
Dynamic Cost-Effective Social

Network Data Placement and

Replication in the Cloud

by

Hourieh Khalajzadeh

A thesis submitted to

Faculty of Science, Engineering and Technology

Swinburne University of Technology

for the degree of

Doctor of Philosophy

July 2018

i

Abstract

Online social networks connect people from all over the world based on the shared

interests, ideas and associations. Well-known social networks such as Facebook and

Twitter have hundreds of millions or even billions of users scattered all around the

world sharing interconnected data. These networks are organised around users who

have certain expectations from their network providers, such as low latency access to

both their own data and their friends’ data, often very large, e.g. videos, images etc.

Replication of data can be utilised for meeting these requirements, however, social

network service providers often have a limited monetary capital to run their own

private datacentres and store every piece of data everywhere in order to minimise

users’ data access latency. Thus, there is always a trade-off between social network

users’ and providers’ requirements.

Geo-distributed cloud services with virtually unlimited capabilities are suitable for

such large scale data storage. However, as cloud datacentre storage, access and

transmission need to be paid for, the cost for storing data and updating data would be

still huge if the social network providers store the users’ data in all datacentres.

Therefore, it is crucial to have optimised data placement and replication to fulfil the

users’ acceptable latency requirement while incurring the minimum cost for social

network providers. In this domain, key problems for fulfilling both users’ and service

providers’ objectives include how to find the optimal number of replicas, how to

optimally place the data, how to distribute the requests to different datacentres, and

how to adapt the data placement and replication based on the changes in the social

network over time.

The aim of this research is to find the optimal number of replicas for every user’s data

and an optimal placement and replication of replicas to minimise monetary cost and

satisfying quality of service requirements for all users while considering the dynamic

nature of the social networks by applying adaptive strategies. In the real world, social

networks have a dynamic and growing nature due to the users’ mobility and dynamic

activities and thus any data replicas need to be adaptable according to the environment,

users’ behaviours, social network topology, and workload at runtime. Hence, it is not

ii

only crucial to have an optimised data placement and replication as well as data access

request distribution – meeting individual users’ acceptable latency requirements while

incurring minimum cost for service providers – but the data placement and replication

must be adapted based on changes in the social network to remain efficient and

effective over time.

We start with introducing a motivating example from Facebook social network and

analysing the problem of data placement and replication in the cloud. Based on the

requirements identified, after preliminary experiments using genetic algorithm, we

formulate the overall data placement and replication problem and propose the cost and

latency model in the cloud. The static data placement and replication is modelled as a

set cover problem and a greedy algorithm is presented to solve it. The dynamic

adaptation is also modelled as a dynamic set cover problem, and a framework

consisting of a combination of a greedy algorithm and a modified dynamic greedy

algorithm is used to solve it. Experiments on a large scale Facebook dataset and a

location based Gowala dataset using real latencies derived from Amazon cloud

datacentres demonstrate our novel strategy’s efficiency and effectiveness in

outperforming other representative strategies.

To the best of our knowledge, this thesis is the first comprehensive and systematic

work investigating the issue of dynamic data placement and replication in the cloud

in order to reduce the overall storage, transfer, updating, and synchronisation cost

while guaranteeing that the Pth percentile of individual latencies, instead of misleading

average latencies commonly investigated, is no more than the acceptable latency. By

proposing innovative concepts, theorems and algorithms, the major contribution of

this thesis is that it helps bring the cost down dramatically for social network providers

to place and replicate data of social network users in the cloud while guaranteeing an

almost unnoticeable latency of less than 250 ms for, for example, up to 99.99

percentile of all the individual operations over time.

iii

Declaration

This thesis contains no material which has been accepted for the award

of any other degree or diploma, except where due reference is made in

the text of the thesis. To the best of my knowledge, this thesis contains no

material previously published or written by another person except where

due reference is made in the text of the thesis.

Hourieh Khalajzadeh

July 2018

iv

Acknowledgements

I sincerely express my heartfelt gratitude to my supervisors, Professor Yun Yang,

Professor John Grundy and Dr. Dong Yuan for their continuous mentoring,

encouragement and support over the past three years and half. I have been extremely

lucky to have them as my supervisors who cared so much about my work; their

guidance, wisdom, and enthusiasm have made me more mature and confident. There

were many times I had reached the ‘crossroads’ and each time they were there to steer

me towards the right path. Without their continuous support and encouragement, I am

sure this journey would never have been completed.

My thanks also to my review panel members Professor Chengfei Liu, Dr. Qiang He,

Dr. Kai Qin, Dr. Wei Lai, and to staff members, research students and research

assistants at School of Software and Electrical Engineering for their help, suggestions,

friendship and encouragement. I am also indebted to a number of other people, in

particular, A/Professor Bing Bing Zhou, Professor Xiaodong Li, Dr Xiao Liu, Dr

Jiong Jin, Professor Xuejun Li and many others who collaborated and provided

feedback to my work. I thank Swinburne University of Technology for offering me a

full Research Scholarship throughout my doctoral program. I also thank the Research

Committee of the Faculty of Science, Engineering and Technology for research

publication funding.

My highest and warmest gratitude, appreciation, and thanks to my mother who has

been a source of love and inspiration throughout my life; to my late father whose

memory is always alive; and to my special only brother for his endless encouragement

and support in all ups and downs of my life including my PhD journey. Last but not

least, I would like to express my sincerest thanks to my husband, Mohammad Ali, for

his unconditional and endless love, dedication, and support, which have always been

my motivation to go forward. To them I dedicate this thesis.

v

The Author’s Publications

Conferences:

1. H. Khalajzadeh, D. Yuan, J. Grundy and Y. Yang, “Improving Cloud-based

Online Social Network Data Placement and Replication”, IEEE International

Conference on Cloud Computing (IEEE CLOUD 2016), June 27 - July 2, San

Francisco, USA, 678-685, 2016.

2. H. Khalajzadeh, D. Yuan, J. Grundy, X. Li, Y. Yang, “Cost-Effective Social

Network Data Placement and Replication using Graph Partitioning”, IEEE

International Conference on Cognitive Computing (IEEE ICCC2017), June 25-

30, Honolulu. Hawaii, USA, 64-71, 2017.

3. L. Zhang, X. Li, H. Khalajzadeh, Y. Yang, R. Zhu, X. Ji, C. Ju and Y. Yang,

“Cost-Effective and Traffic-Optimal Data Placement Strategy for Cloud-based

Online Social Networks”, IEEE International Conference on Computer Supported

Cooperative Work in Design (IEEE CSCWD 2018), May 9-11, Nanjing, China,

2018.

Journal submissions (under review):

4. H. Khalajzadeh, D. Yuan, B. Zhou, J. Grundy, Y. Yang, “Cost Effective

Dynamic Data Placement for Efficient Access of Social Networks”, Submitted to

the Journal of Parallel and Distributed Computing (JPDC).

vi

Table of Contents

DYNAMIC COST-EFFECTIVE SOCIAL NETWORK DATA PLACEMENT AND

REPLICATION IN THE CLOUD .. I

ABSTRACT .. I

DECLARATION.. III

ACKNOWLEDGEMENTS.. IV

THE AUTHOR’S PUBLICATIONS ... V

TABLE OF CONTENTS ... VI

LIST OF ALGORITHMS .. XI

LIST OF FIGURES ... XII

LIST OF TABLES ... XV

CHAPTER 1 INTRODUCTION .. 1

1.1 Challenges in Social Network Data Storage .. 2

1.2 Social Network Data Placement and Replication in the Cloud 2

1.3 Key Issues of this Research ... 4

1.4 Key Findings of this Research ... 5

1.5 Overview of this Thesis ... 7

1.6 Summary .. 10

CHAPTER 2 LITERATURE REVIEW .. 11

2.1 Optimisation of Social Network Services .. 12

vii

2.1.1 Social Locality ... 14

2.1.2 Graph Partitioning .. 15

2.2 Static Data Placement and Replication in the Cloud 16

2.2.1 Use of Evolutionary Algorithms for Data Placement and Replication 20

2.2.2 Content Delivery Networks (CDNs) ... 21

2.3 Dynamic Data Placement and Replication in the Cloud 23

2.4 Summary .. 25

CHAPTER 3 MOTIVATION AND RESEARCH QUESTIONS .. 26

3.1 A Motivating Example .. 26

3.2 Problem Analysis .. 31

3.3 Research Gaps .. 33

3.4 Key Research Questions ... 34

3.5 Summary .. 35

CHAPTER 4 PRELIMINARY WORK.. 37

4.1 Problem Formulation.. 38

4.1.1 Cost Model ... 39

4.1.2 Latency Model .. 39

4.1.3 Data Placement and Replication Problem Formulation 40

4.2 Our Genetic Algorithm based Data Placement Strategy 41

4.2.1 Initial Population Generation .. 44

4.2.2 Crossover Procedure ... 45

4.2.3 Mutation Procedure ... 46

4.3 Simulation Results .. 46

4.3.1 Experimental Dataset and Settings ... 47

4.3.2 Evaluation of Cost Effectiveness.. 48

4.3.3 Evaluation of Different Strategies ... 50

4.4 Limitations of the Preliminary Work .. 52

4.5 Later Works .. 54

viii

4.6 Summary .. 56

CHAPTER 5 PROBLEM FORMULATION .. 58

5.1 Data Placement and Replication Formulation .. 58

5.1.1 Problem Statement ... 58

5.1.2 Problem Domain ... 59

5.1.3 Static Data Placement and Replication .. 60

5.1.4 Dynamic Data Placement and Replication ... 62

5.2 Efficiency Calculation .. 63

5.2.1 Latency ... 63

5.2.2 Time Overhead ... 64

5.3 Effectiveness Calculation .. 64

5.3.1 Cost .. 64

5.3.2 Competitive Ratio ... 66

5.3.3 Recourse ... 66

5.4 Summary .. 66

CHAPTER 6 STATIC DATA PLACEMENT AND REPLICATION STRATEGY 67

6.1 Our Data Placement and Replication Strategy ... 67

6.2 Analysis of Greedy Algorithm for Static Data Placement and Replication 74

6.2.1 Proof of the Greedy Algorithm Time Complexity 75

6.2.2 Proof of the Greedy Algorithm Effectiveness .. 76

6.3 Summary .. 76

CHAPTER 7 DYNAMIC DATA PLACEMENT AND REPLICATION STRATEGY 78

7.1 Overview of Dynamic Greedy Algorithm .. 78

7.2 Our Dynamic Data Placement and Replication Approach............................... 80

7.2.1 Initial Static Data Placement and Replication .. 82

7.2.2 Eager Adaptation .. 82

7.2.3 Lazy Adaptation .. 84

7.2.4 Data Placement and Replication Strategy ... 85

7.3 Time Complexity of the Dynamic Data Placement and Replication 97

ix

7.4 Summary .. 99

CHAPTER 8 EXPERIMENTS AND EVALUATIONS ...100

8.1 Experimental Settings ..100

8.1.1 Benchmarking Strategies ...102

8.1.2 Case Studies ...104

8.1.2.1 Facebook dataset: a general case with locations randomly generated 104

8.1.2.2 Gowala dataset: a specific case with locations already fixed 105

8.2 Simulation Results for Static Data Placement and Replication106

8.2.1 Results for the Facebook Dataset ...106

8.2.2 Results for the Gowala Dataset ..109

8.2.3 Analyses of the Static Results ...111

8.2.3.1 Efficiency evaluation .. 112

8.2.3.2 Effectiveness evaluation .. 113

8.3 Simulation Results for Dynamic Data Placement and Replication113

8.3.1 Results for the Facebook Dataset ...114

8.3.1.1 Simulation results for eager adaptation.. 114

8.3.1.2 Simulation results for lazy adaptation .. 121

8.3.1.3 Simulation results for the combination of eager and lazy adaptations 123

8.3.2 Results for the Gowala Dataset ..126

8.3.2.1 Simulation results for eager adaptation.. 127

8.3.2.2 Simulation results for lazy adaptation .. 133

8.3.2.3 Simulation results for the combination of eager and lazy adaptations 135

8.3.3 Analysis of the Dynamic Results ...138

8.3.3.1 Efficiency evaluation .. 138

8.3.3.2 Effectiveness evaluation .. 140

8.4 Threats to Validity ...141

8.5 Summary ...143

CHAPTER 9 CONCLUSIONS AND FUTURE WORK ..144

9.1 Summary of This Thesis ...144

9.2 Discussion ..146

9.3 Key Contributions of This Thesis ..147

9.4 Limitations of the Research ...148

9.5 Future Work ..149

x

9.6 Concluding Remarks ..150

BIBLIOGRAPHY ..151

APPENDIX A LATENCY OF PINGING AMAZON DATACENTRES IN MILLISECOND BY

USERS IN DIFFERENT REGIONS ..166

APPENDIX B OUR GRAPH PARTITIONING STRATEGY ...168

B.1 Background ...168

B.2 Our Graph Partitioning Strategy ..170

B.3 Discussion ..174

APPENDIX C NOTATION INDEX ..176

APPENDIX D STORAGE, REQUEST, AND TRANSFER PRICE OF DIFFERENT AMAZON

DATACENTRES ...180

APPENDIX E DISTRIBUTION OF FACEBOOK USERS’ LOCATIONS182

xi

List of Algorithms

Algorithm 4-1. GA based data placement and replication pseudocode 42

Algorithm 6-1. Static data placement and replication strategy pseudocode 69

Algorithm 7-1. Dynamic data placement and replication strategy pseudocode 86

Algorithm 7-2. Eager adaptation pseudocode .. 88

Algorithm 7-3. Lazy adaptation pseudocode .. 94

Algorithm B-1. Our graph partitioning strategy pseudocode .. 171

xii

List of Figures

Figure 1-1. Example of using Amazon cloud datacentres ...3

Figure 1-2. Thesis structure ...9

Figure 2-1. Cloud CDN model .. 21

Figure 4-1. Two point crossover used in our method ... 45

Figure 4-2. Mutation used in our method .. 46

Figure 4-3. Number of users located around different datacentres 47

Figure 4-4. Cost reduction per iteration using the genetic algorithm for different percentiles

of a desired latency of 150ms .. 48

Figure 4-5. Cost reduction per iteration using the genetic algorithm for different percentiles

of a desired latency of 200ms .. 49

Figure 4-6. Comparison of different strategies with latency requirement of 99.99% lower

than 200 ms .. 52

Figure 4-7. Framework of our data placement and replication strategies........................... 56

Figure 7-1. Dynamic data placement and replication process .. 81

Figure 7-2. Eager adaptation process... 83

Figure 7-3. Lazy adaptation process ... 85

Figure 8-1 Percentage of users in different locations for Facebook 104

Figure 8-2 Number of users located around different datacentres for Facebook 105

Figure 8-3. Percentage of users in different locations for Gowala 105

Figure 8-4. Number of users located around different datacentres for Gowala 106

Figure 8-5 Comparison of different strategies with latency requirement of 90% lower than

250 ms for Facebook ... 107

Figure 8-6 Comparison of different strategies with latency requirement of 95% lower than

250 ms for Facebook ... 108

Figure 8-7 Comparison of different strategies with latency requirement of 99% lower than

250 ms for Facebook ... 108

file://///ds.swin.edu.au/staff/home/hkhalajzadeh/Thesis_Hourieh/Thesis/final/Thesis_Hourieh(30.06.2018).docx%23_Toc518145922
file://///ds.swin.edu.au/staff/home/hkhalajzadeh/Thesis_Hourieh/Thesis/final/Thesis_Hourieh(30.06.2018).docx%23_Toc518145931
file://///ds.swin.edu.au/staff/home/hkhalajzadeh/Thesis_Hourieh/Thesis/final/Thesis_Hourieh(30.06.2018).docx%23_Toc518145932
file://///ds.swin.edu.au/staff/home/hkhalajzadeh/Thesis_Hourieh/Thesis/final/Thesis_Hourieh(30.06.2018).docx%23_Toc518145933

xiii

Figure 8-8 Comparison of different strategies with latency requirement of 99.9% lower

than 250 ms for Facebook ... 109

Figure 8-9. Comparison of different strategies with latency requirement of 90% lower than

250 ms for Gowala .. 110

Figure 8-10. Comparison of different strategies with latency requirement of 95% lower

than 250 ms for Gowala .. 110

Figure 8-11. Comparison of different strategies with latency requirement of 99% lower

than 250 ms for Gowala .. 111

Figure 8-12. Comparison of different strategies with latency requirement of 99.9% lower

than 250 ms for Gowala .. 111

Figure 8-13. Comparing cost and latency when new users and friends are added 115

Figure 8-14. Comparing cost and latency when users and friends are removed 116

Figure 8-15. Comparing cost and latency when users move ... 118

Figure 8-16. Comparing cost and latency when datacentres are added............................ 119

Figure 8-17. Comparing cost and latency when datacentres are removed 120

Figure 8-18. Comparing cost and latency when activeness levels and access frequencies are

changed .. 122

Figure 8-19. Comparing latency before and after adaptation when activeness levels and

access frequencies are changed .. 123

Figure 8-20. Comparing cost and latency when all different scenarios happen 124

Figure 8-21. Comparing cost and latency when new users and friends are added 127

Figure 8-22. Comparing cost and latency when users and friends are removed 128

Figure 8-23. Comparing cost and latency when users move ... 130

Figure 8-24. Comparing cost and latency when datacentres are added............................ 131

Figure 8-25. Comparing cost and latency when datacentres are removed 132

Figure 8-26. Comparing cost and latency when activeness levels and access frequencies are

changed .. 134

Figure 8-27. Comparing latency before and after adaptation when activeness levels and

access frequencies are changed .. 135

Figure 8-28. Comparing cost and latency when all different scenarios happen 136

xiv

Figure B-1. Finding users with the most number of friends .. 171

Figure B-2. The partitioned graph .. 171

xv

List of Tables

Table 4-1. Problem encoding ... 44

Table 8-1. Percentages of users and their activeness levels ... 102

Table 8-2. Frequency of different scenarios ... 123

Table 8-3. Cost analysis for Facebook dataset .. 125

Table 8-4. Cost Analysis for Gowala dataset .. 137

Table 8-5. Update time of different scenarios .. 140

Table 8-6. Cost analysis of different scenarios ... 140

Table A-1. Latency of pinging Amazon datacentres .. 166

Table C-1. Notation table .. 176

Table D-1. Price of different Amazon datacentres.. 180

Table E-1. Distribution of Facebook users’ locations .. 182

1

Chapter 1
Introduction

This thesis investigates static and dynamic social network data placement and

replication in the cloud. This is an important issue for storing the data of dynamic and

growing social networks in a pay-as-you-go model in the cloud. This thesis proposes

a novel approach to reduce the cost of storing, requesting, transferring, and

synchronising large data items in the cloud for social network providers while

guaranteeing the latency requirement for social network users. A framework

consisting of comprehensive cost and latency models and static and dynamic data

placement and replication strategies was designed and developed. This is supported

by new concepts, solid theorems and innovative algorithms. Experimental evaluation

and case studies demonstrate that our work helps to bring the cost down dramatically

for social network providers in the cloud while guaranteeing the latency requirement

for individual users to access not only their own data but also the data of all their

friends. In this thesis, for every user, the friendship is defined as any kind of accessing

data of other social network users no matter how often one or both of them access

each other’s data and how genuine their real friendship is.

This chapter introduces the background and key issues for this research. It is organised

as follows. Section 1.1 gives a brief introduction to the challenges in social network

data storage. More specifically, Section 1.2 discusses the idea of social network data

placement and replication in the cloud and the related issues. Section 1.3 outlines the

key issues of this research. Section 1.4 summarises the key findings of this research

while Section 1.5 presents an overview for the remainder of this thesis. Finally, this

chapter is concluded with a summary in Section 1.6.

2

1.1 Challenges in Social Network Data Storage

Based on a recent report, there are 2.80 billion global social media users in 2017, or

roughly 37% of the population of the world, with more than 20% growth over the past

12 months [1]. Users are geographically scattered around the world often having

friendships with users from elsewhere. Participating users join a social network, create

friendships with any other users with whom they associate, and publish various

content – some such as videos and images being very large – to share with each other.

Facebook (2 billion monthly active users), YouTube (1.5 billion monthly active

users), WhatsApp (1.2 billion monthly active users), and Instagram (700 million

monthly active users) are some examples of popular social networks [2] with large

social media data content.

Social network data storage is a very important and challenging problem since social

network users have QoS (quality of service) expectations from their social network

service provider, including low latency, data consistency and availability, and privacy

requirements. In terms of latency, users can endure a certain threshold to access their

own data and the data of their friends. Not being able to access the data in a desirable

timeframe is likely to lead users to becoming frustrated, lowering their usage and

possibly even leaving the social network. Switching of the users to the other

competitor social networks can lead to a huge lost in revenue and profit for social

network providers. To avoid this problem, replication of data can be utilised to meet

these user performance requirements. However, social network providers cannot

always afford having their own private datacentres in distributed geographical

locations and continuously extend the datacentres in order to minimise users’ data

access latency by storing every piece of data everywhere.

1.2 Social Network Data Placement and Replication in the Cloud

Geo-distributed cloud services with virtually unlimited capabilities are suitable for

such large-scale data storage and there are many cloud service providers maintaining

storage infrastructure based on a pay-as-you-go model [3, 4]. Amazon S3 [5], Google

3

Cloud storage [6], and Microsoft Azure [7] are some examples. Cloud services

provide “Infrastructure-as-a-Service” that give the social network providers the

capability to deploy their services in the cloud, which are built and operated by cloud

providers, and pay for cloud resources that they use. Therefore, social network

providers do not have to build and maintain their own datacentres. Deploying the

services in the cloud has many advantages such as getting ready to use and virtually

unlimited resources based on a “pay-as-you-go” model. However, such “pay-as-you-

go” cloud rental could be extremely costly if we simply use naïve full replication for

huge and growing social media data to minimise the latency, ensure availability and

meet the other requirements.

For example, in Figure 1-1, let us consider AWS infrastructure [8] and two of the users,

one in Singapore and the other in California, sharing data with each other. One solution

could be storing and replicating their data in both S3’s North California datacentre and

Singapore datacentre, and pay for the storage cost in both datacentres. Another solution

could be storing data in just one of these datacentres to reduce the storage cost.

However, by doing so, one of the users has to suffer a higher latency. A more

appropriate solution could be to store their data in a datacentre in between, which has

relatively low latency to both users, such as S3’s Tokyo datacentre. Thus, both users

can have a tolerable latency by paying only one time storage cost. Hence, we need to

explore all possible placement strategies to find out the best one.

Figure 1-1. Example of using Amazon cloud datacentres

4

Moreover, as different replicas of users’ data may need periodical synchronisation,

such a huge cost becomes uneconomical due to the very large size of data. Based on

a Facebook statistics for 2016 [9], Facebook generates four petabytes of new data per

day for the 1.083 billion daily active users at that time. Furthermore, social networks

have a dynamic and growing nature. Users can join or leave the network at any time;

add, delete or update data; travel and move to any other location in the world; and also

create or break friendships. Different users have different levels of activeness and

similarly their friends have various frequencies of accessing, updating and adding to

their data. Users can become less or more active and gain less or more interest in their

friends’ shared content. Finally, sometimes, new datacentres can be added to be used

by the social network or the existing datacentres can be out of use, hence removed.

Therefore, an optimised data placement and replication strategy needs to consider all

these scenarios.

1.3 Key Issues of this Research

Based on these facts, having an optimised data placement and replication approach

which is capable of finding the most cost effective solution while fulfilling individual

users’ acceptable latency requirement is required. Furthermore, the data placement

and replication needs to be able to cope with the dynamic changes in the environment,

e.g., users’ behaviours, social network topology, and workload at runtime. Hence,

finding the optimal placement of data in different datacentres with minimum cost

while keeping the placement optimised over time is the challenge addressed in this

research.

Furthermore, we need to adapt this placement due to dynamic changes in the social

network continuously in order to have the latency requirement fulfilled for individual

users with a minimum cost for social network providers over time. We aim to

guarantee the latency requirement for the Pth percentile of all individual requests

between all friends, i.e., over P% of all individual operations meet the specified

latency requirement. Therefore, the key issues we need to solve in order to address

the challenge and fulfil the objectives are as follows:

5

 Finding the optimum number of replicas for users. In order to overcome this

issue, we need to find the minimum number of the replicas for every user’s

data to have the latency requirement fulfilled not only for this user but also for

all his/her friends. We need to address how to find the optimum number of

replicas for every user.

 Finding the suitable datacentres to place the replicas. To have the minimum

cost for social network providers while fulfilling the latency requirement for

the users, it is not only necessary to find the minimum number of replicas but

also to find out how to place these replicas in different datacentre.

 Redirecting different requests to appropriate datacentres. By having the

minimum number of replicas and their placement, the next issue we need to

solve is how to redirect different requests from users located in a variety of

geographically distributed locations with different access frequencies to the

replicas placed in different datacentres to meet the latency requirement and

minimise the cost.

 Adapting the placement and replication based on the changes in the network.

Social network is changing over time and we need to continuously adapting

the placement and replication based on the changes in the system in order to

have the latency requirement fulfilled for all the users with the minimum cost

for social network providers over time.

 Synchronising replicas. Primary and secondary replicas become

unsynchronised after adapting the placement and replication. We need to find

out when and how to synchronise the secondary replicas with the primary data

in a cost-effective manner.

1.4 Key Findings of this Research

All the key issues listed in Section 1.3 are addressed in this thesis. In order to solve

these issues, the research is divided to two general phases of static and dynamic social

network data placement and replication. The static data placement and replication

6

problem includes 1) finding the minimum number of replicas for every user’s data, 2)

finding the suitable datacentres to store these replicas in order to guarantee the latency

requirement for all of his/her friends, and 3) redirecting different request to

appropriate datacentres. The first phase of static data placement and replication is then

used as a foundation for the next phase which is dynamic data placement and

replication. The dynamic phase includes 1) adapting the data placement and

replication based on the changes in data, users, connection, access frequencies, and

datacentres, and 2) synchronising the secondary replicas with the primary replicas.

To carry out our research for each phase, we take 1) modelling, 2) problem

formulation, 3) algorithm deployment, 4) evaluation, and 5) discussion steps. Firstly,

we mathematically model the problems of static and dynamic data placement and

replication in the cloud by considering reasonable assumptions and conditions. Then,

based on the models including the cost and latency models, we formulate the data

placement and replication problem as a set cover optimisation problem. Furthermore,

we propose effective and efficient algorithms to find suitable solutions. Then, we use

real-world large-scale social network data as inputs to extensively evaluate our

algorithms using real cloud datacentres. The outputs are compared with the other

strategies or baseline approaches. We finally explain the evaluation results and discuss

various aspects such as complexity and optimality. We present a novel dynamic

strategy to cope with data placement and replication that is applicable in dynamic

environments where users can join, leave, move or change their friendships in the

social network; data can be added, removed and updated as needed; and datacentres

can also be added or removed. To the best of our knowledge, comparing to the state-

of-the-arts, our work is the only comprehensive and systematic work dedicated to all

different scenarios that happen in a social network for data placement and replication.

Five significant key findings, i.e. contributions of this research are:

 Guaranteeing a very low – almost unnoticeable – individual latency of less

than 250 ms (milliseconds) [10] not only for users to access their own data but

also for all their friends to access their data.

 Fulfilling the Pth percentile requirement of individual access latencies of all

users. Taking individual instead of average latencies into account makes our

7

work much more practical and significantly distinct from other existing works.

 Developing a novel static data placement and replication strategy which finds

the initial minimum number of replicas and their placement for every user and

relay different requests to the best datacentres in order to ensure the latency

requirement.

 Presenting a novel dynamic strategy that continuously guarantees the

optimality of the social network data placement and replication over time. Our

dynamic strategy is based on our static minimum cost replication strategy in

order to make it practical in the real world where social networks change

rapidly.

 Carrying out extensive experiments on Facebook and Gowala datasets by

considering real cloud datacentres. Two large-scale open datasets, Facebook

dataset [11] and location based Gowala dataset [12], are used to evaluate our

novel strategy and demonstrate its efficiency and effectiveness. Real Amazon

datacentres are tested for real-world datacentre latency measurements. As

verified by simulation experiments, our dynamic strategy to solve the data

placement and replication as a dynamic set cover problem is capable of finding

the optimal solution.

1.5 Overview of this Thesis

In particular, this thesis includes new concepts, solid theorems and complex

algorithms, which form a suite of comprehensive and systematic solutions to deal with

the issue of cost effective data placement and replication in the cloud for efficient

access of social networks.

The outcome of this research can directly impact social network providers by saving

millions of dollars per month for them; cloud computing provider companies by

selling their products; social network users by giving them a better experience of

having a very low latency in accessing social network content; and also indirectly all

different businesses working with social networks. To conclude this chapter, the thesis

8

structure is depicted in Figure 1-2.

In Chapter 2, we introduce the related work to this research. We start from introducing

data management for social networks, and then we move to static data placement and

replication in the cloud. By introducing geo-distributed cloud datacentres for data

placement and replication, we raise the issue of static cost-effective data placement

and replication in the cloud. Finally, we introduce some of the research which is done

on dynamic data placement and replication in the cloud to compare with our work.

In Chapter 3, we first introduce a motivating example, which is based on a real world

popular social network, Facebook, and the issues with data placement and replication

for Facebook. Based on this example, we identify and analyse our research problems.

In Chapter 4, we present our preliminary work done in the field of data placement and

replication followed by discussing the limitations and the later works done in the next

chapters to overcome these limitations.

In Chapter 5, we formulate the problem of social network data placement and

replication in the cloud. Moreover, the efficiency and effectiveness of both static and

dynamic strategies, i.e. latency, time overhead, cost, competitive ratio, and recourse

are introduced and modelled.

In Chapter 6, we present our static data placement and replication strategy in order to

find the initial data placement and replication as a foundation for our follow up

dynamic data placement and replication strategy.

In Chapter 7, we develop a novel framework for dynamic data placement and

replication in the cloud. Our model adapts the data placement and replication based

on the changes in the system and synchronises the replicas. Some of the adaptations

are done on the fly and some based on a regular basis, depending on the scenarios.

In Chapter 8, we demonstrate experiment results to evaluate our work described in the

entire thesis. First, we introduce our cloud computing simulation environment and

settings. Then, we demonstrate our two case studies including Facebook and Gowala

social networks. For each case study, we first simulate and compare several alternative

data placement and replication strategies with our static strategy, and then evaluate

9

the cost and latency of our dynamic data placement and replication over time. Finally,

we analyse the efficiency and effectiveness of our static and dynamic data placement

and replication strategies for two case studies.

Finally, in Chapter 9, we summarise the new ideas presented in this thesis, the major

contributions of this research, and consequent further research works.

Figure 1-2. Thesis structure

10

In order to improve the readability of this thesis, we put the latency of pinging Amazon

datacentres in Appendix A, graph partitioning as a part of our preliminary work in

Appendix B, the notation index in Appendix C, the storage, request, and transfer price

of different Amazon datacentres in Appendix D, and distribution of Facebook users

in different locations in Appendix E.

1.6 Summary

An introduction to the social networks, challenges in social network data storage, and

social network data placement and replication in the cloud is provided in this Chapter.

Key issues as well as the key findings of the research are also discussed and an

overview of the thesis is depicted. To summarise, Chapter 2 presents a comprehensive

literature review on social network data placement and replication in the cloud.

Chapter 3 provides a motivating example with the problem analysis. Chapter 4 details

our preliminary work done in the field of data placement and replication in the cloud.

Chapter 5 introduces a comprehensive problem formulation. Chapter 6 presents our

static data placement and replication strategy while Chapter 7 discusses our dynamic

framework in more detail. Chapter 8 demonstrates the simulation results and the

evaluation. Finally, Chapter 9 summarises conclusions and key areas for future

research.

11

Chapter 2
Literature Review

In this chapter, we review the existing literature related to the research conducted in

this thesis. A comprehensive literature review has been done across several fields

related to the social network data placement and replication in the cloud. Many papers

in the literature focus on energy efficient workload placement [13], virtual machine

placement [14, 15], applications deployment [16], load balancing [17], job scheduling

[18, 19], and resource allocation [20, 21]. Besides conventional performance metrics,

there also exists rich research work on optimising cloud services using metrics such

as service latency, energy and carbon optimisation [22-26] as well as cloud resource

pricing [27] and allocation [28]. Except [26], they often assume full data replication

across datacentres and they cannot fulfil our objectives. The papers within these fields

are not comparable with our work as we focus on finding an efficient and effective

data placement and replication in the cloud. Therefore, in this chapter, we focus on

cloud based data placement and replication for social networks and compare our work

with existing literature in three categories. These categories are 1) optimisation of

social network services, 2) static data placement and replication in the cloud, and 3)

dynamic data placement and replication in the cloud.

This chapter is organised as follows. In Section 2.1, we review the literature in the

field of optimising social network services. In Section 2.2, we summarise the work

done on static data placement and replication in the cloud. In Section 2.3, we review

dynamic data placement and replication in the cloud, which is the most related to our

work. Finally, Section 2.4 summarises this chapter.

12

2.1 Optimisation of Social Network Services

For social networks across multiple sites, some propose selective replication of data

across datacentres to reduce the total inter-datacentre traffic, while others propose

frameworks that capture and optimise multiple dimensions of the social network

system objectives concurrently [29]. The trade-off involving the “freshness” of the

information available to the users and WAN bandwidth costs are analysed and

explored in [30]. Moreover, self-similarities, that is a feature found in social network

interactions and does not exist in social network social relations is explored in [31] to

tackle the same problem. This method places users in the same self-similar subtree at

the same server in order to minimise the inter-server communication according to the

interaction-locality-based structure. These works do not involve response time QoS

as in our geo-distribution data placement and replication problem.

Mobile social video sharing (MSVS), which facilitates mobile users to create ultra-

short video clips and instantaneously share them online, has developed as one of the

most important social network services. Because of the enormous volume of videos

and limited accessible bandwidth of wireless infrastructure, distributing these massive

videos to mobile users with acceptable QoS is very challenging. A hierarchical

structure is utilised in [32] to divide this problem into two sub-problems, (1) bitrate

adjustment and (2) spectrum allocation problems. For the bitrate adjustment problem,

a QoS approximation model is presented which is based on the large deviation

principle. An online bitrate adjustment strategy is developed without depending on

any knowledge of neither network environment nor video traffic by introducing a

sliding window method to develop the online approximation. For the spectrum

allocation problem, the problem is proved to be a potential game. They formulate a

decentralised algorithm to find the Nash equilibrium, and analyse the convergence

rate and the performance gap with the centralised optimisation solution. This work is

not deployed on the cloud.

Customising data stores to meet application service level agreements is tackled in [33]

in the context of quorum-based systems, an important class of cloud storage systems.

Models are presented to optimise percentiles of response time under normal operation

13

and under datacentre failure. They consider factors such as the geographic spread of

users, datacentre locations, consistency requirements and inter-datacentre

communication costs. Besides, one of the objectives in [34] is to cut the average

response time in half for the Facebook social graph without considering the data

placement cost. They solve the problem of assigning user requests to compute servers

and data records to storage subsystems using a social hash framework in two steps.

However, these papers do not consider the monetary cost for replicating data in their

work.

A multi-cloud hosting system is formulated in [35] and the trade-off between

satisfying users with their ideal cloud service providers, and reducing the inter-cloud

data propagation cost is demonstrated. A heuristic algorithm with acceptable

complexity is presented in this paper to solve the optimisation problem, by

partitioning a propagation-weighted social graph in two phases: a preference-aware

initial cloud provider selection and a propagation-aware re-hosting. Furthermore, a

dynamic, cost-aware, optimised data replication strategy is presented in [36] in which

the concept of knapsack is used to optimise the cost by identifying the minimum

number of replicas required to ensure the desired availability. However, latency is not

considered as a requirement in these papers.

The inter-datacentre communication of the social network services is focused in [37,

38]. Maintaining a replica of a remote user’s data at a local datacentre reduces the

inter-datacentre read operations while incurs the inter-datacentre update operations

due to updating with remote replicas to fulfil the consistency requirement. The goal

in this paper is to reduce the inter-datacentre network load and service latency by

replicating only the data of the selected users across datacentres by considering both

update rate and read rate of the users. Furthermore, they atomise user's different types

of data such as status update and friend post for replication to reduce inter-datacentre

communication. However, they do not consider the cost for replicating data in their

work.

It is claimed in [39] that Facebook had slow response to the users outside of the United

States and also the Internet bandwidth was wasted when users all around the world

demanded the same content. The multiple round trips of Facebook communication

14

protocols as well as the high network latency between the users and Facebook

datacentres in United States are found as the reasons for the slow response in this

paper. Moreover, it is also observed that most of the communications are among the

users within the same geographical region. The authors proposed to use local servers

as TCP proxies and caching servers to improve service responsiveness and efficiency,

focusing on the interaction between user behaviour, social network mechanisms, and

network characteristics.

A body of existing literature tackles the problem of partitioning and replicating the

data of social network users across servers in a single datacentre. Distributed hashing

is often adopted to partition the data across servers [40] in social networks. However,

this method leads to poor performance such as unpredictable response time due to the

inter-server multi-get operations. Since the social network users’ queries are mostly

for the most recent messages of friends, dividing the messages according to the time

range in different servers is considered in [41] instead of partitioning messages only

based on social network friendships. Their strategy of partitioning along the time

dimension also optimises the social network performance. Finally, social network

content are partitioned across servers in [42] based on not only the social relations but

also the user access patterns to each file. The authors formulate the problem as an

optimisation problem and solve it to preserve social relations and to balance the

workload between different servers.

2.1.1 Social Locality

There are also some other works in literature maintaining social locality to address the

social network data placement at a single site issue. SPAR [43] minimises the total

number of slave replicas by maintaining social locality for every user and balancing

the number of master replicas in each position. Also, S-CLONE [44] tries to maximise

the number of users whose social locality can be maintained while having a fixed

number of replicas for every user.

S-CLONE [44] is a socially-aware data replication method, which was proposed to

find an efficient way to store K replicas for each user’s data on the M servers. Cloud

datacentres are not used in this paper and storage is done in servers. They aim is

15

having an efficient replication as their main objective while balancing the server load

as the secondary objective. For the static case, they replicate data for a fixed social

graph, and then for the dynamic scenario they adapt the static replication to changes

in the social graph. The social locality assumption in which they have to keep all

friends’ replicas in one’s main datacentre is maintained in some other works. In cloud

based social network data placement, social locality is maintained in [29] for

optimising multiple social network objectives. The problem of traffic minimisation

for social networks data storage is investigated in [45] by preserving both social

locality and distance locality. The problem is formulated as two sub-problems,

hypergraph partitioning and partition-to-server mapping, and a two-phase data

placement (TDP) scheme is proposed to solve it.

However, the social locality assumption incurs a very high cost due to the replication

of data in unnecessary datacentres. For social network data placement across multiple

sites, some propose selective replication of data across datacentres to reduce the total

inter-datacentre traffic. There are also other works proposing a framework that

captures and optimises multiple dimensions of the social network system objectives

simultaneously [29]. Other works do not involve QoS such as latency and availability

as in our geo distribution scenario.

2.1.2 Graph Partitioning

Graph partitioning is another method that is often used for social network optimisation.

A graph partitioning algorithm to reduce the latency and bandwidth in social networks

is proposed in [46]. They propose a decentralised community detection algorithm to

partition a distributed structure into a set of computing clusters. However, they did

not consider the cost. The social data storage problem is modelled as a social graph-

partitioning problem in [47], and an evolutionary algorithm is employed to find a

Pareto-optimal solution. Moreover, a parallel graph partitioning technique based on

parallel GA is proposed in [48].

A data placement method which improves the co-location of associated data while

keeping the balance between nodes is proposed in [49]. They use the hypergraph

partitioning technique to partition the set of data items and place them in the

16

distributed nodes. They also take the incremental adjustment of replicas into their

considerations. However, as they do not use cloud datacentres to store their data, they

have the capacity concern in the nodes which makes their work not comparable with

ours. Moreover, data partitioning and replication among a cluster of servers within

one cloud datacentre is considered in [50]. The physical capacity limit problem also

exists in this paper and to assure the service performance, the servers should not

become overloaded.

The works in this field either are not deployed on the cloud or do not involve QoS

such as latency and availability while minimising the monetary cost as in our geo

distribution scenario. Our geo-distributed data placement and replication strategy

minimises the monetary cost for social network providers while guaranteeing the

individual access latency and availability requirements for social network users.

2.2 Static Data Placement and Replication in the Cloud

In the category of data placement and replication in the cloud, a novel framework is

constructed in [51] that can lead to profit aware multimedia contents handling by using

kernel support vector machine to create the user profile that includes information

about user services, so that resource utilisation can be optimised in case of current

resource failure. The resource handling is optimised by keeping both private clouds

for permanent storage and public clouds for temporary and emergency storage. Fast

Quadratic Lyapunov algorithms are used in different time granularities in order to

Schedule and reschedule multimedia contents storage level. Finally, popularity based

cache management is presented to reduce the undesirable cost consumption while

downloading same multimedia content for several times.

The best trade-off between computation and storage cost is achieved in [52, 53] by

automatically storing the most appropriate intermediate datasets in the cloud

datacentres. An intermediate data dependency graph (IDG) is built from the data

provenances in scientific workflows to decide whether to store data or recompute later

in the runtime. They achieve significant cost reduction by using AWS cost model.

However, they do not consider the QoS requirements such as latency in our model.

17

A geo-cloud based dynamic replica creation method in large global websites such as

Facebook is presented in [54]. Their aim is to improve data availability and to

minimise cross-datacentre bandwidth consumption and average read access time with

constraints of policy and commodity node capacity. They have some policies on the

minimum number of replicas based on the data importance, and list of forbidden and

necessary datacentres to locate data. They rate data based on the total request number

on the data, the access frequency of the data and last access time of the data. They do

not consider the monetary cost in their model.

Optimising the total cost of cloud resources while considering satisfactory QoS and

data availability to social network users is considered in [29]. Given an existing data

placement, their problem is to find the optimal data placement with minimum

monetary cost while guaranteeing QoS and data availability requirements defined.

They replicate every user’s data in all of their friends’ datacentres without considering

the number of the friends in that datacentre.

Volley [55] addresses the automated data placement challenge which deals with WAN

bandwidth expenses and datacentre capacity limitations while minimising users

latency. Cloud services use Volley by sending the datacentre requests logs. Volley

relies on access logs to determine data locations by analysing the logs using an

iterative optimisation algorithm by considering data access rates and users’ locations,

and submits migration recommendations as the output to the cloud service. Their goal

is to improve datacentre capacity skew, inter-datacentre traffic, and client latency.

Volley does not take into account the monetary costs.

A selective geo replication method for large databases is introduced in [56]. The main

goal is to minimise the bandwidth to send updates and forward reads to remote

datacentres regarding policy constraints. They have also proposed a dynamic

placement algorithm which responds to the access pattern changes by creating and

deleting replicas. They replicate all records everywhere either as a full copy or as the

primary-key and metadata copy. A metadata replica becomes full after delivering a

read operation to its location, and a full replica downgrades by observing a write

operation in another location or if no read operation observes at that location for a

18

period. The primary replica never changes in this work. Moreover, once data is

inserted into a tablet, policy constraints cannot be changed.

Multi-objective optimisation to reduce the cloud resources usage, to deliver good

service quality to users and to minimise the carbon footprint is studied in [57]. They

present an optimisation graph cut strategy that decomposes their main problem into

two sub-problems and solves them consecutively. They consider latency as an

objective instead of constraint which makes it not comparable with our work.

The cloud storage reconfiguration while respecting application-defined constraints to

adapt to changes in users’ geographical locations or access request rates is addressed

[58]. They consider time zones and access patterns in different geographical locations.

Their solution is to configure their replicas automatically and periodically while

satisfying consistency and latency requirements and respecting replication and cost

constraints. They consider cost as a constraint instead of a goal to be minimised.

Skute [59] is a cost efficient dynamic key-value store that allocates the resources of a

data cloud to different applications. It splits the data of an application to M partitions

and assumes them as autonomous agents who place their replicas in different servers.

It is a dynamic approach which maintains different availability levels for different

applications. A virtual economy in which data partitions act as individual optimisers

to get decisions regarding the migration, replication or removal of themselves based

on the partitions’ storage and maintenance cost is employed in this paper. As a game-

theoretical model, no migrations or replications happen at equilibrium, which is

reached once the access query load and the used storage are steady.

The primary focus in [60] is to minimise the monetary cost of latency-sensitive

application providers while fulfilling consistency and fault-tolerance requirements

with taking workload properties into account. Two data object placement algorithms

are presented in [61] to minimise the cost of data storage management in the cloud,

one optimal and another near optimal. These algorithms minimise residential (i.e.,

storage, data access operations), delay, and potential migration costs in a dual cloud

based storage architecture. However, latency definition in their work makes it not

comparable with our work. Moreover, they do not consider the online nature of social

networks and they consider fixed set of users in their experiments.

19

Cloud storage issues such as availability, vendor lock-in and security are considered

in [62]. In this paper, an optimal provider subset between a set of providers in multi-

cloud storage architecture is selected for data placement. They aim to achieve good

trade-off among storage cost, algorithm cost, vendor lock-in, transmission

performance and data availability. Moreover, an integer-programming-based data

placement model is proposed in [63] that addresses data access cost optimisation

while considering the storage capacity limitations as a Non-deterministic Polynomial-

time (NP)-hard problem. In addition, a Lagrangian relaxation based heuristics

algorithm is used to obtain ideal data placement solutions. However, they did not

consider the latency requirement in their work.

Magicube [64], a storage architecture with high reliability and low space overhead for

cloud computing, finds a solution to make a trade-off between high reliability and low

space overhead for cloud storage systems. To reduce the space overhead of file storage,

Magicube keeps only one copy of each file, and to achieve high reliability, it uses a

special encoding algorithm for fault-tolerance. Based on the research paper, to achieve

high reliability and low space cost, several methods can be used, such as triplication

at the beginning, file splitting and distribution, extra replication deletion and file repair.

In order to reduce the storage cost while meeting the data reliability requirement at

the same time, a novel cost-effective dynamic data replication strategy is proposed in

[65]. It is stated that during the execution, huge volumes of intermediate data, which

could be much larger than the original data, are generated and mostly are used

temporary. All of these intermediate data are deleted after being used or some of these

will be stored for later use, but for an inexact time period. They claimed that the

reliability assurance and storage duration is sufficient to meet the requirement of most

intermediate data in scientific applications without additional data replication. Thus,

in order to reduce the storage cost and completely utilise the storage resource in

existing cloud systems, it proposes an incremental replication method that calculates

the replica creation time based on prediction, which specifies the storage period to

meet the reliability.

The QoS aware data replication problem for cost minimisation in cloud computing

systems is investigated in [66]. Two algorithms are presented in cloud computing

20

systems. The first algorithm adopts the intuitive idea of high QoS first-replication

(HQFR) to perform data replication. In order to minimise the data replication cost and

the number of QoS violated data replicas, the second algorithm transforms the

problem into the well-known minimum-cost maximum-flow (MCMF) problem. Node

combination techniques are also proposed to reduce the possibly of large data

replication time due to the large number of nodes in cloud computing systems.

However, unlike our problem that finds the minimum number of replicas for every

user, the number of replicas for a data block is fixed in this paper.

Finally, local processing, i.e. collecting and processing user-generated content at local

clouds, and global distribution, i.e. delivering the processed content to users via geo-

distributed clouds, are proposed in [67]. It is considered as a new principle to deploy

social applications across clouds, and protocols are designed to connect these two

components together. In order to determine computation allocation and content

replication across clouds, they model and solve optimisation problems and build

prototypes in real-world clouds to verify the advantages of their design.

2.2.1 Use of Evolutionary Algorithms for Data Placement and Replication

Evolutionary algorithms such as Genetic Algorithms (GA) are used to solve the data

placement and replication problem in the cloud. To decrease the network traffic and

undesired long delays in the Internet as a large distributed system, some of the objects

are replicating at multiple sites using GA in [68]. Normal GA is considered for static

situations and a hybrid GA is proposed that takes current replica distribution as input

and then computes a new replica distribution using the network attributes knowledge

and the changes occurred. Furthermore, the problem of co-scheduling job dispatching

and data replication in wide-area distributed systems in an integrated manner is

addressed in [69]. They take into account three variables including the order of the

jobs, the individual compute nodes assignment of the jobs, and the assignment of data

objects to the local datacentres. A GA is used to find the optimal placement. However,

these works do not consider the social network data placement and replication

problem in the cloud.

21

Some data placement strategies based on GAs are proposed in [70] and [71] to reduce

data scheduling between cloud datacentres and the distributed transaction costs as

much as possible. Additionally, the problem of placing the components of a SaaS and

their related data in the cloud is addresses in [72] using a penalty based GA. However,

data replication is not considered in these papers.

2.2.2 Content Delivery Networks (CDNs)

Data replication problem in a CDN or cache network which is a very related field to

ours is addressed in many studies. A cloud CDN model [73] is depicted in Figure 2-1.

Figure 2-1. Cloud CDN model [73]

In the field of CDNs, a light-weight cooperative cache management algorithms is

developed in [74] aiming at maximising the traffic volume served from cache and

minimising the bandwidth cost. Caching strategies provide an effective mechanism

for mitigating the massive bandwidth requirements for delivery of video content by

replicating the most popular content closer to the network edge, rather than storing it

in a central site. The reduction in the traffic load reduces the required transport

capacity and capital expense, and improves performance bottlenecks. The content

placement problem is formulated as a linear program in order to benchmark the

globally optimal performance. Moreover, a novel QoS based algorithm for media

streaming is proposed in [75] using proxy caching. They employ layered coding and

transmission, and jointly consider the problems of caching and scheduling to improve

the QoS for the clients.

22

Building CDNs on top of the cloud infrastructure is advocated in [76]. In comparison

with traditional CDNs, cloud based CDNs offer cost effectively hosting storage and

services to web content and social network providers without owning infrastructure.

However, existing work on replica placement in CDNs does not readily apply in the

cloud [76]. The joint problem of building distribution paths and placing web server

replicas in cloud CDNs is investigated in this paper in order to minimise the cost

incurred on the CDN providers while satisfying QoS requirements for user requests.

A collection of offline, online-static and online-dynamic heuristic algorithms is

developed that takes the network topology and work load information such as user

location and request rates as input. The heuristics are then evaluated via web trace-

based simulation.

Cache placement on a cooperative cache built from individual client caches in a social

network or web service is investigated in [77] by employing social link information

and client preferences. They use a service that maintains a mapping between content

and the clients that cache it, proposes cache placement schemes that leverage

relationships between clients and workload statistics, and proactively places content

on clients that are likely to access it.

Resource provisioning and replica placement problems for cloud based CDNs are

addressed in [73] with an emphasis on handling dynamic demand patterns. To deal

with the dynamic nature of demand patterns in resource provisioning and replica

placement problems, this paper proposes a set of novel algorithms to solve the joint

problem of resource provisioning and caching (i.e., replica placement) for cloud based

CDNs. They propose a provisioning and caching algorithm framework called the

Differential Provisioning and Caching (DPC) algorithm. Their algorithm aims to rent

cloud resources to build CDNs and cache contents so that the total rental cost can be

minimised while all demands are served. DPC maximises total demands supported by

unexpired resources and minimises the total rental cost for new resources to serve all

remaining demands. Moreover, to dynamically adjust the placement of contents and

route maps, they further propose the Caching and Request Balancing (CRB) algorithm,

which is lightweight and thus can be frequently executed as a companion of DPC to

maximise the total demands.

23

Trend-Caching [78] and Popularity-Driven Content Caching (PopCaching) [79] are

novel cache replacement methods that optimise cache performance according to the

trends of video content. They explicitly learn the popularity trend of video content and

use it to determine which video it should store and which it should remove from the

cache. Popularity is learned in an online fashion and requires no training phase and

therefore it is more responsive to continuously changing trends of videos.

Finally, a CDN based social video replication and user request dispatching mechanism

in the cloud architecture, with the aim of minimising the total system monetary cost,

while satisfying the averaged time delay is investigated in [80]. They present a

community classification technique that clusters social users with social relationships,

close geo-locations, and similar video watching interests into various communities.

Then, a large-scale measurement is conducted on a real social network system to study

the diversities of social video propagation and the effectiveness of the communities

on smoothing the diversity. Their community-based video replication and request

dispatching strategy is formulated as a constrained optimisation problem.

Based on [81], CDN methods mostly handle designing optimal strategies for the case

where the number of contents and the scale of user requests are fixed, which is the

case in static data placement and replication methods. However, the very challenging

issue, which is addressed in this thesis is to present a dynamic strategy that can place

dynamic contents and requests related to the growing number of users and connections

on the fly and continuously ensure the optimality attained by the optimal static

solution with complete knowledge of the social network over time.

2.3 Dynamic Data Placement and Replication in the Cloud

In this section, we study the research done in the field of dynamic data placement and

replication in the cloud, which is the most related field to our work. In this category,

an efficient proactive algorithm for dynamic, optimal scaling of a social media

application in a geo-distributed cloud is proposed in [81]. However, the number of

videos increases in the system, while the total number of users and also the datacentres

are fixed.

24

An efficient proactive algorithm for dynamic, optimal scaling of a social media

application in a geo-distributed cloud is proposed in [82]. Their objective is to ensure

that the average response delay meets the QoS target at the lowest cost. To address

the challenges for storing and migrating social network data dynamically in the cloud

datacentres for timely response and reasonable expense, a set of algorithms with the

ability to do online data migration and request distribution over consecutive time

periods using Lyapunov optimisation techniques is proposed. They predict the user

demands using the social influence among users; leveraging the predicted information,

their algorithms can also adjust the online optimisation result based on the static

optimal solution. However, in their experiments, the number of users is fixed and they

only show the simulation results while increasing the number of videos in the system.

Moreover, they limited the data type to only videos.

Clockwork [83] is a third-party cloud service, which meets dynamic users request

demand by redistributing delay-tolerant requests and prioritising delay-sensitive

requests, so that adequate capacity can be provided with a reduced cost and

expenditure. Machine learning algorithms and user requests scheduling on a shorter

timescale through a fair and Pareto-optimal rate allocation are used in Clockwork. It

plans the optimal backend capacity on a relatively long timescale based on future

demand estimated.

An integrated manner of optimising partitioning and replication simultaneously

without distinguishing replica's role is explored in [84]. A lightweight replica

placement (LRP) scheme, which conducts optimisations in a distributed manner and

is well adapted to dynamic scenarios is presented in this paper. A dynamic algorithm

is presented to handle the social network dynamics such as addition or removal of

users or relations. Furthermore, the problem of social network data placement in a

distributed cloud with the aim to minimise the operational cost of a cloud service

provider is investigated in [85]. The distributed cloud in this paper consists of multiple

datacentres located at different geographical regions and interconnected by Internet

links. This algorithm uses the community concept, by grouping users of a social

network into different communities and placing the master replicas of the users in the

same community to a datacentre, and replicating their slave replicas into nearby

datacentres. They deal with the dynamic maintenance of the placed data, where new

25

users join in the network and existing users leave the network at any time, or existing

users change their read and update rates over time. In order to avoid server overhead,

data balancing technique is used in [86], which locates data from a cloud to another

according to the amount of traffic. To provide acceptable latency delay, it also

considers the relationship between users and the distance between user and cloud

when transferring data. Adaptive dynamic data placement is also enabled to

effectively and dynamically distribute user requests via their data placement method.

However, none of these papers address all different dynamic scenarios as part of the

dynamic maintenance of the social network as our strategy does. We consider all the

scenarios in a dynamic social network including addition and deletion of the users and

friendships, changes in workload and access frequencies, changes of the users’

location as well as addition and removal of the datacentres.

2.4 Summary

In this chapter, a comprehensive literature review is conducted in the field of social

network data placement and replication in the cloud. Social network service

optimisation methods including social locality and graph partitioning methods are

described. The works on static data placement and replication in the cloud such as

evolutionary based strategies and content delivery networks are summarised. Finally,

a review on existing dynamic data placement and replication methods in the cloud is

presented.

26

Chapter 3
Motivation and Research Questions

The research in this thesis is motivated by challenges in data placement and replication

faced by real world online social network applications. Section 3.1 introduces a

motivating example of Facebook online social network application. Section 3.2

analyses the problems and challenges of online social network data storage in the

cloud. Then the research gaps and how our research seals these gaps are discussed in

Section 3.3. Section 3.4 describes the key research questions of this thesis in detail.

Finally, the chapter is concluded with a brief summary in Section 3.5.

3.1 A Motivating Example

Online social networks normally deal with an extremely large number of users

distributed all around the world sharing a rapidly growing volume of interconnected

and often large data items. Users typically have friends in diverse places who expect

to access their data promptly, i.e., with a very small latency. One of the market leaders,

Facebook, has recently surpassed 2 billion monthly active users in 2017 [2]. The

newly added data per day generated by Facebook in 2016 for the 1.083 billion daily

active users was four petabytes [9].

Social network users are scattered all around the world and users have friendships

from the other parts of the world. Consider a user who has active friends in North

America, India, Europe and Australia. They share text, images, videos, audio, and

frequently add new content on a daily basis. They may also periodically update

existing content, e.g. modifying, replacing, or deleting a variety of data. Friends share

27

any information with different levels of addition and update frequencies. A number

of datacentres located all around the world can be used by the social network provider.

Some geographic locations may have several datacentres and some none. The friends

expect to be able to receive updated data including news and event feeds from their

friends, some made up of data in large size like images and videos, with a very small

latency, no matter where their geographic locations are. Data is accessed often by

mobile devices in different locations. Constantly slow updates or problems in timely

playing quality videos/audios, viewing images or interacting with other dynamic

social media contents are unacceptable to the users.

As discussed in Chapter 1, replication of data in geo-distributed cloud services with

virtually unlimited capabilities is utilised for such large-scale data storage. However,

as cloud datacentre storage, access and transmission need to be paid for, cloud rental

is extremely costly if the social network providers use naïve full replication of data to

minimise the latency requirement for these geographically scattered users having

widespread relationships. As a real example, Amazon charges US$0.03 per GB per

month storage price, US$0.004 per 10,000 requests request price, and US$0.09 per

GB transfer price for its Virginia datacentre [87]. With 2 billion monthly active users

and more than four petabytes of daily generated data, the total payment over years

would be a huge burden even for a famous and prosperous company such as Facebook.

Furthermore, in reality, social networks have a dynamic and growing nature where

based on the changes in data, users, connections and datacentres, many different

scenarios might happen. These scenarios are identified based on their decreasing

frequency of happening as follows:

 Scenario 1 (S1): New data are added and existing data are updated or deleted

 Scenario 2 (S2): Replicas become unsynchronised from time to time and

synchronisation is required to fulfil the consistency

 Scenario 3 (S3): New users join the social network

 Scenario 4 (S4): Users create new friendships

 Scenario 5 (S5): Workload and access frequencies change over time

28

 Scenario 6 (S6): Existing friendships could be broken

 Scenario 7 (S7): Users move and change their locations

 Scenario 8 (S8): Existing users may leave the social network temporarily

and/or delete their accounts permanently

 Scenario 9 (S9): New datacentres might be added or existing datacentres

might be removed

Scenarios 1-4 happen more frequently in a social network while scenarios 5-7 happen

less frequently. Scenario 8 is a relatively rare scenario and finally, scenario 9 is a very

rare scenario yet possible, which needs to be considered since it could have

irretrievable outcomes if happens. To highlight the importance, Facebook has recently

announced two new datacentre locations, which will cost hundreds of millions of

dollars [88]. Even when using cloud datacentres, Amazon as a cloud provider has

increased its datacentre locations from 9 in 2014, to 18 in 2018 and is planning to add

4 more datacentres soon [8]. The scenarios are explained in more detail with some

real examples below.

S1:

Let us consider Facebook as a social network with A as a user. User A shares images

and videos regularly with her/his friends. Every time she/he shares an image or video,

her/his primary replica and accordingly her/his storage cost need to be updated on the

fly.

S2:

User A has three friends, B, C, and D and suppose our strategy has placed three replicas

for her/him in three different datacentres, DC1, DC2, and DC3, the replica in DC1 as

the primary replica and the other two as secondary replicas. Friend B reads user A’s

replica from DC2, friend C from DC3, and friend D from DC1. Every time user A

shares items, the primary replica is updated that causes the replicas to be

unsynchronised after a while. Therefore, the secondary replicas need to be updated in

different time periods and the updating cost needs to be calculated accordingly.

29

Therefore, user A and friend D always read the updated version of user A’s data and

friends B and C read the updated data with a delay.

S3:

User F joins Facebook and starts to make some new connections once joining. The

number of replicas and their placement need to be decided for this user on the fly.

S4:

User A adds user F in her/his friend list. The nearest datacentre for user F to access

user’s A replica is DC2 but the latency to access this datacentre is more than the

Facebook desirable latency. Thus, a new replica needs to be created for user F to

access user A’s data.

S5:

User B was accessing user A’s data very frequently while users C and D were not

active users. After a period of time, user B becomes not very interested in the new

items user A shares and accesses user A’s data less frequently while user C becomes

active and accesses user A’s data from time to time, and user D remains inactive. The

solution must be adapted based on these changes. However, as there are many other

users with their own friends, it is impossible to update the solutions on the fly.

Moreover, the workload must be ideally predicted in advance so that the friends get

the data when they need instead of waiting for a period of time to get the desirable

data. The workload prediction is out of scope of our work. However, the solution is

updated in different time periods based on the new random activeness levels and

access frequencies.

S6:

Users may break their friendships occasionally based on their mutual

interests/conflicts or even private issues. In our scenario, user B becomes less

interested in the new items user A shares and may decide to unfriend user A. The

replication for user B needs to be updated based on the changes in the list of the friends

for this user on the fly.

30

S7:

User A immigrates to another country after a while and starts to make new friendships

in the new country. The social network automatically detects the new location of this

user and changes the primary datacentre for user A to the nearest datacentre to her/his

new location, which is DC4. If there is a secondary replica in the new primary

datacentre, it becomes a primary replica, otherwise a new replica is created in this new

primary datacentre and the existing replica in DC1 becomes the secondary replica. If

the new primary datacentre is close to any of friends B, C, and D, they read data from

the new replica. For instance, users B and D are close to DC4 and therefore access the

replica of user A from DC4 since then. Then user A is asked if the change is temporary

or permanent. If it is permanent, the replicas in DC1 and DC3 will be deleted, as there

is no request for them.

S8:

User B decides to leave Facebook due to her/his privacy issues and decides to delete

all her/his information from this social network. When she/he goes through the

deactivating process, she/he is asked whether (1) she/he has decided to leave the social

network forever or (2) she/he will be back after a while. If she/he chooses option 1,

all her/his data needs to be deleted from all datacentres and she/he will also be

removed from the friends list of all her/his friends. Therefore, this action is counted

as an unfriending scenario for all her/his friends and the replications for all her/his

friends need to be updated as well. Otherwise, if she/he chooses option 2, the primary

replica of this user will not be deleted and the replicas for her/his friends would not

be changed as well.

S9:

Finally, a very rare yet important scenario that may happen in an online social network

is adding or removing of datacentres. One of the datacentres might be removed or

Facebook might have a new datacentre, which is necessary to automatically update

the replicas based on the existing datacentres.

31

3.2 Problem Analysis

Based on the problems and requirements in our motivating example discussed in

Section 3.1, and as noted in the introduction of the thesis, geo-distributed cloud

services is utilised for the large-scale social network data placement and replication.

With the emergence of cloud computing [89], online social network providers can

store data in cloud datacentres with a lower cost. When using geo-distributed cloud

datacentres to store social media data, the service provider needs to have the minimum

possible number of replicas stored for every user that are capable of ensuring the

latency requirement for their friends who are accessing their data. The problem that

service providers face is to have the most affordable system by considering the trade-

off between monetary cost and latency. Therefore, we need a minimum cost storage

strategy for data placement and replication in the cloud to find the minimum possible

number of replicas for every user’s data and their locations that can guarantee key

service level agreement constraints such as latency and availability. As social

networks are dynamic, replicas and their placement need to be updated based on

ongoing changes in the social network over time. Thus, we must make online, real-

time replica placement updates based on these changes.

Cloud services can be divided to three delivery models based on the type of provided

capability: IaaS (Infrastructure as a Service), PaaS (Platform as a Service) and SaaS

(Software as a Service). My research focuses on the level of IaaS which makes use of

cloud computing infrastructure to distribute one application to many users, regardless

of their location [90]. There are several objectives that need to be considered while

providing a social network application [60].

 Respect latency requirement: The latency of each request is the time for the

friend sending this request to access the data from the nearest datacentre containing

any replica of the requested data. The final latency for every user is the Pth

percentile of latencies of all individual requests from all friends to access this user’s

data. As the percentage of more than 90% makes much more sense in most

applications [91], requirements are assumed as 90%, 95%, 99%, and 99.9% of the

individual latencies are no more than 250 ms which is considered as acceptable

32

latency in the research at Google [10]. The goal is to have the Pth percentile of

individual latencies for all users and all their friends no more than the acceptable

latency, i.e., over P% of all individual operations are within the specified latency

requirement.

 Minimise cost requirement: The primary goal is to optimise service

provider’s monetary expenses in using resources of geo-distributed clouds. Every

user has primary data replica located in their primary datacentre, which is the nearest

datacentre to their location. It is assumed that all users read their own data from

their primary datacentre and every friend of them reads their data from their nearest

datacentre which stores any replica of these users’ data, either the primary or a

secondary replica. It is also assumed that every write operation goes to the primary

datacentre. Cost as used in this research is the rate for storing data replicas,

requesting them, transferring them from different datacentres, and synchronising

different replicas. More specifically, cost rate is the total monetary cost of storing

replicas of all users’ data in different datacentres for a specific duration, requesting

and transferring all users’ and friends’ data replicas from different datacentres, and

synchronising all secondary replicas from primary data. Thus, while guaranteeing

that Pth percentile of individual latencies is less than the desirable latency, we aim

to minimise the cost for service providers.

 Availability: To ensure the availability of all operations while having

minimised cost, we need to store a minimum number of primary and secondary

replicas, which can ensure the availability.

 Consistency: Different applications may have different consistency

requirements for their users’ stored data. For instance, a document sharing

application requires strong consistency while a social networking application can

usually tolerate eventual consistency [60].

In our research, we pursue two main objectives. First, the bottom line is to keep the

Pth percentile of individual access latencies lower than 250 ms. With such a short

latency, a user is unlikely to notice any delay for the best user experience possible,

based on research at Google [10]. Considering the individual latency of all friends for

33

all users makes our work significantly distinct from others using such as average

latency.

Second, based on achieving the above, the goal is to cut the replication cost to a

minimum without sacrificing the QoS, i.e., the user’s minimum latency requirement.

There is a huge difference between average latencies and percentile individual

latencies considered in this paper. For example, consider the Amazon datacentre in

Sydney with 70% of users located in London and 30% of users located in Melbourne.

London users access the data placed in this datacentre in almost 332 ms while

Melbourne users accessing the same data in about 56 ms (see Appendix A). The

average latency to access the data placed in the Sydney datacentre by all users is 249.2

ms, i.e., lower than the target requirement of 250 ms. However, in reality, the latency

requirement is not met by the majority of the users, i.e., 70% of the users in this

example. In contrast, a Pth percentile tells us the value greater than or equal to P% of

our data. For this example, the latency requirement is fulfilled for only 30th percentile

of the users, i.e., 30%, which is very poor but reflects the reality. In contrast, for a

reasonable service level agreement, the Pth percentile is normally much higher, such

as 90% or above [91]. Note it is theoretically impossible to guarantee latency

requirement for 100% of users as some users might be located in areas with no nearby

datacentre.

3.3 Research Gaps

Placing and replicating the data related to social networks is an issue that is addressed

in the reviewed literature. As there are millions of users who are scattered all around

the world, finding an optimal way to place and replicate the data related to them in a

cost effective way while guaranteeing service level agreements is still a considerable

challenge. We pursue two main objectives in our work. First, the bottom line is to

keep the Pth percentile of individual access latencies lower than 250 ms. Considering

the latency of all friends for all users makes our work significantly distinct from others

using such as misleading average latency. There is a huge difference between average

latencies and percentile latencies considered in this thesis. Averages are simple to

understand and calculate, however, they can hide the truth. A Pth percentile tells us

34

the value greater than or equal to P% of our data. Please note, no one can guarantee

the latency requirement for all users because of the users located in areas with no

datacentre nearby. Second, based on achieving the above, the primary goal of our

work is to cut the replication cost to a minimum without sacrificing the QoS, i.e. the

user’s minimum latency requirement.

Moreover, the main contribution of this thesis is to solve the dynamic data placement

and replication problem for social networks. Cloud based data placement and

replication in dynamic environments where users join, leave, move or change their

friendships, data are added, removed and updated as needed, and datacentres are

added and removed on the fly is an unsolved problem. All dynamic scenarios that may

happen in a social network are handled in this thesis while the efficiency and

effectiveness are also fulfilled over time. To the best of our knowledge, our work is

the only comprehensive work considering all different dynamic scenarios that happen

in the social network data placement and replication scenario.

3.4 Key Research Questions

The key research questions for this PhD research are summarised as follows.

Given a dynamic social network with users scattered all around the world sharing

huge and growing amount of data with each other, how can we carry out data

placement and replication to minimise cost for the service provider while ensuring

QoS expectations for users, such as latency, consistency, and availability?

RQ 1: How do we optimally place the data and replicas to minimise replication costs

but meet the latency requirements for all users?

 How do we find the optimum number of replicas for every user? What is the

best strategy to find the minimum number of replicas for every user so that this user

and all his/her friends can access the data within the acceptable latency?

35

 How do we place the replicas in different datacentres? What is the best strategy

to find out not only the minimum number of replicas but also the best datacentres

to place them?

 How do we redirect read and write requests to different datacentres in an initial

static social network for users with different access frequencies and QoS

requirements? Having the minimum number of replicas and their placement, how

do we redirect the requests to the most suitable datacentres?

RQ 2: Given the initial static data placement and replication in place, how do we

adaptively update the social network system data placement and replication on the fly

and synchronise data in a dynamic social network to minimise the cost while meeting

the latency requirement for all users?

 How do we adapt the placement and replication based on the changes in the

system? Given the initial static data placement and replication, what is the best

strategy to adapt the data placement and replication based on the dynamic changes

in the network so that the latency requirement is always fulfilled with the minimum

cost over time.

 How do we synchronise the secondary replicas from the primary replicas?

Finally, after finding the initial data placement and replication, redirecting the

requests, and adapting the placement and replication based on the changes in the

social network over time, we need to synchronise the secondary replicas with

primary data. How and when to do such a synchronisation is our final research

question.

3.5 Summary

In this chapter, based on a real world Facebook online social network application, the

requirements of data placement and replication in social network applications are

analysed and how cloud computing systems can fulfil these requirements is further

discussed. These requirements include high availability and low latency for up to 99.9

percentile of all the requests for all the users to access not only their own data but also

36

the data of all their friends. Then, the problems of online social network data placement

and replication in the cloud, i.e. the high cost for storing, accessing, transferring, and

synchronising replicas, are deliberated and therefore, the scope of this research is

defined as cost effective data placement and replication for efficient access of social

networks in the cloud. Based on the analysis, the research gaps are discussed and the

detailed research questions of this thesis are presented as: 1) static data placement and

replication in the cloud; which is the foundation for the next question, 2) dynamic data

placement and replication in the cloud. To follow up the research questions discussed

in this chapter, we present the preliminary work we conducted in Chapter 4, which

leads to our comprehensive modelling and problem formulation in Chapter 5. Based

on the problem formulation we further present our novel static and dynamic data

placement and replication strategies in Chapters 6 and 7 respectively followed by the

experiments and evaluations in Chapter 8.

37

Chapter 4
Preliminary Work

In this chapter, the preliminary work done in the field of static data placement and

replication in the cloud is presented. During the first year of PhD, we investigated

different existing data placement and replication approaches, and studied and

evaluated various applicable datasets and cloud infrastructure compatible to our

research problem. We formulated the problem, cost and latency model and proposed

a novel Genetic Algorithm (GA) based strategy to find a near-optimal number of

replicas for every user’s data and a near-optimal placement of replicas to minimise

monetary cost while satisfying latency requirements for all individual users in a static

case. Problems including how to optimally store and replicate huge social network

data and how to distribute the requests to different datacentres are addressed using

this strategy. Users’ number and location are fixed and the goal is to find a suitable

number of replicas for every user and an effective placement of these replicas in order

to fulfil the latency requirement while minimising the monetary cost for data storage.

Simulation results on the SNAP Facebook dataset [92] show the effectiveness of the

proposed strategy over existing approaches. Sections 4.1, 4.2, and 4.3 are based on a

paper presented and published [93] in IEEE CLOUD 2016 conference.

Section 4.1 introduces the preliminary problem formulation including the cost and

latency models of social networks. Section 4.2 discusses the detailed genetic

algorithm based strategy presented in this chapter. Section 4.3 demonstrates the

simulation results and the evaluation. Limitations of our preliminary work are detailed

in Section 4.4 and the later works to overcome these limitations are discussed in

Section 4.5. Finally, the chapter is concluded with a brief summary in Section 4.6.

38

4.1 Problem Formulation

As discussed earlier, the research problem addressed in this thesis is data placement

and replication of social network services while optimising service provider’s

monetary expenses in using resources of geo-distributed clouds and guaranteeing

service level agreements such as latency for service users. In this preliminary work, we

do not include the data transfer cost based on the assumption that data need to be

transferred to the users regardless of where they are located, i.e. no extra data transfer

cost is involved and it is reflected in latency. The data transfer cost is considered in the

comprehensive data formulation which will be presented in Chapter 5. The data update

cost is also not considered in this preliminary work because the system is assumed to

be static here and handling updating of data will be described later, e.g. Chapter 7.

Every user has a primary copy located in their primary datacentre, which is the nearest

datacentre to their location. It is assumed that all users read their own data from their

primary datacentre and every friend of them reads their data from their nearest

datacentre which stores any secondary replicas of their data. It is also assumed that

every write operation goes to the primary datacentre. There are m datacentres and n

users, each with one set of data.

The users and their collection of data stored in different datacentres are denoted

respectively as:

𝑈𝑠𝑒𝑟𝑠 = {1, 2, … , 𝑛}

𝐷𝑎𝑡𝑎 = {𝑑𝑠1, 𝑑𝑠2, … , 𝑑𝑠𝑛}

Datacentres in the system are denoted as:

𝐷𝑎𝑡𝑎𝑐𝑒𝑛𝑡𝑟𝑒𝑠 = {1, 2, … , 𝑚}

The solution space is a matrix S of size n×m as follows:

𝑆𝑖𝑗 = {
1 𝐷𝑎𝑡𝑎 𝑜𝑓 𝑢𝑠𝑒𝑟 𝑖 𝑖𝑠 𝑠𝑡𝑜𝑟𝑒𝑑 𝑖𝑛 𝑑𝑎𝑡𝑎𝑐𝑒𝑛𝑡𝑒𝑟 𝑗
0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4-1)

39

4.1.1 Cost Model

Cost as used in this chapter is the cost for storing data in different datacentres.

Considering n as the number of users, and ReplicaNumi as the number of replicas for

user i, cost in the preliminary problem formulation is the total monetary cost of storing

main copy and replicas of all users’ data in different datacentres for a specific duration

and is calculated as follows:

𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡($) = ∑ 𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐶𝑜𝑠𝑡𝑖
𝑛
𝑖=1 (4-2)

where

𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐶𝑜𝑠𝑡𝑖 = 𝑈𝑛𝑖𝑡𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑃𝑟𝑖𝑐𝑒 × 𝑆𝑡𝑜𝑟𝑒𝑑𝐷𝑎𝑡𝑎𝑆𝑖𝑧𝑒𝑖 × (𝑅𝑒𝑝𝑙𝑖𝑐𝑎𝑁𝑢𝑚𝑖 + 1)

The UnitStoragePrice is the price for storing one Gigabyte of data per month in a

datacentre and StoredDataSizei is the data size for user i. Thus, the storage cost is the

cost for storing user’s data and replicas for one month in different datacentres.

4.1.2 Latency Model

In the preliminary model, latency between users and datacentres is calculated using an

approximation proposed in [82], which is based on distance. Every user has a primary

datacentre that is the nearest datacentre to their location. It is assumed that every user

has a latency of 20 ms with their primary datacentre and the latencies between the user

and other datacentres are calculated based on (4-3) [82]:

𝐿𝑎𝑡𝑒𝑛𝑐𝑦(𝑚𝑠) = {
20 𝑈𝑠𝑒𝑟 𝑎𝑛𝑑 𝑑𝑎𝑡𝑎𝑐𝑒𝑛𝑡𝑟𝑒 𝑎𝑟𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑟𝑒𝑔𝑖𝑜𝑛

0.02 × 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑘𝑚) + 5 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (4-3)

Every user reads data from the nearest datacentre that has a copy of the data. Thus, the

final latency for every user is the summation of the latency between them and their

data and the latency between all their friends and the nearest secondary replicas to

them. The targeted maximal average response delay per request is set to 150 ms and

200 ms, since latency more than 200 ms will deteriorate the user experience

significantly [82]1 . We can use alternative default latency to local datacentre and

1 Latency requirement in this chapter followed [81] as preliminary work. From Chapter 5 onwards, 250 ms is used as the
latency requirement based on a research at Google [9].

40

alternative coefficients for remote datacentres. We could also include time-of-day and

other refinements that impact both latency and cost.

4.1.3 Data Placement and Replication Problem Formulation

We aim to minimise the cost while satisfying service level agreements, in our case

primarily maximum permitted latency. We can also include other factors such as

energy consumption (watts to store/retrieve/transmit), and reliability (retrieve/transmit

fails). The problem using desired latency is formulated as follows:

minimise:

𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡 = 𝑆 (4-4)

Where

𝑆 = ∑ 𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐶𝑜𝑠𝑡𝑖

𝑛

𝑖=1

is the cost for storing primary data and its secondary replicas, subject to:

∑ 𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝑖
𝑛
𝑖=1 ≤ 𝐷𝑒𝑙𝑎𝑦 (4-5)

This constraint means that the latency for every user must be lower than the desired

latency in order to ensure the latency requirement for every user. The latency is the

latency for user i and all his/her friends to access his/her data. For every user i, we have

the following constraints.

∑ 𝑝𝑖𝑗 = 1 𝑚
𝑗=1 ∀𝑖 ∈ 𝑈𝑠𝑒𝑟𝑠 (4-6)

𝑝𝑖𝑗 + 𝑠𝑖𝑗 ≤ 1 ∀𝑖 ∈ 𝑈𝑠𝑒𝑟𝑠, ∀𝑗 ∈ 𝐷𝑎𝑡𝑎𝑐𝑒𝑛𝑡𝑟𝑒𝑠 (4-7)

∑ 𝑠𝑖𝑗 ≥ 𝑅𝑒𝑝𝑙𝑖𝑐𝑎𝑁𝑢𝑚𝑖
𝑚
𝑗=1 ∀𝑖 ∈ 𝑈𝑠𝑒𝑟𝑠 (4-8)

In these constraints, pij and sij indicate existing primary and secondary replicas of user

i’s data in datacentre j. Constraint (4-6) ensures every user has a single primary replica

in all datacentres. Constraint (4-7) ensures that no primary and secondary replicas of

the same user are co-located in a common datacentre. Finally, constraint (4-8) specifies

41

the minimum number of secondary replicas ReplicaNumi for every user i to ensure the

data availability.

4.2 Our Genetic Algorithm based Data Placement Strategy

To minimise the monetary cost while guaranteeing latency requirement, we used a

Genetic Algorithm (GA) to find the most suitable number of replicas and their

placement for every user. Our GA is able to find solutions which could not be found

by even complex rational strategies as it explores different random placements in order

to find the best one. Our goal is to find a replication of a given set of users' data with

minimum storage cost while guaranteeing that Pth percentile of individual latencies is

less than the desirable latency, i.e. over P% of all operations are within the specified

latency requirement.

The data placement and replication problem has many decision variables due to the

large number of social network users. Our GA based placement and replication strategy

is proposed to find the most cost effective number of replicas for users’ data and their

placement while guaranteeing latency requirement defined in service level agreement.

GA is a search method often employed to find the exact or estimated solutions for

optimisation and search problems. GA is a specific class of evolutionary algorithms

inspired by evolutionary biology. In GA, every solution is represented with a string,

also known as a chromosome, which follows the semantics defined by the encoding

method. After the encoding phase, the candidate solutions, i.e., the initial population,

are generated as the basic search space. In each generation, three basic GA operations,

i.e., selection, crossover, and mutation, are conducted to emulate the process of

evolution in nature. Finally, after the stopping condition is met, the chromosome with

the best fitness value is returned, demonstrating the best solution found in the search

space. This terminates the GA process [94].

An overview of our GA based social network data placement and replication strategy

is presented in Algorithm 4-1. We have the social network graph of users and their

connections, distance between different users and datacentres, and the desired latency

requirement to calculate and compare the latency. Additionally, users’ data size and

42

the storage cost are used to determine the total cost. Latency and cost are calculated

using the fitness function. To avoid violating latency by GA operations, after every

crossover and mutation, latency is being checked. Primary data cannot be mutated as

the primary data have to be stored in the user’s primary datacentre, the closest to their

location.

Algorithm 4-1. GA based data placement and replication pseudocode

Inputs:

Rate of crossover: rc

Rate of mutation: rm

Size of population: popsize

Size of selected population: keep

Number of iterations: epoch

Outputs:

Solution: S

Algorithm

// Initialisation

1. generate popsize feasible solutions randomly;

2. save them in the population pop;

// Loop until the terminal condition

3. for i = 1 to epoch do

// Crossover

4. for j = 1 to popsize-1 do

5. randomly select two solutions xa and xb from pop;

43

6. generate xc and xd by two-point crossover from xa and xb under rate rc

7. if latency requirement is valid, save xc and xd to pool;

8. update newpop = pop + pool;

9. end for

// Mutation

10. Len = size of newpop

11. for j = 1 to Len do

12. select a solution xj from newpop

13. mutate each bit of xj under rate rm and generate a new solution x’j

14. if latency requirement is valid, update xj with x’j in newpop;

15. end for

16. end for

// Selection

17. using tournament selection, select keep solutions from newpop and save

them in pop;

// Returning the best solution

18. return the best solution x in pop;

Algorithm 4-1 is explained below:

1. The rate of crossover (rc), rate of mutation (rm), size of population (popsize),

size of selected population (keep), number of iterations (epoch) are retrieved

as inputs.

2. popsize feasible solutions are generated randomly and saved as the population

(pop) (lines 1-3 in pseudocode).

44

For every iteration (epoch), steps 3-5 below are repeated until the termination condition

is met:

3. Crossover is applied to the popsize, two solutions xa and xb are randomly

chosen, xc and xd are created by two-point crossover and the newpop is updated

if the solution is valid (lines 4-9 in pseudocode).

4. Mutation is applied to the random solution xj from newpop and it is updated if

the mutated solution is valid (lines 10-16 in pseudocode).

5. Tournament selection is used to select the best solutions (line 17 in

pseudocode).

Finally, the best solution (S) is returned as the solution set (line 18 in pseudocode)

4.2.1 Initial Population Generation

The strategy starts with the encoding of the users’ data replicas placement in different

datacentres. Here, as depicted in Table 4-1, what we have employed is a two-

dimensional encoding where the first dimension denotes users’ ID as an indicator of

users’ data and the second dimension denotes the ID of different datacentres. Matrix

xij is initialised with random 1s and 0s showing whether user i’s data is stored in

datacentre j or not respectively.

Table 4-1. Problem encoding

 DCs

Users
1 2 3 … m

1 0 0 1 0 1

2 0 1 1 1 1

3 1 1 1 0 0

…

n 0 0 0 1 0

The fitness function is considered as the cost of storing data replicas of all users in

different datacentres. Hence, the fitness function is calculated as follows:

45

𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑆) = ∑ ∑ 𝑆𝑖𝑗 × 𝑈𝑛𝑖𝑡𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑃𝑟𝑖𝑐𝑒 × 𝑆𝑡𝑜𝑟𝑒𝑑𝐷𝑎𝑡𝑎𝑆𝑖𝑧𝑒𝑖
𝑚
𝑗=1

𝑛
𝑖=1 (4-9)

A validation process where generated chromosomes are checked with desired latency

is done during this step. The latency requirement is checked and the valid

chromosomes are then kept and the invalid ones are discarded and replaced with newly

generated chromosomes.

The first genetic operation is selection, where tournament selection is used, which

involves running several tournaments between a few chromosomes chosen at random

from the population and the winner of each tournament is selected. The reason of using

tournament selection is that it prevents very quick convergence same as rank selection

while it is computationally more efficient, as there is no need to sort the whole

population which is a potentially time consuming procedure [94].

4.2.2 Crossover Procedure

The basic idea of the GA crossover operation is that a random crossover point is

selected first and then the segments of parents are swapped at the selected point to

produce new children. Thus, children inherit the features of both parents. For two

random chromosomes, a two point crossover is used with a specific probability of 80%.

An example of the crossover process is presented in Figure 4-1.

Figure 4-1. Two point crossover used in our method

46

4.2.3 Mutation Procedure

In GA based mutation, which is depicted in Figure 4-2, the stored user’s replica is

mutated at a randomly selected cell of a chromosome. The mutation rate is set to a

small probability rate such as 10% since mutation can easily destroy the correct

topological order and result in invalid solutions.

Figure 4-2. Mutation used in our method

At the end of each generation, the chromosomes with the best fitness values of each

generation are chosen and the children with the worst fitness value are removed from

the considered population. The genetic evolution process repeats itself until the

stopping condition is satisfied. Finally, the best solution is returned.

4.3 Simulation Results

Our new GA based data placement and replication strategy is generic and can be used

in any social network application fitting our data placement and replication approach

and social relationships graph. In this section, we demonstrate the simulation results

and comparison of our benchmark with different placement and replication strategies.

The SNAP (Stanford Network Analysis Project) real world Facebook dataset [92] was

used to demonstrate how our algorithm finds an efficient data placement and

replication with the minimised cost while satisfying the latency requirement.

47

4.3.1 Experimental Dataset and Settings

SNAP is an undirected Facebook dataset with 4,039 users and 88,234 relationships

which is used in the experiments. This dataset contains a social network graph of users

IDs and the relations between them. Facebook data was collected from survey

participants using their Facebook app. Two types of experiments were conducted:

Section 4.3.2 evaluates the cost reduction of GA per iteration and its effectiveness

while Section 4.3.3 shows the efficiency of our strategy comparing with other

strategies.

As we did not have the users’ information such as location in the introduced dataset,

we generated random locations in the US for users based on their latitude and

longitude. Moreover, 10 datacentres are assumed in the real locations of Facebook

datacentres in Oregon, North Carolina, Altoona, Silicon Valley, Santa Clara, San Jose,

San Francisco, Ashburn, Virginia, and Council Bluffs [95]. The nearest datacentre is

chosen for every user as the primary datacentre. Number of users around each

datacentre who choose this datacentre as their primary datacentre is shown in Figure

4-3. The unit storage cost for data storage in all datacentres is considered as $0.125 per

GB per month. This could be refined to use different values per datacentre if desired.

Figure 4-3. Number of users located around different datacentres

Based on [96], Facebook is collecting 500+ terabytes2 of people’s data every day and

due to the 950 million population of Facebook and 550 million daily active users in

2 Since the preliminary work was conducted in 2015, the statistics for 2012 [94] was used. However, a later reference for 2016
[8] is used from Chapter 5 onward.

48

2012 when this dataset was collected, on average, every active user stores 900 KB (500

TB / 550 Million) information daily in a Facebook datacentre which is the amount of

27 MB (900×30) monthly. This data size increases every month. We generated random

sizes of data for users following a normal distribution with this average size as the

mean.

4.3.2 Evaluation of Cost Effectiveness

To further explain the GA setting, chromosomes are considered as a matrix of n×m

with n as the number of users and m as the number of datacentres. n is 4039 and m is

10 in our experiments. Population size is considered as 30. Crossover with crossover

rate of 0.8 and mutation by mutation rate of 0.1 are considered [97]. Selection is based

on the tournament selection. In each iteration, half of the best parents and newly

generated children are kept for the next iteration. Fitness function is considered as the

cost of every solution as described before. Latency requirement is considered as a

constraint and solutions which do not meet the latency requirement, are removed.

Figure 4-4. Cost reduction per iteration using the genetic algorithm for different

percentiles of a desired latency of 150ms

49

Figure 4-5. Cost reduction per iteration using the genetic algorithm for different

percentiles of a desired latency of 200ms

The termination condition is based on the number of iterations. 50 iterations were used

as no more cost reduction was observed after 50 iterations. The cost reduction per

iteration with different percentiles (50%-99%) of latencies (150 and 200 ms) fulfilled

is depicted in Figure 4-4 and Figure 4-5. For instance, in Figure 4-5, the green line

shows the cost reduction from the first iteration of GA data placement and replication

until the final placement and replication while 90% of users have the latency less than

200 ms for themselves and all their friends to access their own data.

As an example, referring to Figure 4-5 with latency requirement of 90 percentile of

latencies less than 200 ms, by considering the user size for all 4039 users and the unit

storage cost as described previously, the initial cost resulted by the first iteration of GA

is $66.633 with average number of replicas as 5. The minimum cost found by GA in

the 50th iteration is $21.147 with an average replica number of 2. Moreover, the 90th

percentile latencies for these two placements are 120.7639 ms and 199.9593 ms

respectively which are both acceptable, based on the latency requirement of 200 ms.

Thus, the cost reduction after 50 iterations for 4039 users with average data size of 27

MB is $45.486. Time for running 50 iterations is 705.5696 minutes. We used a general

purpose EC2 instance with vCPU=2, ECU=6.5, and Memory (GB) = 8 for our

50

simulations which costed $0.12 per hour. Thus, 705.5696 minutes, i.e. 11.75 hours, for

running GA costs $1.41. Hence, the total cost reduction of $45.486 minus the EC2

instance cost of $1.41 would be $44.076 for 4039 users. This means the cost reduction

percentage of around 65% which could thus be millions of dollars per month for a

social network application with the user size of Facebook.

4.3.3 Evaluation of Different Strategies

There are different strategies to place and replicate the described Facebook users’ data

in different datacentres that were simulated and compared with our strategy as follows:

 GA: The first strategy is our GA based algorithm in which one copy of data is

stored in the nearest datacentre. Genetic algorithm, as one of the evolutionary

algorithms, is used to find the near optimal number of replicas and the near

optimal placement for them.

 Random: Random placement and replication of data in different datacentres.

The minimum number of replicas is 1 because we should have one primary

copy of data and the maximum is 10 as we have 10 datacentres.

 Random 1: Placing one copy of data in a random datacentre.

 Random 2: Placing two copies of data in two random datacentres.

 Random 3: Placing three copies of data in three random datacentres.

 Full: Full replication of every data in all datacentres. (This method is claimed

in [37] as the data placement and replication strategy used for Facebook)

Datacentres are sorted based on the distance for every user in the next 3 strategies.

Because long distance causes high latency, every user prefers to have a copy of data in

his/her nearest datacentre.

 Distance 1: One copy of data is stored in the most preferred datacentre of every

user.

 Distance 2: Two copies of data are stored in the first and second preferred

datacentres.

51

 Distance 3: Three copies of data are stored in the three most preferred

datacentres.

Datacentres are sorted based on both distance as list1 and number of friends as list2 for

every user in the next two strategies. Users prefer to have copies of data not only in

their nearest datacentres but also in the datacentres containing most of their friends.

 Friends 1: One copy of data is stored in the most preferred datacentre in list1

and one more copy is stored in the most preferred datacentre in list2.

 Friends 2: One copy of data is stored in the most preferred datacentre in list1

and two more copies are stored in the two most preferred datacentres in list2.

In order to compare the results of these strategies, different settings are assumed. These

settings are based on the service level agreements on the latency requirement for users

and their friends to access their data. Latency requirement is defined as: “Pth percentile

latency must be lower than the desired latency” which means that over P percent of the

latencies are less than the desirable latency. Requirements are assumed as 50%, 60%,

70%, 80%, 90%, and 99% of the latencies are less than 150 ms and 200 ms.

Based on Section 4.3.2, no more significant cost reduction was seen after 20 iterations.

Therefore, for the purpose of time efficiency in repeating the experiments five times

and comparing the average results, 20 iterations were used for GA in this step. As the

percentage, more than 90% makes much more sense in most applications [91], the

results for 99.99% latencies lower than 200 ms are depicted in Figure 4-6. We used

99.99% to ensure that nearly all of the users can access their own data and all their

friends in the desirable latency.

As shown in Figure 4-6, the only strategy, except costly full replication, that can

guarantee the latency requirement of “99.99% latencies lower than 200 ms” with a

reasonable cost is GA which shows the outstanding performance of our strategy

comparing with other strategies. Therefore, our GA based strategy can find the

minimised cost while guaranteeing the latency requirement for nearly all users.

52

Figure 4-6. Comparison of different strategies with latency requirement of 99.99%

lower than 200 ms

4.4 Limitations of the Preliminary Work

There are some limitations in our GA based strategy formulated in Section 4.1,

presented in Section 4.2 and evaluated in 4.3. These limitations are listed below:

1. The transfer and update cost are ignored in the preliminary work. However,

transferring data from different datacentres in a social network with millions of

connections is significant and cannot be ignored. Moreover, replicas need to be

synchronised with each other which lead to an undeniable synchronisation and

updating cost.

2. The latency model is not very general. For the GA based strategy problem

formulation, the latency is derived using the distance between user and

different datacentres instead of considering real latencies between user and

different datacentres. Moreover, datacentres are arbitrary considered to be in

the locations of Facebook datacenters instead of considering real cloud

datacentres.

53

3. The activeness levels and access frequency rates of the friends are ignored. In

the preliminary work, we did not differentiate between different friends and the

decision for replicating a user’s data in a datacentre is based on the number of

friends in that datacentre no matter how frequently those friends access this

user’s data.

4. Even though our GA based strategy can find good results, it has serious

scalability problem as it takes a very long time for convergence. For getting

good results for a large dataset, we need to have a decent sized population and

many generations, which can take days for finding the solution. Based on the

scalability problem in using GA, a Graph Partitioning (GP) strategy based on

the users’ locations and connections was also investigated. For a large scale

dataset with millions of users, this algorithm consists of a partitioning step

which is followed by a placement and replication step. During the partitioning

step, the social network graph is partitioned into different groups of inter-

connected friends and the placement and replication strategy is applied to each

partition. Our GP based strategy for pre-processing is detailed in Appendix B.

However, The GP strategy needs to be followed by an effective and efficient

data placement and replication strategy and based on the efficiency problems,

GA based data placement and replication is not the best and it could be

improved.

5. Dynamic scenarios happening in a social network service are not considered in

the preliminary work. A static social network is considered where the users,

friendships, and datacenters are fixed and do not change over time.

6. We used the SNAP Facebook dataset for experiments and based on the limited

size of the users, it is assumed that they are located in the US and as mentioned

earlier, real locations of Facebook datacentres in the US are considered as the

datacentres in the system. However, this small dataset and the users and

datacentres that are assumed to be in the US do not reflect the reality.

54

4.5 Later Works

We have done some later works as presented in the rest of this thesis in order to

overcome the limitations related to the preliminary work discussed in Section 4.4. The

later works are summarised below.

1. The cost model is improved in order to include the transfer cost between

different datacentres and update cost to synchronise different replicas that were

ignored in the preliminary work. Cost of requesting data and transferring them

from different datacentres as well as updating replicas based on the addition,

deletion and updating of data are considered in the adapted cost model.

2. The latency model is extended to cover the latency related to different requests

from all friends. Real latencies between users in different geographical

locations and Amazon cloud datacentres are considered in the later works and

the latency model is adapted accordingly.

3. Different users have different levels of activeness and similarly their friends

have various frequencies of accessing, updating and adding to their data.

Moreover, different friends have different data access frequencies based on

their relationships, common interests, and their locations compared to their

friends. This consideration makes the data placement and replication process

dependent on the latest workload of the system and eliminates the necessity to

store data in locations with low access frequencies. Therefore, activeness levels

of users and access frequencies of their friends are also taken into account in

our next steps. We aim to guarantee the latency requirement for Pth percentile

of all individual requests between all friends, i.e. over P% of all operations are

within the specified latency requirement. Activeness level of the users is based

on how many times they check their accounts per month. We use the

percentages of different Facebook users and the number of times they check

their accounts daily reported in [98]. The extended problem formulation based

on the adapted cost, latency and access frequencies is presented in Chapter 5.

4. The scalability and efficiency issues existed in using GA for a large scale data

placement and replication problem led us to analyse and solve the problem

55

more efficiently. Consequently, our problem which includes finding the

minimum number of replicas for every user’s data and finding the suitable

datacentres to store these replicas in order to guarantee the latency requirement

for all of his/her friends is modelled as a set cover problem and a greedy

algorithm is presented to solve it. Therefore, we can model and map the

complex problem of finding a cost effective data placement and replication

strategy while fulfilling the latency requirement for individual requests to the

well-known set cover problem. A static data placement and replication strategy

that overcomes these issues is presented in Chapter 6.

5. Furthermore, social networks have a dynamic and growing nature due to the

users’ mobility and dynamic activities. All different dynamic scenarios

happening in a social network are considered in the later works and a dynamic

data placement and replication is presented to adapt the data placement and

replication based on these changes. A dynamic data placement and replication

strategy that adapts the static solution as new users come into the system and

as the popularity and links of users evolve in a real time social network is

presented in Chapter 7.

6. We have conducted further experiments on large Facebook [11] and location

based Gowala [12] datasets with real Amazon cloud datacentres located all

around the world. The experimental results with the new static and dynamic

strategies are presented in Chapter 8.

An overall research framework, which clearly indicates the relationship and difference

between the problems studied in this chapter as preliminary work and the later works

proposed in Chapters 5-7 is depicted in Figure 4-7.

In Figure 4-7, users and social network providers have their own individual

requirements and objectives. Users, connections, users’ data and datacentres’

information are given to the framework as inputs. There are two steps in the data

placement and replication framework; first, the problem needs to be formulated; and

then a data placement and replication strategy is required to find the optimal solution

for the formulated problem. Initially, a preliminary problem formulation and a GA

based data placement and replication are presented in Chapter 4 to solve the problem.

Based on the limitations discussed in Section 4.4, an extended set cover based problem

56

formulation is presented in Chapter 5, which is used in Chapter 6 to solve the static

data placement and replication problem and make the foundation to eventually being

used in Chapter 7 to solve the dynamic data placement and replication problem.

Figure 4-7. Framework of our data placement and replication strategies

4.6 Summary

The preliminary work to solve our problem of data placement and replication in the

cloud is introduced in this chapter. In Section 4.1, the preliminary problem formulation

is presented while the novel use of a genetic algorithm for optimising social network

data placement and replication in the cloud datacentres is detailed in Section 4.2. Our

proposed strategy is compared with different placement strategies in Section 4.3, and

based on the results, it can find the most affordable placement strategy while

guaranteeing latency requirement for 99.99% of online social network users. However,

while the results of the preliminary work were promising, there are some serious

57

problems pointed out in Section 4.4, which led to our final techniques presented in

Chapters 5-7 and evaluated in Chapter 8, as addressed in Section 4.5.

58

Chapter 5
Problem Formulation

In this chapter, we present an extended formulation for our problem of social network

data placement and replication in the cloud. An initial problem formulation was

presented in Chapter 4 for our GA based preliminary work, which was based on

arbitrary settings. However, real Google latency requirement, Facebook settings, and

Amazon cloud datacentres are considered in the extended formulation presented in

this chapter. The formulation presented in this Chapter, will be used in Chapters 6 and

7 and will be experimented in Chapter 8. Chapters 5-8 are based on a paper submitted

[99] to the Journal of Parallel and Distributed Computing (JPDC). Section 5.1 gives

an overview of social network data placement and replication in the cloud. Sections

5.2 and 5.3 further express the evaluation model of this research in detail including

the efficiency and effectiveness models of the strategy respectively. Finally, the

chapter is concluded with a brief summary in Section 5.4.

5.1 Data Placement and Replication Formulation

5.1.1 Problem Statement

We address the research problem of dynamic data placement and replication in social

networks, while minimising monetary expenses incurred in using resources of geo-

distributed clouds and guaranteeing social network users’ requirements, i.e., latency.

We handle update and adaptation of the data placement and replication based on the

dynamic environment of social networks.

In order to place and replicate data dynamically, we need to find an initial static data

placement and replication. In this initial stage, we assume the data, users, connections,

access frequencies, and datacentres are fixed and we find the data placement and

59

replication for the initial snapshot of the dataset. We then use this initial placement and

replication of data as a foundation for the dynamic data placement and replication as

the social network changes over time. Our initial system is static with a rigid foundation

where only the initial number of replicas and their placement are set. For every user,

we create an initial latency matrix of all their friends from all different datacentres and

formulate the problem as a set cover problem to find the initial placement of data.

Next, we update the latency matrix of all users based on all changes in the social

network and use dynamic set cover to adapt the placement based on these changes over

time. The objective is to find and keep the most cost effective placement of data

replicas of each user in different datacentres so that Pth percentile of individual requests

from all friends of the user has the latency requirement fulfilled over time. Having the

Pth percentile of latencies guarantees P percentage of the total requests have the latency

no more than the acceptable latency.

5.1.2 Problem Domain

Our goal is to produce a strategy to optimally place data of every user into different

cloud datacentres with different prices and proximities to his/her friends and send data

requests to the datacentres such that the acceptable latency for all friends at the lowest

cost can be achieved. For every user we need to find the delay matrix of all his/her

friends from all datacentres and initially formulate the problem as a set cover problem.

The set of n users and the set of data assigned to them in the social network are denoted

as Users = {1, 2, …, n} and Data = {ds1, ds2, …, dsn}.

The set of m different datacentres in the cloud environment is represented as

Datacentres = {1, 2, …, m}.

Users have relationships with each other, which are shown as a matrix of relationships

with the rows as users and the columns as friends.

Connections are denoted as Connections = {1, 2, …, c}.

Every element is assigned to a row in the matrix of relationship which refers to a

connection between a user and a friend.

60

Our overall data placement and replication problem is divided to two stages: static

and dynamic placements, which are described in more detail in Section 5.1.3 and

Section 5.1.4 respectively. Time is modelled as equal time periods ts; a static

placement is used initially and the dynamic data placement and replication is applied

during different time periods to adapt the current placement based on the changes in

the social network.

5.1.3 Static Data Placement and Replication

We formulate the initial static data placement and replication problem as a set cover

problem. Latency between users and different datacentres (DCs) is denoted as matrix

L of size n×m:

∀𝑖 ∈ 𝑈𝑠𝑒𝑟𝑠, ∀𝑗 ∈ 𝐷𝑎𝑡𝑎𝑐𝑒𝑛𝑡𝑒𝑟𝑠

𝐿𝑖𝑗 = 𝑇ℎ𝑒 𝑑𝑒𝑙𝑎𝑦 𝑜𝑓 𝑢𝑠𝑒𝑟 𝑖 𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝐷𝐶 𝑗 (5-1)

For every user i, we find the number of friends FriendsNumi and let L’ present the

latency of all his/her friends to access all datacentres which is a matrix of

FriendsNumi×m.

∀𝑖 ∈ 𝑈𝑠𝑒𝑟𝑠, ∀𝑗 ∈ 𝐷𝑎𝑡𝑎𝑐𝑒𝑛𝑡𝑒𝑟𝑠, ∀𝑘 ∈ 𝐹𝑟𝑖𝑒𝑛𝑑𝑠𝑁𝑢𝑚𝑖

𝐿’𝑖𝑗𝑘 = 𝑇ℎ𝑒 𝑑𝑒𝑙𝑎𝑦 𝑜𝑓 𝑓𝑟𝑖𝑒𝑛𝑑 𝑘 𝑜𝑓 𝑢𝑠𝑒𝑟 𝑖 𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝐷𝐶 𝑗 (5-2)

Finally, for every user, we create the delay matrix D of size FriendsNumi×m for all

friends of this user. For a given latency requirement, e.g. Pth percentile no more than

Delay, all elements in the delay matrix are compared with (P/100)×Delay.

∀𝑖 ∈ 𝑈𝑠𝑒𝑟𝑠, ∀𝑗 ∈ 𝐷𝑎𝑡𝑎𝑐𝑒𝑛𝑡𝑟𝑒𝑠, ∀𝑘 ∈ 𝐹𝑟𝑖𝑒𝑛𝑑𝑠𝑁𝑢𝑚𝑖

𝐷𝑖𝑗𝑘 = {
1 𝑖𝑓 𝐿𝑖𝑗𝑘 𝑖𝑠 𝑙𝑒𝑠𝑠 𝑡ℎ𝑎𝑛 (

𝑃

100
) × 𝐷𝑒𝑙𝑎𝑦

0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (5-3)

In our problem domain, for every user i, we have a set of elements Ui = {Ui1, …,

UiFriendsNumi}, i.e. list of the friends for user i and a set of the subsets of Ui as Si = {Si1,

..., Sim}, i.e. to store the data of user i in any datacentres 1 to m. Every element in Si is

61

considered as a subset of the elements in Ui because by replicating the data of user i in

every datacentre in Si, a subset of the friends can have the latency requirement fulfilled.

Our goal is to find a subset of Si for user i by which all friends of this user can access

his/her data for Pth percentile of their requests with latencies no more than the

acceptable latency. Therefore, our strategy is to find the minimum number of columns,

i.e. datacentres in delay matrix Dijk that have the elements with value of 1 covering all

the rows, i.e. friends. This problem equals to the “Set Cover Problem” which is NP-

complete [100].

In the set cover problem, we are given a universe Ui for every user i, i.e. list of the

friends for every user in our problem, such that |Ui|= FriendsNumi, i.e. number of all

friends for user i, and sets S1, . . ., Sj ⊆ U, i.e. placement of replicas in all different

datacentres which guarantees the latency requirement for a subset of the friends. A set

cover is a collection S, i.e. the solution set in our problem and includes some of the sets

from S1, . . ., Sj whose union covers the entire universe U.

Formally, S is a set cover if ⋃ 𝑆𝑖 = 𝑈𝑆𝑖∈𝑆 . We would like to minimise |S|. In order to

minimise |S|, a weight is defined, i.e. the storage cost of one replica per request in our

problem, and is calculated by dividing the storage price of a datacentre to the number

of requests made through the datacentre.

Therefore, the solution space is as follows:

∀𝑖 ∈ 𝑈𝑠𝑒𝑟𝑠, ∀𝑗 ∈ 𝐷𝑎𝑡𝑎𝑐𝑒𝑛𝑡𝑟𝑒𝑠

𝑆𝑖𝑗 = {
1 𝐷𝑎𝑡𝑎 𝑜𝑓 𝑢𝑠𝑒𝑟 𝑖 𝑖𝑠 𝑠𝑡𝑜𝑟𝑒𝑑 𝑖𝑛 𝑑𝑎𝑡𝑎𝑐𝑒𝑛𝑡𝑟𝑒 𝑗
0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5-4)

∑ 𝑆𝑖𝑗 ≥ 𝑀𝑖𝑛𝑅𝑒𝑝𝑙𝑖𝑐𝑎𝑖 ∀𝑖 ∈ 𝑈𝑠𝑒𝑟𝑠𝑚
𝑗=1 (5-5)

MinReplica is set to 2 in order to ensure the availability of data for all users. In a cloud

environment, maintaining high data availability is an important issue [36]. For every

user i, if the final optimal number of replicas ReplicaNumi is less than the MinReplicai,

(MinReplicai-ReplicaNumi), i.e. 1 extra replica will be simply placed in user i’s nearest

datacentre that does not hold any replica of this user’s data in order to ensure their

62

availability. Finally, requests from different friends need to be routed to suitable

replicas. We create a replica access table for every user in which requests are accessed

from the nearest datacentre holding any replica of the requested data.

Our static strategy finds the most affordable data placement and replication strategy,

while guaranteeing the latency requirement for static social networks. However, it is

not practical in dynamic social networks and therefore the static solution is used as an

initial foundation for our dynamic data placement and replication strategy addressed

next.

5.1.4 Dynamic Data Placement and Replication

After generating the initial placement of replicas for the social network using our static

strategy, the next step is to adapt the data placement and replication based on the

changes in the social network in an ongoing fashion so that we can have our key latency

requirement fulfilled with minimum cost over time. Sets of Data, Users, Datacentres,

and Connections are updated once there is a change in any of these sets such as a data

item is added/deleted/updated, a friendship is created/broken, a user has joined/left, or

a datacentre is added/removed. Any update in these sets updates the FriendsNumi, the

delay matrix D and consequently the set of elements Ui = {Ui1, …, UiFriendsNumi} and

the subsets of Ui as Si = {Si1, ..., Sim}.

Our problem is a fully dynamic set cover problem [101] in which for every user, not

only the subset of the universe, S, changes but also the universe itself, U, changes over

time. Each update inserts or deletes an element, and the algorithm has to change the

solution to restore its feasibility and approximation. In our domain, this dynamic set

cover strategy is applied to different users, who also change over time, and users are

recognised by location, which is dynamic as well. Notations used in this paper are

shown in Appendix C.

Efficiency and effectiveness objectives are modelled in Sections 5.2 and 5.3. At the

end of different time periods, by having the final number of replicas, their locations,

and the replica access table, the final latency and cost which are modelled in Sections

5.2.1 and 5.3.1 can be calculated.

63

5.2 Efficiency Calculation

Latency and time overhead are defined here, are utilised in Chapter 6 and Chapter 7,

and are evaluated in Chapter 8. Latency is the time for users to access data and it is

utilised in both our static and dynamic strategies. Time overhead is defined as (1) the

overall time for our static strategy to find the best solution and (2) the update time

taken for our dynamic strategy to adapt the solution.

5.2.1 Latency

In this research, latency between users and datacentres is determined by using the

actual latency of real end users in different locations all around the world to access

different cloud datacentres. Given a placement of data in different datacentres, every

user accesses data from the nearest datacentre that holds a replica of the data. Thus, the

final latency for every user is Pth percentile of latencies of all requests from all friends

to access this user’s data. As the percentage of more than 90% makes much more sense

in most applications [91], requirements are set as 90%, 95%, 99% and 99.9% of the

latencies of no more than 250 ms, based on a research at Google [10] rather than the

arbitrary latency of 200 ms which was considered as the threshold for our preliminary

work in Chapter 4. The goal is to have Pth percentile of individual latencies (for all

users and all their friends) of no more than the acceptable latency, i.e. Delay:

𝑃𝑡ℎ(𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝑟(𝑡)) ≤ 𝐷𝑒𝑙𝑎𝑦 (5-6)

where 𝑟 = 1, … , ∑ ∑ 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑁𝑢𝑚𝑖𝑗
𝐹𝑟𝑖𝑒𝑛𝑑𝑠𝑁𝑢𝑚𝑖
𝑗=1

𝑛
𝑖=1 (𝑡)

The latency of request r in time period ts is the time for the friend sending a request to

access the data from the nearest datacentre containing the replica of the requested data.

Different users have friends with different access frequencies, i.e., the number of times

they access this user’s data. Access frequencies of friend k of user i in time period ts is

shown by RequestNumik(ts). The total latency for every user is affected more by the

friends who access this user’s data more frequently.

64

5.2.2 Time Overhead

On one hand, we need to ensure the latency requirement for users. On the other hand,

we should not jeopardise the time it takes for our strategy to solve the problem. The

amount of time taken to find the initial solution S0 and update the solution St-1 to St is

measured in order to model the time overhead. We use greedy and dynamic greedy

algorithms with polynomial time approximation. The time complexity of static and

dynamic strategies are described in Chapter 6 and Chapter 7 respectively and evaluated

in Chapter 8.

5.3 Effectiveness Calculation

To ensure the effectiveness of the final solution, cost, competitive ratio and recourse

are defined as effectiveness measures, are utilised in Chapter 6 and Chapter 7, and are

evaluated in Chapter 8. Cost is the rate for storing data replicas, requesting them,

transferring them from different datacentres, and finally synchronising different

replicas. Competitive ratio is the worst-case ratio between the cost of our dynamic

strategy and the theoretical optimal strategy. Recourse is the number of replicas added

or dropped from the solution. Cost is utilised for both our static and dynamic strategies

while competitive ratio and recourse are defined and used for our dynamic strategy.

5.3.1 Cost

With n users, the cost in time period ts is the total monetary cost of storing replicas of

all users’ data in different datacentres during this time period, requesting and

transferring all users’ and friends’ data replicas from different datacentres, and

synchronising different replicas from the primary replica for all the users. The total

cost over time is calculated as follows:

𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡($) = ∫ ∑ (𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐶𝑜𝑠𝑡𝑖(𝑡𝑠) + 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝐶𝑜𝑠𝑡𝑖(𝑡𝑠) +𝑛
𝑖=1

𝑇

𝑡𝑠=1

𝑈𝑝𝑑𝑎𝑡𝑒𝐶𝑜𝑠𝑡𝑖(𝑡𝑠)) × 𝑑𝑡 (5-7)

where

𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝐶𝑜𝑠𝑡𝑖(𝑡𝑠) = ∑ 𝑆𝑖𝑗 × (𝑈𝑛𝑖𝑡𝑊𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑃𝑟𝑖𝑐𝑒𝑗(𝑡𝑠) +𝑚
𝑗=1

65

𝑈𝑛𝑖𝑡𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑃𝑟𝑖𝑐𝑒𝑗(𝑡𝑠) × 𝑆𝑡𝑜𝑟𝑒𝑑𝐷𝑎𝑡𝑎𝑆𝑖𝑧𝑒𝑖(𝑡𝑠) (5-8)

UnitWRequestPricej(ts) is the price in time period ts for the write request in datacentre

j. UnitStoragePricej(ts) is the price for storing one GB of data at the end of time period

ts in datacentre j and StoredDataSizei(ts) is the data size for user i at the end of time

period ts. Therefore, the storage cost is the cost for requesting to write and store user’s

data and replicas in different datacentres during a time period:

𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝐶𝑜𝑠𝑡𝑖(𝑡𝑠) = ∑ (𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑁𝑢𝑚𝑖𝑘(𝑡𝑠) ×
𝐹𝑟𝑖𝑒𝑛𝑑𝑠𝑁𝑢𝑚𝑖
𝑘=1

(𝑈𝑛𝑖𝑡𝑅𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑃𝑟𝑖𝑐𝑒𝑅𝑇𝑖𝑘
(𝑡𝑠) + 𝑈𝑛𝑖𝑡𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑃𝑟𝑖𝑐𝑒𝑅𝑇𝑖𝑘

(𝑡𝑠) ×

𝑆𝑡𝑜𝑟𝑒𝑑𝐷𝑎𝑡𝑎𝑆𝑖𝑧𝑒𝑖(𝑡𝑠)))

(5-9)

UnitRRequestPricej(ts) is the price in time period ts for the read request in datacentre

j. UnitTransferPricej(ts) is the price for transferring one GB of data from datacentre j

in time period ts. Moreover, RT is the replica access table and RTik shows the

datacentre from where friend k reads the data of user i. Thus, the transfer cost is the

cost for requesting and transferring users’ data and replicas from different datacentres

during one time period.

𝑈𝑝𝑑𝑎𝑡𝑒𝐶𝑜𝑠𝑡𝑖(𝑡𝑠) = 𝑈𝑛𝑖𝑡𝑅𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑃𝑟𝑖𝑐𝑒𝐷𝐶𝑚𝑎𝑖𝑛𝑖
(𝑡𝑠) +

𝑈𝑛𝑖𝑡𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑃𝑟𝑖𝑐𝑒𝐷𝐶𝑚𝑎𝑖𝑛𝑖
(𝑡𝑠) × 𝑆𝑡𝑜𝑟𝑒𝑑𝐷𝑎𝑡𝑎𝑆𝑖𝑧𝑒𝑖(𝑡𝑠) + ∑ 𝑆𝑖𝑗 ×𝑚

𝑗=1,𝑗≠𝐷𝐶𝑚𝑎𝑖𝑛𝑖

(𝑈𝑛𝑖𝑡𝑊𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑃𝑟𝑖𝑐𝑒𝑗(𝑡𝑠) + 𝑈𝑛𝑖𝑡𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑃𝑟𝑖𝑐𝑒𝑗(𝑡𝑠) ×

(𝑆𝑡𝑜𝑟𝑒𝑑𝐷𝑎𝑡𝑎𝑆𝑖𝑧𝑒𝑖(𝑡𝑠) − 𝑆𝑡𝑜𝑟𝑒𝑑𝐷𝑎𝑡𝑎𝑆𝑖𝑧𝑒𝑖(𝑡𝑠 − 1)) (5-10)

DCmain_i is the datacentre where the primary replica of user i is located, i.e., primary

datacentre for user i. StoredDataSizei(ts-1) is the data size for user i at the end of time

period ts-1 or at the beginning of time period ts. Consequently, the update cost is the

cost for synchronising users’ replicas from their primary replicas at the end of a time

period. More specifically, the synchronisation cost includes the cost for requesting

and transferring users’ primary replicas from their primary datacentres and requesting

to write and store user’s new data in different datacentres. Finally, the total cost is the

summation of the storage cost, transfer cost and update cost during different time

periods. For the initial static data placement and replication, as there is no

synchronisation required and so the update cost is not applicable.

66

5.3.2 Competitive Ratio

Dynamic algorithms are studied from the viewpoint of competitive analysis in [102,

103]. The competitive ratio of a dynamic algorithm for an optimisation problem is

defined as the approximation ratio achieved by the algorithm, that is, the worst-case

ratio between the cost of the solution found by the algorithm and the cost of an optimal

solution. The greedy algorithm is proved to be an O(log(n))-approximation algorithm

for the set cover problem [103], thus the solution of this algorithm can be no more

than log(n) times worse than the optimal solution in the worst case. The optimal

solution is considered as log(n)×(static solution).

5.3.3 Recourse

The number of sets which are added or dropped from a set cover as a function of the

length of the input sequence over the course of a dynamic algorithm, is defined as

“recourse” is in [101]. A dynamic algorithm is called -competitive with r recourse if

at every time period ts, solution St has the total cost at most .Optts, and the total

recourse in the first ts time periods is at most r.ts. For r worst-case recourse, the total

number of sets that are dropped at each time period cannot be more than r. The

recourse of our strategy is also evaluated in Chapter 8.

5.4 Summary

In this chapter, the problem of social network data placement and replication in the

cloud is introduced and formulated by precisely describing the concept of static and

dynamic social network data placement and replication in the cloud. Then, to evaluate

the final data placement and replication in the cloud, the efficiency and effectiveness

of both static and dynamic strategies, i.e. latency, time overhead, cost, competitive

ratio, and recourse are introduced and modelled. Latency, time overhead and cost will

be utilised and evaluated for both our static and dynamic strategies. However,

competitive ratio and recourse will specifically be used and evaluated for our dynamic

data placement and replication strategy.

67

Chapter 6
Static Data Placement and

Replication Strategy

In this chapter, we present our static data placement and replication strategy in the

cloud that forms the foundation as initialisation for ongoing dynamic data placement

and replication strategy, which will be presented in Chapter 7. As discussed in Chapter

5, based on the scalability issues we faced during our preliminary work presented in

Chapter 4, the concept of set cover is used to optimise the cost of data placement and

replication in social network services with inter-connected data items. In this Chapter,

a greedy algorithm [103], which is the optimal solution for set cover problem [104], is

used to solve the static social network data placement and replication problem which

is formulated as a set cover problem in Chapter 5. Our static strategy is generic and

can be used in any social network application fitting our data placement and replication

approach. Our strategy is presented in detail in Section 6.1 with a comprehensive time

complexity analysis in Section 6.2. Finally, the chapter is concluded with a brief

summary in Section 6.3.

6.1 Our Data Placement and Replication Strategy

We use a greedy algorithm to solve our set cover based static data placement and

replication problem. Our greedy algorithm is able to find the minimum number of

appropriate datacentres for every user that by replicating data in them, it is possible to

have the latency requirement fulfilled for this user and all his/her friends. We will use

this strategy as the initialisation for our dynamic data placement and replication

strategy, which is presented in Chapter 7. Greedy algorithm is one of the most effective

68

heuristic algorithms to solve the set cover problem [104]. It has been shown and proved

to be an O(log(n))-approximation algorithm for the set cover problem where n is the

number of elements, i.e. friends for every user in our problem [103]. An approximation

factor of log(n) for this algorithm indicates that the solution of this algorithm can only

be log(n) times worse than the optimal solution in the worst case. As mentioned in

[104], the approximation factor of log(n) cannot be beaten by any polynomial-time

algorithm (under standard complexity assumptions). In this sense, the greedy algorithm

is optimal for the set cover problem.

Primal-dual algorithm is an alternative algorithm, which is often being used to solve

the set cover problem, and in essence it can be viewed as greedy heuristic [105]. We

have also implemented the primal-dual algorithm to solve our static data placement

and replication problem. However, our experimental results show that the greedy

algorithm performs slightly better than the primal-dual algorithm in our case.

Furthermore, our greedy based strategy is more efficient in terms of running time.

Hence, the overall results for the greedy algorithm is better than the primal dual

algorithm for our problem domain.

Greedy algorithm iteratively picks the most cost-effective set that contains the largest

number of uncovered elements in each stage, and removes the covered elements, until

all elements are covered. Let I be the set of elements already covered at the beginning

of an iteration. During this iteration, let us define the cost effectiveness of a set S to be

the average cost at which it covers new elements, i.e., Cost(S)/|S−I|. The weight of an

element is the average cost at which it is covered. Equivalently, when a set S is picked,

we can think of its cost being distributed equally among the new elements covered to

set their weights [106]. In this Section, we describe our novel data placement and

replication strategy followed by the analysis of its time complexity in the next Section.

In our strategy, for every user i we find the set Si, i.e. the placement of user i’s data in

different datacentres. Weight of every solution in greedy algorithm is considered as

the storage cost of replicas in different datacentres divided by the number of requests

being accessed within the acceptable latency. Our strategy is described by the

pseudocode in Algorithm 6-1.

69

Algorithm 6-1. Static data placement and replication strategy pseudocode

Inputs:

Social network graph of users and connection (Users and Connections)

Number of connections: c

Number of users: n

Number of datacentres: m

Minimum number of Replicas: MinReplica

Latency requirement with Delay and P

Data size of different users (StoredDataSize)

Costs of different datacentres (UnitStoragePrice, UnitWRequestPrice,

UnitRRequestPrice, UnitTransferPrice)

Latency between users and different datacentres (L)

Access frequency rate of different users (RequestNum)

Outputs:

Solution set picked from {S1, S2, ..., Sm} for every user

Number of replicas for every user

Replica access table: RT

Cost of the final placement

Latency of the final placement

Algorithm

// Finding the friends number for every user

1. for all connections c’ = 1 to c between user i and friend k

70

2. Increase the FriendsNumi for user i

3. end for

// Choose the placement and replication method

4. for all users i = 1 to n

5. if (FriendsNumi == 0)

6. Sort datacentres based on the latency

7. Place MinReplica replicas of data in the MinReplica nearest datacentres

8. else

// Find the delay matrix for every user

9. Let Di represent the delay matrix of the friends of user i

10. for all friends of user i, j = 1 to FriendsNumi

11. for all datacentres, k = 1 to m

12. if (P percentile of the latency for friend j to access datacentre k is no

more than Delay)

13. Dijk = 1

14. else

15. Dijk = 0

16. end for

17. end for

// Greedy algorithm for set cover problem

18. Let I represent the set of friends having the latency requirement for all

their requests fulfilled so far. Initialise I = {}.

71

19. while (I covers all requests in RequestNumi)

20. for all k = 1 to m

21. |Sik| = number of rows having value equal to 1 in column k of delay

matrix Dijk

22. Cost(Sk) = cost of storing replica of user i in datacentre k

23. |Sik - I| = number of newly added requests

24. Weight(Sik) = Cost(Sik) / |Sik - I|

25. Find the set Sik in {Si1, Si2, ... Sim} whose Weight is minimum

26. Increase ReplicaNumi by 1

27. Add elements of above picked Si to I

28. end for

29. end while

30. end if

31. end for

32. for all users i = 1 to n

33. if (ReplicaNumi <= MinReplica)

34. Sort datacentres based on the latency

35. Place (MinReplica - ReplicaNumi) replicas of data in the (MinReplica -

ReplicaNumi) nearest datacentres which do not have any replica of user i

36. end if

37. end for

// Find the replica access table

72

38. Let RT represents the replica access table

39. for all connections c’ = 1 to c between user i and friend j

40. find the datacentre with the lowest latency for user j which holds any

replica of user i and assign it to RTc

41. end for

// Find the final cost and latency

42. Return the solution set for every user

43. Return the number of replicas for every user

44. Return replica access table

45. Return the final cost which is the total cost of storing all replicas of all

users, requesting them, and transferring them from different datacentres

46. Return the final latency which is the Pth percentile of all latencies of all

connections

Algorithm 6-1 is explained below:

1. The social network graph of users (Users) and their connections (Connections),

access frequency rates of different users (RequestNum), data size of different

users (StoredDataSize), costs of different datacentres (UnitStoragePrice,

UnitWRequestPrice, UnitRRequestPrice, UnitTransferPrice) , latency (L)

information and minimum number of replicas (MinReplica) are retrieved as

inputs.

2. By counting the number of connections that this user has with the other users in

Connections, the number of friends for every user is found as FriendsNumi (lines

1-3 in pseudocode).

For every user, steps 3-5 below are repeated until there are no more users in the social

network graph:

3. The data placement and replication method is chosen in this step based on

FriendsNumi for every user (lines 4-8 in pseudocode)

73

o If this user does not have any friends, then the datacentres are sorted based on

the latency and the MinReplica replicas of data are placed in the MinReplica

nearest datacentres. Then, the algorithm continues from step 6.

o Else, this problem is a set cover problem and greedy algorithm can be used to

solve it. The algorithm continues from step 4.

4. To formulate the problem as a set cover problem, the delay matrix D is needed

for every user (lines 9-17 in pseudocode). To find the delay matrix for user i, the

latency of all his/her friends are compared to the acceptable latency and a value

of 0 or 1 is assigned to the delay matrix. By having this matrix, greedy algorithm

can be applied as step 5.

5. Greedy algorithm for set cover problem is used which is detailed as follows:

o Initialise I = {} (line 18 in pseudocode), I is the set of friends having the

latency requirement fulfilled so far.

o While I covers all requests of all friends of user i, repeat the following

instructions (lines 19-31 in pseudocode)

 Costs of placing the replica of user i in different datacentres in addition to

the number of requests having the latency requirement fulfilled by placing

replicas in these datacentres are calculated. The datacentre that covers

most of the requests with the acceptable latency and minimum Weight is

found and user data is replicated in this datacentre.

 If there is no possible solution, the algorithm exits this loop and continues

from step 3 for the next user.

 The friends whose requests have been fulfilled are added to I.

 The solution Sij (replicating data of user i in datacentre j) is added to the

solution space S.

o If the number of replicas is less than MinReplica, more replicas are placed in

the user’s nearest datacentres which do not hold any replica of this user’s data

until the number of replicas equals to MinReplica (lines 32-37 in pseudocode).

6. By having the final replicas, the replica access table is found (lines 38-41 in

pseudocode). To find the replica access table, the connections are checked one by

one and the datacentres are sorted for every connection. The nearest datacentre

for every friend holding any replica of every user is used to read the replica.

7. The final cost and latency of all users are found in this step using the replica

74

access table, final solution (S), access frequency rates of different users

(RequestNum), data size of different users (StoredDataSize), and cost

(UnitStoragePrice, UnitWRequestPrice, UnitRRequestPrice, and

UnitTransferPrice) and latency (L) information.

8. Finally, the solution with the number of replicas, cost, latency and the replica

access table are returned (lines 42-46 in pseudocode).

6.2 Analysis of Greedy Algorithm for Static Data Placement and

Replication

In this section, we analyse the time complexity of our static data placement and

replication strategy. The greedy algorithm has been shown and proved to be an

O(log(n))-approximation algorithm for solving the set cover problem [103]. To

calculate the time complexity of our strategy, we need to find the time complexity of

Algorithm 6-1. For Algorithm 6-1, to find the number of friends for every user, as

explained in step 2, since we go through the connections one by one to find the number

of friends for every user, the time complexity for this step is O(c). The time complexity

for step 3 is the time complexity of sorting the datacentres for different users which is

O(n×m×log(m)). The time complexity for step 4 is to create the delay matrix of user i

in O(n×F) in which F = max(FriendsNum). The time complexity for greedy algorithm

explained in step 5 is O(n×log(F)) which is proved in Section 6.2.1. For step 6, as the

connections are checked one by one and the datacentres are sorted for every

connection, the time complexity for this step is O(c× m×log(m)). For step 7, the final

cost and latency of all users are found by time complexity of O(n). Therefore, the

overall time complexity for our strategy is O(n×(F+log(F)+ m×log(m))+c×m×log(m))

which is effectively O(n×F+(c+n)×m×log(m)) given log(F) is much smaller than F.

Moreover, our greedy algorithm finds a solution no worse than any other arbitrary

solution found by any other algorithm in polynomial time. The proof is provided in

Section 6.2.2.

75

6.2.1 Proof of the Greedy Algorithm Time Complexity

The time complexity for the greedy algorithm is O(n×log(F)) for data placement and

replication in a social network with n users and F friends for every user. It can be proved

as follows:

Let universe U contain F points (number of friends for every user), and suppose that

the optimal solution has size R (number of replicas). The first set picked by the greedy

algorithm has size of at least F/R. Therefore, the number of elements of U that we still

have to cover after the first set is picked is

 1 / 1 1/F F F R F R (6-1)

Now we are left with F1 elements that we have to cover. At least one of the remaining

sets Si must contain at least F1/(R−1) of such points because otherwise the optimum

solution would have to contain more than R sets. After the greedy algorithm picks the

set that contains the largest number of uncovered points, it is left with F2≤F1−F1/(R−1)

uncovered points. Note that F2≤F1(1−1/(R−1))≤F1(1−1/R)≤F(1−1/R)2. In general, we

then have:

1
1()1 1/ 1(/)1i

i
iF F R F R

 (6-2)

To determine the number of stages after which the greedy algorithm will have covered

all elements of U is corresponding to the maximum number of sets that the greedy

algorithm has to pick in order to cover the entire universe U. Suppose that it takes k

stages to cover U, by (6-2), we have Fk ≤ F(1−1/R)k, and we need this to be less than

one.

1

1 1/ 1

1 1/ 1

1 1/ 1/

1/ . .

()

(

 . 1 1/
/ log()

)

()

o (

)

g

(

l)

k

k

kR
R

kR
R

xR

F R

F R

R F

e F using relation x e
k R F
k R F

From this we can see that the size of the set cover picked by the greedy algorithm is

bounded from the above by R×log(F). It is just shown that the greedy algorithm gives

a O(log(F)) approximation to the optimal solution of the set cover problem. For n

76

users of a social network, the time complexity is O(n×log(F)). In fact, no polynomial

time algorithm can give a better approximation unless P = NP.

6.2.2 Proof of the Greedy Algorithm Effectiveness

Let us consider X={x1, x2, …, xxn} as our greedy solution and assume that there is a

solution X*={x*1, x*2, …, x*x*n} as an arbitrary feasible solution. If X is not the same

as X*, one of these situations might happen:

 There is a datacentre d in X which is not in X*.

 There is a datacentre d in X which is not in X* and a datacentre d* in X* which

is not in X.

The reason that datacentre d is in X must be that the cost for datacentre d was less than

the next chosen datacentres; however, the friends’ access latency is fulfilled by those

datacentres. Moreover, the reason that datacentre d is in X which is not in X* and

datacentre d* is in X* which is not in X must be that the cost of the datacentre d was

less than or equal to d* but the total cost of all datacentres might be more.

For the first case, we can remove the datacentre d from X and have a solution with a

lower cost. For the second case, the datacentres in the two solutions can be swapped.

This can be done for every datacentre that differ between X and X*. The two solutions

differ on at most all m datacentres for every user, so after m×n steps which is a

polynomial number of steps we can eliminate all differences between X and X* for all

users and obtain the solution X of no more cost than X* without worsening the quality

of the solution. Thus, the greedy solution produced is just as good as any arbitrary

solution found by any other algorithm.

6.3 Summary

In this chapter, our set cover based static data placement and replication strategy is

introduced and a greedy algorithm is presented to solve it. Then, a detailed pseudocode

of our static strategy is presented and discussed. Finally, greedy algorithm for our static

data placement and replication is analysed. This static data placement and replication

77

strategy will be used in Chapter 7 as the foundation to find the solution for our dynamic

data placement and replication strategy.

78

Chapter 7
Dynamic Data Placement and

Replication Strategy

In this chapter, we present our dynamic data placement and replication strategy in the

cloud. As discussed in Chapter 3, real-world social networks are not static, as assumed

by the static placement algorithm in Chapter 6, but undergo continuous dynamic

changes. Our dynamic data placement and replication strategy proposed in this

chapter uses the static data placement and replication strategy presented in Chapter 6

to generate its initial data placement and replication. It then adapts this placement for

different changes that are happening in the social network dynamically. Our dynamic

strategy is generic and can be used in any social network application fitting our data

placement and replication approach.

An overview of a dynamic greedy algorithm is presented in Section 7.1. Our dynamic

data placement and replication strategy is then presented in detail in Section 7.2. A

comprehensive time complexity analysis is discussed in Section 7.3. Finally, the

chapter is concluded with a brief summary in Section 7.4.

7.1 Overview of Dynamic Greedy Algorithm

Dynamic greedy algorithm, which is used as a part of our dynamic strategy, is

presented in this section. An obstacle to make greedy algorithms dynamic is their

sequential nature and insertions/deletions of elements can further disorganise the

sequence. However, greedy algorithms can be maintained fast, and with small

amounts of recourse using simple “local” moves [101].

79

In the dynamic greedy algorithm presented in [101], the input is a set system (U, S),

which is the solution of a static set cover. U is the list of friends for every user in our

problem, and S is the placement of replicas in all different datacentres. The input

sequence is σ = <σ1, σ2, …>, where request σt is either (et, +) or (et, -). At ⊆ U denotes

the active elements at time t with the initial active set as A0 = Ø. If σt = (et, +), then

At←At-1 ∪ {et}; if σt = (et, -) then At←At-1\{et}. At time t, only the elements seen so far

and which sets they belong to are known, and there is no need to know either U or S

upfront. When a new element arrives, it reveals the sets containing it. We maintain a

feasible set cover St ⊆ S, i.e., the sets in St must cover the active elements At.

Let Optt be the cost of the optimal set cover for the set system (At, S). Let nt denote

the number of elements that needs to be covered at time t, i.e., nt := |At|, and n denote

the maximum value of nt, i.e., n = maxt nt. For the fully dynamic set cover problem,

there is an O(log(n)) competitive deterministic algorithm for the dynamic set cover

problem, with O(1) non-amortised recourse per input step.

If all of the sets have the same unweighted set cover cost, then the competitive ratio

improves to O(1). This dynamic greedy algorithm chooses sets one by one,

minimising the incremental cost per element covered at each step. It is shown that the

number of elements covered at incremental-costs ≈ 2i(Opt/n) is no more than n/2i,

which leads to the desired O(log(n)) bound for approximation factor. Detailed key

steps of this algorithm are described in [101] and summarised in three steps as follows:

1. Arrival of e (a new friend connects):

Add the cheapest set covering e to St, where St is denoted as the solution at time t, and

run the Stabilise function defined in step 3.

2. Departure of e (an old friend leaves):

Remove e from its covering set S = ϕt−1(e), where ϕt(e) is the assignment of each active

element e to a unique set in St covering it, and update S’s density and covt(S) =

covt−1(S)\{e}. At each time t, the density of a set S in St is defined as the ratio of its

cost and the volume of elements it covers as 𝜌𝑡(𝑆) = 𝑐(𝑆)/ ∑ 𝑣𝑜𝑙(𝑒)𝑒∈𝑐𝑜𝑣𝑡(𝑆) . For

concreteness, think of vol(e) = 1 for all e, and hence the density of a set S is the

standard notion of per-element-cost of covering elements in covt(S). Moreover, at each

80

time t, the volume is maintained as vol(e) >0 for every element. If covt(S) = φ, delete

S from St. Else, if its density falls outside the range of its level, move it to the highest

level which can accommodate it. Run the Stabilise function below.

3. Stabilise:

Each set in St is assigned to different density levels. Each density level ℓ has an

associated range Rℓ := [2ℓ, 2ℓ+10] of densities. Any set S which is at level ℓ needs to

have density ρt(S) in the interval Rℓ. It is assumed that element e is at level ℓ if its

covering set ϕt(e) is at level ℓ. A solution St is called stable in [101], if for every density

level ℓ, there is no subset X of elements currently at level ℓ which is probably covered

by different sets that can all be covered by some set S, such that the density of the

resulting set 𝑐(𝑆)/ ∑ 𝑣𝑜𝑙(𝑒) < 2𝑙
𝑒∈𝑋 , i.e., the set S (in case it is added to St) and these

elements X would belong to a strictly lower density level. In the Stabilise function,

the following steps are repeatedly performed until the solution is stable:

 if there exists level ℓ and elements X currently at level ℓ, such that X ⊆ S for

some S ∈ U, and the density () /
e X

c S vo el

 < 2ℓ:

o add S to St, and reassign the elements in X to S by updating ϕt(·) for

elements in X;

o place S at the highest density level possible. Also update covt(·) for the

sets previously covering elements in X. As a result, if the updated

density of such a set S′ previously covering some elements in X

increases beyond 2ℓ+10, we move it to the highest level that can

accommodate it.

7.2 Our Dynamic Data Placement and Replication Approach

The concept of dynamic set cover is extended and used in this research to optimise

the cost of data placement and replication in social network services with inter-

connected data. Our overall goal is to continuously adapt the data placement and

replication for a given set of users’ data replicas based on the changes to the social

network so that we have the minimum storage, transfer and synchronisation cost while

guaranteeing that the Pth percentile of individual latencies is no more than the

81

acceptable latency. We use a framework consisting of greedy and dynamic greedy

algorithms [101] to solve the social network data placement and replication problem.

Static data placement and replication introduced in Chapter 6, is first used to find the

initial data placement and replication. Then, our fully dynamic adaptation strategy is

divided to two phases of eager and lazy adaptations. Dynamic adaptation is done on

the fly except for the scenarios of synchronising the replicas (S2, i.e., scenario 2

introduced in Chapter 3) and adapting the workload and access frequencies of the

friends (S5). For S2 and S5, due to the high rates of change and lower occurrence

frequency, the adaptation is postponed and done during different time periods. This is

not critical since eventual consistency is sufficient to be kept in social network

applications [60]. Lazy adaptation is based on the greedy algorithm while eager

adaptation is based on greedy and dynamic greedy algorithms when appropriate.

Figure 7-1 provides an overview of our dynamic data placement and replication

strategy.

Figure 7-1. Dynamic data placement and replication process

82

7.2.1 Initial Static Data Placement and Replication

The static data placement and replication strategy presented in Chapter 6 is used to

find the initial placement and replication of data. As discussed in Chapter 6, the

concept of set cover is used to optimise the initial cost of data placement and

replication and a greedy algorithm is used to solve the initial static social network data

placement and replication problem. For every user i, the set Si, i.e., the placement of

user i’s data in different datacentres found by the initial static data placement and

replication is given as input to the dynamic data placement and replication which is

presented in this chapter.

After finding the initial data placement and replication using our static data placement

and replication strategy, equal time periods are considered. For every user i we

initially find the set Si, i.e., the placement of user i’s data in different datacentres.

Users, connections, data, and datacentres are updated once a change happens in the

social network. To find a suitable solution based on different scenarios, the dynamic

strategy is divided to two phases of eager and lazy adaptations. Eager adaptation is

iteratively applied during a time period in order to update the solution based on any

changes in data (S1, i.e., scenario 1 introduced in Chapter 3), users joining (S3), new

friendships (S4), friendships broken (S6), users moving (S7), users leaving (S8), and

changes in datacentres (S9). Once a time period is finished, lazy adaptation is applied

in which synchronisation is done (S2) and the solutions are updated based on the new

workload and access frequencies (S5). Finally, the replica access table is updated and

the final cost and latency for the adapted placement and replication is calculated.

7.2.2 Eager Adaptation

Eager adaptation, as depicted in Figure 7-2, is used to address social network changes

for scenarios 1, 3, 4, 6-9 described in Chapter 3. The replica placement adaptation is

done on the fly during different time periods. For all the scenarios, the list of the users,

data, connections, and datacentres are updated when needed. Then the suitable action

is taken based on the scenario. The replication strategy updates are explained below

for each corresponding scenario:

83

S1. Adding/Deleting data: Data sizes increase on a daily basis, i.e., at any time during

different time periods, for all the users based on their workload. Data sizes and storage

costs are updated accordingly.

S3. Joining of users: Once a new user joins, latencies for accessing different

datacentres, list of friends for this user, initial data storage size, matrix of friends’

latencies, workload and access frequencies of the friends are created. The data

placement and replication problem is mapped to a set cover problem for the user and

the greedy algorithm is used to solve it.

S4. New friendships: Once a new friendship is created, the list of friends and access

frequencies for the user who created the relationship is updated. The replica access

table is also updated to find the nearest datacentre to the new friend. If the latency

requirement is fulfilled for this user with the current solution, no new replica is

created. Otherwise, the problem is mapped to a dynamic set cover problem and

dynamic greedy algorithm is used to solve it.

S6. Breaking friendships: When users unfriend each other, the problem is mapped to

a dynamic set cover problem using the dynamic greedy algorithm to solve it.

Figure 7-2. Eager adaptation process

84

S7. Changing user’s location: Users may move temporarily or permanently. Once a

user moves, a replica is created in the nearest datacentre as the new primary replica

and all write requests for this user are directed to the new primary replica. The replica

access table is updated and the user is asked if the change is temporary or permanent.

For a permanent move, if there is no request from friends for the old primary replica,

the old primary replica is deleted.

S8. Leaving of users: Quitting could be a temporary leave-taking or permanently

deleting the account. Temporary quits, e.g. deactivating in Facebook, are ignored and

data are kept in case the users re-join. For permanent quits, not only all the replicas

for the user need to be deleted, but also the “breaking friendship” scenario needs to be

considered for all the friends of this user.

S9. Adding/Removing datacentres: If a new datacentre is added, the sorted list of

datacentres for all the users needs to be updated. If the new datacentre could be a

primary datacentre for any users or their friends, the placement and replication is

redone for this user using the greedy algorithm. If one of the current datacentres is

removed or unavailable, the replica access table is updated to redirect the requests of

this datacentre to another datacentre. If there is a user who cannot have the latency

requirement fulfilled due to the removed datacentre, a new solution needs to be found

for this user using the greedy algorithm.

7.2.3 Lazy Adaptation

We use lazy adaptation, as depicted in Figure 7-3, to address scenarios 2 and 5

described in Chapter 3. The adaptation is done at the end of every time period and

adaptation is only applied to the necessary users without any static replication with

complete re-computation needed at any point. The replication strategy updates are

explained below for each corresponding scenario:

S2. Synchronisation of replicas: During every time period, all the write requests from

the users are routed to the primary replicas and the read requests from the friends are

redirected to either the primary replica or one of the secondary replicas based on their

proximity. At the end of every time period, the secondary replicas of all users are

85

synchronised with the primary replicas and the update cost is calculated.

Synchronisation could be done in an eager fashion as there could be some

inconsistency during a time period. However, it is not very critical in social network

applications since eventual consistency suffices [60].

S5. Changes in workload and access frequencies: Since the workload and access

frequencies change for all the users and their friends, it is not practical to adapt the

solution on the fly based on such changes. Therefore, at the end of every time period,

the solution is adapted based on the changes in workload and access frequencies of

friends. Instead of adapting the solution for all users, the replica access table is updated

for the users given the new workload, access frequencies and existing solution. If the

latency requirement is not fulfilled for any users with the current solution, the greedy

algorithm is used to find a solution for the user using the new workload and access

frequencies.

7.2.4 Data Placement and Replication Strategy

Our strategy is described by the pseudocode in Algorithm 7-1 whilst the details of our

static data placement and replication are presented before as Algorithm 6-1 in Chapter

6. Eager adaptation and lazy adaptation algorithm pseudocodes are also presented as

Algorithm 7-2 and Algorithm 7-3.

Figure 7-3. Lazy adaptation process

86

Algorithm 7-1. Dynamic data placement and replication strategy pseudocode

Inputs:

Social network graph (Users and Connections)

Existing solution set {S1, S2, ..., Sm} for every user

Time period duration: interval

Number of connections: c

Number of users: n

Number of datacentres: m

Latency requirement with Delay and P

Outputs:

Adapted solution set {S1, S2, ..., Sm} for every user

Replica access table: RT

Cost and latency of the final placement

Algorithm

1. StaticDataPlacement(); //Referring to Algorithm 6-1 which is run

once only for initialisation

// Check for the changes until time period is finished

2. for each time period ts

3. StartTime = the current time;

4. while ((CurrentTime - StartTime) <= interval)

5. EagerAdaptation(); //Referring to Algorithm 7-2

6. CurrentTime = the current time;

87

7. end while

8. LazyAdaptation(); //Referring to Algorithm 7-3

// Update the replica access table

9. Let RT represent the replica access table

10. for all connections c’ = 1 to c of user i and friend j

11. RTc = the datacentre with the lowest latency for user j which holds

a replica of user i

12. end for

13. Update and return the final cost and latency

14. Return the solution set for every user

15. Return the number of replicas for every user

16. Return replica access table

17. end for

Algorithm 7-1 is explained below:

1. The initial social network graph of users (Users) and their connections

(Connections), the current number of connections (c), users (n), datacentres

(m), as well as existing solution set with current setting in addition to the

duration of the time periods (interval) are retrieved as inputs.

2. Static data placement and replication is initially carried out once only (line 1)

3. For each time period ts, repeat the following instructions (lines 2-17)

o While ts is not finished, i.e., the duration of ts is lower than interval, repeat

the following instructions (lines 4-7)

 Call EagerAdaptation() for any scenarios of S1, S3-S4, S6-S9

happening in order to adapt the solution

o Call LazyAdaptation() to adapt the solution (line 8)

o Using the final replicas, the replica access table is updated (lines 9-12). To

88

create the replica access table, the connections are checked one by one and

the datacentres are sorted for every connection. The nearest datacentre for

every friend holding any replica of every user is used to access the data.

o The final cost and latency of all the users are updated in this step. Finally,

the solution with the number of replicas, cost, latency and the replica

access table for the current time period are returned (lines 13-16).

o Continue to the next time period by repeating step 3 (line 17).

Algorithm 7-2. Eager adaptation pseudocode

Inputs:

Existing solution set {S1, S2, ..., Sm} for every user

Current time period: ts

Data is updated: addData, userID

A user is added: addUser, userID

A user is removed: removeUser, userID

A user is moved: moveUser, userID, userLocation

A friend is added: addFriend, userID

A friend is removed: removeFriend, userID, friendID

A datacentre is added: addDC, datacentreID, datacentreLocation

A datacentre is removed: removeDC, datacentreID

Number of datacentres: m

Latency requirement with Delay and P

Data size of different users: StoredDataSize

Outputs:

89

Adapted solution set {S1, S2, ..., Sm} for every user

Number of replicas for every user

Replica access table: RT

Algorithm

// Continuously check if there is a change in data, users, friends, and

datacentre

// Data is updated, Scenario 1

1. if addData is true

2. update the StoredDataSize and the primary replica for user userID;

3. end

// A new user is added, Scenario 3

4. if addUser is true

5. find sts(userID) using greedy algorithm;

6. end

// A new friendship is created, Scenario 4

7. if addFriend is true

8. Check if the new friend has the latency requirement fulfilled for

accessing the user’s data

9. if the latency requirement is not fulfilled for the new friend

10. sts(userID) = Dynamic set cover strategy;

11. end if

12. end if

90

// A friendship is broken, Scenario 6

13. if removeFriend is true

14. sts(userID) = Dynamic set cover strategy;

15. end if

// If a user changes location, Scenario 7

16. if moveUser is true

17. Find the primary datacentre of user i and create a replica in the primary

datacentre

18. Update the replica access table RT for user i

19. if (change is permanently and no friends of user i accesses the old

primary datacentre of user i)

20. Delete the old replica

21. else

22. Keep the old replica

23. end if

24. end if

// A user is removed, Scenario 8

25. if removeUser is true

26. if the user is removed permanently

27. Delete the data of this user

28. Update the list of friends for this user’s friends

29. for all the friends of this user

91

30. removeFriend = true and adapt the solution set for all the friends

31. end

32. end if

33. end if

// Datacentres are added or removed, Scenario 9

// A new datacentre is added

34. if addDC is true

35. m = m + 1;

36. for all users i = 1 to n

37. Sort the datacentres for user i

38. if datacentreID is the nearest datacentre to any of the users

39. find sts(i) using greedy algorithm;

40. end if

41. end for

42. end if

// A datacentre is removed

43. if removeDC is true

44. m = m - 1;

45. Remove the datacentre from the list of the solution for all users

46. Update the replica access table RT for all users

47. for all users i = 1 to n

48. Update the final latency for user i

92

49. if the latency requirement is not fulfilled for user i

50. find sts(i) using greedy algorithm;

51. end if

52. end for

53. end if

// Update the replica access table

54. Let RT represent the replica access table

55. for all connections c’ = 1 to c of user i and friend j

56. find the datacentre with the lowest latency for user j which holds any

replica of user i and assign it to RTc

57. end for

// Update the final cost and latency

58. Return the updated solution set for every user

59. Return the number of replicas for every user

60. Return replica access table

Algorithm 7-2 is explained below:

1. The existing solution set for all the users, the current time period (ts), flags

related to different scenarios (addData, addUser, removeUser, moveUser,

addFriend, removeFriend, addDC, removeDC, userID, friendID,

datacentreID, userLocation, and datacentreLocation), Number of datacentres

(m), Latency requirements (Delay and P), and Data size of different users

(StoredDataSize) are retrieved as inputs. The existing solution set is given as

input to the EagerAdaptation() function. The EagerAdaptation() function then

proactively checks whether data is updated (addData) for user with userID

(S1); a user userID is added (addUser) (S3); a friend is added (addFriend) to

93

the list of friends of user userID (S4); a friend friendID breaks the friendship

with user userID (removeFriend) (S6); a user userID moves to a new location

userLocation (moveUser) (S7); a user userID has been removed (removeUser)

(S8); a new datacentre datacentreID is added in datacentreLocation (addDC)

or an existing datacentre datacentreID is removed (removeDC) (S9).

2. S1: If (addData is true) (lines 1-3 in pseudocode)

o Update the StoredDataSize and the primary replica for user userID

3. S3: If (addUser is true) (lines 4-6 in pseudocode)

o Find sts(userID) using greedy algorithm

4. S4: If (addFriend is true) (lines 7-12 in pseudocode)

o If the latency requirement is not fulfilled for the new friend using the

current solution, dynamic greedy algorithm is called to adapt the solution

for user userID

5. S6: If (removeFriend is true) (lines 13-15 in pseudocode)

o Dynamic greedy algorithm is called to adapt the solution for user userID

6. S7: If (moveUser is true) (lines 16-24 in pseudocode)

o The new primary datacentre of user userID is found based on the new

location of this user userLocation and a replica is created in the new

primary datacentre

o The replica access table is found for user userID

o If the change is permanent and no friends of user userID accesses the old

primary datacentre of user userID, the old replica is being deleted

otherwise, the old replica is being kept

7. S8: If (removeUser is true) (lines 25-33 in pseudocode)

 If the user is removed permanently, we delete all the replicas for this

user, and delete this user from the list of friends of all user userID’s

friends

 The removeFriend is set to true and EagerAdaptation() is called for

scenario S6

8. S9: If (addDC is true) (lines 34-42 in pseudocode)

o Increase the number of datacentres (m) by 1

o For all the existing users, the datacentres are sorted based on the distance

to the location of every user and if the new datacentre, datacentreID is the

94

nearest datacentre to any of the users, a new solution is found for this user

using the greedy algorithm

If (removeDC is true) (lines 43-53 in pseudocode)

o Decrease the number of datacentres (m) by 1

o For all the existing users, remove the datacentre datacentreID from the list

of the solution for this user and update the replica access table and the final

latency for the user

o If the latency requirement is not fulfilled for this user, adapt the solution

for this user using greedy algorithm

9. By having the final replicas, the replica access table is found (lines 54-57 in

pseudocode). To update the replica access table, the connections are checked

one by one and the datacentres are sorted for every connection. The nearest

datacentre for every friend holding any replica of every user is used to read

the replica.

10. The final cost and latency of all users are found in this step using the replica

access table, final solution (S), access frequency rates of different users

(RequestNum), data size of different users (StoredDataSize), and cost

(UnitStoragePrice, UnitWRequestPrice, UnitRRequestPrice, and

UnitTransferPrice) and latency (L) information.

11. Finally, the solution with the number of replicas, and the replica access table

are returned (lines 58-60 in pseudocode).

Algorithm 7-3. Lazy adaptation pseudocode

Inputs:

Current time period: ts

Solution set for all the users: sts-1

Access frequency rates in time period ts: RequestNum(ts)

Number of connections: c

Number of users: n

95

Number of datacentres: m

Latency requirement with Delay and P

Data size of different users: StoredDataSize

Outputs:

Adapted solution set {S1, S2, ..., Sm} for every user

Number of replicas for every user

Replica access table: RT

Algorithm

// Access frequencies are updated, Scenario 5

1. find the total latency using sts-1 and RequestNum(ts)

2. if the total latency is greater than Delay

3. for all users i = 1 to n

4. if the latency of user i is greater than Delay

5. find sts(i) using greedy algorithm;

6. end if

7. end for

8. end if

// Update the replica access table

9. Let RT represent the replica access table

10. for all connections c’ = 1 to c of user i and friend j

11. find the datacentre with the lowest latency for user j which holds

any replica of user i and assign it to RTc

96

12. end for

// Synchronise replicas, Scenario 2

13. for all users i = 1 to n

14. Synchronise different replicas for user i based on StoredDataSize

15. Find the updating cost for user i

16. end for

// Update the final cost and latency

17. Return the solution set for every user

18. Return the number of replicas for every user

19. Return replica access table

Algorithm 7-3 is explained below:

1. Current time period (ts), solution set for all the users (sts-1), access frequency

rates in time period ts (RequestNum(ts)), number of connections (c), number

of users (n), number of datacentres (m), latency requirement (Delay and P),

and data size of different users (StoredDataSize) are retrieved as inputs. The

current time period (ts), final solution sets for all the users which were adapted

during the EagerAdaptation() as well as the new activeness levels and access

frequency rates for time period ts (RequestNum(ts)) are given as input to the

LazyAdaptation() function.

2. S5: The total latency is calculated using the existing solution set sts-1 and

RequestNum(ts) (lines 1-8 in pseudocode)

o If the total latency is greater than Delay, for all users, repeats the following

steps

o If the latency for this user is greater than Delay, adapt the solution for this

user using greedy algorithm

3. By using the final replicas, the replica access table is found (lines 9-12 in

pseudocode). To update the replica access table, the connections are checked

97

one by one and the datacentres are sorted for every connection. The nearest

datacentre for every friend holding any replica of every user is used to read

replica.

4. S2: After updating the replica access table, all the secondary replicas are

updated from the primary replicas for all the users and the updating cost is

calculated (lines 13-16 in pseudocode).

5. The final cost and latency of the all users are found in this step using the replica

access table, final solution (S), access frequency rates of different users

(RequestNum), data size of different users (StoredDataSize), cost

(UnitStoragePrice, UnitWRequestPrice, UnitRRequestPrice, and

UnitTransferPrice) and latency (L) information.

6. Finally, the solution with the number of replicas, and the replica access table

are returned (lines 17-19 in pseudocode).

7.3 Time Complexity of the Dynamic Data Placement and

Replication

Time complexity of our dynamic strategy, which consists of greedy and dynamic

greedy based algorithms, is analysed here. As discussed in Chapter 6, the greedy

algorithm has been shown and proved to be an O(log(n))-approximation algorithm for

solving the set cover problem [103]. Moreover, the results presented in [101] which

are based on a novel dynamic greedy algorithm for dynamic set cover problem,

obtains O(log(n))-competitive results. Given the time complexity for greedy

algorithm in our problem is O(n×log(F)) where n is the number of users, m is the

number of datacentres and F = max(FriendsNum), the overall time complexity for the

initial data placement and replication, as proved in Chapter 6, is effectively

O(n×F+(c+n)×m×log(m)). Time complexity of our dynamic data placement and

replication strategy is the time complexity of Algorithm 7-1. To find out the time

complexity of Algorithm 7-1, i.e. our dynamic data placement and replication strategy,

we need to find out the time complexity of Algorithm 7-2 and Algorithm 7-3 first.

To find out the time complexity of Algorithm 7-2, for step 1 (lines 1-53 in

pseudocode), the time complexity for S1 (lines 1-3 in pseudocode) is to update the

98

data size for a specific user which is O(1); for S3 (lines 4-6 in pseudocode), to apply

the greedy algorithm for a new user which is O(log(F)); for S4 (lines 7-12 in

pseudocode) and S6 (lines 13-15 in pseudocode), dynamic greedy algorithm is used

with the time complexity of O(log(F)); for S7 (lines 16-24 in pseudocode), to find the

new primary datacentre which is O(m×log(m)), and then to update the replica access

table for the user and check if the old primary one is being accessed by any of the

friends which is O(c×m×log(m)); for S8 (lines 25-33 in pseudocode), to update the list

of friends and apply dynamic greedy algorithm for all of the friends of the removed

user which is F×log(F); finally, for S9, for adding a datacentre (lines 34-42 in

pseudocode), to sort datacentres and apply greedy algorithm for some of the users

which is O(n×log(m)+n×log(F)) and for removing a datacentre (lines 43-53 in

pseudocode), to update the replica access table and apply greedy algorithm for some

of the users which is O(c×m×log(m)+n×log(F)). For step 2 (lines 54-57 in

pseudocode), as the connections are checked one by one and the datacentres are sorted

for every connection, the time complexity for this step is O(c×m×log(m)). For step 3

(lines 58-60 in pseudocode), the final cost and latency of all users are found with time

complexity of O(n). Finally, the results are returned in step 4 (lines 58-60 in

pseudocode) with time complexity of O(1). Hence, the overall time complexity for

Algorithm 7-2 is O(F×log(F)+c×m×log(m)+n×log(m)+n×log(F)) which is effectively

O((c×m+n)×log(m)+n×log(F)) given that log(F) << F << n.

The time complexity of Algorithm 7-3 is to retrieve the inputs in step 1 and adapt the

solution for the user whose latency requirement is not fulfilled in step 2 (lines 1-8 in

pseudocode) which are O(1) and O(n×log(F)) respectively. For step 3 (lines 9-12 in

pseudocode), to update the replica access table which is O(c×m×log(m)) and finally

to calculate the updating cost, total cost and latency in steps 4 and 5 (lines 13-16 in

pseudocode) with time complexity of O(n). Hence, the overall time complexity for

Algorithm 7-3 is O(n×log(F)+c×m×log(m)).

Therefore, the time complexity of Algorithm 7-1 is the time complexity of Algorithm

7-2 and Algorithm 7-3 in addition to update the replica access table with

O(c×m×log(m)) and to calculate the total cost and latency with O(n) that is

O(((c×m+n)×log(m)+n×log(F)). Finally, the overall time complexity of our dynamic

data placement and replication strategy considering as the number of changes in the

99

network, is O(×(((c×m+n)×log(m)+n×log(F))). Therefore, the overall time

complexity of our dynamic data placement and replication strategy is proved to be

O(((c×m+n)×log(m)+n×log(F)) in this section.

7.4 Summary

In this chapter, a brief overview of dynamic greedy algorithm that is used as part of

our solution for dynamic data placement and replication in the cloud is presented. In

order to solve the problem of finding a cost effective data placement and replication

strategy and coping with the changes in the social network while fulfilling the latency

requirement for individual requests efficiently and effectively, the complex problem

is modelled and mapped to the well-known (dynamic) set cover problem. Our

dynamic set cover based data placement and replication strategy including eager and

lazy adaptation strategies is then introduced. To derive the most cost effective

solution, a framework consisting a combination of greedy and dynamic greedy

algorithms is presented to find the most affordable solution. Detailed pseudocodes of

our dynamic strategy, eager adaptation, and lazy adaptation are also presented and

discussed. Finally, time complexity of our dynamic data placement and replication

strategy is systematically explained.

100

Chapter 8
Experiments and Evaluations

In this chapter, we evaluate our proposed static and dynamic data placement and

replication strategies by running a variety of simulations on the cloud. We start with

the experimental setting described in Section 8.1. We introduce two real world social

network datasets used to demonstrate how our strategy finds an efficient and effective

placement and replication of data with the minimised cost while satisfying the latency

requirement. The first dataset is a Facebook social network graph [11] with 63,731

nodes, i.e. users, and 1,545,686 edges, i.e. connections, and the second dataset used

in our experiments is SNAP location based Gowala social network graph [12] with

196,591 nodes and 950,327 edges. In Section 8.2, we demonstrate and analyse the

simulation results of both datasets for the static strategy and compare our strategy with

other representative counterparts with having different percentiles of latency

requirement. Furthermore, in Sections 8.3, the simulation results of both datasets for

the dynamic strategy comparing to our static strategy and the full replication strategy

as the benchmark, with having different percentiles of latency requirement are

demonstrated and analysed. Then, in Section 8.4, threats to validity of the results are

discussed. Finally, this chapter is summarised in Section 8.5.

8.1 Experimental Settings

For our simulations, 9 real Amazon datacentres in Virginia, California, Oregon,

Ireland, Frankfurt, Singapore, Sydney, Tokyo, and Sao Paulo are considered and the

real unit storage cost for data storage per GB per month, request cost per request and

101

transfer cost per GB [87] in all these datacentres are taken into account. This is an

extended model comparing to our preliminary work where we assumed 10 datacentres

in real location of Facebook datacentres and used a distance based formula presented

in [82] to calculate the latencies. The UnitStoragePricej, UnitWRequestPricej,

UnitRRequestPricej, and UnitTransferPricej for Amazon datacentres used in our

experiments are shown in Appendix D. The final cost of a strategy is the summation

of the storage cost, i.e. to store all replicas of all users, the transfer cost, i.e. to request

and transfer all replicas from different datacentres based on all requests from all users

and their friends, and the update cost, i.e., to synchronise all secondary replicas of all

users with their primary replicas. The update cost is equal to zero for the static strategy

as no synchronisation is done in the initial data placement and replication.

To find the latency of these datacentres, we had 19 different users in 19 different cities

around the world pinging different Amazon datacentres from their locations ten times

each. The average latencies found are shown in Appendix A. To reflect the latency of

different users to access Amazon datacentres and in order to assign these latencies to a

different number of users in these locations, we generate latencies based on normal

distributions with the collected latencies as the mean for our simulations.

To measure the workload of the social network, we define a term called “activeness

level”. Activeness level of the users is based on how many times they check their

accounts per day. Percentages of different Facebook users and the number of times

they check their accounts daily is reported in [98]. We use the same proportion for

different percentages of the users, as in Table 8-1. To find the access frequency rates

of different users to access their friends’ data, as users may or may not check their

friends’ accounts every time when they check their own accounts, the access frequency

rates of users to access their friends’ data can be set randomly between 1 and every

user’s activeness level.

102

Table 8-1. Percentages of users and their activeness levels

Percentage Activeness level

8 12

15 8

12 4

14 2

27 1

remaining 0 (inactive, hence not in simulation)

8.1.1 Benchmarking Strategies

Several alternative data placement and replication strategies are simulated and

compared with our strategy to show the efficiency and effectiveness of each. We

compared our strategy with 11 different strategies which are applied to both Facebook

and Gowala datasets. The minimum number of replicas for our strategy and all other

strategies are considered as 2 in order to ensure the data availability of the system.

These strategies can be classified to 6 different groups: 3 random-based strategies, 1

full replication strategy, 2 distance-based strategies, 2 friend-based strategies, 2

request-based strategies, and 1 social locality based strategy. These strategies (A1-

A12) are explained in more detail below:

Random-based strategies:

A1: Random number of replicas (between 2 and the maximum number of datacentres)

are placed in random datacentres.

A2: Two replicas are placed in two random datacentres.

A3: Three replicas are placed in three random datacentres.

Full-replication strategy:

A4: Full replication of data in all datacentres that is claimed in [37] as the data

placement and replication strategy used for Facebook. This strategy has the lowest

103

possible latency and can be deemed as the minimum latency benchmark.

Distance-based strategies:

Because long distance incurs high latency, every user prefers to have a replica of data

in their nearest datacentre. In this group of strategies, datacentres are sorted based on

the distance for every user as list1.

A5: Two replicas are placed in the first and second preferred datacentres in list1.

A6: Three replicas are placed in the three most preferred datacentres in list1.

Friend-based strategies:

Users prefer to have replicas not only in their nearest datacentres but also in the nearest

datacentres to the most of their friends. In this group of strategies, datacentres are

sorted based on both distance as list1 and number of friends around different

datacentres as list2 for every user.

A7: One replica is placed in the most preferred datacentre in list1 and one more replica

is placed in the datacentre with the most number of friends in list2.

A8: One replica is placed in the most preferred datacentre in list1 and two more

replicas are placed in the two most preferred datacentres in list2.

Request-based strategies:

Users prefer to have replicas not only in their nearest datacentres but also in the

datacentres where most of the requests are from the friends around them. In this group

of strategies, datacentres are sorted based on both distance as list1 and number of

requests as list3 for every user.

A9: One replica is placed in the most preferred datacentre in list1 and one more replica

is placed in the most preferred datacentre in list3.

A10: One replica is placed in the most preferred datacentre in list1 and two more

replicas are placed in the two most preferred datacentres in list3.

Social locality based strategy:

A11: In social locality strategy, which is maintained in [29], the data of all friends are

placed in every user’s server. We further consider the transfer cost in our cost model

that is ignored in their work.

104

Our strategy:

A12: Our static strategy.

8.1.2 Case Studies

Two real world social network datasets used to demonstrate the efficiency and

effectiveness of our data placement and replication strategy with the minimised cost

while satisfying the latency requirement are demonstrated in this section.

8.1.2.1 Facebook dataset: a general case with locations randomly generated

The Max Plank institute Facebook dataset which contains user-to-user links from the

Facebook New Orleans networks is used in the experiments. All links are treated as

directed, even though they are undirected on Facebook [11]. While the users’ location

information is not provided in the dataset, as mentioned earlier, we generated random

locations in 19 different cities as shown in Appendix A based on the real distribution

of Facebook users’ locations [107]. Percentage of users in different locations and the

number of users around each datacentre are shown in Figure 8-1 and Figure 8-2

respectively. In our user distribution, as shown in Figure 8-1 and Figure 8-2, we use

a similar proportion of the users’ locations consistent with that of Facebook and

random locations are added to the list. As discussed earlier, parameters such as pricing

and latency from Amazon cloud datacentres are used in our simulation experiments

to benefit from storage in public cloud datacentres.

Figure 8-1 Percentage of users in different locations for Facebook

0

4

8

12

16

20

24

U
se

rs
 (

%
)

Locations

105

Figure 8-2 Number of users located around different datacentres for Facebook

8.1.2.2 Gowala dataset: a specific case with locations already fixed

Gowalla is a location-based social network website where users share their locations

by checking-in. The friendship network is undirected and was collected using their

public API, and consists of 196,591 nodes and 950,327 edges. A total of 6,442,890

check-ins of these users is collected over the period of Feb. 2009 - Oct. 2010 [12].

Based on the location provided for users in this dataset, we assigned users to one of

the 19 cities and used the real latencies collected from end users. For some of the users

whose locations are not defined, a random location is generated. The nearest

datacentre is chosen for every user as the primary datacentre. Percentage of users in

different locations and the number of users around each datacentre is shown in Figure

8-3 and Figure 8-4 respectively.

Figure 8-3. Percentage of users in different locations for Gowala

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

N
u

m
b

e
r

o
f

u
se

rs

Datacentres

0

4

8

12

16

20

U
se

rs
 (

%
)

Locations

106

Figure 8-4. Number of users located around different datacentres for Gowala

8.2 Simulation Results for Static Data Placement and

Replication

In this section, our static strategy is compared with the alternative strategies described

in Section 8.1.1 and the results are shown for Facebook and Gowala datasets in Section

8.2.1 and Section 8.2.2 and analysed from two aspects in Section 8.2.3. Several

different settings are used to compare the results of these strategies. These settings are

based on the service level agreements on the latency requirement for users and their

friends to access their data. Latency requirement is defined as: “Pth percentile of all

requests must be accessed in the acceptable latency”. This means that over P percent

of the latencies are no more than the acceptable latency. As explained before,

requirements are set as 90%, 95%, 99%, and 99.9% of the latencies being no more than

250 ms.

8.2.1 Results for the Facebook Dataset

Using statistics for 2016 [8], Facebook generates 4 PB of new data per day for the

1.083 billion daily active users. Hence, on average, every active user stores around 3.6

MB (4 PB/1.083 billion) information daily in Facebook datacentres. We generate

random sizes of data for users following a normal distribution with average size as the

mean initially. Data size increases daily for all users based on activeness levels. For

Facebook dataset, the simulation results including the cost and latency of these

0

5000

10000

15000

20000

25000

30000

35000

40000

N
u

m
b

e
r

o
f

u
se

rs

Datacentres

107

strategies, for a duration of one month with different latency requirements are shown

in Figure 8-5, Figure 8-6, Figure 8-7, and Figure 8-8. An arrow in these figures points

to our strategy.

As shown in the results for Facebook dataset, having less replicas might cause a higher

total cost due to the extra transfer cost since the storage cost is much lower than the

transfer cost. For example, strategy A5 with two replicas has a higher cost than strategy

A6 with three replicas.

Based on the simulation results shown in Figure 8-5, Figure 8-6, Figure 8-7 and Figure

8-8, our static strategy (A12) is able to guarantee the latency requirement in all cases

with the lowest storage and transfer cost comparing to the other strategies. Moreover,

the only strategy, except costly full replication (A4) and social locality (A11) based

strategies that can guarantee the acceptable latency for 95, 99, and 99.9 percentiles of

all requests with a low cost is our greedy algorithm for set cover strategy.

Figure 8-5 Comparison of different strategies with latency requirement of 90%

lower than 250 ms for Facebook

108

Figure 8-6 Comparison of different strategies with latency requirement of 95%

lower than 250 ms for Facebook

Figure 8-7 Comparison of different strategies with latency requirement of 99%

lower than 250 ms for Facebook

109

Figure 8-8 Comparison of different strategies with latency requirement of 99.9%

lower than 250 ms for Facebook

8.2.2 Results for the Gowala Dataset

For our experiments with the Gowala dataset, the data sizes, users’ activeness levels

and friends’ access frequency rates for Gowala users are considered to be the same as

for the Facebook dataset. The same strategies and settings as Facebook dataset are used

to place the described Gowala users’ data in different datacentres and the results are

shown in Figure 8-9, Figure 8-10, Figure 8-11, and Figure 8-12. An arrow in these

figures again points to our strategy.

The results are consistent to those for the Facebook data which are also analysed from

two aspects in Section 8.2.3. Based on the simulation results shown in Figure 8-9,

Figure 8-10, Figure 8-11, and Figure 8-12, our static strategy is able to guarantee the

latency requirement in all cases with the lowest storage and transfer cost comparing to

the other strategies. Furthermore, as claimed for Facebook dataset, the only strategy,

except costly full replication (A4) and social locality (A11) based strategies, that can

guarantee the acceptable latency for 99 and 99.9 percentiles of all requests with a low

cost is our greedy algorithm for set cover strategy (A12).

110

Figure 8-9. Comparison of different strategies with latency requirement of 90%

lower than 250 ms for Gowala

Figure 8-10. Comparison of different strategies with latency requirement of 95%

lower than 250 ms for Gowala

111

Figure 8-11. Comparison of different strategies with latency requirement of 99%

lower than 250 ms for Gowala

Figure 8-12. Comparison of different strategies with latency requirement of 99.9%

lower than 250 ms for Gowala

8.2.3 Analyses of the Static Results

Based on our experimental results, we discuss the superiority of our static strategy from

two aspects. Section 8.2.3.1 shows the efficiency of our strategy by comparing the latency

112

of our strategy with other strategies as well as evaluating the time overhead of our strategy.

The effectiveness of our strategy is shown in Section 8.2.3.2 by comparing the cost of our

strategy with other strategies.

8.2.3.1 Efficiency evaluation

Efficiency of our strategy can be evaluated in terms of 1) the time it takes for every user

and all his/her friends to access his/her data, i.e. latency, and 2) the time it takes to run the

algorithm, i.e. time overhead. It is not only necessary to guarantee the latency requirement

for all users by having an optimal data placement and replication, but also to find the

optimal data placement and replication in an acceptable time.

From the latency requirement perspective, our strategy is able to guarantee the latency

requirement in all cases. The latency requirement is calculated by having P, i.e.

percentile and latency requirements and our strategy finds the minimum number of

replicas to fulfil the latency requirement for every user.

As shown in Figure 8-5 to Figure 8-8 for the Facebook dataset, and Figure 8-9 to Figure

8-12 for the Gowala dataset, with 90 and 95 percentile latency requirements, some

strategies such as friend-based and request-based strategies can guarantee the latency

requirement in some cases. However, our strategy can guarantee the latency with much

lower storage and transfer cost. Moreover, the only strategy, except costly full

replication and social locality based strategies, that can guarantee the acceptable

latency for 99 and 99.9 percentiles of all requests with a reasonable cost is our greedy

algorithm for set cover strategy. The results for Gowala dataset are consistent with the

Facebook results.

We used a computer system with Intel core i5-4570 CPU, 8 GB RAM Memory, and

windows 7 operating system for our simulations. The time it takes for our strategy to fulfil

different latency requirements is around 10 seconds for Facebook dataset with 63,731

users and around 12 seconds for Gowala dataset with 196,591 users. This shows that our

strategy is extremely efficient and does not jeopardise the time taken to build the solution

in order to have efficient results.

113

8.2.3.2 Effectiveness evaluation

Effectiveness of our strategy can be evaluated in terms of the total cost of the data

placement and replication. Data storage and transfer cost in US dollar for one month are

shown in Figure 8-5 to Figure 8-8 for the Facebook dataset and Figure 8-9 to Figure

8-12 for the Gowala dataset. Based on the costs, our strategy can find the minimised

storage and transfer cost while guaranteeing the latency requirement for different

percentile of requests based on the latency requirements. Several strategies are able to

guarantee the latency requirement of 90% and 95% lower than 250 ms, however, our

strategy is the most affordable one. For high latency requirement of 99% and 99.9%, the

only strategies being able to guarantee the latency requirement are full replication strategy,

the social locality based strategy and our strategy with a significant amount of cost saving

comparing to the previous two strategies. The full replication and social locality-based

strategies are much more expensive than our strategy which is quite significant.

8.3 Simulation Results for Dynamic Data Placement and

Replication

In the experiments for our dynamic strategy, we simulate a social network over one

year as close to reality as possible by using real world data. We considered 365 time

periods, denoted as “timeslots” in the experiments, and each takes about 100 seconds

and is mapped to one physical day in order to simulate a real social network over one

year. In every timeslot, all scenarios introduced in Section 7.2.2 could possibly happen

at any time during the timeslot and the solution is adapted on the fly once these changes

occur. At the end of every timeslot, the solution is adapted based on the scenarios

introduced in Section 7.2.3. The growth rate of the users is considered as 18 percent

increase year over year, based on a Facebook report published in May 2017 [108]. We

consider 28 percent of the friends for different users as the initial number of the friends

based on a report indicating 28 percent of the friends for every user to be “genuine”,

or close friends [109]. The number of friends is randomly increased over time because

the growth rate of the friends depends on factors such as days they were active, content

uploaded, and so on [110]. We assume dynamic scenarios randomly happen during

114

different timeslots based on the frequency of nine scenarios (S1 to S9), as described in

Chapter 3. The activeness levels and access frequencies may change at the end of each

timeslot. Addition and removal of datacentres are considered to happen only once

during our entire simulations.

The cost and latency for static, dynamic, and full replication strategies are compared

at the end of different timeslots. Our original static strategy is our reference strategy,

which finds the static solution from scratch based on the existing setting in every

timeslot. Our dynamic strategy adapts the solution of the previous timeslot based on

all the changes during the current timeslot. The full replication strategy is to have

replication of data in all datacentres, which has the lowest possible latency but incurs

the highest cost. The results are analysed based on the cost and latency and several

settings are used to compare the results. These settings are based on the latency

requirement for users and their friends to access data. Latency requirement is defined

as: “Pth percentile of all individual requests must be accessed in the acceptable

latency”. This means that over P percent of the individual latencies are no more than

the acceptable latency. Requirements are set as 90%, 95%, 99% and 99.9% of

individual latencies no more than 250 ms.

The simulation results for our dynamic strategy using Facebook and Gowala datasets

are presented in Sections 8.3.1 and 8.3.2, and the results are analysed from two aspects

of efficiency and effectiveness in Section 8.3.3.

8.3.1 Results for the Facebook Dataset

Different combinations of dynamic scenarios for the eager and lazy adaptations and

the combination of eager and lazy adaptations for the Facebook dataset were

considered and the results for dynamic, static and full replication strategies are

compared in this section.

8.3.1.1 Simulation results for eager adaptation

We simulated four different combinations of the scenarios for the eager adaptation.

The first experiment (Figure 8-13) was to keep the datacentres and locations fixed and

115

to start from an initial number of connections and add new users and friends until

covering all the friends and users.

Figure 8-13. Comparing cost and latency when new users and friends are added

The update time for adapting the solution when a new user/friends has joined is around

0.14 ms. In Figure 8-13, our dynamic strategy can fulfil the latency requirement of 250

ms for:

 90 percentile of the requests with a competitive ratio of 0.98 comparing to the

static strategy, which is up to 26% lower than the cost of the full replication

strategy.

 95 percentile of the requests with a competitive ratio of 1 comparing to the

static strategy, which is up to 24% lower than the cost of the full replication

strategy.

116

 99 percentile of the requests with a competitive ratio of 0.96 comparing to the

static strategy, which is up to 26% lower than the cost of the full replication

strategy.

 99.9 percentile of the requests with a competitive ratio of 0.95 comparing to

the static strategy, which is up to 24% lower than the cost of the full replication

strategy.

The second experiment (Figure 8-14) was to keep the datacentres and locations fixed

and to start from the total number of users and friends and delete friends and users

during different timeslots.

Figure 8-14. Comparing cost and latency when users and friends are removed

The update time for adapting the solution when an existing user/friends has left is

around 2.8 ms. In Figure 8-14, our dynamic strategy can fulfil the latency requirement

of 250 ms for:

117

 90 percentile of the requests with a competitive ratio of 0.94 comparing to the

static strategy, which is up to 23% lower than the cost of the full replication

strategy.

 95 percentile of the requests with a competitive ratio of 0.98 comparing to the

static strategy, which is up to 20% lower than the cost of the full replication

strategy.

 99 percentile of the requests with a competitive ratio of 0.93 comparing to the

static strategy, which is up to 22% lower than the cost of the full replication

strategy.

 99.9 percentile of the requests with a competitive ratio of 0.95 comparing to

the static strategy, which is up to 21% lower than the cost of the full replication

strategy.

The next experiment (Figure 8-15) was to keep the users, friends and datacentres fixed

and to start from the total number of users and friends and change the location of

random users in different time during different timeslots.

The update time for adapting the solution when a user has moved is around 12.4 ms.

In Figure 8-15, our dynamic strategy can fulfil the latency requirement of 250 ms for:

 90 percentile of the requests with a competitive ratio of 0.94 comparing to the

static strategy, which is up to 23% lower than the cost of the full replication

strategy.

 95 percentile of the requests with a competitive ratio of 0.97 comparing to the

static strategy, which is up to 21% lower than the cost of the full replication

strategy.

 99 percentile of the requests with a competitive ratio of 0.93 comparing to the

static strategy, which is up to 22% lower than the cost of the full replication

strategy.

118

 99.9 percentile of the requests with a competitive ratio of 0.94 comparing to

the static strategy, which is up to 20% lower than the cost of the full replication

strategy.

Figure 8-15. Comparing cost and latency when users move

Finally, the last experiment related to the eager adaptation (Figure 8-16 and Figure

8-17) was to keep the users, friends and locations fixed and to start with the total

number of users and friends and 1) the complete list of datacentres, remove datacentres

one by one, and 2) the minimum number of datacentres, add datacentres one by one.

The update time for adapting the solution when a new datacentre is added is around

0.21 seconds. In Figure 8-16, our dynamic strategy can fulfil the latency requirement

of 250 ms for:

119

 90 percentile of the requests with a competitive ratio of 0.99 comparing to the

static strategy, which is up to 25% lower than the cost of the full replication

strategy.

 95 percentile of the requests with a competitive ratio of 0.97 comparing to the

static strategy, which is up to 24% lower than the cost of the full replication

strategy.

 99 percentile of the requests with a competitive ratio of 0.95 comparing to the

static strategy, which is up to 26% lower than the cost of the full replication

strategy.

 99.9 percentile of the requests with a competitive ratio of 0.96 comparing to

the static strategy, which is up to 26% lower than the cost of the full replication

strategy.

Figure 8-16. Comparing cost and latency when datacentres are added

120

Figure 8-17. Comparing cost and latency when datacentres are removed

The update time for adapting the solution when an existing datacentre is removed is

around 0.55 seconds. In Figure 8-17, our dynamic strategy can fulfil the latency

requirement of 250 ms for:

 90 percentile of the requests with a competitive ratio of 1.02 comparing to the

static strategy, which is up to 9% lower than the cost of the full replication

strategy. The competitive ratio in some of the cases such as this case is greater

than 1, which means the cost found by our dynamic strategy is lower than the

cost that could be found by our static strategy. This could happen sometimes

because of the stabilisation step in our dynamic strategy, which may remove

some of the replicas and decrease the total cost.

 95 percentile of the requests with a competitive ratio of 1.03 comparing to the

static strategy, which is up to 7% lower than the cost of the full replication

strategy.

121

 99 percentile of the requests with a competitive ratio of 1.01 comparing to the

static strategy, which is up to 5% lower than the cost of the full replication

strategy.

 99.9 percentile of the requests with a competitive ratio of 1.01 comparing to

the static strategy, which is up to 4% lower than the cost of the full replication

strategy.

8.3.1.2 Simulation results for lazy adaptation

For lazy adaptation, the cost and latency of the latest solution with the new workload

and access frequencies in different time periods, by applying different strategies as

static, dynamic, and full replication are shown and compared in Figure 8-18.

The update time for adapting the solution for all of the users when the activeness levels

and access frequency rates are updated is around 0.08 seconds, which equals to about

only 0.0013 ms for every user. In Figure 8-18, our dynamic strategy can fulfil the

latency requirement of 250 ms for:

 90 percentile of the requests with a competitive ratio of 0.98 comparing to the

static strategy, which is up to 11% lower than the cost of the full replication

strategy.

 95 percentile of the requests with a competitive ratio of 1.01 comparing to the

static strategy, which is up to 10% lower than the cost of the full replication

strategy.

 99 percentile of the requests with a competitive ratio of 0.96 comparing to the

static strategy, which is up to 10% lower than the cost of the full replication

strategy.

 99.9 percentile of the requests with a competitive ratio of 0.99 comparing to

the static strategy, which is up to 6% lower than the cost of the full replication

strategy.

122

Figure 8-18. Comparing cost and latency when activeness levels and access

frequencies are changed

In Figure 8-19, the latency of the existing solution with the new activeness levels and

access frequency rates is compared with the latency of our adapted solution as well as

the static strategy and full replication. As it is shown, the latency of the existing

solution with the new activeness levels and access frequency rates is greater than the

desirable latency in the first few timeslots. However, our dynamic strategy can adapt

the solution to fulfil the latency requirement of 250 ms after a few timeslots. Moreover,

by adding more replicas to fulfil the latency requirement during the time, our dynamic

strategy is capable of fulfilling the latency requirement without any adaptation needed

after being adapted for a few timeslots.

123

Figure 8-19. Comparing latency before and after adaptation when activeness

levels and access frequencies are changed

8.3.1.3 Simulation results for the combination of eager and lazy adaptations

All the scenarios are combined and simulated together for 90, 95, 99, 99.9 percentiles

of latencies and the cost and latency of static, dynamic, and full replication are shown

in Figure 8-20. Frequency of the scenarios in different timeslots is shown in Table 8-2.

Table 8-2. Frequency of different scenarios

Scenario Frequency in every timeslot

S1 Average of 3.6 MB of data is added for every user during every

timeslot

S2 At the end of each timeslot

S3 and S4 18%/365 (0.05%) of the initial users and random number of

friends are added in each timeslot which is more than 3000 new

124

connections during each timeslot

S5 Random new rates at the end of each timeslot

S6 Random number of friendships between 0-6 in different times

during each timeslot

S7 Random number of users between 0-2 in different times during

each timeslot

S8 Random number of users between 0-1 in different times during

each timeslot

S9 Once randomly in 365 timeslots

Figure 8-20. Comparing cost and latency when all different scenarios happen

In Figure 8-20, our dynamic strategy can fulfil the latency requirement of 250 ms for:

125

 90 percentile of the requests with a competitive ratio of 0.96 comparing to the

static strategy, which is up to 26% lower than the cost of the full replication

strategy.

 95 percentile of the requests with a competitive ratio of 0.98 comparing to the

static strategy, which is up to 24% lower than the cost of the full replication

strategy.

 99 percentile of the requests with a competitive ratio of 0.95 comparing to the

static strategy, which is up to 26% lower than the cost of the full replication

strategy.

 99.9 percentile of the requests with a competitive ratio of 0.95 comparing to

the static strategy, which is up to 24% lower than the cost of the full replication

strategy.

Recourse, i.e. the number of changes for every user’s solution to be adapted based on

any changes in different scenarios is either 0 or 1 which means there is at most 1

change in the replicas in order to adapt the solution based on the changes.

The total cost for our static strategy, our dynamic strategy, and the full replication, as

well as the cost ratio between the dynamic strategy and its static counterpart, and the

cost saving of our dynamic strategy comparing to the full replication for different

latency requirements for Facebook dataset are detailed in Table 8-3.

Table 8-3. Cost analysis for Facebook dataset

Exp Percentiles Static
strategy
cost ($)

Full
replication
cost ($)

Dynamic
strategy
cost ($)

Cost
ratio of
dynamic
and static
strategies

Cost
saving

Cost
saving
percentage
(%)

1
(S1,
S2,
S3,
S4)

90 380766.09 496964.69 372753.71 0.98 124210.98 25%

95 334634.75 441634.84 335182.06 1 106452.78 24%

99 387937.89 497383.31 370537.16 0.96 126846.15 26%

99.9 404881.58 501459.48 383382.63 0.95 118076.85 24%

2
(S1,
S2,

90 405454.24 496350.93 382230.35 0.94 114120.58 23%

95 404300.69 493516.73 394477.3 0.98 99039.43 20%

126

S6,
S8)

99 414441.99 496046.94 385586.63 0.93 110460.31 22%

99.9 400937.81 482986.17 381290.07 0.95 101696.1 21%

3
(S1,
S2,
S7)

90 417339.72 508787.82 392168.24 0.94 116619.58 23%

95 409832.08 506897.25 399479.76 0.97 107417.49 21%

99 424052.2 508740.82 395316.77 0.93 113424.05 22%

99.9 432342.18 509097.81 405441.91 0.94 103655.9 20%

4
(S9.1)

90 1058.0496 1400.0555 1046.5833 0.99 353.4722 25%

95 1081.3878 1389.0609 1051.9933 0.97 337.0676 24%

99 1084.443 1386.9013 1025.9151 0.95 360.9862 26%

99.9 1064.7419 1382.2356 1022.5903 0.96 359.6453 26%

5
(S9.2)

90 1001.8019 1118.7906 1018.0418 1.02 100.7488 9%

95 1014.5766 1114.7224 1041.7794 1.03 72.943 7%

99 1039.0849 1101.9359 1047.6728 1.01 54.2631 5%

99.9 1072.4125 1121.4175 1079.5174 1.01 41.9001 4%

6
(S1,
S2,
S5)

90 363965.81 400395.23 358111.92 0.98 42283.31 11%

95 363162.29 407724.74 365919.21 1.01 41805.53 10%

99 380353.59 404473.1 365960.1 0.96 38513 10%

99.9 389404.58 408162.22 383825.04 0.99 24337.18 6%

7
(S1-
S9)

90 348031.6 449739.7 332636.64 0.96 117103.06 26%

95 315757.75 410493.22 310194.43 0.98 100298.79 24%

99 342650.03 437825.46 324613.36 0.95 113212.1 26%

99.9 384529.13 484724.11 367192.58 0.95 117531.53 24%

8.3.2 Results for the Gowala Dataset

Similarly, the simulation results for the eager and lazy adaptations and the combination

of eager and lazy adaptations for the Gowala dataset are presented in this section.

127

8.3.2.1 Simulation results for eager adaptation

We simulated four different combinations of the scenarios for the eager adaptation.

The first experiment (Figure 8-21) was to keep the datacentres and locations fixed and

to start from an initial number of connections and add new users and friends until

covering all the friends and users.

Figure 8-21. Comparing cost and latency when new users and friends are added

The update time for adapting the solution when a new user/friends has joined is around

0.66 ms. In Figure 8-21, our dynamic strategy can fulfil the latency requirement of 250

ms for:

 90 percentile of the requests with a competitive ratio of 0.99 comparing to the

static strategy, which is up to 15% lower than the cost of the full replication

strategy.

128

 95 percentile of the requests with a competitive ratio of 0.99 comparing to the

static strategy, which is up to 16% lower than the cost of the full replication

strategy.

 99 percentile of the requests with a competitive ratio of 0.98 comparing to the

static strategy, which is up to 14% lower than the cost of the full replication

strategy.

 99.9 percentile of the requests with a competitive ratio of 0.98 comparing to

the static strategy, which is up to 14% lower than the cost of the full replication

strategy.

The second experiment (Figure 8-22) was to keep the datacentres and locations fixed

and to start from the total number of users and friends and delete friends and users

during different timeslots.

Figure 8-22. Comparing cost and latency when users and friends are removed

129

The update time for adapting the solution when an existing user/friends has left is

around 5.1 ms. In Figure 8-22, our dynamic strategy can fulfil the latency requirement

of 250 ms for:

 90 percentile of the requests with a competitive ratio of 1 comparing to the

static strategy, which is up to 19% lower than the cost of the full replication

strategy.

 95 percentile of the requests with a competitive ratio of 1 comparing to the

static strategy, which is up to 20% lower than the cost of the full replication

strategy.

 99 percentile of the requests with a competitive ratio of 1 comparing to the

static strategy, which is up to 15% lower than the cost of the full replication

strategy.

 99.9 percentile of the requests with a competitive ratio of 1 comparing to the

static strategy, which is up to 16% lower than the cost of the full replication

strategy.

The next experiment (Figure 8-23) was to keep the users, friends and datacentres fixed

and to start from the total number of users and friends and change the location of

random users in different time during different timeslots.

The update time for adapting the solution when a user has moved is around 0.53

seconds. In Figure 8-23, our dynamic strategy can fulfil the latency requirement of 250

ms for:

 90 percentile of the requests with a competitive ratio of 1 comparing to the

static strategy, which is up to 19% lower than the cost of the full replication

strategy.

 95 percentile of the requests with a competitive ratio of 1 comparing to the

static strategy, which is up to 19% lower than the cost of the full replication

strategy.

130

 99 percentile of the requests with a competitive ratio of 1 comparing to the

static strategy, which is up to 15% lower than the cost of the full replication

strategy.

 99.9 percentile of the requests with a competitive ratio of 1 comparing to the

static strategy, which is up to 15% lower than the cost of the full replication

strategy.

Figure 8-23. Comparing cost and latency when users move

Finally, the last experiment related to the eager adaptation (Figure 8-24 and Figure

8-25) and was to keep the users, friends and locations fixed and to start with the total

number of users and friends and 1) the complete list of datacentres, remove datacentres

one by one, and 2) the minimum number of datacentres, add datacentres one by one.

131

Figure 8-24. Comparing cost and latency when datacentres are added

The update time for adapting the solution when a new datacentre is added is around

4.8 seconds. In Figure 8-24, our dynamic strategy can fulfil the latency requirement of

250 ms for:

 90 percentile of the requests with a competitive ratio of 0.99 comparing to the

static strategy, which is up to 18% lower than the cost of the full replication

strategy.

 95 percentile of the requests with a competitive ratio of 1 comparing to the

static strategy, which is up to 22% lower than the cost of the full replication

strategy.

 99 percentile of the requests with a competitive ratio of 1 comparing to the

static strategy, which is up to 21% lower than the cost of the full replication

strategy.

132

 99.9 percentile of the requests with a competitive ratio of 1 comparing to the

static strategy, which is up to 22% lower than the cost of the full replication

strategy.

Figure 8-25. Comparing cost and latency when datacentres are removed

The update time for adapting the solution when an existing datacentre is removed is

around 4.5 seconds. In Figure 8-25, our dynamic strategy can fulfil the latency

requirement of 250 ms for:

 90 percentile of the requests with a competitive ratio of 0.97 comparing to the

static strategy, which is up to 10% lower than the cost of the full replication

strategy.

 95 percentile of the requests with a competitive ratio of 0.99 comparing to the

static strategy, which is up to 10% lower than the cost of the full replication

strategy.

133

 99 percentile of the requests with a competitive ratio of 1 comparing to the

static strategy, which is up to 6% lower than the cost of the full replication

strategy.

 99.9 percentile of the requests with a competitive ratio of 1 comparing to the

static strategy, which is up to 7% lower than the cost of the full replication

strategy.

8.3.2.2 Simulation results for lazy adaptation

For lazy adaptation, the cost and latency of the latest solution with the new workload

and access frequencies in different time periods, by applying different strategies as

static, dynamic, and full replication are shown and compared in Figure 8-26.

The update time for adapting the solution for all of the users when the activeness levels

and access frequency rates are updated is around 0.33 seconds, which equals to 0.0017

ms for every user. In Figure 8-26, our dynamic strategy can fulfil the latency

requirement of 250 ms for:

 90 percentile of the requests with a competitive ratio of 1.02 comparing to the

static strategy, which is up to 19% lower than the cost of the full replication

strategy.

 95 percentile of the requests with a competitive ratio of 0.95 comparing to the

static strategy, which is up to 21% lower than the cost of the full replication

strategy.

 99 percentile of the requests with a competitive ratio of 0.95 comparing to the

static strategy, which is up to 17% lower than the cost of the full replication

strategy.

 99.9 percentile of the requests with a competitive ratio of 0.98 comparing to

the static strategy, which is up to 16% lower than the cost of the full replication

strategy.

134

Figure 8-26. Comparing cost and latency when activeness levels and access

frequencies are changed

In Figure 8-27, the latency of the existing solution with the new activeness levels and

access frequency rates is compared with the latency of our adapted solution as well as

the static strategy and full replication. As it is shown, the latency of the existing data

placement and replication is greater than the desirable latency when the activeness

levels and access frequencies change. However, our dynamic strategy is able to adapt

the solution to fulfil the latency requirement of 250 ms.

135

Figure 8-27. Comparing latency before and after adaptation when activeness

levels and access frequencies are changed

8.3.2.3 Simulation results for the combination of eager and lazy adaptations

All the scenarios are combined and simulated together for 90, 95, 99, 99.9 percentiles

of latencies and the cost and latency of static, dynamic, and full replication are shown

in Figure 8-28. Frequency of the scenarios in different timeslots is considered the same

as the Facebook dataset.

In Figure 8-28, our dynamic strategy can fulfil the latency requirement of 250 ms for:

 90 percentile of the requests with a competitive ratio of 0.99 comparing to the

static strategy, which is up to 16% lower than the cost of the full replication

strategy.

136

 95 percentile of the requests with a competitive ratio of 0.98 comparing to the

static strategy, which is up to 16% lower than the cost of the full replication

strategy.

 99 percentile of the requests with a competitive ratio of 0.98 comparing to the

static strategy, which is up to 15% lower than the cost of the full replication

strategy.

 99.9 percentile of the requests with a competitive ratio of 0.98 comparing to

the static strategy, which is up to 15% lower than the cost of the full replication

strategy.

Figure 8-28. Comparing cost and latency when all different scenarios happen

Recourse, i.e., the number of changes for every user’s solution to be adapted based on

any changes in different scenarios is either 0 or 1 which means there is at most 1 change

in the replicas in order to adapt the solution based on the changes.

137

The total cost for our static strategy, our dynamic strategy, and the full replication, as

well as the cost ratio between the dynamic strategy and its static counterpart, and the

cost saving of our dynamic strategy comparing to the full replication for different

latency requirements for the Gowala dataset are detailed in Table 8-4.

Table 8-4. Cost Analysis for Gowala dataset

Exp Percentiles Static
strategy
cost ($)

Full
replication
cost ($)

Dynamic
strategy
cost ($)

Cost
ratio of
dynamic
and
static
strategies

Cost saving Cost
saving
percentage
(%)

1
(S1,
S2,
S3,
S4)

90 326594.64 382233.451 324063.12 0.99 58170.331 15%

95 324409.25 379966.633 320266.25 0.99 59700.383 16%

99 341905.71 392509.07 335725.92 0.98 56783.15 14%

99.9 333848.79 381893.975 327916.43 0.98 53977.545 14%

2
(S1,
S2,
S6,
S8)

90 466053.15 577082.268 465372.87 1 111709.398 19%

95 465421.17 579821.216 464303.04 1 115518.176 20%

99 488985.82 574291.312 487796.47 1 86494.842 15%

99.9 491009.26 581944.028 489772.06 1 92171.968 16%

3
(S1,
S2,
S7)

90 472580.53 584597.569 470819.63 1 113777.939 19%

95 470037.57 580026.27 468977.37 1 111048.9 19%

99 492837.63 579686.627 491599.09 1 88087.537 15%

99.9 495724.03 580347.977 494268.39 1 86079.587 15%

4
(S9.1)

90 1353.1347 1630.8322 1343.3977 0.99 287.4345 18%

95 1266.4076 1615.725 1264.1265 1 351.5985 22%

99 1293.627 1623.7828 1289.073 1 334.7098 21%

99.9 1270.6456 1614.5606 1266.8331 1 347.7275 22%

5
(S9.2)

90 1302.2666 1411.8575 1265.0884 0.97 146.7691 10%

95 1283.4914 1409.5781 1270.6925 0.99 138.8856 10%

138

99 1362.8993 1450.9343 1359.115 1 91.8193 6%

99.9 1306.9607 1414.0458 1310.214 1 103.8318 7%

6
(S1,
S2,
S5)

90 467467.91 586898.336 475435.64 1.02 111462.696 19%

95 486585.29 584489.162 461566.83 0.95 122922.332 21%

99 514631.26 589425.747 490832.7 0.95 98593.047 17%

99.9 486459 572676.379 478718.78 0.98 93957.599 16%

7
(S1-
S9)

90 369869.1 431594.791 364631.77 0.99 66963.021 16%

95 343596.21 399887.491 335953.34 0.98 63934.151 16%

99 346568.05 400886.698 341079.24 0.98 59807.458 15%

99.9 343869.34 394439.892 336132.93 0.98 58306.962 15%

8.3.3 Analysis of the Dynamic Results

Based on the results, the superiority of our dynamic strategy is discussed from two aspects

in this section. Section 8.3.3.1 shows the efficiency of our strategy by comparing the

latency of our strategy with other strategies as well as evaluating the time overhead of our

strategy. The effectiveness of our strategy is shown in Section 8.3.3.2 by comparing the

cost of our strategy with other strategies as well as presenting the competitive ratio and

recourse.

8.3.3.1 Efficiency evaluation

Efficiency of our strategy can be evaluated in terms of 1) the time it takes for every

user and all their friends to access their data, i.e., latency, and 2) the time it takes to

run the algorithm and do the adaptation, i.e., time overhead. It is necessary to not only

guarantee the latency requirement for all users by having an optimal data placement

and replication, but also find the optimal data placement and replication in an

acceptable time.

From the latency requirement perspective, our strategy is able to guarantee the latency

requirement in all cases. The latency requirement is calculated by having P, i.e.,

percentile, and delay, i.e., acceptable latency requirements. Our strategy finds the

139

minimum number of replicas to fulfil the latency requirement for every user. As shown

in Figure 8-13 to Figure 8-20 for the Facebook dataset and Figure 8-21 to Figure 8-28

for the Gowala dataset, our strategy can guarantee the latency with much lower total

cost.

Moreover, our dynamic strategy is efficient in terms of time overhead. For our

simulations, six virtual machines on our local cloud testbed, all with Intel core i5-

4570 CPU, 8 GB RAM Memory, and windows 7 operating system are used. The time

it takes for the static strategy to find the initial data placement and replication is about

10 seconds and the time it takes for our dynamic strategy to adapt the solution, as

shown in Table 8-5, for the most frequent scenarios of updating data and joining new

users/friends is around 0.00014 seconds for the Facebook dataset. For the Gowala

dataset, it takes about 12 seconds to find the initial data placement and replication

using the static strategy and around 0.00066 seconds to adapt the solution for these

most dominant scenarios. Therefore, the results show that it takes only around 0.00014

seconds for adapting the solution whilst without having a dynamic strategy to adapt

the solution; it takes around 10 seconds by using the static strategy to reconstruct the

solutions. Thus, our dynamic strategy is about 70000 times more efficient

(10s/0.00014s) than reconstructing the solution by the static strategy for Facebook

dataset and about 18000 times more efficient (12s/0.00066s) than applying the static

strategy for the Gowala dataset.

Our experiments show that although our static strategy is effective and efficient, our

dynamic data placement and replication strategy is required to make it practical in

dynamic environments with very frequent changes needed. Update time of different

scenarios, shown in Table 8-5, shows that our dynamic strategy is extremely efficient

and does not jeopardise the time taken to build the solution in order to have efficient

results. Since Exp7 is a mixture of different scenarios and the number and frequency

of scenarios are different, it does not make sense to measure and show the update time

of Exp7. As results show, our dynamic strategy can save a lot of time comparing to

the static data placement and replication strategy.

140

Table 8-5. Update time of different scenarios

Update Time
(Seconds)

Exp1
(S1, S2,
S3, S4)

Exp2
(S1, S2,
S6, S8)

Exp3
(S1, S2,

S7)

Exp4
(S9.1)

Exp5
(S9.2)

Exp6
(S1, S2,

S5)

Facebook 0.00014 0.0028 0.0124 0.21 0.55 0.08
Gowala 0.00066 0.0051 0.53 4.8 4.5 0.33

8.3.3.2 Effectiveness evaluation

Effectiveness of our strategy can be evaluated in terms of 1) the total cost of the data

placement and replication, 2) the ratio between the cost of our strategy and the optimal

strategy, i.e., competitive ratio, and 3) the number of replicas added or dropped from

the solution, i.e., recourse.

As shown in Figure 8-13 to Figure 8-20 for the Facebook dataset and Figure 8-21 to

Figure 8-28 for the Gowala dataset, our strategy can find the minimised storage,

transfer, and update cost while guaranteeing the latency requirement for different

percentiles of individual requests based on the latency requirements. Percentages of

cost savings comparing to the full replication strategy are shown in Table 8-6. The

cost saving percentages for different percentiles of latencies are calculated after

finishing the experiments, which is 365 timeslots for all the scenarios. Exp4 (adding

datacentres) and Exp5 (removing datacentres) happen only once during the

experiments. As shown in Table 8-6, our strategy can save up to 26% comparing to

the full replication i.e., $5 billion out of $21 billion cost saving per month for the real

size of Facebook with 2.80 billion users [1].

Table 8-6. Cost analysis of different scenarios

Cost
Saving (%)

Exp1

Exp2

Exp3

Exp4

Exp5

Exp6

Exp7

Facebook 26 23 23 26 9 11 26
Gowala 16 20 19 22 10 21 16

The cost ratio between the dynamic strategy and its static counterpart is close to 1 for

both Facebook and Gowala datasets in all scenarios. This shows our dynamic strategy

finds a solution as good as the static strategy. As discussed in Section 5.3.2, by having

dynamic to static ratio of 1, the competitive ratio for the dynamic set cover strategy

141

will be log(n). This means the solution of our dynamic strategy, in the worst case, is

log(n) times worse than the optimal solution.

Finally, recourse, i.e., the number of changes for every user’s solution to be adapted

in different scenarios is either 0 or 1 which means there is at most 1 change in the

replicas in order to adapt the solution. This is a very promising outcome as

creating/deleting replicas incurs extra cost, latency and inconsistency.

Based on this analysis, we determine that our dynamic strategy is able to find an

efficient and effective solution without applying a static data placement and

replication from scratch for every change. Therefore, our dynamic strategy is practical

for dynamic environments efficiently and effectively.

8.4 Threats to Validity

There are several threads to the construct, internal and external validity of our

simulation for the results. We discuss the threats to the construct validity, followed by

the threats to the internal and external validities.

The main threat to the construct validity of our strategy evaluation is the

comprehensiveness of both our static and dynamic comparisons. Greedy algorithm,

which is used as the basis in our static strategy, is one of the most effective heuristic

algorithms to solve the set cover problem [104]. We have proved that our greedy

algorithm finds a solution no worse than any other arbitrary solution found by any

other algorithm in polynomial time and cannot be beaten by any polynomial-time

algorithm (under standard complexity assumptions) [103]. In addition, the main threat

to the construct validity for our static data placement and replication is whether the

comparison with the other data placement and replication strategies can properly

demonstrate the success of our static strategy in finding a cost effective and latency

efficient solution. Moreover, for our dynamic data placement and replication, the main

threat to construct validity is whether the comparison with our static data placement

and replication and full replication strategies can properly demonstrate the

effectiveness of our static strategy in finding a cost effective and latency efficient

solution over time. To minimise this threat, other than the strategies used in literature,

142

several extra strategies that make use of a variety of factors such as distance, friends’

locations, and requests locations are also considered and compared. Furthermore, to

measure our objectives, the measured factors of cost and latency are based on real cost

and latency of Amazon datacentres. Additionally, for our dynamic strategy, since

different scenarios may have different effects, we have simulated different

experiments with different scenarios happening individually or at the same time. By

doing so, we could evaluate our dynamic strategy by not only comparing with the

static strategy indirectly, but also demonstrating how the changes in different

scenarios affect the results obtained by our dynamic strategy.

The main threat to the internal validity comes from the setting of users’ activeness

levels. In this thesis, in order to minimise this threat, we set the access frequencies of

users’ data according to real Facebook statistics on the times of Facebook users

checking their accounts daily for both Facebook and Gowala datasets. However, the

real access frequencies in different timeslots should be obtained from system logs,

where much research has been done in this area [111, 112]. They can be utilised,

however, it is out of the scope of this thesis. In fact, we argue that real Facebook

statistics should be close enough to the reality.

In terms of threat to the external validity, in this thesis, we ran simulations on

Facebook and Gowala social network datasets (social network graphs) in order to

demonstrate that our strategy can be utilised in real world applications. The main

threat to the external validity of our evaluation is the representativeness of the social

network graphs and the requests assigned to different friends. Social network graphs

used in the experiments are well-known Facebook social network graph [11] and the

SNAP location based Gowala social network graph [12]. We used Facebook, as one

of the market leaders, which is widely used in research and Gowala because of the

availability of the user locations in this dataset. Hence, we believe that the results are

valid in evaluating the cost effectiveness of our optimisation based storage strategy.

143

8.5 Summary

In this chapter, first a brief overview of our experimental settings including the

benchmarking strategies and case studies is presented. Then, simulation results for both

our static and dynamic data placement and replication strategies with Facebook and

Gowala datasets followed by the analysis of the results are detailed. Based on the results

presented in this chapter, our dynamic strategy is superior from both aspects of efficiency

and effectiveness. Finally, the construct, internal and external threats to validity of our

simulation are discussed.

144

Chapter 9
Conclusions and Future Work

This chapter summarises the research we have done in this thesis on cost effective

data placement and replication in the cloud for efficient access of social networks.

The main findings and key contributions of this research as well as the future work

are highlighted in this chapter. Section 9.1 presents a summary of the thesis. A

discussion on the outcomes and impacts is presented in Section 9.2. The key

contributions of this thesis are then summarised in Section 9.3. Section 9.4 outlines

the limitations of this research followed by the future work in Section 9.5. Finally, the

thesis is ended with the concluding remarks in Section 9.6.

9.1 Summary of This Thesis

The research objective described in this thesis is to place and replicate the data of

different social network users in cloud datacentres and dynamically adapt the

placement and replication based on the changes in the network in order to have a

minimum cost for social network providers while guaranteeing the latency

requirement for social network users. The thesis was organised as follows:

 Chapter 1 introduced the data placement and replication challenges in social

networks as well as data storage in the cloud, which is the background of this

research. Chapter 1 also described the aims of this work, the key issues to be

addressed in this thesis and the primary structure of this thesis.

 Chapter 2 reviewed the literature in the field of this research including data

management for social networks, static data placement and replication for

social network in the cloud, and finally social network dynamic data

145

placement and replication in the cloud.

 Chapter 3 introduced a motivating example based on a real world popular

social network, Facebook, and the issues with cost-effective data placement

and replication for the Facebook social network. Our research problems are

then identified and analysed based on the motivating example.

 Chapter 4 presented the preliminary work of GA (Genetic Algorithm) based

data placement and replication in the cloud. It is then followed by discussing

the limitations and the later works to overcome these limitations.

 Chapter 5 presented a problem formulation for our domain of social network

data placement and replication in the cloud. Moreover, the efficiency and

effectiveness measures of both static and dynamic strategies, i.e. latency, time

overhead, cost, competitive ratio, and recourse are introduced and modelled.

 Chapter 6 introduced our novel strategy for static data placement and

replication strategy in order to form a foundation for our dynamic data

placement and replication strategy presented in Chapter 7.

 Chapter 7 presented our novel strategy for dynamic data placement and

replication in the cloud. Our strategy is capable of adapting the data placement

and replication based on the changes in the system and synchronises the

replicas either on the fly or based on a regular basis depending on the scenario.

 Chapter 8 demonstrated the experiment results to evaluate both our static and

dynamic data placement and replication strategies. Our cloud computing

simulation environment and settings as well as our case studies and the

benchmarking strategies are introduced in this chapter. Finally, the efficiency

and effectiveness of our static and dynamic data placement and replication

strategies are analysed.

146

9.2 Discussion

The purpose of this research was to analyse and emphasise the importance of data

storage for social network providers and to highlight how fully replicating data in

private datacentres can have huge expenses for social network providers over time. It

also explored state-of-the-arts within this field, and showed how an optimised data

placement and replication can have invaluable advantages. Our study and findings

bring the value to social network providers, cloud computing providers, social network

users and also the businesses directly or indirectly benefiting from social networks.

The significance of this research is that we have mapped the very complex problem of

social networks dynamic data placement and replication in the cloud using the well

known dynamic set cover problem. We have proposed a static strategy which is able to

find the most effective and efficient solution comparing to the other representative

counterparts and our dynamic strategy makes our effective and efficient solution

applicable in dynamic environments where users join, leave, move or change their

friendships in the social network, and data are added, removed and updated as needed.

Addition and removal of datacentres are also taken into account. This thesis provided

a novel way to minimise the cost for social network provider while guaranteeing the

latency, availability, and consistency requirements for social network users over time.

Our research results in this thesis show that our novel dynamic data placement and

replication strategy is able to adapt according to the changing environment at runtime.

A framework consisting a combination of greedy and dynamic greedy algorithms is

presented to guarantee that even up to 99.9 percentiles of individual latencies for all

requests from different users in the social network are unnoticeable with a minimum

cost for storing, transferring, updating, and synchronising data over time. Our

proposed approach can produce up to 26% cost savings compared to the full

replication strategy for meeting latency requirements. All dynamic scenarios that may

happen in a social network are handled in our strategy. Simulation results on two large-

scale datasets, Facebook and location based Gowala, with latency timings used from

real Amazon cloud datacentres, show the efficiency and effectiveness of our strategy

over the duration of one year.

147

9.3 Key Contributions of This Thesis

In particular, the major contributions of this thesis are:

1. The cost and latency for social network data placement and replication are

modelled based on access patterns for real cloud providers. The very complex

problem of social networks dynamic data placement and replication in the cloud

is mapped to a well known dynamic set cover problem.

2. Unnoticeable individual latency of less than 250 ms, based on a research at

Google [10], is guaranteed, not only for users to access their own data but also

for all their friends to access their data in contrast with the misleading average

latency of other works described in the literature.

3. The Pth percentile requirement of individual access latencies of all requests from

all users in the social network is fulfilled. Taking individual instead of average

latencies into account makes our work much more practical and significantly

distinct from other existing works such as [46] and [54].

4. The initial minimum number of replicas for every user is found using the greedy

algorithm for set cover that is shown and proved to be an O(log(n))-

approximation algorithm for the set cover problem. Moreover, the replicas are

placed in the most appropriate datacentres, and different requests are relayed to

the best datacentres in order to ensure the latency requirement.

5. A novel dynamic data placement and replication strategy is presented that is

able to continuously guarantee the optimality of the social network data

placement and replication over time. Our dynamic strategy is based on our static

minimum cost replication strategy in order to make it practical in the real world

where social networks change rapidly.

6. To the best of our knowledge, for the first time, a dynamic data placement and

replication strategy is presented that is able to respond to all the changes

happening in an online social network on the fly at runtime if required or during

different time periods in the cloud depending on the scenario.

148

7. We have evaluated the proposed social network data placement and replication

algorithms on two large, realistic social networks.

9.4 Limitations of the Research

In this section, we highlight the limitations of our study that leads to some possibilities

for future research in the area of social network data placement and replication.

 Besides many of the advantages with using cloud computing, there are also

some potential disadvantages, such as security and privacy, limited control and

flexibility, technical difficulties and downtime, and lack of datacentres in

some places. Moreover, cloud datacentres are not necessarily available in

every single location and not all users can access data form a nearby datacentre

with a very low latency.

 The current work in this thesis has an assumption that the workload and access

frequency rates of different users are obtained from the system log based on

such as the real Facebook access frequency rates. However, in reality,

workload of the systems is not always available and needs to be predicted.

 Quality of service (QoS) requirements such as latency, availability, and

consistency are considered the same for all the users in the system. However,

in the real world, some users might have lower or higher tolerance for latency,

availability, and consistency.

 The data placement and replication are done for individual users one by one

in our strategy. However, as the number of users and connections is growing

rapidly it might be better to divide the users to different groups of similar users

based on the mutual interests and connections. Then, our data placement and

replication can be applied to groups of users instead of the individual users.

149

9.5 Future Work

Based on the limitations of this research, future work can be conducted from the

following aspects:

 In order to overcome the disadvantages with cloud computing, hybrid cloud,

i.e., to use a combination of both cloud and private datacentres can be used.

Moreover, fog computing [113] which is a decentralised computing

infrastructure in which data, compute, storage and applications are distributed

in the most logical, efficient place between the data source and the cloud can

be used. Fog computing essentially extends cloud computing and services to

the edge of the network, bringing the advantages and power of the cloud closer

to the end users and data [114]. Using fog servers can improve the efficiency

of our strategy in the future.

 In the future, learning methods will be used in order to predict the workload

and access frequencies of the friends for the future time periods based on the

previous time periods.

 Self-engagement of the users, in which users can be involved in the process of

data placement and replication, will be implemented in the future. Therefore,

users can have different QoS requirements and expectations and data

placement and replication will be done based on the requirements of different

users.

 Graph partitioning methods can be applied in the future to shape different

groups of users based on the mutual interests, connections, usage, etc. Hence,

our strategy can be more scalable by being applied to the groups of users

instead of individual users. We will use our graph partitioning strategy

presented in Appendix B in the future in order to group the social network

graph to subgraphs of connected users and our static set cover based strategy

will be used to find the initial data placement and replication for different

partitions. Our dynamic strategy will then be applied to adapt the solution

based on the changes in the social network.

150

 In the current experiments, the existing widely used available public Facebook

and Gowala datasets are used. However, since the public datasets are not as

large as the real social networks, such as Facebook, in the future, real online

social network traces will be tracked, collected, analysed, the real statistics

will be presented, and the experiments will be conducted on the real social

networks traces.

9.6 Concluding Remarks

It is not only crucial to have an optimised data placement and replication to fulfil

users’ acceptable latency requirement in online social networks while incurring the

minimum cost for social network providers, but also to keep the data placement and

replication effective and efficient over the time. Most of the current data storage

strategies, reviewed in Chapter 2, handle designing optimal strategies for the case

where the number of contents and the scale of user requests are fixed. This research

involves a dynamic cost effective data placement and replication strategy in geo-

distributed cloud services for efficient access of online social networks. Finally, this

research promotes and motivates further research in the field of dynamic and adaptive

social networks’ data placement and replication.

151

Bibliography

[1] S. Kemp. (2017). Digital in 2017, Global Overview. Available:

https://www.slideshare.net/wearesocialsg/digital-in-2017-global-overview

[2] J. Constine. (2017). Facebook Now Has 2 Billion Monthly Users… and

Responsibility. Available: https://techcrunch.com/2017/06/27/facebook-2-

billion-users/

[3] D. Yuan, L. Cui, W. Li, X. Liu, and Y. Yang, "An Algorithm for Finding the

Minimum Cost of Storing and Regenerating Datasets in Multiple Clouds,"

IEEE Transactions on Cloud Computing, 2015.

[4] A. C. Zhou, B. He, and C. Liu, "Monetary Cost Optimizations for Hosting

Workflow-as-a-Service in IaaS Clouds," IEEE Transactions on Cloud

Computing, vol. 4, pp. 34-48, 2015.

[5] Amazon S3. Available: http://aws.amazon.com/s3

[6] Google Cloud Storage. Available: http://cloud.google.com/storage

[7] Windows Azure. Available: http://www.microsoft.com/windowsazure

[8] AWS Global Infrastructure. Available: https://aws.amazon.com/about-

aws/global-infrastructure/?tag=vig-20

[9] K. Smith. (2016). Marketing: 47 Facebook Statistics for 2016. Available:

https://www.brandwatch.com/blog/47-facebook-statistics-2016/

[10] J. D. Brutlag, H. Hutchinson, and M. Stone, "User Preference and Search

Engine Latency," in JSM Proceedings, Quality and Productivity Research

Section, Alexandria, VA, 2008.

[11] B. Viswanath, A. Mislove, M. Cha, and K. P. Gummadi, "On the Evolution of

User Interaction in Facebook," in ACM SIGCOMM Workshop on Social

Networks (WOSN'09), Barcelona, Spain, 2009, pp. 37-42.

[12] E. Cho, S. A. Myers, and J. Leskovec, "Friendship and Mobility: User

Movement In Location-Based Social Networks," in ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining (KDD),

San Diego, California, USA, 2011, pp. 1082-1090.

152

[13] D. Boru, D. Kliazovich, F. Granelli, P. Bouvry, and A. Y. Zomaya, "Energy-

Efficient Data Replication in Cloud Computing Datacenters," in Globecom

Workshop - Cloud Computing Systems, Networks, and Applications, 2013, pp.

446-451.

[14] K.-Y. Chen, Y. Xu, K. Xi, and H. J. Chao, "Intelligent Virtual Machine

Placement for Cost Efficiency in Geo-Distributed Cloud Systems," in IEEE

International Conference on Communications (ICC), Budapest, Hungary,

2013, pp. 3498-3503.

[15] Y. Ran, B. Yang, W. Cai, H. Xi, and J. Yang, "Cost-Efficient Provisioning

Strategy for Multiple Services in Distributed Clouds," in International

Conference on Cloud Computing Research and Innovations (ICCCRI),

Singapore, Singapore 2016 pp. 1-8.

[16] C. Qu, R. N. Calheiros, and R. Buyya, "SLO-Aware Deployment of Web

Applications Requiring Strong Consistency using Multiple Clouds," in IEEE

International Conference on Cloud Computing (Cloud), USA, 2015, pp. 860-

868.

[17] K. A. Nuaimi, N. Mohamed, M. A. Nuaimi, and J. Al-Jaroodi, "Dual Direction

Load Balancing and Partial Replication Storage of Cloud DaaS," in IEEE

International Conference on Cloud Networking (CloudNet), 2014, pp. 432-437.

[18] P. Li, S. Guo, T. Miyazaki, X. Liao, H. Jin, A. Y. Zomaya, and K. Wang,

"Traffic-Aware Geo-Distributed Big Data Analytics with Predictable Job

Completion Time," IEEE Transactions on Parallel and Distributed Systems,

vol. 28, pp. 1785-1796, 2017.

[19] P. Li, T. Miyazaki, and S. Guo, "Traffic-Aware Task Placement with

Guaranteed Job Completion Time for Geo-Distributed Big Data," in IEEE

International Conference on Communications (ICC), 2017.

[20] Z. Su, Q. Xu, M. Fei, and M. Dong, "Game Theoretic Resource Allocation in

Media Cloud With Mobile Social Users," IEEE Transactions on Multimedia,

vol. 18, pp. 1650-1660, 2016.

[21] Z. Zhang, Z. Li, and C. Wu, "Optimal Posted Prices for Online Cloud Resource

Allocation," in ACM Special Interest Group on Performance Evaluation

(SIGMETRICS), Urbana-Champaign, IL, USA, 2017.

153

[22] A. Qureshi, R. Weber, H. Balakrishnan, J. Guttag, and B. Maggs, "Cutting the

Electric Bill for Internet-Scale Systems," in ACM SIGCOMM Conference on

Data Communication (SIGCOMM), Barcelona, Spain, 2009, pp. 123-134.

[23] L. Rao, X. Liu, L. Xie, and W. Liu, "Minimizing Electricity Cost: Optimization

of Distributed Internet Data Centers in a Multi-Electricity-Market

Environment," in International Conference on Computer Communications

(INFOCOM), San Diego, CA, USA 2010.

[24] K. Le, O. Bilgir, R. Bianchini, M. Martonosi, and T. D. Nguyen, "Managing

the Cost, Energy Consumption, and Carbon Footprint of Internet Services," in

The ACM International Conference on Measurement and Modeling of

Computer Systems (SIGMETRICS), New York, New York, USA, 2010, pp.

357-358.

[25] H. Xu and B. Li, "Joint Request Mapping and Response Routing for Geo-

Distributed Cloud Services," in International Conference on Computer

Communications (INFOCOM), Turin, Italy, 2013.

[26] P. X. Gao, A. R. Curtis, B. Wong, and S. Keshav, "It's not Easy being Green,"

ACM SIGCOMM Computer Communication Review, vol. 42, pp. 211-222,

2012.

[27] H. Roh, C. Jung, W. Lee, and D.-Z. Du, "Resource Pricing Game in Geo-

Distributed Clouds " in International Conference on Computer

Communications (INFOCOM), Turin, Italy, 2013.

[28] A. Khanafer, M. Kodialam, and K. P. N. Puttaswamy, "The Constrained Ski-

Rental Problem and its Application to Online Cloud Cost Optimization," in

International Conference on Computer Communications (INFOCOM), Turin,

Italy, 2013.

[29] L. Jiao, J. Li, T. Xu, W. Du, and X. Fu, "Optimizing Cost for Online Social

Networks on Geo-Distributed Clouds," IEEE/ACM Transactions on

Networking, vol. 24, pp. 99-112, 2016.

[30] S. Traverso, K. Huguenin, Ionut Trestian, V. Erramilli, N. Laoutaris, and K.

Papagiannaki, "Social-Aware Replication in Geo-Diverse Online Systems,"

IEEE Transactions on Parallel and Distributed Systems, vol. 26, pp. 584-593,

2015.

154

[31] H. Chen, H. Jin, N. Jin, and T. Gu, "Minimizing Inter-Server Communications

by Exploiting Self-Similarity in Online Social Networks," in IEEE

International Conference on Network Protocols (ICNP), 2012, pp. 1-10.

[32] H. Hu, Y. Wen, and D. Niyato, "Spectrum Allocation and Bitrate Adjustment

for Mobile Social Video Sharing: Potential Game With Online QoS Learning

Approach," IEEE Journal on Selected Areas in Communications, vol. 35, pp.

935-948, 2017.

[33] P. N. Shankaranarayanan, A. Sivakumar, S. Rao, and M. Tawarmalani,

"Performance Sensitive Replication in Geo-Distributed Cloud Datastores," in

Annual IEEE/IFIP International Conference on Dependable Systems and

Networks, 2014, pp. 240-251.

[34] A. Shalita, B. Karrer, I. Kabiljo, A. Sharma, A. Presta, A. Adcock, H. Kllapi,

and M. Stumm, "Social Hash: An Assignment Framework for Optimizing

Distributed Systems Operations on Social Networks " in USENIX Symposium

on Networked Systems Design and Implementation (NSDI 16), Santa Clara,

CA, 2016, pp. 455-468.

[35] Z. Wang, B. Li, L. Sun, W. Zhu, and S. Yang, "Dispersing Instant Social Video

Service Across Multiple Clouds," IEEE Transactions on Parallel and

Distributed Systems, vol. 27, pp. 735-747, 2016.

[36] N. K. Gill and S. Singh, "A Dynamic, Cost-Aware, Optimized Data

Replication Strategy for Heterogeneous Cloud Data Centers," Future

Generation Computer Systems, vol. 65, pp. 10-32, 2016.

[37] G. Liu, H. Shen, and H. Chandler, "Selective Data Replication for Online

Social Networks with Distributed Datacenters," in IEEE International

Conference on Network Protocols (ICNP), 2013, pp. 1-10.

[38] G. Liu, H. Shen, and H. Chandler, "Selective Data Replication for Online

Social Networks with Distributed Datacenters," IEEE Transactions on

Parallel and Distributed Systems, vol. 27, pp. 2377-2393, 2016.

[39] M. P. Wittie, V. Pejovic, L. Deek, K. C. Almeroth, and B. Y. Zhao, "Exploiting

Locality of Interest in Online Social Networks," in ACM International

Conference on emerging Networking EXperiments and Technologies

(CoNEXT), Philadelphia, Pennsylvania, 2010, pp. 1-12.

155

[40] A. Lakshman and P. Malik, "Cassandra: a Decentralized Structured Storage

System," ACM SIGOPS Operating Systems Review, vol. 44, pp. 35-40 2010.

[41] B. Carrasco, Y. Lu, and J. M. F. d. Trindade, "Partitioning Social Networks for

Time-Dependent Queries," in Workshop on Social Network Systems (SNS),

Salzburg, Austria, 2011.

[42] X. Cheng and J. Liu, "Load-Balanced Migration of Social Media to Content

Clouds," in International Workshop on Network and Operating Systems

Support for Digital Audio and Video, Vancouver, British Columbia, Canada,

2011, pp. 51-56.

[43] J. M. Pujol, V. Erramilli, G. Siganos, X. Yang, N. Laoutaris, P. Chhabra, and

P. Rodriguez, "The Little Engine(s) that Could: Scaling Online Social

Networks," in ACM SIGCOMM Computer Communication Review

(SIGCOMM '10), New Delhi, India, 2010, pp. 375-386.

[44] D. A. Tran, K. Nguyen, and C. Pham, "S-CLONE: Socially-Aware Data

Replication for Social Networks," Computer Networks, vol. 56, pp. 2001-2013,

2012.

[45] J. Zhou, J. Fan, J. Wang, B. Cheng, and J. Jia, "Towards Traffic Minimization

for Data Placement in Online Social Networks," Concurrency and

Computation Practice and Experience, vol. 29, pp. 1-18, 2017.

[46] H. P. Sajjad, F. Rahimian, and V. Vlassov, "Smart Partitioning of Geo-

Distributed Resources to Improve Cloud Network Performance," in IEEE

International Conference on Cloud Networking (CloudNet'15), Niagara Falls,

Canada, 2015, pp. 112-118.

[47] D. A. Tran and T. Zhang, "S-PUT: An EA-Based Framework for Socially

Aware Data Partitioning," Computer Networks, vol. 75, pp. 504-518, 2014.

[48] E.-G. Talbi and P. Bessiere, "A Parallel Genetic Algorithm for the Graph

Partitioning Problem," in ACM International Conference on Supercomputing

(ICS’91), 1991, pp. 312–320.

[49] B. Yu and J. Pan, "Location-Aware Associated Data Placement for Geo-

distributed Data-Intensive Applications," in IEEE Conference on Computer

Communications (INFOCOM), 2015, pp. 603-611.

156

[50] J. Tang, X. Tang, and J. Yuan, "Optimizing Inter-Server Communication for

Online Social Networks," in IEEE International Conference on Distributed

Computing Systems (ICDCS), 2015, pp. 215-224.

[51] D. Daniel and P. Raviraj, "Distributed Hybrid Cloud for Profit Driven Content

Provisioning using User Requirements and Content Popularity," Cluster

Computing, vol. 20, pp. 525–538, 2017.

[52] D. Yuan, Y. Yang, X. Liu, and J. Chen, "On-Demand Minimum Cost

Benchmarking for Intermediate Dataset Storage in Scientific Cloud Workflow

Systems," Journal of Parallel and Distributed Computing, vol. 71, pp. 316-

332, 2011.

[53] D. Yuan, Y. Yang, L. Xiao, W. Li, L. Cui, M. Xu, and J. Chen, "A Highly

Practical Approach toward Achieving Minimum Data Sets Storage Cost in the

Cloud," IEEE Transactions on Parallel and Distributed Systems, vol. 24, pp.

1234-1244, 2013.

[54] Z. Ye, S. Li, and J. Zhou, "A Two-Layer Geo-Cloud Based Dynamic Replica

Creation Strategy," Applied Mathematics & Information Sciences, vol. 8, pp.

431-440, 2014.

[55] S. Agarwal, J. Dunagan, N. Jain, S. Saroiu, A. Wolman, and H. Bhogan,

"Volley: Automated Data Placement for Geo-Distributed Cloud Services," in

USENIX Conference on Networked Systems Design and Implementation, San

Jose, California, 2010.

[56] S. Kadambi, J. Chen, B. F. Cooper, D. Lomax, A. Silberstein, E. Tam, and H.

Garcia-molina, "Where in the World is My Data?," in Very Large Data Base

Endowment Inc. (VLDB Endowment), 2011, pp. 1040-1050.

[57] L. Jiao, J. Lit, W. Du, and X. Fu, "Multi-Objective Data Placement for Multi-

Cloud Socially Aware Services," in IEEE Conference on Computer

Communication (INFOCOM), 2014, pp. 28-36.

[58] M. S. Ardekani and D. B. Terry, "A Self-Configurable Geo-Replicated Cloud

Storage System," in USENIX Conference on Operating Systems Design and

Implementation, Broomfield, CO, 2014, pp. 367-381.

[59] N. Bonvin, T. G. Papaioannou, and K. Aberer, "A Self-Organized, Fault-

Tolerant and Scalable Replication Scheme for Cloud Storage," in ACM

157

Symposium on Cloud Computing, Indianapolis, Indiana, USA, 2010, pp. 205-

216.

[60] Z. Wu, M. Butkiewicz, D. Perkins, E. Katz-Bassett, and H. V. Madhyastha,

"SPANStore: Cost-Effective Geo-Replicated Storage Spanning Multiple

Cloud Services," in ACM Symposium on Operating Systems Principles,

Farminton, Pennsylvania, 2013, pp. 292-308.

[61] Y. Mansouri and R. Buyya, "To Move or Not to Move: Cost Optimization in

a Dual Cloud-Based Storage Architecture," Journal of Network and Computer

Applications, vol. 75, pp. 223–235, 2016.

[62] W. Yao and L. Lu, "A Selection Algorithm of Service Providers for Optimized

Data Placement in Multi-Cloud Storage Environment," Intelligent

Computation in Big Data Era, Chapter 11, vol. 503, pp. 81-92, 2015.

[63] J. Zhang, J. Chen, J. Luo, and A. Song, "Efficient Location-Aware Data

Placement for Data-Intensive Applications in Geo-Distributed Scientific Data

Centers," Tsinghua Science and Technology, vol. 21, pp. 471-481, 2016.

[64] Q. Feng, J. Han, Y. Gao, and D. Meng, "Magicube: High Reliability and Low

Redundancy Storage Architecture for Cloud Computing," in International

Conference on Networking, Architecture and Storage (NAS), Xiamen, Fujian,

China, 2012.

[65] W. Li, Y. Yang, and D. Yuan, "A Novel Cost-Effective Dynamic Data

Replication Strategy for Reliability in Cloud Data Centres," in IEEE

International Conference on Dependable, Autonomic and Secure Computing

(DASC), 2011, pp. 496-502.

[66] J.-W. Lin, C.-H. Chen, and J. M. Chang, "QoS-Aware Data Replication for

Data-Intensive Applications in Cloud Computing Systems," IEEE

Transactions on Cloud Computing, vol. 1, pp. 101-115, 2013.

[67] Z. Wang, L. Sun, X. Chen, W. Zhu, J. Liu, M. Chen, and S. Yang,

"Propagation-Based Social-Aware Replication for Social Video Contents," in

ACM International Conference on Multimedia, Nara, Japan, 2012, pp. 29-38.

[68] T. Loukopoulos and I. Ahmad, "Static and Adaptive Distributed Data

Replication using Genetic Algorithms," Journal of Parallel and Distributed

Computing, vol. 64, pp. 1270-1285, 2004.

158

[69] T. Phan, K. Ranganathan, and R. Sion, "Evolving Toward the Perfect Schedule:

Co-Scheduling Job Assignments and Data Replication in Wide-Area Systems

using a Genetic Algorithm," Job Scheduling Strategies for Parallel Processing,

Chapter 9, vol. 3834, pp. 173-193, 2005.

[70] W. Guo and X. Wang, "A Data Placement Strategy Based on Genetic

Algorithm in Cloud Computing Platform," in Web Information System and

Application Conference (WISA), 2013, pp. 369-372.

[71] Q. Xu, Z. Xu, and T. Wang, "A Data-Placement Strategy Based on Genetic

Algorithm in Cloud Computing," International Journal of Intelligence Science,

vol. 5, pp. 145-157, 2015.

[72] Z. I. M. Yusoh and M. Tang, "A penalty-Based Genetic Algorithm for the

Composite SaaS Placement Problem in the Cloud," in IEEE Congress on

Evolutionary Computation (CEC), 2010, pp. 1-8.

[73] M. Hu, J. Luo, Y. Wang, and B. Veeravalli, "Practical Resource Provisioning

and Caching with Dynamic Resilience for Cloud-Based Content Distribution

Networks," IEEE Transactions on Parallel and Distributed Systems, vol. 25,

pp. 2169-2179, 2014.

[74] S. Borst, V. Gupta, and A. Walid, "Distributed Caching Algorithms for

Content Distribution Networks," in IEEE International Conference on

Computer Communications (INFOCOM), 2010, pp. 1-9.

[75] J. Liu and B. Li, "A QoS-Based Joint Scheduling and Caching Algorithm for

Multimedia Objects," World Wide Web, vol. 7, pp. 281-296, 2004.

[76] F. Chen, K. Guo, J. Lin, and T. L. Porta, "Intra-cloud Lightning: Building

CDNs in the Cloud," in IEEE International Conference on Computer

Communications (INFOCOM), 2012, pp. 433-441.

[77] S. Nikolaou, R. V. Renesse, and N. Schiper, "Proactive Cache Placement on

Cooperative Client Caches for Online Social Networks," IEEE Transactions

on Parallel and Distributed Systems, vol. 27, pp. 1174-1186, 2016.

[78] S. Li, J. Xu, M. v. d. Schaar, and W. Li, "Trend-Aware Video Caching Through

Online Learning " IEEE Transactions on Multimedia, vol. 18, pp. 2503-2516,

2016.

159

[79] S. Li, J. Xu, M. Van Der Schaar, and W. Li, "Popularity-Driven Content

Caching," in IEEE International Conference on Computer Communications

(INFOCOM), San Francisco, CA, USA 2016.

[80] H. Hu, Y. Wen, T.-S. Chua, J. Huang, W. Zhu, and X. Li, "Joint Content

Replication and Request Routing for Social Video Distribution Over Cloud

CDN: A Community Clustering Method," IEEE Transactions on Circuits and

Systems for Video Technology, vol. 26, pp. 1320-1333, 2016.

[81] Y. Wu, C. Wu, B. Li, L. Zhang, Z. Li, and F. C. M. Lau, "Scaling Social Media

Applications into Geo-Distributed Clouds," IEEE/ACM Transactions on

Networking, vol. 23, pp. 689-702, 2015.

[82] Y. Wu, C. Wu, B. Li, L. Zhang, Z. Li, and F. C. M. Lau, "Scaling Social Media

Applications into Geo-Distributed Clouds," in IEEE Conference on Computer

Communications (INFOCOM), 2012, pp. 684-692.

[83] Y. Chen, Z. Yu, and B. Li, "Clockwork: Scheduling Cloud Requests in Mobile

Applications," in IEEE International Conference on Sensing, Communication,

and Networking (SECON), San Diego, CA, USA 2017.

[84] J. Zhou, J. Fan, J. Jia, B. Cheng, and Z. Liu, "Optimizing Cost for Geo-

Distributed Storage Systems in Online Social Networks," Journal of

Computational Science, in Press, 2017.

[85] Q. Xia, W. Liang, and Z. Xu, "The Operational Cost Minimization in

Distributed Clouds via Community-Aware User Data Placements of Social

Networks," Computer Networks, vol. 112, pp. 263-278, 2017 2017.

[86] S. Han, B. Kim, J. Han, K. Kim, and J. Song, "Adaptive Data Placement for

Improving Performance of Online Social Network Services in a Multicloud

Environment," Hindawi Scientific Programming, 2017.

[87] Amazon S3 Pricing as of 2016. Available: https://aws.amazon.com/s3/pricing/

[88] Y. Sverdlik. (December 2017). Facebook to Build Two More Massive Data

Centers in Oregon. Available:

http://www.datacenterknowledge.com/facebook/facebook-build-two-more-

massive-data-centers-oregon

[89] A. Weiss, "Computing in the Clouds," netWorker, vol. 11, pp. 16-25, 2007.

160

[90] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner, "A Break in

the Clouds: Towards a Cloud Definition," in Computer Communication

Review, 2009, pp. 50-55.

[91] X. Liu, J. Chen, and Y. Yang, "A Probabilistic Strategy for Setting Temporal

Constraints in Scientific Workflows," Business Process Management, Chapter

15, vol. 5240, pp. 180-195, 2008.

[92] J. Mcauley and J. Leskovec, "Learning to Discover Social Circles in Ego

Networks," in Advances in Neural Information Processing Systems (NIPS),

2012, pp. 539-547.

[93] H. Khalajzadeh, D. Yuan, J. Grundy, and Y. Yang, "Improving Cloud-Based

Online Social Network Data Placement and Replication," in International

Conference on Cloud Computing, 2016, pp. 678-685.

[94] M. Mitchell, An Introduction to Genetic Algorithms: MIT press, 1998.

[95] The Facebook Data Center FAQ. Available:

http://www.datacenterknowledge.com/the-facebook-data-center-faq/

[96] J. Constine. (2012). How Big Is Facebook’s Data? 2.5 Billion Pieces Of

Content And 500+ Terabytes Ingested Every Day. Available:

http://techcrunch.com/2012/08/22/how-big-is-facebooks-data-2-5-billion-

pieces-of-content-and-500-terabytes-ingested-every-day/

[97] M. Obitko. (1998). Introduction to Genetic Algorithms. Available:

http://www.obitko.com/tutorials/genetic-algorithms/recommendations.php

[98] J. Baer. (2012). The Social Habit – Is Our Facebook Addiction Ruinous.

Available: http://www.convinceandconvert.com/social-media-research/the-

social-habit-is-our-facebook-addiction-ruinous/

[99] H. Khalajzadeh, D. Yuan, B. Zhou, J. Grundy, and Y. Yang, "Cost Effective

Dynamic Data Placement for Efficient Access of Social Networks," Submitted

to the Journal of Parallel and Distributed Computing (JPDC).

[100] D. Hinkemeyer and D. Zeleny. (2007). Greedy Algorithms, Divide and

Conquer, and DP. Available: http://pages.cs.wisc.edu/~shuchi/courses/787-

F07/scribe-notes/lecture02.pdf

[101] A. Gupta, R. Krishnaswamy, A. Kumar, and D. Panigrahi, "Online and

Dynamic Algorithms for Set Cover," in Annual ACM SIGACT Symposium on

Theory of Computing, Montreal, Canada, 2017, pp. 537-550.

161

[102] L. Trevisan, "Stanford University | CS261: Optimization," 2011.

[103] N. Buchbinder and J. Naor, "The Design of Competitive Online Algorithms

via a Primal: Dual Approach," Foundations and Trends® in Theoretical

Computer Science, vol. 3, pp. 93-263, 2009.

[104] T. Roughgarden, "A Second Course in Algorithms: Linear Programming and

Approximation Algorithms," Lecture notes, Department of Computer Science,

Stanford University, 2016.

[105] S. Rajagopalan and V. V. Vazirani, "Primal-Dual RNC Approximation

Algorithms for Set Cover and Covering Integer Programs," SIAM Journal on

Computing, vol. 28, pp. 525-540 1999.

[106] V. V. Vazirani, Approximation Algorithms: Springer Science & Business

Media, 2013.

[107] Leading Countries Based on Share of Facebook Users Worldwide as of May

2015. Available: http://www.statista.com/statistics/264838/countries-with-

the-most-facebook-users/

[108] The Top 20 Valuable Facebook Statistics – Updated May 2017. Available:

https://zephoria.com/top-15-valuable-facebook-statistics/

[109] S. Knapton. (2016). Facebook Users Have 155 Friends - But Would Trust Just

Four in a Crisis. Available: http://www.telegraph.co.uk/news/science/science-

news/12108412/Facebook-users-have-155-friends-but-would-trust-just-four-

in-a-crisis.html

[110] Growth Hacking: How Do You Find Insights Like Facebook's "7 Friends in 10

Days" to Grow Your Product Faster? Available:

https://www.quora.com/How-do-you-find-insights-like-Facebooks-7-friends-

in-10-days-to-grow-your-product-faster

[111] H. Shen, Z. Li, Y. Lin, and J. Li, "SocialTube: P2P-Assisted Video Sharing in

Online Social Networks," IEEE Transactions on Parallel and Distributed

Systems, vol. 25, pp. 2428-2440, 2014.

[112] F. Benevenuto, T. Rodrigues, M. Cha, and V. Almeida, "Characterizing User

Behavior in Online Social Networks," in ACM Conference on Internet

Measurement Conference (SIGCOMM), Chicago, Illinois, USA, 2009, pp. 49-

62.

[113] OpenFog Consortium. Available: https://www.openfogconsortium.org/

162

[114] Fog Computing (Fog Networking, Fogging). Available:

http://internetofthingsagenda.techtarget.com/definition/fog-computing-

fogging

[115] H. Khalajzadeh, D. Yuan, J. Grundy, and Y. Yang, "Cost-Effective Social

Network Data Placement and Replication Using Graph-Partitioning," in IEEE

International Conference on Cognitive Computing (ICCC), 2017, pp. 64-71.

[116] A. Abou-Rjeili and G. Karypis, "Multilevel Algorithms for Partitioning Power-

Law Graphs," in International Conference on Parallel and Distributed

Processing (IPDPS), Rhodes Island, Greece, 2006.

[117] K. Schloegel, G. Karypis, and V. Kumar, "Wavefront Diffusion and LMSR:

Algorithms for Dynamic Repartitioning of Adaptive Meshes," IEEE

Transactions on Parallel and Distributed Systems (TPDS), vol. 12, pp. 451-

466, 2001.

[118] G. Karypis and V. Kumar, "A Fast and High Quality Multilevel Scheme for

Partitioning Irregular Graphs," SIAM Journal on Scientific Computing, vol. 20,

pp. 359–392, 1998.

[119] F. Pellegrini and J. Roman, "Scotch: A Software Package for Static Mapping

by Dual Recursive Bipartitioning of Process and Architecture Graphs," HPCN-

Europe: High-Performance Computing and Networking, pp. 493-498, 1996.

[120] F. Rahimian, A. H. Payberah, S. Girdzijauskas, M. Jelasity, and S. Haridi, "A

Distributed Algorithm for Large-Scale Graph Partitioning," ACM

Transactions on Autonomous and Adaptive Systems (TAAS), vol. 10, pp. 1-24,

2015.

[121] P. Sanders and C. Schulz, "Engineering Multilevel Graph Partitioning

Algorithms," European Symposium on Algorithms (ESA’11), vol. 6942 pp.

469–480, 2011.

[122] A. J. Soper, C. Walshaw, and M. Cross, "A Combined Evolutionary Search

and Multilevel Optimisation Approach to Graph-Partitioning," Journal of

Global Optimization, vol. 29, pp. 225–241, 2004.

[123] P. Chardaire, M. Barake, and G. P. McKeown, "A Probe-Based Heuristic for

Graph Partitioning," IEEE Transactions on Computers, vol. 56, pp. 1707–1720,

2007.

163

[124] U. Benlic and J.-K. Hao, "An Effective Multilevel Tabu Search Approach for

Balanced Graph Partitioning," Computers & Operations Research, vol. 38, pp.

1066-1075, 2011.

[125] G. Karypis and V. Kumar, "Parallel Multilevel Series K-way Partitioning

Scheme for Irregular Graphs," Society for Industrial and Applied Mathematics

(SIAM Review), vol. 41, pp. 278–300, 1999.

[126] P. Sanders and C. Schulz, "Distributed Evolutionary Graph Partitioning," in

Workshop on Algorithm Engineering and Experiments (ALENEX) 2012, pp.

16-29.

[127] F. Rahimian, A. H. Payberah, S. Girdzijauskas, M. Jelasity, and S. Haridi,

"Jabe-Ja: A Distributed Algorithm for Balanced Graph Partitioning," in IEEE

International Conference on Self-Adaptive and Self-Organizing Systems

(SASO’13), 2013, pp. 51–60.

[128] J. Gehweiler and H. Meyerhenke, "A Distributed Diffusive Heuristic for

Clustering a Virtual P2P Supercomputer," in IEEE International Parallel &

Distributed Processing Symposium Workshops and Phd Forum (IPDPSW’10),

2010, pp. 1-8.

[129] L. Ramaswamy, B. Gedik, and L. Liu, "A Distributed Approach to Node

Clustering in Decentralized Peer-to-Peer Networks," IEEE Transactions on

Parallel and Distributed Systems (TPDS), vol. 16, pp. 814–829, 2005.

[130] M. Kim and K. S. Candan, "SBV-Cut: Vertex-Cut Based Graph Partitioning

using Structural Balance Vertices," Data & Knowledge Engineering, vol. 72,

pp. 285–303, 2012.

[131] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, "PowerGraph:

Distributed Graph-Parallel Computation on Natural Graphs," USENIX

Symposium on Operating System Design and Implementation (OSDI), vol. 12,

pp. 17-30, 2012.

[132] R. S. Xin, J. E. Gonzalez, M. J. Franklin, and I. Stoica, "Graphx: A Resilient

Distributed Graph System on Spark," International Workshop on Graph Data

Management Experiences and Systems (GRADES’13), 2013.

[133] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, "Spark:

Cluster Computing with Working Sets," in USENIX Workshop on Hot Topics

in Cloud Computing (HotCloud’10), 2010, pp. 1-7.

164

[134] A. Guerrieri and A. Montresor, "Distributed Edge Partitioning for Graph

Processing," arXiv preprint arXiv:1403.6270, 2014.

165

Appendices

166

Appendix A

Latency of Pinging Amazon

Datacentres in Millisecond by Users

in Different Regions

For simulation, real Amazon datacentres in Virginia, California, Oregon, Ireland,

Frankfurt, Singapore, Sydney, Tokyo, and Sao Paulo are considered. To find the

latency of different datacentres, we had 19 users in 19 cities all around the world

pinging different Amazon datacentres from their locations for ten times. The average

latencies found are shown here. To assign these latencies to a different number of users

in these locations, we used different normal distributions with the collected latencies

as the mean for every region for simulation.

Table A-1. Latency of pinging Amazon datacentres

 Datacentre

Region

V
ir

gi
ni

a

C
al

ifo
rn

ia

O
re

go
n

Ir
el

an
d

Fr
an

kf
ur

t

Si
ng

ap
or

e

Sy
dn

ey

To
ky

o

Sa
o

Pa
ul

o

Albuquerque,
United States

115 96 116 229 216 281 259 220 265

Amaravati, India 243 246 269 182 161 61 353 146 417

Houston, United
States

75 66 88 144 137 240 203 165 198

Jakarta,
Indonesia

295 223 240 364 361 40 203 150 830

167

Lagos, Nigeria 97 157 185 215 222 339 362 263 269

London, United
Kingdom

103 163 150 21 22 279 332 255 211

Los Angeles,
United States

98 33 55 190 199 221 208 156 239

Manila,
Philippines

292 225 255 357 390 270 327 253 425

Melbourne,
Australia

258 212 203 337 334 157 56 247 392

Montreal,
Canada

45 105 118 121 113 291 276 206 178

Munich,
Germany

183 252 250 77 55 316 377 342 369

Prince George,
Canada

101 75 52 187 220 292 252 220 236

Santa Fe,
Argentina

178 221 229 268 260 411 368 316 63

Sao Paulo, Brazil 127 192 192 196 194 361 328 273 12

Singapore,
Singapore

336 241 297 389 364 17 245 102 482

Stockholm,
Sweden

128 196 188 52 33 384 340 291 266

Sydney,
Australia

305 166 162 317 305 136 13 291 392

Tokyo, Japan 180 128 129 290 273 98 191 32 307

West Chester,
United States

104 164 149 137 232 337 314 277 244

168

Appendix B

Our Graph Partitioning Strategy

In this Appendix, we briefly introduce graph partitioning (GP) in Section B.1. Then,

our detailed graph-partitioning strategy, which is part of our preliminary work is

presented in Section B.2. Finally, using of our graph partition strategy to solve the

data placement and replication problem is discussed in Section B.3. Sections B.1 and

B.2 are based on a paper presented and published [115] in IEEE ICCC 2017

conference based on this work.

B.1 Background

In this section, we briefly introduce the existing study of graph partitioning and

repartitioning problems. Conventionally, such problems are studied from a graph

theoretic and algorithmic perspective. Graph partitioning aims to divide a weighted

graph into a specified number of partitions in order to minimise either the weights of

edges that straddle partitions or the inter-partition communication while balancing the

weights of vertices in each partition [116]; graph repartitioning additionally considers

the existing partitioning, and pursues the same objective as graph partitioning while

also minimising the migration costs [117].

Well known algorithms and solutions to such problems include METIS [118] and

Scotch [119]. METIS is a multi-level partitioning algorithm that is composed of three

phases: the coarsening phase, the partitioning phase, and the un-coarsening phase. In

the coarsening phase, vertices are merged iteratively dictated by some rules and thus

the size of the original graph becomes smaller and smaller. In the partitioning phase,

a 2-way partition of the graph is computed that partitions the vertices into two parts,

each containing half the vertices. In the un-coarsening phase, the partitioned graph is

projected back to finer graphs iteratively and the partitioning is also refined by

169

following some algorithms until one gets the finest original graph. Scotch is a software

package for static mapping based on the recursive bipartitioning of both the source

process graph and the target architecture graph.

Graph partitioning methods can be divided to two groups of edge-cut and vertex-cut

partitioning. Edge-cut partitioning divides vertices of a graph into disjoint partitions

of almost equal size while a vertex-cut partitioning divides the edges of a graph into

equal-size partitions. The two endpoint vertices of an edge are also placed in the same

partition as the edge. However, the vertices are not unique across partitions and they

can be replicated due to the distribution of their edges across different partitions. A

good vertex-cut partitioning algorithms is the one with minimum number of replicas

[120]. Some of the existing algorithms on both edge-cut and vertex-cut partitioning

are summarised as follows.

The algorithms in edge-cutting partitioning group can be centralised or distributed.

Centralised algorithms assume cheap random access to the entire graph despite of the

distributed algorithms which do not need the information about the whole graph.

METIS [118] and KAFFPA [121] are some examples in this category using multi-

level graph partitioning. Genetic Algorithm (GA) is used in [122] and [123] in

addition to the multilevel graph partitioning, and [124] utilises Tabu search.

Parallelization is a technique used in some researches to accelerate the partitioning

process. PARMETIS [125] and KAFFPAE [126] are the parallel version of METIS

[118] and KAFFPA [121] respectively. Although these centralised algorithms are fast

and able to produce good minimum cuts, they require access to the entire graph at all

times, which is often impractical for large scale graphs. JA-BE-JA [127], DIDIC [128]

and CDC [129] are some distributed algorithms for graph partitioning to eliminate

global operations.

While there are numerous solutions for edge-cut partitioning, very little attention has

been given to the vertex-cut partitioning. SBV-Cut [130] is one of the few algorithms

for vertex-cut partitioning employing hierarchical partitioning of the graph.

PowerGraph [131] is a distributed graph processing framework that uses vertex-cuts

to equally assign edges of a graph to multiple machines in order to reduce the

communication overhead. GraphX [132] is another vertex-cut graph processing

170

system on Spark [133]. Finally, DFEP [134] is a distributed vertex-cut partitioning

algorithm based on a market model, in which the partitions are buyers of vertices with

their budget.

B.2 Our Graph Partitioning Strategy

As social networks have a large number of users which is growing every day, to

improve the scalability of our GA and set-cover based strategies, we propose a vertex-

cut graph partitioning strategy to assign the connected users to different groups. Our

graph partitioning strategy is considered as a pre-processing step to make large social

network graphs to smaller graphs in order to do the data placement and replication

more efficiently. Our strategy is vertex-cut in which users can be located in several

groups and have several replicas of data. This vertex-cut graph-partitioning strategy

groups connected users to the same partitions.

Our graph-partitioning strategy is summarised in three steps in this section.

1. First, the list of friends for every user is found. In our social network graph, this

list is the number of edges connected to every vertex.

2. For a k-partitioning problem, users are sorted based on the number of their

connections. Then, the first k users with the most number of connections are

chosen and these users and all their connections are assigned to random

partitions. An example for a 2-partitioning strategy is shown in Figure B-1.

Unassigned vertices and edges are shown in blue colour and two different

partitions are shown in red and green colours. Two vertices with the most

number of connections and all their edges are randomly assigned to one of these

two partitions.

171

Figure B-1. Finding users with the most number of friends

3. For all unassigned users starting from assigned user’s neighbours, we assign all

their unassigned connections to the dominant partition between their

neighbours. The dominant partition for a vertex is the partition of the most of

its connected edges. Finally, we have all vertices and edges assigned to

different partitions. For the vertices with edges in more than one partition, the

vertices are assigned to all partitions of the edges. The final partitioned graph

of Figure B-1 is shown in Figure B-2. There is one vertex in this graph with

edges assigned to two different partitions. Therefore, this vertex is assigned to

both partitions. Hence, a vertex-cut GP strategy to partition the input social

network graph of users and their connection to different connected partitions is

illustrated so far.

Figure B-2. The partitioned graph

The pseudocode of the proposed graph-partitioning strategy is shown in Algorithm

B-1.

Algorithm B-1. Our graph partitioning strategy pseudocode

Inputs:

172

Social network graph of users and connection

Number of connections: ConnectionsNum

Number of users: UsersNum

Locations of users: Coordinates

Number of expected partitions: K

Outputs:

Partitioned social network graph: Partitions

Algorithm

// Step 1: Finding the friends list for every user

1. for all connections i = 1 to ConnectionsNum

2. Assign every connection’s users to the friendsList of each other and

increase the friendsNum for both users

3. end for

// Step 2: Finding K users with the most number of friends

4. Sort the users based on the number of friends

5. Choose the first K users as the users with the most number of friends

// Step 3: Finding the order of users for assigning partitions to their

connections

6. NumAssigned = 0;

7. while NumAssigned < UsersNum

8. Assign users 1 to K with the most number of friends to UsersOrder(1:K)

and update NumAssigned

173

9. Assign all their friends starting from UsersOrder(1) to UsersOrder(K+1:

UsersNum) and update NumAssigned

10. end while

11. for all users i = UsersOrder(1) to UsersOrder(K)

12. Assign all connections related to i to random partitions from 1:K

13. end for

14. for all users i = UsersOrder(K+1) to UsersOrder(UsersNum)

15. Assign all connections related to i to the partitions of its neighbours

16. end for

// Returning the solution

17. Return the partitioned social network graph (Partitions)

Algorithm B-1 is explained below:

1. The social network graph of users and connection, number of connections

(ConnectionsNum), number of users (UsersNum), locations of users

(Coordinates), and number of expected partitions (K) are retrieved as inputs.

2. By counting the number of connections that this user has with the other users

in ConnectionsNum, the number of friends for every user is found as

FriendsNum (lines 1-3 in pseudocode).

3. Users are sorted based on the number of friends, the first K users with the most

number of friends are chosen and based on their number of connections, the

number of users assigned to different partitions (NumAssigned) is updated

(lines 4-10 in pseudocode).

4. These users and all their connections are assigned to random partitions (lines

11-13 in pseudocode).

5. For all unassigned users starting from assigned user’s neighbours, we assign

all their unassigned connections to the dominant partition between their

neighbours (lines 14-16 in pseudocode).

174

6. Finally, the partitioned social network graphs (Partitions) are returned (line 17

in pseudocode)

With this graph-partitioning strategy, we might not have a balanced partitioned graph

after finishing the partitioning. However, as we assume the users are scattered all

around the world this does not usually occur in our work. Moreover, as we are using

cloud datacentres with virtually unlimited storage capacity, having a balanced

partitioned graph is not essential in our work.

In terms of the time complexity of the proposed graph-partitioning strategy, if we

consider ConnectionsNum in the pseudocode as c and UsersNum as n, finding the

friends list for every user has the time complexity of O(c). Finding k users with the

most number of friends takes O(n×log(n)) and finding the order of users for assigning

partitions to their connections takes O(n). Therefore, the total time complexity of this

strategy is O(nlog(n)+c) which is effectively O(nlog(n)) given c is much smaller than

n.

B.3 Discussion

How can we make use of this graph partitioning strategy in our initial problem of data

placement and replication in the cloud? Our graph partitioning strategy can be used as

a preprocessing step followed by a data placement and replication strategy such as

either our GA based strategy presented in Chapter 4 or our static set cover based data

placement and replication strategy presented in Chapter 6. By adopting this graph

partitioning strategy, the initial social network graph which could consist of billions of

users for a typical social network such as Facebook [2], is partitioned to different

smaller groups of connected users.

There are two options to do the data placement and replication for the partitioned social

network graphs. First, our GA or set cover based data placement and replication

strategies can be applied in parallel for different partitions. Alternatively, since users’

data are mostly accessed by their connected friends, every user’s data and all his/her

friends’ data can be placed in the same datacentres. As a vertex-cut algorithm in which

175

users can be assigned to different partitions is considered, users’ data can be replicated

in more than one datacentre depending on the partitions they are assigned to.

Furthermore, in order to adapt the data placement and replication based on the dynamic

changes in the network, as new users join, they are assigned to one of the partitions

based on the number of connections or mutual interests. The partitions can be reshaped

over time when users join or leave the network, connections are created or broken and

access frequencies of different friends change over time. Users need to be assigned to

a new partition when they move or they find more connections or access frequencies

from a new partition. Dynamic repartitioning of social networks will be studied in the

future in order to make our strategies more applicable to real world problems.

176

Appendix C

Notation Index

Table C-1. Notation table

Notation Meaning

ρ(S) Density of a set S which is the ratio of its cost and the
volume of elements it covers in dynamic greedy
algorithm

σt Element add/delete request at time t in dynamic greedy
algorithm

ϕ(e) Covering set of element e in dynamic greedy algorithm

At Active elements at time t in dynamic greedy algorithm

c Number of connections

Connections Set of connections in the social network

Cost(Sij) Cost of storing data of user i in datacentre j in greedy
algorithm

Cov(S) List of elements covered by solution S in dynamic greedy
algorithm

Dijk Delay matrix of user i

Datacentres Set of datacentres in the social network

Delay Acceptable latency

Data Set of data for different users in the social network

ℓ Density level in dynamic greedy algorithm

et Element added/deleted at time t in dynamic greedy
algorithm

epoch Number of iterations in genetic algorithm

177

F Maximum number of all users’ friends

Fitness(S) Fitness function in genetic algorithm

FriendsNumi Number of user i’s friends

I Set of friends having the latency requirement fulfilled in
greedy algorithm

interval Duration of a time period

keep Size of the selected population in genetic algorithm

Lij Latency of user i accessing datacentre j

L’ijk Latency of friend j of user i accessing datacentre k

Latency Set of the latencies for all requests

Latencyr Latency of request r

list1 Sorted list of datacentres based on distance to different
users

list2 Sorted list of datacentres based on the number of friends
around different datacentres

list3 Sorted list of datacentres based on the number of requests
around different datacentres

m Number of datacentres

MinReplica Minimum number of replicas

n Number of users

nt Number of elements to be covered at time t in dynamic
greedy algorithm

Optt Cost of the optimal set cover at time t in dynamic greedy
algorithm

P Desirable percentile

pij Primary replica of use i in datacentre j

popsize Population size in genetic algorithm

178

r Recourse, i.e. number of sets added/dropped from a set
cover

rc Rate of crossover in genetic algorithm

rm Rate of mutation in genetic algorithm

Rℓ Range of densities in dynamic greedy algorithm

ReplicaNumi Final number of replicas for user i

RequestCosti(ts) Total request cost for user i in time period ts

RequestNumik(ts) Number of requests from friend k of user i in time period
ts

RT Routing table

S Solution space

S1-S9 Dynamic scenarios

Sij Data of user i is stored in datacentre j or not

sij Secondary replica of user i in datacentre j

StorageCosti(ts) Total storage cost of user i in time period ts

StoredDataSizei(ts) Data size for user i at the end of time period ts

TotalCost($) Total storage cost of all users over time

TransferCosti(ts) Total transfer cost for user i in time period ts

ts Time period

U Set of all possible solutions in greedy algorithm

UnitRRequestPricej(ts) Price for requesting to read data from datacentre j in time
period ts

UnitStoragePricej(ts) Price for storing one Gigabyte of data for duration of dt in
datacentre j in time period ts

UnitTransferPricej(ts) Price for transferring one Gigabyte of data from
datacentre j in time period ts

UnitWRequestPricej(ts) Price for requesting to write data from datacentre j in time
period ts

179

Users Set of users in the social network

Vol(e) Volume of an element in dynamic greedy algorithm

Weight(Sik) Cost(Sik) divided to the number of newly added requests
in greedy algorithm

xij Matrix of solution in genetic algorithm

180

Appendix D

Storage, Request, and Transfer Price

of Different Amazon Datacentres

Real unit storage cost for data storage per GB per month, request cost per request and

transfer cost per GB in all Amazon datacentres [87] are taken into account. The

UnitStoragePricej, UnitRRequestPricej, UnitWRequestPricej, and UnitTransferPricej

for Amazon datacentres used in our experiments are shown below.

Table D-1. Price of different Amazon datacentres

Region Storage price
($) per GB
per month

Read Request
price
($) per 10,000
requests

Write
Request
price
($) per
10,000
requests

Transfer
price
($) per GB

Virginia 0.03 0.004 0.05 0.09

California 0.033 0.0044 0.055 0.09

Oregon 0.03 0.004 0.05 0.09

Ireland 0.03 0.004 0.05 0.09

Frankfurt 0.0324 0.0043 0.054 0.09

Singapore 0.03 0.004 0.05 0.12

Sydney 0.033 0.0044 0.055 0.14

181

Tokyo 0.033 0.0037 0.047 0.14

Sao Paulo 0.0408 0.0056 0.07 0.25

182

Appendix E

Distribution of Facebook Users’

Locations

Real distribution of Facebook users’ locations [107] that we used in our experiments

is shown below.

Table E-1. Distribution of Facebook users’ locations

Country Percentage of users

United States 11

India 11

Brazil 6

Indonesia 6

Mexico 4

Philippines 3

Vietnam 3

Turkey 2

Thailand 2

United Kingdom 2

