for all 

requests from different users in the social network are unnoticeable with a minimum 

cost for storing, transferring, updating, and synchronising data over time. Our 

proposed approach can produce up to 26% cost savings compared to the full 

replication strategy for meeting latency requirements. All dynamic scenarios that may 

happen in a social network are handled in our strategy. Simulation results on two large-

scale datasets, Facebook and location based Gowala, with latency timings used from 

real Amazon cloud datacentres, show the efficiency and effectiveness of our strategy 

over the duration of one year. 
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9.3 Key Contributions of This Thesis 

In particular, the major contributions of this thesis are: 

1. The cost and latency for social network data placement and replication are 

modelled based on access patterns for real cloud providers. The very complex 

problem of social networks dynamic data placement and replication in the cloud 

is mapped to a well known dynamic set cover problem. 

2. Unnoticeable individual latency of less than 250 ms, based on a research at 

Google [10], is guaranteed, not only for users to access their own data but also 

for all their friends to access their data in contrast with the misleading average 

latency of other works described in the literature.  

3. The Pth percentile requirement of individual access latencies of all requests from 

all users in the social network is fulfilled. Taking individual instead of average 

latencies into account makes our work much more practical and significantly 

distinct from other existing works such as [46] and [54].  

4. The initial minimum number of replicas for every user is found using the greedy 

algorithm for set cover that is shown and proved to be an O(log(n))-

approximation algorithm for the set cover problem. Moreover, the replicas are 

placed in the most appropriate datacentres, and different requests are relayed to 

the best datacentres in order to ensure the latency requirement.  

5. A novel dynamic data placement and replication strategy is presented that is 

able to continuously guarantee the optimality of the social network data 

placement and replication over time. Our dynamic strategy is based on our static 

minimum cost replication strategy in order to make it practical in the real world 

where social networks change rapidly. 

6. To the best of our knowledge, for the first time, a dynamic data placement and 

replication strategy is presented that is able to respond to all the changes 

happening in an online social network on the fly at runtime if required or during 

different time periods in the cloud depending on the scenario.  



148 
 

7. We have evaluated the proposed social network data placement and replication 

algorithms on two large, realistic social networks. 

9.4 Limitations of the Research 

In this section, we highlight the limitations of our study that leads to some possibilities 

for future research in the area of social network data placement and replication. 

 Besides many of the advantages with using cloud computing, there are also 

some potential disadvantages, such as security and privacy, limited control and 

flexibility, technical difficulties and downtime, and lack of datacentres in 

some places. Moreover, cloud datacentres are not necessarily available in 

every single location and not all users can access data form a nearby datacentre 

with a very low latency. 

 The current work in this thesis has an assumption that the workload and access 

frequency rates of different users are obtained from the system log based on 

such as the real Facebook access frequency rates. However, in reality, 

workload of the systems is not always available and needs to be predicted. 

 Quality of service (QoS) requirements such as latency, availability, and 

consistency are considered the same for all the users in the system. However, 

in the real world, some users might have lower or higher tolerance for latency, 

availability, and consistency.  

 The data placement and replication are done for individual users one by one 

in our strategy. However, as the number of users and connections is growing 

rapidly it might be better to divide the users to different groups of similar users 

based on the mutual interests and connections. Then, our data placement and 

replication can be applied to groups of users instead of the individual users. 
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9.5 Future Work 

Based on the limitations of this research, future work can be conducted from the 

following aspects: 

 In order to overcome the disadvantages with cloud computing, hybrid cloud, 

i.e., to use a combination of both cloud and private datacentres can be used. 

Moreover, fog computing [113] which is a decentralised computing 

infrastructure in which data, compute, storage and applications are distributed 

in the most logical, efficient place between the data source and the cloud can 

be used. Fog computing essentially extends cloud computing and services to 

the edge of the network, bringing the advantages and power of the cloud closer 

to the end users and data [114]. Using fog servers can improve the efficiency 

of our strategy in the future. 

 In the future, learning methods will be used in order to predict the workload 

and access frequencies of the friends for the future time periods based on the 

previous time periods.  

 Self-engagement of the users, in which users can be involved in the process of 

data placement and replication, will be implemented in the future. Therefore, 

users can have different QoS requirements and expectations and data 

placement and replication will be done based on the requirements of different 

users. 

 Graph partitioning methods can be applied in the future to shape different 

groups of users based on the mutual interests, connections, usage, etc. Hence, 

our strategy can be more scalable by being applied to the groups of users 

instead of individual users. We will use our graph partitioning strategy 

presented in Appendix B in the future in order to group the social network 

graph to subgraphs of connected users and our static set cover based strategy 

will be used to find the initial data placement and replication for different 

partitions. Our dynamic strategy will then be applied to adapt the solution 

based on the changes in the social network. 
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 In the current experiments, the existing widely used available public Facebook 

and Gowala datasets are used. However, since the public datasets are not as 

large as the real social networks, such as Facebook, in the future, real online 

social network traces will be tracked, collected, analysed, the real statistics 

will be presented, and the experiments will be conducted on the real social 

networks traces. 

9.6 Concluding Remarks 

It is not only crucial to have an optimised data placement and replication to fulfil 

users’ acceptable latency requirement in online social networks while incurring the 

minimum cost for social network providers, but also to keep the data placement and 

replication effective and efficient over the time. Most of the current data storage 

strategies, reviewed in Chapter 2, handle designing optimal strategies for the case 

where the number of contents and the scale of user requests are fixed. This research 

involves a dynamic cost effective data placement and replication strategy in geo-

distributed cloud services for efficient access of online social networks. Finally, this 

research promotes and motivates further research in the field of dynamic and adaptive 

social networks’ data placement and replication. 
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Appendix A 

Latency of Pinging Amazon 

Datacentres in Millisecond by Users 

in Different Regions 

For simulation, real Amazon datacentres in Virginia, California, Oregon, Ireland, 

Frankfurt, Singapore, Sydney, Tokyo, and Sao Paulo are considered. To find the 

latency of different datacentres, we had 19 users in 19 cities all around the world 

pinging different Amazon datacentres from their locations for ten times. The average 

latencies found are shown here. To assign these latencies to a different number of users 

in these locations, we used different normal distributions with the collected latencies 

as the mean for every region for simulation. 

 
 

Table A-1. Latency of pinging Amazon datacentres 

          Datacentre                    

 

Region  

V
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rn
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an
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Albuquerque, 
United States 

115 96 116 229 216 281 259 220 265 

Amaravati, India 243 246 269 182 161 61 353 146 417 

Houston, United 
States 

75 66 88 144 137 240 203 165 198 

Jakarta, 
Indonesia 

295 223 240 364 361 40 203 150 830 
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Lagos, Nigeria 97 157 185 215 222 339 362 263 269 

London, United 
Kingdom 

103 163 150 21 22 279 332 255 211 

Los Angeles, 
United States 

98 33 55 190 199 221 208 156 239 

Manila, 
Philippines 

292 225 255 357 390 270 327 253 425 

Melbourne, 
Australia 

258 212 203 337 334 157 56 247 392 

Montreal, 
Canada 

45 105 118 121 113 291 276 206 178 

Munich, 
Germany 

183 252 250 77 55 316 377 342 369 

Prince George, 
Canada 

101 75 52 187 220 292 252 220 236 

Santa Fe, 
Argentina 

178 221 229 268 260 411 368 316 63 

Sao Paulo, Brazil 127 192 192 196 194 361 328 273 12 

Singapore, 
Singapore 

336 241 297 389 364 17 245 102 482 

Stockholm, 
Sweden 

128 196 188 52 33 384 340 291 266 

Sydney, 
Australia 

305 166 162 317 305 136 13 291 392 

Tokyo, Japan 180 128 129 290 273 98 191 32 307 

West Chester, 
United States 

104 164 149 137 232 337 314 277 244 
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Appendix B 

Our Graph Partitioning Strategy 

In this Appendix, we briefly introduce graph partitioning (GP) in Section B.1. Then, 

our detailed graph-partitioning strategy, which is part of our preliminary work is 

presented in Section B.2. Finally, using of our graph partition strategy to solve the 

data placement and replication problem is discussed in Section B.3. Sections B.1 and 

B.2 are based on a paper presented and published [115] in IEEE ICCC 2017 

conference based on this work. 

B.1 Background 

In this section, we briefly introduce the existing study of graph partitioning and 

repartitioning problems. Conventionally, such problems are studied from a graph 

theoretic and algorithmic perspective. Graph partitioning aims to divide a weighted 

graph into a specified number of partitions in order to minimise either the weights of 

edges that straddle partitions or the inter-partition communication while balancing the 

weights of vertices in each partition [116]; graph repartitioning additionally considers 

the existing partitioning, and pursues the same objective as graph partitioning while 

also minimising the migration costs [117].  

Well known algorithms and solutions to such problems include METIS [118] and 

Scotch [119]. METIS is a multi-level partitioning algorithm that is composed of three 

phases: the coarsening phase, the partitioning phase, and the un-coarsening phase. In 

the coarsening phase, vertices are merged iteratively dictated by some rules and thus 

the size of the original graph becomes smaller and smaller. In the partitioning phase, 

a 2-way partition of the graph is computed that partitions the vertices into two parts, 

each containing half the vertices. In the un-coarsening phase, the partitioned graph is 

projected back to finer graphs iteratively and the partitioning is also refined by 



169 
 

following some algorithms until one gets the finest original graph. Scotch is a software 

package for static mapping based on the recursive bipartitioning of both the source 

process graph and the target architecture graph. 

Graph partitioning methods can be divided to two groups of edge-cut and vertex-cut 

partitioning. Edge-cut partitioning divides vertices of a graph into disjoint partitions 

of almost equal size while a vertex-cut partitioning divides the edges of a graph into 

equal-size partitions. The two endpoint vertices of an edge are also placed in the same 

partition as the edge. However, the vertices are not unique across partitions and they 

can be replicated due to the distribution of their edges across different partitions. A 

good vertex-cut partitioning algorithms is the one with minimum number of replicas 

[120]. Some of the existing algorithms on both edge-cut and vertex-cut partitioning 

are summarised as follows. 

The algorithms in edge-cutting partitioning group can be centralised or distributed. 

Centralised algorithms assume cheap random access to the entire graph despite of the 

distributed algorithms which do not need the information about the whole graph. 

METIS [118] and KAFFPA [121] are some examples in this category using multi-

level graph partitioning. Genetic Algorithm (GA) is used in [122] and [123] in 

addition to the multilevel graph partitioning, and [124] utilises Tabu search. 

Parallelization is a technique used in some researches to accelerate the partitioning 

process. PARMETIS [125] and KAFFPAE [126] are the parallel version of METIS 

[118] and KAFFPA [121] respectively. Although these centralised algorithms are fast 

and able to produce good minimum cuts, they require access to the entire graph at all 

times, which is often impractical for large scale graphs. JA-BE-JA [127], DIDIC [128] 

and CDC [129] are some distributed algorithms for graph partitioning to eliminate 

global operations.  

While there are numerous solutions for edge-cut partitioning, very little attention has 

been given to the vertex-cut partitioning. SBV-Cut [130] is one of the few algorithms 

for vertex-cut partitioning employing hierarchical partitioning of the graph. 

PowerGraph [131] is a distributed graph processing framework that uses vertex-cuts 

to equally assign edges of a graph to multiple machines in order to reduce the 

communication overhead. GraphX [132] is another vertex-cut graph processing 
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system on Spark [133]. Finally, DFEP [134] is a distributed vertex-cut partitioning 

algorithm based on a market model, in which the partitions are buyers of vertices with 

their budget.  

B.2 Our Graph Partitioning Strategy 

As social networks have a large number of users which is growing every day, to 

improve the scalability of our GA and set-cover based strategies, we propose a vertex-

cut graph partitioning strategy to assign the connected users to different groups. Our 

graph partitioning strategy is considered as a pre-processing step to make large social 

network graphs to smaller graphs in order to do the data placement and replication 

more efficiently. Our strategy is vertex-cut in which users can be located in several 

groups and have several replicas of data. This vertex-cut graph-partitioning strategy 

groups connected users to the same partitions.  

Our graph-partitioning strategy is summarised in three steps in this section.  

1. First, the list of friends for every user is found. In our social network graph, this 

list is the number of edges connected to every vertex. 

2. For a k-partitioning problem, users are sorted based on the number of their 

connections. Then, the first k users with the most number of connections are 

chosen and these users and all their connections are assigned to random 

partitions. An example for a 2-partitioning strategy is shown in Figure B-1. 

Unassigned vertices and edges are shown in blue colour and two different 

partitions are shown in red and green colours. Two vertices with the most 

number of connections and all their edges are randomly assigned to one of these 

two partitions. 
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Figure B-1. Finding users with the most number of friends 

3. For all unassigned users starting from assigned user’s neighbours, we assign all 

their unassigned connections to the dominant partition between their 

neighbours. The dominant partition for a vertex is the partition of the most of 

its connected edges. Finally, we have all vertices and edges assigned to 

different partitions. For the vertices with edges in more than one partition, the 

vertices are assigned to all partitions of the edges. The final partitioned graph 

of Figure B-1 is shown in Figure B-2. There is one vertex in this graph with 

edges assigned to two different partitions. Therefore, this vertex is assigned to 

both partitions. Hence, a vertex-cut GP strategy to partition the input social 

network graph of users and their connection to different connected partitions is 

illustrated so far. 

 

Figure B-2. The partitioned graph 

The pseudocode of the proposed graph-partitioning strategy is shown in Algorithm 

B-1.  

Algorithm B-1. Our graph partitioning strategy pseudocode 

Inputs:  
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Social network graph of users and connection 

Number of connections: ConnectionsNum 

Number of users: UsersNum 

Locations of users: Coordinates 

Number of expected partitions: K 

Outputs: 

Partitioned social network graph: Partitions 

Algorithm 

// Step 1: Finding the friends list for every user 

1. for all connections i = 1 to ConnectionsNum 

2.   Assign every connection’s users to the friendsList of each other and 

increase the friendsNum for both users 

3. end for 

// Step 2: Finding K users with the most number of friends 

4. Sort the users based on the number of friends 

5. Choose the first K users as the users with the most number of friends 

// Step 3: Finding the order of users for assigning partitions to their 

connections 

6. NumAssigned = 0; 

7. while NumAssigned < UsersNum 

8.    Assign users 1 to K with the most number of friends to UsersOrder(1:K) 

and update NumAssigned 
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9.     Assign all their friends starting from UsersOrder(1) to UsersOrder(K+1: 

UsersNum) and update NumAssigned 

10. end while 

11. for all users i = UsersOrder(1) to UsersOrder(K) 

12.    Assign all connections related to i to random partitions from 1:K 

13. end for 

14. for all users i = UsersOrder(K+1) to UsersOrder(UsersNum) 

15.    Assign all connections related to i to the partitions of its neighbours 

16. end for 

// Returning the solution 

17. Return the partitioned social network graph (Partitions) 

 

Algorithm B-1 is explained below: 

1. The social network graph of users and connection, number of connections 

(ConnectionsNum), number of users (UsersNum), locations of users 

(Coordinates), and number of expected partitions (K) are retrieved as inputs.  

2. By counting the number of connections that this user has with the other users 

in ConnectionsNum, the number of friends for every user is found as 

FriendsNum (lines 1-3 in pseudocode). 

3. Users are sorted based on the number of friends, the first K users with the most 

number of friends are chosen and based on their number of connections, the 

number of users assigned to different partitions (NumAssigned) is updated 

(lines 4-10 in pseudocode).  

4. These users and all their connections are assigned to random partitions (lines 

11-13 in pseudocode). 

5. For all unassigned users starting from assigned user’s neighbours, we assign 

all their unassigned connections to the dominant partition between their 

neighbours (lines 14-16 in pseudocode). 
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6. Finally, the partitioned social network graphs (Partitions) are returned (line 17 

in pseudocode) 

With this graph-partitioning strategy, we might not have a balanced partitioned graph 

after finishing the partitioning. However, as we assume the users are scattered all 

around the world this does not usually occur in our work. Moreover, as we are using 

cloud datacentres with virtually unlimited storage capacity, having a balanced 

partitioned graph is not essential in our work. 

In terms of the time complexity of the proposed graph-partitioning strategy, if we 

consider ConnectionsNum in the pseudocode as c and UsersNum as n, finding the 

friends list for every user has the time complexity of O(c). Finding k users with the 

most number of friends takes O(n×log(n)) and finding the order of users for assigning 

partitions to their connections takes O(n). Therefore, the total time complexity of this 

strategy is O(nlog(n)+c) which is effectively O(nlog(n)) given c is much smaller than 

n. 

B.3 Discussion 

How can we make use of this graph partitioning strategy in our initial problem of data 

placement and replication in the cloud? Our graph partitioning strategy can be used as 

a preprocessing step followed by a data placement and replication strategy such as 

either our GA based strategy presented in Chapter 4 or our static set cover based data 

placement and replication strategy presented in Chapter 6. By adopting this graph 

partitioning strategy, the initial social network graph which could consist of billions of 

users for a typical social network such as Facebook [2], is partitioned to different 

smaller groups of connected users.  

There are two options to do the data placement and replication for the partitioned social 

network graphs. First, our GA or set cover based data placement and replication 

strategies can be applied in parallel for different partitions. Alternatively, since users’ 

data are mostly accessed by their connected friends, every user’s data and all his/her 

friends’ data can be placed in the same datacentres. As a vertex-cut algorithm in which 
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users can be assigned to different partitions is considered, users’ data can be replicated 

in more than one datacentre depending on the partitions they are assigned to. 

Furthermore, in order to adapt the data placement and replication based on the dynamic 

changes in the network, as new users join, they are assigned to one of the partitions 

based on the number of connections or mutual interests. The partitions can be reshaped 

over time when users join or leave the network, connections are created or broken and 

access frequencies of different friends change over time. Users need to be assigned to 

a new partition when they move or they find more connections or access frequencies 

from a new partition. Dynamic repartitioning of social networks will be studied in the 

future in order to make our strategies more applicable to real world problems.  



176 
 

Appendix C 

Notation Index 

Table C-1. Notation table 

Notation Meaning 

ρ(S) Density of a set S which is the ratio of its cost and the 
volume of elements it covers in dynamic greedy 
algorithm 

σt Element add/delete request at time t in dynamic greedy 
algorithm 

ϕ(e) Covering set of element e in dynamic greedy algorithm 

At Active elements at time t in dynamic greedy algorithm 

c Number of connections 

Connections Set of connections in the social network 

Cost(Sij) Cost of storing data of user i in datacentre j in greedy 
algorithm 

Cov(S) List of elements covered by solution S in dynamic greedy 
algorithm 

Dijk Delay matrix of user i 

Datacentres Set of datacentres in the social network 

Delay Acceptable latency 

Data Set of data for different users in the social network 

ℓ Density level in dynamic greedy algorithm 

et Element added/deleted at time t in dynamic greedy 
algorithm 

epoch Number of iterations in genetic algorithm 
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F Maximum number of all users’ friends 

Fitness(S) Fitness function in genetic algorithm 

FriendsNumi Number of user i’s friends 

I Set of friends having the latency requirement fulfilled in 
greedy algorithm 

interval Duration of a time period 

keep Size of the selected population in genetic algorithm 

Lij Latency of user i accessing datacentre j 

L’ijk Latency of friend j of user i accessing datacentre k 

Latency Set of the latencies for all requests 

Latencyr Latency of request r 

list1 Sorted list of datacentres based on distance to different 
users 

list2 Sorted list of datacentres based on the number of friends 
around different datacentres 

list3 Sorted list of datacentres based on the number of requests 
around different datacentres 

m Number of datacentres 

MinReplica Minimum number of replicas 

n Number of users 

nt Number of elements to be covered at time t in dynamic 
greedy algorithm 

Optt Cost of the optimal set cover at time t in dynamic greedy 
algorithm 

P Desirable percentile 

pij Primary replica of use i in datacentre j 

popsize Population size in genetic algorithm 



178 
 

r Recourse, i.e. number of sets added/dropped from a set 
cover 

rc Rate of crossover in genetic algorithm 

rm Rate of mutation in genetic algorithm 

Rℓ Range of densities in dynamic greedy algorithm 

ReplicaNumi Final number of replicas for user i 

RequestCosti(ts) Total request cost for user i in time period ts 

RequestNumik(ts) Number of requests from friend k of user i in time period 
ts 

RT Routing table 

S Solution space 

S1-S9 Dynamic scenarios 

Sij Data of user i is stored in datacentre j or not 

sij Secondary replica of user i in datacentre j 

StorageCosti(ts) Total storage cost of user i in time period ts 

StoredDataSizei(ts) Data size for user i at the end of time period ts 

TotalCost($) Total storage cost of all users over time 

TransferCosti(ts) Total transfer cost for user i in time period ts 

ts Time period 

U Set of all possible solutions in greedy algorithm 

UnitRRequestPricej(ts) Price for requesting to read data from datacentre j in time 
period ts 

UnitStoragePricej(ts) Price for storing one Gigabyte of data for duration of dt in 
datacentre j in time period ts 

UnitTransferPricej(ts) Price for transferring one Gigabyte of data from 
datacentre j in time period ts 

UnitWRequestPricej(ts) Price for requesting to write data from datacentre j in time 
period ts 
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Users Set of users in the social network 

Vol(e) Volume of an element in dynamic greedy algorithm 

Weight(Sik) Cost(Sik) divided to the number of newly added requests 
in greedy algorithm 

xij Matrix of solution in genetic algorithm 
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Appendix D 

Storage, Request, and Transfer Price 

of Different Amazon Datacentres  

Real unit storage cost for data storage per GB per month, request cost per request and 

transfer cost per GB in all Amazon datacentres [87] are taken into account. The 

UnitStoragePricej, UnitRRequestPricej, UnitWRequestPricej, and UnitTransferPricej 

for Amazon datacentres used in our experiments are shown below.  
 

 
Table D-1. Price of different Amazon datacentres 

Region Storage price  
($) per GB 
per month 

Read Request 
price  
($) per 10,000 
requests 

Write 
Request 
price  
($) per 
10,000 
requests 

Transfer 
price  
($) per GB 

Virginia 0.03 0.004  0.05 0.09  

California 0.033 0.0044 0.055 0.09 

Oregon 0.03 0.004 0.05 0.09 

Ireland 0.03 0.004 0.05 0.09 

Frankfurt 0.0324 0.0043 0.054 0.09 

Singapore 0.03 0.004 0.05 0.12 

Sydney 0.033 0.0044 0.055 0.14 
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Tokyo 0.033 0.0037 0.047 0.14 

Sao Paulo 0.0408 0.0056 0.07 0.25 
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Appendix E 

Distribution of Facebook Users’ 

Locations  

Real distribution of Facebook users’ locations [107] that we used in our experiments 

is shown below. 
 

 
Table E-1. Distribution of Facebook users’ locations 

Country Percentage of users 

United States 11 

India 11 

Brazil 6 

Indonesia 6 

Mexico 4 

Philippines 3 

Vietnam 3 

Turkey 2 

Thailand 2 

United Kingdom 2 

 

 


