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A B S T R A C T

The work presented in this thesis is motivated by two inter-related goals: to develop tech-

niques capable of selectively measuring coherent interactions and to understand the coher-

ent interactions in semiconductor double quantum wells.

Coherent multidimensional spectroscopy (CMDS) techniques are developed which can

be used to selectively excite and then measure a variety of otherwise hidden quantum

states in solid-state or molecular systems. A CMDS apparatus which utilizes a diffraction

based pulse-shaper to control the inter-pulse delays is implemented. The pulse-shaper is

also used to individually shape the amplitude of excitation spectra, allowing the possibility

to selectively excite particular quantum pathways. The usefulness of the selective approach

is demonstrated by observing and then quantifying inter-well coherent superpositions in

an AlGaAs/GaAs double quantum well. Spectral shaping of the excitation beams is also

used to isolate mixed two-exciton states in a selective two-quantum experiment, which is a

complementary tool for studying coherent interactions between spectrally distinct states.

Spatially indirect ‘dark’ excitons are studied in a GaAs/InGaAs double quantum well.

While these ‘dark’ excitons are difficult to study in a linear experiment, they can be easily

detected in a coherent multidimensional spectroscopy experiment through their strong cou-

pling to ‘bright’ exciton transitions. We also identify coherent superpositions of the ‘dark’

and ‘bright’ states. The strong coupling of these spatially indirect excitons to the bright quan-

tum well and barrier excitons suggests that the ‘dark’ excitons play a role in the relaxation

of excitons into the quantum wells.

The intrinsic stability of the CMDS apparatus enables us to study GaAs/InGaAs and Al-

GaAs/GaAs double quantum wells at extremely low excitation densities, several orders of

magnitude lower than typical excitation densities used in CMDS measurements of excitons

in quantum wells. Several striking changes to the 2D spectra are observed. Inter-well co-

herent superpositions of excitons are observed to be much more prevalent at low excitation

density in GaAs/InGaAs and AlGaAs/GaAs samples. In a GaAs/InGaAs double quantum

well, a narrowing of two-quantum linewidths reveals tilted peaks shapes, which to our

knowledge have never been observed in two-quantum 2D spectra of quantum wells. Finally,

what appears to be an extended 2D delocalized exciton state is observed in disordered

AlGaAs/GaAs double quantum wells. Excitation density dependence suggests that this de-

localized state is related to the enhanced inter-well coupling at low excitation densities.
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1
I N T R O D U C T I O N

Physical phenomena are typically split into two regimes: the classical and the quan-
tum. At the quantum level, the world is governed by the Schrödinger equation, and
outcomes are probabilistic. While in principle everything can be described by the
Schrödinger equation, the deterministic rules of classical physics are typically more
convenient for explaining the macroscopic world. There are, however, many exam-
ples of macroscopic effects that can only be adequately explained using quantum
mechanics [1]: superfluidity, superconductivity, the phenomena of stimulated emis-
sion (without which there would be no lasers), the transistors that enable modern
computers, the emission spectra of stars, and the structure of DNA (to name just
a few). One of the fundamental tenets of quantum mechanics is that particles can
be described by a wavefunction. Coherent superposition of particle is a ’smoking
gun’ proving that wavefunctions are necessary to describe a particle, and is there-
fore is an entirely non-classical effect. It is also important in a number of different
macroscopic contexts, ranging from the fundamental [1] to the applied [2–5]. Fun-
damentally, coherent superpositions are an interesting tool for understanding how
the quantum world transitions into the classical world through decoherence [1].
Coherent superpositions also play a role in many applied contexts including the
operation of devices such as quantum cascade lasers [2] and quantum tunnelling
diodes [3]. Coherent superposition is the integral concept that differentiates clas-
sical and quantum computing, and is also what allows the potential performance
gains that quantum computing has been accorded so much attention [4].

While it is relatively straightforward to understand how particles that are spatially
overlapped can form coherent superpositions, the formation of coherent superposi-
tions between particles that are spatially separated presents additional challenges,
and requires detailed understanding of the mechanisms governing the interactions.
Understanding these mechanisms could also open the door to a great many appli-
cations. The study of such coherent superpositions of spatially separated states
will be central theme of the work in this thesis.

An example of a system in which coherent superpositions of spatially separated
particles may be studied is the double quantum well (DQW), which is shown in Fig.
1.1. A semiconductor quantum well (QW) is a material with a 2D region that con-
fines charged particles in one direction, and thereby forces the particle to take on

1



2 I N T R O D U C T I O N

Figure 1.1: A cartoon of a double quantum well (DQW). The layered DQW structure (a), is made
up of two layers of one type of material (white color) sandwiched between layers of a
different material (grey). (b) The electrons are confined in potential wells as a function
of the z-direction created by the sandwich structure.

intrinsically quantum mechanical traits (quantized states, for example). QWs are an
important concept in quantum mechanics, and are particularly interesting because
they can be easily and precisely built with modern growth techniques. In fact, QW
based lasers have become very widespread, and are commonly used in computer
mice and in optical telecommunication. DQWs are also very useful in fundamental
studies because we can control the shape of the potential very precisely.

A natural system where spatially separated coherent superpositions may play a
role is in photosynthesis, where coherent superposition may be involved in the
transfer of energy from the chromophores that absorb the sunlight to the reac-
tion center which initiates all the biochemical reactions [5–8]. Several experiments
have observed evidence of coherent superpositions in a variety of different light
harvesting complexes (LHCs) [6–9] and within the reaction center [10, 11]. In part
due to experimental limitations, the role of these coherent superpositions (and in
some cases even the identification of the states involved) is still controversial and
research in this area is evolving rapidly. One of the goals of the work in this field
is understanding if and how coherent superpositions are involved in the fast and
efficient transfer of energy from the chromophores to the reaction center. Efficient
extraction of energy from light absorbers also happens to be one of the bottlenecks
in some man made photovoltaic devices [12], so an understanding of how energy
is transferred in natural light harvesters could be advantageous in the design of
future devices.

To achieve a detailed understanding of coherent superpositions of spatially sep-
arated states, we first need methods to excite and then measure them. To do this
we exploit the coherence of femtosecond (fs, 10−15 s) pulses generated by an ultra-
fast laser: a pulse of light incident upon the sample generates a large number of
coherent superpositions, which we can then ‘check’ on later. These coherent super-



I N T R O D U C T I O N 3

Figure 1.2: A cartoon 2D spectrum for a system with two coupled transitions. Interactions between
two transitions can be observed as cross-peaks (CPs). The diagonal-peaks (DPs) indicate
signals involving only one of the transitions. Linear absorption and emission measure-
ments cannot be used to separate the interactions between the two transitions from the
signals involving only one transition.

positions then evolve according to the Schrödinger equation and eventually become
incoherent as they interact with their environment, so the longer we wait before we
‘check’ on the superpositions, the less signal we observe. This process is often called
dephasing or decoherence. In order to observe these coherent superpositions, our
measurement needs to be faster than the dephasing/decoherence processes, which
(in many electronic systems), happens on the ultrafast time-scale: fs to picoseconds
(ps, 10−12 s).

In a system with multiple states that are all interacting there can be many sig-
nals that look the same in linear spectroscopy. We therefore also need a way to
separate out the signal we are interested in observing. One way to separate out the
interactions is by expanding the information onto two frequency directions using
2D spectroscopy. In the most common type of 2D spectroscopy, one axis represents
the absorption energy and the other represents the emission energy (as shown in
Fig. 1.2). As a result, signals in which absorption and emission occur in the same
state appear along the diagonal (often called diagonal-peaks or DPs), while signals
involving absorption and emission from different states appear away from the diag-
onal (often called cross-peaks or CPs). This separation of signals is the main power
of 2D spectroscopy - peaks which would be overlapped on either an absorption or
emission spectrum can now be separated and interactions can be clearly identified.
Multiple experimental techniques can be used to generate 2D spectra. However, to
directly observe coherent superpositions we must use a coherent 2D spectroscopy
technique. Further separation of signals can also be realized by expanding the data
into additional frequency axes. The generalized set of multidimensional techniques
are therefore given the name coherent multidimensional spectroscopy (CMDS).



4 I N T R O D U C T I O N

CMDS has been conducted across a wide range of excitation wavelengths to study
coherent phenomena in different types of transitions: nuclear spin transitions at ra-
dio wavelengths [13–15], vibrational transitions at infrared wavelengths [16] and
(most recently) electronic transitions at near-infrared and visible wavelengths [17,
18]. Multidimensional techniques were first developed at radio frequencies to study
nuclear spin interactions, where they have proven to be incredibly powerful. Mul-
tidimensional NMR has resulted in two Nobel prizes [14, 15], and plays an inte-
gral role in determining the structure of complex molecules (including proteins).
The success of multidimensional NMR comes from the many variations of CMDS
that have been developed since its inception 60 years ago. CMDS at optical wave-
lengths introduces new experimental challenges, and was only first realized in the
late 1990’s and 2000’s [19, 20]. As a result, many of these CMDS techniques and
variations have not yet been developed at visible/near-infrared wavelengths.

Still, CMDS of electronic transitions1 satisfies some pre-requisites for studying
coherent superpositions of spatially separated systems: it is a coherent technique
which can be conducted with fs resolution, and many signals can be separated.
There are, however, still some challenges. For example, some of the different sig-
nals excited in the experiment can still overlap the coherent superpositions signal
and therefore introduce ambiguity into interpretation of the experimental results.
Even if they don’t directly overlap the coherent superposition signal, other signals
can result in congested spectra and hence obscure the coherent superposition sig-
nals. To overcome these challenges, we can emulate some of the techniques which
have been developed in multidimensional NMR. Of the varied tools in the NMR
arsenal, one of the most useful is the ability to use pulse sequences which isolate
signals due to interaction between different states (i.e. those signals that produce
CPs) from those that are due to a single state (i.e. those that produce DPs). This can
be thought of as a ‘selective’ experiment in that we are selectively exciting partic-
ular signals. While there are several ways to achieve this selection experimentally,
one of the most common is through controlling which transitions are excited by
each subsequent pulse. While some information is lost (we are not collecting all the
signals), the information that we do collect can be more informative. The philoso-
phy behind selective and non-selective experiments can thus be summarized in the
following way. We can either set out to:

• Perform a simple experiment which results in a wide variety of data, but which
may not be easily interpreted (the non-selective approach).

• Perform a somewhat more complicated experiment which results in less data,
but which is more easily interpreted (the selective approach).

Both approaches can be useful depending on what is known about the sample a
priori and what information we want to obtain with the experiment. The flexibility

1 Which we will refer to simply as CMDS from here on out.
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of modern NMR spectrometers allows both selective and non-selective experiments
to be conducted on the same sample consecutively. An advantageous approach is,
therefore, to start with a simple non-selective experiment to get a ‘birds-eye-view’
of the sample, followed by sets of increasingly specific, selective experiments [21].

The study of spatially separated coherent superpositions of excitons2 can also
benefit from the selective approach. By using a slightly more complicated experi-
ment, we can probe only the coherent superpositions of spatially separated states,
and thereby simplify the data analysis and unambiguously identify the source of
the signals. Furthermore, the experimental apparatus that we have implemented
is also capable of some of the same flexibility of the NMR spectrometers described
above, in that we can perform the non-selective experiment and selective experi-
ments using the same apparatus with no changes to the optical setup. The details
of the series of selective and non-selective experiments can then be tailored to the
needs of the sample and the information of interest, mirroring the flexibility of an
NMR spectrometer.

The work in this thesis describes the development, demonstration and utilization
of such techniques to selectively study interactions between distinct states. The
results in this thesis can thus be divided into two general categories:

1. Development and demonstration of selective techniques.

2. Utilization of those techniques to open up new avenues of investigation into
the coherent response of excitons in DQWs.

The first part of this thesis we will show how such an experiment is implemented
using a pulse-shaper based CMDS experiment. Spectral amplitude shaping of the
pulses allows us to generate pulse sequences which can be used to isolate single
quantum pathways. Although this can in principle be used to isolate a wide variety
of signals, we use it in this thesis to study excited state coherent superpositions of
spatially separated excitons. The development of this novel technique is included
predominately in Ch. 2, Ch. 4 and Ch. 5. In Ch. 2, the experimental implementation
of pathway selection is described. In Ch. 4 pathway selection in the 1-quantum
and 0-quantum multidimensional spectra3 is demonstrated, and isolated coherent
superposition signals are observed. In Ch. 5, pathway selection in the 2-quantum 2D
spectra4 is demonstrated and then used to isolate signals from spatially separated
mixed two-exciton states.

To demonstrate how useful the selective technique can be, we study coherent
superpositions in DQWs. As was noted previously, DQWs are a very convenient
template system for exploring coherent effects because they can be very precisely
grown using modern growth techniques. Excitons in QWs have spectrally narrow

2 An exciton is a quasi-particle made up of an electron and a hole.
3 1-quantum, 0-quantum and 2-quantum are three common types of CMDS spectroscopy techniques currently

used to study electronic transitions, which will be described in detail in Ch. 2.
4 See 3.
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resonances which can be easily separated and identified. Though the results cannot
be directly extrapolated to biological light harvesting complexes, our results suggest
that this selective technique could be useful there as well.

The initial goal of this project was the establishment of the experimental appa-
ratus and demonstration of the selective technique. Using this suite of techniques,
we have also been able to observe some very interesting phenomena and explore
new areas of the coherent physics of excitons in semiconductor QWs along the way.
In Ch. 4, we show that inter-well coherent superpositions can be observed using
pathway selection in two separate DQW samples. We observe inter-well coherent
superpositions even when the barrier is wide enough that the QWs can be con-
sidered as non-overlapping quantum systems. We also show that the shape of the
inter-well coherent superposition CPs provides a great deal of information about
the nature of the broadening of the coupled transitions, and that the peak-shape
of inter-well CPs is very different from shape of the intra-well CPs. In Ch. 6 we
to investigate spatially indirect ‘dark’ states which are strongly coupled to ‘bright’
QW states by exploiting the power of CMDS to detect coherent superpositions. In
Ch. 7 we exploit the intrinsic stability and sensitivity of the CMDS apparatus to
investigate how coherent dynamics change in the extremely low excitation density
regime which has remained mostly unexplored. Our observations at low density are
strikingly different from those at high density.

Collectively, these studies explore coherent interactions between quantum sys-
tems that are separated to different extents: In Ch. 4 and Ch. 7 we explore inter-
well coherent superpositions. In Ch. 5 signals are isolated that involve a state made
of one exciton in the QW and one in the barrier. In Ch. 6 we explore coherent su-
perpositions involving carriers in different layers of the DQW. Finally, in Ch. 7 we
study coherent interactions of excitons separated by large distances in the plane
of a single QW. So, we have been able to learn about coherent superpositions in
several different contexts, each of which reveal different physics and contribute
to the overall understanding of coherent interactions between spatially separated
particles. Furthermore, the continued development and use of the techniques devel-
oped here should allow us to better understand how the fundamentally quantum
mechanical phenomenon of coherent superposition of spatially separated states con-
tributes to macroscopic effects in a range of systems from semiconductor DQWs to
photosynthetic light harvesting complexes.



2
E X P E R I M E N TA L M E T H O D S

A quantum mechanical coherent superposition is a coherent phenomenon, which
must be separated from incoherent signals to be clearly observed. To explain what
is meant by the distinction between coherent and incoherent phenomena, consider
Fig. 2.1, which depicts a sample excited by a coherent light source (e.g. a laser).
The light is absorbed by the sample and then re-emitted as an optical signal after
undergoing some sort of evolution in the sample. If the evolution within the sample
is entirely coherent, then the re-emitted radiation will have a well-defined phase
(φ) relative to the electric field that initiated the evolution in the sample. This
means that φ should always be the same. If, on the other hand, the there is some
random phase jump due to interactions in the sample, then the emitted radiation
will no longer have a well-defined phase relative to the input waveform and is
considered to be incoherent. Coherent processes are therefore processes for which
φ is constant, while incoherent processes are those for which φ varies randomly.

Incoherent and coherent processes could therefore be separated by simply com-
paring the time evolution of the emitted electric field with the time evolution of
the electric field of the light source to identify any well-defined phase difference.
Unfortunately, this is impossible in the visible/near-infrared (NIR) region of the
electromagnetic spectrum because no instrument exists that is fast enough to di-
rectly measure the oscillations of the electric field in real time. We can, however,
use interferometric techniques to measure the emitted electric field in the frequency

Figure 2.1: Coherent phenomena produce an output that has a constant phase relative to the co-
herent excitation. Incoherent phenomena involve some random phase jumps which ran-
domly change the relative phase.

7
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domain1, from which the time evolution of the electric field can be extracted using
a Fourier transform. This type of signal detection, (also called heterodyne detec-
tion) involve recording a spectral interferogram between the emitted electric field
and a reference electric field which is phase-locked2 to the excitation electric field.
Interferometric detection intrinsically isolates the emission from coherent processes
because emission from incoherent processes average out over the course of a mea-
surement. However, interferometric detection alone is not particularly useful for
measuring dynamics or for separating out the many coherent signals that can be
produced.

Heterodyne detection of visible/NIR in ultrafast experiments is a relatively recent
development [22–24]. Long before it was devised, other methods of measuring co-
herent phenomena were developed, which do not require the use of interferomet-
ric detection. These techniques use transient non-linear spectroscopy with multiple
pulses, which can be designed so that emission of a signal is only possible when the
interactions in the sample are coherent. The delays between some of the pulses can
then be scanned to change the amount of time the coherent excitation evolves in the
sample before subsequent pulses arrive to provide the additional photons required
to produce the nonlinear signal. As a result, slow detectors can be used along with
relatively simple tools to control the inter-pulse delays (such as translation stages)
to measure coherent dynamics [25]. The key to the success of these measurements
is that they can observe coherent dynamics without directly measuring the electric
field.

To resolve the coherent dynamics, the laser pulses used in the experiment must
be much shorter in time than the dynamics of interest. In many condensed mat-
ter systems this means they must be on the picosecond (ps) or femtosecond (fs)
time scale. The development of the mode-locked dye laser in the 1970’s [26] pro-
duced pulses well down into the ps regime. The arrival of Kerr-lens mode-locked
titanium-sapphire lasers in the early 1990’s pushed the pulses down in the 10’s
of fs [27]. More recently titanium-sapphire oscillators have been optimized to pro-
duces pulses as short as just a few fs [28], and with additional spectral broadening
and pulse compression (and considerable effort), sub-1 fs pulses have been demon-
strated in the visible [29]. These ultrafast laser technologies, (particularly develop-
ment the titanium-sapphire laser) have enabled the development of many different
non-linear techniques for measuring coherent (as well as incoherent) dynamics.

A good example of such a technique is transient four-wave mixing (FWM) spec-
troscopy, which uses two or three pulses to generate a third order non-linear signal.
Coherent dynamics can then be measured by scanning the delay between arrival
time of the first and second pulse to measure coherent dynamics. This technique
has proven to be very useful for studying coherent effects in QWs [30–33] and
many other systems [34–38]. Several variants of FWM also have also emerged to

1 There are also interferometric techniques that operate in the time domain.
2 which is to say, the two electric fields have a constant relative phase.
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study different transient phenomena (both coherent and incoherent). Some of these
techniques are transient grating spectroscopy [39], femtosecond stimulated Raman
spectroscopy [40], femtosecond coherent anti-Stokes Raman spectroscopy [41],
and pump-probe spectroscopy [42].

Coherent multidimensional spectroscopy (CMDS), combines non-linear multi-pulse
spectroscopy with interferometric detection to correlate the evolution of the emit-
ted signal as a function of both the ‘real’ time (i.e. the time evolution of the electric
field of the emitted signal) with the evolution during one or more inter-pulse de-
lays. This is a powerful extension of non-interferometric non-linear spectroscopy
techniques, in that it allows us to more clearly separate the many coherent signals
that can be produced. In particular, it allows us to clearly identify coherent interac-
tions between different states.

To experimentally realize CMDS, the relative phase of the excitation pulses must
remain constant to a precision well below the period of an optical cycle. To under-
stand why, we must consider that the phase of the emitted signal in a multi-pulse
nonlinear experiment depends on the phase of all of the input fields. As a result,
if the phase any of the excitation fields shifts randomly relative to all the other
excitation fields, then so too will the phase of the emitted signal. This randomly
fluctuating signal phase causes the phase of the interference pattern to randomly
fluctuate over the course of the measurement. The interferogram will average out
and no interference between the signal and the reference will be observed. This
stability requirement is the main experimental challenge in CMDS, which we will
discuss in more detail in Section 2.2.

The rest of this chapter aims to give a brief overview of FWM and CMDS, and
then describe the techniques and apparatus established at Swinburne as a part of
this PhD project.

2.1 Four-wave mixing

While in principle, CMDS can be applied to many different non-linear spectroscopic
techniques, most common implementation so far have been based on FWM. The
goal of this section, therefore, is to describe the fundamental concepts of FWM
which are necessary for understanding the CMDS.

FWM is the name given to a range of non-linear processes that involve the inter-
action of three different light fields (in this case fs pulses3) with a material through
its third order susceptibility (χ(3)) to generate a signal (which is the fourth wave).
Assuming that each pulse interacts only once (which is not always the case) the
frequency of resulting FWM signal is a linear combination of the frequency of the
three different light fields (i.e. νFWM = ±ν1 ± ν2 ± ν3). If the three light fields

3 FWM can be conducted with either CW or pulsed excitation, but since the purpose of this thesis is understanding
ultrafast phenomena, the discussion will be limited to FWM with fs pulses. This form of FWM mixing is often
referred to as transient Four wave mixing (TFWM), but for simplicity the ‘T’ will be dropped for this thesis.
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all have the same frequency (ν = ν1 = ν2 = ν3), the signal will be generated at
the same frequency.4 FWM is a phase sensitive process, so macroscopic generation
of signal requires that phase-matching conditions be met (or equivalently, must
obey momentum conservation). For the FWM signal to conserve momentum, the
signal must be emitted with the wave vector: kFWM = ±k1 ± k2 ± k3. Thus, if a
non-collinear geometry is used, many of the possible FWM signals are emitted in
directions spatially separated from the excitation beams. In this way, the FWM sig-
nals can can be detected mostly free of background contributions (such as lower
order signals and scattered light from excitation beams), which will not have the
same well defined directionality [43].

Figure 2.2: Typical beam geometries used in FWM experiments. Colors are used to identify beams,
not to indicate spectral content. (a) two beam FWM in which one pulse supplies two
photons, and the other supplies one for each FWM photon generated. (b) Equilateral
triangle beam geometry for a three pulse FWM experiment. Each pulse supplies a single
photon for each signal photon generated. The three pulse FWM signal directions are
shown in grey. The two pulse signal directions are also shown in black (but not labeled).
(c) 2D and (d) 3D depictions of the box geometry that is used in most CMDS experiments
- only the FWM signal that makes up the final corner of the box is shown, since usually
this is the only one collected when box geometry is used.

This spatial discrimination is utilized in two-beam FWM (shown in Fig. 2.2a). In
this configuration, two beams with wave vectors k1 and k2 are incident upon the
sample. FWM is a χ(3) process, which requires three photons, so in this two beam
configuration, one beam supplies one photon and the other supplies two. FWM is
a χ(3) process which requires three photons. In this two beam configuration, one
beam supplies one photon and the other supplies two. In this case, the k2 pulse
supplies two photons, and a FWM signal with νFWM = 2ν2 − ν1 is generated in
the kFWM = 2k2 − k1 direction, which is well separated from each of the excitation

4 νFWM can also be generated at 3ν, but this is usually referred to as third harmonic generation rather than
FWM.



2.1 F O U R -WAV E M I X I N G 11

beams [43]. If this technique is extended to include three beams instead of two,
all of the possible FWM signals that involve all three pulses are separated from
the excitation beams. Typically, either a box or triangle geometry is used, which
generates a signal pattern like the one shown in Fig. 2.2b,c. Box beam geometry
is especially useful, as the FWM process simultaneously conserves energy as well
as momentum, which enhances the FWM efficiency compared with other geome-
tries [43]. The three pulse box geometry is typically used in CMDS experiments, so
the rest of this discussion will concern that particular implementation of FWM.

FWM is typically conducted resonantly, meaning that the pulse excitation spectra
overlap one or more transitions in the sample being studied. If multiple transi-
tions are excited, FWM signals can be spectrally resolved so that the dynamics of
different transitions can be separated. The temporal evolution of the FWM signal
(the ‘real-time’ dynamics) will depend on both the amount of broadening and the
nature of the broadening of the transition(s) which are resonant with the pulse
spectrum. The FWM signal can be time resolved to measure these real-time dynam-
ics or measured with a slow detector (often called time-integrated). Time-resolved
detection of FWM signals is accomplished by either cross-correlating the FWM sig-
nal with a reference pulse [44–46], or through spectral interferometry [22–24]. If
the temporal dynamics of the signal are not of interest, it can be measured using
a time-integrating detector such as a CCD or a photodiode. Regardless of the de-
tection method, a variety of dynamical information can be gleaned by scanning
the time delays between the excitation pulses while monitoring the intensity, spec-
tral content and/or (in the case of time-resolved FWM) temporal evolution of the
signal.

The light-matter interactions in a FWM experiment for a two-level system (2LS)
can be described as follows: The first pulse generates a coherent superposition of
the ground and excited state (also called a ‘coherence’ for simplicity). The phase
of this coherence oscillates as a function of time with a starting phase set by the
excitation pulse. After a time t1 (also called the ‘coherence time’) the second pulse
interacts with this coherence to generate a population, either in the ground state or
excited state. The third pulse returns the system to a coherence which then emits
in the signal direction.5

FWM experiments typically must excite on the order of 109 carriers per pulse
to generate a measurable signal [46], so FWM is fundamentally an ensemble mea-
surement. Because the pulses have a single well-defined phase, all of the coherences
generated by the first pulse have the same initial phase. This ensemble of in-phase
coherences oscillate together and form a macroscopic polarization. The FWM sig-
nal is proportional to the number of coherences within the ensemble, as well as the
phase-coherence across the ensemble. Thus, the phase initially set by the laser must
be maintained to generate a FWM signal. During the first time period, individual

5 In many FWM experiments, τ is used for the coherence time instead of t1, T is used for the waiting time instead
of t2. In this thesis t1 and t2 are used to be consistent with the labelling that is often used in CMDS.
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Figure 2.3: Two typical FWM orderings.(a) Rephasing show a reversal of the phase oscillations in t1
and t3, and generate a photon echo at t3 = t1. (b) Non-rephasing pulse ordering has no
phase reversal, so the signal is a free-induction decay instead of a photon echo.

scattering events occur which randomly change the phase of the coherences within
the ensemble. Aggregated across the ensemble, these random phase changes man-
ifest as a reduction in the phase-purity of the macroscopic polarization and subse-
quently the FWM signal amplitude. As t1 is increased, more scattering events occur,
thereby reducing the overall signal strength. Once t1 is large enough, the phase
of coherences within ensemble are evenly distributed across all 2π possible phase
values, and no signal will be generated. For a homogeneously broadened transition,
the decay of the FWM signal as a function of t1 can be used to measure the deco-
herence time of the transition. The relationship between the decoherence time (T2)
and the homogeneous linewidth (ΓH) is given by Eq. 2.1 [46]6.

T2 = 2 h/ΓH (2.1)

However, many real ensembles involve some amount of inhomogeneous broad-
ening which leads to more rapid dephasing of the macroscopic polarization as a
function of t1. This additional dephasing is due to the broad range of oscillation fre-
quencies which fall out of phase with a decay constant inversely proportional to the
inhomogeneous linewidth (ΓIH), thus leading to a reduction of the macroscopic po-
larization. Dephasing due to to inhomogeneity is completely distinct to the decoher-
ence discussed above, and occurs even in the absence of the interactions that lead
to the homogeneous linewidth. Unlike the pure decoherence, which involves ran-
dom changes to the phases in the ensemble, the dephasing due to inhomogeneity is
an ordered process. The individual phases of the emitters do not change randomly,
but the differences in frequency gradually push the different spectral components
out of phase as t1 increases. The phase of the original pulse is still embedded in
the individual coherences, even though no macroscopic polarization remains. This
ordered process can be reversed with what is called the photon echo effect [34, 47].

6 T2 depends on the excited state lifetime (T1) and the pure dephasing time (T∗2 ). This will be discussed in the
following chapter.
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The photon echo effect occurs only in the rephasing pulse ordering (Fig. 2.3a).
After the different inhomogeneous spectral components of the signal have fallen
out of phase, the second pulse arrives and puts all of the different components of
the inhomogeneous ensemble into populations, over which time there is no phase
evolution. The interaction with the third pulse (k3) has the opposite sign from the
first interaction (-k1)7, so the coherence that it induces has a phase evolution in t3
which is opposite (in sign) the phase evolution in t1. The dephasing due to inhomo-
geneity that ‘winds up’ during t1 therefore ‘un-winds’ during t3, and the phase of all
the inhomogeneous spectral components eventually come back into phase at t3=t1.
With all the inhomogeneous components back in phase, a macroscopic polarization
is again present, which then generates a FWM signal. A hallmark of the inhomoge-
neous broadening is therefore a FWM signal which does not appear immediately
after the third pulse, but instead centred at t3=t1. This delayed signal emission is
what leads to the name ‘photon echo’.

The decoherence due to scattering processes are not reversed, so when a photon
echo is present, the decay of the time integrated signal as a function of t1 is again a
measure of the decoherence time and therefore ΓH. The intensity of the photon echo
is proportional to e−4t1/T2 , so there is an additional factor of ‘2’ in the relationship
between the measured decoherence time (TIH2 ) and the homogeneous linewidth ΓH
when the transition is inhomogeneously broadened [46].

T IH2 = 4 h/ΓH (2.2)

Due to the factor of ‘2’ difference between Eq. 2.1 and Eq. 2.2, there is some uncer-
tainty in determining the homogeneous linewidth using FWM, when the nature of
the broadening is either unknown, or when ΓH is comparable to ΓIH [46].

In the non-rephasing pulse ordering (Fig. 2.3b), the first and third light-matter
interactions (interactions involving k2 and k3, respectively) have the same sign. For
that reason, no photon echo is present as the sign of the phase evolution in t3 is
in the same direction as in t1. The decay of the non-rephasing signal is therefore
related to ΓIH, instead of ΓH. The rephasing pulse ordering is most commonly used
in FWM experiments exploring coherent dynamics, because (unlike the non-non-
rephasing pulse ordering) it can be used to separate ΓH from ΓIH [46].

Scanning t2 for a fixed t1 can also provide insight into both the coherent and
population dynamics of the resonant transitions. The populations created by the

7 The negative sign placed in front of k1 does not indicate that the beam used in the experiment is travelling in
the -k1 direction, but is rather a means of identifying which pathways in contribute to the signal in the detected
direction. As Section 2.1.1 will show in detail, when we perturbatively solve the Shrodinger equation, we end
up with three nested commutators which when multiplied out result in an array of terms including all of the
linear combinations of the three pulses with positive or negative signs. Each of those terms has a wavevector
that is a linear combination of the wavevectors of the excitation pulses. The negative sign for k1 (positive signs
for k2 and k3) in Fig. 2.3 indicates that only terms with a negative k1 (positive k2 and k3) will contribute to
the signal when collecting only along the -k1+k2+k3 direction. This also means that the phase evolution set
in motion by the -k1 pulse will have the opposite sign to the phase evolution set in motion by k2 or k3, (i.e.
eik1x−iω1t becomes e−ik1x+iω1t).
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second pulse will decay as a function of t2 by radiative and non-radiative processes,
but are convolved with an additional signal decay due to carrier diffusion. The
populations in t2 are not actually evenly distributed through the focal spot of the
laser, but rather occur as a spatial 1D grating [43]. The spacing of this grating is
set by the wave-vectors of the first two pulses, and the signal is only generated if
the population grating is still in place when the third pulse arrives. The grating can
decay in two different ways: the populations can relax or the carriers that make up
the grating can diffuse.8 Therefore, the decay of the FWM signal as a function of t2
is a convolution of the grating decay and the population decay. These two effects
can be deconvolved through measurements taken using different grating spacings
(set by the angle of the beams used in the measurement) [48] or making separate
measurements of the lifetime.

If multiple, coherently coupled transitions are excited by the first two excitation
pulses, the second pulse can put the system into a coherent superposition of excited
states instead of a population [46]. Unlike the populations, which have a phase that
does not evolve in t2, the phase of the coherent superposition evolves with a period
(tCS) set by the energy difference of the two coupled transitions (∆E1−2):

TCS =
h

∆E1−2
(2.3)

The coherent superposition pathway can then interfere with one of the pathways
that involve a population during t2, and lead to oscillations of the intensity of the
FWM signal as a function of t2 with a period equal to TCS [49, 50]. These oscillations
form the basis for the identification of transitions that are coherently coupled using
0-quantum 2D spectroscopy and 3D spectroscopy, which are described in Sections
2.2.1.2 and 2.2.2 respectively.

2.1.1 Formal description of FWM and Feynman-Liouville diagrams

This section contains a formal treatment for FWM signals. Density matrix formal-
ism is typically used to describe FWM signals for semiconductor nanostructures, as
it can be used to describe mixed states [51]. The detected quantity in the FWM
experiment is the 3rd-order polarization (P(3)), which can be calculated using the
3rd-order density matrix (ρ(3)):

P(3)(t) = Tr[µρ(3)(t)] (2.4)

8 Incidentally, this population grating serves as a useful tool for conceptualizing the FWM process. The signal can
be thought of as the diffraction of the third pulse off of the population grating created by the first two pulses.
In this way, the FWM signal is imbued with the wave-vector dependences of the three excitation beams.



2.1 F O U R -WAV E M I X I N G 15

To calculate ρ(3) we must solve the Liouville-von Neumann equation for the sys-
tem Hamiltonian (H).

∂ρ

∂t
= −

i
 h
[H, ρ] (2.5)

To do so, we will follow the perturbative approach laid out by Peter Hamm [52],
which is the Hilbert space version of the derivation given by Shaul Mukamel in
Principles of Nonlinear Optical Spectroscopy [51, Ch. 5 p. 115] in Liouville space.

The pulses (even with the relatively large pulse energies produced by fs oscilla-
tors) can be treated perturbatively, as the amplitude of the pulse electric fields are
dwarfed by the internal electric fields in the semiconductor lattice [46, 51]. In the
perturbative regime we can split the system Hamiltonian (H) into two parts,

H(t) = H0(t) +H
′(t) (2.6)

where H is the total Hamiltonian of the system, H0 is the unperterbed Hamiltonian
and H ′ represents the light matter interactions, which can be defined classically as

H ′(τ) =

∫
E(r, τ)P(r) (2.7)

Where P(r) is the classical polarization density which can be related to the dipole
operator µ. After making the dipole approximation it can be written as

H ′(τ) = −E(r, τ) · µ (2.8)

In the interaction picture, the time dependence of H0 can be determined using
the time evolution operator:

U0(t, t0) = e−
i
 hH0·(t−t0) (2.9)

The perturbative interaction Hamiltonian can then be defined as:

H ′I(t) = U
∗
0(t, t0)H

′(t)U0(t, t0) (2.10)

The dipole operator in the interaction picture (µ̌(τ)) is defined as:

µ̌(τ) = U∗0(t, t0)µU0(t, t0) = e
i
 hH0τµe−

i
 hH0τ (2.11)

To describe the dynamics, we start with the Liouville-von Neumann equation of
motion for the perturbative Hamiltonian in the interaction picture:

∂ρI
∂t

= −
i
 h
[H ′I, ρI] (2.12)
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Which can be expanded by power into:

ρI(t) = ρI(t0)+

∞∑
n=1

(
−
i
 h

)n ∫ t
t0

dτn

∫τn
t0

dτn−1 · · ·
∫τ2
t0

dτ1

[H ′I(τn), [H
′
I(τn−1), · · · [H ′I(τn), ρ(t0)] · · · ]]

(2.13)

The interaction density matrix is related to the full density matrix by the time evo-
lution operator:

ρ(t) = U0(t, t0)ρI(t)U∗0(t, t0) (2.14)

so we can now write the power expanded density matrix by combining Eq. 2.13
and Eq. 2.14.

ρ(t) = ρ(0)(t)+

∞∑
n=1

(
−
i
 h

)n ∫ t
t0

dτn

∫τn
t0

dτn−1 · · ·
∫τ2
t0

dτ1

U0(t, t0) · [H ′I(τn), [H ′I(τn−1), · · · [H ′I(τ1), ρ(t0)] · · · ]] ·U∗0(t, t0)
(2.15)

We can now make the assumption that the system was in equilibrium before the
first pulse arrived so that we can replace t0 with −∞, and substitute Eq. 2.10 (def-
inition of perturbative Hamiltonian) and Eq. 2.11 (definition of interaction dipole
operator) into Eq. 2.15.

ρ(t) =ρ(0)(−∞)+∞∑
n=1

(
−
i
 h

)n ∫ t
−∞ dτn

∫τn
−∞ dτn−1 · · ·

∫τ2
−∞ dτ1E(τn)E(τn−1) · · ·E(τ1)·

U0(t, t0) · [µ̌(τn), [µ̌(τn−1), · · · [µ̌(τ1), ρ(−∞)] · · · ]] ·U∗0(t, t0)

(2.16)

Each term in the sum represents an order of the density matrix. For FWM experi-
ments presented in this thesis, we are only concerned with the third order, which
is the n=3 term of the sum in equation. The third order density matrix is therefore
given by:

ρ(3)(t) =

(
−
i
 h

)3 ∫ t
−∞ dτ3

∫τ3
−∞ dτ2

∫τ2
−∞ dτ1E(τ3)E(τ2)E(τ1) ·U0(t, t0)·

[µ̌(τ3), [µ̌(τ2), [µ̌(τ1), ρ(−∞)]]] ·U∗0(t, t0)
(2.17)
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Using ρ(3) we can then calculate the observable third order polarization (P(3)) by
substituting Eq. 2.17 into Eq. 2.4.

P(3)(t) =

(
−
i
 h

)3 ∫ t
−∞ dτ3

∫τ3
−∞ dτ2

∫τ2
−∞ dτ1E(τ3)E(τ2)E(τ1)·〈

ˇµ(t) · [µ̌(τ3), [µ̌(τ2), [µ̌(τ1), ρ(−∞)]]]
〉 (2.18)

It is more convenient to discuss the dynamics as a function of the delays between
pulses rather than according to the absolute arrival time of the pulses. We can recast
Eq. 2.18 using the two inter-pulse delays (t1 and t2) and the time after the third
pulse (t3), which are defined based on the arrival times of the three pulses (τ1, τ2,
τ3).

τ1 = 0, t1 = τ2 − τ1, t2 = τ3 − τ2, t3 = t− τ3 (2.19)

Using these new time variables, Eq. 2.18 becomes:

P(3)(t) =

(
−
i
 h

)3 ∫∞
0
dt3

∫∞
0
dt2

∫∞
0
dt1

E(t− t3)E(t− t3 − t2)E(t− t3 − t2 − t1) · θ(t1)θ(t2)θ(t3)·
〈µ̌(t3 + t2 + t1)) · [µ̌(t2 + t1), [µ̌(t1), [µ̌(0), ρ(−∞)]]]〉

(2.20)

Where θ(τ) is the heavyside step function, which ensures causality (i.e. that inter-
actions happen in the order the pulses arrive and that t1, t2, t3 > 0).

θ(τ) =

1 if τ > 0

0 if τ < 0
(2.21)

Eq. 2.20 can also be written as a convolution of the electric fields of the three pulses
with a 3rd-order response function (S(3)):

P(3)(r, t) =
∫∞
0
dt3

∫∞
0
dt2

∫∞
0
dt1S

(3)(t3, t2, t1)·

E(r, t− t3)E(r, t− t3 − t2)E(r, t− t3 − t2 − t1)
(2.22)

S(3)(t3, t2, t1) =
(
i
 h

)3
θ(t1)θ(t2)θ(t3)·

〈µ̌(t3 + t2 + t1) [µ̌(t2 + t1), [µ̌(t1), [µ̌(0), ρ(−∞)]]]〉
(2.23)

The operators in Eq. 2.23 all act from the left. That need not be the case, so there
is also an equivalent response function for operators acting from the right. This
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alternate response function is the complex conjugate of Eq. 2.23, but is otherwise
the same. The nested commutators when multiplied out give 23 = 8 terms. Each
of those terms represents a ‘pathway’ or specific sequence of interactions. Closer in-
spection shows that half of the terms are actually complex conjugates of the others,
so we have a total of 4 possible terms.

For our three beam box configuration there are three possible pulses (labelled
EA, EB, EC) which are incident on the sample at τA, τB, τC, respectively. The full
electric field perturbing the system can be defined according to Eq. 2.24.

E(r, τ) =EA(τ− τA)e+ik1r−iω(τ−τA)+ (2.24.1)

EA(τ− τA)e
−ik1r+iω(τ−τA)+ (2.24.2)

EB(τ− τB)e
+ik2r−iω(τ−τB)+ (2.24.3)

EB(τ− τB)e
−ik2r+iω(τ−τB)+ (2.24.4)

EC(τ− τC)e
+ik3r−iω(τ−τC)+ (2.24.5)

EC(τ− τC)e
−ik3r+iω(τ−τC) (2.24.6)

For now, we assume that all three pulses have an identical Gaussian time envelop
function with a width of T:

EA(τ) = EB(τ) = EC(τ) = E0e
−τ2

2T2 (2.25)

The six terms in Eq. 2.24 can in principle act in any order, and the pulses can each
act more than once (i.e. provide a photon for more than one of the interactions).
This leads to an additional 63 = 216 terms for each term/pathway in the response
function. Multiplying the number of terms in the response function with the terms
in the electric field, we get a total of 4× 63 = 864 terms.

Most of these terms, however, do not contribute to the signal in a box geometry
three-beam FWM experiment for two main reasons: the pulses typically appear in a
well-defined pulse ordering (i.e. the delays t1 and t2 are much larger than the pulse
width T), and with a well-defined wave vector.

The wave vector of the signal generated by each of the 216 electric field combina-
tions is defined by the wave-vector of the electric field terms which contributed. For
example, if the three electric field terms from Eq. 2.24 that contribute to the signal
are terms 2.24.3 (e+ik2r−iω(τ−τB)), 2.24.5 (e+ik3r−iω(τ−τC)) and 2.24.2(e−ik1r+iω(τ−τA)),
then the spatial component of the signal electric field will be given by:

e−iksr = e−ik1r · e+ik2r · e+ik3r (2.26)

The wave vector of the signal is therefore ks = −k1 + k2 + k3. If instead, terms
2.24.4 (e−ik2r+iω(τ−τB)), 2.24.5 (e+ik3r−iω(τ−τC)), and 2.24.1 (eik1r−iω(τ−τA)) con-
tribute to the signal, then the emission will be in the ks = k1 − k2 + k3 direction.
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Figure 2.4: A few examples of Feynman-Liouville diagrams. (a) shows a typical representation of
a F-L diagrams, with an equivalent energy level diagram shown in (b). (c)-(f) show a
set of different possible pathways for some selected phasematching directions and pulse
orderings. The syle of these diagrams will be continued through the rest of this thesis.
In many cases, the energy of the interacting photon will be indicated by the color of the
angled arrow in some cases, so the explicit frequency dependence is dropped. (a) and
(c) are equivalent pathways. In some cases where only one signal direction is discussed
and pulse ordering is known, the wave vectors will also be dropped. (g) Shows the
allowed interactions for a two-level system. (h) Shows examples of interactions which
are not allowed. They involve either de-exciting the ground state (top row) or exciting
the already excited state (bottom row) when there are no higher energy states.

We can therefore differentiate between these two sets of signals by detecting in
either the k1 − k2 + k3 or the −k1 + k2 + k3 direction (as long as k1 6= k2).

This ability to choose which pathways we detect based on the signal direction
illustrates the importance of the box beam geometry. If we used a collinear beam
geometry (k1 = k2 = k3) all of the electric field terms would be spatially overlapped.
By detecting in the −k1 + k2 + k3 direction in the box geometry shown in 2.2c,
we can isolate a small number of the electric field terms (specifically, terms that
involve exactly one contribution each from terms 2, 3 and 5 in Eq. 2.24). In the
box geometry, there is no other combination of wave-vectors that lead to a signal
wave-vector in the −k1 + k2 + k3 direction9. Thus, out of the 216 total electric field
terms, there are a total of only six that lead to signal in the −k1 + k2 + k3 direction.

So far we have ignored the time ordering of the pulses. We can further reduce
the six electric field combinations to just one if the delays between the pulses are
much larger than the pulse widths (i.e. we know which order the pulses are inter-
acting). The terms in the response function that can lead to signal also depend on
the ordering of the pulses.

9 There are terms from higher order odd Polarizations that could share this wave-vector (P(5), P(7) , P(9), etc.).
Due to the weak power scaling of the nonlinear response of most materials it is assumed that P(5) only con-
tributes at high powers and that any higher contribution is negligible.



20 E X P E R I M E N TA L M E T H O D S

To understand how pulse ordering and wave-vector dependence combine to limit
the pathways in an experiment, it is more convenient to use Feynman-Liouville
(F-L) diagrams than equations [51, 52]. Each F-L diagram is used to identify a
single pathway, which represents a single term in P(3) (Eq. 2.22). A few example
F-L diagrams are presented in Fig. 2.4a and Fig. 2.4c-f. The specific stylings of
these diagrams vary, but the key parts are the same. The diagram takes the form
of a ladder, with the vertical lines representing time (running from bottom to top)
and the timing of the light matter interactions indicated by the rungs. The spacing
between the rungs is the time delays between interactions, (t1,t2 and t3 from bottom
to top), and the bra and ket in the box indicate the quantum state of the system
during each time delay. If both bra and ket are in the same state, then the system
is in a population. If the bra and ket are in different states, then the system is in
a coherent superposition of states (often referred to simply as a coherence). The
system must start and end in either a ground state population or an excited state
population. In FWM experiments it is normally assumed that the system starts in a
ground state population, but may end in any population.

The arrows represent the interactions with the laser pulses. Arrows pointing to
the right represent a term of the form e+ikr−iωτ (i.e. terms 1, 3, and 5 in Eq. 2.24)
while arrows pointing to the left represent a term of the form e−ikr+iωτ (i.e. terms
2, 4, and 6 in Eq. 2.24). Arrows pointing inwards represent absorption of a photon
and an increasing excitation of the system, while arrows pointing away from the
ladder represent emission of photon and a de-excitation of the system10. For this
reason, the FWM signal is always represented by an arrow pointing outwards.

The F-L diagrams can be related back to terms in the response as follows. The
arrows on the left (right) side of the diagram represent dipole operators in the
response function that act from the left (right). The dipole operators act on the
equilibrium density matrix in order. The diagrams shown in Fig. 2.4c-f therefore
represent the following terms in the response function:

µ̌(t3 + t2 + t1)µ̌(t1)ρ(−∞)µ̌(0)µ̌(t2 + t1) (Fig. 2.4c-d)

µ̌(t3 + t2 + t1)µ̌(t2 + t1)ρ(−∞)µ̌(0)µ̌(t1) (Fig. 2.4e)

µ̌(t3 + t2 + t1)µ̌(0)ρ(−∞)µ̌(t1)µ̌(t2 + t1) (Fig. 2.4f)

The labels next to the arrows indicate the wave-vector of the electric field interact-
ing with the system. The wave-vector of the resulting signal can be found by adding
the wave-vectors of the first three electric field terms (as shown in Fig. 2.4c-f). The
energy of each electric field interaction is sometimes included in label next to each
of the arrows (as in Fig. 2.4a). In this thesis, the energy label is left off. Instead, the
energy of the photon that interacts with the system is represented by the color of

10 Note that interactions other than the signal field which point outwards (such as k3 in 2.4c) do not indicate
incoherent spontaneous emission, but rather the coherent stimulated emission, driven by one of the excitation
pulses.
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Figure 2.5: All the possible pathways for a two level system, detected in the −k1 + k2 + k3 direc-
tion for the six possible pulse orderings. (a) and (d) are the rephasing pulse ordering
which lead to a photon echo in inhomogeneously broadened systems. (b) and (e) are the
non-rephasing pulse orderings which produce a free-induction decay regardless of the
broadening in the system. In a strictly two-level system, there are no allowed pathways
in pulse orderings in which −k1 arrives last (shown in (c) and (f)). This pulse ordering
is often called the 2-quantum pulse ordering for reasons that will be made clear in Sec-
tion 2.2.1.3. When we consider coupling between the two-level systems further along,
we will see that there are in-fact allowed pathways in the 2-quantum pulse orderings. If
pulses in the k2 and k3 are identical, the pathways in (a), (b) and (c) provide the same
information as the pathways in (d), (e) and (f), respectively.

the arrow. For a two-level system, all of the interactions happen at the same photon
energy (the energy of the g↔ 1 transition), so all of the arrows have the same color.
When additional transitions are included, they are indicated by different colors.

The only allowed interactions for a two-level system involve the excitation of
the system from the ground state to the single excited-state or de-excitation of the
system from the single excited state to the ground state (as shown in Fig. 2.4g).
Any pathways that involve de-excitation of the ground state or increasing the ex-
citation of an already excited state are not allowed (as shown in Fig. 2.4h). We
note here, that the former (de-exciting the ground state) is never allowed, but the
latter (increasing the excitation of an already excited state) is possible if there are
additional higher-energy states. As we will see later in this chapter, there are often
higher energy states for excitons in QWs, so additional pathways and transitions
are allowed.

With these rules in mind, the full set of pathways for a two-level system is pre-
sented in Fig. 2.5 for all six possible pulse orderings. The pathways in Fig. 2.5a and
Fig. 2.5d are for the rephasing pulse orderings, in which the conjugate pulse arrives
first. The pathways in Fig. 2.5b,e show the non-rephasing pulse-orderings. The con-
jugate pulse arrives last in the pulse-orderings in Fig. 2.5c,f. In this pulse ordering,
there are no allowed pathways for a two-level system. If more states are considered,
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however, this need not necessarily be the case. We will see in the following sections
and the experimental results chapters that signals are in fact generated in the pulse
ordering. An explanation of where these signals come from is provided in Section
2.2.1.3. If the k2 and k3 pulses are identical, the pathways in Fig. 2.5a-c provide the
same information as the pathways in Fig. 2.5d-f, respectively, because they involve
the same term in the response function.

The density matrix (ρ), transition dipole moment (µ) and interaction Hamilto-
nian (H ′int) used in the previous equations each represent an n×n matrix, where n
is the number of states in the system. So far we have been considering a two level
system consisting of one ground state and 1 excited state. The number of terms
contributing to the signal increases significantly as more transitions are added to
the system. The matrix elements of µ are defined as µi,i = 0, and µi,j is the transi-
tion dipole moment from transition i to j (for i6=j). Assuming that all non-diagonal
matrix-elements are non-zero, the matrix multiplication in the commutators in Eq.
2.23 results in an additional n-1 terms for each commutator. This leads to a total
number of terms equal to (2(n− 1))3 in S(3). Ignoring phase-matching and pulse-
ordering, this leads to a total of (2(n− 1))3 · 63 pathways. For a two, three or four
level system this results in 8 (1728), 64 (13,824), and 216 (46,656) terms/path-
ways with (without) considering phase-matching. Many of these pathways can be
removed by restricting which matrix-elements are included for µ, but this obviously
still represents a difficult problem to solve completely when many states must be
considered. Due to this complexity, the resulting system of interdependent differen-
tial equations must be solved numerically in most cases.

Inclusion of multiple states increases the number of allowed diagrams signifi-
cantly (just as it introduced many new terms to S(3)). A few selected pathways from
a three-level system are shown in Fig. 2.6. The main difference is the introduction
of more pathways that involve multiple transitions and therefore imply interactions
between the associated excited states. These interactions can take the form of a
coherent superposition of excited states (Fig. 2.6a) or population relaxation dur-
ing during t2 (Fig. 2.6e), excited state absorption of the third pulse (Fig. 2.6d) or
ground state bleach through a shared ground state (Fig. 2.6c). The main shared
characteristic of these pathways (and difference from the types described in Fig.
2.5) is that they involve emission from a state other than the one in which the first
absorption took place. This is a key feature that is exploited by CMDS to separate
the pathways that involve multiple excited states from pathways that involve only
a single excited state. This feature of CMDS will be described in more detail in the
following section.

This Section has presented a basic formal description of FWM, with the inten-
tion of providing a basic understanding of the measurement technique. This ba-
sic description unfortunately misses a lot of important and interesting physics. For
example, it ignores the relaxation of the coherences and populations. Relaxation
terms can be included in the Hamiltonian as an additional perturbation [46, 51],
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Figure 2.6: Selected F-L diagrams for a two coupled 2LS’s. The color indicates the energy of the
interacting photon. The energy level diagram shown in (a) is equivalent to the the F-L
diagram in (b). (b-e) represent the coherent superposition, ground state bleach, excited
states absorption and population transfer pathways, respectively.

but complicate the resulting response function so they were left out here for the
sake of simplicity. Rigorous inclusion of such effects in the system Hamiltonian is
computationally intractable, but can be introduced phenomenologically after inte-
gration [53, 54]. Phenomenological inclusion of these excitation induced effects in
the Hamiltonian as population/excitation dependent relaxation terms might be a
good compromise, and is an avenue that could be pursued to explain some of the
results in this thesis.

2.2 Coherent Multi-dimensional Spectroscopy

In standard spectrally-resolved FWM, the signal is typically measured using a time-
integrating detector (such as a CCD), which measures the signal intensity, but not
the signal phase [46]. To perform CMDS, the full complex signal must be measured
(amplitude and phase) [17]. In order to measure the signal phase, the FWM signal
must be detected interferometrically. In such a scheme (often called heterodyne de-
tection), the signal co-propagates with a reference pulse (called the local oscillator
or LO) into a spectrometer. The signal then appears as a spectral interferogram on
top of the LO spectrum. From this interferogram, the signal phase can be backed
out, and the phase evolution tracked as a function of the inter-pulse delays. This
is the key difference between a standard FWM experiment and CMDS, and is also
the origin of the main experimental difficulties [17, 55]. In order to determine the
phase of the signal, the excitation pulses and the reference pulse must all be phase-
locked for the duration of the experiment to a degree of precision well below the
period of the optical cycle (a few fs at optical frequencies). By ‘phase-locked’, we
mean that the relative phases of k1, k2, k3 and the LO must remain constant. The ab-
solute phase of the pulses may drift from shot-to-shot, but they must all drift by the
same amount, so the relative phase of the four beams remains constant [17, 55].

For the pulses to remain phase locked all the way to the sample, any experimental
instabilities (such as vibrations or air currents) that do not affect all the pulses
equally must be avoided (passive phase stabilization) or compensated (active phase
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stabilization). Passive phase stabilization can be further split into two categories:
implementations in which all beams pass through the same optics and those in
which beams are routed so that all phase drifts are intrinsically compensated in the
final signal.

Several experimental implementations of both active and passive phase stabilized
CMDS have been demonstrated in the last decade [55]. In some implementations of
CMDS, the phase is actively stabilized using nested interferometers and additional
CW lasers [20, 56]. Another approach uses a geometry that intrinsically cancels any
phase drifts that appear by clever routing of the beams through multiple translation
stages [57, 58]. Most other approaches rely on passive phase stabilization, in which
all the beams pass through as many of the same optics as possible. The difficulty
in this case is then controlling the delays individually. In some experiments wedge
pairs are used to control the delays and the only optics the beams do not share
are the wedges themselves, and an ND filter in the LO beam [59, 60]. Typically, in
these prism pair based implementations, k1 and k2 take different paths to k3 and
the LO. The coherence time (the delay between k1 and k2) is controlled by a prism
pair, and the waiting time (the time between the arrival of k2 and k3) is controlled
with a delay stage. In this implementation, k1 and k2 are phase locked and k3 and
the LO phase locked, but k1/2 are not phase locked with k3/LO.

Utilizing a diffraction based pulse-shaper [61] to control the inter-pulse delays is
arguably the best passively phase stabilized implementation of CMDS, since there
are no non-shared optics aside from the ND filter in the LO beam. In this exper-
imental setup, four beams in a box geometry are all independently delayed by a
single diffraction based pulse-shaper with a 2D SLM [62, 63]. The experimental
section of this chapter will describe this implementation in more detail. All of the
beams are fully phase locked, so two-quantum spectroscopy can be performed. The
pulse-shaper can also be used for spectral shaping and pulse compression.

Another different way of using a pulse-shaper for CMDS is in the two beam pump-
probe geometry [64–67]. The pump is passed through a pulse-shaper, which is
used to split it into two separate collinear pulses using a sinusoidal phase pattern.
The probe acts as both the third excitation pulse and the LO, in what is called
self-heterodyne detection. The delay between first pulse and the second pulse is
scanned by changing the periodicity of the phase pattern. The delay between the
pump pulses and the probe pulse is controlled by a delay stage, so there is no
phase stability between the pump and the probe. This implementation is experi-
mentally simple compared with the diffraction based pulse shaping described in
the previous paragraph, but does not have the same flexibility. Another benefit of
the pump-probe geometry is that the recorded spectra are intrinsically phased, (i.e.
ΦG is always 0). The pump can also be split into more than two pulses to perform
higher order (χ(5) for example) measurements. χ(5) 3D spectroscopy in pump probe
geometry was also recently demonstrated [68].
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Figure 2.7: (a) A scan of the coherence time, which is Fourier transformed as (b) complex signal
and (c) absolute value of the signal.

The previously described CMDS experiments use phase matching to separate the
signal of interest from other signals. The phase matching requirements, however,
limit the spatial resolution that can be achieved because the FWM signal must be
well separated from the excitation beams. Furthermore, the signal from a nanos-
tructure that is much smaller than the wavelength of light being used will intrin-
sically have a very well defined position and consequently a very a poorly defined
wave vector (i.e. it acts more like a point source than a macroscopic polarization).
CMDS with better spatial resolution can be achieved if a co-linear pulse geometry
is used and some other signal from the sample is detected instead of the FWM
signal itself. The co-linear pulses can be focused to a much smaller spot, and a
well defined emission wave-vector is no longer required. Experiments have been
performed using photocurrent [69, 70], photoluminescence [71–73] and electron
photoemission [74] as detection. In these experiments, the desired FWM signal is
separated from the background using phase cycling along with AOMs and lock-in
amplifiers.

A completely different experimental approach to CMDS involves non-interferometric
measurement of the FWM signal, followed by the use of iterative phase retrieval al-
gorithms [75]. This approach has shown some success in the case of semiconductor
nanostructures with well defined electronic structure, but has been less effective in
more complex molecular systems [76, 77].

As in FWM, CMDS spectra are acquired by collecting the spectrally resolved sig-
nal as a function of the two time delays between the excitation pulses: E(t1, t2, E3).
A key difference between CMDS and FWM is that in CMDS the signal electric field is
detected (because of the interferometric detection) whereas in standard FWM the
signal intensity is detected (direct detection). In CMDS, the data recorded in the
t1 and/or t2 time domains is then Fourier transformed into the associated frequen-
cy/energy domains: E(E1, E2, E3). Because the signal phase has been collected, the
solution to the Fourier transform from E(t1, t2, E3) to E(E1, E2, E3) is unique, which
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leads to much more easily interpreted results as well as intuitive representation of
couplings between transitions through the appearance of cross-peaks. Figure 2.7
shows a Fourier transform of a FWM signal recorded as a function of t1 with and
without inclusion of the signal phase. A wealth of new information can be extracted
when the phase information is included. For example, the exact absorption energy
and the shapes of all of the peaks can now be determined. In both Figs. 2.7b and
2.7c, there is evidence of coupling of the peak at E3=1.471 eV to another peak as
there are of multiple peaks with the same emission energy. When the phase infor-
mation is not included, however, it is unclear whether that represents coupling to
a transition at higher energy or lower energy. When the phase information is in-
cluded, the 2D spectrum definitively shows that the state at 1.471 eV is coupled to
a state at higher energy (1.479 eV to be exact)11. We can also intuitively identify
the transition to which it is coupled by looking for peaks along the diagonal at the
same value of E1.

The phase of the recorded complex signal has an additional offset related to
the phase differences between the excitation beams and the LO, which is gener-
ally referred to as the ‘global phase offset’ (ΦG) [78]. The position of the features
in 2D spectra depend on the phase evolution, rather than the absolute phase, so
not knowing this offset makes little difference for absolute value spectra. However,
much information can be gleaned from analysing the ‘real’ and ‘imaginary’ parts
separately. For example, excited state absorption signals generate negative valued
peaks in ‘real’ spectra, and can therefore be separated from other processes which
generate positive valued peaks. Furthermore, in semiconductor nano-structures, the
‘real’ peak-shape can be an important indicator of the type of interactions present
in the system. For example, dispersive peaks have been shown to be an indicator of
the presence of many body effects such as EIS or EID [53, 54, 79–82].

The measured ‘real’ and ‘imaginary’ signals will be rotated relative to the real
and imaginary parts of χ(3) by ΦG. In box beam geometry FWM experiments at
t1 = t2 = t3 = 0 fs, ΦG is defined as:

ΦG = −Φk1 +Φk2 +Φk3 (2.27)

Where Φk1 , Φk2 and Φk3 are the phase differences between the LO and k1, k2
and k3, respectively. Therefore, if all of the beams are perfectly in phase,ΦG goes to
zero, which means that the real/imaginary parts of the measured signal correspond
to the real/imaginary parts of χ(3). ΦG can be corrected (a process called ‘phasing’)
by measuring the relative phase of all the beams before the experiment, and then
rotating the phase of the multidimensional spectra by the appropriate amount dur-

11 Negative E1 values are used by convention in some parts of the CMDS field. The reason for this convention
traces back to the fact that the sign of the phase evolution during t3 is opposite that of t1, which leads to a
negative frequency. While the some 2D spectra are presented with positive E1 values (which is arguably more
intuitive), many papers (particularly those involving semiconductor nanostructures) use negative E1 values.
For consistency with previous work in the field, the negative E1 convention is therefore used throughout this
thesis.
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ing data analysis. In pulse-shaper based experiments, additional phase offsets can
also be added to set ΦG at t1 = t2 = t3 = 0 fs to zero when the data is acquired.

Another way of phasing the multidimensional spectra is through comparison with
a pump-probe signal [20, 83]. In this technique, a pump-probe measurement is
recorded with tPP = t2 , where tPP is the delay between the pump and the probe
and t2 is the waiting time at which the the 2D spectrum was collected. If ΦG = 0,
the pump probe signal is equivalent to a projection of the real part of a the sum
of the rephasing and non-rephasing 2D spectra onto the E3 axis. This is due to
projection-slice theorem which states that if Ŝ is the projection of a 2D function
(S) onto one dimension (x) and St is a slice the 2D Fourier transform of S at kx=0
(where kx is the Fourier domain of x), then Ŝ is equivalent to the Fourier transform
of Ŝt (Ŝ = F[Ŝt]).

We can apply the projection-slice theorem to 2D spectra. St2(E1, E3) is the real
part of the a 2D spectrum (rephasing+non-rephasing) at a particular waiting time
t2. Ŝt2(E3) is the projection of St2(E1, E3) onto the E3 axis:

Ŝt2(E3) =

∫∞
−∞ dE1St2(E3,E1) (2.28)

S̃t2(t1,E3) is the inverse Fourier transform of St2(E1, E3) along E1. The projection-
slice theorem then tells us that S̃t2(0,E3) = Ŝt2(E3). A two pulse pump-probe mea-
surement is a χ(3) measurement in which the first pulse supplies both of the first
two photons and the signal emits in the probe direction. Pump-probe is therefore
a FWM experiment with t1=0. The pump-probe signal is also self-heterodyne de-
tected, with a global phase offset which is intrinsically 0 (ΦPPG = 0), and therefore
always measures the real part of χ(3). As a result, the pump-probe signal at t2=0 is
equivalent to S̃t2(0,E3) and therefore also equivalent to Ŝt2(E3) if ΦG=0. ΦG can
therefore be deduced by fitting the amount of phase rotation required such that the
projection of the 2D spectrum and the pump-probe coincide [20, 56, 59, 83, 84].
The real part of χ(3) can then be extracted by rotating the recorded spectra by the
ΦG extracted from the fits of the projection of the 2D spectrum to the recorded
pump-probe for each t2 in the experiment.

It was recently demonstrated that phasing can also be accomplished using tran-
sient grating (TG) measurements in samples with weak pump-probe signals [85].
Transient grating refers to three beam FWM experiments in which the first two
pulses are overlapped temporally and t2 is scanned. Similar to the pump-probe phas-
ing technique, the TG phasing technique involves recording the TG signal for differ-
ent t2 delays. The TG spectrum must be recorded in both the k4 = −k1 + k2 + k3
and k5 = k1 − k2 + k3 directions. The relative phase of k1 and k2 is then scanned,
until the phase difference between the interferograms measured in the k4 and k5
directions is maximized. At this point, the difference between the two is equivalent
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to the pump-probe signal for the same t2, and the ΦG can then be deduced and
corrected for in the same manner described in the previous paragraph.

Although there is a great deal of information in ‘real’ and ‘imaginary’ peak-shapes,
and hence phasing of the recorded data is useful, it is also not always straightfor-
ward to perform. For that reason, for the data presented in this thesis, we do not
phase any of the data. There is still a huge amount of information in the ampli-
tude data, as we will see in the following sections and in the experimental results
presented in the following chapters.

2.2.1 Two-dimensional spectroscopy

CMDS data is typically presented as 2-dimensional spectra. A wide variety of dif-
ferent information can be gleaned by scanning one delay and performing a Fourier
transform. The following sections will describe the three most common 2D spectra,
which are labelled here as 1-quantum (1Q), 0-quantum (0Q) and 2-quantum (2Q)
coherence spectra. The differences between these different types of spectra are in
the pulse ordering and the inter-pulse delay that is scanned while recording the sig-
nal electric field. Fig. 2.8, shows two of the commonly used pulse orderings (which
are also the two that will be used in this thesis): the rephasing pulse ordering and
the two quantum pulse ordering. The wavevector of each of the relevant beam is
shown above the pulses, and the time delay to be scanned for each type of spectrum
is indicated underneath. The frequency of the three pulses are (for now) assumed
so all be identical and resonant with the ground to singly excited state (g↔1) tran-
sition. The state of the system is indicated by the level diagrams at the bottom of
the figure, and the frequency of the phase oscillations is shown in the bottom row.
In all cases, the signal is detected in the same -k1+k2+k3 direction, which allows
separation of the various different types of pathways. It is worth noting that if you
detected in a different direction, the same set of pulses would produce a differ-
ent type of experiment. For example: the two quantum pulse ordering in 2.8b is a
rephasing pulse ordering when detected in the +k1-k2+k3 direction.

In the rephasing pulse ordering (shown in Fig. 2.8a), the conjugate pulse (the
one with the minus sign) arrives first and is followed by the other two pulses. Both
1Q and 0Q scans are performed using this pulse ordering by scanning the first time
delay (t1) or second time delay (t2) respectively. In this pulse ordering, the system
is in a coherent superposition of the ground state (g) and a singly-excited state (1)
which produces signal phase oscillations at roughly the laser frequency during t1.
In t2, the system is in either a population (in g or 1) or an excited state coherent
superposition (a superposition of 1 and 1’) which produce signal phase oscillations
that either don’t oscillate or oscillate at frequencies far below the laser frequency in
t2. The frequency of these phase oscillations relative to the laser frequency in these
respective time periods are the reason for the names 1Q and 0Q for 2D spectra that
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Figure 2.8: Phase evolution of the two CMDS pulse ordering used in this thesis: (a) rephasing, (b)
Two-quantum coherence. The time delays that are scanned for each type of spectrum
are labeled. For now, all pulses are assumed to have the same frequency. The state of
the system in each time period is indicated by the simple level diagram which includes a
ground state (g) a singly excited state (1) and a doubly excited state (2). The frequency
and sign of the phase oscillations in each time period are shown in the bottom row.

involve the t1 or t2, respectively. In the 2Q pulse ordering (shown in Fig 2.8b), the
second time delay (t2Q) is typically scanned. In this pulse ordering, the system is in a
coherent superposition of a doubly excited state and the ground state (often called
a two-quantum coherence), which produces signal phase oscillations at roughly
twice the laser frequency, which lead to the 2Q name.

While the following sections give a general description of 2D spectroscopy tech-
niques, more specific explanation involving excitons in QWs can be found in Sec-
tions 4.2 and 5.2.

2.2.1.1 1-Quantum

As shown in Fig. 2.8a, a 1-Quantum coherence (1Q) 2D spectra are the most com-
monly used 2D spectra, and are also the most intuitive. A 1Q spectrum can be
treated as a photon absorption/emission correlation map of the sample’s electronic
structure. The E3 (horizontal) axis is the energy of the emitted signal photon, and
the E1 (vertical) axis is the energy of the photon absorbed from the first pulse. In
this way, signals that are overlapped in 1D experiments such as photoluminescence
or absorption can be separated, coupling between transitions can be detected, and
homogeneous and inhomogeneous broadening can be separated.
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Figure 2.9: A cartoon diagram showing what types of information can be extracted from a 1Q-
Rephasing 2D spectrum. Adapted with permission from Cho et al. [17].

To acquire a 1Q spectrum, the delay between the first and second pulses (-k1 and
k2, respectively for rephasing12) is scanned, as in a coherence time scan in a FWM
experiment described in Section 2.1. A macroscopic polarization is created with a
phase set by the first pulse which evolves as a function of t1 according to the energy
of the excited transition. The phase of the emitted FWM signal (ΦS) depends on
the phase of the macroscopic polarization when the second pulse arrives, and as
a result ΦS will oscillate as t1 is scanned at a frequency set by the energy of the
transition excited by the first pulse. Put another way, this means that by measuring
the phase and amplitude of the FWM signal as a function of t1, and then Fourier
transforming along t1, the transition energy of the state excited by the first pulse
can be determined and correlated with the state from which the FWM signal was
emitted. The resulting 1Q 2D spectrum can therefore be thought of as a correlation
map between the photon that initiated the FWM process with the final emitted
signal photon.

A good illustration of the depth of information that can be gleaned from 1Q spec-
tra is presented in Fig. 2.9 (which is adapted from Cho et al [17]). The detected
peaks can be split into two main categories: diagonal-peaks (DPs) and cross-peaks
(CPs). DPs are peaks which involve absorption and emission from the same tran-
sition, and therefore appear along the diagonal line (i.e. the E1:E3 line indicated
in Fig. 2.9). CPs are peaks which involve absorption and emission from different
transitions, and therefore appear away from the diagonal line.

12 Like other FWM experiments, 1Q 2D spectroscopy can be conducted in either a rephasing or non-rephasing
pulse ordering, but only rephasing spectra are presented in this thesis.
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The shape of DPs also contains useful information. Inhomogeneously broadened
transitions appear as elongated peaks tilted along the diagonal. The width of the
peaks along the diagonal is the inhomogeneous linewidth, while the cross-diagonal
width of the peak is the homogeneous linewidth. This ability to separate homoge-
neous and inhomogeneous broadening is very powerful, and stems from the pho-
ton echo effect described in Section 2.1. Transitions which have no inhomogeneous
broadening have round peak-shapes with equal diagonal and cross-diagonal widths.

Interactions between transitions can be identified through the presence of CPs.
CPs can be generated by a variety of different pathways, including excited state
coherent superpositions (CS), population-transfer (PT), excited-state absorption
(ESA) or ground-state bleach (GSB), all of which can overlap in a 1Q 2D spectrum.

Additional coherent and incoherent dynamics can be interrogated by acquiring
2D spectra at various t2 times (also called ‘waiting times’). Some CP pathways can
be identified based on the evolution as a function of t2. For example, PT can be
identified by CPs that grow in as t2 increases. Coherent superpositions of excited
states can be identified by oscillations in the phase of the CP (though this is accom-
plished more effectively using 0-quantum 2D or 1-quantum 3D spectroscopy - both
of which involve a Fourier transform along t2 and will be discussed in more detail
in sections 2.2.1.2 and 2.2.2 respectively). Unlike PT and CS, ESA and GSB cannot
be identified based on measurements as a function of t2. ESA can, however, be iden-
tified based on the sign of the real part of the CP, which will be negative. ESA can
appear as a CP well separated from DPs, or (typically in molecular systems) as a
negative shoulder to a DP.

As with DPs, analysis of the CP peak-shape can lead to important insights. A
peak which is tilted along the diagonal is indicative of correlated inhomogeneous
broadening. The degree of correlation of the peak can be extracted from the cross-
diagonal width of the peak, while tilting of the peak away from the diagonal in-
dicates that the two transitions have different inhomogeneous linewidth. A CP be-
tween two inhomogeneously broadened transitions that is not tilted along the di-
agonal is indicative of uncorrelated inhomogeneous broadening. The presence or
lack of correlation in the inhomogeneous broadening can be an important tool for
identifying transitions and understanding their interactions. Analysis of CP shapes
will be used several times in this thesis.

In some cases, additional information can be extracted from the DP peak-shapes.
In semiconductor nanostructures, biexciton (BX) peaks can be identified as either
a slightly shifted copy of an exciton (X) DP13 or as a shoulder on the DP [80, 86].
The real peak-shape can also be very useful in this context as well, as BX has the
opposite sign of X (because it is an ESA peak). In molecular systems, excited state
absorption often can be identified as a negative peak on the above diagonal side of
the DP (as shown in Fig. 2.9).

13 This can also be thought of as a CP.
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Figure 2.10: (a) Two degenerate (top row) and non-degenerate (bottom row) 2LS’s. (b) The pairs
of 2LS’s in (a) can be re-written as a 4LS. In the absence of any kind of coupling, the
pathways shown in (c) will cancel with the pathways in (d) and the 4LS will effectively
reduce to a pair of 2LS’s. (e) Four 2LS’s made up of two pairs of degenerate 2LS’s. The
4 2LS’s can be rewritten as two 4LS’s (f), or a 16LS (g). In the CMDS experiments in
this thesis, we only consider correlations of up to two-particles so we ignore all states
above 22’. Furthermore, the states that share the same emission energy (e.g. 21, 21’,
2’1, and 2’1’) are indistinguishable in the experiment, so we treat them as a single state
and drop the ’ from the notation. The 16LS therefore reduces to the 6LS shown in (h).
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We will now briefly discuss the concept of the cancellation of signal pathways.
First consider the 2-level systems (2LS) in Fig. 2.10a. The top row represents two
systems with equal transition energies while the bottom row represents 2LS’s with
different transition energies. Focusing first on the top row, the two 2LS’s (whether
coupled or uncoupled) can be recast as a four level diamond system. If the 2LS’s are
coupled there is some difference between the 0↔1 transition and the 1↔11 transi-
tion. This difference could come, for example, in the form a shift of the transition
energy, or a difference in the 1 and 11 dephasing rates.

If the 2LS’s are uncoupled and the 0↔1 and 1↔11 transition energies and de-
phasing rates are identical, then the GSB and ESA pathways will exactly cancel.
If, on the other hand, there is some difference between 0↔1 and 1↔11, GSB and
ESA will not necessarily cancel. This same concept applies to 2LS’s with different
transition energies as well. As a result, if the 2LS’s are uncoupled, then the ESA and
GSB pathways will cancel and no CP will be generated. It should be noted that this
concept does not assume anything about the physical mechanism underlying the
difference between 0↔1 and 1↔11. It could be generated by some coupling of the
transitions which shifts the transition energies, or (as has been suggested in [54])
by EID or EIS which affects the 0↔1 and 1↔11 differently.

If we have two pairs of degenerate 2LS’s (as shown in Fig. 2.10e), each of the
pairs can separately be formed into a 4LS (as shown in Fig. 2.10f). These 4LS’s
can then be combined into a 16 level system (16LS) as shown in Fig. 2.10g. If we
consider only excitations of up to 2 particles, we are limited to an 11-level system.
If we further consider only levels which have unique energies, this reduces to the
6LS shown in Fig. 2.10. This 6LS is useful in describing the pathways in 1Q, 0Q and
2Q 2D spectroscopy, and forms the basis for concepts discussed in the following
paragraphs.

In Fig. 2.11 we show a tree diagram of all of the available pathways for two
pairs of 2LS’s with different transition energies recast as a 6-level triangle system.
The pathways are broken down based on which of the one-exciton states (1 or
2) is excited by each pulse. F-L diagrams for a given pathway can be constructed
by following the dashed lines from bottom to top. Time runs from bottom to top
and the delays between the pulses are indicated on the right. The ordering of the
transitions excited is given by the color of the top panel. This color also indicates
where each pathway can be found on the cartoon 1Q and 0Q and 3D spectra in Fig.
2.12, Fig. 2.14 and Fig. 2.17, respectively.
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Figure 2.11: A tree diagram of all of the pathways available for two 2LS’s recast as a single six-level system. F-L diagrams for each pathway can be constructed
by following the tree diagram from bottom to top, following the dashed arrows. Time flows from bottom to top, the arrival of each pulse and the
time delays between them are indicated on the right. Pathways are categorized as either population or coherence pathways. Population (Coherence)
pathways involve a population (an excited state coherent superposition) during t2. The color of the top panels indicate the order of the interaction
of the pulses with different transitions and the position they appear in the 1Q, 0Q and 3D spectra in Fig. 2.12, Fig. 2.14 and Fig. 2.17, respectively.
Pathways are grouped in pairs that cancel if the 2LS’s are not coupled. The GSB and ESA involving only 1 or only 2 (in the grey and tan boxes) will
cancel if the individual 2LS’s within the ensemble are uncoupled. The CP pathways (in the yellow, green, brown and blue boxes) will all cancel unless
1 and 2 are coupled.
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Figure 2.12: (a) A cartoon 1Q spectrum for two coupled 2LS’s. The different peaks in the cartoon 2D
spectrum are color coded according to the different types of pathways in Fig. 2.11. Teal
and brown refer to the coherent superposition cross-peak pathways, yellow and green
refer to the population cross-peak pathways, and brown and grey refer to the diagonal-
peak pathways. The CPs are made up of both population and coherence pathways. (b)
A 1Q spectrum of two coupled transitions in a double QW.

Considering all the available pathways in Fig. 2.11, we find several pairs of path-
ways with opposite signs that will cancel in the absence of coupling of the transi-
tions. These pairs are indicated by the dashed boxes. This shows that in the absence
of coupling, none of the CP pathways will generate signal. It also suggests that if
the transitions are coupled we should see some CPs for both ESA-GSB and the dif-
ference between the two CS pathways.

We can break the pathways in Fig. 2.11 down into two general categories: ‘pop-
ulation pathways’ and ‘coherence pathways’. Population (coherence) pathways are
the pathways that involve a ground state or excited state population (a coherent
superposition of excited states) during t2. The only pathways that involve a coher-
ent superposition of excited states are the four pathways in blue and brown. These
coherence pathways are also the only pathways that are excited when the 2121 or
1212 pulse sequences are used.

The cartoon 1Q spectrum in Fig. 2.12a shows where we expect to see the various
pathways from Fig. 2.11. The population CP pathways (yellow and green) overlap
the coherence CP pathways. This illustrates why detection of CPs in a 1Q spectrum
is not enough to definitively identify coupling in the form of coherent superposi-
tions of excited states. A 2D 1Q spectrum with experimental data for two coupled
transitions is shown in Fig. 2.12b.

As this cartoon shows, CMDS is capable of revealing many different peaks and is
a powerful tool for identifying coupling of transitions. It should also be clear now,
however, that there are issues and ambiguities in determining the pathway that
lead to the CPs or determining the underlying mechanism. The next sections will
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Figure 2.13: The phase evolution associated with (a) population pathways and (b) coherence path-
ways. The population pathways have no phase evolution in t2, while the coherence
pathways do. The coloured circles in (a) and (b) indicate which pathways appear in
Fig. 2.11 involve phase oscillations in t2, and where in the cartoon 1Q and 0Q spectra
they appear.

Figure 2.14: (a) A cartoon 0Q spectrum with peaks colored based on the pathways in Fig. 2.12a. (b)
Example 0Q 2D spectrum.

show that 0Q and 2Q 2D spectra can add complimentary information that can be
used to narrow down the coupling pathways while probing additional details.

2.2.1.2 0-Quantum Coherence

0-quantum coherence (0Q) spectra correlate the emission energy with the frequency
of phase oscillations during t2 (E2), and can be used to separate coherence and pop-
ulation signals. As shown Fig. 2.8a 0Q spectra use the rephasing pulse ordering.
However, t2 is scanned instead of t1, then data is Fourier transformed along t2. As
shown more clearly in Fig. 2.13a, population pathways do not exhibit phase os-
cillations as a function t2, and therefore generate signals at E2 = 0 eV. Coherence
pathways, on the other hand involve an excited state superposition during t2 and
therefore do exhibit oscillations as a function of t2. The period of the phase oscilla-
tions is set by the energy separation of the states in the superposition. This energy
separation must be smaller than the laser spectral width for the excited state super-
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positions in t2 to be excited. As a result, the E2 energy values are typically much
lower than the E3/E1 energy.

When the Fourier transform is applied to the data along t2, coherence signals
are shifted away from E2=0. Signals generated through the coherent superposition
pathway can therefore be clearly separated from population signals (which all ap-
pear at E2=0). This is a very important capability, as it is one of the only ways to
definitively identify coherent superpositions. A cartoon 0Q spectrum is shown in
Fig. 2.14d. The coherent superposition peaks can be seen in blue and brown, and
are separated from the population signals (tan, light green, grey and dark green).
An example of a 0Q spectrum with real data is shown in Fig. 2.14e. In the experi-
mental chapters, coherent superposition peaks in 0Q spectra will be referred to as
CPs (also coherent superposition CPs or CS-CPs), and E2=0 signals will be referred
to as diagonal-peaks (DPs).

Information can also be gleaned by studying the peak-shapes and widths of 0Q
DPs and CS-CPs. DPs typically have a round or oval peak-shape with one of the
axes aligned along the E2=0 line. The width along E3 is set by the full transition
linewidth (homogeneous and inhomogeneous contributions), and the width along
E2 is limited by both the population lifetime, and the lifetime of the population
grating (which depends on the carrier diffusion rate and the spacing of the popula-
tion grating). In our experiment, the t2 delay range is an additional limiting factor.
The lifetime of the population grating and population lifetime are long compared
with the delay range accessible in our experiment. The width of 0Q DPs along E2 is
thus largely a measurement of the pulse-shaper time window (as described in de-
tail in section 2.4.10), and therefore only provides a lower bound on the population
lifetime and the lifetime of the population grating.

Peak-shapes of the CS-CPs have been largely unexplored in the literature, but can
be very useful in understanding details of the broadening of the different transitions.
We will provide an analysis of some peak-shapes in section 4.3.4, and describe what
peak-shapes we expect for homogeneous broadening, and correlated/uncorrelated
inhomogeneous broadening.

2.2.1.3 2-Quantum Coherence

In 2-Quantum coherence (2Q) spectra, the pulse ordering is flipped so that the
conjugate pulse (k1 when detecting in the −k1 + k2 + k3 direction) arrives last, as
shown in Fig. 2.8b. To collect a 2Q 2D spectrum, the inter-pulse delay t2Q is scanned
(where t2Q is the delay between the second pulse (k3) and the third pulse (k1) ). A
Fourier transform is then applied as a function of t2Q.

In the 2Q pulse ordering, the first pulse generates a 1Q ground to excited state
coherence. The second pulse then transforms this 1Q coherence into a coherence
between the ground and doubly excited state, which is called a two-quantum (2Q)
coherence. The phase of the 2Q coherence oscillates as a function of t2Q with a
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Figure 2.15: (a) shows Feynman diagrams for the full set of pathways in the 2Q pulse ordering. They
are again grouped in pairs of overlapping signals with opposite signs, which are color
coded according to their positions on the cartoon 2Q spectrum shown in Fig. 2.16a.

Figure 2.16: (a) A cartoon 2Q spectrum shown in which the pathways are indicated by the color
of the peak indicates the pathways in Fig. 2.15. (a) Is an example 2Q spectrum with
experimental data for a sample made up of two coupled 2LS’s.

period (T2Q) set by the energy difference between the ground and doubly excited
states, which is equal the transition energy of the photons in the first two interac-
tions (Ek2 and Ek3):

T2Q =
 h

(Ek2 + Ek3)
(2.29)

In the simplest view of a 2LS, this pulse ordering should not generate any FWM
signal. If we view the macroscopic polarization excited by the laser as an ensemble
of isolated non-interacting 2LS’s, a 2Q coherence should not be allowed because
there is no transition at twice the single transition energy. We can recast these 2LS’s
as a four level diamond system (as in the top row of Fig. 2.10a), in which there is
a state (11) with an energy twice the transition of the individual 2LS. Like similar
pathways in the 1Q pulse ordering, all of the 2Q pathways which access the 11 state
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have an overlapping pathway with opposite sign. In the absence of interactions
between the individual 2LS’s, all of the pathways still perfectly cancel, thus leading
to no measured signal. This cancellation is illustrated in Fig. 2.15, which shows a
tree diagram of all the 2Q pathways for a 6LS. The pathways are separated into
pairs which overlap in the 2Q 2D spectrum with opposite sign (as we did for the 1Q
pathways in Fig. 2.11). All of the 2Q pathways (including pathways leading to DPs
and CPs) appear in pairs with opposite sign so if all the interactions between the
transitions are ignored, all of the pathway pairs should exactly cancel and result in
no 2Q signal.

However, 2Q signals have been observed in several different types of samples [81,
82, 86–88]. Previously, 2Q signals have also been detected using time-integrated
FWM without measuring phase information [31, 89–91]. In QWs, these signals
were found to be nearly as strong as signals in the rephasing pulse ordering [31, 91].
These signals have been explained phenomenologically by including many-body or
two-body effects [31, 54, 79, 81, 82, 89, 90].

Like 1Q spectra, peaks in 2Q spectra can be separated into DPs and CPs. In 2Q
spectra, peaks along the 2:1 line are referred to as DPs and peaks away from the 2:1
line are referred to as CPs. For DPs, the frequency of the phase oscillations of the 2Q
coherence are twice that of the emitted photon (i.e. E2Q ≈ 2 ·E3). This suggests and
that all the interactions involved the same transition. In general, pathways in which
the first two pulses interact with different transitions generate peaks away from the
2:1 line (i.e. CPs), and for which E2Q 6= 2 ·E3. The presence of CPs indicates that the
system was in a mixed 2Q coherence during t2Q. The mixed 2Q coherence for states
A and B oscillates with a frequency set by the sum of the two transition energies
(EA and EB).

ω2Q =
E2Q
 h

= Ek2 + Ek3 (2.30)

As a result, 2Q CPs do not occur at the same 2Q energy as either of the DPs for
state A or state B. Instead, a CP involving transition A and transitions B will occur
at E2Q halfway between 2EA and 2EB (the E2Q of the DP associated with states A
and B respectively)14.

A cartoon 2Q spectrum is shown in Fig. 2.16a. There are a total of four overlap-
ping pathways that lead to each of the CPs. Qualitative and quantitative differences
between these pathways have not been examined in detail. In Ch. 5 we will show
that it is possible to separate these pathways using a selective approach. The colors
of the peaks indicate where we expect to find the different pathways enumerated in
Fig. 2.15a. An example 2Q spectrum with experimental data from a coupled double
quantum well is shown in Fig. 2.16b. DPs and CPs can clearly be resolved. There

14 Assuming that the only states in the sample are A and B and two-exciton states involving A and/or B (which
is typically the case in QW systems). If there are other states at higher energy, then more pathways and CP
positions are possible.
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Figure 2.17: A cartoon of a 3D spectrum. Peaks are shaded according to the pathways in Fig. 2.12a.
CPs generated by coherence pathways can be separated from CPs generated by popula-
tion pathways along the E2 direction.

is also a clear tilt to the peak-shapes. The source of this tilt is different from the
source of tilt in 1Q DPs and CPs, and will be discussed in Section 7.3.1.

2.2.2 Three-dimensional spectroscopy

In 3D spectroscopy, two different time delays are scanned and signal is resolved
along three different frequency directions. 3D electronic spectroscopy based on the
χ(3) nonlinearity is usually applied in the rephasing pulse ordering [76, 77, 92–95],
but the 2Q pulse ordering has also been used [96].

A cartoon 3D spectrum for the rephasing pulse ordering is shown in Fig. 2.17.
The color of the peaks indicates the F-L diagrams from Fig. 2.12 which appear
at each peak position. Unlike the 1Q and 0Q 2D spectra, each of the peaks has
only a single color, so there are fewer overlapping pathways. All peaks that arise
from population pathways remain in the E2=0 plane, while all the CPs that arise
from coherence pathways are shifted away from E2=0, as in a 0Q 2D spectrum.
The population CPs can be separated from the population DPs in the E3 and/or E1
directions, as in a 1Q 2D spectrum.

Though they are much more time consuming to collect, we can access informa-
tion in 3D spectra that cannot be accessed through the different 2D spectra. Fur-
thermore, in some cases two frequency dimensions is not enough to fully separate
signals. For example, samples with closely spaced transitions or significant inhomo-
geneity can lead to overlapping CPs in 1Q and 0Q spectra. 3D spectroscopy can
help can help in separating these pathways, as they can be resolved along a third
frequency direction. A good example of this can be seen in the 3D spectrum in Fig.
6.12 in Chapter 6. The CS-CPs are overlapped in the projection of the 3D spectrum
onto E1 vs. E3 (which is equivalent to the 1Q spectrum at t2=0 fs), but can be clearly
separated in the 3D data.
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As the signal is separated over three frequency dimensions instead of two, coher-
ence peaks can also be more easily identified and separated from noise and artifacts.
The peak must satisfy the criteria that E2 = E3 - E1 to be a coherence CP15. In a
3D spectrum we have all three values, which provides an additional confirmation
of the peak designation. On the other hand 0Q spectra only give us E3 and E2, so
we have to assume E1. In some cases this is reasonable, but in spectra which are
noisy and/or congested or in which the coherence signal is very weak, having the
additional check is important.

3D spectra also allow us to generate a fourth type of 2D spectrum which is not
possible without collecting an entire 3D spectrum. These E1 vs E2 spectra can be
generated by taking slices from a 3D spectrum for a particular E3 (emission energy)
or t3 value16. This type of 2D spectrum is useful for both separating peaks and
confirming that the criteria for coherent superpositions are satisfied.

Finally, if the coherence peak can be isolated in 3D spectral space, we can apply
some of the peak-shape analysis tools CMDS provides. In particular, E3 vs E1 peak-
shape analysis is very useful, and cannot be used on coherent superposition CPs in
either 1Q or 0Q 2D spectra. E3 vs E2 and E1 vs E2 spectra also provide useful infor-
mation about the nature of the broadening. More details on this type of analysis is
provided in section 4.3.4.

2.3 Pathway selection

Generally, CMDS is performed with three identical broadband pulses with either
collinear or cocircular polarization. One of the major advantages of this approach is
that it simultaneously excites and probes all the available quantum pathways within
the pulse bandwidth17. This broad excitation provides a rich variety of information
simultaneously in a single scan, which can be very advantageous. This ceases to be
an advantage if the pathways of interest overlap or are obscured by other pathways
in the 2D or 3D spectra. A good example of this is in the CPs of a 1Q 2D spectrum,
where at least four separate quantum pathways can lead to overlapping signals as
demonstrated in Fig. 2.12. These overlapping signals can introduce ambiguity into
the interpretation of CPs when they arise in experimental data. Furthermore, if spe-
cific signals can be isolated without having to collect an entire 2D or 3D spectrum
then acquisition time can be reduced. This can prove useful when the goal is to
study the effect of some other variable on a particular pathway. In such a situation
the long acquisition times required for 3D spectroscopy might be prohibitive, while
the reduced acquisition time of a selective experiment would make the experiment
feasible.

15 Assuming once again that there are only one exciton transitions and two exciton transitions involving the one
exciton transitions (which is typically the case in QW systems). If there are other states at higher energy then
coherence CPs can appear away from E2 = E3 - E1.

16 Or by integrating across all E3/t3 values for the entire spectrum, which in many cases is not as useful.
17 Co-circular polarization suppresses some biexciton pathways which must be formed by opposite spin excitons.
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For these reasons, considerable effort has gone into the development of methods
of limiting the quantum pathways that are excited or enhancing certain pathways
while suppressing others. I will call this general set of approaches pathway-selection
as they involve selectively exciting the pathways of interest while suppressing oth-
ers. Pathway selection has been implemented in a number of ways: by spectrally
tuning the excitation spectra to different transitions, by controlling the polarization
of the beams to limit pathways, or through spectral phase shaping of the beams
to enhance pathways. All of these approaches have strengths and weaknesses, and
may suit different types of samples or experimental goals.

2.3.1 Pathway selection using spectrally tuned pulses

One way that pathway selection can be employed is by using excitation beams
which don’t all share the same excitation spectrum, and therefore aren’t all reso-
nant with the same transitions. Pulse sequences can then be generated that exclu-
sively excite specific signal pathways. For example, by using k1 and k2 beams which
are resonant with different transitions (e.g. X1, and X2 respectively), the coher-
ent interactions between X1, and X2 can be studied. This is conceptually similar to
heteronuclear NMR, in which different sequences of nuclear spins are selectively ex-
cited. The links between heteronuclear NMR and pathway selection with spectrally
tuned pulses are explored Section 5.1.

Two examples of such an approach to isolate quantum pathways can be seen
in Fig. 2.18, which shows how coherent-superposition and population CPs can be
isolated. A more in-depth analysis of the approach, and how it can be applied to
1Q and 0Q spectra to extract additional information is presented in Section 4.2.
Pathway selection using shaped pulses can also be used in 2Q spectra to isolate
mixed two-exciton states, as shown in Chapter 5.

Pathway selection has been implemented in FWM experiments by using two op-
tical parametric amplifiers (OPAs) tuned to different transitions [97, 98]. However,
the instabilities intrinsic to the non-linear processes used to generate the pulses in
the OPAs and the application of delays (using translation stages) lead to a lack of
phase stability, which prevents the acquisition of the phase information necessary
for 2D spectroscopy. This precludes the use of dual OPAs for pathway selective 2D
spectroscopy detected in the time domain. This approach has, however, still been
used to gain an in-depth understanding of coherent-coupling in light harvesting
complexes by allowing access to details that are hidden in 2D spectra with broad-
band excitation [97, 98]. The Wright group [99–101], has used dual OPAs in a
mixed time/frequency domain approach to build up 2D spectra. The spectra are
collected by using comparatively narrow (∼5-40 meV [99, 101]) spectra out of the
OPAs, and then scanning the spectral position of one or both of the OPA spectra.
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The lack of stability between the OPAs still prevents them from detecting the phase
of the signal, but they can still uncover coupling between transitions in this way.

Another way to generate excitation pulses which don’t share the same spectra is
to narrow an initially broad spectrum from an ultrafast laser pulse. By individually
narrowing the excitation beams, a sequence of pulses can be generated such that
the pulses are only resonant with different sample transitions. This approach has
the benefit that it can be integrated into passively phase stabilized experiments. One
way that the pulse spectra can be individually controlled in this fashion while still
maintaining phase stability is using a pulse-shaper capable of spectral amplitude
shaping. In Ch. 4 and published in Ref. [95] we demonstrate how this pulse-shaper
based method of pathway selection can be applied in 1Q 2D and 3D spectroscopy to
isolate coherent interactions between different transitions. The results in this paper
are also presented in Chapter in more depth. Senlik et al. [67] have also recently
reported a similar experiment using a pulse-shaper to tune the first two pulses to dif-
ferent transitions. Instead of scanning t1 and performing a Fourier transform along
that axis, they scan and Fourier transform t2. In the language that has been used
in this thesis, this could be called a pathway-selective 0Q spectrum. By acquiring
data with and without pathway selection, they showed that much of the same in-
formation could be extracted from both, but that the signal to noise and acquisition
time were both significantly improved when pathway selection was used. They go
on to point out that this reduced acquisition time allows them to probe a specific
signal pathway while varying some other parameter (e.g. temperature or excitation
density).

The coherent dynamics of some systems are also dependent on both the excita-
tion density used in the experiment and which transitions are excited by the laser
pulses. For example, the measured linewidths and transition energies of excitons in
QWs depends on the excitation density. In particular, linewidths of QW excitons are
increased significantly when free carriers are also excited in the QW. For this reason,
experiments are usually conducted so that they excite as few free-carriers as possi-
ble. In some cases this is not possible (for example if one of the excitonic resonances
of interest spectrally overlaps the free-carrier signal). When broadband excitation
is used in such experiments, all three of the pulses are necessarily resonant with
the free-carriers. By using pathway selection with spectral shaping, we reduce the
number of pulses that are resonant with the free-carriers, and thus reduce the over-
all number of free-carriers excited in the experiment. This can mitigate the effect
of the free-carriers on the dynamics of interest while still exciting the signal we are
after.
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(a) Population Transfer (b) Coherent Superposition

Figure 2.18: Spectral pathway selection sequences to isolate the (a) population transfer and (b)
coherent superposition pathways.

2.3.2 Pathway selection with temporal shaping

The basic idea of the temporal shaping approach to pathway selection is that the
electric field of the excitation pulses can be modified such that particular pathways
are either enhanced or suppressed. The new waveform can be a simple change
of the input pulse (for instance, splitting the single pulse into a pair of pulses) or
much more complex, arbitrary waveforms designed to fulfil some specific role at the
sample. To that end, pulse-shapers are used to shape the phase (and in some cases
the amplitude) and thereby modify the temporal evolution of the electric field of
the excitation pulse(s). The pulse-shaper can be used to split the single input pulse
into a train of pulses [102] or shape it into an arbitrary waveform [103].

In many ways, this approach is similar to the idea of coherent control, in which
specially shaped pulses are used to control dynamical processes through the in-
terference of quantum pathways in the sample [104, 105]. Typically, a fs pulse
is passed through a pulse-shaper and then is incident upon a sample while some
sort of output from the sample is monitored (e.g. photoluminescence or photocur-
rent). Pulse shaping is then used to optimize the electric field of the pulse for a
particular output - for example, amplifying the photoluminescence from one chro-
mophore while suppressing photoluminescence from another one. This optimiza-
tion can be conducted manually (e.g. systematically varying the relative phase or
delay of a double pulse) or through iterative/adaptive algorithms to find the ideal
pulse shape for a desired output. The original intention of coherent control was to
enhance or suppress chemical reactions through the control of wavepackets [105],
but it has been now been used to control a variety of processes, including excitons
in QWs [106–108] and QDs [109].
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Temporal shaping based pathway selection approaches (similar to coherent con-
trol) have recently been used in multidimensional spectroscopy experiments. Wen
and Nelson [110] recently demonstrated that temporally shaped pulses could be
used to enhance different pathways in 1Q and 2Q spectra of a multi-QW. They
used a double pulse in place of the third excitation pulse and found that by varying
the relative phase and delay they could amplify either the HH or the LH exciton
emission, and also in certain cases amplify CPs that were difficult to resolve using
standard techniques.

Prokhorenko et al [111, 112] used temporal shaping to study Rhodamine 101.
They used a pulse-shaper to generate a pulse with amplitude and phase profiles
optimized for energy transfer in a previous experiment [113]. This optimized pulse
shape was applied to the first and second excitation pulses. This did not result,
however, in the appearance of population transfer CPs, but rather the appearance of
fine structure (sharp peaks) along the absorption axis. They were unable to explain
this result explicitly, but pointed out that the state preparation had significant effect
on the resulting spectra.

The work by Wen and Prokhorenko show that there is some promise in using tem-
poral shaping as a method of pathway selection in multidimensional spectroscopy,
particularly as a means of the enhancing CPs from well defined excitonic resonances
in QWs. However, there is clearly a lot of work to be done in fully understanding
what effect this more complex state preparation has on the 2D spectra that result.

2.3.3 Pathway selection with polarization control

The polarization of the four optical fields can also be used as a form of pathway-
selection. For instance, in molecular systems, different pathways can be suppressed,
enhanced or removed entirely with different sequences of linearly polarized pulses [80,
86, 97, 98, 114]. These approaches were developed in 2D-IR experiments studying
vibrational modes [16, 115–117], but have more recently been used in 2D studies
of electronic transitions as well [11, 80, 86, 114]. For example, Read et al [114],
performed 2D spectroscopy on the Fenna-Matthews-Olson light harvesting complex
in which the first two pulses were linearly polarized with angles of +π/3 and -π/3,
respectively. This sequence was shown to nearly eliminate DPs while simultane-
ously enhancing CP pathways, which enabled the observation of CPs which were
otherwise hidden by the overlapping, much stronger diagonal contributions. Linear
polarization sequences can also be used to measure structural characteristics, such
as relative dipole angles in isotropic molecular systems [118].

Polarization selectivity has also been combined with spectrally tuned pulses. This
has been done in FWM mixing experiments where the additional selectivity helped
to determine nature of coherences in a light harvesting complex (vibrational, elec-
tronic or vibronic) [97, 98]. This same polarization based pathway selection ap-
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proach was used by Westenhoff et al [11] to identify coherent electronic coupling
in the reaction center of Rhodobacter sphaeroides bacteria using 2D spectroscopy
with co-resonant excitation pulses.

Pathway selection with linear polarization works well on samples with well de-
fined linear dipole moments. In semiconductor nanostructures, excitonic resonances
are characterized by angular momentum rather than a linear transition dipole, so
circular polarization of the optical fields can provide additional details. Pulse se-
quences with different circular polarization directions have been used in investi-
gations of QWs to identify contributions from biexcitons [80] and mixed biexci-
tons [86]. Linear and circular polarization sequences have also led to the observa-
tion [81] and reduction [80] of many-body effects in QWs.

2.4 SLM based CMDS apparatus

This section describes the CMDS apparatus that was implemented as part of my PhD
research. This experimental setup was used to perform the studies on QW coherent
dynamics outlined in the following results chapters, and was modelled on the COL-
BERT experiment which was developed at MIT by Turner et al [62, 63, 119]. A block
diagram of the Swinburne CMDS experiment is shown in Fig. 2.19, and a detailed
experimental layout is shown in Appendix A2. The output from a Titanium-sapphire
oscillator (KMLabs Collegiate, 500 mW, 5 nJ, 92 MHz) is split into four beams by a
Fourier beam-shaper. These four beams are then imaged using a 4-F imaging sys-
tem to an ultrafast pulse-shaper. The diffraction based pulse-shaper is used to alter
the temporal and spectral characteristics of the beams, which are then focussed
and overlapped at sample (again using 4-F imaging geometry). The generated sig-
nal then co-propagates along with the local oscillator into a spectrometer (IsoPlane
320, 1200 g/mm, 785 blaze, 0.15 nm resolution) where it is detected using spectral
interferometry.

The following sub-sections provide more details about the various components
and explain how they are used and optimized.

2.4.1 Oscillator

The pulsed laser source used in these experiments is a mode-locked Titanium-
sapphire (Ti:Sapp) oscillator. Ti:Sapp oscillators are an effective tool to study ul-
trafast dynamics in QWs due to their relative simplicity, stability and high rep rate
(compared with amplified systems). The oscillator used in this experiment is a KM-
Labs Collegiate that is supplied as a kit. It is assembled (using standard optical
mounts) directly on a breadboard bolted to the optical table, which makes it very
adaptable and easily maintained. The ‘Collegiate’ is capable of producing pulses
with bandwidths of ∼20 nm up to ∼95 nm, which (when transform limited and cen-
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Figure 2.19: A block diagram of the CMDS experiment, with a detail of the pulse-shaper. The pulse-
shaper is depicted in transmission geometry for simplicity, but is actually used in re-
flection geometry in the experiment. Similarly, the sample is also typically studied in
reflection geometry, though transission geomety is also possible. A detailed diagram of
the CMDS apparatus is provided in Appendix A2.

tred at 800 nm) supports pulses from ∼50 fs down to ∼10 fs. The center of the pulse
spectrum is tunable from 760 nm to 830 nm. For the experiments in this thesis, the
oscillator is set to ∼35 nm bandwidth (transform limited pulse duration of 30 fs) to
match the ideal pulse-shaper bandwidth (explained in more detail in section 2.4.3).

The Collegiate cavity is designed such that the Ti:Sapp crystal is between the
phase compensation prisms and the output coupler. In this design, the final pass
through the crystal is not phase compensated by the prisms, leading to imperfectly
compressed pulses due to self-phase modulation and quadratic phase accumulated
in the crystal. To compensate for this additional spectral phase, a prism compres-
sor is placed after the oscillator in a double pass configuration [120]. This prism
compressor is also used to pre-compensate for the spectral phase accumulated by
passing through the rest of the optics in the experiment, which delivers optimally
compressed pulses at the sample position. Fine tuning of the compression of the
individual excitation beams is accomplished using the pulse-shaper, and described
in Section 2.4.5.
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2.4.2 Beam Shaping

A Fourier beam shaper based on a spatial light modulator is used to split the os-
cillator output into four beams in the box geometry. This is accomplished in the
following way: an f=200 cm lens focuses the beam to a ∼800 um spot on the SLM
surface. A 2D phase pattern is applied to the SLM which splits the incoming beam
into four beams in a rotated box geometry. These beams are then collimated using
an f=75 cm lens.

(a) (b)

Figure 2.20: (a) diagram of the Fourier beam shaper. (b) A typical spatial phase pattern for a four
beam output.

The phase pattern is generated in the following way. First, a 2D map (I(x,y)) is
generated with the desired beam geometry. A 2D Fourier transform is then applied
to convert 2D real space map into an inverse space representation of the beam
geometry: Î(kx,ky). The angle (phase) of Î(kx,ky) is then scaled to match the SLM
pixel size, and sent to the SLM.

The phase pattern on the SLM modifies the incident beam in the following way.
The incoming beam has an ideally flat phase-front when it reaches the lens in front
of the beam shaping SLM. This lens performs a Fourier transform of the real-space
laser profile, imaging the inverse space beam exactly to the surface of the SLM.
The phase pattern on the SLM then modifies the wavevectors of the incident beam
so that the reflected beam travels out with a modified angular dependence. The
second lens then performs another Fourier transform returning the beam to ‘real’
space. The wavevectors that were imprinted onto the incoming beam are thereby
returned to the ‘real’ space pattern of the desired beam geometry (I(x,y)). The
resulting beam pattern generally closely resembles the input beam parameters. The
number of beams, beam geometry, and relative power can all be precisely controlled
using the beam shaper in this way.
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The major benefit of using a beam shaper (instead of, for instance, a diffractive
optic element or a spatial filter) is the beam geometry can be easily tailored to the
needs of the experiment. In the CMDS experiments presented here, the box geome-
try is ideal, but for higher order experiments, other geometries are required. With
this beam shaper switching between them is straight forward and instantaneous.
Furthermore, the beam shaper can also be used to control the power and size of the
beam which can be useful in certain situations.

While SLM based Fourier beam shaping is quite flexible and powerful, it is not
without limitations. In addition to the desired beams, additional ‘ghost’ beams are
generated because of the pixelated nature of the SLM. These ‘ghost’ beams can be
thought of as higher diffraction orders (like the second order diffraction off of a
linear grating), or diffraction in the opposite direction (like the m=-1 diffraction
from a linear grating). Some of the power from the input beam also remains in the
zero-order undiffracted beam. Altogether, the diffraction efficiency into the four
beam box pattern is around 60% for this beam shaper.

2.4.3 Pulse-shaping

The beams generated by the beam shaper are imaged to a pulse-shaper based
around a second, identical 2D SLM. The pulse-shaper is a powerful tool to ma-
nipulate the temporal and spectral properties of ultrafast pulses. This section will
discuss the basic concepts of pulse-shaping and how it is used in this CMDS experi-
ment.

2.4.3.1 Pulse shaping principles

A pulse-shaper is a tool that can be used to adjust the temporal and spectral charac-
teristics of an ultrafast pulse. Devices which directly light as a function of time (be
they mechanically or electrically) are limited to time scales in the ps-ns region, and
are therefore useless in directly modifying the temporal characteristics of fs pulses.
They can be used to precisely modify the temporal characteristics of fs pulses by
exploiting the Fourier transform relationship between the pulse’s spectrum and its
temporal profile. By adjusting the spectral phase, the temporal shape of the pulse
can be changed: it can be stretched, compressed, split into multiple pulses and/or
shifted in time.

An ideal fs pulse can be thought of as a continuum of spectral components which
add together constructively at one point in time and destructively everywhere else.
The variation of the phase across the spectrum is called the spectral phase. The
shortest period of constructive interference will occur when the spectral phase is
constant (i.e. it doesn’t change across the spectrum). A pulse with constant spectral
phase is said to be bandwidth limited or transform limited. If the spectral phase is
altered, the period of time in which there is constructive interference of the spectral
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components changes shape and may be shifted in time. For example, by applying
a spectral phase that varies linearly with frequency, the pulse can be shifted in
time. This is equivalent to the well known Fourier-shift theorem [121]: a spectral
phase gradient in one domain leads to a shift in the Fourier domain, which can be
proven as follows. E(ν) is the pulse electric field in the frequency domain, Ê(t) is
the electric field in the time domain, and the two are related by a Fourier transform:
Ê(t) = F−1[E(ν)] and F[Ê(t)] = E(ν) . If we shift the electric field envelope by an
amount t0, then the Fourier transform of Ê(t) is:

F−1[Ê(t− t0)] =
1√
2π

∫∞
−∞ dt Ê(t− t0)eiνt (2.31)

If we let u = t− t0, then t = u+ t0 and du = dt. If we then substitute these into
Eq. 2.31, we get:

F−1[Ê(t− t0)] =
1√
2π

∫∞
−∞ du Ê(u)eiν(u+t0)

=
eiνt0√
2π

∫∞
−∞ du Ê(u)eiνu

= eiνt0F−1Ê(u)

= eiνt0E(ν)

(2.32)

Thus the amount of phase applied to the pulse for a given time delay is then given
by

Φ = νt0 (2.33)

Pulse-shapers can therefore be used to shift fs pulses in time simply by applying
a phase gradient that is linear with spectral frequency according to Eq. 2.34, where
t0 is the time delay applied, ∆φ is the change in phase for a given frequency step
∆ν.

t0 =
∆φ

∆ν
(2.34)

A non-linear spectral phase will lead to different parts of the pulse spectrum in-
terfering constructively at different points in time, and subsequently leads to an
elongation of the duration of the pulse. Such non-linear spectral phase arises nat-
urally in optical experiments as a result of dispersion in glass and dielectric/metal
mirrors. In dispersive materials, the index of refraction depends on the wavelength
of light. Thus, even though all the spectral components travel through the same
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(a) (b)

Figure 2.21: (a) Transmission geometry pulse-shaper. Reprinted with permission from Ref. [122].
(b) Reflection geometry four-beam pulse-shaper as used in the CMDS experiment.

physical thickness of material (L), the optical path length (LO) depends on wave-
length:

LO(λ) = n(λ)× L (2.35)

After passing though a dispersive optic, a phase delay set by the spectral depen-
dence of the index of refraction (the material dispersion) will be applied to the
pulse spectrum. If the material dispersion is non-linear, this phase delay will appear
in the form of a quadratic (or higher order) spectral phase. pulse-shapers can be
used to compensate for this accumulated higher order spectral phase and produce
fully compressed, transform limited pulses at the sample.

2.4.3.2 Experimental implementation

This section will describe how pulse-shapers are generally implemented experimen-
tally. A pulse-shaper typically consists of three main parts. First, a dispersive op-
tical element such as a prism or a grating which disperses the beam. Second, a
1-dimensional focusing element (such as a cylindrical lens (CL) or a cylindrical mir-
ror (CM)) that focuses the beams along spectrally dispersed axis. Finally there is an
optical element that can precisely adjust the phase of the beam (such as an SLM).

The CL/CM is placed exactly one focal length from both the grating/prism and
from the SLM. Each of the spectral components of the pulse is focused to a different
point along the width of the SLM. The phase of a particular spectral component can
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therefore be adjusted by changing the voltage applied to the SLM pixel it is incident
upon.

In transmission geometry pulse-shapers (Fig. 2.21a), which use transmissive SLMs
to shift the spectral phase, an identical set of optics (CL/CM and grating/prism) is
needed re-compress and re-collimate the beam after passing through the SLM. Re-
flection geometry pulse-shapers (Fig. 2.21b) use reflective SLMs or microelectrome-
chanical (MEMS) devices. In this geometry, the beam is reflected back though the
same optics which re-collimate the beam and re-compress the pulse. The SLM can
then be angled slightly up or down, so the shaped, reflected beam can be picked off
from the incoming beam.

2D reflective SLMs can be used to shape multiple beams simultaneously (as
shown in Fig. 2.21b). The pulse-shaper used in the apparatus described in this
thesis is configured for four or five beams. The rotated box geometry allows each of
the beams to be spectrally dispersed and focused across a different vertical region
of the SLM surface. This allows each of the beams to be shaped simultaneously by
applying separate spectral phase patterns to each region.

2.4.3.3 Diffraction based pulse shaping and spectral amplitude shaping

A 2D SLM also allows the implementation of diffraction based pulse shaping [61]:
instead of angling the SLM down to pick off the shaped beams, a vertical phase
grating pattern18 is applied as shown in Fig. 2.22a. This vertical pattern is com-
bined with horizontal phase masks which shape the spectral phase (Fig. 2.22c,d).
The un-diffracted light simply reflects straight back along the incoming path, but
the first order of diffraction can be picked-off. This has a number of important ad-
vantages. First, this reduces the prevalence of replica pulses (more on them later in
this section) [61]. Second, the beams can be ‘turned off’ at will at the pulse-shaper
which is useful in alignment and in experiments that involve only one or two beams.
Third, using the depth of the diffraction pattern, the spectral amplitude the pulses
can be modified.

A vertical sawtooth phase pattern with 2π depth maximizes the pulse energy
diffracted into the first spatial order, and is used when no spectral shaping is to be
employed. By reducing the depth of the phase grating, the amount of pulse energy
diffracted into the first order can be reduced, as shown in Fig. 2.22b. The depth of
the grating can be adjusted as a function of wavelength or frequency using spectral
amplitude masks such as the ones in Fig. 2.22e. The varying diffraction efficiency
across the spectrum generates diffracted beams with narrowed spectra, as shown
in Fig. 2.22f, for example.

This can then be used to ‘tune’ the excitation spectra. The frequency is not actually
shifted, but by reducing one side of the spectrum to zero, the central frequency
of the shaped spectrum is shifted and the spectral width is reduced. Importantly,

18 This grating can also be equivalently thought of as a vertical phase gradient which is phase wrapped.
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Figure 2.22: The vertical sawtooth pattern (a) used in diffraction based pulse-shaping. (b) Diffrac-
tion efficiency can be reduced by reducing the amplitude of the sawtooth. The spectral
spectral phase masks in (c) and (d) are used to compress and delay the pulse, re-
spectively. The spectral amplitude masks in (e) are used to modulate the depth of the
vertical phase grating as a function of wavelength. The spectral amplitude masks in
(e) are used to generate the pulse spectra shown in (f). The complete 2D phase mask
in (g) combines the spectral phase masks in (c) and (d) with the spectral amplitude
masks in (e). The diagram in (a) and the plot in (b) are reprinted with permission from
Ref. [61].

the spectral amplitude can be shaped smoothly so that sharp spectral edges can be
avoided. Sharp spectral edges lead to long temporal tails which reduce the temporal
resolution of the experiment. The spectral ‘tuning range’ is limited by the incident
laser bandwidth and/or the pulse-shaper bandwidth (i.e. the spectral width across
the SLM).

Reducing the spectral width will inherently also increase the duration of the pulse
due to the Fourier transform relationship between the pulse duration and the spec-
tral width. By applying a phase correction that leads to a flat spectral phase, the
unshaped pulse will be transform limited and have a flat phase. The spectral ampli-
tude and phase can be adjusted independently, so narrowing the spectral amplitude
will leave the spectral phase unaffected. The narrowed pulse will therefore retain a
flat phase. This is to say, that even though narrowing the spectrum will increase the
temporal pulse duration, it will still be compressed and can still be independently
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shifted in time through the application of a linear spectral phase gradient. This
independent control of the spectral phase and amplitude therefore results in the
ability to spectrally tune the beams while still achieving transform limited pulses
with controllable delays. Moreover, all of these aspects can be independently con-
trolled for each beam. All this shaping is accomplished by generating phase patterns
and sending them to the SLM, so aside from the liquid crystals in the SLM there are
no moving parts.

Importantly, the pulses in the different beams are therefore intrinsically phase
locked. This is true even when spectral amplitude shaping has been applied so
that the pulses have no spectral overlap, they initially came from the same ultrafast
pulse so they have a definite phase relationship which does not change shot-to-shot.
This represents an important advantage over other methods for generating pulses
resonant with different transitions (such as pairs of optical parametric amplifiers for
example), which are not intrinsically phase stabilized, and in many cases cannot be
actively stabilized either.

2.4.4 Delaying Pulses in a Rotating Frame

One additional benefit of using a pulse-shaper to apply the pulse delays is that
they can be delayed in a rotating frame, which can vastly reduce the sampling
requirements of the experiment.

In a typical 1Q spectrum in a non-rotating frame, the resulting complex signal is
given by:

ENon−Rotsig (t1) = Es(t1)[e
i2πνt1 +C.C.] (2.36)

The phase of ENon−Rotsig will oscillate with a period (T) given by T = 1/ν, where ν
is the optical frequency of the transition. For a transition at ∼1.5 eV this results in a
full phase rotation about every 4 fs. To avoid aliasing, the sampling as a function of
t1 must be less than this value, so step sizes of under 2 fs are typically required.

Using the pulse-shaper, we can reduce this requirement by applying the delays to
the pulses in a rotating frame, which can be understood as follows. As established
earlier, a delay relative to a particular point in time is equivalent to a linear phase
gradient. An increasing delay can therefore be thought of as a steepening of the
spectral phase gradient. As the gradient steepens, it must do so while keeping a
particular frequency constant. This non-changing frequency is called the carrier
frequency (νCF). When delays are applied using a translation stage or a prism pair,
νCF=0.

On the other hand, when we apply a phase gradient to the pulse spectrum via
an SLM, we have the freedom to choose any νCF. Typically νCF is picked so that it
is within the laser spectrum and near (but not overlapping) the frequency of the
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Figure 2.23: Number of phase rotations applied in non-rotating and rotating frame detection during
a coherence scan. Rotating frame vastly reduces sampling requirements.

transitions of interest in the sample (νsig). By using νCF ≈ νsig instead of νCF=0
we significantly reduce the amount of phase accumulated in the signal for a given
delay and hence significantly increase the period of phase oscillations of the FWM
signal as a function of t1. A graphical depiction of the amount of phase accumulated
in a scan in the rotating (νCF = 810 nm≈ 370 THz) and non-rotating (νCF = 0 THz)
frames is shown in Fig. 2.23. This illustrates the significant improvement garnered
by applying delays in a rotating frame. In a non-rotating frame experiment, a delay
of 500 fs accumulates a total phase of 1200 rad (∼190 optical cycles) at 390 THz,
whereas a delay of 500 fs in the rotating frame accumulates just 60 rad (∼10 optical
cycles).

The relaxed sampling requirements for delays applied in the rotating frame can
also be understood by looking at the expression for the complex signal in the rotat-
ing frame:

ERotsig (t1) = Es(t1)[e
i2π(νCF−ν)t1 +C.C.] (2.37)

When the pulses are delayed in the rotating frame, the signal phase evolution is
set by the difference between the detection frequency and the CF (ν− νCF). This
difference is typically less than 0.1 eV or 24 THz. Sampling rates of about 20 fs will
now suffice. These relaxed sampling requirements lead to an order of magnitude
reduction in experiment time, which is particularly important for semiconductor
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nanostructures, which typically have very long coherence times. This improvement
also makes systematic 3D-spectroscopic studies more feasible.

2D 1Q Spectra collected using the rotating frame are centred around the CF in
the E1 direction. Signals with E1 values below CF will appear as negative signals,
while those with signals above CF will appear as positive signals. The absolute E1
values can be calculated by simply adding on the CF to the E1 axis. The final E1 axis
is then given by

E1 = h (νrot + νCF) (2.38)

where νrot is the frequency of phase oscillations in the measured signal. Precise
measurement of the E1 position of peaks depends on both a precisely known CF
and good phase mapping of the SLM. Therefore, careful calibration of the pulse-
shaper is important for dependable E1 values.

2.4.5 Pulse Compression

As alluded to above, without any phase-compensation, pulses arrive at the sample
with some higher order spectral phase originating in the Ti:sapph crystal in the laser
and accumulated as the beams pass through the various optics used throughout the
experiment. The majority of the phase is quadratic (linear chirp), and is compen-
sated by optimizing the prism compressor (i.e. the distance between the prisms and
the amount the prism is inserted into the beam).

The four beams pass through different amounts of glass in the pulse-shaper, so
they cannot be all optimized simultaneously [63]. Also, the prism compressor can-
not be used to compensate for spectral phase that is higher order than quadratic.
For these two reasons, individual phase corrections must be applied to each of the
beams. This phase is corrected by applying quadratic, cubic, and quartic spectral
phase functions using a trial and error approach (discussed in detail in 2.5.1). Typi-
cally, the majority of the phase correction is quadratic. The cubic and quartic terms
are quite small, and are typically the same for all four beams, as it is mostly gener-
ated in the Ti:Sapph crystal [27], rather than in the optics in the experiment.

2.4.6 Heterodyne Detection

The key experimental difference for CMDS that leads to the various enhancements
over other FWM techniques is that the full complex signal needs to be measured. To
measure the signal phase, the FWM signal is detected using spectral interferometry
in what is a form of heterodyne detection.

A diagram depicting spectral interferometry is shown in Fig. 2.24a. A reference
pulse (the LO) is spatially overlapped with the FWM signal and the two co-propagate
into the spectrometer where they interfere to form a spectral interferogram. The
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(a) (b)

Figure 2.24: (a) Diagram of heterodyne detection using spectral interferometry. (b) Spectral inter-
ferogram of signal and LO. The amplitude of the fringes is proportional to the product
of the electric fields of the signal and LO, and fringe spacing is inversely proportional
to the delay between the signal and LO.

signal is thus detected as interference fringes across the top of the LO spectrum as
shown in Fig. 2.24b. The spacing of the spectral fringes is the inverse of the time
delay between the signal and the reference. For this reason, the local oscillator is
typically delayed such that it arrives at the sample ∼1 ps before the excitation beams
to optimize the fringe visibility.

The fringe amplitude is proportional to the product of the electric field of the
signal and LO (EsELO). The amplitude of the detected signal can therefore be am-
plified significantly by increasing the power of the local oscillator beam. This allows
the detection of much weaker signals, orders of magnitude weaker than in FWM
experiments. The fact that heterodyne detection measures E instead of E2 (as in
non-interferometric detection) also improves the sensitivity of the experiment.

2.4.7 Phase-Cycling

The detected interferogram is not, however, only a measure of the interference be-
tween the signal and the local oscillator. Any stray coherent light that co-propagates
into the spectrometer will generate spectral fringes. This includes scatter from the
three excitation beams, either at the sample or earlier in the experiment, as well as
back-surface reflections from optics and coherent photoluminescence from the sam-
ple. The LO and all of these sources will generate non-interferometric background
signals as well, which must be removed. To make matters worse, all of the stray
light sources can interfere with one another and generate fringes with a variety
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of different spacings. The full range of contributions to the measured signal are
represented in Eq. 2.39 [123].

S ∝

∣∣∣∣∣∣ELOeiφLO(ω) + ESIGe
iφSIG(ω) +

∑
n=1,2,3

Ene
iφn(ω)

∣∣∣∣∣∣
2

(2.39)

Equation 2.39 can be expanded into Eq. 2.40.

S ∝E2LO + E2SIG +
∑
n=1,2,3

E2n

+ 2ELOESIGcos(φLO −φSIG)

+ 2
∑
n=1,2,3

ELOEncos(φLO −φn)

+ 2
∑
n=1,2,3

ESIGEncos(φSIG −φn)

+
∑
n=1,2,3

m6=n∑
m=1,2,3

EmEncos(φm −φn)

(2.40)

The first three terms in the top line represent the non-interfering spectra of the
LO, the signal and the excitation beams. The second line is the term we would
like to measure, the interference of the LO and the signal. The third and fourth
lines represent the interference of the excitation beams with the LO and the signal
respectively. The final term is the interference of the excitation beams with one
another.

To get rid of all these components and isolate just the second line, a process called
phase cycling is employed. Phase cycling exploits the fact that the interference of
the signal and the LO will uniquely depend on the phase of all the excitation beams
and the local oscillator. All the other signal components depend on only one, two
or three of the beams. As a result, by recording spectral interferograms in which
the excitation beams and the LO have different combinations of either 0 or π phase
offsets, all the components that don’t depend on the phase of all four beams can be
eliminated.

In all, this takes 8 interferograms with the sets of phases listed in Table 2.1. These
interferograms can then be combined using Eq. 2.41 to eliminate all the compo-
nents in Eq. 2.40 except for the interference between the signal and the LO.

ESIG ∝ SSIG = [(S2− S1) − (S4− S3)]

− [(S6− S5) − (S8− S7)]

= 16ELOESIGcos(φLO −φSIG)

(2.41)
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P H A S E C Y C L E S T E P k1 k2 k3 L O

S1 0 0 0 0

S2 π 0 0 0

S3 0 π 0 0

S4 π π 0 0

S5 0 0 0 π

S6 π 0 0 π

S7 0 π 0 π

S8 π π 0 π

Table 2.1: 8-step phase-cycling procedure

An example of the 8 spectral interferograms that make a single point are shown
in Fig. 2.25. The resulting SSIG interferogram (at the bottom of Fig. 2.25, labelled
‘signal’) contains only the interference between the signal and the reference beam.
This process can add a significant amount of data acquisition time - each delay data
point requires the collection of 8 spectra. However, S1-S8 each contain a signal
contribution, so there is also an 8× amplification of the amplitude of SSIG compared
with the non-phase cycled signal. This amplification of SSIG offsets the extra data
acquisition time. After phase cycling, the signal is now (ideally) background free.

Figure 2.25: Eight spectra recorded for phase-cycling, and resulting phase-cycled interferogram for
a double quantum well sample.
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2.4.8 Experimental stability

The successful implementation of phase cycling relies on experimental stability. Any
phase or amplitude drift between phase cycling steps result in imperfect scatter
subtraction and/or imperfect background subtraction. In our case, this is the main
way that noise is introduced in 2D and 3D spectra. The experiment must also remain
phase stable for the duration of the 2D or 3D scan. Phase variations during scans
can lead to peak spreading and additional peaks along the Fourier transformed
frequency directions (E1 and E2).

In this pulse-shaper based CMDS experiment, the phase is stabilized passively
and great care is taken to ensure uncorrelated sources of noise are avoided. Where
possible, pedestal mounts are used, the entire experiment is enclosed in a metal
box and all equipment with moving parts is removed from the table (including the
cryostat expander, section 2.4.9). The limiting factor for the stability is now mostly
the thermal stability in the lab.

The effects of the remaining phase/amplitude noise and wandering can be re-
duced by experimental optimization and averaging the acquired data at the spectral
level (repeating the acquisition of each spectrum in the phase cycling process), at
the SSIG level (repeating the acquisition of each full set of phase cycles) and at the
scan level (repeating the same scan multiple times). The ideal averaging depends
on the intensity of the signal being measured, but we have found that generally the
best results are achieved by minimizing the number of point averages. Instead, the
scan is repeated several times and the resulting 2D spectra are averaged. This pro-
vides an improved SNR by better removing artifacts due to laser scatter and access
to uncertainty statistics on the spectra not available otherwise.

2.4.9 Vibration Isolated Cryostat

Recirculating cryostats are convenient in that they can run stably for long periods
of time without necessitating expensive liquid helium. The downside is that they
typically have significant vibrations at the sample, which spread across the optical
table. In this experiment we use a vibration isolated cryostat which is mechanically
decoupled from the table. This is a key element of what makes the experiment so
stable: there are no moving parts attached to the optical table.

In a typical recirculating cryostat, a compressor supplies helium gas at 300 psi
via hoses to an expander where it expands and cools. The attached cold finger
then transfers that cooling power to the sample. In a typical design, there is a
direct mechanical connection between the expander and the sample mount which,
along with cooling power, transmits the large amplitude vibrations (10’s to 100’s of
micrometers) from the expander to the sample.
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In the vibration isolated version (Advanced Research Systems, Inc. Model: DE204N-
DMX-20), the sample mount is mechanically decoupled from the expander. In an
additional step, a helium exchange gas allows the transmission of the cooling power
to the sample chamber. The expander is mounted to a support arm which sits di-
rectly on the floor rather than on the optical table. The bottom half of the cryostat
(which contains the sample) is mounted to the table. Matching translation stages
allow coordinated x/y adjustments of the sample chamber and the expander. The
depth of the exchange gas allows ±1 cm of movement of the bottom half of the
cryostat without necessitating also moving the expander. The movable, home-built
expander support arm also allows removal of the cryostat from the table and access
to the samples.

When using cryostats which are not vibration isolated, the limiting factor in the
achievable signal to noise is the movement of the cryostat during the data acqui-
sition. This movement leads to slight variations in the phase and amplitude of the
detected interferograms. With the vibration isolated cryostat, this limitation is re-
moved and the stability of the experiment is improved significantly, allowing for
longer scans and detection of weaker signals.

2.4.10 Limitations of the SLM based CMDS experiment

Though there are clearly many advantages to pulse-shaper based CMDS, there are
also some drawbacks, which make it less useful for certain types of experiments.
The main drawback to using the pulse-shaper for beam delays is the so-called time-
window effect which stems from the pixelation of the SLM. This pixelation leads to
additional pulses before and after the main pulse, called replica pulses. Thankfully,
these replicas are not efficiently diffracted down into the first vertical order, so they
do not affect the dynamics measured. They do, however, take energy away from
the ‘main’ pulse causing a delay dependent modulation of the pulse intensity [61,
124, 125].

As the applied delays increase, eventually the full phase range across the SLM
exceeds the 2π phase that can be applied with the SLM. To increase the range of
the SLM, phase wraps are applied, creating a saw-tooth pattern, which is shown in
Fig. 2.26a. As the applied phase gradients get steeper still, more and more phase
wraps must be used, and the phase-step from pixel to pixel increases. As the spacing
between phase wraps approaches the resolution of the pulse-shaper,the diffraction
efficiency into the intended beam drops while the diffraction efficiency into the
replicas increases.

This has two important consequences. First, the pulse energy changes continu-
ously as a function of delay. This is often called the time-window, and takes the
form of the Gaussian-sinc window shown in Fig. 2.26b. Second, the delay range
is limited to ±5 ps (for the parameters used here) before the delayed pulse energy
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Figure 2.26: (a) Phase-wraps in a sawtooth pattern on a SLM. (b) Gaussian-sinc window. Both are
adapted with permission from Ref. [122].

has reduced to a point where the signal fully disappears. These two taken together
limit what types of details can be extracted from this experiment. For instance,
many semiconductor nanostructures have dephasing times that are greater than
10 ps [46]. Such a dephasing time cannot be reliably measured with this type of
experiment, and therefore homogeneous linewidths will be over-estimated.

A second drawback of pulse-shaping is spatio temporal coupling. The diffraction
limited spectral focal spot in the pulse-shaper causes the horizontal (ideally purely
spectral) axis of the SLM to also shift the beam spatially [126]. The shift is actually
initially angular, which the cylindrical lens turns it into a spatial shift. The amount
the beam shifts is small - on the order of 100 um/ps of delay. The overlap at the sam-
ple remains unchanged, even with these relatively large spatial shifts (0.5 mm at the
maximum delay) because the experiment is setup in 4-f imaging geometry [127].
This shift does cause a change in the wave-vector of the excitation beam and the
overlap between the generated FWM signal and the LO. This shifting overlap causes
additional delay dependent signal modulations, though they are less pronounced
than those coming from pixelation(as long as care is taken that no irises or optical
mounts clip the beams).

2.5 Experimental procedures

This section will discuss the experimental procedures that are used in aligning and
calibrating the experimental apparatus and then the procedures for running CMDS
experiments.

2.5.1 Alignment and Calibration

For reliable performance, the CMDS experiment requires alignment and calibration
before each experimental run. These processes are relatively straight-forward. This
section will describe the alignment and calibration procedure.
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A. The oscillator is optimized for desired spectrum based on sample and experi-
ment to be conducted.

B. The beam-shaper zero order beam (or with a constant phase pattern applied
to the SLM so it is effectively just a mirror) is aligned so that it passes through
a series of alignment irises. This guarantees the box beam pattern will be
aligned axially and centred on all of the imaging optics.

C. The vertical grating on the pulse shaping SLM is turned ‘on’ with no phase
correction or delay applied, and a 100µm thick beta barium borate (BBO)
non-linear crystal at the sample position. The prism compressor can then be
optimized by maximizing the second-harmonic signal. This provides a coarse
pulse compression which then must be optimized for each beam later in the
calibration procedure.

D. The vertical arrangement of the beams must then be mapped out on the SLM
surface. All four beams in the box geometry are turned ‘on’ at the beam shaper.
A single period of the vertical grating is scanned across the SLM from top
to bottom. The vertical beam pattern is mapped out based on the integrated
spectral intensity. This also is a check that all four or five beams are on the SLM,
and that there is no overlap of the beams (which leads to cross-talk between
beams and imperfect cancellation of unwanted signals in phase cycling). The
boundaries of the SLM regions that represent the different beams are set based
on this measurement.

E. Using the regions measured in the previous step, the spectral mapping of each
beam is performed by scanning a narrow (typically 1 pixel wide) grating pat-
tern across the region while measuring the resulting spectrum, which is a
sharp peak. This peak is fit, and the center of the fit is taken to be the central
frequency at that pixel. The resulting pixel number vs frequency data is fit to
a linear function, which is used when spectral amplitude and phase shaping is
performed while running the experiment.

F. The BBO crystal is placed back in the experiment at the sample position, and
the pulses are compressed using an iterative series of cross-correlations be-
tween the different beams. In a typical cross-correlation FROG measurement,
a pulse with a well defined and known pulse shape is scanned across an un-
known pulse and the spectrum of the mixing signal is measured as a function
of delay. The temporal electric field can then be accurately extracted using
an iterative algorithm. In our case, neither of the pulses are well known. In
this case, the exact electric field variation cannot be unambiguously extracted
from a single cross-correlation. To get around this, we do a series of cross cor-
relations with different combinations of first quadratic and then cubic/quartic
phase until the cross correlation is the expected transform limited width. In
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theory, this could lead to non-transform limited pulses that have cancelling
electric fields such that the cross correlation appears to be transform limited.
To confirm that this is not the case, cross correlations with different combina-
tions of beams are performed, and the quadratic, cubic and quartic corrections
to each beam are adjusted until all of the cross-correlations are transform lim-
ited. In practice, most of the phase correction is quadratic, so it can be done
consistently and relatively quickly with a trial and error approach. Shorter
pulses with more complicated corrections would probably benefit from a more
involved, systematic approach.

G. The arrival time of the pulses in the different beams will be slightly different.
These delay offsets must also be measured and corrected. The delay offsets
for the excitation beams can be corrected using the cross correlations, but the
local oscillator cannot. During the experiment, a 4 mm thick neutral density fil-
ter with an optical density of 4 is placed in the local oscillator beam to reduce
its power such that it is comparable with that of the signal. In addition to re-
ducing the power, this filter also delays the LO relative to the other beams. To
measure exactly how much it is delayed, a FWM signal with a well defined tem-
poral profile is required. For this, a laser dye (IR785) is placed at the sample
position. The three excitation beams are all overlapped temporally, which gen-
erates a coherence spike signal. The broad signal from the laser dye roughly
reproduces the laser spectrum and leads to a temporal shape that matches the
excitation pulses. The delay between the local oscillator and the signal can
then be measured by scanning the three excitation pulses temporally relative
to the LO. The dye may not have a perfectly instantaneous response, so there
may be some inaccuracy in this calibration. However, this inaccuracy will only
impact the real peak-shapes, not the amplitude peak-shapes.

H. Phasing: If the real part of the signal is required, the relative phase of the
excitation beams relative to the local oscillator must be determined. This has
not been conducted for any of the results reported in this thesis.

2.5.2 Typical Scan parameters

Scan parameters (beam powers, scan range, sampling rate) change depending on
the sample and scan type, and vary across the experiments presented in this thesis.
Typical scan parameters are shown in table 2.2, but specific parameters for each set
of experimental data are listed in Appendix A1.

As alluded to in section 2.4.10, typical single transition coherence and population
lifetimes times for QW excitons exceed the range of delays accessible by this exper-
iment. For that reason, the delay ranges are usually set to the maximum achievable
delays: 5 ps. Coherent superpositions of excitons have much shorter de-coherence
times, which are limited by the exciton inhomogeneous linewidth (in both in t1 and
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t1 t2

Scan Range, Step Range, Step

1Q 5 ps, 20 fs

0Q 5 ps, 20 fs

2Q 2 ps, 20 fs

1Q-CS 1 ps, 20 fs

0Q-CS 2 ps, 20 fs

1Q-3D 5 ps, 20 fs 5 ps, 20 fs

Table 2.2: Typical parameters used in CMDS experiments

t2) to about 0.5 to 1 ps. Due to the rotating frame detection, sampling requirements
are relatively low, and do not change much on the type of scan, except 2Q scans
which must be conducted at twice the sampling rate of 1Q and 0Q scans.

As evidenced by the results in Chapter 7, beam powers are very important in the
detected exciton dynamics. A range of different powers are used throughout the re-
sults presented in this thesis. While some of the original work had to be conducted
at high powers (>3 mW per beam or 1.8× 1011 photons·cm−2·pulse−1 ) most of the
rest is conducted at less than 200µW per beam (8×109 photons·cm−2·pulse−1/beam)
below which 5th order signals are expected to play little to no part [54].

2.5.3 Data Processing

A series of manipulations must be performed to the recorded data before it can be
presented as a 2D spectrum. This section describes the key elements of the analysis
process for a 1Q 2D spectrum. The scripts used in data analysis can be found on the
Swinburne ultrafast spectroscopy group website.19

Figure 2.27a shows the acquired E(t1,E3/λ3) data for a scan of t1 after phase-
cycling. The signal as well as some scatter (which was not fully removed by phase
cycling) are present in these interferograms. The data is then transformed into
E(t1,t3) using an inverse fast-Fourier transform (iFFT) as a function of E3, the re-
sult of which is shown in Fig. 2.27b. In this form scatter and spectral amplitude
instabilities are separable from the FWM signal, as most scatter signals appear at t3
values that are shorter than the FWM signal. As the recorded data has no imaginary
component, the fast-Fourier transform produces two mirrored temporal patterns.
Using the functions delineated by the red lines in Fig. 2.27b, one half of the data is
thrown away, and most of the scatter signals are windowed out.

An FFT along t3 returns the data to the E(t1,E3/λ3) domain (as shown in Fig.
2.27c). This data is now free of scatter signals and artifacts due to experimental
instabilities. An additional phase gradient is added to the signal phase to account

19 http://www.swinburne.edu.au/engineering/caous/ultrafast/publications/CMDS_Scripts.zip

http://www.swinburne.edu.au/engineering/caous/ultrafast/publications/CMDS_Scripts.zip
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Figure 2.27: Stages of data analysis. First, the collected interferograms in (a) are fourier transformed
into (t1, t3) and windowed (b) and then fourier transformed back into the (t1,λ3). This
is windowed along t1 to remove pulse overlap before being Fourier transormed along
t1 to generate the 2D spectrum which is usually presented as (E1,E3).

for the measured time delay between the signal and the LO (typically 1.5 ps). The
phase correction (ΦC1)is given by:

ΦC1(E3) =
(E3 − ECF)

h
tLO (2.42)

tLO is constant for the 1Q scan, so the correction ΦC1 does not depend on t1. This
correction could equivalently be applied in the time domain by shifting the zero
point of the time axis to amount for tLO.

An error function window is applied to remove the coherent artifact generated by
pulse overlap at t1=0 across all E3 values (as shown in Fig. 2.27d). Details of these
can be found in the appendix. A final FFT is then applied along t1 to generate the
2D spectrum (Fig. 2.27e). The E1 axis is calculated taking into account the carrier
frequency used in the rotating frame (details in the appendix).
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2Q 2D, 0Q 2D and 1Q 3D spectra require an additional phase rotation step, be-
cause the timing of the signal shifts with respect to the LO. This shift occurs because
in all three of these types of scans, the timing of the third pulse (k1 in 2Q 2D, k3
in 0Q 2D and 1Q 3D) changes with respect to the LO. To account for the changing
arrival time of the third pulse relative to the LO over the course of the scan, the
following additional phase correction is applied to the signal for 2Q spectra:

ΦC2(E3, t2Q) =
(E3 − ECF)

h
t2Q (2.43)

and for 0Q and 3D spectra:

ΦC2(E3, t2) =
(E3 − ECF)

h
t2 (2.44)

3D spectra also require an additional FFT and pulse overlap windowing along the
second scanned time domain (t2). Otherwise, all the data processing steps are the
same as 1Q described above.

2.6 Photoluminescence Excitation Spectroscopy with a pulse-shaper

In a typical photoluminescence (PL) experiment, a sample is excited by a light
source with photon energy higher than its relevant optical transitions, while pho-
toluminescence is detected by a spectrometer. In many samples, the PL spectrum
is very sensitive to the excitation frequency [128], so recording spectra at multi-
ple excitation frequencies is important for proper interpretation. Taken one step
further, if the photoluminescence can be recorded while the excitation frequency
is scanned smoothly, an excitation spectrum can then be collected. This technique
(called photoluminescence excitation spectroscopy or PLE) has been a very valuable
technique for spectroscopists since at least the 1960’s [129], and is still in wide use
today [130, 131].

PLE is typically implemented in one of two different ways: 1. using a tunable
CW laser [132], or 2. using a broadband coherent or incoherent source (such as a
lamp) with a monochromator [129]. Both implementations have advantages and
disadvantages. The laser must tune smoothly, and be stable both in spectrum and
power. Stabilized, tunable CW laser sources can produce excitation linwidths be-
low 10 MHz (<0.00004 meV) [133–135]. The monochromator approach is more
involved technically and is limited to light sources that are broad enough to cover
the spectral range of interest. The light source must also be free of structure which
can complicate interpretation if they overlap the spectral features of the sample.
Conventional commercial monochromators can achieve spectral resolution in the
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Figure 2.28: A diagram of the PLE setup using a pulse-shaper

∼0.07 meV to ∼0.2 meV range [136, 137], which is markedly worse than the spec-
tral linewidth achievable with lasers.

We have demonstrated a relatively simple alternative, using a pulse-shaper ca-
pable of spectral amplitude shaping, a diagram of which is shown in Fig. 2.28. In
this approach, the pulse-shaper is used like a monochromator to take narrow lines
(<1 meV) from a broadband fs laser spectrum. Pulse-shapers are well suited to this
task: they are repeatable, stable and fast, with no moving parts. In recent years
pulse-shapers have been used for a wide variety of experiments, and are becoming
more commonplace in ultrafast spectroscopy labs [138–141]. Pulse-shaper based
PLE could easily be incorporated alongside many of these techniques without sig-
nificant experimental changes.

In our implementation of PLE, we use the same pulse-shaper as in the CMDS
experiment. Only a few minimal changes to the experiment must be made to switch
from CMDS to PLE measurements: two irises are closed to block unused excitation
beams, and two others are opened to allow more efficient collection of the PL signal.
This allows us to conduct PLE immediately before or after CMDS experiments, and
on the same sample position.

The experiment is conducted in much the same way as the spectral calibration of
the pulse-shaper (section 2.5.1, item E). All but one of the beams are turned ‘off’ at
the pulse-shaper (meaning no vertical grating is applied so they miss the pick-off
mirror). A 1-4 pixel wide vertical grating is scanned horizontally across the region
of the SLM upon which the excitation beam is incident. The grating is scanned in
1-4 pixel steps, and the PL spectrum is recorded for each position of the grating on
the SLM.

Some stray light from the excitation beam (both before and after it is narrowed)
is also recorded by the spectrometer, which can be significant. Because the experi-
ment is quite stable, the unshaped scatter can be removed by taking a background
spectrum with all the beams ‘off’. The stray light from the narrowed excitation
beam mostly originates from the sample itself, and cannot be as easily removed, so
accurate PL at the excitation frequency is not recorded.

A typical PLE spectrum is shown in Fig. 2.29a, which illustrates the quality of
the PLE data that can be recorded with this pulse-shaper. A typical spectrum of the
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(a) (b)

Figure 2.29: (a) A PLE scan of an InGaAs double-QW, including some slices along the excitation
and emission directions. A full description of this data is provided in Section 6.3.1.(b)
Typical spectrum of the excitation beam. The excitation spectral resolution is limited
by the pulse-shaper resolution to 0.59 meV FWHM.

excitation beam is shown in Fig. 2.29. A Gaussian fit to the excitation spectrum
shows an excitation resolution of 0.59 meV FWHM, which is typical of the entire
scan range. This excitation resolution is not as good as the resolution achieved
with monochromator (∼0.1 meV) or tunable CW (<1µeV) sources. The excitation
resolution of the pulse-shaper is limited by the size of the focal spot from the cylin-
drical lens on the SLM surface, and the period of the grating used to disperse the
beams [124]. The resolution could be improved by using a shorter focal length
cylindrical lens and/or increasing the number of grooves per mm of the grating.
These changes would come at the expense of other attributes of the pulse-shaper,
including the range of photon energies that can be scanned in a PLE experiment.
The improvement in resolution would be in the range of a factor of ×2 to a factor
of ×4, which would lead to a resolution comparable to monochromator based PLE
experiments, but still much worse than achievable with tunable CW lasers.

One other drawback to this approach is that the range of excitation wavelengths
that can be scanned by the pulse shaper is limited by the laser bandwidth. The
source (an oscillator in this case) is tunable, and the grating in the pulse shaper
can be rotated to access different spectral ranges, so a wide spectral range can be
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accessed. However, connecting scans across the pulse shaper from different spectral
ranges would not be feasible in most cases, so the spectral range achievable in a
single scan is smaller than the what could be accessed using a monochromater, OPA
or tunable CW laser. However, for the purposes of our studies on QWs, the resolu-
tion and scan range (∼65 nm) provided by the pulse shaper are typically more than
sufficient. The linewidths of the excitonic features we are interested in are ∼1 meV
or larger. We cannot necessarily record precise absorption energies or linewidths,
but we can still clearly distinguish the excitonic resonances from one another. Fur-
thermore, the benefits of the of this pulse-shaper based approach (such as stability,
repeatability and speed) and its integration into the CMDS experimental apparatus
make it a very useful complementary technique.

2.7 Summary

In this chapter we have presented the FWM concepts important for an understand-
ing of CMDS. We have introduced CMDS, and discussed how it can be enhanced
by the use of spectral shaping for pathway selection. Finally, we have described the
CMDS experiment that was established at Swinburne as part of this PhD project.
The following experimental results chapters will show that this newly established
apparatus and experimental approach can be used to study a range of new coherent
effects in semiconductor QWs.
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C O H E R E N T D Y N A M I C S I N S E M I C O N D U C T O R Q W S :
B A C K G R O U N D

This chapter covers some of the fundamental concepts relevant to the investigations
of semiconductor QWs that are presented in subsequent chapters. We will first ex-
amine the well understood physics that leads to the linear optical response in Sec-
tion 3.1. In Section 3.2, we will then delve into the coherent non-linear response
of excitons in QWs, exploring the important concepts of dephasing and decoher-
ence (3.2.1, 3.2.2), quantum beats (3.2.3) and many-body effects (3.2.4). Finally,
in section 3.2.5 we will briefly cover what investigations have been conducted using
coherent multidimensional spectroscopy (CMDS) to study the coherent response of
excitons in QWs.

3.1 Fundamental concepts and linear optical response

The electronic structure of single atoms are characterized by a series of discrete
energies which are solutions to the Schrödinger equation including the Coulomb
interaction between negatively charged electrons and positively charged nucleus.
When two atoms are covalently bonded, the electrons are shared and each atomic
level splits into two discrete levels. As the number of covalently bonded atoms
increases, the number of levels increases and the spacing between the split levels
decreases until eventually the once discrete states of the atoms become bands in
the limit of a quasi-infinite crystal [142].

The electronic characteristics of the bands can be calculated based on the inter-
atomic distances in the crystal, which vary as function of the direction of the real
space vector relative to the crystal lattice vectors. For the large number of atoms in
semiconductor lattices, it is more convenient to determine and discuss these prop-
erties in momentum space (k-space or reciprocal-space) rather the real-space, in
which the energy of the bands are represented as a function of the momentum,
defined with respect to the reciprocal-space lattice. In this basis, the different di-
rections of crystal symmetry can be defined. The bands are usually represented as
1D energy/momentum dispersion relations between the different symmetry points,
which denoted by different symbols (Γ , X, Λ, etc.) as shown in Fig. 3.1. From these
dispersion relations, the effective mass (m∗) of the electron can be calculated, which
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Figure 3.1: Dispersion relations for different bands in GaAs. Reprinted with permission from
Ref. [143].

relates to how the electrons in different bands respond to the application of force.
m∗ is inversely proportional to the curvature of the bands [142].

In equilibrium, the bands are filled up to a certain level, while higher bands
remain empty. The lowest empty band is called the conduction band while the
highest filled band is called the valence bands. The gap separating the highest point
of the valence band from the lowest point of the conduction band is called the
bandgap. The bandgap energy corresponds to the amount of energy required to
promote an electron from the valence band to the conduction band. If that gap is
small enough that some electrons can be thermally promoted into the empty band,
then the crystal will act as a semiconductor. In typical semiconductors, the bandgap
ranges from 10’s of meV up to a few eV [142].

When the lowest point in the conduction band and the highest point of the va-
lence band occur at the same point in momentum space, the semiconductor is said
to have a direct band gap. In this configuration, the radiative relaxation of an elec-
tron from the conduction band is allowed (since no change of momentum is re-
quired), so the material will absorb and emit light. In the alternative configuration,
where the conduction band minimum and valence band maximum occur at a differ-
ent momenta, the transition does not conserve momentum and is no longer allowed.
Indirect gap semiconductors can still emit some light if some other interaction (for
instance, the absorption of a lattice vibration) accounts for the momentum differ-
ence of the bands. Inter-band absorption (i.e. promotion of an electron from the
valence band to the conduction band) can still occur without momentum change,
but requires a photon energy larger than the bangap energy. The excited electron in
the conduction band is far from the conduction band minimum and relaxes down
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Figure 3.2: (a) Band structures with direct and indirect gaps. Γ and X represent points of symmetry
in the k-space representation of the crystal. (b) In the GaAs bandstructure, the highest
energy valence band is split into heavy-hole (HH, mj =±3/2) and light-hole (LH, mj
=±1/2) bands. The HH and LH bands are degenerate at the Γ point.

to the bottom of the conduction band much faster than radiative relaxation into the
valence band. For these reasons, indirect semiconductors are efficient absorbers,
but weak emitters compared with direct bandgap semiconductors.

Semiconductors can be made of crystals of a single atom (such as Si), or a combi-
nation of two (or more) different atoms. Compound semiconductors are very useful
as the optical and electronic properties can be controlled by which pairs of materials
are used [142]. These properties can also be tailored by changing the stoichiome-
try of the constituent components. The most well studied binary semiconductors
involve a pairing of a group III element (In, Al, Ga) with a group V element (N, As).
Of these III/V semiconductors, Gallium Arsenide (GaAs) based compounds are the
most common. They exhibit a direct band gap and can be grown precisely and with
high purity. The bandgap can also be easily controlled by replacing Ga atoms with
Al (In) atoms to increase (decrease) the bandgap.

Like atomic states, semiconductor bands are characterized by a quantized angular
momentum, which depends on the magnetic quantum number (mj). The highest
energy valence band is split into two bands, one for mj = ±3/2 electrons and mj =

±1/2 electrons.1 These bands are labelled heavy-hole (HH) and light-hole (LH),
respectively, in reference to their different effective masses. A cartoon depicting
the HH and LH bands can be seen in Fig. 3.2b. At zero momentum (i.e. at the Γ
point) the HH and LH bands are typically degenerate due to lattice symmetry, but
for higher momentum the bands separate.

1 There are actually three bands. The HH and LH correspond to the J=3/2 case, but there is also a band for
J=1/2, which is called the split-off band [142]. For our purposes the split-off band is ignored because it is
energetically offset by a few hundred meV from the HH and LH bands.
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3.1.1 Electrons, holes and excitons

When an electron is promoted from the valence band to the conduction band, an
empty state appears in the valence band. We call this missing electron a ‘hole’,
which acts like a particle with a positive charge2. Like electrons, due to the interact-
ing nature of semiconductor crystal we cannot view the hole as belonging to one
atom in particular, but rather delocalized across multiple lattice sites.

When an electron is excited from the valence band to the conduction band, the
electron and hole (which are initially overlapped in real and momentum space)
have a Coulomb attraction, leads to the formation of a stable bound state. This
bound state is a hydrogen like quasi-particle called an exciton, and has an energy
just below the bandgap energy. The difference between the bandgap energy and
the exciton energy is called the exciton binding energy. In general, excitons come
in two different types - Frenkel type excitons which are confined to a single unit
cell, or Wannier type excitons which are delocalized over a number of atoms [142].
Frenkel excitons are tightly bound (exhibit large binding energies) and typically
appear in molecular systems, while Wannier excitons are weakly bound (exhibit low
binding energies, ∼4.6 meV in GaAs) and appear in solid state systems. The optical
properties of semiconductors and semiconductor nanostructures are dominated by
excitonic effects at low temperatures, as excitons are typically the stable excited
state configuration with the lowest energy [46, 142]. Exciton recombination also
has a much larger dipole moment than free-carrier recombination (in most cases)
because the significant spatial overlap of the electron and hole.

3.1.2 Phonons

In addition to electronic excitations, semiconductor lattices support vibrational ex-
citations in the form of coordinated motion of the nuclei [46, 142]. Due to the well-
defined crystal structure, these vibrations take the form of sharp, quantized modes
which can be treated quantum mechanically as a quasi-particle called a phonon.
In semiconductors, phonons can be split into two general categories, acoustic (in
which all the atoms in a single unit cell move in phase) and optical (in which atoms
in a single unit cell move out of phase). Optical phonons amount to an oscillat-
ing dipole, and can therefore interact with photons. Optical phonons typically have
larger energy than acoustic phonons (40 meV in GaAs) [142].

Phonons can be further separated based on the direction of the propagation rel-
ative to the motion of the nuclei. Longitudinal (transverse) modes involve motion
of the nuclei parallel (perpendicular) to direction of the phonon propagation. Lon-
gitudinal and transverse modes can be either acoustic or optical. Furthermore, the

2 In reality the motion of the hole is actually valence band electrons moving to fill the empty valence band states,
(and thereby moving the empty states), but the characterizing this as motion of a single hole rather than a
number of electrons is significantly simpler.
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Figure 3.3: GaAs phonon dispersion curves. Reprinted with permission from Ref. [144]

energy of the phonon depends on the direction of propagation relative to the orien-
tation of the lattice. As a result, phonon dispersion curves can be generated which
are very similar to the electron and hole dispersion curves in Fig. 3.2. An exam-
ple phonon dispersion curve is shown in Fig. 3.3. Another important difference
between acoustic and optical phonons is that acoustic phonons go to E=0 at k=0,
while optical phonons do not3. The equilibrium population of phonon modes de-
pends on the temperature of the lattice; at low temperature very few modes are
populated, and acoustic phonons dominate because they can have very low ener-
gies. Because phonons can have a finite momentum, they can combine with photons
to activate transitions that otherwise wouldn’t conserve momentum. Phonons can
also scatter with other quasi-particles or be generated by the interaction of a quasi-
particle with the lattice. Phonons therefore play an important role in the electronic
and excitonic properties of semiconductors.

3.1.3 Heterostructure

A very useful aspect of semiconductor materials is that crystals made up of different
compounds can be grown on top of one another to form a variety of interesting
multi-layer thin-films called heterostructures. For example, materials with different
band gaps grown one on top of the other will form a step like potential. In some
cases, important characteristics of the heterostructure depend on the alignment of
the bands, which is characterized by a value called the band offset (QC) [142].
QC is defined as the percentage of the difference in band gaps that appears in the
conduction band:

QC =
∆Ec

∆Ec +∆Ev
(3.1)

3 Alternatively, we could say that the optical phonons can be stationary, but acoustic phonons must have some
non-zero momentum.
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Figure 3.4: Type-I and Type-II heterostructures.

Eg2 − Eg1 = ∆Ec +∆Ev (3.2)

In general, three different types of alignments can appear for heterostructures
depending on the band offset. In type-I heterostructures (Fig. 3.4a), the lowest en-
ergy conduction band and the highest valence band appear in the same material.
In type-II heterostructures (Fig. 3.4b), the highest valence band and lowest conduc-
tion band levels appear in different layers. Type-III heterostructures (Fig. 3.4c) are
the same as type-II, except that the lowest conduction band level appears below
the highest valence band level. These different configurations result in a range of
different optical and electrical properties.

3.1.4 Exciton Confinement

The semiconductor heterostructure that we will be studying in this thesis are called
quantum wells (QWs). QWs are heterostructures consisting of a thin layer of one
semiconductor material sandwiched between two layers of higher bandgap materi-
als. If the width of the lower bandgap material approaches the exciton Bohr radius
(∼12 nm), discrete levels form in the QW, due to the confinement of the exciton in
one direction [46, 142]. This confinement of the exciton has a number of important
consequences:

A. The QW transition energy increases with the degree of confinement (decreas-
ing QW width).

B. The exciton binding energy increases as the size of the exciton Bohr radius
decreases.
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Figure 3.5: Example of wavefunctions in a QW, and band splitting of the HH and LH valence bands
due to confinement.

C. The degeneracy of the HH and LH bands is lifted as the confinement shifts
the bands by differing amounts due to their differing effective masses. In most
cases, the HH band is the highest energy valence band in confined systems.

The optical response of QWs is dominated by excitonic effects, even more than
in bulk semiconductors because of the higher binding energies. Generally speaking,
there are two main types of QW systems: in which the electron and hole are con-
fined in the same layer (type-I, Fig. 3.4c) or different layers (type-II, Fig. 3.4d)4.
Most of the experiments in this thesis involve type-I systems, but some discussion
of type-II excitons is included in Section 6.1.

Type-I QW structures consist of two potential wells - one for electrons and one
for holes. The form of the solutions of the Schrödinger equation for the square po-
tentials shown in Fig. 3.5 are well known, and commonly used during introductory
quantum mechanics courses. Confinement of the electron wavefunction leads to a
series of quantized approximately sinusoidal solutions of increasing order. Because
the potential is not infinitely tall, the wavefunction penetrates slightly into the bar-
rier, decaying exponentially. The exciton transition energy for the electron and hole
QW states ‘e’ and ‘h’ (EXe,h) is then the difference between the energy of the electron
(Ene) and hole (Enh) states less the exciton binding energy EBE.

EXe,h = (Ene − Enh) − EBE (3.3)

3.1.5 Growth Techniques

Semiconductor QW nanostructures are realized experimentally through epitaxial
growth techniques in which layers of material are deposited (grown) on a substrate.

4 Type-III QW structures can also be made, but this case does not appear in this thesis so it will not be discussed
here.
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Figure 3.6: Absorption spectrum of a QW (1D confinement).

The two most common techniques used to make semiconductor QWs are molecular
beam epitaxy (MBE) and metal organic chemical vapour deposition (MOCVD). In
MBE, the individual constituent materials are evaporated under high vacuum and
then allowed to condense on the substrate [145]. The sources of the the intended
constituents are offset from one another so that they don’t bond until they have
reached the substrate and begun to cool to the substrate temperature. The sub-
strate is also heated so that the atoms can find the lowest energy configuration on
the surface. Thus, this technique results in single crystal growth and very uniform
surfaces with sharp interfaces, controllable down to monolayer precision.

In MOCVD, gasses of molecules containing the desired constituent materials (called
precursor gasses) are injected into a reactor, where they react with molecules al-
ready on the sample surface [146]. The reactions are designed so that the precursor
gasses decompose on the surface and the unwanted parts of the molecules detach
from the substrate and can be vented out of the reactor. The intended atoms carried
to the substrate by the precursor gas bond with the atoms already on the substrate
and form crystalline or polycrystalline films.

Both techniques can be used to grow samples with sub-nm precision, and both
have strengths and weaknesses. MBE generates higher quality interfaces which, as
we will see in the following sections, has very important implications for the opti-
cal and non-linear properties of the resulting nanostructure. MOCVD, however, has
much higher throughput and does not require ultra-high vacuum, so it is used much
more commonly in the manufacture of devices. The lateral (in-plane) characteris-
tics of the interface roughness and range of defect inclusions in MBE and MOCVD
grown samples are also different [147].
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3.1.6 QW Linear optical and electronic properties

In a QW, the carriers are confined in one direction but unconfined in the other two
(which is called 1D confinement). The states in the two unconfined directions are
not quantized, so the solutions shown in Fig. 3.6 aren’t really discrete5. Put another
way, the carriers in the QW retain some in-plane momentum which is not quantized
in the unconfined directions. To understand how this affects the optical properties,
we can look at the density of states (the quantity of states at a particular carrier
energy) for 0D (no confinement) and 1D confinement [142].

D0D(E) =
V

2π2
2m∗

 h2
E1/2 (3.4)

D1D(E) =
A

2π

2m∗

 h2
(3.5)

The density of states for 0D (1D) confinement is dependent on E1/2, (indepen-
dent of E). As a result, the free-carrier absorption spectrum in QWs is a series of
step functions, with the absorption increasing suddenly as the energy for each n is
surpassed and an additional level is added. Absorption from the exciton resonance
appears just below each of the steps, separated by EBE.

After the excitons or free-carriers are created, they rapidly funnel down towards
the 0-momentum state and the lowest confined band in the QW. This relaxation
is mediated by carrier-carrier and/or carrier-phonon scattering. Because of the effi-
ciency of this relaxation, many of the higher lying transitions do not strongly emit,
even if they have reasonably large transition dipole moments. Unlike absorption,
the emission from QWs is dominated by recombination of excitons with 0 momen-
tum, and mostly from the lowest band. The zero-momentum excitons also have the
largest dipole moment and subsequently the largest absorption strength.

The dipole moment of a transition is proportional to overlap integral of the elec-
tron (ψe(z)) and hole (ψh(z)) wavefunctions. In the case of QW transitions, the
dipole moment (d) for transition between the valence band level nh and the con-
duction band level ne is proportional to the integral of the wavefunctions in the
growth direction (z) [148]:

dne,nh ∝
∫
ψh∗nh(z)ψ

e
ne(z)δz (3.6)

5 Confinement in the remaining directions can be used to create quantum wires (2D confinement) and quantum
dots (3D confinement). 3D confinement does lead to discrete states. The results and discussion in this thesis
are limited to 1D confined structures so the details of confinement beyond 1D will not be discussed in detail.
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Figure 3.7: Polarization selection rules for optical transitions in semiconductor QWs. The valence
band states depicted here are actually the electron states. The hole states will have an
opposite mj.

where ψene(z) and ψhnh(z) are the electron and hole wavefunctions in the confined
direction (respectively). The largest overlap integrals appear when nh = ne, as the
valence band and conduction band wavefunctions have a very similar z-dependence
in most cases. The solutions to an infinite square well have even parity for odd
values of n and odd parity for even values of n. Symmetry considerations require
that the overlap of solutions with different parity (one odd, one even) will always
be zero. For that reason transitions including an even nh and an odd ne (and vice
versa) are forbidden. If nh 6= ne but both wavefunctions have the same parity,
the transition is allowed, but the overlap integral is smaller than for nh = ne,
thereby reducing the dipole moment. For asymmetric potentials the parity of the
wavefunctions can become ill defined so the previously parity forbidden transitions
can become weakly allowed. For this reason, parity forbidden transitions can be
detected experimentally in some cases.

Absorption or emission of a photon constitutes a change of±1 unit of angular mo-
mentum. To conserve angular momentum, the associated valence and conduction
band states must have angular momentum with a difference of ±1. This leads to
only one allowed exciton transition involving each valence band state, as shown in
the diagram in Fig. 3.7 (σ+ (σ−) indicate a right (left) polarized photon). Thus, the
optically allowed excitons have a totalmj = ±1, which can be separately addressed
based on the polarization direction of circularly polarized light. The spin of an elec-
tron in a LH exciton is the opposite of the spin of an electron in a HH exciton when
they are both excited by the same circular polarization. Linear polarization can be
expressed as a linear combination of σ+ and σ− circularly polarized light, so all the
possible transitions in Fig. 3.7 can be excited by linearly polarized light [142].

In the absence of disorder, the linewidth of an exciton transition is limited by the
pure decoherence time (T∗2) and the exciton lifetime (T1). The resulting homoge-
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neous distribution has a Lorentzian shape with a width (Γ (H)) set by the dephasing
time (T2):

Γ (H) =
2 h

T2
(3.7)

Where T2 is limited by both T∗2 and T1.

1

T2
=

1

2T1
+
1

T∗2
(3.8)

T∗2 and T1 can be understood as follows. If we start with an ensemble of degener-
ate states, then T∗2 is the time it takes for an initially coherent ensemble of excitons
generated by a laser pulse to lose there set phase relationship due to random phase
breaking interactions. In QWs, these random interactions take the form of scattering
with other carriers, phonons, defects and interface features [46]. Importantly, these
interactions must be elastic, so that the phase of the oscillations of the exciton stays
the same, but its phase does not. T1, on the other hand is limited by inelastic inter-
actions - those interactions in which the energy of the exciton is changed. Examples
of inelastic interactions that occur in QWs include radiative decay of the exciton,
non-radiative relaxation of the exciton into a lower energy state, or a change in
kinetic energy due to absorption or emission of a phonon [46].

In unconfined semiconductors, T1 is strongly dependent on the types of defects
and their concentrations, as well as the electron-hole wavefunction overlap. In GaAs
based QWs, on the other hand, T1 is dependent mostly on the well width, and is
typically in the 100’s to 1000’s of ps range [46]. GaAs based QWs have T∗2 which are
typically on the order of 10’s of ps (but as we will see in Sections 3.2.1 and 3.2.2
they depend heavily on the excitation conditions and the temperature). Thus, for
semiconductor QWs, T1 is generally much larger than T∗2, therefore T∗2 effectively
defines Γ (H). A more detailed description of the interactions that lead to decoher-
ence and therefore shorten T∗2 and T2 in semiconductor QWs are discussed in Sec-
tions 3.2.1 and 3.2.2.

3.1.7 Disorder and exciton localization

Even the best epitaxial growth techniques cannot create perfect atomically flat ma-
terial interfaces. Non-uniform growth rates lead to local hills and valleys, interface
roughness, and monolayer islands or terraces. Disorder can also arise in form of
fluctuation of the alloy composition at the material interfaces (particularly preva-
lent in ternary alloys). Even layer thickness fluctuations of a single monolayer lead
to significant and measurable shifts of the exciton transition energy which is ex-
tremely sensitive to the confinement potential. In high quality samples with large,
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Figure 3.8: Different length scales of disorder. (a)� αX (b) ≈ αX (c)� αX. The exciton in (a) sees
an effective potential averaged over the disorder within its Bohr radius, represented by
the red lines.

almost perfectly flat terraces, monolayer fluctuations can even be spectrally sepa-
rated and the precise well-width identified [149]. In the same paper, they identified
some fluctuations of the emission energy within these flat terraces which were less
than the shift expected for single monolayers. The presence of these shifts revealed
that even in such apparently atomically flat regions some disorder remains.

The lateral size of the disorder is also very important in predicting the exciton’s
optical properties. Monolayer islands with lateral dimensions similar to the exci-
ton Bohr radius (αX) represent an additional confinement of the exciton in the
x/y plane (Fig. 3.8a), which further shifts the exciton transition energy. Roughness
which is small compared with αX (Fig. 3.8b), does not confine the exciton in plane.
Instead, the exciton experiences an effective potential which is an average of all
the different widths within αX (represented by the red lines in Fig. 3.8b). Finally,
roughness which is very large compared with αX results in large areas with nearly
degenerate exciton energies, and discrete energy levels due to the monolayer fluc-
tuations in high quality, narrow QWs (Fig. 3.8c).

The interface roughness can be coarsely controlled by changing the growth pa-
rameters (such as growth speed or substrate temperature), or by including growth
interruptions of ∼10-90 s, which lead to the generation of monolayer islands of in-
creasing size. Loosely speaking, the longer growth interruption applied, the larger
the resulting islands become as the atoms are given time to relax into the lowest
energy configuration [149–151].

Static disorder causes some important modifications of the optical properties of
QWs. First, the lateral size of the roughness is typically much smaller than the spa-
tial resolution of optical experiments, so many different well widths are excited
simultaneously. These optical measurements therefore represent an ensemble mea-
surement encompassing a large range of well widths, resulting in additional broad-
ening of the exciton line. For monolayer fluctuations that have a lateral size much
larger than αX, the structural broadening is inhomogeneous, since (in principle)
we can consider each exciton to inhabit a QW with a well-defined width and a
linewidth limited homogeneous broadening. This is the way that static disorder
is typically considered in QWs, and results in a stochastic broadening of the exci-
ton line. The resulting exciton line-shape is a convolution of the dephasing limited
homogeneous linewidth with the Gaussian disorder induced broadening. This line-
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Figure 3.9: Spectral characteristics of localization in QWs. The stokes shift, and localized and delo-
calized excitons separated by a mobility edge.

shape is commonly referred to as a Voigt line-shape. For the MBE (MOCVD) grown
GaAs based QW samples studied in this thesis, structural disorder typically results
in linewidths of ∼0.5-2 meV (∼3-5 meV).

Another important effect of disorder, is excitons in the narrower region (the
higher energy side of the inhomogeneous distribution) can relax into the wider
regions of the QW through the emission of a phonon or inelastic scattering with an-
other exciton. For QWs with broad inhomogeneous distributions and certain types
of disorder, this results in a shift of the emission spectrum to lower energy with re-
spect to the absorption line (as shown in Fig. 3.9). This shift is often called a Stokes
shift. The inhomogeneous distribution of excitonic states is therefore typically inter-
preted in the following way [152, 153]: the low energy side of the distribution is
made up of localized states - excitons trapped in a monolayer island. The high en-
ergy side of the inhomogeneous distribution consists mostly of excitons which are
not trapped in monolayer islands. The two types of states are separated by a line
in the middle of the distribution which is called the mobility edge. The sharpness
of the mobility edge, and the size of the Stokes shift depend on the number and
distribution of the lower energy islands as well as the excitation density and the
well width.

In this view, separately measuring the properties of delocalized and localized
excitons is possible by looking at the high and low energy side of the inhomo-
geneous line, respectively. For example, studies have shown that the delocalized
excitons are affected by collisional dephasing at lower densities than localized
states [154] and that the homogeneous linewidth is typically larger for delocalized
excitons [153, 155].

Webb et al [156] presented a differing view of how disorder manifests spectrally.
In this work and several others [157–159], they reported a QW sample that simulta-
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neously exhibits free polarization decay and photon echo signal, suggesting simulta-
neous homogeneous and inhomogeneously broadened character. To reconcile these
surprising results they suggest that the photon echo signal belongs to localized ex-
citons while the free polarization decay belongs to delocalized excitonic state. This
is a surprising result because the delocalized and localized excitons have nearly
identical emission energies, contradicting (or going beyond) the mobility edge in-
terpretation given above, which would predict the two types of excitonic states to
have separate emission energies. Interestingly, in agreement with the interpreta-
tion given above, the localized and delocalized excitons appeared to have different
density dependence, with the delocalized excitons only appearing at high power.
Such spectrally overlapped localized and delocalized exciton states have also been
reported by Ashkinadze et al [160] based on modulation of resonantly excited ex-
citons in GaAs/AlGaAs QWs, and by Erland et al [161], who determined that a
multi-exponential decay of a FWM signal came from sub-populations of localized
and delocalized excitons.

However, this interpretation - the existence of spectrally overlapped delocalized
states - is not widely accepted, and a detailed understanding of what leads to the
appearance of the apparently delocalized state at high power is still lacking [162].
Correlation of these properties with detailed, nm scale measurements of layer to-
pography would be very enlightening, but unfortunately such measurements are
difficult to realize. It is also hard to know which of these views of disorder to apply
to MOCVD samples because most of the studies of disorder focus on MBE grown
samples which likely have very different lateral disorder distributions and because
there are not many nm scale measurements of MOCVD grown samples.

Finally, it is worth noting that excitons can dephase due to scattering off disorder,
though the details of how the topography induces scattering is not clear [163–166].
One intuitive way that scattering can occur is through the relaxation of the exciton
from one region of the well into an energetically favourable one.

3.1.8 Defects

Semiconductors can also have defects in the crystal structure, which come in the
form of point defects (e.g. incorporation of an unintended atom, or a missing atom)
and longer range dislocations of the crystal structure. Point defects can be donors
(has an extra electron) or an acceptors (extra hole). Excitons can be bound to a
defect site (localization of the electron and hole at the defect), or lead to recombi-
nation of a free electron (hole) with an acceptor (donor) defect. In GaAs, defects
are typically shallow6 and can be identified in photoluminescence experiments as
peaks just below the material bandgap energy or as a red shift of the band edge. Dis-
locations, unlike point defects, do not typically have optically allowed transitions,

6 Deep defects can occur in GaAs and other materials and can modify properties, but for the purposes of this
thesis, only shallow defects are discussed.
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but instead function as non-radiative relaxation centres in which the energy of the
electronic excitation is dissipated into the lattice [142].

Even in the highest quality epitaxial layers defects still occur. Deposited GaAs lay-
ers, for example, have been studied in great detail using photoluminescence and
PLE spectroscopy, and it has emerged that the most common defects are intersti-
tial or substituted carbon [128, 167, 168]. Carbon defects in GaAs have a well
known emission profile at low temperature: a range of defects occur just below the
bandgap (from 1.510 eV to 1.515 eV), as well as two broad, strong peaks at 1.490 eV
and 1.493 eV [128, 167, 168].

Controlled incorporation of defects also allows for doping of the semiconductor
such that there are some carriers in the conduction band (n-type) or holes in the
valence band (p-type) at equilibrium. Doped semiconductors are incredibly impor-
tant for opto-electronic devices, such as PIN diodes, and therefore their electronic
and linear optical response have been studied in great detail. However, most of
the fundamental studies of the coherent response of excitons have been limited to
nominally intrinsic (undoped) materials [142].

3.1.9 Lattice mismatch and strain

Differences in the lattice constants of the materials which make up semiconductor
heterostructures (often called lattice mismatch) can lead to the incorporation of
strain which can affect the optical and electronic properties of the resulting struc-
ture [142, 169, 170]. If the lattice mismatch is small and the layers are thin, the
strain results in a static deformation of the crystal structure. If the lattice mismatch
is large and/or both layers are thick, the interface can relax in the form of dis-
locations (missing bonds). In the static deformation regime, lattice mismatch in-
duced strain reduces the symmetry of the crystal lattice, which has important conse-
quences for the optical properties [142]. Crystal deformation shifts the bands, and
changes the band gaps according to the deformation potential, which is an intrinsic
material property. Additionally, (depending on orientation of the lattice relative to
the growth direction) the HH and LH bands are shifted in opposite directions due
to spin-orbit coupling of the holes. This can have important consequences in certain
heterostructures. For example, in GaAs/InGaAs QWs with certain well-widths and
low indium content, strain can lead to a potential profile which is type-II for light
holes and type-I for heavy holes [169, 170].

Depending on the growth direction and the types atoms in the lattice, strain can
induce an internal electric field which can modify the shape of the potential well in
QW structures. This deformation can lead to effects such as ill-defined wavefunction
parity, the quantum confined stark effect, and drastically extended exciton radiative
recombination lifetimes [171].
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Lattice mismatch induced dislocations are important as well, but less easily iden-
tified in optical experiments. The deformation of the crystal and subsequent strain
are reduced, but defects are introduced. These defects can act as traps for electrons
or holes which prevent them from recombining radiatively. Instead they will even-
tually relax via non-radiative processes (which can also be provided by the defects
themselves) [171].

To avoid lattice mismatch a select few material systems (such as GaAs/AlGaAs)
have been used extensively. However, if strain could be tolerated, a much larger
range of materials would become available for use in heterostructures. For this
reason, there is considerable interest in understanding the effects of strain and
mitigating those which are detrimental to the resulting quality of the resulting het-
erostructures [172].

3.2 Coherent response

An ultrafast laser pulse incident on a semiconductor QW and resonant with the
excitonic transition energy will excite a coherent ensemble of excitons which then
scatter off other excitons, free-carriers, phonons, defects and/or structural disorder.
At low temperature (T < 20K) the coherent ensemble dephases (due to inhomoge-
neous linewidth) and decoheres (due to random phase breaking interactions) over
the first couple of picoseconds, then relaxes through radiative and non-radiative
processes back into equilibrium over the following 100’s to 1000’s of ps[46]. FWM
and successive techniques such as six-wave mixing and CMDS are capable of mea-
suring exciton dynamics through this first coherent stage. This section will pro-
vide a brief overview of what coherent experiments have been performed on ex-
citons in QWs and what they have taught us about the physical underpinnings
of the coherent response of the system. More specifically, it will show how it has
emerged that the coherent response of excitons QWs is fundamentally dependent
on many-body interactions and is therefore a good template for studying many-
body phenomena[162].

3.2.1 Decoherence induced by phonons

In QWs at low temperature, decoherence of the macroscopic polarization induced
by the first pulse occurs over a number of ps. At the low excitation limit, the domi-
nant physical mechanism for the decoherence is elastic (interactions that contribute
to T∗2) and inelastic scattering (interactions that contribute to T1) with phonons. The
inelastic scattering mechanisms include emission of a phonon due to cooling of exci-
tons not generated at k=0 and migration of excitons to an energetically favourable
monolayer island. The processes involving absorption of a phonon are also possible,
but less likely at low temperature when very few phonon modes are thermally pop-
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ulated. Elastic scattering in which phonons stochastically change the phase of the
polarization but do not change its energy - also contribute to decoherence [46].

The role of phonon induced decoherence can be studied using temperature depen-
dent FWM and absorption experiments. Absorption experiments cannot separate
homogeneous and inhomogeneous broadening, and are therefore intrinsically diffi-
cult to extract the information we want (especially at low temperature where the in-
homogeneous linewidth is typically much larger than the homogeneous linewidth).
For that reason, direct measurement of the decoherence time with FWM is more eas-
ily interpreted, and can elucidate the role of acoustic phonons (which contribute
more than optical phonons at low temperature) [46, 173, 174]. Several experi-
ments have been conducted, showing the expected linear dependence on tempera-
ture for acoustic phonons [174], and a more complex exponential dependence for
optical phonons [173]. The fits to temperature dependent experimental dephasing
rates do not go to zero when extrapolated to 0 K. This is due to the additional contri-
bution of decoherence due to interface roughness, defects and the exciton radiative
lifetime [46, 162].

3.2.2 Decoherence due to carrier-carrier interactions

Collisional decoherence due to exciton-exciton and exciton-free carrier scattering
can be measured with FWM or linear techniques as a function of excitation den-
sity. FWM is better suited as it can be used to isolate the homogeneous linewidth.
Several experiments have been conducted, and experimentally demonstrated that
(particularly for large densities) the homogeneous exciton linewidth broadens lin-
early with increasing intensity. Interestingly, it was also shown that the scattering of
excitons with free-carriers caused a linear increase of the homogeneous linewidth
which was 8× greater than that produced by the same density of excitons [46, 175].

It should be noted that the deconvolution of exciton-exciton scattering and phonon
scattering is not straightforward. Typically it involves measuring the exciton homo-
geneous linewidth as a function of both excitation density and temperature, and
then extrapolating to 0-excitation and/or 0 K [46, 173]. However, the validity of
extrapolation of the linewidth to 0-excitation density has been questioned as it re-
quires that the excitation induced decoherence can be fully deconvolved from the
single exciton response [43, 176, 177]. This is not necessarily the case, because (as
we will see in section 3.2.4) exciton-exciton many-body interactions and correla-
tions are now known to be significant contributors to the FWM signal, and are not
easily deconvolved from the single exciton response [43, 176].
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3.2.3 Quantum-beats

When multiple exciton transitions are simultaneously excited, quantum beats (QB)
can sometimes be detected. QBs occur when multiple quantum pathways interfere
in a single quantum system, resulting in oscillations of the FWM signal as a function
of t1 and/or t3, which match the energy separation of the excitonic transitions. A
requirement for the presence of QBs is that the two transitions to be part of the
same quantum system, so the detection of QBs is often taken as evidence that the
transitions are coupled7. QBs have been detected for a range of different exciton
transitions in QWs, including coupling of HH and LH excitons [179, 180], excitons
localized in different monolayer islands [24, 33, 44], localized and delocalized ex-
citons [181], excitons in a coupled double QW [32, 76, 182], type-I and type-II
excitons [183, 184].

QBs were usually interpreted as indicating that the two transitions cannot be
described as two separate (uncoupled) two level systems, but instead as a three
level system with a shared ground state [44, 46]. Unfortunately, (as detailed in
Fig. 2.11) population transfer, coherent superpositions, ground state bleach and
excited state absorption pathways can all interfere with single transition pathways
to generate QBs. For this reason, the detection of QBs is not by itself enough to
unambiguously identify the coupling pathway or underlying mechanisms.

Multidimensional spectroscopy represents a notable expansion of FWM capabil-
ities in this regard. First, through detection of the phase, the QBs generated via
the coherent superposition pathway can be isolated by scanning the second time
delay. Second, the detection of the signal phase also helps to separate the QBs from
fluctuations in the signal due to noise. The phase of the QBs varies systematically
as the delays between the pulses change, while the phase of the noise varies ran-
domly. QBs are therefore more easily identified and separated from noise when the
signal is Fourier transformed, even when the beat amplitude is near the noise floor.
Finally (as indicated in Fig. 2.7), the inclusion of phase information in CMDS re-
moves the ambiguity in the energetic direction of the coupling. Put another way,
QBs tell us what the magnitude of the energy difference of two coupled states A
and B is (|EA − EB|), while CMDS gives us both EA and EB directly. The improve-
ments listed in this paragraph are a large part of what makes the experiments in
the following chapters possible.

Subsequent FWM experiments [49, 185] and (in recent times) multidimensional
spectroscopy studies [53, 54, 81] have been used to understand how the many-
body effects described in the following section contribute to QBs and coupling of
distinct states.

7 For detection at a single wavelength, polarization interference (PI) can be mistaken for QBs (interference of
the emitted signal in the far field, instead of interfering quantum pathways in the sample). However, QBs have
in phase oscillations across the entire ensemble while the phase of the PI oscillations changes by π. QB and PI
can therefore be easily separated in spectrally resolved four-wave mixing (FWM) experiments [178].
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3.2.4 Many-body Effects

Inorganic crystalline semiconductors are ordered arrangements of atoms whose be-
haviour is dictated by a semi-infinite number of covalently bonded atoms interact-
ing through Coulomb forces over semi-infinite distances. This fundamentally many-
body system is therefore an interesting platform for studying many-body interac-
tions of delocalized electronic excitations [186].

The prevalence of many-body effects in QWs was first hinted at by two beam
FWM experiments. The basic theory of FWM (as presented in section 2.1.1) tells
us that we should only see signal when the conjugate pulse arrives first (which is
typically considered to be a positive delay). However, a wide range of two beam
FWM experiments demonstrated negative delay signal that was nearly as strong
as the positive delay signal [31, 186]. Furthermore, time-resolved two beam FWM
experiments showed an unexpected delayed signal rise even for positive delays and
homogeneously broadened QWs [187]. The consensus formed that these anoma-
lous signals were a result of many-body interactions [43, 186]. Several different
many-body effects have been investigated: local field effects (LFE) [31], excita-
tion induced dephasing (EID) [176], excitation induced shift (EIS) [79] and multi-
particle correlations (e.g. biexcitons) [180].

LFE, EID and EIS are in many ways very similar effects, in that they involve the
generation of signals through spatial modulation of the different material proper-
ties. Therefore, they cannot be easily separated experimentally. Furthermore, though
this section focuses on the negative delay signals, these many-body effects also con-
tribute to signals when t1 and t2 are positive, where they are inherently convolved
with the single exciton response. For this reason, understanding these many-body
effects is crucial in the proper interpretation of FWM and CMDS experimental re-
sults.

3.2.4.1 Local field effects

Local field effects occur because of the coherent re-emission of photons by a macro-
scopic polarization which was generated by a laser pulse [43]8. Each pulse that is
incident on the sample creates a macroscopic polarization with the wave-vector of
the incident pulse, which then decays according to the inverse of its inhomogeneous
linewidth. While the macroscopic polarization still exists it is continuously emitting
radiation with same wave vector as the incident pulse. This polarization can then
act as a source for signal in the phase matched direction instead of the original
pulse. Since the polarization lasts for much longer than the ultrafast pulse, this
second field can a produce a signal in which the interaction involving the second

8 LFE does not necessarily require coherent re-emission of a photon, just that there is some remaining polariza-
tion from previous pulses that can act as sources even after the pulses have disappeared. However, thinking of
LFE as coherent re-emission is more intuitive. Furthermore, the effect of the non-radiating polarizations is also
suppressed by dielectric screening.
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pulse occurs after the first (conjugate) pulse even for negative delays far beyond
the excitation pulse widths.

3.2.4.2 Excitation induced decoherence

Although it wasn’t recognized as such at first [63, 175], excitation induced decoher-
ence of excitons is also a many-body effect, and can be used to explain the presence
of signal for negative delays [43, 162, 186]. EID is a many-body effect in that the
collective action of many exciton-exciton interactions serve to shorten the dephas-
ing time and increase the linewidth. In addition to modifying the signal in the posi-
tive delays, EID was found as a possible source of negative delay signal [176, 177].
A physical explanation of how EID can generate signal in the negative pulse order-
ing9 can be more intuitively provided considering a three pulse FWM experiment,
detected in the −k1 + k2 + k3 direction, with the k2 → k3 → k1 pulse-ordering.

The first pulse incident on the sample (k2) generates a macroscopic polarization.
k3 and k1 then produce a population grating. This population grating leads to a
spatially varying decoherence rate due to EID, which modulates the decoherence
of the macroscopic polarization left over from the first pulse. This leads to a sort of
‘decoherence grating’ in which the areas of constructive interference between the
second and third pulse decohere rapidly, and the areas of destructive interference
decohere slowly. As a result, the wave-vector dependence of the second two pulses
will be imprinted on the macroscopic polarization from the first pulse, and some
portion of the emitted signal is diffracted into the −k1 + k2 + k3 direction. The
strength of this signal is proportional to the strength of the EID. Put another way
this effect can be thought of as the scattering of the coherence generated by k2 off
of the population created by k3 and k1 [43].

3.2.4.3 Excitation induced shift

Like EID, EIS is a many body effect that results from exciton-exciton interactions
and therefore depends on density. It was first identified in spectrally resolved tran-
sient transmission experiments, where it manifested as a spectral shift of splitting
of the exciton line [188, 189]. Later, it was recognized that EIS could be considered
as a source for FWM signals [43, 79]. In the same work the authors demonstrated
that peak shapes in FWM and transient transmission experiments could be accu-
rately predicted by modified Bloch equations (a modified form of the equation in
section 2.1.1) with phenomenological inclusion of an EIS parameter that scales
with the exciton population. Physically, EIS can be explained as a modification of
the exciton binding energy due to excitation induced screening of the electron-hole
Coulomb attraction [188].

A semi-physical explanation of how EIS can generate signals is very similar to
the explanation for EID [43, 63]. The population grating generated by k3 and k1

9 EID can also generate signals for ‘positive’ delays.
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leads to spatially periodic modulations of the center of the exciton spectrum, and
subsequently the susceptibility. Like the ’decoherence grating’ induced by EID, the
’susceptibility grating’ from EIS imprints the wave-vector dependences of k1 and k3
onto the polarization, which then emits photons into the −k1 + k2 + k3 direction.
Less intuitively, EIS also leads to a mixing of the real and imaginary parts of the
susceptibility which changes the real peak shapes in 2D spectra from absorptive
to dispersive. This peak shape change has been detected experimentally in both
cross-peaks (CPs) and diagonal peaks (DPs) [53, 54].

3.2.4.4 Multi-particle correlations

LFE, EID and EIS are usually considered phenomenological modifications to a mean-
field interpretation. A more complete physical description of the coherent response
would also include higher order multi-particle correlations. Such correlations can
be included by expanding the system density matrix to include additional states,
and (though they cannot be solved analytically) the resulting differential equations
can be solved numerically depending on how large the system is and what effects
are included. A detailed understanding of how these correlations contribute to the
FWM signal and affect the single exciton response is unfortunately still lacking. In
that vein, a variety of experiments that isolate signals resulting from correlations of
four or more particles have been conducted in recent years [86, 190, 191]. These
preliminary experimental results will be the subject of the following paragraphs.
While it is clear from these results that multi-particle correlations are present in
QWs, it remains to be shown what role they play and how important they are in the
single exciton response.

Beyond excitons, the next level of complexity in multi-particle correlations are
biexcitons, which is a bound quasi-particle made up of two excitons (two holes
and two electrons). Bound biexcitons in GaAs have a binding energy of 1-2 meV,
and therefore appear in spectra as shoulders at slightly lower energy than the 1-
exciton transition [192]. It has been shown that unbound four particle correlations
also appear. The lack of binding energy means that they occur at the same energy
as the single exciton resonance, so they cannot be as easily detected using linear
techniques. 2-quantum (2Q) 2D spectroscopy has proven to be a very effective tool
for studying these four particle correlations, since they can be separated along the
2Q axis [86, 191].

If we leave the exciton quasi-particle basis and return to electron/hole particle
basis, we can view biexcitons as the correlated motion of four charged particles in
a potential well. In a simple view, this can explain how signals are generated in
the negative delays. Two photons excite a four particle quadrupolar motion, which
oscillates at the sum of the two exciton frequencies [63]. Although the quadrupo-
lar motion represents oscillating charges, symmetry of the correlation means that
the charge motion cancels and there is no net dipole. The four-particle motion
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can therefore not directly emit photons. The third pulse then perturbs this motion,
inducing some net charge oscillation. The oscillation of charges implies a dipole
moment and therefore the perturbed four particle motion emits signal photons.
This four-particle picture provides an explanation for the observation of 2-exciton
correlations in QWs which appear in experiments with negative delays[63].

If we take a step back again and remember that these oscillations are not actually
occurring in a ‘vacuum’, but rather spread out across a large number of lattice
sites, we see that the physical details of this motion are dependent on the real
space characteristics of the lattice. The real space motion of two- or four-particle
correlations is therefore far from intuitive. This illustrates the difficulty of a true
many-body treatment of excitons including multi-particle correlations [63].

Still, recent work has gone into measuring and understanding the dynamics of
biexcitons, including identifying which biexcitonic pathways contribute to third or-
der signals [191], measuring binding energies [96], understanding how biexcitons
interact with excitonic pathways [86] and how biexcitons contribute to coupling
of distant excitonic states [73]. Other experiments have used six-wave mixing to
investigate correlations beyond four particles, (such as triexcitons and six particle
correlations) and shown that they also affect the single exciton response [190, 191].
Finally, stepping away from FWM momentarily, a very stable pump-probe experi-
ment and 2D spectroscopy were recently used to identify a new quasi-particle to
which the authors gave the name ‘dropleton’. They use a novel analysis protocol
in which the fundamentally classical measurement is projected onto a basis made
up of coherent states, and demonstrate stable correlations of up to 6 electron hole
pairs [193]. Beyond identification of these signals, many of the details of these
multi-particle correlations (such as their prevalence and how they contribute to
measured single exciton dynamics) remain to be explored.

Viewing the coherent response of excitons in QWs as a many-body system includ-
ing multi-particle correlations beyond excitons is a more complete physical way of
looking at the system. Based on the recent experiments, these multi-particle corre-
lations clearly can be generated in QWs and contribute in experiments measuring
coherent exciton dynamics. However, the fundamental understanding and compu-
tational tools required to incorporate multi-particle correlations into the mean field
theory are lacking. Care must therefore be taken in reconciling FWM and CMDS
experiments with theory because multi-particle correlations clearly exist (based on
the experiments detailed in the previous paragraphs), and may play a non-trivial
role which is not captured in typical mean-field interpretations. Furthermore, ex-
tending experiments beyond these preliminary investigations is an important next
step. It would be particularly useful to find a way to experimentally deconvolve the
multi-particle response from the single-exciton response.
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3.2.5 Multidimensional spectroscopy to study coherent effects in QWs

Because of the enhancement of the capabilities over standard FWM, CMDS is a
likely candidate for future investigations into many-particle correlations and many-
body effects in semiconductor QWs, and for clearing up some of the ambiguity dis-
cussed in the previous section. Over the last decade a range of 2D spectroscopy ex-
periments into QW excitons have been conducted, and have been focussed on repli-
cating or extending previous FWM experiments. These experiments have served to
both characterize the capabilities of 2D spectroscopy and to exploit them to incre-
mentally extend our understanding of QW exciton dynamics.

Since the first report in 2005 [56, 194], nearly all of the investigations into co-
herent effects in QWs using multidimensional spectroscopy have been conducted
by two groups. The Cundiff group has been using 2D spectroscopy to investigate
many-body effects. Their general approach has been to use numerical simulations
involving phenomenological incorporation of EIS, EID and LFE to understand the
peak shapes and presence of CPs in 1-quantum (1Q) and 2Q 2D spectra [53, 54,
80, 81, 195]. They also demonstrated that 0Q coherence could be used to ex-
plore coherent-superpositions [50], detected exciton-trion coupling in a polar CdTe
QW [82], demonstrated photo-current detected 2D spectroscopy [69], and mea-
sured the coherent linewidth of a QW grown on a (110) substrate [196]. In ad-
dition to this single-QW work, they have also performed two investigations into
coupling of double QWs, (which will be discussed in more depth in the following
chapter) [54, 197].

The Nelson group has focused on studying multi-particle correlations using third,
fifth and seventh order experiments [191]. As described in the previous section,
they were able to identify 6-particle correlations and learn many things about
bound and unbound biexcitons.

Two other investigations have recently been added by other groups. Paul et al
reported some basic characteristics of a modulation doped single QW using 2D
spectroscopy techniques [198]. Glinka et al investigated the in-plane coupling of
excitons localized to different monolayer islands in a narrow single QW, and similar
to the FWM mixing experiments described in section 3.2.3 demonstrated that non-
local coupling of excitons can be relatively strong in QWs [199].

Many of the experiments listed in the previous paragraphs have focused (in one
way or another) on technique development. They have developed and character-
ized the capabilities of 2D spectroscopy of QWs, and shown its extensive potential.
Beyond technique development, these experiments have also led to incremental im-
provements in our understanding of the coherent response of excitons in QWs in
part by repeating experiments conducted previously using FWM techniques. Finally,
some important extensions of FWM have been recently demonstrated, particularly
by looking at the 2Q response.
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We are approaching a point at which the capabilities of CMDS are well under-
stood and characterized, and the analysis tools we have available (such as peak
shape analysis) are well defined. We are therefore now ready to extend experiments
in new directions not previously possible using FWM, with the goal of continuing
to unravel the complex many-body interactions that dominate the coherent exciton
response in QWs.
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The study of inter-well coherences in asymmetric double quantum wells (DQWs) is
a good demonstration of how pathway selection can be useful. In particular, we will
show that it can effectively isolate coherent inter-well interactions in the case where
the barrier between the wells is wide enough that there is essentially no hybridiza-
tion of the wavefunctions. In this chapter, 1-quantum (1Q) 2D and 3D spectroscopy
with and without pathway-selection are used to study inter-well coherences in two
separate DQW systems. Section 4.1 presents a brief literature review of coherent
dynamics in DQWs, and provides the motivation for the work presented in this
chapter, which can be split into two categories: technique development and under-
standing coherent inter-well interactions in DQWs. Section 4.2 expands on Section
2.3, and presents a more detailed description of the benefits of pathway selection
using spectrally shaped pulses. Sections 4.3 and 4.4 present experimental results
on GaAs/AlGaAs and InGaAs/GaAs DQWs, respectively. The some of the discussion
in Section 2.3 and some of the results in Section 4.3 were published in 2014 [95].

4.1 Motivation

4.1.1 Motivation 1: Technique development

Evidence of coherent coupling of excitons in biological light harvesting complexes
(LHCs) was recently demonstrated experimentally using 2D spectroscopy [6, 200].
These original results have set into motion a large number of experimental and
theoretical studies, with coherences now observed in several different types of
LHCs [5, 8, 9, 97, 98, 200, 201]. The interpretation of these results are still contro-
versial, and whether the observed coherent effects are important to the function of
photosynthesis still remains to be determined. Still, it is a phenomenon that mer-
its further examination because it has been suggested that the coherences may be
responsible for the surprisingly fast and efficient funnelling of charges from the an-
tennas to the reaction centres. If this effect could be understood in LHCs, it could
perhaps be used in the design of more efficient light harvesting technologies.

95
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Some challenges in interpreting these results come from experimental limitations
of 2D spectroscopy. All of the 2D spectroscopy experiments previously reported use
broadband excitation pulses which simultaneously excite a wide range of pathways.
As most of what is of interest are coherent interactions, many of those pathways do
not provide useful information but do obscure the signal of interest. By using pulses
tuned to two different transitions, the coherence pathway can be selectively excited
and all other pathways suppressed.

Some previous experiments have used this approach to study the LHC PC645.
These experiments utilized pulses from two different OPAs tuned to two different
transition energies to isolate the coherent superposition signals [10, 97, 98, 201].
They were able to use the selectivity to develop a much clearer picture of the elec-
tronic structure of PC645. They were, however, also unable to perform 2D spec-
troscopy because the outputs from the OPAs lacked the phase stability required to
measure the signal phase. An extension of this selective approach to coherent mul-
tidimensional spectroscopy (CMDS) by also collecting the signal phase would be
advantageous, as the peak-shape and line-shape analysis tools in CMDS are very
powerful.

However, LHCs are not the best sample for demonstrating such a technique due
to their broad spectra and short dephasing times. They also have very complex
electronic structures including ground and excited state vibrational manifolds as
well as multiple overlapping electronic states. For the purposes of demonstrating
the pathway selective CMDS technique, it would be preferable to use a ‘simpler’
sample. DQWs are a good option because they exhibit discrete excitonic levels and
sharp phonon lines instead of broad vibrational manifolds. The exciton transition
energies can be controlled by changing the width of the wells, and the amount of
interaction between the wells can also be controlled by changing the width of the
barrier between the wells. While the types of excitons in QWs are completely differ-
ent from those in LHCs, the success of the technique in studying QWs may signal
that pathway selective CMDS could be useful in studying other systems (including
LHCs) as well.

4.1.2 Motivation 2: Mechanism of coherent inter-well interactions in wide barrier DQWs

Over the past three decades, continued effort has been put into understanding
the physics underpinning inter-well excitonic interactions in DQWs, multiple-QWs
(MQWs) and QW superlattices [32, 46, 202, 203]. Understanding these interac-
tions is important for devices, such as superlattice lasers [202], quantum cascade
lasers [2] electro-absorption modulators [204] and resonant tunnelling diodes [3].
In addition to these device applications, double quantum-wells provide a very nice
template for studying fundamental quantum mechanical phenomena. With modern
deposition techniques such as molecular beam epitaxy (MBE) and metal organic
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chemical vapour deposition (MOCVD), many aspects of the structure (such as bar-
rier height, well and barrier widths, doping concentrations) can be very precisely
controlled. This makes for a template in which coupling strength, environmental
factors and spectral markers can be designed to suit the experiment.

The DQW potential profiles have confined conduction band and valence band
states with wavefunctions that are straight forward to calculate numerically. As
with many semiconductor nanostructures, DQWs exhibit strong interactions with
electromagnetic fields and sharp, excitonic resonances. These resonances provide
convenient spectral markers which can be used to precisely identify where in the
heterostructure the exciton is located. MBE and MOCVD growth techniques pro-
duce QWs with very little structural disorder and hence very little inhomogeneous
broadening, which typically lead to excitonic resonances which are easily separable
even in the presence of the structural disorder.

For this reason, there have been many investigations into coherent interactions
in DQW structures. However, most of the investigations have focussed on DQW
samples in which the barriers are narrow and/or low, so that there is significant
hybridization of the wavefunctions. In this situation, states are better considered
as eigenstates of the full DQW structure rather than individual states. As a result,
differentiating between coupling due to a shared ground state and excited state
coupling is more difficult. To study the phenomena of coherent superpositions of
spatially separated states, we must investigate DQWs with wide enough barriers
that there is very little wavefunction hybridization.

The dynamics of coherent inter-well interactions were first studied using FWM
spectroscopy. Leo et al [32, 205] showed that coherent inter-well interactions can
also be detected as quantum beats (QBs) in pump-probe and four-wave mixing
(FWM) measurements. The interpretation of these QBs, however, was limited by
ambiguity in the assignment of the quantum pathways generating the signals. The
QB spectroscopy of inter-well coupling was mostly limited to DQWs with narrow
barriers (in which strong QBs could be resolved), so little insight was gained into
coherent inter-well coupling in the excited state.

Quantum beats from a DQW structure indicate the presence of charge oscillations
from one well to another. In strongly coupled wells (i.e. with narrow barriers) these
beats can have a large amplitude so the charge oscillations can generate emission
at the energy difference between the coupled transitions (typically in the low THz
range) [32]. It was shown that the THz emission could be coherently controlled in
double pulse experiments [106]. The emission of THz radiation relies on the coher-
ent inter-well charge oscillations, so spectroscopic studies of the THz emission from
DQWs when excited by fs pulses can be used to study inter-well coupling [206].
However, the long wavelength of the THz emission intrinsically produces emission
over a long a period of time, so some inter-well dynamics which appear on a much
shorter time scale cannot be temporally resolved. Furthermore, these experiments
typically focussed on the narrow barrier DQWs where charge oscillations can be
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more readily observed. For wider barrier wells, the less efficient tunnelling of carri-
ers through the barrier results in a much weaker THz emission [46].

Some fundamental insight has been gained during the development of devices in
which coherent inter-well interactions play a crucial role. For example, the quantum
cascade laser (QCL), first demonstrated in 1994 by Faust et al [2], relies on inter-
well coherence to rapidly repopulate the lasing state. Studies of QCLs using ultrafast
spectroscopic techniques has led to an improved understanding of rapid coherent
charge/energy transfer. In particular, studies have focused on the regime where the
barriers are narrow and there is strong inter-well coupling, which is most relevant
to the function of the devices [207, 208].

More recently, several CMDS experiments have been conducted on DQWs with
wide barriers [54, 76, 77, 182]. The first of which was published in 2009 by Li et
al [197], in which 2D 1Q spectra were reported for DQWs with two different bar-
rier widths (1.7 nm and 10 nm). The 2D spectrum of the sample with the 1.7 nm
barrier demonstrated a grid pattern of cross-peaks (CPs) and diagonal-peaks (DPs)
showing that the two transitions in each well (heavy-hole; HH and light-hole; LH)
were strongly coupled to the two transitions in the other well. The wavefunctions
were significantly hybridized because the barrier was quite narrow, so the excitons
could not be considered to be localized to a particular well, but rather extended
across the entire DQW. More interestingly in the context of coherent superposition
of spatially separated states, the 1Q 2D spectrum for the 10 nm barrier sample ap-
peared to show at least one inter-well CP. Unfortunately, conclusive identification
of the excitonic states associated with the CPs was prevented by the lack of spec-
tral separation of the transition energies. Specifically, the separation of the lowest
energy HH exciton transition in each well was comparable to the the separation
of the HH and LH exciton transitions in the wide-well. As a result, the authors
were unable to determine whether the ostensibly inter-well CP was not a result of
intra-well interactions between HH and LH excitons in the same well. This work
also demonstrated that simply identifying CPs a 2D spectrum cannot be used to di-
rectly discern coupling mechanisms or pathways. In particular, identifying coherent
superpositions was not possible with a 1Q 2D spectrum alone.

Earlier work in the ultrafast spectroscopy group at Swinburne used a non-interferometric,
phase-retrieval CMDS technique to study a DQW sample (similar to the one in Sec-
tion 4.3, but with a narrower, 4 nm barrier) [76, 77, 182]. The FWM signal was
collected as a function of both t1 and t2, and a phase retrieval algorithm was used
to generate a 3D spectrum. Two above diagonal inter-well CPs were identified in
the analysis of the 3D spectrum. This work demonstrated the usefulness of 3D spec-
troscopy in isolating signals resulting from coherent superpositions. However, the
lack of heterodyne detection meant that the sensitivity of the technique was lower
than other CMDS experiments, and consequently much higher beam powers were
used. This higher excitation density lead to more rapid dephasing of the excitons
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in the wide-well (the well with the lower exciton transition energy) and prevented
detection of below-diagonal CPs at the emission energies of the wide-well excitons.

Most recently, Nardin et al [54] reported results including a set of CMDS spectra
for an InGaAs/GaAs DQW. This DQW ostensibly has a somewhat simpler electronic
structure compared with the previously discussed DQWs. It has only one bright
transition per well because the LH bands are not confined in the potential. This sim-
pler electronic structure meant that they were able to avoid the ambiguity in peak
assignments that were evident in the previously discussed paper by Li et al [197].
The 1Q and 2-quantum (2Q) spectra showed clear inter-well CPs the latter indi-
cating that the coupling was coherent in nature. Notably absent, however was the
inter-well coherent superposition CP in the 0-quantum (0Q) 2D spectrum. These
results were reproduced by phenomenological inclusion of excitation induced de-
phasing and shift (EID and EIS) in simulated spectra. Their simulations reproduce
the 1Q and 2Q CPs and absence of 0Q CPs by introducing a lack of symmetry of
the ground to one-exciton transition and the one-exciton to two-exciton transitions.
This lack of symmetry (which they use as a proxy for many-body effects: excitation
induced shift and excitation induced dephasing) results in imperfect cancellation
of overlapping signal pathways (including CPs), breaking the symmetry of the tran-
sitions. Though this argument makes sense in a description of quantum pathways,
it does not directly describe the physical coupling mechanism. The results reported
in Ref. [54] are discussed in more detail in Section 4.4.1. Experiments on this same
sample were conducted at Swinburne, and are reported later in this chapter (Sec-
tion 4.4).

In studying the interactions in DQWs our ultimate goals is understanding the
inter-well coupling mechanisms when the barrier is wide enough that the excitons
can be considered to be spatially separated. In working towards this goal, we must
first find a way to detect the coherent superposition CP (CS-CP) consistently and
with good signal to noise. In this chapter, we will show that we can do so through
the use of pathway selective CMDS. Beyond this first step, by measuring the ampli-
tude of the CS-CP in the InGaAs/GaAs DQW in Section 4.4, we show that the 0Q is
much larger amplitude than predicted by the simulations in Ref. [54] for the same
sample. We then suggest that many-body induced coupling cannot alone explain
the observations in this sample (at least in how it is currently implemented).

4.2 Pathway selection in 1Q and 0Q spectra

Pathway selection with spectrally tuned pulses was introduced previously in Section
2.3. This section will cover how it can be applied specifically to the 1Q and 0Q 2D
and 3D spectra.

In principle pathway selection with shaped pulses can be used to isolate a wide
variety of pathways. We consider a simple system, consisting of a ground state,
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two singly-excited states with corresponding doubly-excited states and one doubly-
excited mixed state (as shown in Fig. 4.1). All the available χ(3) quantum pathways
for this type of sample are depicted in Fig. 2.12. As described in Section 2.2.1.1, the
pathways in this diagram can be constructed by following the arrows from the bot-
tom of the diagram to the top. The pathways are grouped in pairs of signals that will
cancel in the absence of interactions, and the blocks are coloured based on where
they appear in 1Q and 0Q spectra. The strings of four color-coded 1’s and 2’s indi-
cate the different pulse sequence allow each pathway. The first number indicates
the transition in which the first interaction takes place (and therefore the E1 energy
of the peak associated with that pathway in a 1Q spectrum). Similarly, the second
and third numbers indicate the transition in which the second and third interac-
tions take place. The final number indicates the transition from which the FWM
signal is emitted (and therefore the the E3 energy of the peak associated with that
pathway in 1Q and 0Q spectra). The first three numbers in the sequence thus indi-
cate the spectral shaping that can be used to excite each pathway. For example, the
2211 sequence can be used to isolate below diagonal CPs resulting from population
pathways and the 1111 sequence isolates only the pathways that occur along the
diagonal at the transition energy corresponding to transition 1. The 2121 and 1212
pulse sequences can be used to isolate signals resulting from coherent superposi-
tions of excited states. The full Feynman diagrams for these pathways are shown in
Fig. 4.2. The 1212 and 2121 pulse sequences lead to only two pathways each (one
SE-like and one ESA-like), both of which involve a coherent superposition of 1 and
2 during t2. It is worth noting that all population pathways are suppressed when
the first two pulses are not resonant with any of the same transitions (as in the
12XX, or 21XX pulse sequences). Only pathways that involve a coherent superposi-
tion of 1 and 2 will generate signal. This is true regardless of which transitions the
third pulse is resonant with. This suppression of all of the 1122 and 2211 pathways
removes the ambiguity in the 1Q CPs. The 1212 sequence generates two ‘uphill’ or
‘above-diagonal’ CPs, while 2121 generates two ‘downhill’ or ‘below-diagonal’ CPs.

Using a broadband third pulse is therefore preferable, as it will result in improved
time resolution in the waiting time without introducing any additional signal path-
ways.

Applying pathway selection to 0Q 2D spectra was first suggested by Yang et
al [50], in which 0Q spectra with spectrally tuned pulses were simulated. Our work
(which makes up much of the results in Section 4.3) published in 2014 was the first
experimental demonstration of such an approach [95]. The use of pathway selec-
tion in 0Q 2D spectra to study molecular systems was also recently experimentally
demonstrated in 2015 by Senlik et al [67]. Although there are no other pathways
overlapped with the coherent-superposition cross-peak (CS-CP) in 0Q spectra, there
are still several benefits to using pathway selection. The suppression of population
signals can actually be quite important because the E2=0 population signals can be
orders of magnitude stronger than the coherence signals. The population peaks can,
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Figure 4.1: Cartoon of a six-level system including a ground state (g), two excited states (1, 2), two
doubly excited states involving excitons of the same type (11, 22), and one involving a
mixed exciton (21).

Figure 4.2: Uphill and downhill pulse sequences that isolate interwell coherent superpositions.

therefore obscure the CS-CPs through generation of noise which spreads across all
E1 and E2 values which share the same emission energy and in the form of long
tails along E2. This can be clearly seen in simulated and measured 0Q spectra in
Yang et al [50], and in some of the 0Q spectra presented in Chapters 6 and 7 in this
thesis. These long tails and scatter can interfere with or obscure the coherence sig-
nals, so suppression of the population pathways can be beneficial in the detection
of coherence CPs in 0Q spectra.

Excited state coherent superpositions (which otherwise require a full 3D spec-
trum to separate from population pathways) can be isolated using either 1Q or 0Q
2D spectroscopy with pathway selection. In this way, the data acquisition time can
be shortened by up to a factor of 100. This more rapid data acquisition provides
two important benefits. First, it can improve the signal-to-noise ratio by limiting
the amount of phase and amplitude drift of the excitation pulses [67]. Second, it
also allows systematic studies of other factors, such excitation density, polarization
or temperature. Systematic studies of these factors are un-feasible using 3D spec-
troscopy which can take up to days to acquire.

The main way that we use pathway-selection in this thesis is in the elimination of
ambiguity in the assignment of CPs and the removal of ‘unwanted’ signals (which is
to say signals that are not pertinent to the topics/phenomena we are investigating).
It was recently demonstrated that removing overlapping signals allows the extrac-
tion of quantitative details of the system Hamiltonian [209]. This was accomplished
through a series of experiments which isolate different pathways in double-walled
nanotubes using spectral amplitude shaping in a pulse-shaper. Pathway selection
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can be helpful in other ways as well. For instance, intense signals, (even those that
don’t directly overlap CPs) can obscure CPs, either through extended tails or by in-
creasing the noise floor across the entire spectrum. As the following sections show,
pathway-selection can alleviate both of these problems. The improved SNR also al-
lows us to resolve the peak-shapes of the CS-CPs. Peak shape analysis is a powerful
part of CMDS, so being able to use it to study the coherent superpositions is an
important benefit. Finally, pathway-selective and broadband CMDS spectra can be
conducted consecutively, with no changes to the optical setup, which allows the
results to be compared quantitatively.

The improved signal-to-noise ratio (SNR) of the CS-CPs in the pathway selective
experiment is due to three different factors. First, the scan range required to col-
lect the entire decay of the signal in both t1 and t2 is shortened considerably in
the pathway selective experiment, so the acquisition times are shorter. The shorten-
ing of the scan ranges is due to the more rapid dephasing of the inter-well CS-CPs
compared with the population pathways. The faster acquisition limits the amount
of noise incorporated into the spectrum from phase drift and laser power instabil-
ity [67]. Second, the DPs can naturally have long tails that can obscure the CS-CPs.
The removal of the DPs, can therefore help reveal the CPs.

The third improvement in the SNR comes from the reduced spectral leakage from
the stronger population signals. Spectral leakage is a type of artefact that appears in
discrete Fourier transforms, due to windowing of the time domain data [210, 211].
The finite sampling range of the data results in some spreading of the power from
the main peak to other points in the spectrum when a Fourier transform is applied.
The amount of spectral leakage and where it appears depends on the details of the
window function. For example, a square window function results in the least overall
spectral leakage, but it appears across all frequencies as periodic modulations. On
the other hand, a Gaussian window function produces more spectral leakage, but
it occurs at frequencies near the signal [210]. Importantly, the amplitude of the
spectral leakage is also proportional to the signal from which it is ‘leaking’ [211].

In 2D and 3D spectroscopy spectral leakage is introduced when the Fourier trans-
form(s) are applied to the data which is recorded in the time domain. There are
effectively three different ways that spectral leakage is introduced. First, spectral
leakage can appear if the t1 or t2 delays are not scanned out to large enough de-
lays that the full decay of the signal is recorded. This is effectively a rectangular
windowing function, and results in periodic side-lobes that extend out in frequency
from the actual peak [210]. Second, to remove the signal at pulse overlap, we must
apply an additional time window. For this windowing, we do not use a rectangular
function, but rather an error function with a width equal to the pulse overlap. This
type of window function, results in less well-resolved side-lobes, but an overall in-
crease in the background [210]. Third, as described in Section 2.4.10, the intensity
of a pulse which is delayed using the pulse-shaper depends on the delay that is
applied. This delay dependent pulse intensity is also effectively a time-window on
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the signal as a function of t1 and t2, which has a sinc2-Gaussian shape. This type of
time window results in a spreading of the main peak rather than producing periodic
side-lobes [210].

The spectral leakage from a particular peak ‘P’ at (E1, E3)=(ε1, ε3) produces
spectral leakage along E1 at E3=ε3, which is proportional to the amplitude of P. In
this way, the background for all peaks for which E3=ε3 will be increased. This can
be problematic when the amplitude of the spectral leakage from DPs is comparable
with the amplitude of the CPs that share the same emission energy. The spectral
leakage actually interferes with the CP signals, which can change the sign or shape
of the CP. Spectral leakage appears along the E2 direction in the same way. Since
this background is proportional to the amplitude of the strongest peak at a given
ε3, the removal of the DPs can result in a significant reduction in the background
noise and effectively an improvement in the SNR.

One challenge of this approach is that in order to completely separate a specific
pathway, the spectral separation of the transitions must be large enough to allow
the pulses enough spectral bandwidth (and hence short enough duration) to resolve
the coherent dynamics. In some cases (the partially overlapped A and B exciton
transitions in monolayer MoS2 for example [212]), these requirements cannot be
accommodated. However, as Section 4.4 will show, pathway selection can still be
helpful even when perfect spectral separation is not possible. Though the popula-
tion pathways are not completely removed, they are suppressed enough relative to
the coherent superposition pathways that the latter can be clearly observed. In the
end, it becomes a problem of finding the right balance between temporal resolution
and spectral selectivity (not spectral resolution) that allows the pertinent informa-
tion to be extracted. Where this balance falls depends on the sample being studied,
but the adaptability of this SLM based CMDS setup allows it to easily be tuned to
match a wide variety of sample requirements.

In this section we have explained how pathway-selection in 1Q and 0Q 2D spectra
is useful for detecting very weak signals (eg. those from coherent-superpositions)
that are otherwise obscured by other much stronger contributions from population
pathways. As described in the previous section, studying coherent-superpositions
of excitons localized in separate QWs represents exactly this sort of a challenge. As
a result, this is a good first application of coherence-specific pathway-selection in
CMDS, which is demonstrated on two different DQW samples in Sections 4.3 and
4.4.

4.3 Inter-well coherence in GaAs/AlGaAs DQWs

In this section, results are presented from CMDS and pathway selective CMDS (PS-
CMDS) experiments on a single AlGaAs/GaAs DQW. These results, which were pub-
lished in Optics Express in 2014 [95], are both a proof of principle for coherence
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Figure 4.3: (a) A diagram of the layered AlGaAs/GaAs DQW. (b) 1D valence and conduction band
potential profiles, along with the four lowest energy exciton resonances. (c) Electron
and hole wavefunctions calculated from the 1D shrödinger equation, show very little
hybridization.

specific PS-CMDS, and also a first study of excitonic coherence in a regime in which
it is not well understood. The procedures and results developed in this section lay
the foundation for the experiments performed in Section 4.4 and the following
chapters.

4.3.1 GaAs/AlGaAs DQW Sample

The Al0.35Ga0.65As/GaAs1 sample studied in this section is part of a set that have
been studied previously and is the subject of several publications [76, 77, 182]. A
diagram of the sample is shown in Fig. 4.3a. The sample was gown using metal-
organic chemical vapour deposition (MOCVD) and consists of two layers of GaAs
(the wells) sandwiched between layers of AlGaAs (the barriers). The wells are
asymmetric (one well is 5.7 nm thick, the other is 8 nm thick) to set the exciton
resonances so that the two QWs can be separated spectrally. The wells are sepa-
rated by a 6 nm thick AlGaAs barrier. A cartoon of the 1D potential profiles of the
sample is presented in Fig. 4.3b, along with the two lowest energy exciton transi-
tions in each well. There is a HH and a LH exciton transition in each well. These
transitions involve the hole states (WWhh, WWlh and NWhh, NWlh), and the elec-
tron states (WWE, NWE) in the same well. The two lowest energy conduction-band
and four highest energy valence-band eigenstates for these profiles were calculated
by solving the 1D time-independent Schrödinger equation (TISE) for the potential
profiles shown in Fig. 4.3b. To find the allowed solutions to the 1D TISE, we use
the Numerov algorithm and shooting method. A brief description of these methods
are provided in Appendix A3, and full details of this calculation can be found in
Refs. [76, 77, 182].

The calculated wavefunctions (presented in Fig. 4.3c) qualitatively show very lit-
tle hybridization across the DQW structure, and appear to be localized to one well
or the other. To quantitatively assess the degree of localization, the probability of

1 All AlGaAs/GaAs DQW samples which are studied in this thesis are Al0.35Ga0.65As/GaAs. The subscripts are
dropped subsequently for the sake of simplicity.
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Wavefunction Wide Well Narrow Well

WWE 99.86% 0.14%

NWE 0.30% 99.70%

WWhh 100.00% 0.00%

WWlh 99.80% 0.20%

NWhh 0.00% 100.00%

WWlh 1.40% 98.60%

Table 4.1: Calculation of the degree of localization of the electron and hole wavefunctions in the
AlGaAs/GaAs DQW. Details of calculation are provided in the text.

finding the electron or hole in a given well is calculated by splitting the wavefunc-
tions at the center of the barrier and then integrating the square of the part of the
wavefunction that appears in each well. These probabilities (shown in Table 4.1)
agree with the qualitative assessment of good localization in the wells, with <0.1%
of the probability amplitude outside the given well. It is important to note, however,
that these calculations are for the individual carriers. A more useful and accurate
approach would be to calculate the actual exciton wavefunctions and include the
Coulomb interactions. This would be much more involved and computationally in-
tensive, and is beyond the scope of this work.

4.3.2 Broadband CMDS results

We first examine this DQW sample using traditional CMDS with three identical
broadband2 pulses in the rephasing ordering. The laser spectrum is tuned so it
is roughly centred on the NWhh transition (770 nm, 1.61 eV). The spectral width
is tuned so that it covers all four of the exciton transitions shown in Fig. 4.3b
with appreciable spectral intensity. The excitation spectrum used for the broadband
experiments is the green curve (labelled ‘k3/LO’) in Fig. 4.8b. This spectral width
results in ∼45 fs transform limited pulses. These experiments were performed at
20 K in a recirculating cryostat, and all the beams are co-linearly polarized. All
scan parameters used in this experiment (and the rest of the measurements in this
chapter) can be found in Table A1.1 in Appendix A1.

For the data reported in this section, each beam has an average power of ∼3
mW, and a focal spot size of 150µm, giving a photon density of 7× 1011cm−2 pho-
tons per pulse. Although this excitation density should be at a level to generate
a predominately χ(3) response, recent results from Nardin et al. [54] and results
in the following chapters show that even at these excitation levels, excitation in-
duced effects are still important. Furthermore, some χ(5) response is potentially
generated in the detection direction. The higher photon densities in this experi-

2 The term ‘broadband’ can be ambiguous. In this thesis it is used to indicate that the laser output is not spectrally
shaped by the pulse-shaper.
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Figure 4.4: A 1-quantum 2D spectrum collected for the AlGaAs/GaAs DQW using broadband exci-
tation, with t2 = 0 and logarithmic color scaling spanning more than two orders of
magnitude. t1 was scanned 0 to 2000 fs in 10 fs steps.

ment were needed because several experimental optimizations had not yet been
introduced. First, a less sensitive CCD (Garry3000 from Ames Photonics) was used
with an Oriel Instruments 77480 spectrometer for detection of the signal. Second,
a standard recirculating cryostat (Cryomech ST10SCTK) was used for sample cool-
ing, which generated significant sample vibrations. These two factors reduced the
overall sensitivity and stability of the experiment.

The absolute value of the rephasing part of the 1Q 2D spectrum is presented in
Fig. 4.4. A wide variety of features are evident in this spectrum. First, we see DPs
for three of the four excitonic transitions (WWhh,WWlh and NWhh). The NWlh is
visible just above the noise floor, but is not shown in this figure because of how
the contours are drawn. The NWhh is much stronger, and is in fact by far the most
intense peak in the spectrum, due to its large oscillator strength and position near
the peak of the excitation spectrum. This peak and too a lesser degree the WWhh

and WWlh DPs show clear indications of inhomogeneous broadening through a
tilt along the diagonal (indicated by the black line). As described in the previous
chapter, inhomogeneous broadening is expected for QW excitons and largely arises
from well width fluctuations.

There are also a number of CPs evident in the spectrum. The four strongest CPs
occur between the HH and LH transitions within the same well, and occur both
above and below the diagonal. These HH-LH CPs show a tilt along the diagonal,
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which is indicative of correlated inhomogeneous broadening, and will be discussed
in more depth in section 4.3.4. 3

The CPs of interest in this spectrum are those that appear with absorption in
one well and emission from the other. These are the CPs which we call inter-well
CPs or inter-well CPs. There are indications of three inter-well CPs evident in this
spectrum. However, there are several factors that make identification, assignment
and interpretation of these peaks difficult. First, the identification of these peaks is
hampered by their low signal compared with the intense DPs. The noise level across
the spectrum is set by the strongest peak at that energy. As a result, the inter-well
CPs suffer from noise generated by the much larger DPs. Secondly, the tails from the
DPs extend out and in some cases overlap the inter-well CPs. Third, there is a broad
free-carrier continuum in the wide-well that appears at the same position in the
spectrum as the inter-well CPs and helps to obscure these peaks. The free-carrier
continuum peaks can be identified as peaks elongated along E1 with E3 = 1.565 eV
(WWhh emission) and E3 = 1.582 eV (WWlh emission) which appear only at the
lowest contour level. Finally, both population pathways (GSB, ESA, and PT) and
coherence pathways can lead to signals that overlap in the 2D spectrum, so precise
identification of the origin of the signals from this 2D peak is impossible.

The coherent superposition signal can in principle be isolated in a 1Q 3D spec-
trum. To this end, a 3D spectrum was collected with the same pulse-ordering and
excitation conditions as the 1Q 2D dataset from Fig. 4.4. As in the 1Q 2D spec-
trum, t1 was scanned 0 to 2000 fs in 10 fs steps. t2 was scanned 0 to 900 fs in 15 fs
steps. Displaying 3D spectra in illuminating ways is a challenge, especially when the
pertinent information spans several orders of magnitude, and the noise floor varies
across the spectrum. In the following paragraphs we will discuss four different ways
to represent the data in the 3D spectrum:

1. Plot the entire dataset in 3D as a series of isosurfaces at different levels.

2. Integrate the spectrum along the E1 axis so it can be presented as a 0Q spec-
trum.

3. Plot 2D slices extracted of the 3D spectrum

4. Break the dataset up into regions and plot each region of the dataset at the
isosurface that best matches the amplitude of the data within.

The most complete way to display the 3D dataset is by plotting it along isosur-
faces. Figure 4.5 shows the 3D spectrum plotted along three different isosurfaces.

3 The presence of (NWlh,NWhh) and (NWhh,NWlh) CPs which are significantly stronger than the NWlh DP
can be explained in the following way. The NWlh DP amplitude is the product of four interactions at the NWlh
transition energy, while the CP amplitude is the product of two interactions at the NWlh transition energy and
two at the NWhh transition. The NWhh transition has a much higher dipole moment and there is more spectral
intensity in the excitation pulses at the NWhh transition energy than at NWlh transition energy. As a result,
the two interactions at the NWhh transition energy significantly amplify the CP compared with the NWlh DP.
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(a)

(b) (c)

Figure 4.5: The broadband 3D spectrum of the GaAs/AlGaAs DQW plotted as a single isosurface
at three signal amplitudes (which are normalized to the maximum amplitude in the 3D
spectrum): (a) 0.13, (b) 0.005, and (c) 0.0013. These are the same amplitudes as the
isosurfaces plotted for the various regions in Fig. 4.7a.

Each isosurface reveals a different set of signals, while obscuring others. The iso-
surface in Fig. 4.5a is plotted at the highest of the three levels of (0.13). It shows
shape of the strongest peak, the NWhh DP at E2=0. Fig. 4.5b is plotted more than
an order of magnitude lower than Fig. 4.5a, and shows a range of additional peaks.
The WWhh and WWlh DPs and several intra-well CPs generated by population path-
ways can be seen in the E2=0 plane. Two coherence peaks can also be seen in this
plot (as indicated by the arrows) away from E2=0 meV (specifically, in the E2 =
E3-E1 plane). The peak indicated by the red arrow is a coherent superposition CP in
which the first pulse excites a NWlh exciton and the second pulse excited a NWhh

exciton. The peak indicated by the blue arrow is the opposite: first pulse excites
the NWhh and the second pulse excites the NWlh. The NWhh DP is now hidden by
the increased noise and streaking along E2 which comes mostly from the fact that
the full decay along t2 was not detected. As a result, the delay range acts like a
rectangular window function in the time domain. The rectangular window leads to
sharp edges and significant spectral spreading (also called spectral leakage) along
the E2 axis [210, 211].
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Figure 4.6: (a) a 0Q projection of the 3D spectrum and (b) a slice through the 3D spectrum at E1
= NWhh. CS-CPs (indicated by arrows) hidden in the noise in (a), but visible in (b) -
demonstrating the benefits of looking at slices instead of projections.

The final isosurface in Fig. 4.5c is plotted two orders of magnitude below the iso-
surface in Fig. 4.5a to highlight two inter-well coherent superposition peaks (indi-
cated by the arrows). The (NWhh, WWhh) coherent superposition peak is indicated
by the red arrow. The (NWhh, WWlh) coherent superposition peak is indicated by
the black arrow. At this isosurface level, all the other signals in the spectrum (i.e.
population pathways and intra-well pathways) cannot be clearly resolved. In some
cases they are hidden by spectral leakage along the E2 or E1 directions. The tails of
multiple peaks overlap at this low isosurface level such that the separate peaks can
no longer be resolved. The ability to resolve these incredibly weak inter-well inter-
actions even in the presence of much stronger contributions illustrates the power
of separating signals along the third energy axis.

Coherent superposition signals can also be isolated with a 2D, 0Q spectrum,
which can be extracted from a full 3D spectrum by projecting it onto the (E3,E2)
plane. Figure 4.6a shows a 0Q spectrum extracted from the 3D spectrum. Because
the noise is proportional to the strongest signal at a particular absorption and emis-
sion energy, The CS-CPs resolved in the Fig. 4.5c would appear at the positions
indicated by the arrows. In this representation of the data, the coherent superposi-
tion signals cannot be identified. This is due to the increase in the noise floor when
we integrate across the entire 3D spectrum. In projecting the spectrum onto the
(E3,E2) plane, we are integrating all of the noise at every E1 value, including the
spectral leakage that appears at E2 values above and below the strong DPs. As a
result, the projection has a higher noise floor than the 3D data.
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2D slices through the 3D spectrum can also be used to present a smaller subset
of the 3D data. By integrating a smaller range of the 3D spectrum, the noise floor
remains roughly the same as that of the 3D spectrum, thus avoiding the amplifica-
tion of the noise we saw in the projected 0Q spectrum in Fig. 4.6a. By using slices,
CS-CPs can be more clearly identified since the E1, E2 and E3 values for the peak are
all known (which is not the case in 0Q spectra where only E2 and E3 are known).
Furthermore, peaks that have the same E2 and E3 energies (i.e. those that overlap
on the 0Q spectrum), but have different E1 values can be separated by taking slices
at different E1 values. The same process can be conducted by slicing the spectrum
along either of the other two energy dimensions, as well.

For example, Fig. 4.6b shows a slice through the 3D spectrum at the absorption
energy which corresponds to the NWhh. The slice is created by integrating the 3D
spectrum along the E1 direction from E1= -1.608 eV to E1= -1.612 eV. Coherence
peaks with the right combinations of E1, E2 and E3 can be identified as peaks which
appear in-between the two diagonal lines. These lines correspond to the E2 = E3 -
1.608 eV and E2 = E3 - 1.612 eV covering the full width of the NWhh transition. The
spacing of the lines therefore corresponds to the width of the slice in E1. In this slice,
four additional peaks (marked by the black arrows) can now be identified, which
were hidden in the fully integrated 0Q spectrum. The two inter-well coherence
peaks appear in the bottom left part of the frame at (E1,E2,E3) = (NWhh,WWlh-
NWhh= -20 meV,WWlh) and (NWhh,WWhh-NWhh= -40 meV,WWhh).

We can also now observe two CPs at E3=1.632 eV (the NWlh emission energy):
(NWhh,0 meV,WWhh) and one at (NWhh,NWhh-NWlh=24 meV,NWlh). The latter of
the two is the coherent superposition CP that involves the first pulse exciting the
NWhh and the second pulse exciting the NWlh. The peak at E2=0 is a CP correspond-
ing to population interactions between NWhh and NWlh. This peak is referred to as
a CP because it occurs at E3 6= -E1 (specifically, E3 = NWlh = 1.623 eV, E1 = NWhh

= -1.610 eV).
A fourth way to present the depth of information encapsulated in this 3D spec-

trum, is to plot all of the different peaks on different isosurface level. The 3D spec-
trum has therefore been re-plotted in Fig. 4.7a, with each spectral region plotted
along one of the three levels from Fig. 4.5 that best matches the strength of the
signal in that region. This way, the wide range of different signals present can all
be simultaneously presented.

The region with inter-well coherent superposition peaks (the below diagonal re-
gion) is plotted in Fig. 4.7b. It is clear that these two peaks are indeed in the right
place to be the CS-CPs corresponding to (NWhh, WWhh-NWhh=40 meV, WWhh)
and (NWhh, WWlh-NWhh=20 meV, WWlh). Their are two other CS-CPs that could
occur in this region: (NWlh, WWhh-NWlh=62 meV, WWhh) and (NWhh, WWlh-
NWhh=54 meV, WWlh). These peaks, however, are not observed. The two peaks
that have been resolved in Fig. 4.7b are quite noisy, meaning, very little analysis is
possible beyond simply identifying the peaks.
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(a) (b)

Figure 4.7: (a) A 1-quantum 3D spectrum collected for the AlGaAs/GaAs DQW using broadband
excitation, with different isosurfaces for different peaks for reasons described in the text.
(b) The portion of the 3D spectrum where we see inter-well CS-CPs, normalized to the
most intense point of the NWhh-WWhh CS-CP. Isosurfaces drawn at the levels indicated
on the colorbar.

4.3.3 Pathway-selective CMDS results

To do any additional study of the inter-well coherent superpositions beyond simply
identifying them, the SNR on the CS-CPs must be improved. To do this, we use path-
way selection with a coherence-specific pulse ordering. This pulse ordering allows
only coherent-superposition pathways and suppresses all population pathways (as
described in the sections 4.2 and 2.3). In the results presented here, spectral ampli-
tude masks are applied to k1 and k2 such that the k1 excitation spectrum is resonant
only with the NW exciton transitions and the k2 excitation spectrum is only resonant
with the WW exciton transitions4. The spectral amplitude masks used are shown in
Fig. 4.8a. The spectrally shaped excitation spectra and the broadband FWM sig-
nal at (t1=t2=0 fs) is shown in Fig. 4.8b. Fig. 4.8c shows the Fourier transforms
of the spectra in Fig. 4.8b, assuming a flat spectral phase, matching the expected
excitation pulses.

Coherence-specific PS-CMDS 2D and 3D spectra are presented in Fig. 4.9a and
Fig. 4.9b, respectively. The scan ranges and step sizes are given in the figure caption.
The beams are co-linearly polarized. As expected, the 2D spectrum in Fig. 4.9a is
very different from the spectrum recorded using broadband excitation (Fig. 4.4).
First, there are no DPs, and the only CPs that are resolved are the ones that appear
at the expected positions for inter-well CPs. The two inter-well CPs which were
missing in Fig. 4.4 and Fig. 4.7b (i.e. CPs in which E1=NWlh)are also now clearly

4 In principle, the spectral masks could be switched such that k1 is only resonant with the WW transitions and k2
is only resonant with the NW transitions (which would isolate the above diagonal 1Q CPs), but this experiment
has not been performed on the current sample.
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Figure 4.8: (a) spectral amplitude masks, (b) resulting spectra and (c) pulse shapes (Fourier trans-
form of the spectra in (b)) used in the coherence-specific CMDS experiment. t1 was
scanned 0 to 2000 fs in 10 fs steps. t2 was scanned 0 to 405 fs in 15 fs steps.

(a) (b)

Figure 4.9: (a) A 1-quantum 2D spectrum at t2 = 300 fs using the pulse ordering shown in the
inset and in 4.8. (b) A 1-quantum 3D spectrum using the same pulse ordering as in (a).
Analysis provided in the text.

resolved. This is consistent with the expectation that all population pathways are
suppressed with this pulse ordering.

There is a slight shift of all four CS-CPs from the expected location compared
with the peaks in Fig. 4.4. The peaks are shifted in both E1 and E3. The origin
of this shift is not clear. One possible explanation for this shift is that there is an
excitation induced shift of the peaks in the broadband spectra caused by the slightly
broader (and therefore more intense) excitation pulses.

In principle signals with this pulse ordering could only result from coherent su-
perpositions, but a single 2D spectrum does not definitively confirm this. Two fac-
tors could lead to the generation of population pathways. First, poorly compressed
pulses could lead to temporal overlap of k2 and the broadband k3 and thereby allow
signals from the k1 → k3 → k2 pulse ordering, in which CPs generated by popula-
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tion pathways are allowed where they overlap. Second, if there is some overlap of
the k1 and k2 excitation spectra, some population pathways could be allowed. The
spectra in Fig. 4.8b show no overlap, and we have nearly transform limited pulses
based the measured cross-correlations (not shown), so we presuppose near com-
plete suppression of population pathways. We can confirm that the CPs are indeed
generated by coherent-superposition pathways and that population pathways are
suppressed by collecting a 3D spectrum.

A coherence specific pathway-selective 3D spectrum is presented in Fig. 4.9b. All
four of the coherence peaks have E2 energies equal to the difference of the coupled
transitions (E2 = E3 - E1), confirming that they are indeed CS peaks. More impor-
tantly, there is no signal at E2 = 0, which confirms that all population processes
are suppressed as intended. The resulting peaks are well-isolated in all three fre-
quency directions, and have significantly improved SNR compared with the same
peaks measured using broadband pulses in Fig. 4.7b. The cleaner peaks allow us to
determine the linewidths along the three energy directions and analyse the CS-CP
peak-shapes in the following sections.

4.3.4 Peak-Shape analysis

As described in Section 2.2.1.1, a lot of useful information can be gleaned by
analysing peak-shapes and linewidths of CMDS signals. The peaks from the broad-
band and pathway-selective 3D spectra can now be isolated in the three differ-
ent frequency dimensions, and individually projected onto any of the three 2D fre-
quency planes. Before looking at the 2D line-shapes, we will first give a brief recap
of the 1D line-shapes of excitonic transitions in QWs, described previously in Ch. 3.

QW exciton emission and absorption line-shapes are broadened by both homo-
geneous and inhomogeneous effects. Homogeneous broadening comes in the form
of random interactions that reduce the degree of coherence (such as exciton-exciton
and exciton-phonon scattering). Inhomogeneous broadening is caused by well-width
fluctuations across the sample, which shift the central energy of the homogeneous
excitonic line by changing the degree of confinement. The variation of well-widths
is typically a Normal distribution, which leads to a Gaussian line-shape. The homo-
geneous broadening is dissipative and therefore leads to a Lorentzian line-shape.
The full excitonic line-shape is therefore a convolution of the Lorentzian (homo-
geneous) a Gaussian (inhomogeneous) lines, which is what is called a Voigt line-
shape. In QWs at low temperature (<10 K), inhomogeneous broadening is typically
the larger of the two types of broadening, so the line-shapes are typically more
Gaussian.

Inhomogeneous and homogeneous broadening also lead to different peak-shapes
in 1Q 2D spectroscopy. Inhomogeneously broadened transitions have DP peak-shapes
which are tilted along the diagonal. The diagonal width of the peak is the inhomoge-
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neous linewidth, while the cross-diagonal linewidth is the homogeneous linewidth.
Simulations have previously shown that CPs which are tilted along the diagonal are
indicative of correlated inhomogeneous broadening [77], while round peak-shapes
are indicative of uncorrelated inhomogeneous broadening. As in the linear case, we
can parametrize the 2D line-shape using a convolution of a Gaussian and Lorentzian
distributions. The inhomogeneous component of the linewidth can now be approx-
imated by a bivariate distribution, in which the two independent variables (E3 and
E1 in this case) are partially or completely correlated. The correlation, however,
does not extend to the homogeneous component of the linewidth, which is limited
by the coherence decay. The CP can therefore be represented as a convolution of the
2D homogeneous (uncorrelated) and inhomogeneous (correlated or uncorrelated)
distributions:
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S(E3,E1) = Sih(E3,E1) ∗ Sh(E3,E1) (4.1.3)

for a CP between transitions ‘A’ and ‘B’ with inhomogeneous (homogeneous) linewidths
Γ
(ih)
A (Γ (h)A ) and Γ (ih)B (Γ (h)B ) centred at µA and µB, and with a degree of correlation

(pAB) which varies from perfect correlation (pab = 1) to no correlation (pAB = 0)
to anti-correlation (pAB = -1). This labelling applies for peaks where the first pulse
excites transition a, and emission comes from transition b.

CP peak-shapes are calculated from Eq. 4.1.3 for a range of different input pa-
rameters in Fig. 4.10. The top row shows the correlated inhomogeneous func-
tion (Eq. 4.1.1), the middle row shows the homogeneous function (Eq. 4.1.2)
and the bottom row shows the convolution of the two functions (Eq. 4.1.3). The
peak-shapes for transitions with various degrees of correlation can be seen in the
first four columns going from perfect correlation in Fig. 4.10(a,h,o) to no correla-
tion in Fig. 4.10(d,k,r). If the transitions have different inhomogeneous linewidths
(Γ (ih)a 6= Γ

(ih)
b ) then the resulting peak is tilted away from the diagonal line (as

shown in Fig. 4.10e,l,s). A combination of imperfect correlation and Γ (ih)a 6= Γ
(ih)
b

leads to a both a tilting of the peak away from the diagonal and a broadening of
the peak (as shown in Fig. 4.10f,m,t). Finally, the peak shape for an increase of the
Γ
(h)
a and Γ (h)b (homogeneous broadening) is shown in Fig. 4.10f,m,t.
The peak-shape in Fig. 4.10u is similar to the peak shape in Fig. 4.10p, so differ-

entiating between increased homogeneous broadening and decreased correlation
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Figure 4.10: Simulated 2D (E3, E1) CP peakshapes using Eq. 4.1. The top row (a-g) is the inhomoge-
neous part (Eq. 4.1.1). The middle row (h-n) is the homogeneous part (Eq. 4.1.2), the
bottom row is the full linewidth including both homogeneous and inhomogeneous con-
tributions. Some of the parameters used in each column are shown above the top row.
For all the plots, Γ (ih)B = 2 meV. For all except (g), (n) and (u), Γ (h)A =Γ (h)B =0.5 meV .

is not necessarily straightforward. However, it should be possible with accurate
measurements of homogeneous linewidth from the cross-diagonal widths of the as-
sociated DPs. Furthermore, with sufficient SNR we should also be able to separate
the two possibilities by analysing the peak-shapes in more detail. The peak shape
in Fig. 4.10u is characterized by diagonal and cross-diagonal slices which have a
somewhat more Lorentzian character while the diagonal and cross-diagonal slices
in Fig. 4.10p have a more Gaussian character.

In the limit of no correlation (pab = 0), Eq. 4.1.1 becomes simply a bivariate dis-
tribution with widths along E1 and E3 set by the inhomogeneous linewidths of the
corresponding excitons. This distribution is aligned along E1 and E3 instead of the
diagonal. If the inhomogeneous linewidths are equal, this results in a round peak
(as in Fig. 4.10d). This results in a 2D peak-shape (including both homogeneous
and inhomogeneous contributions) with no tilt.

E1 vs E3 projections for three selected peaks from the broadband spectrum 3D
spectrum are presented in Fig. 4.11. The NWhh DP, the (E1, E2, E3) = (NWhh, -
26 meV , NWlh) CS-CP and the (NWlh, 26 meV, NWhh) CS-CP are presented in 4.11.
The NWhh DP (like the same peak in the broadband 2D spectrum) has an ellipti-
cal shape with the major axis tilted such that it is aligned with the diagonal line.
As has been mentioned previously, this peak shape is indicative of inhomogeneous
broadening, and the diagonal (cross-diagonal) linewidth is the inhomogeneous (ho-
mogeneous) linewidth.
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Figure 4.11: E1 vs E3 peakshapes for the NWhh DP and the CS-CPs associated with HH-LH inter-
actions. All three peaks show a tilt along the diagonal. The CS-CP tilt towards the
diagonal indicates correlated broadening. The fact that the tilt is not exactly along the
diagonal stems from the different inhomogeneous linewidths of the NWhh and NWlh
excitons.

The intra-well coherence peaks in Fig. 4.11b-c are also tilted towards the diag-
onal. The E1 = E3 - E2 line is also drawn in this figure as a guide to show that
the peaks are not tilted exactly along the diagonal. The above diagonal CS-CP is
tilted slightly towards being aligned with E1, while the above diagonal CS-CP is
slightly tilted towards being aligned with E3. This shift away from a tilt exactly
along the diagonal results from differences in how heavy- and LH excitons are af-
fected by the well-width fluctuations. LH excitons have previously been shown to
have broader inhomogeneous distributions for the same amount of well-width fluc-
tuations [213, 214]. This broadening of the LH line leads to tilting of the intra-well
CS-CP and is also consistent with the measured inhomogeneous linewidths of the
HH and LH DPs (which can be found in Table 4.2). The degree of correlation of the
CPs can be determined by measuring the cross-diagonal width of the CP, and then
comparing it to the sum of the homogeneous linewidth of the two coupled transi-
tions. We cannot perform this comparison here, since we were unable to determine
the homogeneous linewidth of the NWlh exciton transition. Furthermore, the delay
range limitations of this experiment prevent us from accurately determining the
NWhh exciton homogeneous linewidth.

Still, the ability to identify correlated broadening is a useful tool for studying cou-
pling of different transitions. Though experiments have previously shown that LH
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Figure 4.12: The 3D inter-well CS-CPs from Fig. 4.9b individually projected onto the E1 vs E3 plane.
The lack of tilt shows that the inhomogeneous broadening of the coupled transitions is
uncorrelated. The label indicates the center of each peak along E2.

and HH excitons have correlated inhomogeneous broadening, this method of mea-
surement (isolating 3D spectral peaks and projecting them onto 2D axes) provides
much clearer evidence of the correlation of the LH and HH excitons than previous
1D FWM based techniques. These techniques relied on fitting decays along t1 or t2
to extract the decay of oscillations (quantum beats) on top of an exponential decay.
If the decay of the beats was longer than the inhomogeneous dephasing time of
the other transition involved in the coupling, then the inhomogeneous broadening
must be correlated. Furthermore, we have shown that the coherence pathways also
demonstrate correlated inhomogeneous broadening. This result could not be deter-
mined in previous 1D FWM experiments as the coherence pathways could not be
separated from population pathways.

The inter-well CS-CPs from the pathway selective 3D spectrum are presented in
Fig. 4.12. Unlike the intra-well CS-CPs, the inter-well CS-CPs clearly demonstrate
peak-shapes aligned along E1 and E3, with no tilt towards the diagonal. This shape
is indicative of completely uncorrelated inhomogeneous broadening, which is con-
sistent with excitons localized in separate QWs. The dominant type of static disorder
(well-width fluctuations) is not expected to be correlated between the wells. This
is also consistent with wavefunctions that have very little hybridization across the
DQW structure, as hybridization would induce some correlation of the inhomoge-
neous broadening, even in the case of uncorrelated well-width fluctuations.

The CS-CPs can also be projected onto the (E3, E2) and (E1, E2) planes. 2D peak-
shapes for these projections have not been studied in detail, so we will first consider
what peak-shapes to expect in specific circumstances. We will start with the simplest
case, in which we ignore inhomogeneous broadening (Γ (ih) � Γ (h)). Assuming
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Γ1 Γ2 Γ3 ε1 ε2 ε3 Ã(P) A(P)

(meV) (meV) (meV) (eV)
±0.5 meV

(eV)
±0.5 meV

(eV)
±0.5 meV

(arb) (arb)

WWhh 8.3±0.9 7.1±1.7 7.2±0.4 -1.568 0.000 1.570 1.4±0.1 14±3

WWlh 7.4±1.7 5.7±1.4 7.1±0.4 -1.586 0.000 1.587 1.5±0.5 4±1

NWhh 4.5±0.2 5.8±1.1 4.9±0.2 -1.608 0.000 1.609 100±10 100±11

NWlh 10.4±5.4 6.3±1.3 8.6±0.7 -1.634 0.000 1.635 0.4±0.1 1.2±0.4

(NWlh, NWhh) 7.7±1.7 7.1±0.9 6.1±1.1 -1.634 -0.026 1.609 1.1±0.4 6±2

(NWhh, WWhh) 10.1±1.3 22.6±1.4 7.1±1.4 -1.608 -0.041 1.570 0.2±0.1 0.7±0.3

(NWhh, WWlh) 9.4±2.1 10.4±2.0 10.3±2.3 -1.608 -0.020 1.588 0.2±0.1 0.3±0.1

(NWhh, WWhh) 9.0±0.3 17.7±0.2 7.5±0.3 -1.607 -0.037 1.568 0.04±0.01 1.2±0.3

(NWhh, WWlh) 9.2±0.3 17.3±0.1 6.3±0.5 -1.607 -0.024 1.583 0.03±0.01 0.8±0.3

(NWlh, WWlh) 11.6±0.4 20.2±0.6 6.4±0.5 -1.632 -0.050 1.584 0.02±0.01 0.2±0.1

(NWlh, WWhh) 11.6±0.6 17.9±0.4 6.8±0.4 -1.632 -0.065 1.568 0.03±0.01 0.3±0.2

Table 4.2: Tabulated data includeing linewidths uncorrected and corrected peak amplitudes from
pathway-selective and broadband 3D spectra.

there are no additional dephasing processes that affect the coherent superpositions
of excited states and no correlated fluctuations, the dephasing time for a coherent
superposition of excited states A and B (TCS−AB) as a function of t2 is given by:

1

TCS−AB
=
1

TA
+
1

TB
(4.2)

where TA and TB are the dephasing times of the ground-state to excited-state co-
herence for states ‘A’ and ‘B’, respectively. Thus, the E2 linewidth should be the sum
of the homogeneous linewidths of the coupled transitions [215]. We expect the (E3,
E2) and (E1, E2) projections to have peak-shapes which are aligned with E2, (and
not tilted on an angle) because the homogeneously broadened transitions can freely
explore the entire range of energies within the distribution, so we can’t know pre-
cisely which value it can have. As a result, all of the transition energies in one state
can couple to all of the energies in the other transition so there is no correlation
between E2 and E1 or E3.

A 3D CS-CP for two homogeneously broadened transitions with no additional
dephasing of the excited state coherent superposition is given by Eq. 4.3. Projections
of a 3D peak calculated using Eq. 4.3 onto the three different 2D axes is shown in
Fig. 4.13a-c.

S(E1,E2,E3) =
(Γ

(h)
B )2

2π · ((E3 − µB)2 + (Γ
(h)
B )2)

·
(Γ

(h)
A )2

2π · ((E1 + µA)2 + (Γ
(h)
A )2)

·

(Γ
(h)
A + Γ

(h)
B )2

2π · ((E2 − (µA − µB)2 + (Γ
(h)
A + Γ

(h)
B )2)

(4.3)
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Considering inhomogeneous broadening complicates the prediction of peak-shapes.
Based on the arguments above for E1 vs E3 peak-shapes, we might initially expect
peak-shapes with no tilt for uncorrelated inhomogeneous broadening. However,
some basic simulated peak-shapes will show that the opposite is true: uncorrelated
inhomogeneous broadening leads to tilted peak-shapes in (E3, E2) and (E1, E2) pro-
jections of CS-CPs. To explain how we simulate the inhomogeneously broadened 3D
CS-CPs, we again consider the 1D linewidths. As described at the beginning of the
section, the line-shape of a transition with both homogeneous and inhomogeneous
broadening can be calculated by the convolution of a Lorentzian function with a
width equal to the homogeneous linewidth and a Gaussian function with a width
equal to the inhomogeneous linewidth. If the inhomogeneous linewidth is larger
than the homogeneous width, this line-shape can also be approximated in the fol-
lowing way. We can define an array ~R of length M which is randomly sampled from
a Normal distribution centred at 0 with a standard deviation of 1.

R ∼ N(0, 1) (4.4)

This random, Normally distributed array can be used to approximate the inhomo-
geneous broadening distribution:

~S(IH) = ~R · Γ (IH) + µ(IH) (4.5)

where µ(IH) is the center of the inhomogeneous distribution. The full linewidth of
the transition can then be approximated by summing over M Lorentzian functions
whose center values are defined by the random normal distribution from Eq. 4.5:

S(E) =

M∑
1

Γ (h)

(E− (~R(M) · Γ (IH) + µ(IH))2 + (Γ (h))2
(4.6)

This is not an exact match for the convolution of the homogeneous and inhomoge-
neous distributions, but it is comparable. We can use this same approach to generate
a 3D peak with both homogeneous and inhomogeneous broadening. We define two
arrays (~RA and ~RB) of length M which are separately sampled randomly from a
Normal distribution centred at 0 with a variance of 1:

~RA ∼ N(0, 1) (4.7.1)
~RB ∼ N(0, 1) (4.7.2)

If there is no correlation of the inhomogeneous broadening, the distribution of
the inhomogeneous broadening along E1 and E3 are approximated based on the
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randomly sampled variables. In the case of correlated inhomogeneous broadening,
so both distributions use the same Normally sampled random variable RA.

~S
(IH)
A = ~RA · Γ

(IH)
A + µ

(IH)
A (4.8.1)

~S
(IH)
B =

 ~RA · Γ
(IH)
B + µ

(IH)
B (Correlated)

~RB · Γ
(IH)
B + µ

(IH)
B (Uncorrelated)

(4.8.2)

Where Γ (IH)A is the inhomogeneous broadening of the transition excited by the

first pulse, and Γ (IH)B is the inhomogeneous broadening of the transition from which
the signal is emitted. As in the 1D case, we then sum over a total of M 3D Lorentzian
peaks which are each calculated using Eq. 4.3. The calculation of each Lorentzian
peak uses a different value from the randomly distributed inhomogeneous distri-
butions from Eq. 4.8 as the center of the peak along E3 and E1 and the difference
between S(IH)A and S(IH)B as the center of the peak along E2.

S(E1,E2,E3) =
M∑
1
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(h)
B )2

2π · ((E3 − ~S
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B (M))2 + (Γ
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·
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(h)
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(IH)
A (M))2 + (Γ

(h)
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·

(Γ
(h)
A + Γ

(h)
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2π · ((E2 − (~S
(IH)
A (M) − S

(IH)
B (M))2 + (Γ

(h)
A + Γ

(h)
B )2)

(4.9)

Eq. 4.9 can then be used to calculate 3D peak-shapes with and without correlated
inhomogeneous broadening. Projections of the 3D peak onto the three 2D axes for
correlated and uncorrelated broadening can be seen in Fig. 4.13d-f and Fig. 4.13g-
i, respectively. For these calculations we have used the following parameters: M =
10,000, Γ ihA,B = 8 meV, ΓhA,B = 2 meV.

When the inhomogeneous broadening is uncorrelated (Fig. 4.13g-i), we can clearly
see that the projections of the calculated peak along E1 vs E2 and E3 vs E2 are tilted.
This can be understood in the following way: for each E1, E3 can span the entire
range of inhomogeneous widths. The centre of the resulting peak along E2 can vary
by Γ IH for a given E1. As E1 is shifted, the center of the distribution along E2 also
shifts, which results in a correlation of E1 and E2 and therefore a tilt of the peak.
This same argument can be made for the E3 vs E2 peak-shape. Since the E1 and E3
values are no longer correlated (i.e. they come from different normal distributions),
their difference will vary. The full width of the peak along E2 is the sum of the
inhomogeneous linewidths of the two transitions, and is therefore larger than the
linewidths in E1 or E3.

For correlated broadening, we observe no tilt of the E3 vs E2 peaks or the E1 vs
E2 peaks. This narrowing along E2 and lack of tilt can be understood qualitatively
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Figure 4.13: Projections of simulated 3D peak-shapes (a)-(c) neglecting inhomogeneous broaden-
ing, and for (d)-(f) correlated and (g)-(i) uncorrelated broadening inhomogeneously
broadened transitions. Projections are (E3,E1) for (a)/(d)/(g), (E3,E2) for (b)/(e)/(h),
and (E1,E2) for (c)/(f)/(i).

in the following way: regardless of which E1 is chosen, the difference between the
E1 and E3 remains constant, and therefore so does the center of the distribution
along E2. Even in the presence of inhomogeneous broadening the linewidth along
E2 is smaller than the widths along E1 or E3, and in the case of perfect correla-
tion the width along E2 is limited by the sum of the homogeneous linewidths of
the two coupled transitions. Based on the obvious differences in the projections of
these simulated peak-shapes, we should be able to clearly identify different types
of broadening (i.e. homogeneous, correlated inhomogeneous, and uncorrelated in-
homogeneous) in experimental data.

Projections of the seven experimentally measured peaks (4 inter-well CS-CPs, 2
intra-well CS-CPs and the NWhh DP, which are the same peaks from Fig. 4.11 and
Fig. 4.12) are shown in Fig. 4.14. The DP and the intra-well peaks are plotted in
Fig. 4.14a-b, and the inter-well peaks are plotted in Fig. 4.14c-f.

The intra-well CS-CPs have linewidths along E2 which are roughly equal to their
linewidths along E1 and E3. The peak-shapes of the intra-well CS-CPs are aligned
roughly along the E2 axis (i.e. there is no tilt). The simulations for correlated inho-
mogeneous broadening predicted a linewidth along E2 which was narrower than
the linewidths along E3 and E1. These intra-well peaks therefore somewhat broader
along E2 than predicted by the simulations, but clearly also narrower than predicted
for uncorrelated broadening (which predicts a linewidth along E2 which is the sum
of the linewidths along E1 and E3).

Furthermore, the resolution in E2 is limited by the t2 scan range, and the mea-
sured E2 linewidths in Table 4.2 are roughly at the resolution limit based on the
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Figure 4.14: Projections of the NWhh DP and the intra-well (NWhh, NWlh) CS-CPs onto the (a) E3
vs. E2 and (b) E1 vs. E2 planes. The centre of each peak along E1 and E3 are labeled.
(c-g) show projections of the inter-well peaks from the pathway selective 3D spectral
along the (c) E3 vs. E2 and (d-f) E1 vs. E2 planes.

scan range used. We therefore assume that these linewidths are resolution limited.5

For comparison, the projections of the NWhh DP are shown as well. The linewidth
of the DP along E2 (5.8 meV) is only marginally smaller than the linewidths of the
intra-well CS-CPs (7.1 meV and 8.0 meV) along E2. This is further confirmation that
all of these linewidths are resolution limited, as the DP linewidth should be lim-
ited by the population lifetime, and as a result should have a significantly smaller
linewidth than the CS-CPs.

5 The scan range used in this experiment (t2=0 to 900 fs) is not the maximum scan range achievable with the
pulse-shaper. This explains (in part) why E2 linewidths of peaks in the 3D spectra presented in subsequent
chapters are narrower. The modulations along E2 are due to the spectral leakage caused by the limited t2 scan
range.
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The fact that the width of the intra-well CS-CPs along E2 is smaller than the sum
of their widths along E1 and E3, and that they have no appreciable tilt is mostly con-
sistent with the peak-shape predicted in Fig. 4.13d-f for correlated inhomogeneous
broadening. The slightly broader than expected widths of the peaks along E2 are
likely caused by the limited E2 resolution.

Figure 4.14c-g show the 2D projections of the inter-well CS-CPs (which demon-
strate uncorrelated inhomogeneous broadening in the E1 vs E3 projections). We do
observe some tilt (most notably in the E3 vs E2 projections of the CS-CPs emitting
in the WWhh). The linewidth of the CS-CPs projected onto the E2 (i.e. the 1D width
in the E2 direction) are shown in Table 4.2, and are consistent with the sum of
the inhomogeneous linewidths of the coupled transitions for all the inter-well CS-
CPs (which we expect for uncorrelated broadening). However, the 2D peak-shapes
are broader along E2 compared with what we expect based on the simulated 2D
peak-shapes.

Broadening induced by the scan range cannot explain this discrepancy, as the
entire decay of the signal is captured in the scan data. To understand the discrep-
ancy between the simulated and measured E1 vs E3 and E1 vs E2 projections, we
consider the assumption built into the simulations that there aren’t any additional
dephasing processes that effect the excited state coherent superposition (in t2) com-
pared to the ground-excited state coherent superposition (in t1). This assumption
may not be correct for two reasons. First, in t1 (where we measure the dephasing
of the ground-excited state), only one pulse has arrived at the sample. In t2 (where
we measure the dephasing of the ground-excited state), two pulses have arrived.
This represents a significant increase in the number of carriers in the sample, which
could lead to an increase in dephasing due to carrier-carrier scattering in t2 com-
pared with t1. Second, the coherent superposition in t2 may have a larger in-plane
and out-of plane size than the sum of the two ground to excited state coherent su-
perpositions. This larger in-plane size could lead to a larger scattering cross-section
and therefore more interactions with other carriers and phonons. The increased in-
teraction cross-section would thereby shorten the decoherence time of the coherent
superposition and increase the E2 linewidth.

To summarize: for uncorrelated inhomogeneous broadening, we expect that CS-
CPs projected onto the E3 vs E2 and E1 vs E2 planes will have tilted peak-shapes.
On the other hand, we expect projections of CS-CPs with correlated inhomoge-
neous broadening to have peak-shapes without no tilt, a linewidth along the E1
(E3) directions equal to Γ (ih)A (Γ (ih)B ) and a linewidth along the E2 direction equal

to Γ (h)A + Γ
(h)
B . The projections of the experimentally detected intra-well CS-CPs (in

which the inhomogeneous broadening is correlated) have peak-shapes which are
consistent with the expected peak-shapes, though experimental limitations prevent
us from accurately measuring some linewidths. However, the projections of some
of the experimentally detected inter-well CS-CPs (which have uncorrelated inhomo-
geneous broadening) have peak-shapes which are also qualitatively consistent with
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the simulations. The projections onto E3 vs E2 and E1 vs E2 reveal linwidths along
E2 which are larger than predicted by the simulations. This suggests that there are
additional dephasing processes that affect the excited state coherent superposition
more than the ground-excited state coherent superposition.

4.3.5 Quantitative Analysis

One benefit of pulse-shaper based CMDS is that pathway-selection and broadband
spectra can be collected contiguously, with no changes to the optical setup because
the only difference is the spectral phase pattern sent to the pulse shaping SLM. The
PS-CMDS and CMDS signals can therefore be compared quantitatively, allowing us
access to the relative contributions of different signal pathways.

The excitation spectra used to collect the pathway selective and broadband 3D
spectra are necessarily different. The measured signal amplitudes are dependent
on the spectral intensity of the excitation pulse at the energy transition of the tran-
sition involved in each interaction. To quantitatively compare the signals, the dif-
ferent spectral intensity in the excitation pulses must be taken into account. The
normalized signal A(P) (i.e. the signal we would measure if the excitation spectra
were flat) can be calculated as using the following equations.

A(P) =
Ã(P)

η(P)
(4.10)

η(P) =

√
I(−k1)(ε

(P)
1 ) · I(k2)(ε(P)2 ) · I(k3)(ε(P)3 ) · I(LO)(ε(P)sig) (4.11)

where Ã(P) is the measured amplitude for a signal P, and η(P) is a normalization
factor. η(P) is calculated based on the spectral intensity of the excitation pulses at the
transition frequencies for each of the interactions that are involved in the pathway
for peak P. A justification for Eq. 4.10 and Eq. 4.11 can be found in Appendix A4.

Using Eq. 4.10 we can compare different amplitudes within the same 3D spec-
trum. We can also compare different 3D spectra as long as certain criteria are met:

1. The 3D spectra must be collected consecutively with no changes to the optical
setup

2. The acquisition parameters (eg. CCD integration time) and delay sampling
(both t1 and t2) must be the same for the different 3D spectra.

3. The excitation spectra used in both 3D spectra must be measured in such a way
that they can be quantitatively compared (i.e. they must all also be recorded
using the same acquisition parameters).

Using the pulse-shaper based CMDS experiment, these requirements can all be sat-
isfied. The acquisition of the 3D and PS-3D spectra were done in this way, so we
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can compare the CS-CPs in the pathway selective 3D spectrum with the CS-CPs and
population pathways in the broadband 3D spectrum.
Ã(P) is determined for all of the peaks in both 3D spectra by integrating the entire

peak. Integrating the peak is necessary to account for the different dynamics of the
various pathways. Two different pathways with the same strengths, but different
decay rates as a function of t1 or t2 will still produce the same Ã(P) when integrated,
even though they will have different peak-shapes and peak heights. A(P) is then
calculated based on the measured excitation spectra.

The I0(ε) factors are determined by extracting the spectral intensity at ε from
the excitation spectrum I0. For simplicity, the spectral intensity is assumed to be
flat across the width of each transition, and I0(ε) is calculated using the average
spectral intensity across the transition width. We then include the variation of the
spectral intensity across the transition as an additional source of uncertainty in
error analysis.

In an ideal experiment with delta function pulses and infinitely broad spectra,
this correction would be unnecessary, which is why many CMDS experiments use
spectral widths which are broad compared to the spectral spacing of the transitions
of interest. In this experiment, however, we cannot use pulses broad enough to be
adequately spectrally flat across all transitions due restrictions of the pulse-shaper
and the nature of the pathway selective experiment.

The corrected and uncorrected peak amplitudes for all of the PS-CMDS CS-CPs
as well as the DPs and selected CS-CPs from the broadband CMDS 3D spectrum
can be found in Table 4.2. The (NWhh,WWhh) and (NWhh,WWlh) CS-CPs (which
are the only two peaks that appear in both spectra) are about 2× higher amplitude
in the PS-CMDS spectrum. Two factors are likely working together to cause this
increased signal. First, there are much fewer free-carriers (which have been shown
to reduce decoherence lifetimes) generated in the PS-CMDS experiment. Second,
this correction assumes that all of the signals have the same E3 dependence on
the pulse electric field amplitude (and therefore on the excitation density). We
show in Chapter 7 that the intra-well signals follow a roughly E3 dependence on
excitation density while the inter-well signals follow a clearly sub-E3 dependence.
As a result, the corrected values in Table 4.2 overstate the strength of the inter-well
coherent superposition signals because they implicitly assume an E3 dependence
on the excitation density.

Still, these should amount to relatively small errors as the excitation density does
not change much. Furthermore, the delay range of all of the signals are limited in a
similar way, so the error there is also not going to be huge. Therefore, this is a still
a useful tool for getting a ball park estimate on the relative strength of pathways
whose strength vary by orders of magnitude.

By combining CMDS and PS-CMDS the overall dynamic range of the experiment
is improved considerably. The amplitude of the uncorrected peaks detected vary
by almost four orders of magnitude in electric field amplitude, or eight orders of
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magnitude in intensity. Combining this large dynamic range with the ability to quan-
titatively compare individual signal pathways results in a powerful tool for quanti-
tatively studying weak quantum-effects.

4.4 Inter-well coherence in InGaAs/GaAs DQW

In this section, broadband and pathway-selective CMDS spectra will be presented
to study inter-well coherence in an In0.05Ga0.95As6 DQW structure. The sample stud-
ied is a different piece of the same sample used in Nardin et al [54]. The results
presented here using broadband excitation are consistent with the results presented
in the previous study. The CMDS results presented in Ref. [54] utilized translation
stages to control the delays and active phase stabilization. The consistency of our
results with a well-established CMDS apparatus7 (which employs very different de-
lay methods) is an additional confirmation that the experimental apparatus and
processes established as part of this PhD project are sound.

Results in the section also show that when pathway-selection is employed, inter-
well 0Q coherence signals (which are otherwise hidden) can be resolved. These re-
sults show that pathway-selection can be useful even in samples in which the spac-
ing of electronic transitions is very small compared with the transition linewidth.
Both above- and below-diagonal coherence peaks can be detected with different
pulse sequences. We observe CS-CP peak-shapes that are broader than expected
along both E1 and E2. This may suggest that different exciton sub-populations con-
tribute to the CS-CPs and population pathways. We compare the amplitude of the
CS-CPs (relative to the amplitude of the population signals in a 0Q spectra) to the
values predicted by the simulations in Ref. [54], and find that they are not con-
sistent. We suggest that the coupling is therefore not entirely due to many-body
interactions, and my include two-body coupling of WW and NW excitons.

4.4.1 Previous studies on this sample

The most recent report on coherent coupling in DQWs was published by Nardin
et al [54] in 2014. In this experiment, an InGaAs DQW was studied using 1Q, 0Q
and 2Q 2D spectroscopy. A diagram of the DQW potential and electron and hole
wavefunctions are shown in Fig. 4.15a (reproduced from Ref. [54]). The calculated
electron wavefunctions show some hybridization, but the HHs are well localized.
The LHs are confined in the GaAs barriers due to strain, so there are only two direct
single-exciton transitions, one in each QW8. The electronic structure shown in Fig.

6 All of the InGaAs samples reported in the rest of this thesis are In0.05Ga0.95As. For simplicity, the percentages
are sometimes omitted.

7 The CMDS experiment at JILA was one of the first used to study QWs [56, 194], and has been used for many
experiments since [50, 53, 81, 82, 193, 197, 216–218].

8 As chapter 6 will show, there are actually a range of other transitions in this sample, but the nonlinear response
in the spectral range studied in Ref. [54] and in this chapter is dominated by these two exciton transitions.
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4.15b (also reproduced from Ref. [54]) shows two single-exciton states (WW-X and
NW-X) and three two-exciton states (WW-2X,NW-2X, Mixed-NW/WW-2X). The full
origin of the six level system is described in the Supplementary Information from
Ref. [54], but it can be briefly understood as follows. As described in Section 2.2.1.1,
two two-level systems can be reformulated as a four-level system (4LS). This is
done for both WW-X and NW-X, to generate two 4LS’s. These two 4LS’s can then be
reformulated into a 16-level system (16LS). However, only 11 of the 16 states in the
16LS can contribute to the signal (the other 5 states involve 3 or 4 particle states,
which cannot be involved in any of the 1Q or 2Q spectra). Five of these 11 are
actually duplicates of other states. As a result, for the purposes of the experiment,
the 16LS reduces to the 6LS shown in Fig. 4.15a.

The presence of signal from the mixed two-exciton state implies some type of
coherent coupling of the two single-exciton transitions. The dotted lines below the
transitions indicate that some characteristic of the X-2X transition is different from
the GS-X transition (eg. the transition energies or dephasing rates).

Figure 4.15: Sample diagram and level scheme for the InGaAs DQW sample. Reprinted with permis-
sion from Ref. [54].

The results of experiments and simulations from Ref. [54] are shown in Fig. 4.16.
The 1Q spectra in Fig. 4.16a,b (experimental) and Fig. 4.16e,f (simulations) show
the absolute value and real parts of the 1Q spectrum. The two DPs have inhomoge-
neously broadened peak-shapes tilted along the diagonal. The real part of the DPs
have absorptive cross-diagonal line-shapes. There is an obvious below diagonal CP
with absorption in NW-X and emission from WW-X, showing there is some kind of
inter-well coupling. The real part of the CP is dispersive, in contrast with the DPs.
Based on previous work on single and multi-QWs, the dispersive real line-shape in-
dicates that many-body effects are present and play a role in the generation of the
CP [53]. However, in Ref. [53], they observed dispersive line-shapes for both DPs
and CPs, in contrast with the results in Ref. [54] (and Fig. 4.16).

The 0Q spectra in Fig. 4.16c,g shows the two peaks at E2 = 0, corresponding to
the population pathways for WW-X and NW-X. No CPs are resolved, which suggests
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Figure 4.16: 1Q, 0Q and 2Q 2D spectra for the InGaAs DQW recorded at JILA. Reprinted with per-
mission from Ref. [54].

that the coherent-superposition pathway is not present, or the signal is too far below
the signal from the strong population pathways to be detected.

The 2Q spectra show the two DPs corresponding to signals from (E3, E2Q) =
(WW-X, WW-2X) and (NW-X, NW-2X) pathways. There is also a clear CP which
corresponds to (WW-X, WW-X+NW-X), which is one of the places we expect to
see signals from the Mixed-NW/WW-2X state. The existence of this CP therefore
confirms that excitation into the mixed two exciton state is possible, and therefore
that the two transitions are coherently coupled.

Simulations were conducted to understand the underlying mechanism responsi-
ble for the coupling. The third order polarization was calculated for the six level
system shown in Fig. 4.15b. To simulate the coupling between the wells, they in-
troduced two differences between the G-X and the X-2X transitions: 1. different
dephasing rates (we will refer to this as ∆γ) and 2. different transition energies
(we will refer to this as ∆EM). When certain ∆γ and ∆EM are introduced, the simu-
lations generated 1Q and 2Q 2D spectra with below diagonal CPs, and a dispersive
cross-diagonal line-shape in the real part of the 1Q CP. There are a total of 23 free
parameters in the simulations, which were constrained by 25 different parameters
extracted from the experimental data. Using the constraints from the experimen-
tal data they used a manual fitting approach to find ∆γ and ∆EM which produce
simulated spectra that best match the experimental results. They find that a non-
zero ∆EM is required to reproduce the dispersive line-shape of the real part of the
1Q CP. They find that ∆EM=0.15 meV provides the best match of simulation and
experiment for the line-shape of the real part of the 1Q CP. They further find that
non-zero ∆γ and non-zero ∆EM are required to produce the 2Q DPs.
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They attribute these shifts to many-body effects: non-zero ∆γ is due to excitation
induced dephasing (EID) and non-zero ∆EM is due to excitation induced shift (EIS).
However, this phenomenological method of including these effects is actually not
directly related to the physical source of EID and EIS generated signals, which
is population dependent dephasing and population dependent transition energies.
However, other types of coupling could lead to non-zero ∆γ and non-zero ∆EM.
For example, a simple two-body coupling (for instance due to hybridization of the
electron wavefunctions) might also introduce a shift of X-2X relative to g-X.

4.4.2 Broadband and pathway selective CMDS Results

A puzzling aspect of the results presented in Ref. [54] is the missing 0Q CS-CP. In
this section, our goal is to discern whether the CS-CP signal pathway is present, and
what the amplitude of the CS-CPs are relative to others. We use the same approach
we used on the AlGaAs DQW (Section 4.3) to isolate and investigate this signal
pathway. This sample presents new challenges, as the WW-X and NW-X transitions
are energetically less separated than the AlGaAs transitions, making it more difficult
to fully isolate the coherence pathways.

We first performed broadband 1Q, 2Q and 0Q spectroscopy to ensure that we
could reproduce the results in Ref. [54] (and in Fig. 4.16).9 The resulting 1Q and
2Q broadband spectra collected at Swinburne are presented in Fig. 4.18. The results
are mostly qualitatively consistent with those in Ref. [54], with a few discrepancies.
First, the cross-diagonal linewidth of the DPs is larger in our results, due to the
limited scan range of the pulse-shaper. The ratio of 1Q DP intensities is different,
but can be explained by the spectral intensity which is weighted towards NW-X in
Ref. [54], and roughly even in ours.

Instead of a typical 0Q spectrum we performed a full rephasing 3D spectrum
to look for the CS CPs. A pseudo-0Q spectrum is generated by projecting the 3D
spectrum onto the E3 vs E2 plane, and is presented in Fig. 4.18b. From this projec-
tion, there is clearly no peaks at (E3, E2) = (WW-X, -10 meV) and (NW-X, 10 meV)
(where we expect to see CS-CPs). Even if we examine slices of the 3D spectrum (not
shown) there is no indication of a CS-CP. The lack of a CS-CP is, again, consistent
with previous investigations of this sample.

In the previous section, signals that were undetectable with broadband excitation
were revealed using coherence-specific pathway-selective spectroscopy. Similarly, it
is unlikely that the CS pathway in this InGaAs DQW is completely forbidden, but
rather just too weak to be detected. Thus, the coherence-specific pathway selective
approach could potentially reveal the 0Q coherence in these DQWs. To that end two
coherence-specific pathway-selective 3D spectra were recorded contiguously with
the broadband spectrum. One spectrum used a pulse sequence that isolated the

9 The pertinent experimental parameters can be found in Table A1.1 in Appendix A1
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Figure 4.17: Laser spectra for interwell broadband and pathway selective CMDS experiments on the
InGaAs DQW.

below-diagonal CS-CP (k1 only resonant with NW-X, k2 only resonant with WW-X -
the 2121 pulse sequence in Fig. 4.2) and the other spectrum used a pulse sequence
that isolated the above-diagonal CS-CP (k1 only resonant with WW-X, k2 only res-
onant with NW-X - the 1212 pulse sequence in Fig. 4.2). The excitation spectra
used to collect the spectra are shown in Fig. 4.17. Because the transitions are so
closely spaced, the coherence signal is not entirely isolated. As a result, the 2D 1Q
spectrum (with coherence-specific spectral shaping) includes some peaks from pop-
ulation pathways which may overlap the peaks from the coherence pathways. In
a 3D spectrum, however, these contributions can easily be windowed out as they
occur at different E2 values.

The two pathway selective 3D spectra can be seen in Fig. 4.19a and Fig. 4.19b.
Clearly, there are still significant contributions from population pathways, as the
strongest signals appear at E2 = 0. There are also well defined and isolated CS-CPs
centred at the expected E1,E2 and E3 values for the given pulse orderings, which
can be clearly separated from the population contributions.

As in the previous section, these peaks can now be isolated in 3D frequency space
and analysed. The slices in Fig. 4.20c-f illustrate this by showing that the CPs appear
along the E2 = E3 + E1 line (angled dotted line) for the E3/1 of the given slice. The
peak-shapes in Fig. 4.20a and Fig. 4.20b are not tilted, which indicates that there
is no correlation of the broadening between the two wells (which is consistent with
the 1Q spectrum in Fig. 4.18).

The FWHM of CS-CPs from the pathway selective spectra, the population pathway
CP (Pop-CP) and the DPs from the broadband spectrum are shown in Table 4.3. The
CS-CPs and the Pop-CP are projected onto each of the three energy axes and then
fit with a Gaussian function. To characterize the inhomogeneous width of the tran-
sitions, a slice is taken of the BB 3D spectrum along the E3 = -E1 diagonal line at E2
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Figure 4.18: Broadband 2D spectra for the InGaAs DQW recorded using the CMDS apparatus at
Swinburne. (a) 1Q (b) 0Q and (c) 2Q spectra when exciting only the two QW excitons.

= 0. Gaussian functions are then fit to each of the DPs along the diagonal slice. The
width of each peak along the diagonal is labelled D in Table 4.3. A cross-diagonal
slice is then taken at the peak of each of the DPs and fit to a Lorentzian function to
characterize the homogeneous linewidth of each transitions10. The cross-diagonal
linewidth is labelled XD in Table 4.3.

The E3 width of the CS-CPs and the Pop-CP all match the inhomogeneous width of
the DP that shares the same emission energy. All the CPs have E1 widths which are
larger than the DPs that share the same E1 energy: Pop-CP and CS-CP1 both have
larger widths along E1 than the inhomogeneous width of the NW-X DP (1.1 meV).
The difference between the E1 widths of CS-CP2 and WW-X is even more striking:
the CS-CP2 width along E1 is ∼3× larger than WW-X (0.7 meV). This is a surprising
result, because the Feynman diagrams for the CS-CPs (shown in Fig. 4.21a,c) are
each identical to the diagrams for the DP with the same absorption energy (shown
in Fig. 4.21b,d, respectively) up to the second interaction. The CS-CPs and DPs
should therefore experience the same dephasing as a function of t1 (and hence
have the same E1 width).

As has been noted several times previously in this thesis, the experimental delay
limitations can cause an artificial increase in linewidths along E1 and E2. This, how-
ever, cannot account for the discrepancy between the CS-CPs and DPs because the
achievable delay range is equal for both broadband and pathway selective experi-
ments. Furthermore, if the excitation of additional carriers in the BB spectra were
involved, then we would expect the opposite effect (i.e. CPs narrower along E1 than

10 As the delay range in this experiment is limited, the homogeneous linewidths represent an upper bound only.
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(a) (b)

Figure 4.19: Coherence-specific, pathway-selective 3D spectra for 2121 (a) and 1212 (b) sequences,
showing some population signals at E2 = 0 as well as the CS-CP.

3D Spectrum Peak E1 E2 E3 D XD

(meV) (meV) (meV) (meV) (meV)

±0.1 ±0.1 ±0.1 ±0.1 ±0.1

Broadband WW DP 0.8 0.5

Broadband NW DP 1.1 1.1

Broadband Pop-CP 1.5 1.1 0.7

2121 CS-CP1 1.3 2.3 0.7

1212 CS-CP2 2.3 1.7 1.2

Table 4.3: Peak-widths (FWHM) measured for several peaks from the three different 3D spectra.
The diagonal (D) and cross-diagonal (XD) linewidths are measured for the two DPs in
the broadband spectrum. For the three CPs, the 3D peaks are projected onto each axis
and then fit with a Gaussian function. CS-CP1 refers to the below diagonal CS-CP with
E2 ≈ −10meV. CS-CP2 refers to the above diagonal CS-CP with E2 ≈ 10meV.

the DP at the same E1). Another possibility is that different exciton sub-populations
contribute to the different signals. We see evidence for multiple sub-populations
in Ch. 7, and suggest that they may be related to inter-well CS-CPs in a different
DQW sample. We postulate in Ch. 7 that the sub-population predominately respon-
sible for inter-well interactions is a delocalized state, which also has a much larger
homogeneous linewidth. This larger homogeneous linewidth would be consistent
with the broadening of the E1 widths of the CS-CPs here.

We also observe no tilt of the peak-shapes of the E1 vs E2 and E3 vs E2 projections
of the CS-CPs(shown in Fig. 4.20c-f). Given that these transitions are inhomoge-
neously broadened and uncorrelated, we would expect there to be some tilt of these
peak-shapes. Although we were able to resolve this in the previous sample (Section
4.3.4), those peaks were also significantly broader along E2 than was expected in
the absence of enhanced dephasing of the excited state coherence compared with
ground-excited state coherences. The linewidths of the transitions in the InGaAs
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Figure 4.20: The two inter-well CS-CPs for the InGaAs/GaAs DQW projected onto the (a),(b):
(E3,E1), (c),(d): (E3,E2) and (e),(f): (E3,E2) planes for the (a,c,e) below diagonal
(2121) and (b,d,f) above diagonal (1212) pulse orderings.

DQW are much smaller than the linewidths in the previous section, so a tilt of the
peak would be more difficult to resolve as we approach the spectral resolution in
the different domains.

The simulations reported in Ref. [54] predicted amplitudes of the 0Q CS-CPs
for this sample11, but they were unable to compare them to experimental values
because no 0Q CS-CPs were detected experimentally. Now that we have been able
to detect the CS-CPs, we can compare the CS-CP amplitude to the amplitude of
the peaks in the simulated spectra, and determine whether they are consistent.
The ratio of the amplitude of each CS-CP to the amplitude of the population peak
that shares the same emission energy is shown in Table 4.4 for the simulations
and for the peaks we have detected experimentally. Experimental amplitudes were
corrected for the differences in the excitation spectra according to the technique

11 The CS-CP amplitudes are not reported in Ref. [54] but were provided to us by the authors.
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Figure 4.21: Feynman diagrams for the downhill (a) and uphill (c) CS pathways. (b) and (d) are the
pathways for the DP with the eivalent E1 to (a) and (c) respectively. Although these
pairs of diagrams are identical up to the second interaction, the CS-CPs show much
broader peaks along E1 (indicating shorter dephasing time), broader even than the
inhomogeneous linewidth of the associated DP.

Asim Ã(P) A(P) ÃP/ASim AP/ASim

Asim Ã(P) A(P) ÃP/ASim AP/ASim

CS−CP1/WW −X 0.004 0.020±0.004 0.080±0.020 4.6 19.2

CS−CP2/NW −X 0.013 0.050±0.016 0.290±0.101 3.8 21.9

Table 4.4: The ratio of the amplitudes of the CS-CP and population peaks which share the same
emission energy in a 0Q spectrum. Asim are the values extracted from the simulations
used in Ref. [54]. ÃP are the as measured values from the experimental results here. AP

are the measured values corrected for the different amplitudes of the laser spectra. ÃP

and AP represent an upper and lower bound on the CS-CP amplitude, respectively. The
ratio of the measured amplitudes and the simulated amplitdes (ÃP/ASim and AP/ASim)
show that the measured values are not consistent with the simulations. The measured
peak amplitues are comparable with the background noise in the BB 3D spectrum.

in Section 4.3.5. Both corrected and uncorrected amplitudes are reported in Table
4.4.

The amplitudes measured in this experiment are much larger than those pre-
dicted by the simulations. The uncorrected amplitudes are roughly a factor of four
larger than the simulations, and the corrected amplitudes are a factor of 20 larger.
As discussed in Section 4.3.5, the correction for the electric field amplitude assumes
that the signals scale with E3. Like the previous sample, experiments in Ch. 7 will
show that the inter-well CS-CPs follow a sub-E3 dependence on excitation density.
The corrected amplitudes shown therefore overestimate AP. Still, using ÃP as a
lower bound and AP as an upper bound, we can conclude that the experiment and
simulations are not consistent, and that the measured CS-CPs have larger ampli-
tudes than predicted by the simulations.

We interpret this discrepancy in the following way. The simulations in Ref. [54]
used differences between the GS-X and the X-2X transitions as a way of introduc-
ing many-body effects phenomenologically. As a reminder, the physical origins of
coupling due to many-body effects can be thought of in the following way12. A
dephasing-grating or a shift-grating (which are caused by spatial variations of EID
and EIS, respectively) imprints the wave-vector of one signal onto others. Specifi-

12 This described in more detail in Section 3.2.4
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cally applied to inter-well coupling, this involves populations in one well creating
a shift or dephasing grating in the other well through many-body interactions be-
tween the wells.

As we noted previously, the way ∆γ and ∆EM are introduced is not explicitly
related to EID and EIS (which are density dependent dephasing and density depen-
dent transition energies, respectively). Furthermore, the differences between the
G-X and X-2X transitions could also come from two-body coupling between WW-X
and NW-X. In that vein, the larger CS-CP amplitude might suggest that the two-
body coupling was underestimated in the simulations. Future simulations will aim
at understanding the interplay between the two-body coupling and the many-body
coupling by including the many-body coupling in a more physical (but still phe-
nomenological) way. Many-body coupling will be introduced as density dependent
dephasing rates and transition energies in the system Hamiltonian.

To summarize, in this section we have presented 1Q, 2Q and 0Q spectra for an
InGaAs DQW sample using broadband excitation that are consistent with previ-
ously published 2D spectra on the same sample. This is a useful result in its own
right, CMDS is an emerging technique which has many different experimental im-
plementations, and establishing consistency across a range of different experiments
is crucial in the pursuit of reliable and repeatable results, especially given the wide
range of unexpected and interesting phenomena which are being investigated.

By spectrally shaping the excitation pulses we were able to detect the inter-well
coherent superposition signal that remained elusive in broadband 2D spectroscopy.
From the isolated peaks, we were able to compare the strength of the CS-CP signal
to the predicted value from the simulations reported in Ref. [54]. We found that
the simulations under-estimates the CS-CP amplitude by between a factor of 4 and
a factor of 20.

These results also show that even when signal pathways cannot be perfectly
isolated due to closely spaced transitions, excited state coherent-superposition sig-
nals can be enhanced relative to everything else by selecting pathways using spec-
tral shaping. These results emphasize that pathway selection could be useful in
other material systems in which transitions are closely spaced or overlapping, such
as 2D materials [212, 219], nano-platelets [215, 220], quantum dots [221], bac-
terial light-harvesting complex 2 [9], and other biological light harvesting com-
plexes [6, 8, 97, 200].

4.5 Comparison of AlGaAs and InGaAs results and summary

The two DQW samples investigated in this chapter are similar in some ways, but
different in others. The AlGaAs sample has a narrower (6 nm vs 10 nm) barrier
which is also much higher (∼280 meV vs ∼60 meV). The lower potential barrier in
the InGaAs/GaAs sample means that the wavefunctions penetrate much further
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into the GaAs barriers, which leads to more significant hybridization of the electron
wavefunctions, even though the barrier is thicker. The AlGaAs (InGaAs) sample is
grown by MOCVD (MBE), so the InGaAs/GaAs DQW has cleaner interfaces, and
the GaAs/AlGaAs DQW has exciton lines which exhibit increased inhomogeneous
broadening. The larger inhomogeneous broadening in the GaAs/AlGaAs DQW also
allows us to more easily identify correlated and uncorrelated broadening in the E3
vs E2 and E1 vs E2 peak-shapes of CS-CPs.

InAs and GaAs are not lattice matched so InGaAs layers experience strain. For
low indium content the strain does not cause dislocations or lattice/interface de-
fects, but instead leads to a uniform deformation of the lattice. The most notable
difference this creates is that it removes the degeneracy of the HH and LH bands,
and shifts the energy the LHs such that they are no longer confined in the DQW.
AlAs and GaAs on the other hand are nearly perfectly lattice matched so the layers
remain unstrained. It is not clear whether this difference plays much of a role in
understanding inter-well coupling, but it does have important consequences for the
overall electronic structure of the InGaAs/GaAs QW sample, which will be discussed
in more detail in the following chapter.

Finally, in the GaAs/AlGaAs sample, an AlGaAs layer forms the barrier between
the wells. AlGaAs is a ternary compound which are known to be more prone to
defects than binary layers [222]. On the other hand, the barrier in the InGaAs/GaAs
sample is just GaAs, a binary compound which can be grown very cleanly. The levels
of impurities are much higher in barriers made of composite materials, so the actual
confinement may be much less than expected for the AlGaAs sample. As impurity
driven tunneling is one of the suggested mechanisms for tunneling in QWs [222],
this could explain the relatively large inter-well CS-CPs in the GaAs/AlGaAs sample
even when the wavefunctions are well localized in separate wells. Whether impurity
driven changes to the potential could allow coherent interactions is not as clear.

Given all of these differences between the samples, there are quite a few similar-
ities in the results. We might be able to use to these similarities understand what
aspects of the experimental results are sample specific and which are more gen-
eral. The first similarity is that the inter-well coherent superpositions generate CPs
which show no tilt and therefore no correlation of the inhomogeneity. Second, the
coherent superpositions are significantly weaker than the diagonal pathways. One
important difference between the results for the two samples is that in the InGaAs
sample, the E2 = 0 inter-well CP (Pop-CP) is very strong compared with the CS-
CP. In the results for the GaAs/AlGaAs sample, on the other hand, the E2 = 0 CP
and the CS-CP have similar amplitudes. A speculative explanation for the differ-
ences in these samples is that the InGaAs/GaAs sample is coupled through through
the ground state due to wavefunction hybridization while the GaAs/AlGaAs sample
(which has very little wavefunction hybridization) is coupled in the excited state.

In both of these samples, the E1 vs E2 and E3 vs E2 peak-shapes are broader along
E2 than we expect based on the simulations in Section 4.3.4. Although some of the
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CS-CPs in the AlGaAs sample qualitatively matched the amount of tilt (lack of tilt)
expected for inter-well (intra-well) peaks, the peak widths were all larger than ex-
pected. The disparity for intra-well CS-CPs is caused by the t2 scan range. The scan
did not go out far enough in t2 to collect the entire population decay or dephasing
of the excited state coherent superpositions. This reduced scan range resulted in
broadening and spectral leakage along E2. However, for the inter-well CS-CPs, the
widths are far from experimentally limited and the full decay is captured within
the t2 scan range used. The CS-CP dephasing time is therefore clearly shorter than
we would have expected given the linewidths of the individual exciton transitions.
Similarly, the inter-well CS-CPs in the InGaAs samples are much broader along E2
than we would expect based on the inhomogeneous linewidth of the coupled exci-
tons. The measured CS-CP dephasing times, however are in the range where we are
unable to definitively determine whether they are limited by the experiment. How-
ever, for the E1 and E3 widths of these peaks we would expect to see some tilting
of the peaks. The fact that we don’t could also indicate a faster than expected CS
dephasing.

We hypothesize that this more rapid dephasing could be caused by excitation
induced effects, and that the excited state CS in t2 are more sensitive to exciton-
exciton interactions or free-carrier-exciton interactions than the ground-excited
state coherences. The excitation density dependence in Ch. 7 also seems to sup-
port this view, though a repeat of these exact experiments at low powers would be
necessary to show it definitively. We have several other experiments planned to test
this hypothesis, which will be discussed in Ch. 8.

Finally, we we showed that the amplitude of the 0Q CS-CP in the InGaAs/GaAs
sample is inconsistent with the simulations previously reported for this sample. Us-
ing these new constraints to improve the simulations will be the subject of future
work.
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Some of the motivation for developing coherent multidimensional spectroscopy
(CMDS) for electronic transitions is related to to the success of multidimensional nu-
clear magnetic resonance (NMR) spectroscopy, which is a technique that is in many
ways conceptually similar to CMDS [223, 224]. In particular, triple-resonance NMR
has been very successful in resolving the structure of complex molecules (including
proteins) by selectively exciting spins of different nuclear species in a controlled
order [15, 21, 225, 226]. In this chapter, we will demonstrate the deterministic
and selective excitation of mixed two-exciton states, in which the order of excita-
tion is defined. This is an important step towards an excitonic equivalent of triple-
resonance NMR. The first section will describe some of the key concepts required
to understand triple-resonance NMR, and then we will describe how an analogous
technique for excitons can be useful, and how it can be realized in our SLM based
CMDS experiment.

5.1 Triple-resonance NMR

NMR is a technique that uses radio-frequency (RF) radiation to investigate nuclear
spins [14]. In 1D NMR experiments, a sample is placed in a strong magnetic field
(10 T) and excited by an RF pulse, which creates a macroscopic nuclear spin polar-
ization. This spin polarization then emits RF radiation which is detected in the time
domain and then Fourier transformed into the frequency domain. The resonant fre-
quency of the emitted radiation depends on the nuclear species, the magnetic field
amplitude and the electronic environment of the nuclear spin. The electronic envi-
ronment of the spin in turn depends on what atoms are bonded to the nucleus (as
shown in Fig. 5.1), so NMR is intrinsically sensitive to the molecular structure.

In multidimensional NMR [14], multiple RF pulses are used to generate a non-
linear signal, and dynamics are explored by scanning the time delays between the
pulses. Multidimensional spectra are then generated by Fourier transforming the
collected data along one or more of the scanned delays. In the simplest case (au-
tocorrelation spectroscopy, also called COSY) this results in an absorption-emission
correlation map similar to a 1-quantum (1Q) spectrum, as described in Ch. 1. Inter-
actions that involve only a single type of nucleus in a specific bonding environment

139
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Figure 5.1: An example NMR H spectrum for Ethyl Acetate. The H nuclei bonded in different ar-
rangements (as indicated by the different colored H’s in the inset) have different reso-
nances. Reproduced from Ref. [227].

will appear as peaks along the diagonal (i.e. diagonal-peaks; DPs). The spin coher-
ence can be transferred between nuclei that are close to one another and/or share
a bond. Transfer of the spin from one nucleus to another will appear in the 2D
spectrum as a cross-peak (CP). Basic information about the structure can then be
determined by observing where the CPs occur. If the RF pulses are only resonant
with a particular nuclear species (this is often called homonuclear NMR), then all
of the DPs and CPs will involve the same type nucleus in different bonding environ-
ment. In homonuclear NMR, the directly observed structural information is mostly
limited to the species being excited, and some a priori knowledge is required to
work out the structure of larger molecules.

A different category of experiments are called heteronuclear experiments [228–
230], in which some pulses are resonant with one species of nucleus (e.g. H) and
others are resonant with a different species (e.g. N). This can be thought of as a
sort of CP specific approach in that the modulations in the time domain(s) that are
scanned are at a different frequency than the emission frequency [228]. The benefit
of this approach is that H nuclei which are bonded to N in different environments
can be clearly separated based on which CPs appear in the 2D or 3D spectra. Het-
eronuclear NMR can be conducted using pulse orderings in which CPs appear due
to spatial proximity of the nuclei, or through bonds between nuclei.

Heteronuclear NMR can be extended to include pulses separately resonant with
three different nuclei (H, N and C), in what is typically called heteronuclear triple-
resonance NMR, or simply triple-resonance NMR [225, 226]. This approach is often
conducted in 3D, such that each of the three resulting frequency axes represents a
different species of nucleus (H, N, C). Correlations between the H, N and C nuclei in
different electronic environment can therefore be observed. H, N and C are some of
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Figure 5.2: The plot on the left shows an example of a pulse sequence used in a heteronuclear
NMR experiment. The horizontal axis represents time flowing left to right. The black
rectangles indicate RF pulses and the horizontal lines represent the nuclei with which
the pulses are resonant. This pulse sequence (called HNCO) can isolate signals from
the arrangement of C, N, and H shown on the right. Adapted with permission from
Ref. [225].

Figure 5.3: An illustration of how mutli-quantum triple-resonance NMR can be used to separate
signals from the same atoms bonded in different configurations. If the A → B → C
excitation pulse sequence is used, then the “molecule” in (a) will result in signal while
the “molecule” in (b) will not.

the most common constituent elements of proteins, so the ability to observe their
spin correlations is incredibly powerful, and is a key part of the use of NMR to
determine protein structure [15].

Different pulse sequences have been devised to investigate H, N and C bonded in
specific arrangements. An example is given in Fig. 5.2, (reproduced from Ref. [225]),
which shows a HNCA pulse sequence along with the arrangements of C, N and H
it is sensitive to. Combining the selectivity of triple-resonance NMR with the ability
to resolve CPs along three frequency axes in 3D spectra has proven to be incredibly
powerful. This basic approach has been expanded out to many (up to thousands
of pulses) to identify large complexes. Protein structure can then be determined by
combining a series of several triple-resonance NMR experiments with well devel-
oped calculations [231].

Some of the pulse sequences used in triple-resonance experiments involve multiple-
quantum spin coherences as a means to determine what spins are connected di-
rectly through bonds [14, 226, 229]. The utility of selective excitation of multi-
quantum coherences can be understood using the following example: the pulses
sequentially excite spins of three different nuclei - A, B, C - which are bonded
as shown in the cartoon in Fig. 5.3. If we excite a 3-quantum coherence in the
A → B → C order, then the “molecule” in Fig. 5.3a will generate a signal, while
the molecule in Fig. 5.3b will not. If we are investigating a larger molecule, we
can therefore use the selectively excited 3-quantum coherences to isolate signals
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from nuclei bonded to the complex in Fig. 5.3a, while suppressing those from the
complex in Fig. 5.3b even though they both consist of the same three nuclei. Se-
lectively excited multi-quantum coherences can be integrated as part of a larger
pulse sequence to eliminate signals that don’t involve a particular arrangement of
nuclei, in what is referred to as multi-quantum filtering [14]. Thus, the ability to
selectively excite these multi-quantum coherences in different orders is very use-
ful for determining the structure of large complexes. It is important to note that
a key component of this selective approach is deterministically exciting the multi-
quantum coherences in a particular order.

Clearly, the selective excitation of multi-quantum coherences in heteronuclear
NMR experiments is powerful, so an exploration of similar approaches in the op-
tical regime would appear to be advantageous [232]. There are, however, many
differences between NMR and CMDS that make applying this type of approach
to electronic transitions more challenging. First, the non-linearity of materials is
much weaker at optical frequencies than at microwave frequencies, so the exten-
sion to large numbers of pulses at is not feasible. Experiments are typically only
conducted up to 5th-order [63, 68, 190, 191](though at least one 7th-order exper-
iment has been reported [63, 191]). In 5th-order experiments, only coherences up
to 3-quantum can be directly observed, which limits the degree of filtering that can
be applied.

Another challenge, is that to achieve selectivity we must generate pulses which
are resonant only with different transitions. At optical frequencies, generation of
non-overlapping excitation spectra while also maintaining the phase stability re-
quired to perform CMDS is not straight forward (as described in Ch. 2 and Ch. 4).
Furthermore, multi-quantum spectroscopy requires an even more stable apparatus
than 1Q spectroscopy due to the increased frequency of the signal phase oscillations
as a function of the scanned delay (i.e. t2Q in 2-quantum (2Q) spectroscopy).

These challenges notwithstanding, some of the heteronuclear and multi-quantum
NMR methodologies could be useful at optical frequencies to study excitonic sys-
tems. For example, in systems where excitonic states are predominately localized
to different parts of a complex, a technique similar to the one described in Fig. 5.3
could be used to infer the spatial layout of the states in the complex. Multi-quantum
coherences could be used to determine which states are indirectly coupled (i.e. not
directly coupled to one another, but both coupled to a third state). Extrapolating
from this, we could also investigate how electronic couplings between states ex-
tend across the complex by determining which states can be combined into a 3Q-
coherence and in which order.

Selective excitation of multi-quantum coherences could also be used as a filter to
isolate specific signals in mixed samples (like the cartoon shown in Fig. 5.4). In this
example, the sample is made up of three different complexes (A, B and C), which
exist in a sample in several different combinations - A, B, C, AB, BC, AC and ABC.
If CMDS with broadband excitation is used to study this sample, the signal would
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Figure 5.4: Multi-quantum filtering in excitonic systems. A mixed sample made up of complexes with
three excitonic states in a variety of different configurations: A, B, C, AB, BC, AC and
ABC. In a broadband 3Q experiment the signal from the singles and pairs will dominate.
However, if we use a selective 3Q experiment, we could excite only the ABC configura-
tion.

be dominated by signals from the single complexes. A signal involving a selective
3-quantum coherence made up of A, B, and C could be used to isolate signal from
just the ABC complexes, while suppressing signal from the singles and pairs.

Pulse-shaper based CMDS can alleviate some of the challenges in realizing se-
lective multi-quantum spectroscopy. First, as demonstrated in Ch. 4, we can use
spectral amplitude shaping to produce sequences of pulses that are each resonant
with different transitions. Second, the intrinsic phase stability allows us to perform
2Q spectroscopy, while delaying pulses in a rotating frame allows us to sample in
much larger steps. 3Q-coherences in 5th order experiments will also benefit from
stability and rotating frame delays. Finally, because of the controllable beam shaper
and pulse-shaper, the experiment can easily be reconfigured to perform 5th order
experiments. Indeed, a similar apparatus was previously used for 5th and 7th order
experiments experiments (which are required for direct detection 3Q and 4Q coher-
ences, respectively) using non-selective broadband excitation [63, 191]. However,
because these experiments used non-selective excitation, they were unable to ben-
efit from the concepts borrowed from heteronuclear NMR, and focused mostly on
correlations of excitons of the same transition.

In this chapter, we present proof of principle results showing that spectral shap-
ing can be used to selectively excite mixed 2Q-coherences in 2Q 2D spectroscopy.
We also show that the order in which the mixed 2Q-coherence is excited can be
controlled, which is a key part of what makes the selection and filtering processes
in NMR possible. This represents an important step towards selective excitation of
higher order excitonic multi-quantum coherences.

The first section will describe how pulses tuned to specific transitions can be used
to isolate signals from mixed two-exciton coherences. The following section then
presents results in which the signal for a mixed two exciton state made up of a
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Figure 5.5: Two pairs of identical 2LS’s can be recast as a pair of four 4LS’s or a single six-level
system involving two 1-exciton states and three 2-exciton states. In the 6LS, the mixed
two exciton state can be accessed via either 1-exciton state, but not directly from the
ground state.

quantum well exciton and a barrier exciton is isolated. We show that in addition
to isolating the mixed signals and removing the single transition peaks, the signals
involving the free-carrier continuum can also be suppressed. Excitonic peaks which
otherwise are hidden behind strong free-carrier peaks are thereby revealed, and
quantitative analysis of amplitudes and peak shapes is made possible.

5.2 Pathway selection in two-quantum coherence pulse ordering

As described in Section 2.2, we can reformulate a system of four 2-level systems
(2LS’s) into a pair of 4 level systems (4LSs) or a 6 level system (6LS) like the
one shown in Fig. 5.5. Depending on which of the 2LS’s are coupled, this 6LS
can collapse back down into either two 4LS or into four 2LS’s. If 1 and 1’ are not
coupled to 2 and 2’, then the 6LS collapses back down to a pair of 4LS’s, and all of
the pathways that involve the 21 state cancel. Thus, presence of signals involving
this 21 state confirm that the 6LS cannot be represented as a pair of 4LS’s, and that
1 and 2 are coherently coupled in some way [54].

As described in Section 2.2.1.3, 2Q 2D spectra allow us to directly detect signals
from these two-exciton states (21, 11, and 22) which we cannot not directly identify
in 1Q or 0-quantum (0Q) spectra. Furthermore, pathways that involve 21 appear
as CPs (at E2Q=ε1 + ε2, where ε1 and ε2 are the transition energies of states 1 and
2, respectively), while signals involving 11 and 22 appear as DPs (at E2Q=2·ε1 and
E2Q=2·ε2, respectively). Signals involving these three different two-exciton states
can therefore be clearly separated in 2Q 2D spectra. As a result, the detection of
a CP in a 2Q spectrum at E2Q=ε1 + ε2 must involve the 21 state, and therefore
indicates that the two associated transitions are coupled and cannot be represented
as separate 4LS’s.
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Figure 5.6: Pathways that involve the mixed 2Q coherence state must go ‘up’ via one of the four
pathways shown in (a). Once in the mixed-2Q coherence the signal can go ‘down’ any of
the four different ways shown in (b). The ‘down’ pathways can be separated spectrally,
so the signals involved appear at different points in the 2Q spectrum, as indicated by the
colored circles in (b) and in the cartoon 2Q spectrum in (c).

If 1 is not coupled to 1’ and 2 is not coupled to 2’, then each of the 4LS’s collapse
back into two 2LS’s, and there are no longer any 11 or 22 states. In the context
of FWM, 1 and 1’, (or 2 and 2’) indicate two separate but indistinguishable states
within the ensemble excited by the pulse. If there are interactions between 2LS’s
then 1 and 1’ (or 2 and 2’) are coupled in some way, so the system is coherently
coupled and the two pairs of 2LS’s (1, 1’ and 2, 2’) can each be described as a 4LS.
As a result, if we measure signal from pathways involving 11 and 22 (which we
can do in a 2Q 2D spectrum), then there must be interactions within the ensemble
excited by the laser.

The interaction pathways that involve the 21 state (and therefore lead to 2Q CPs)
can be split into two parts: ‘up’ (first two pulses) and ‘down’ (third pulse and signal).
In the ‘up’ portion, the first two pulses each interact with different transitions to
generate a mixed 2-quantum coherence (a coherence of the 2-exciton state with
the ground state). The mixed 2-quantum coherence (2Q-coherence) then evolves
at the sum of the two single exciton transition energies. In the ‘down’ part, the third
pulse interacts with the 2Q-coherence to produce a signal and return the system to
a population state.

As shown in Fig. 5.6a, there are a total of four ‘up’ pathways that can generate a
mixed 2Q coherence, which are labelled U1-U4. All four are excited if the broadband
excitation is used and t1=0. U1 and U2 are identical to U3 and U4 (except for the
order in which the k2 and k3 pulses interact) and experimentally indistinguishable
as long as k2 and k3 are identical. As shown in Fig. 5.6b there are also four ‘down’
pathways, which have been labelled D1-D4. These are split into two pairs, which
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appear at different positions in the 2D 2Q spectrum (as indicated by the coloured
circles in Fig. 5.6c).

Each of the ‘down’ pathways can be paired with any of the ‘up’ pathways, so
at each of CP positions in the 2Q 2D spectrum a total of 2×4=8 pathways can
lead to a signal. When broadband excitation spectra are used and t1=0, these 8
pathways cannot be further separated. However, we can limit some of the possible
‘up’ pathways using spectral amplitude shaping of the first two excitation pulses so
that they are each resonant with different transitions. If we shape the spectra of k2
and k3 so that they are only resonant with states 1 and 2 respectively, then only ‘up’
pathways U2 and U3 will be allowed. If we are interested in separating out signals
that go up via a particular single exciton state, this is not very useful alone, because
U2 goes up via state 1 and U3 goes up via state 2. However, if we increase t1 so that
k2 and k3 pulses have no temporal overlap, then we can eliminate either U2 (if k3
arrives first) or U3 (if k2 arrives first). Now, each of the CPs represent only one ‘up’
pathway and hence only two complete pathways.

By shaping the spectrum of the third pulse (k1), we could eliminate either D1
& D2 or D3 & D4. There is no real reason to do so, however, because these pairs
already appear at different E3 values and are therefore separable even when the
third pulse is resonant with both 1 and 2. For that reason, k1 can be left broadband
to improve the time resolution in the t2Q scan without introducing any ambiguity
in identifying the signal pathways responsible for the CPs. Leaving the third pulse
broadband is also advantageous because it allows us to record signals that involve
all four down pathways simultaneously (again, without introducing any additional
ambiguity in identifying which pathways are involved).

Another benefit of shaping the spectral amplitude of the first two pulses so that
they are not resonant with any of the same transitions, is that none of the pathways
that involve either the 11 or the 22 states are allowed, even at t1=0. As a result
all of the DPs are suppressed. As we saw in the Ch. 4 removing strong DPs in 1Q
spectra can lead to an improvement in the signal-to-noise ratio of the CPs, and
reveal CPs that are otherwise hidden by tails of the DPs. This is also true in the case
of 2Q spectra.

Finally, pathway selection with spectral amplitude shaping can also suppress path-
ways that are generated by interactions of the excitons with free-carriers and defect
states. This is also important, as these defect and free-carrier features can often
obscure excitonic peaks. The suppression of free-carrier and defect related peaks is
explained in detail in Section 5.3.1.

5.3 Results and discussion

Broadband and pathway-selective 2Q 2D spectra are collected for the In0.05Ga0.95As
double quantum well (DQW) sample that has been discussed previously (Section
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Figure 5.7: A system with three 1-exciton states and six 2-exciton states. The mixed BarX+NX and
BarX+WX states can be accessed via the BarX or either of the DQW states. The grouping
of the states is explained in the text.

4.4). There are three ‘bright’ exciton transitions in this DQW sample - one in each
QW (labelled WX and NX in this chapter1), and one in the barrier (labelled BarX).
Including all two-exciton states, this sample can be represented as a 10-level system
(10LS). For the purposes of this discussion this 10LS can be represented in a fashion
analogous to that of the 6LS in Fig. 5.5 by grouping some of the states together as
shown in Fig. 5.7. The groupings in Fig. 5.7 can be understood as follows. The one
exciton states are separated into two groups: DQW only (×2, in box 1) and BarX
only (×1, in box 2). The two-exciton states can be separated into three groups:
DQW only (×3, in box 3), barrier only (×1, in box 4) and mixed DQW-Barrier (×2,
in box 5). Spectral amplitude masks and pulse orderings were chosen to isolate
signals resulting from mixed-two exciton states involving one exciton in the barrier
and the other in the DQW (box 5). Both sets of ‘up’ pathways are isolated in two
separate pathway-selective spectra (PS1 & PS2), and compared with the spectra
generated with broadband excitation (BB).

The pulse sequence and excitation spectra used (along with the emission spec-
trum of the FWM signal t1=t2Q=0) are shown in Fig. 5.8a and Fig. 5.8b respec-
tively. The spectral amplitude masks were applied to the pulses in three different
configurations: BB, PS1 and PS2 (Fig. 5.8c,f,i). In BB pulse-sequence no spectral
shaping is applied. In the PS1 (PS2) pulse-sequence, the first pulse is shaped to
excite the DQW (barrier) and the second excites the barrier (DQW). No spectral
amplitude masks were applied to the third pulse or LO, as shaping these does not
add to the selectivity already provided by the spectrally resolved emission energy.
For all three configurations t1=300 fs. In the BB case all three of the two-exciton
states are populated. Two ‘up’ pathways (U3 and U4) are allowed for each of the
mixed to combine to form each of the mixed BarX - WX/NX two exciton states (as
shown in Fig. 5.8d). In contrast, only one ‘up’ pathway populates each of mixed
two-exciton states in PS1 and PS2. In PS1, only U4-like ‘up’ pathways (i.e. path-

1 These transitions were labelled WW-X and NW-X, respectively, in the previous chapter for consistency with the
notation used in previously published results.
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Figure 5.8: (a) 2Q pulse ordering. (b)excitation laser spectra and the DQW FWM response when
t1 = t2Q = 0. (c), (f) and (i) show the BB, PS1 and PS2 pulse sequences. (d), (g) and
(j) show the available ‘up’ pathways for each sequence. (e),(h),(k) show the 2Q signal
as a function of t2Q for emission from each single exciton transition for each sequence.
The relavent pulse cross correlation measured using a BBO crystal is presented in light
blue. (l) shows the two available ‘down’ pathways for each CP and emission energy. (m)
shows the two window functions and the pulse cross correlation

ways in which the DQWs are excited first) are allowed, while in PS2, only U3-like
‘up’ pathways (i.e. pathways in which BarX is excited first) are allowed. In both PS1
& PS2, none of the two-exciton states in box 3 or box 4 are populated.

The 2Q FWM signal as a function of t2Q for the BB, PS1 and PS2 configurations
is shown in Fig. 5.8e, Fig. 5.8h, and Fig. 5.8k, respectively, at the emission energy
of the WX, NX and BarX transitions.2 The BB DQW signals for E3=WX (NX) shows
oscillations with energy equal to the difference between BarX and WX (NX), indi-
cating the interference of signals with E2Q = 2 ·WX (2 ·NX ) and E2Q = BarX + WX
(BarX + NX). The WX and NX emission energies in all three shaping configurations

2 The pertinent experimental parameters used in collecting this data can be found in Table A1.2 in Appendix A1
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Figure 5.9: Broadband and pathway selective 2Q 2D spectra plotted on a logarithmic scale for the
(a) BB, (b) PS1 and (c) PS2 pulse sequences. Window function 1 is used to remove pulse
overlap effects before the Fourier transform along t2Q.

Figure 5.10: Zoomed view of CPs in Fig. 5.9. Colors are scaled linearly and normalized according to
the highest value in each subplot. Windowed along t2Q using window function 1.

involve the two ‘down’ pathways shown in Fig. 5.8l for CP1 and CP2, respectively.
The BarX emission energy includes four ‘down’ pathways, but they can be separated
into pairs after the data is Fourier transformed as a function of E2Q.

At t2Q = 0, both 2Q and non-rephasing (k3 → −k1 → k2 ) signal pathways can
be generated. When the rotating frame is used for delays, these signals can some-
times overlap in 2Q spectra. To isolate the 2Q signal, a time windowing function is
typically applied to the data to remove the pulse overlap signal. Window Function
1 (shown in Fig. 5.8m) is the error function with a width equal to the measured
cross-correlation width of pulses k2 and k1. This window function cuts off most of
the non-rephasing signal without losing much 2Q signal.
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Figure 5.9 shows BB, PS1, and PS2 2Q spectra which are Fourier transforms of the
time domain data presented in Fig. 5.8e,h,k.3 In these spectra, Window Function
1 was used to remove the pulse overlap signal before the Fourier transform was
applied. The BB spectrum (Fig. 5.9a) shows three DPs (WX, NX, BarX) and several
CPs. CPs involving a transition with energy ε include all peaks which share the same
emission energy (vertical dashed lines), and peaks along the E2Q = E3 + ε line
(angled dashed lines). We observe two CPs (labelled CP1 and CP2) with E3 equal to
WX and NX and E2Q equal to the WX+BarX (NX+BarX) mixed two-exciton energies
(close ups of CP1 and CP2 are shown in Fig. 5.10d). The inverse CPs (emitting in
BarX with the same two-quantum energies) are missing, or hidden by contributions
from the strong tail of the BarX DP. Close ups of the region where these CPs are
expected, is shown in Fig. 5.10a. There may be slight dips in the tail of the BarX
DP, but not clear enough to identify as CPs. We also observe NX-WX inter-well CPs
(labelled ‘IW’) as well as interactions with the βX excitons which are described in
Ch. 6 (labelled ‘βX’). In this chapter, our focus is on WX-BarX & NX-BarX mixed
two-exciton states, so the IW and βX peaks will be ignored.

In Fig. 5.9a and Fig. 5.10d, we observe two continua along E2Q, which have emis-
sion in from WX and NX (labelled C1 and C2, respectively). These continua are gen-
erated by 2Q-coherences that involve one exciton and one unbound electron-hole
pair (EHP). These exciton-EHP 2Q-coherences dephase very rapidly as a function
of t2Q, and hence are broad along E2Q. The EHP in the 2Q coherence could be in
the QW or in the barrier. The presence of the C1 and C2 continua is consistent with
the time domain plots in Fig. 5.8e, which show a significant increase in emission
from WX and NX at t2Q<200 fs. The pathways leading to these continua will be
discussed in Section 5.3.1.

As expected, when the spectrally shaped pulse configurations (PS1 and PS2) are
used, we observe significant changes in the resulting 2Q spectra. First, in both Fig.
5.9b and Fig. 5.9c the DPs disappear, but several CPs remain. In both PS1 and PS2,
CP1 and CP2 below-diagonal CPs are observed, as in the BB configuration. We also
now observe an above diagonal CP (labelled CP3), which is clearly evident in Fig.
5.10b (the PS1 configuration). This peak is generated by the D3 and D4-like ‘down’
pathways shown in Fig. 5.8l for CP3. We also observe what may be a very weak CP
at E2Q=NX+BarX and E3=BarX, where we would expect to observe CP4. CP3 can
also be observed in the Fig. 5.10c (the PS2 configuration), but it is partly hidden
by two strong continua, which are labelled C3 and C4. C3 and C4 have emission
energies below and above BarX, respectively, which correspond roughly to known
emission energies of GaAs defects [128, 168, 233].

The C1 and C2 continua are observed in the PS1 configuration, but not in the
PS2 configuration. Conversely, the C3 and C4 continua are clearly evident in the

3 The time domain data is presented in Fig. 5.8e,h,k as an absolute value for simplicity. Like all the other 2D
spectra in this thesis, the complex valued time domain data is Fourier transformed to produce the 2D spectra
in Fig. 5.9.
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Figure 5.11: Same CPs as in Fig. 5.10, but windowed using window function 2 instead of window
function 1, to supress free carrier-DQW exciton and defect-BarX interactions.

PS2 configuration but are completely suppressed in the PS1 configuration. This
difference highlights the significance of being able to selectively isolate different
‘up’ pathways and points to an interesting application of selective 2Q spectroscopy
which will be discussed in more depth later.

These results show that the PS1 and PS2 pulse sequences are functioning roughly
the way we expect them to: DPs are suppressed, and the pathways that lead to
CPs are further isolated. Unlike pathway selection in the 1Q pulse ordering, where
each the coherence specific pulse ordering isolates either above diagonal or below
diagonal CPs, pathway selection in 2Q generates both above diagonal and below
diagonal CPs regardless of which transition is excited first. This difference stems
from the fact that the E2Q energy of a CP is not the energy of a single interaction
but rather the sum of the energies of the first two light-matter interactions. Further-
more, the E3 energy of a given pathway does not necessarily depend on the order of
the first two interactions. Put another way, regardless of how the system gets into
the mixed two-exciton state, it can in principle go down any of the available ‘down’
pathways.

Signals which dephase quickly can be removed from the 2D spectra by shifting
the window function so that it removes more of the scanned signal before the data
is Fourier transformed along t2Q. To suppress the C1, C2, C3 and C4 continua, but
leave the excitonic CPs unaffected, we shift the centre of the window function from
t2Q=0 fs to t2Q=100 fs and then Fourier transform the windowed data as a function
of t2Q. This window function is shown in Fig. 5.8l as ‘window function 2’. The use
of window function 2 instead of window function 1 results in changes to the CPs
as shown in Fig. 5.11. The two continua with E3=WX and NX (C1 and C2) are now
nearly completely suppressed in Fig. 5.11d,e (which correspond to BB and PS2 con-
figurations, respectively). In Fig. 5.11c, we also observe a suppression of the C3 and
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C4 defect related continua. While the CPs in Fig. 5.11b,f remain mostly unchanged,
we can now clearly identify the CPs in Fig. 5.11c-e because the continua have been
suppressed. The shape and position of CP1 and CP2 in Fig. 5.11d,e are now compa-
rable with the same peaks in Figs. 5.10f. Similarly, the shape and position of CP3 in
Fig. 5.11c is now comparable to the shape and position of CP3 in Fig. 5.10b. The
similarity of the CPs in the different configurations is reasonable given that they
share the same 2Q-coherence during t2Q, (which determines the linewidth and po-
sition in E2Q) and follow the same ‘down’ pathways (which determine the linewidth
and position in E3).

Although both of the excitonic CPs can now be clearly observed in the BB, PS1,
and PS2 configurations, the CPs in which the continuum signals are intrinsically
removed (Fig. 5.10b,f) still show far better contrast between the excitonic peak and
the background than those in which the continua were suppressed by the window
function (Fig. 5.11c-e). Furthermore, using the window to suppress the continuum
can alter the peak shapes in some situations, so being able to avoid the use of
window functions is advantageous.

The CP shapes in Fig. 5.10d-f and Fig. 5.11d-f are all tilted to some degree. In
1Q spectra (as we have discussed previously), CPs with a tilted peak shape are a
result of correlated inhomogeneous broadening. In 2Q spectra, however, the tilt
is not caused by correlated broadening but rather an inherent correlation of E3
and E2Q which can be observed when the E2Q width is limited by the sum of the
single exciton linewidths, and not by carrier-carrier scattering. This effect will be
discussed in more detail in Section 7.3.1.

5.3.1 Suppression of free-carrier and defect interactions

In this section we will discuss the pathways that lead to the continua observed in
the spectra in Fig. 5.9, and explain why different continua are suppressed in PS1
and PS2. Finally we will explain how this is advantageous and can be used to reveal
exciton resonances.

We will start by considering the pathways responsible for the continua C1 and C2,
which have emission WX and NX, respectively. The pathways that lead to C1 and C2
involve a 2-Quantum coherence involving an exciton (WX or NX, respectively) and
an unbound electron hole pair (EHP) during t2Q. The EHP can be in the free-carrier
continuum of one of the QWs or in the free-carrier continuum in the barrier.

This 2Q coherence dephases very quickly for two reason. First, the continuum
is by definition spectrally broad, so the different spectral components fall out of
phase very quickly. Second, unlike excitons, carriers have a net charge and therefore
interact strongly with other charged particles, so dephasing due to carrier-carrier
interactions also contributes. Regardless of the exact origin of the dephasing, the
2Q-coherence of an exciton and an EHP dephases much faster than two-exciton
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Figure 5.12: A graphical depiction of the pathways that lead to the continua in (a-b) Fig. 5.10d,e
and (c) Fig. 5.10a,c. A full description of the pathways is provided in the text.

2Q-coherences. When the second and third pulse are overlapped temporally we
can still get strong signal from pathways involving exciton-EHP 2Q-coherences. In
a t2Q scan we start from t2Q=0, so there is some finite amount of time in which
exciton-EHP 2Q-coherences will contribute strongly to the signal.

2Q-coherences of a QW exciton with an EHP in the QW and 2Q-coherences of a
QW exciton and an EHP in the barrier both contribute to the C1 and C2 continua (as
shown in Fig. 5.12a-b). The part of the C1 (C2) continuum that appears at values
ofE2Q lower than CP1 (CP2) are 2Q coherences of WX (NX) and EHPs in one of the
QWs (as shown in Fig. 5.12a)4. The part of the C1 (C2) continuum that appears at
values of E2Q higher than CP1 (CP2) involves a 2Q coherence of WX (NX) and EHPs
the barrier free-carrier continuum (as shown in Fig. 5.12b).

To generate a 2Q-coherence of an exciton and an EHP, one of the first two pulses
must interact with an exciton state and the other with the free-carrier continuum.
There are therefore two possible orderings for the ‘up’ part of the pathway: 1. The
first pulse interacts with free-carrier continuum and the second pulse interacts with
the exciton (we’ll call this the EHP→exciton ordering) or 2. the first pulse interacts
with an exciton transition and the second pulse interacts with a EHP (we’ll call this
the exciton→EHP ordering).

In order to form a 2Q-coherence, some macroscopic polarization generated by
the first pulse must still be present when the second pulse arrives. The ground-EHP
decoherence time is expected to be on the order of ∼50 fs [175], which is consistent
with what we observe in the 1Q pulse ordering (not shown here). Both ‘up’ path-
ways involving EHPs are possible at t1=0, but as t1 increases, the EHP→exciton

4 Intuitively we might assume that the exciton and EHP involved in the 2Q coherences are in the same well.
We know, however, that the wells are coupled due to the presence of the inter-well CP, so in principle a 2Q-
coherence of an exciton to an EHP in the other well is also possible.
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ordering becomes much less likely, due to dephasing of the ground state to EHP co-
herence during t1. In the experiments presented here, t1=300 fs, so by the time the
second pulse is incident upon the sample, any macroscopic polarization involving
EHPs will have long since dephased. Any signal from the exciton-EHP 2Q-coherence
must involve the exciton→EHP ordering, as evidenced by the experimental results
in Fig. 5.10. Thus, when we use the PS2 pulse sequence, only a macroscopic polar-
ization of excitons remains when the second pulse arrives. The second pulse is not
resonant the free-carrier continuum, so only 2-quantum coherences involving two
excitons are generated even at t2Q=0.

We will now consider the pathways that lead to C3 and C4 in Fig. 5.10c. The
explanation for these continua involves defects instead of the EHPs, and is shown
in Fig. 5.12c. The first pulse excites one of two defect states in the barrier which
have a transition energy similar to BarX, which we will call BarXo. The second
pulse excites one of the QW excitons, putting the system into a 2Q-coherence of a
shallow defect in the barrier and a QW exciton. Because the defects are charged,
this 2Q state dephases very quickly during t2Q. The third pulse puts the system
back into a single quantum coherence of the defect state and the ground state, and
the signal is emitted from the defect state. It isn’t clear, however, why C3 and C4
are suppressed in the PS1 configuration. In principle, the pathway in Fig. 5.12d
could generate emission from the defects as well. One possible explanation for the
suppression of the pathway in Fig. 5.12d is that the excitons very quickly decohere
when they are close enough with defects to interact. As a result, the ground to QW
exciton coherence in t1 would decay quickly the pathway in Fig. 5.12d would be
suppressed. To explore this possibility, we could perform a 3D experiment using the
PS1 configuration in which t1 is scanned as well t2Q. We would then look for the
appearance of signal from the pathway in Fig. 5.12d at a lower t1.

The results presented here clearly show that the presence of C1-C4 depends on
which configuration is used, so we can therefore control whether these continua
appear in the 2Q spectrum through our choice of spectral shaping configuration
and t1. This ability to control whether the continuum contributes to the 2Q spectra
could be quite useful, as the continua can obscure excitonic peaks. While window
functions can be used to suppress 2Q signals from continua in data analysis, the
ideal choice of window function is often not clear, and removing the continuum
without affecting the signals of interest is not always possible. In particular, small
changes in the length and shape of the function can affect precise peak positions
and shapes due to the interference of the two signals. This is particularly problem-
atic when the features of interest are spectrally broad and/or have an amplitude
comparable to the that of the free-carrier signals. A better solution, then, would be
to find a way of suppressing the free-carrier continuum in the way the experiment
is conducted. The pathway-selective 2Q spectra do just that. By choosing one or the
other ‘up’ pathways, the continuum is suppressed on one CP or the other. As demon-
strated here, this can allow us access to weak excitonic signals that are otherwise
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hidden underneath the stronger (though short lived) features from the free-carrier
continuum.

5.3.2 Quantitative comparison of cross-peak amplitudes

Now that we have further isolated the mixed 2Q pathways, we could conceive of a
more quantitative analysis of the signals embedded in these spectra. For instance,
we could compare the amplitude of the CPs generated by the PS1, PS2 and BB
sequences to test the premise that both ‘up’ pathways and both ‘down’ pathways
are weighted equally. If the ‘down’ pathway is truly independent of the ‘up’ pathway,
then we would expect the CPs in Fig. 5.9b and Fig. 5.9c to be of equal amplitude
(assuming that the pathways have the same dynamics in t1). This appears not to
be the case - the above diagonal CP is much weaker than the below diagonal CPs.
There are, however, four factors that affect the signal amplitudes and complicate
direct quantitative comparisons:

1. The spectral amplitude of the third excitation beam and the LO are different
for the CPs emitting at different energies.

2. Free-carrier continuum overlaps some of the peaks in some of the spectra.
While they can be somewhat suppressed by the choice of window function,
the continua still result in a larger background signal and noisier peaks.

3. The macroscopic polarization during t1 will decay differently depending on
which exciton is excited by the first pulse.

4. The CP amplitudes oscillate as a function of t1 with a frequency equal to the
energy of the first interaction, which is different for PS1 and PS2.

Item 1 can be dealt with by simply measuring the spectral intensity of excitation
pulses and accounting for the differences as we did in Section 4.3.5. The free-carrier
continua (item 2) can be reduced by carefully applying the windowing function.
The decay of the macroscopic polarization (Item 3) can be readily measured and
then corrected for, and only represents a small correction. The fourth item, how-
ever cannot be corrected for in the current experiment. The amplitude of the CPs
depends on the relative phase of the first and second pulse, and therefore oscillates
as a function of t1. However, if we were to collect a 3D 2Q spectrum (by scanning
t1 and t2Q) we would be able to account for this effect as we did in the 3D spectra
in Section 4.3.5. The data here was only acquired for a single t1, so it is not possi-
ble to apply this correction. Alternatively, we could also estimate this correction by
calculating the phase differences between the coherences excited by the first pulse
based on the frequency of the coherences and the t1 used in the experiment. At op-
tical frequencies such an estimate is difficult, but in the rotating frame it becomes
possible. We have not attempted to calculate an estimate for this data.
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5.4 Summary

In this chapter we have demonstrated that spectral shaping can be used in 2Q 2D
spectroscopy to isolate mixed two-exciton coherences. We also found that different
pulse orderings can suppress the broad E2Q features created by rapidly dephasing
coupling to free-carriers or defects, and thereby reveal the excitonic CPs hidden
underneath. The ability to selectively excite specific two-exciton combinations in a
deterministic order also represents a step towards the application to electronic tran-
sitions of some of the methodologies used extremely successfully in triple-resonance
NMR. An extension of this selective approach to 5th order signals and 3-particle
correlations should be possible with the current experimental apparatus and work
towards that goal is ongoing.

Recent investigations into multi-excitonic correlations have only just begun to
scratch the surface, particularly when it comes to mixed multi-exciton correlations.
The ability to selectively excite multiple particle correlations and explore their dy-
namics will allow us to better understand what role these play in the many-body
dynamics of semiconductor QW systems and in what excitation regimes they are
relevant. Finally, this approach is promising for exploring mixed multi-quantum
correlations in other systems, such as light harvesting complexes [5, 201, 234],
nano-platelets [215, 220] and monolayer materials[212, 235, 236].
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In this chapter, we investigate interactions between barrier and QW excitons as well
as the coherent dynamics of ‘dark’ exciton states in two InxGa1−xAs double quan-
tum well (DQW) samples using photoluminescence excitation spectroscopy (PLE)
and coherent multidimensional spectroscopy (CMDS). These states have dipole mo-
ments small enough that they are difficult to detect in linear experiments. They are
also strongly coupled to bright exciton states in the QWs and the barrier. We exploit
this coupling to study them via the cross-peaks (CPs) that appear in CMDS exper-
iments for strongly coupled transitions. The population and coherent dynamics of
these ‘dark’ states are studied in detail using 0-, 1-, and 2-quantum (0Q, 1Q, and
2Q 2D as well as 3D spectroscopy. The 3D spectrum reveals strong coherent inter-
actions between these dark states and the bright QW states. In fact, the reason we
are able to detect these states at all is because they are coherently coupled to the
bright QW states.

We observe three types of dark states: 1. parity forbidden excitons in which the
electron has even parity and the hole has odd parity (which are labelled as αX), 2.
type-II light-hole (LH) excitons in which the hole is localized in the barrier and the
electron in the QW, (which are labelled as βX1,2), and 3. excitons which involve
an electron in the barrier and a hole in the QW the nature of which is not yet fully
understood (which are labelled as βX3−6). These peak assignments are confirmed
using evidence from PLE, 2D and 3D spectra as well as comparisons of the detected
transition energies with wavefunction calculations. We show that the population
lifetimes of all these dark states are not vanishingly short. Indeed, βX1,2 appear to
have population lifetimes at least as long as the bright, allowed QW excitons.

Even though these ‘dark’ states do not strongly emit or absorb light, they very
likely play an important role in the relaxation of 3D bulk excitons and free carrier
into the QW states. They also may play a role in the dynamics of the QW excitons
themselves. The access to these dark states we have gained through their coupling
to bright excitons will help us understand how significant a role they play, and
allows us access to new exciton physics which is elusive using other optical tech-
niques.

157
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6.1 Background: barrier-QW interactions and type-II LH excitons

The dynamics of exciton and carrier relaxation/capture into QWs is a topic of fun-
damental interest, but is also important in design of devices like QW lasers and
infrared detectors [237–239]. Due to carrier confinement in the QW, it is not sur-
prising that carrier capture is best described through quantum mechanical rather
than classical means. One way the quantum mechanical nature of the capture pro-
cess is revealed is by the dependence of the capture rate on the width of the QW.
This rate is found to exhibit oscillations as a function of well width [240, 241],
which can be understood in the following way: the dominant mechanism for relax-
ation into the well is the emission of LO phonons. The efficiency will therefore be
maximized when there is a QW level whose energy (EQW) is an integer multiple of
the LO phonon energy (ELO) below the barrier exciton energy (EBar).

EQW +nELO = EBar (6.1)

As the well width increases, different QW levels come in and out of resonance,
and so the capture efficiency oscillates. Furthermore, it was suggested that the car-
rier capture is ambipolar - meaning that the exciton is captured whole, rather than
being split [241].

Coherent coupling of the barrier excitons and QW excitons, even when the en-
ergy difference is not resonant with the LO phonon is another key aspect of carrier
capture which is clearly quantum mechanical. In PL and PLE experiments, Reynolds
et al [242, 243] demonstrated that direct excitation of the barrier exciton led to en-
hanced emission from the QW exciton in InGaAs/GaAs DQW samples, which they
suggested was caused by coherent coupling of the barrier and QW well excitons
through wavefunction overlap. The wavefunctions were overlapped due to pene-
tration of the QW exciton wavefunction into the barrier. Direct measurement of
coherent coupling of barrier and QW excitons requires a technique that can directly
measure coherent interactions of excitons, (such as CMDS). In this chapter, we find
(based on the existence of CPs in 1Q, 0Q and 2Q spectra) that the barrier and QW
excitons are indeed coherently coupled. We also find, however, that direct barrier-
QW coherence is only part of the picture as a range of additional intermediate states
are also detected and couple to both the QW and the barrier excitons.

Typically, excitons in heterostructures are separated into two categories: type-I
and type-II. In type-I excitons (such as typical QW and GaAs bulk excitons) the
carriers are overlapped spatially and localized in the same material (Fig. 6.1a).
Type-II excitons involve carriers that are predominately localized to different layers
in the heterostructure, and exist in a variety of contexts. A basic example is an
exciton in a type-II heterojunction with a staggered gap (Fig. 6.1b), in which both
the valence band and conduction bands of one material are lower than the other.
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Figure 6.1: A cartoon illustrating type-I and several type-II exciton configurations. (a) Type-I, direct
exciton transitions. (b) Type-II heterojunction between two layers with different dopings.
(c) Type-II excitons in a CDQW. When a bias is applied along the growth direction the
type-II inter-well exciton has the lowest energy. (d) In some InGaAs quantum wells the
LH is type-II while the HH is type-I.

In doped samples, the alignment of carriers along the interface can modify the
potential profile and generate pockets or barriers which can confine the carriers
along the interface [244]. These single junction heterostructures are sometimes
called type-II QWs.

Type-II excitons can also appear in coupled DQWs (CDQWs) when an electron
predominantly localized in one well is bound to a hole localized in the other (Fig.
6.1c). Such inter-well type-II excitons appear most strongly when they are the low-
est energy transition in the system. Such an arrangement can be achieved by the
application of an external electric field along the growth direction. In this configura-
tion, indirect excitons in high quality (defect free) CDQW samples can exhibit enor-
mous lifetimes because there is very little overlap of the electron and hole wavefunc-
tions and there is consequently a very small transition dipole moment [245, 246].
CDQW type-II excitons (also called spatially indirect excitons) have been used for
a variety of fundamental experiments, including coherent in plane transport and in
pursuit of Bose-Einstein condensation of excitons [247–250].

A third sort of type-II exciton (which is the type that we will be considering in this
chapter) can arise in strained InxGa1−xAs QWs. For low indium content (x<0.2)
the LHs are confined in the GaAs barrier rather than the InxGa1−xAs wells in a
staggered gap configuration(as in Fig. 6.1d). What makes this system different than
the typical type-II heterostructure is that the heavy-hole excitons are still type-I, so
both type-I and type-II excitons can coexist simultaneously.

Type-II LH excitons were first considered in the 1980’s by Marzin et al [169] and
Pan et al [251], who recognized that strain induced splitting of the heavy-hole (HH)
and LH bands could cause the LH valence band to shift below the GaAs valence
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band. The nature of these states (i.e. type-II or type-I) was at first contentious [252–
254]. The arguments for the type-II configuration relied on the results of wavefunc-
tion calculations which in turn relied on the band offset (QC) which was then (and
still is now) not precisely known for InxGa1−xAs/GaAs systems. This controversy
was settled by Moran et al [255], who presented direct experimental evidence con-
firming the type-II nature of the LH exciton in a In0.11Ga0.89As/GaAs DQW. They
showed that when the DQW is biased, the LH exciton transition energy is increased
beyond that of the barrier exciton, confirming that it involves a carrier outside the
QW. The identification of the LH transition was confirmed by polarization depen-
dent photoluminescence spectroscopy. Type-II LH excitons were the subject of some
fundamental interest (for instance, due to the tunability from type-I to type-II be-
haviour) into the 1990’s and 2000’s [256–259], though no applications for this
phenomenon appeared.

More recently, it was suggested that the quantum beats between type-I HH ex-
citons and the type-II LH excitons could be used to generate terahertz (THz) ra-
diation [184]. It has been previously shown that coherent, tunable THz could be
generated by coherent superpositions of HH and LH excitons in single uncoupled
QWs which could be enhanced and tuned by applying an electric field along the
growth direction [260]. It was also shown that the amplitude of the THz field is
proportional to the distance over which the charges oscillate while in the coher-
ent superposition [260]. As a coherent superposition evolves, it oscillates between
each of the associated states with a frequency equal to the energy separation. For
a coherent superposition of type-I HH excitons and type-II LH excitons this would
constitute the hole ‘hopping’ into and out of the well, increasing the average spatial
separation of the charges, which would in turn amplify the THz emission. Con-
versely, the same effect could be used to optically or electrically detect THz fields.
Work by Kojima et al in 2012 [184] showed strong quantum beats of the type-I and
type-II excitons using time resolved reflection pump-probe spectroscopy. However,
as discussed previously, quantum beats in pump probe do not necessarily indicate
coherent superpositions of excitons are excited as there are many pathways (includ-
ing signals generated by many-body interactions) that can lead to the detection of
oscillations.

In this chapter, we also present unambiguous evidence of coherent superpositions
of type-I and type-II excitons, in two different samples, through the appearance of
strong CPs away from E2=0 in 3D spectra. In addition to the fundamental interest
in better understanding the exciton dynamics (in which these type-II LH excitons
clearly play a role) this strong long-lived coherent coupling shows that this arrange-
ment is also promising for THz generation and detection.

We find a rich landscape of ‘dark’ states that couple to both the QW direct exci-
tons and the barrier excitons. We also find that the barrier-direct exciton coupling is
weak compared with their mutual coupling to the dark states. The presence of these
additional states and the strong coupling both inside and outside the QW suggests
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that there is more to the story of barrier to QW exciton interactions than a sim-
ple three level system. The following sections will describe these various excitonic
states, how they are detected, and how the different detected signals are identified.

6.2 Sample and wavefunction calculations

Two InGaAs GaAs DQWs are studied in this chapter, and are given the labels sample
A and sample B. Sample B is the same sample that was studied in Section 4.4,
Chapter 5 and in Ref. [54], which has In0.05Ga0.95As QWs and GaAs Barriers. The
narrow well is 8 nm thick, the wide well is 10 nm thick and the barrier is 10 nm
thick. Sample A is identical to sample B except that the barrier between the wells
is 30 nm thick. Both samples are grown on (100) GaAs substrates. While both of
these samples have been studies previously, the previous experiments have focused
specifically on the lowest energy bright excitonic states, and (excepting the results
presented in Chapter 5), broadband 2D spectroscopy simultaneously exciting the
barrier, QW excitons and the dark states at intermediate energies has not been
performed.

We first perform wave-function calculations for both InGaAs DQW samples. The
goal of these calculations is not a precise determination of transition energies, but
rather a qualitative exploration of what transitions we might see in these samples
and a justification for peak assignments of the αX and βX type excitons.

The steady-state wavefunctions and associated energy levels are calculated by
solving the 1D time-independent Schrödinger equation for the DQW structures us-
ing the Numerov/shooting method described in Appendix A3. Excitonic transition
energies can then be calculated based on the energy separation of the hole and elec-
tron wavefunctions less the exciton binding energy. The main material parameters
that are used to determine the energy levels are the GaAs bandgap (E2g), InGaAs
bandgap (E1g), and the GaAs/InGaAs band offset (QC), electron and hole effective
mass (me, mhh, mlh) and the QW exciton binding energy which varies by exci-
ton transition (EBE). The QW and barrier widths are used along with the material
parameters to construct the double-well potential.

The calculated transition energies are very dependent on the degree of carrier
confinement, so using the correct well-width to define the potential is crucial for
accurate results. For large barrier widths the transition energies are nearly indepen-
dent of barrier width, as the two QWs largely behave as separate, non-interacting
single QWs. For small barrier widths (DQW sample B for example), penetration
of the wavefunctions through the central barrier leads to an increased splitting of
some of the transition energies (e.g. E1 and E2). The well and barrier widths were
not directly measured, so we must assume that they are close to the nominal values.

The accuracy of the calculated transition energy also relies on the accuracy of
the material parameters. Most of the pertinent material parameters are precisely
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In0.05Ga0.95As GaAs

m∗
e (·m0) 0.023 0.067

m∗
h (·m0) 0.505 0.510

m∗
l (·m0) 0.079 0.082

E1g0 (eV) 1.441

E2g (eV) 1.510

a0 Å 5.67 5.65

C11 (GPa) 1202 1221

C12 (GPa) 560 566

dEg/dp ·10−6eV·cm−2/kg 11.4 11.5

b (eV) -1.99 -2

∆SO (eV) 0.343 0.340

Table 6.1: InGaAs and GaAs parameters used in the wavefunction calculation. The E1g is calculated
including strain according to the method described in Ref. [170]. Material parameters are
sourced from Refs. [170, 261].

known for GaAs, but some are not for strained InxGa1−xAs, particularly in an in-
dium concentration dependent form. Parameters which are not available in the
concentration dependent form are instead typically interpolated linearly from the
binaries (InAs and GaAs in this case) [170, 258, 261]. There are some parameters
however, which cannot be interpolated. For example, InxGa1−xAs band offset (QC)
for x = 0.05 has been reported to be from 0.46 all the way up to 0.75 [262–265].
It has been suggested that QC is sample dependent [253, 262], linearly dependent
on indium content [266], has a more complicated dependence [267] or even that
QC is independent of indium content [172, 263, 268, 269]. Taken together, most of
these values tend to center around QC=0.6, including a recent review [261].
E1g (the InGaAs bandgap) depends not only on the concentration of indium, but

also what method and which material parameters (elastic constants and bandgap
pressure dependence) are used when calculating strain induced shifts [170, 261].
Finally, though MBE grown samples have very precisely controllable thicknesses
and stoichiometry, the resulting heterostructure may not perfectly match the nomi-
nal values. Well width variation of only a few monolayers, and indium variation of
less than 0.5% will lead to energy shifts of several meV. The material parameters
used in these calculations are shown in Table 6.1. E1g for the strained InGaAs layer
is calculated using the method described in Ref. [170].

This large number of input parameters which are not precisely known, make a
multi-variate fit imprudent as it would likely produce unreliable results. Instead, we
perform calculations across the range of reasonable values for indium content and
QC, and then do a trial and error fit to determine the range of possible conduction
and valence band bound states. The goal of these calculations is to determine what
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(a) Sample A (30 nm Barrier) (b) Sample B (10 nm Barrier)

Figure 6.2: Typical wavefunction calculated by solving the 1D Schrodinger equation for a the 1D
potential shown. Sample A (a) and B (b) have similar solutions, but hybridization of the
wavefunction leads to increased splitting of the E1 and E2 conduction band levels and
H3 and H4 valence band, and additional penetration through the barrier.

types of exciton transitions might appear in this sample, and to justify the βX and
αX peak assignments in the following experimental results sections.

6.2.1 Exciton transitions in the InGaAs DQWs

The specific transition energies shift across the parameter space, but the result-
ing wavefunctions remain qualitatively similar. Figure 6.2 shows a typical set of
wavefunctions calculated for sample A (Fig. 6.2a) and B (Fig. 6.2b) using the the
parameters shown in Table 6.1. There are a total of two bound conduction band
wavefunctions (labelled E1 and E2) and four bound valence band wavefunctions,
which correspond to the HH (mj = ±32) valence band (labelled H1,H2,H3, and H4).

The lattice constants of GaAs and InGaAs are not the same, which in InxGa1−xAs/GaAs
QWs introduces strain in the InGaAs layer which increases with x (indium content).
For large indium content (x>0.2) relaxation of the strain causes dislocations in the
InGaAs crystal. Thin layers in the low indium range (x<0.2), create an elastic de-
formation of the InGaAs layer with no lattice dislocations due to relaxation. This
deformation can be separated into a two effects - a hydro-static component that
results from compressive strain of the InGaAs layer in the lateral direction, and a
uniaxial component due to tensile strain in the growth direction. The hydrostatic
component produces a uniform shift of all of the valence bands together, while the
uniaxial component reduces the symmetry of the crystal structure, thereby lifting
the degeneracy of the HH and LH valence bands. The HH is shifted up (decreas-
ing the HH-E1/E2 bandgap) while the LH is shifted down (increasing the LH-E1/E2
bandgap). When x<0.2, the InGaAs LH valence band can actually be shifted down
below the GaAs valence band [169, 251, 254], leading to an inverted potential
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(barriers become wells and wells become barriers). For the DQW samples here, the
calculated InGaAs LH valence band is ∼ 4 meV below the GaAs valence band in
these samples, so the LHs are weakly confined in the barriers (GaAs layers) instead
of the wells (InGaAs layers).

In addition to the states in the QW, there are also states in the conduction band
(Eb) and valence band (Hb) of the GaAs barriers. Because of the lack of confinement
and strain in the barriers, the GaAs LH and HH bands are degenerate, so we won’t
be able to differentiate between them spectrally.

This total of five1 valence band states and three conduction band states lead
to a total of three direct, parity allowed exciton transitions (shown in Fig. 6.3a).
These include the two lowest energy transitions: H1-E1 and H2-E2 which we will
call WX and NX because they are localized mostly to the wide-well and narrow-
well respectively. As discussed in the previous chapter, there is some hybridization
of the conduction band wavefunctions in Sample B. H1 and H2, however, are very
much localized to one well or the other, so the resulting excitons are also expected
to be mostly localized. The third and final direct parity allowed transition is the
bulk GaAs exciton in the barrier Hb-Eb.

There are also two spatially direct, but parity forbidden transitions, one in each
well: H3-E1 and H4-E2 (which are given the labels αX1 and αX2, respectively, and
shown in Fig. 6.3b). Though they are optically forbidden, they may be accessed by
other, non-radiative processes. Also, if the parity of the wavefunctions is not pure,
they may become weakly allowed. These types of forbidden transitions have been
detected in InGaAs QWs previously [251, 270–275].

If we now broaden our view to include spatially indirect excitons, there are sev-
eral more to consider: four inter-well spatially indirect excitons (H1-E2, H2-E1, H3-
E2, and H4-E1, shown in Fig. 6.3c) two excitons involving a hole in the barrier and
an electron in the QW (Hb-E1, and Hb-E2, which will be given the labels βX1 and
βX2

2, and are shown in Fig. 6.3d), and four excitons which involve a hole in the QW
and an electron in the barrier (H3-Eb,H4-Eb,H1-Eb,H2-Eb, which will be given the
labels βX3-βX6, respectively, and are shown in Fig. 6.3d). The four lowest energy
barrier-QW exciton transitions (βX1,2,5,6) have transition energies between 1.490 eV
and 1.505 eV, though the ordering changes depending on the material parameters
used in the wavefunction calculations. The final two (βX3,4) have transition ener-
gies between 1.510 eV and 1.515 eV. It should be noted, that each of these βX could
form along the inner or outer barrier of the QW, and from the experiments detailed
here there is no way to unambiguously tell one from the other.

1 There are actually six, but two of the GaAs valence bands (the GaAs HH band and the GaAs LH band) are
degenerate and experimentally indistinguishable.

2 Hb represents both the HHs and LHs in GaAs, which are indistinguishable here. For now, the βX1,2 label are
used to encompass both valence band states, though we expect most of the experimental signals involving Hb
are the LH due to its confinement outside the QW.
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Figure 6.3: Excitons in the DQW samples studied in this chapter can be devided into three cate-
gories: direct bright excitons, direct dark parity forbidden excitons and indirect type-II
like excitons where one carrier is localized predominately in the barrier and the other
in the QW. The top cartoon shows what the exciton configuration looks like in the po-
tential surface as a function of the growth direction. The lower cartoon shows what the
configuration might look like in real space.

The following results will show that we detect αX1,2 and βX1,2,3,4,6 in sample A
and α1 and β1,2,6 in sample B, but do not detect the any of the inter-well spatially
indirect excitons (H1-E2, H2-E1, H3-E2, and H4-E1) in either sample.

6.2.2 Variation of the calculated exciton transition energies

To identify the experimentally detected signals, we calculate transition energies us-
ing material constants across the reasonable parts of the parameter-space. We then
determine the set of parameters most consistent with the experimental results. Cal-
culated transition energies for both samples are presented in Fig. 6.4 as a function
of QC as it is the most important parameter for predicting the order of βX type tran-
sitions, and is also the least well defined. Other parameters such as the InxGa1−xAs
band gap (E1g) and the well widths shift most of the transition energies in the same
direction, but changing QC moves conduction band type βX (e.g. E1-Hb) and va-
lence band type βX (e.g. Eb-H1) transitions in opposite directions. The dashed lines
denote the transition energies that correspond to signals detected in the various
PLE and CMDS experiments presented in the following sections.

The clearest spectral markers to use as constraints in the calculations are the WX
and NX transition energies. To get the appropriate energy separation, a slight mod-
ification of the nominal narrow well width is made (7.85 nm instead of 8 nm). This
discrepancy is within the precision of the MBE machine used to grow the samples
(and less than a single unit cell of InxGa1−xAs which is ∼0.6 nm). Changing QC also
changes the WX and NX transitions slightly, which we compensate for by adjusting
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Figure 6.4: Transition energies of WX NX βX1−6 and αX1−2 as a function of the band offset (QC)
for (a) sample A (30 nm barrier) and sample B (10 nm barrier). The wavefunctions are
calculated by solving the Schrödinger equation for the QW potential using the Numerov
method, and the width of the bars indicates the range of reasonable binding energies.
The experimentally measured peak positions (dashed lines) line up with the calculated
barrier/QW exciton energies, for most transitions in both samples for QC = 0.63 (vertical
line).

the indium content (and hence E1g). The resulting variation in indium content (5.2%
instead of the nominal 5%) is also within reasonable ranges for the MBE machine.

The binding energy (EBE) for WX and NX was extracted from the PLE data from
sample A (Fig. 6.5) by measuring the separation of the free carrier continuum from
the exciton resonance. It was found to be 6.5±1 meV which is consistent with values
found in the literature, which are typically around 7-8 meV [169, 267]. Though we
are unable to experimentally measure the binding energy for sample B, we assume
that it will be approximately the same as in sample A.

The binding energy of αX and βX transitions cannot be extracted from the PLE
data for either sample, and there is little data in the literature on type-II exci-
tons [258]. We assume that the βX binding energy would be lower than NX and
WX, due to the delocalization and reduced confinement of the exciton. Intuitively,
we might guess that the binding energy of the bulk GaAs 3D exciton might be a
good lower bound on (EBE), but calculations by Piao et al [258] showed that the
binding energy could actually be even lower than that - down to ∼3 meV.

The holes in αX1,2 (H3 and H4) are less confined than the holes in WX and NX (H1
and H2). In addition, the odd parity of H3,4 means that the average displacement of
the hole from its center of mass is larger than for H1,2, which have even parity. These
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two things (odd parity and reduced confinement) both lead to a slight increase in
the average inter-particle separation (exciton Bohr radius). Since binding energy
is inversely proportional to the exciton Bohr radius, this suggests that αX have a
slightly lower binding energy than WX/NX. We expect the binding energy to still be
larger than that of the bulk GaAs exciton, since the electron and hole are overlapped
and both confined. The precise binding energy could be calculated based on the
wavefunctions, but that is beyond the scope of this work.

To account for the indefinite binding energies, all of the calculated transition
energies in Fig. 6.4 are plotted as bars with a width which indicates the range of
reasonable binding energies (3-6 meV for βX, 5-6.5 meV for αX , 6-7 meV for NX
and WX and 4-5 meV for BarX).

The calculations for the two samples use the same material and structural param-
eters, with the only exception being the indium content, which is slightly higher in
sample B (as shown on the top axis). The calculated and experimentally detected
(dashed lines) transition energies show good agreement around QC = 0.63, which
is near the center of the range of previously reported values of QC for InGaAs/GaAs
QWs with low indium content. It is encouraging that the calculations accurately
capture the increased WX and NX energy difference due to increased coupling of E1
and E2 in sample B. The increased splitting of E1-Hb and E2-Hb is also reproduced.

It should be noted that these calculations do not take into account strain induced
electric fields or permeation of indium across the GaAs/InGaAs interface - both
of which could perturb the potential profile and shift the calculated energy levels.
However, we expect that the changes would not be large enough to lead to different
peak assignments. Also, the precise values of well width and indium content are
not necessarily captured here, as they both can be adjusted interchangeably to get
nearly the same set of transition energies. The constants used to calculate the strain
induced band shifts could also account for the same variations in transition energy.
However, the calculated levels are most sensitive to QC, particularly in the energetic
ordering of the transitions. The changes induced by the well width, indium content
and strain constants shift all of the transitions in the same way, whereas QC shifts
the valence band and conduction band in opposite directions.

6.2.3 Wavefunction overlap

The relative magnitude of the transition dipole moment of the excitons (dne,nh)
can be estimated by calculating the overlap of its constituent electron and hole
wavefunctions (ψene and ψhnh respectively).

dne,nh ∝
∫
ψh∗nh(z)ψ

e
ne(z)δz (6.2)
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H1 H2 H3 H4

E1
0.9043
0.8688

0.0060
0.2534

0.0001
0.0161

0.0170
0.0636

E2
0.0095
0.2769

0.8895
0.8562

0.0050
0.0819

0.0019
0.0866

Table 6.2: Wavefunction overlap integrals for
all the QW wavefunctions in sam-
ple A (black) and sample B (red).
Wavefunctions calculated using op-
timum QC and InGaAs content
taken from Fig. 6.4.

Carrier/Exciton DQW A DQW B

E1/βX1 0.22 0.24

E2/βX2 0.33 0.28

H1/βX5 0.06 0.05

H2/βX6 0.09 0.09

H3/βX3 0.37 0.35

H4/βX4 0.73 0.67

Table 6.3: Probability of finding an electron
or hole in the barrier for all cal-
culated wavefunctions in both sam-
ples. Wavefunctions calculated us-
ing optimum QC and InGaAs con-
tent taken from Fig. 6.4.

Electron/hole overlaps for all combinations of the four valence and two conduc-
tion band wavefunctions are presented in Table 6.2. They are calculated using the
wavefunctions that best fit with the experimental transition energies, (at QC = 0.63
in Fig. 6.4). WX and NX have dipole moments near one, indicating nearly perfect
overlap of the electron and hole. Surprisingly, the spatially indirect inter-well ex-
citons (E2-H3 and E1-H4) have higher overlap integrals than the direct but parity
forbidden αX1 and αX2 (E1-H3 and E2-H4). This is in contradiction to the experi-
mental results, in which αX1,2 (E1-H3 and E2-H4) are detected but E2-H3 and E1-H4
are not.

Imperfectly defined parity of the wavefunctions is a plausible explanation for this
discrepancy: Parity forbidden excitons involve an electron and a hole which have
an overlap integrals of 0, due to the symmetry of their wavefunctions. If one wave-
function has odd parity, and the other even, they will always integrate to zero. A
less symmetric potential than the ones that are used for these calculations would in-
crease the αX1,2 overlap integrals. Strain induced band bending or a strain induced
internal electric field could induce a non-symmetric perturbation of the potential
which would reduce the purity of the wavefunction parity. The previously forbidden
exciton states could thereby be weakly allowed. The Numerov/shooting method
used here to solve the 1D Schrödinger equation can be applied for an arbitrarily de-
fined potential, so wavefunctions could be calculated for asymmetrically perturbed
potentials. Realistic incorporation of strain into the DQW potentials could therefore
be used to account for the discrepancy between the experiment and calculations
(i.e. the detection of parity-forbidden excitons and lack of detection of inter-well
spatially indirect excitons). This will be the subject of future work.

Calculating the overlap between barrier electrons (holes) and QW holes (elec-
trons) is less straightforward. If we assume that the barrier electron/hole wavefunc-
tions are mostly localized in the barrier3, we can estimate the overlap integral of

3 This is not necessarily a good assumption as (for the GaAs HHs) there is nothing preventing the wavefunction
of the GaAs electron/hole from extending into the InGaAs layer.



6.3 R E S U LT S F R O M D Q W S A M P L E A (30 N M B A R R I E R ) 169

βXs by calculating the percentage of the QW wavefunctions that penetrate into the
barrier. Using these pseudo-overlaps, we can compare the relative strengths of the
exciton transitions that involve the same carrier in the barrier. For example, βX1 (E1
- Hb) can be compared with βX2 (E2 - Hb) because they both involve the same hole
in the barrier valence band. Similarly, βX3−6 (Eb - H1−4) can be compared with one
another because they all involve an electron in the barrier conduction band. The
wavefunctions of the Hb and Eb are certainly not identical, so βX1,2 (E1−2 - Hb)
cannot be directly compared with βX3−6 (Eb - H1−4). However, just looking at the
amount of the QW wavefunctions that is in the barriers (Table 6.3), we see that the
βX excitons that are detected with strong signal in the 2D and 3D spectra are the
ones with the highest values in Table 6.3.

6.3 Results from DQW Sample A (30 nm barrier)

6.3.1 Photoluminescence excitation: Exciton relaxation pathways

Photoluminescence excitation (PLE) spectroscopy can be used to identify transi-
tions which do not generate efficient photoluminescence (PL), but relax to transi-
tions which do. It can also be used investigate relaxation pathways, by correlating
excitation and emission energies. However, it only tells us that there is an allowed
relaxation pathway from the state associated with initial excitation to the state as-
sociated with the detected emission energies. PLE doesn’t tell us anything about the
relaxation rate or complete relaxation pathway.

PLE is a good candidate for detecting and identifying the ‘dark’ states. Both αX
and βX have smaller electron/hole wavefunction overlap integrals than NX and WX,
so they will have a lower dipole moment and a therefore longer radiative lifetimes.
These long radiative lifetimes will then likely be outpaced by relaxation since one
of the carriers is already in the well. It is thus expected that these αX or βX states
show very weak PL emission (probably below the threshold for detection), but relax
efficiently into WX and NX. We therefore expect an increase in emission from NX
and WX when αX or βX is selectively excited.

PLE was conducted as described in section 2.6. A narrow sliver of the mode-
locked laser bandwidth is used to excite the sample, while monitoring the PL. The
photon energy of the excitation beam was scanned from 1.470 eV to 1.525 eV in
steps of 0.4 meV using the pulse-shaper. The excitation power of the beam varies
along with the laser spectrum from 4.9µW at 1.516 eV to 27.6µW at the peak
(1.485 eV). The excitation power and spectrum at each point is recorded after each
scan. A linear correction is then applied to normalize the PL according to the exci-
tation power. 4

4 To justify the use of a linear correction, a coarse power dependence of the PLE was conducted (not shown),
which shows that the excitation power is low enough to avoid higher order signals.
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Figure 6.5: PLE on 30 nm barrier DQW. (a) shows the full 2D PLE spectrum which is discussed in
detail in the text. Specific slices of the spectrum along the excitation (b) and detection
(c) axes are presented as well.

A full 2D5 PLE spectrum for sample A is shown in Fig. 6.5a. There is a great deal of
information in this plot. First, there are two vertically elongated continua along the
excitation axis at emission energies of 1.4734 eV and 1.4797 eV, which correspond
to emission from WX and NX respectively. At each of these emission energies there
are discrete peaks indicating excitation of excitonic features as well as underlying
continua elongated along excitation axis, which correspond to the excitation of
free-carriers in the QW or (above 1.52 eV) in the GaAs barrier. The excitons and
free carriers relax into WX or NX states (depending on which well the original
excitation was in) which then recombine radiatively to give us the emission signals
at WX and NX transition energies. A detailed discussion of the excitonic features
is more easily conducted when the excitation spectra are presented as slices at the
WX and NX emission energies, which are shown in Fig. 6.5b.

Working from high to low energy (right to left), we see several peaks. First, there
is the GaAs free carrier continuum from the beginning of the scan (1.53 eV) down
to about 1.518 eV. This relaxes equally into both WX and NX. After a small dip,
there is a distinct exciton resonance at 1.5158 eV (corresponding to the GaAs free

5 This is a linear measurement of PL as a function of the energy of the exciting photon, both measured in the
frequency domain. It is fundamentally different from and not to be confused with 2D 1Q, 0Q or 2Q spectra in
which the E1, E2 and E2Q axes are generated by a Fourier transform of time delay data.
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exciton) which relaxes into both QWs, but the emission from NX is nearly 3× larger.
Two factors contribute to the enhanced emission from NX when the GaAs exciton is
excited. First, the spectral separation of βX4 and BarX is smaller than the excitation
resolution in the experiment, so both features are likely contributing to this exci-
tation peak. Second, the narrow well is closer to the surface of the DQW, so more
of the excitation light has been absorbed before it gets to the wide well. Below the
GaAs bandgap, there is a continuum which corresponds to the free carriers in each
of the respective wells, as well as a few peaks.

At the WX detection energy there are two main peaks at 1.512 eV and 1.495 eV
(corresponding to βX3 and βX1, respectively), and a weaker peak at 1.486 eV which
corresponds to αX1. There is no peak emitting in WX for excitation at NX, which
suggests that there is very little tunneling between the wells. At the NX detection
energy, there are two peaks at 1.498 eV and 1.494 eV, which correspond to βX2
and αX2. The above βX and αX peak assignments are justified because they appear
in roughly the right spectral ranges, and they all relax into the appropriate QWs.
Furthermore, there is no relaxation from βX3, βX1 or αX1 (βX2 or αX2) into NX
(WX) which is consistent with the lack of cross-barrier relaxation from NX to WX.

A complicating factor in conclusively identifying the βX transitions in this sample,
is that they appear in spectral ranges where there is also emission from GaAs defects.
These defect peaks can be seen in Fig. 6.5a as emission features for excitation above
the GaAs bandgap and plotted in Fig. 6.5c which shows emission energy when
the GaAs free carrier continuum is excited. The two defect peaks at 1.490 eV and
1.493 eV, as well as the complex structure of defect emission between 1.505 eV and
1.515 eV are well known carbon defects which appear in GaAs epilayers [128, 168].
Control experiments have shown that the concentration of defects (both relative
and absolute) changes between MBE machine and even run to run. For this reason,
defect emission cannot always be unambiguously identified or ruled out based on
the spectral characteristics alone [233]. This makes it difficult to rule out defect
related explanations for the peaks labelled as βX and αX.

That said, the excitation position and line-shape of the βX transitions (which can
be seen in 6.5b) are very different from the detected defect peaks. These peaks
are shifted to higher energy than the defect emission, and have much narrower
lines. Though it is not uncommon to have some spectral separation of absorption
and emission lines, a shift of 5 meV or greater is unlikely. These differences suggest
that the βX and αX excitation peak cannot be accounted for by defects. A more
complete discussion of why these defects can’t explain most of the signals detected
in the PLE and CMDS spectra is presented later in section 6.5.1.1.

The free-carrier continua (features elongated along the excitation axis with emis-
sion in WX and NX), provide further evidence that βX1 and βX2 involve a carrier
in the barrier. The WX and NX continua are flat as a function of excitation energy
below the βX1 and βX2 resonances (respectively). This is expected for free-carrier
absorption in a QW, since the density of states is a step like function (as shown
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in Fig. 3.6 and described in Section 3.1.6). Above the βX1,2 resonances, the ab-
sorption begins to increase sharply with increasing photon energy. We expect this
absorption dependence on photon energy for bulk semiconductors, which have a
density of states which increases with photon energy. The photon energy is still well
below the band gap so one of the generated carriers (the electron in this case) is
still in the QW, while the other (the hole) is in the barrier.

6.3.2 1Q/2D results

Similar to PLE, 2D spectroscopy can be used to investigate ‘dark’ states through
coupling to bright states. Unlike PLE, however, 2D spectroscopy can actually drive
emission from these dark states in the form of diagonal-peaks (DPs) or above diago-
nal CPs. More importantly, using 2D spectroscopy, the femtosecond and picosecond
dynamics of the excitons can be explored, and interaction pathways can be identi-
fied.

We first perform 2D 1Q spectroscopy using three identical broadband pulses, with
spectra that cover the entire transition landscape detailed in section 6.2. The excita-
tion density is 4.5× 1010 photons×cm−2 per pulse, and all the beams are collinearly
polarized. The waiting time (t2) is set to 0 fs, and t1 is scanned from 0 to 5000 fs in
25 fs steps.6

A 2D spectrum is presented in Fig. 6.6. It is first important to note the logarithmic
colour scale, spanning three orders of magnitude, which reveals the CPs even in the
presence of much stronger DPs. This plot contains a great deal of information which
will be dissected in the following paragraphs. There are three DPs corresponding to
WX, NX and BarX, two much lower amplitude DPs corresponding to βX1,2, and at
least 18 CPs corresponding to interactions between WX, NX, BarX and the αX, and
βX states.

We will first discuss the shape of the main three DPs. The WX and NX DPs are
nearly resolution limited along the E3 (emission) axis. They have oval peak-shapes
with no elongation along the diagonal, which indicates that they have very little
inhomogeneous broadening. The significant broadening of both the WX and NX
DPs along E1 (roughly twice the width of the same peak along E3) is an artifact
related to the scan range limitations of this particular experimental setup. Previous
experiments on this sample using delay stage based 2D spectroscopy have shown
that the width along E1 is much lower than we report here, and that these states
do actually contain some inhomogeneous broadening which cannot be resolved
with this experiment [54]. The BarX DP has some complex structure in its emission,
which can also be seen in the PLE emission. This structure is qualitatively consistent
with emission from shallow defects which commonly occur in GaAs epilayers. The
largest emission feature near the GaAs resonance in the 1Q spectrum is observed

6 The pertinent experimental parameters for this measurement (and the rest of the measurements in this chapter)
can be found in Table A1.3 in Appendix A1



6.3 R E S U LT S F R O M D Q W S A M P L E A (30 N M B A R R I E R ) 173

Figure 6.6: A typical 1Q 2D spectrum for sample A showing three strong DPs (WX, NX and BarX)
as well as a wide variety of CPs indicating coupling of NX, WX and BarX to several
βX and both αX states. Full analysis of the spectrum provided in the text. Plotted on a
logarithmic colour scale spanning three orders of magnitude.

at the energy where we expect the GaAs free exciton. Along the E1 axis, the BarX
DP is again much broader than it’s emission width due to the scan range limitations
of the experimental apparatus. It is not immediately clear what the ‘actual’ E1 line-
shape is for this peak as the excitation spectrum used in previous experiments on
this sample did not cover this transition. Like WX and NX, the βX1 and βX2 DPs also
have oval line-shapes with narrow emission and somewhat broadened absorption.

Our attention now turns to the CPs. First, we see emission and absorption CPs
coupling WX and NX to the same three βX transitions that appeared in the PLE
data: βX1 at 1.495 eV, βX2 at 1.498 eV and βX3 at 1.512 eV. As in the PLE data,
the βX1 and βX3 are coupled only to WX while βX2 is coupled only to NX. βX4
can now be resolved as an additional peak emitting just below BarX, and there is a
weak peak at 1.500 eV which might be βX6. As expected based on the descriptions,
βX4 and βX6 only show emission in NX. The presence of below diagonal CPs with
E1 = BarX indicate that the barrier is coupled to WX, NX, and βX1−4.

Finally, we see CPs absorbing in WX (NX) with emission at 1.486 eV (1.494 eV)
which is where we expect to find the parity forbidden αX1 (αX2). Like in the PLE,
there also appears to be a CP coupling αX1 to NX, but if we look closely we can see
that it is actually red shifted by about 1 meV, and has somewhat broader emission.
This feature occurs at low energy edge of the free-carrier continuum in the NW,
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and only couples to NX. We therefore attribute this peak to free-carriers with no
momentum. We do not typically expect to see emission from free-carriers, because
they dephase quickly and efficiently form excitons.

The 1Q results are also consistent with αX and βX being ‘dark’ transitions. We see
DPs for two of them, but they are two orders of magnitude weaker than the bright
NX and WX DPs. The fact that the CPs are much stronger than the DPs is consistent
with strong coupling of the ‘dark’ states to NX and WX. To illustrate why we expect
this, we consider two states A and B with transition dipole moments µ1A � µ1B.
The DPs for A and B scale with µ4A and µ4B respectively, while the CPs scale with
J× µ21A × µ1B

2 where J is a coupling parameter. In this way, the state B actually
amplifies signals from state A in the form of CPs as long as J is not tiny (i.e. strong
coupling). For example, if µ1B = 10× µ1A, and J = 0.5 the resulting AB CP is 50×
larger amplitude than the DP for state A.

Like the PLE results, the 1Q results and peak assignments are consistent with
what we expect for the βX and αX states. They are coupled to the right transi-
tions, there is no cross-barrier coupling and the coupling (as expected) appears to
be quite strong. The pathway(s) leading to these CPs are still unclear. These CPs
could be generated by GSB, ESA, coherent superpositions or population transfer
pathways. The following section presents 0Q and 2Q spectra with the aim of trying
determining what coherent coupling pathways are present.

6.3.3 0Q/2D and 2Q/2D results

Though the pathways are different, 2Q 2D spectroscopy provides an alternative
method to detect excitonic coupling and is therefore a convenient way to expand
upon some of the 1Q results. In the 2Q pulse ordering (in which the conjugate pulse,
k1 arrives last), signals whose phase evolves at twice the optical frequency of the
laser during time t2Q are detected. 2Q signals can either result from excitation of a
one-exciton state with a transition energy equal to twice the laser photon energy or
a two-exciton state consisting of two excitons each with a transition energy equal
to one laser photon. In this DQW sample, there are no single exciton states at
∼ 2× the energies of the single exciton signals, so all the signal in the 2Q pulse
ordering correspond to excitation of two-exciton states7. CPs only appear when
the first two pulses excite different transitions, and thereby excite a mixed two-
quantum coherence. Such a 2Q CP can therefore only appear if the two excitons
appear in the same quantum system, meaning that the system can be described
as four level system instead of two separate two level systems. Presence of CPs
therefore indicates the coherent nature of the coupling [54, 276].

A 2Q/2D spectrum for sample A is presented in Fig. 6.7a. t1 was set to 0 fs and
t2Q was scanned from 0 to 2500 fs, with the same polarization and excitation den-

7 Biexciton signals can also be detected, but they are spectrally separated from the two-exciton signals.
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Figure 6.7: 2D spectra in 2Q (a) and 0Q (b) pulse orderings show that there is coherent coupling
between the QWs, βX, αX and barrier excitons, and qualitatively. These spectra show
coupling between the same sets of transitions which appear in the 1Q spectrum. The
shaded regions indicate spectral areas in which artefacts appear due to reflections of
real signals across the E=0 line in the rotating frame.

sity as was used in the 1Q spectrum. 2Q CPs involving two-exciton coherences are
characterized by E2Q that is the sum of the coupled transitions, and can therefore
be identified as peaks which appear at E2Q halfway between the two associated
2Q DPs. In addition to the E2=2E3 dashed line, the dash-dotted lines are added
as a guide to identify the transitions associated with the CPs. CPs for a transition
with energy ε include all peaks which share the same emission energy (vertical
dash-dotted lines), and peaks along the E2Q = E3 + ε line (angled dashed-dotted
lines).

This spectrum clearly shows CPs associated with the same pairs of transitions
as the 1Q spectrum. We see (above and below diagonal) interactions between WX
(NX) and βX1, βX3 and αX1 (βX2, βX4 and αX2). There is also perhaps a very weak
peak below the βX3 DP at E2Q= βX3 + βX1. As before, there are only weak DPs
for βX1 and βX2, and no cross-barrier coupling. We also see clear peaks related to
the interaction of WX and NX with BarX, which are much more well resolved and
intense than the interactions we saw in the 1Q pulse ordering.
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As demonstrated in the previous chapter, 0Q scans can be used to differentiate
between coherence and population pathways in the rephasing pulse ordering [50].
A 0Q scan was conducted in which t1 was set to 0 fs and t2 was scanned from
0 fs to 5000 fs, with the same excitation spectrum and excitation density as the 1Q
scans. A typical 2D 0Q scan for this sample is presented in Fig. 6.7b. The population
pathways appear along the E2=0 line. There are population peaks for each of the
transition energies in which we see significant emission in the 1Q spectrum, but the
WX and NX peaks dominate.

A wide range of above diagonal coherence CPs appear as well. Coherence CPs for
a transition with energy ε include all peaks which share the same emission energy
(vertical dashed lines), and peaks along the E2 = E3 − ε line (angled dashed lines).
Along the WX mixing line (the angled line which crosses E2 = 0 at E3 =WX) there
are a total of three clearly defined CPs at E3 = βX1, βX3, and a slightly weaker one
at αX1. These CPs represent the same sets of transitions we see coupled to WX in
the 1Q and 2Q scans. Similarly, there are peaks along the NX mixing line at E3=βX2,
βX4 and a very weak peak at αX2.

The only below diagonal CPs which appear, are at WX and NX emission energies.
WX to βX1 and NX to βX2 peaks are clearly there, but many of the others are either
missing or buried in noise from the tails of the E2=0 peaks. There are broad peaks
at the appropriate E2 energies to indicate coupling of WX and NX to BarX. However,
both of these peaks are broad enough that it is not possible to separate βX4 and
BarX.

The regions in both Fig. 6.7a and Fig. 6.7b which are greyed out represent signals
that appear either along the carrier frequency line, or on the opposite side, and are
therefore taken to be artifacts. Though signals do appear here, they are reflections
of real signals across the 0-frequency line in the rotating frame, caused by phase
errors in the experiment, scatter and artifacts introduced in data analysis (such as
windowing, FFT spectral leakage etc.)

The 0Q and 2Q spectra presented in this section are consistent with the PLE and
1Q results in that all of the same transition combinations that result in CPs in the 1Q
spectrum in Fig. 6.6 also produce CPs in the 0Q and 2Q spectra. More importantly,
these two spectra also show that there is coherent coupling of the same sets of
transitions, and the 0Q results suggest that CP pathways involving coherent super-
positions of NX/WX with βX/αX are nearly as strong as those involving populations
(ESA/GSB).

6.3.4 3D spectroscopy

Using 3D electronic spectroscopy, we can more carefully analyse the coherences
and CPs detected in the 1Q and 0Q 2D spectra by fully isolating all of the different
contributions. Figure 6.8a shows a projection of the 3D spectrum onto the E1 vs
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E3 plane, which is equivalent to a 1Q/2D spectrum. In Fig. 6.8b, the amplitude of
four of the CPs is plotted as a function of t2. As expected based on the presence of
coherence peaks in the 0Q spectrum, clear oscillations can be seen in the phase and
amplitude of each of the CPs. The depth of the oscillations (dipping almost to zero)
suggest that the CPs are almost equal parts coherence and population pathways for
short t2. A signal made up of purely coherence pathways would lead to oscillations
in CP phase but not in amplitude. A signal made up entirely of population pathways
would lead to no oscillations (in phase or amplitude).

A superficial analysis of the frequency of the oscillations shows that they roughly
match the energy separation of the coupled transitions. A more detailed analysis
of these coherence and population signals can be conducted when a Fourier trans-
form is applied along the t2 axis to generate a full 3D spectrum. A depiction of the
resulting 3D spectrum is shown in Fig. 6.8c. As in the previous chapter, the signals
included in this spectrum span more than three orders of magnitude. To display all
the information together, the different regions are rendered on different isosurface
levels. In total, we detect 5 DPs, 13 population CPs and 15 coherence peaks. The
full list of amplitudes of the various peaks is displayed in Table 6.4. In addition
to well defined excitonic peaks, there are also free-carrier peaks which appear as
two continua elongated along E1 at (E2, E3)=(0, WX) & (0, NX) which make iden-
tification of some of the population CPs difficult as the CPs cannot be completely
separated from the free-carrier continua.

A more useful display of some of this data is provided in Fig. 6.9, which focusses
on the E1 vs E3 region that is sectioned out in Fig. 6.8a. Fig. 6.9a and 6.9b show
slices of the 3D spectrum for signals where the first photon is absorbed in the WX
and NX respectively. The red line shows where we expect to see coherences for this
particular E1 energy. The dotted horizontal lines show mixing energies where we
expect to see coherences based on the peak locations in the 1Q spectrum. In Fig.
6.2a (6.2b), we detect coherence peaks for (in ascending order) αX1, βX1,βX3 and
BarX (αX2, βX2,βX6,βX4, and BarX). Each of these peaks appears along the red line
and has an associated population CP at E2=0, which is of comparable amplitude.

We can then plot the E1 vs E3 slices at the the E2 energies in which we see coher-
ence peak. These plots are shown in Fig. 6.9c through 6.9j. An E1 vs E3 at E2=0 meV
is presented in Fig. 6.9k, which shows the population CPs that exist for each of the
coherence peaks. 6.9a-k taken together clearly show that the various coherence
signals that we see appear at the appropriate E1, E3 and E2 energies to be coher-
ence signals between the direct QW excitons and the βX and αX. The usefulness
of 3D spectroscopy in isolating signals can be seen particularly in frames 6.9c-f.
The four peaks here are overlapped and not fully isolated in 6.9k. In the other
frames they are much more well separated. This is particularly important for the
(E1,E3)=(NX,αX2) peak, which partially overlaps the WX free carrier continuum in
6.9k, but is quite isolated in 6.9f. In 6.9j, we see two overlapping coherence peaks
(E1,E3)=(NX,βX4) and (NX,BarX).
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(c)

Figure 6.8: (a) shows the 3D spectrum integrated along E2, which is equivalent to a 1Q spectrum
with t2=0. The green square indicates the region with the bulk of the coherence CPs
which will be examined in detail in Fig. 6.9. The CPs indicated by the markers are plot-
ted as a function of t2 in (b), showing clear and significant oscillations (indicating coher-
ent superpositions)of the main four above diagonal CPs. A Fourier transform is applied
along t2 to generate a 3D spectrum. The spectrum has signals spanning several orders of
magnitude, so each region is plotted on the isosurface that best suits the signal strength.
A wide variety of signals are isolated and studied in detail in the following section.

If we look back at the 3D spectrum in Fig. 6.8b we also observe the below di-
agonal equivalents of all of the coherence peaks shown in Fig. 6.9 (except the co-
herences involving αX1 and αX2). We also observe coherence peaks for two other
combinations of transitions in other areas of the 3D spectrum. Coherences of βX1
and βX3 can be seen at both (E1, E3) = (βX1, βX3) and (E1, E3) = (βX3, βX1).
Similarly, coherences of βX2 and either βX4 or BarX can be seen at both (E1, E3)
= (βX2, βX4 or BarX) and (E1, E3) = (βX4 or BarX, βX2). Whether these peaks
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Figure 6.9: Slices of the 3D spectrum (Fig. 6.8) focussing on the region indicated by the green
rectangle in Fig. 6.8. (a) and (b) show E3 vs E2 slices through the 3D spectrum at
E1 = WX and NX respectively. various population and coherence peaks are resolved.
Coherence peaks appear along the red line (E2 = E3+E1). The horizontal dotted lines
indicate the regions in which we expect to see coherence CPs based on the transition
energies of the 1Q CPs (vertical dotted lines). (c)-(j) show slices of the 3D spectrum at
each of these E2 values, clearly showing that the coherence peaks appear at the expected
positions along the red lines (E1 = E2 - E3). The colors in all the plot are scaled according
to the same logarithmic colorbar, and are normalized according to the largest amplitude
peak in the figure.

involve BarX or βX4 (or if both pairs of coherence peaks are present) cannot be de-
termined due to the spectral overlap of the two. The below diagonal peak appears
to be more centred on βX4 whereas the above diagonal peak appears to be more
centred on BarX.

We find in this 3D spectrum (as in all the previous 2D spectra), that the βX signals
predominantly only couple to either WX or NX. As before, αX1, βX1 and βX3 couple
strongly to WX while αX2, βX2, βX4 and βX6 couple only to NX. We will look in
more detail at some of the peak-shapes in the discussion section.

We now move on to Table 6.4, which presents the amplitudes of all of the peaks
resolved in the 3D spectrum. The peak amplitudes are corrected to account for the
spectral weight of the excitation spectra using the same method as in the previous
chapter (Section 4.3.5). After the correction is applied, BarX is the strongest signal
(it was much weaker than NX and WX, but it is also on the tail of the excitation
spectrum). With the exception of the above diagonal BarX-NX, all of the CPs ap-
pear as pairs of population and coherence peaks. In general, the population and
coherence peaks have amplitudes which are of similar orders of magnitude, with
the coherence peak typically slightly weaker than the population peak.
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PPPPPPPE1

E3 WX NX αX1 αX2 βX1 βX2 βX6 βX3 βX4 B A R X

WX 16.8 7
0.16
0.1

7
1.06
0.79

7 7
0.94
0.71

7
1.24
0.59

NX 7 13.19 7
0.13
0.12

7
0.61
0.56

0.23
0.2

7
1.22
1.37

7

1.57

αX1 7 7 7 7 7 7 7 7 7 7

αX2 7 7 7 7 7 7 7 7 7 7

βX1
1.77*
0.69

7 7 7 0.19 7 7
0.21
0.11

7 7

βX2 7
1.48*
0.56

7 7 7 0.17 7 7 7
2.19
1.03

βX6 7 7 7 7 7 7 7 7 7 7

βX3
3.63*
0.75

7 7 7
0.88
1.97

7 7 7 7 7

βX4 7
7.3*
2.74

7 7 7
1.26
0.84

7 7 7 7

BarX 8.16*
1.16

7 7 7 7 7 7 7 7 100

(eV) 1.473 1.480 1.487 1.494 1.495 1.498 1.501 1.512 1.515 1.516

Table 6.4: A table listing of the amplitudes of all of the detected DPs, coherence CPs (bold) and
population CPs (not bold). All values have been corrected to account for the different
spectral weight in the excitation pulses according to the same method developed in sec-
tion 4.3.5, and are presented as a percentage of the strongest peak (BarX). The *indicates
signals which cannot be separated from the E2=0 free carrier continua, so the values
are likely significantly overestimated. The bottom row shows the transition energy that is
associated with each transition in sample A.
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PPPPPPPE1

E3 WX NX αX1 αX2 βX1 βX2 βX6 βX3 βX4 BarX

WX 61.8 7
1.0
0.61

7
5.84
4.34

7 7
1.14
0.86

7
0.84
0.40

NX 7 100 7
1.08
1.00

7
4.12
3.79

1.34
1.19

7
1.25
1.41

7

1.52

αX1 7 7 7 7 7 7 7 7 7 7

αX2 7 7 7 7 7 7 7 7 7 7

βX1
9.71*
3.79

7 7 7 1.56 7 7
0.37
0.20

7 7

βX2 7
10.07*
3.81

7 7 7 1.03 7 7 7
1.9
0.89

βX6 7 7 7 7 7 7 7 7 7 7

βX3
4.38*
0.91

7 7 7
1.6
0.92

7 7 7 7 7

βX4 7
7.54*
2.83

7 7 7
1.17
0.78

7 7 7 7

BarX 5.5*
0.78

7 7 7 7 7 7 7 7 12.4

(eV) 1.473 1.480 1.487 1.494 1.495 1.498 1.501 1.512 1.515 1.516

Table 6.5: Relative peak amplitudes for all population (not bold) and coherence peaks (bold) de-
tected, before correction for spectral variation of the electric field amplitude is applied.
The *indicates signals which cannot be separated from the E2=0 free carrier continua,
so the values are likely significantly overestimated. The bottom row shows the transition
energy that is associated with each transition in sample A.

We can try to characterize the strength of the coupling of the various transitions
by comparing peak amplitudes. Each of the DPs is proportional to the transition
dipole moment of that transitions (µl) to the fourth power, multiplied by the prod-
uct of the electric fields of the excitation pulses multiplied by the electric field of the
LO. If all the pulses are identical, then the electric field amplitude for all four pulses
can be written as E(εn), (where E is the pulse electric field and εn is the transition
energy of transition n) and the resulting signal strength is determined by:

A(n) ∝ E(εn)4µ4n (6.3)

The correction we have applied above has effectively normalized all of the pulse
spectra, meaning that for relative comparisons the dependence of the electric field
on photon energy can be dropped. The electric field therefore drops out of the
relative dipole moment µ̃n:

µ̃n =
µn

µ0
=

(
E4Sn
E4S0

)1/4
=

(
Sn

S0

)1/4
(6.4)
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PPPPPPPE1

E3 WX NX βX1 βX2 BarX

WX 0.59, 0.44 0.03, 0.014

NX 0.41, 0.37 0.04

βX1 0.39

βX2 0.37 0.53, 0.25

BarX 0.03

Table 6.6: Coherence (JCm,n - bold) and population (JPm,n - not bold) relative coupling strengths of
CPs for which both of the associated DPs are detected.

Where µ0 and S0 are the dipole moment and spectral amplitude (respectively) of
a reference transition, (in this case WX). µ̃n is proportional to the fourth root of the
DP amplitude divided by the reference amplitude.

With the now flat spectra, we can approximate the amplitude of the CP signals
Sn,m based on the relative dipole moments calculated using equation.

A(n,m)

S0
= µ̃2nµ̃

2
mJn,m (6.5)

where Jm,n is a phenomenological coupling constant intended to characterize the
strength of the interactions between the two transitions. This definition of J, based
on the peak amplitude, does not incorporate different decay rates of the peaks. A
more complete description would include a normalization based on the coherence
and population lifetimes of the different excitons. In this scan, however, both life-
times are limited by the experimental scan range, so an approximate normalization
is intrinsically included. As the goal here is to calculate a rough comparison of cou-
pling strengths, a more detailed inclusion of the lifetime normalisation is omitted.
We can calculate J for each of the coherence (JCm,n) and population (JPm,n) CPs for
which we have both of the associated DPs (and can therefore extract relative dipole
moments). We can calculate phenomenological coupling strengths for the following
CPs: WX/βX1, NX/βX1, WX/BarX, NX/BarX, βX1/BarX βX2/BarX.

The J values extracted from the 3D spectrum (Table 6.6) show that the WX/NX/BarX
to βX coupling is much stronger than the BarX to WX/NX coupling. This stark dif-
ference (more than a factor of ten) can be explained in the following way. βX1,2
each share an electron with NX or WX and the other with BarX. Furthermore, there
is likely a large amount of wavefunction overlap of βX1 (βX2) with WX (NX) and
also of βX1,2 with BarX. On the other hand BarX does not share any states with WX
or NX. BarX also likely has less spatial overlap with WX and NX.
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6.4 10 nm barrier sample

Some of the same 2D spectroscopy and PLE experiments were performed on sample
B, in which the QWs are separated by a 10 nm barrier instead of a 30 nm barrier,
but is otherwise identical to sample A. The following sections will provide a brief
overview of these results, which are used help justify the peak assignments, to add
further constraints to the wavefunction calculations, and to investigate the way in
which the coupling of WX and NX to αX and βX changes as the separation of the
wells is reduced and hybridization of the wavefunctions increases.

6.4.1 Relaxation pathways (PLE)

A 2D PLE plot for DQW sample B is presented in Fig. 6.10. There are some sig-
nificant differences between this and PLE from sample A (Fig. 6.5). First, there is
strong emission from WX, but none from NX. In addition, there is a strong peak
for excitation in NX and emission from WX. These two observations suggest that
there is very efficient tunnelling from NX to WX, which is not unexpected given the
narrow, low potential barrier separating the wells.

Figure 6.10: PLE on 10 nm barrier DQW. (a) shows the full 2D PLE spectrum which is discussed
in detail in the text. Specific slices of the spectrum along the excitation axis (b) and
emission axis (c) are discussed.
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Second, there is a strong defect band centred between 1.490 eV and 1.493 eV with
an emission profile similar to that of sample A. Unlike sample A, however, there is
PL signal for this band even when the exciton energy is smaller than the GaAs band
gap. The emission from the ∼1.512 eV defect band is also missing. These differ-
ences suggest that the nature and concentration of defects in the GaAs epilayers is
different for the two samples. This is not uncommon, as samples from different ma-
chines and even different runs on the same machine can have significant differences
in defect incorporation ( [128, 233]). More importantly (assuming defect density
is uniform), this makes detection of emission from the βX states more difficult as
the signal from the QWs is re-absorbed as it passes through the GaAs capping layer
before leaving the sample.

There are also a range of different peaks along the excitation spectrum for emis-
sion in WX (shown in Fig. 6.10b). The most obvious of these peaks appears at
1.493 eV, but there are additional peaks above at 1.499 eV and 1.502 eV. These
might represent the relaxation from the βX peaks down into the quantum wells.
If they do, there is relaxation from βX2 and βX4 (which are predominantly local-
ized in the narrow well) into WX (i.e. cross barrier relaxation). However, whether
this is a two-step relaxation via NX, or tunnelling directly through the barrier to WX
cannot be discerned from this measurement.

6.4.2 1Q/2D spectrum of Sample B

A 1Q spectrum for the 10 nm barrier sample B is shown in Fig. 6.11. Comparing
this to the 1Q spectrum for the 30 nm barrier sample, there are several obvious
differences. The peaks are all broader, the NX and WX DPs are tilted along the
diagonal (indicating some inhomogeneous broadening), and a different array of
above diagonal CPs are present.

The CPs at (E3, E1) = (WX, βX1), (NX, βX2) and (NX,βX6) which appeared in the
sample A 1Q spectrum are also resolved here, but are broadened and slightly tilted
along the diagonal. The βX3 and βX4 peaks are missing entirely. Finally, an entirely
new peak appears at E3= 1.499 eV, coupled only to WX. The width of the peaks
makes exact identification difficult. This peak could be emission from the βX5 peak
that was missing in sample A, or βX2,4 coupling to WX.

Closer inspection also shows that all of these peaks (WX, NX, βX1, βX2) are
slightly spectrally shifted relative to the same peaks in sample A. As section 6.5.1.2
will show in more detail, these peak shifts can be explained by shifting splittings due
to increased penetration of the wavefunctions (particularly E1/2 and H3/4) through
the barrier.

The weaker βX above diagonal CPs (including some which are not resolved at
all) could be in part the result of signal absorption in the GaAs capping layer. If that
is the case, below diagonal CPs should be slightly easier to detect. Unfortunately,
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Figure 6.11: A 1Q/2D spectrum for sample B. It is similar to sample A, with a few differences. All
peaks are broader, and fewer of the above diagonal CPs are resolved.

the NX and WX free-carrier continua makes detection of these peaks difficult in
broadband spectra. There are certainly modulations of the free carrier continuum,
but the precise location of these modulations is difficult to discern and depends
heavily on the details of the windowing function which is used to remove the pulse
overlap.

6.4.3 Coherence-specific, Pathway-selective 3D spectroscopy

Exciton signals can be separated from the free-carrier continuum by looking at the
electronic coherent superposition pathways. The free-carrier coherence time is short
enough that they do not contribute significantly to the coherent superposition path-
way, while strongly coupled exciton transitions do generate coherent superposition
signals. For that reason, we perform broadband and coherence-specific pathway
selective 3D spectroscopy to better separate the below diagonal exciton signals.

A broadband 3D spectrum (not shown) does not resolve any resonances that
could be coherent superpositions. The signal may be below the noise floor, prevent-
ing the detection of the signals. Chapter 4 showed that otherwise hidden coherence
signals can be revealed by spectrally shaping excitation pulses to only excite the
coherence pathways. Here we use the same approach to excite only the βX-NX/WX
below diagonal coherent superposition pathways, using the pulse sequence shown
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Figure 6.12: (a) Pulse sequence for pathway selective 3D spectrum. (b) Pathway selective 3D spec-
trum showing coherence below diagonal CPs of WX/NX with βX and BarX excitons.
Vertical planes indicate slices displayed in (c) and (d) for emission from WX and NX
respectively. The red diagonal lines in (b), (c) and (d) represent the E2 = E3+E1 line,
which is where we expect coherence CPs.

in Fig. 6.12a8. The resulting 3D spectrum is presented in Fig. 6.12b. A wide range
of coherence CPs are resolved. The E2 vs E1 slices for E3 = WX and E3 = NX are
shown in Fig. 6.12c and 6.12d. The red line indicates the spectral positions where
we expect to see coherent superposition signals.

The main peak in the 3D spectrum is at (E1, E2, E3) = (-1.493 eV, -20 meV, WX),
which is consistent with the β1 above diagonal CP seen in the 2D spectrum. Like in
the 1Q 2D spectrum this peak is stronger at E3=WX, but there is also some signal

8 Pathway selection wasn’t used on Sample A, because the above diagonal CS-CPs are evident even without the
selective excitation. In Sample B, on the other hand, the CS-CPs are not clearly resolved, so selective excitation
is more useful in that it can eliminate some of the diagonal peaks, reduce the noise floor and thereby reveal
the CS-CPs.
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Figure 6.13: Traces of the PLE excitation spectra from Fig. 6.10 are superimposed on traces along
the diagonal of the below diagonal coherence peaks in Fig. 6.12. They show a consistent
set of transitions which are coupled to NX and WX

at (E1, E2, E3) = (-1.493 eV, -20 meV, NX). Further down E1, we see a set of three
pairs of strong peaks at

E1=-1.498 eV: (-1.498 eV, -26 meV, WX)& (-1.498 eV, -18 meV, NX),

E1=-1.500 eV: (-1.500 eV, -28 meV, WX) & (-1.500 eV, -20 meV, NX),

E1=-1.502 eV: (-1.502 eV, -30 meV, WX) & (-1.502 eV, -22 meV, NX).

There are then three weak pairs of peaks at

E1=-1.507 eV: (-1.507 eV, -35 meV, WX) & (-1.507 eV, -27 meV, NX),

E1=-1.509 eV: (-1.509 eV, -37 meV, WX) & (-1.509 eV, -29 meV, NX),

E1=-1.516 eV: (-1.516 eV, -44 meV, WX) & (-1.516 eV, -36 meV, NX)

the final two of which correspond to coupling of WX and NX to BarX.
A slice along the diagonal line in in 6.12c and 6.12d is taken and superimposed

on the PL excitation spectrum in Fig. 6.13, in which we see that peaks detected
using PLE experiment with emission in WX match up with the range of peaks we
see here in the PS-CMDS spectrum with emission at both WX and NX. Despite the
relatively low signal to noise ratios of these spectra, the consistency of these very
different experimental techniques supports taking them to be real peaks. The peaks
at E1=-1.498 eV and -1.500 eV roughly match up with the peaks that have been
labelled βX2 and βX6 in the 1Q spectrum. However, some questions remain: what
are the additional peaks E1=1.507 eV and 1.510 eV? Why are these peaks slightly
shifted compared to the above diagonal ones in the 1Q spectrum?

These questions aside, if we just look at the lowest frequency peaks (E1=-1.493 eV,
-1.498 eV and -1.502 eV) we can see here that the βX excitons no longer only couple
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to a single well (as they did in the 30 nm barrier sample): βX1 and βX2 are clearly
coupled to both NX and WX in the PS-3D spectrum. In other words, a type-II exciton
with one carrier localized in one well directly couples to the type-I exciton in the
other well, through the central barrier. This also suggests that at least some of the
βX peaks involve carriers localized in the central barrier which separates the two
wells.

6.5 Discussion

6.5.1 αX and βX peak assignments

Within the array of CMDS and PLE data presented in the previous sections, there
is a wide variety of evidence to support our asserted attribution of detected signals
as α (parity forbidden) and β (type-II) ‘dark’ states. The aim of this first part of the
discussion is to lay out that evidence.

A brief summary of the argument structure is provided first. The positions and
widths of βX1,2,6 and αX1 (i.e. all of the αX and βX states which are detected in both
samples) correlate with the positions and widths of WX and NX9, which implies
that they must involve states in the QWs, and rules out defect related states. The
correlation of the inhomogeneous broadening, on the other hand is less apparent
in βX CPs, suggesting that one of the βX carriers is not in the well. Since the αX
and βX peaks must involve a state in one of the QWs, we use the calculated QW
energy levels from section 6.2.2 to work out the expected transition energies of
all possible exciton configurations involving at least one carrier in one of the QWs.
From these calculations, we find very good agreement of the calculated αX and βX
with the energies of the detected signals, and rule out all other possible exciton
configurations.

6.5.1.1 PLE and 1Q emission lines

Figure 6.14 shows the emission spectra of the WX and NX for both samples in PLE
(solid) and 1Q (dashed) experiments. In sample B, both WX and NX are shifted to
slightly lower energy compared with sample A. The splitting between NX and WX
is also increased by ∼2 meV. This increased splitting is qualitatively consistent with
increased coupling of the E1/E2 wavefunctions due to wavefunction penetration
through the barrier. The splitting is also quantitatively consistent with the transition
energies predicted by wavefunction calculations presented in Section 6.2, when a
small difference between the samples’ indium content is included in the calcula-
tions.

9 Note: The ‘correlation’ referred to here is not the correlation of the inhomogeneous broadening (angled peaks),
but rather that the peaks shift in the same direction and broaden by the same amount from sample A to sample
B.
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Figure 6.14: Emission lines WX and NX in both samples. This shows the increased splitting of WX
and NX in sample B compared with sample A, as well as increased inhomogeneous
linewidth. The increased width and slight detuning of the four-wave mixing signal
compared with the PLE is an artifact of the data analysis procedures in which some of
the signal is windowed out in the t3 domain, resulting in a loss of resolution in the E3.

The 1Q above diagonal CPs for both samples are shown in Fig. 6.15. Like the WX
and NX DPs and PL emission in Fig. 6.14, the βX1 and βX2 CP emission energies
are red shifted in sample B compared with sample A. This can be seen most clearly
in the 1D plots of E1 = WX (NX) in Fig. 6.15b. The CPs that are mostly localized in
the wide well are shifted by ∼2-3 meV, while the CPs that are mostly localized in the
narrow well are shifted by ∼0.5-1 meV. The emission linewidths of αX1 βX1, βX2
and βX6 are also all much broader in sample B than in sample A. This is consistent
with the broadening observed for the WX and NX emission lines due to structural
disorder.

The emission characteristics (transition energy and linewidth) of βX and αX are
correlated to the bright direct excitons in the same well (which is to say, they change
in the same way from sample A to sample B). This correlation10 then suggests that
the βX and αX transitions involve at least one state within the QW. They are there-
fore not intrinsic defect states in the GaAs epilayers, which would have emission
characteristics uncorrelated to the QW excitons. Furthermore, the nature of the de-
fects with emission in this spectral range also precludes them as an explanation.
The 1.490 eV and 1.493 eV defect peaks arise from recombination of a free electron
with a hole on an accepter defect [233], which would be unlikely to produce the
well resolved excitonic resonances with long coherence times.

The peak-shapes of α1 and α2 in sample A contain some additional evidence for
the proposed assignments as parity forbidden dark states. Looking more closely
at the coherence peaks peaks (Fig. 6.16), we can see that both peaks are tilted
along the diagonal. This tilt (like the HH-LH coupling in chapter 4) is generated by

10 Again, referring to the correlation of the emission properties (central energy and linewidth), not the correlation
of the inhomogeneous broadening.
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Figure 6.15: a comparison of the above diagonal βX CPs in sample A (a) and B(b), showing the
increased separation of βX1 and βX2, as well as the increased inhomogeneous width
(like in the WX and NX DPs). (c) shows slices through E1=WX (top) and E1=NX (bot-
tom) for sample A (blue) and sample B (red). The vertical dotted lines indicated the
position of the peak to show increased width and change in peak-shape and position.

Figure 6.16: Diagonal and WX/NX - αX coherence CP show some elongation along the diagonal.
This is strong evidence supporting the attribution of these signals to αX parity forbid-
den transitions. The x axis is E3, and the y axis is E1. The diagonal dashed lines are the
E1=-E3 lines.

correlated inhomogeneity, which occurs when both transitions experience the same
structural disorder. The correlation of the structural disorder is further confirmation
that the αX peaks are indeed states in the QWs. In QWs, the structural disorder is
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dominated by well-width fluctuations, so correlation suggests that the two excitons
are in the same part of the same QW. As we described in the previous chapter,
non-local coupling (i.e. inter-well or barrier-QW) would not demonstrate tilted CPs
indicative of correlated inhomogeneity.

Figure 6.17: Projections of the (E1,E3) = (WX,βX1) coherent superposition peak onto the (a)
(E1,E3),(b) (E3,E2), and (c) (E1,E2) planes. (d) shows Lorentzian fits of the integrated
peak profile in the three different directions along with a the three different energy di-
rections. Fits show that E2 is the largest, roughly double the size of the E3.

The projections of the CS-CP onto the three different frequency axes is shown in
Fig. 6.17. The shape of the E1 vs E3 projection (which is shown in Fig. 6.17a), is
not significantly tilted, suggesting uncorrelated inhomogeneous broadening. There
is a small amount of tilt in the E3 vs E2 peak-shape in Fig. 6.17b, but no observable
tilt in the E1 vs E2 peak-shape in Fig. 6.17c. The peak-shapes of the projections of
the NX-βX2 CS-CP are similar. These shapes are consistent with the results in the
previous chapter for CS-CPs where the inhomogeneous broadening is uncorrelated.
They are, however, inconsistent with the simulations for uncorrelated broadening,
which predict an observable tilt in E3 vs E2 and E1 vs E2 peak-shapes. It is not
clear whether we should expect correlation of βX1 (βX2) and WX (NX) broadening.
We might expect some correlation because βX1 (βX2) involves the same electron
state as WX (NX). However, we also would not expect perfect correlation because
the energy of the hole state in βX1 (Eb) will be essentially independent of the
well width. These results appear to indicate that there is little to no correlation
of the inhomogeneous broadening of the WX (NX) and βX1 (βX2) transitions and
that broadening in the E2 domain exceeds the contributions from the individual
excitons.

6.5.1.2 Ruling out other peak assignments

There are in principle two other excitons which involve carriers in the QW that we
should consider as alternative assignments for the detected βXs and αXs: inter-well
excitons and higher energy direct excitons. As described previously, there are four
possible Inter-well excitons (E1-H2, E2-H1, E1-H4 and E2-H3). Assignment of either
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Figure 6.18: Lorentzian fits along E2 of the E2 = 0 DPs to determine the bright excitons (WX, NX)
and the dark CT-like excitons (βX1, βX2) reveal that the dark state lifetime is at least
as long if not slightly longer than the bright states.

any βX or αX as inter-well excitons can be ruled out based on the wavefunction cal-
culations presented in section 6.2.2: Regardless of which value for QC is used, and
for the entire range of reasonable indium content, the lowest two transitions (E1-H2
and E2-H1) have energies far below the detected bands while the other two (E1-H4
and E2-H3) have energies far too high. Secondly, we also consider the possibility of
direct transitions involving higher energy electron states (E3-H3 to E4-H4). Accord-
ing to these calculations, both E3 and E4 are unconfined, above the GaAs bandgap
for the entirety of the parameter space covered by these calculations, and therefore
cannot account for the βX or αX. With these other possible peak assignments ruled
out, the only transitions we are left with which involve at least one carrier in the
QW are the βX and αX transitions.

Finally, we note that while our calculations have been constrained primarily so
that they fit the WX, NX βX1 and βX2 transition energies, we get very good agree-
ment with all of the detected states with the same set of parameters.

6.5.2 Population dynamics

Using the 3D spectrum of sample A presented in section 6.3.4 we can put a lower
bound on some of the population lifetimes and make some inferences about popula-
tion dynamics. During t2, population pathways exhibit a decay along t2 (T̂1) which
is proportional to the population relaxation (T1) and exciton diffusion (Td).

1

T̂1
=
1

T1
+
1

Td
(6.6)
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When this decay is Fourier transformed (as it is in a 3D spectrum) it results in a
Lorentzian peak along E2 with a width Γ2 = 2/T̂1. As a result, we can measure
the population lifetime by fitting the E2 projection of population peaks (peaks oc-
curring at E2=0) to a Lorentzian function. In our experiment, however, the time
window of the pulse-shaper introduces an additional decay along t2, which we can
approximate as another exponential decay with a decay constant Ttw. The Γ2 that
we measure is therefore a convolution of the population decay, the exciton diffusion
and the experimentally limited delay range.

Γ2 =
2

T1
+
2

Td
+

2

Ttw
(6.7)

Ttw is around 1 ps, Td is in the 10’s of ps [48] and the T1 can be up to several ns for
‘bright’ QW excitons [46]. We can therefore only put a lower bound on the popula-
tion and exciton lifetimes and compare lifetimes of different transitions measured
using the same experimental apparatus.

Lorentzian fits of the E2 projections of the population peaks (shown in Fig. 6.18)
show that the βX1 and βX2 population lifetimes are at least 1.5 ps and 1.3 ps re-
spectively, which are the same as or slightly longer than the population lifetimes of
WX and NX which are 1.0 ps and 0.9 ps respectively. Previously conducted experi-
ments using a delay stage put the decay as a function of t2 for WX in sample B11 at
around 20 ps [54]. The large discrepancy between the 20 ps measured previously
and the ∼1 ps reported here emphasizes that this 1 ps ‘lifetime’ is almost entirely a
measurement of the experiment delay window function (Ttw) rather than the sam-
ple response. However, it still stands to reason that if either T1 or Td of βX were
significantly shorter than those of NX, we would expect to measure broader Γ2. Sur-
prisingly, based on the fits in Fig. 6.18 the βX Γ2 are actually slightly narrower than
the WX and NX Γ2’s.

We might expect shorter lifetimes for βX1 (βX2) because relaxation into WX (NX)
should be very efficient. This relaxation step only involves the hole being captured
by the well, since the electron is already in E1(2). Carrier capture times are typically
expected to be between 2 ps and 20 ps [240, 241, 277], so we would expect relax-
ation of the hole into the well to somewhat shorten the βX1(2) lifetimes. However,
it is clear that this relaxation is not occurring on a timescale less than 5 ps.

If population relaxation into the QW is the main limit on the βX lifetimes (which
we expect based on the PLE measurement, and because the reduced wavefunction
overlap should lead to larger radiative lifetimes), we would expect to see below
diagonal CPs in the 1Q/2D spectrum that grow in as a function of t2. By examining
the 1Q/2D spectra as a function of t2 we can look for such a population relaxation
CP in the first 5 ps. Though the overlapping free carrier continuum and strong co-

11 We assume that the exciton diffusion times and lifetimes are comparable between sample A and sample B.
Other measurements of the linewidth of the sample B population peaks using the experiment at Swinburne
measured similar Γ2 for sample A and sample B.
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herent oscillations make detection of the peak difficult, we don’t see any indications
of population relaxation in the 3D dataset. This again suggests that the population
relaxation lifetime is much longer than 5 ps.

These longer than expected lifetimes suggest that the carrier states in βX1(2) are
E1(2) − Lb and not E1(2) −Hb, as the confinement of the LH in the barrier would
decrease the relaxation rate into the QW, compared with the HH which is not con-
fined in the barrier. Further experiments to measure the population dynamics over
a longer range will be necessary to obtain a precise determination of the lifetimes.

6.5.3 What are the βX excitons?

The βX excitons can be separated into two groups, those which involve a hole in
the barrier and an electron in the well (βX1,2) and those which involve an electron
in the barrier and a hole in the well (βX3−6). Based on the results and analysis in
this chapter,βX1 and βX2 are most likely type-II LH excitons (Fig. 6.19a). Although
in principle there is no way of telling based on the experimental results whether
βX1,2 involve a HH or a LH in the GaAs layer, the 1Q DPs and long population
lifetime strongly point to the latter. The inverted potential for LHs would explain
these surprisingly long lifetimes, since the LH could not relax into the QW without
a change in angular momentum.

The second group (βX3−6) involving an electron in the barrier and a hole in the
well cannot be explained by type-II LHs, so they are more difficult to classify. The
missing DPs might be below the noise, or the populations do not last long enough to
generate a measurable signal. Either way, we don’t have a way to measure the pop-
ulation lifetimes directly. However, we might be able to approximate the lifetimes
another way. Population relaxation has been shown in previous work on semicon-
ductor nanostructures to shorten coherent superposition lifetimes [215, 221, 278].
This effect would manifest as a linewidth along E2 which is significantly larger than
the sum of the homogeneous linewidths along E1 and E3. Similar to the βX1,2 coher-
ence CPs, the βX3,4 coherence CPs have roughly the expected 3D peak widths (i.e.
Γ2 ≈ Γ1+ Γ3), so we can assume that the βX3−6 lifetimes are at least not vanishingly
short, suggesting that the excitons are stabilized somehow.

State filling of NX and WX could explain the stability of the βX excitons. However,
at the low excitation densities we are using, we wouldn’t expect to be nearing this
limit. Also, a coarse power dependence (not shown) over 1.5 orders of magnitude
showed no appreciable change in the relative amplitude of the βX CP signals. The
stability of βX3−6 could come from some sort of ridge in the potential which weakly
confines the electron in the barrier (see Fig. 6.19c) which would make the βX3−6
excitons appear to be more like type-II excitons, though fundamentally different
from the type-II LH excitons. However, if there is no ridge in the potential at the
edge of the QW, (as in Fig. 6.19b), then there is no confinement of the electron
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Figure 6.19: Potential profiles for different configurations of the βX excitons.

wavefunction in the barrier. The electron’s wavefunction could therefore spread
across the interface into the QW, making the exciton more type-I like. If this is
the case, however, its hard to imagine that we would see such long lived coherent
superpositions (with >1 ps lifetimes) given and there is nothing stabilizing the βX
and preventing the electron from relaxing into the QW (into WX or NX).

The physical effect that would create this ridge along the GaAs/InGaAs interface
is less clear. Pockets and ridges can occur at heterojunctions, but typically only
when one or both of the materials is doped (n-type or p-type) [244]. All of the ma-
terials used here are nominally undoped so this seems less unlikely. Strain induced
electric fields can perturb the potential, but in zinc-blende crystals this only occurs
along the growth direction when substrates other than (100) are used [279]. These
samples are grown on (100) oriented GaAs, so the strain induced internal electric
field also seems unlikely. Finally, if the GaAs layer is not uniformly strained (or even
unstrained as is typically assumed when calculating strained energy levels [170]),
there might be some perturbation of the GaAs potential near the interface. Cal-
culations involving a more thorough incorporation of strain would be required to
properly consider this possibility.

It also possible that the parity consideration make relaxation of the electron into
the well partially forbidden. The H3,4 holes (the holes that combine with Eb to form
βX3,4) have odd parity, while Eb (an unbound electron in the barrier) is not re-
stricted to a particular parity. However, the excitons are created by the promotion
of an electron from the valence band to the conduction band, However, it is likely
that when the absorption of a photon creates the exciton by promoting the electron
from the valence band to the conduction band, the electron will retain its parity. As
a result, although the GaAs electrons can in principle have either parity, the ones
bound to odd parity holes also necessarily have odd parity. The only available elec-
tron states in the well (E1 and E2) have even parity. The relaxation of the electron
into the well is therefore inhibited by the lack of spatial overlap of odd parity Eb
and the even parity E1 and E2.
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6.5.4 CMDS to detect dark states

Based on the DPs in the 3D spectrum of sample A, the relative dipole moment of
βX1 and βX2 are much weaker than the relative dipole moments of NX and WX,
and the relative dipole moments of βX3−6, αX1,2 are so low that they cannot be
determined because no DPs are resolved. The presence of such strong CPs including
CS-CPs indicates that they must be strongly coupled to NX and WX (respectively). In
fact, in the case of all but βX1/2 the only way that we know these transitions exist is
because they form coherent superpositions with WX, NX and BarX. This emphasizes
a little discussed potential application of CMDS and particularly coherence specific
CMDS. Using these approaches, we can isolate signals from dark states that that
are otherwise difficult to access optically. The dark states uncovered using CMDS
in this chapter (particularly βX, but also αX) are a good demonstration of how this
amplification of weak signals can be useful.

While other techniques can also exploit this coupling to study these dark tran-
sitions (e.g. the PLE shown in Fig. 6.5 and 6.10), CMDS is well placed to extract
additional information that other techniques cannot. As detailed in this chapter,
CMDS provides us a variety of information beyond what PLE offers. First, it allows
us to directly identify coupling where PLE only shows us that there are relaxation
pathways available to relax from the transition that is originally excited to the transi-
tion from which we detect photoluminescence. The exact pathway followed cannot
be directly discerned. Furthermore, it allows us to identify coherent coupling path-
ways, and to measure both coherence and population dynamics. Finally, because
CMDS drives emission from the dark states, and PLE does not, we are able to fully
separate the dark states from the spectrally overlapped free-carrier continua, which
absorbs strongly but does not emit, even in CMDS experiments.

Pump-probe measurements would also be able to identify the coherent superpo-
sitions of the dark and bright states as oscillations as a function of the pump-probe
delays (as in Ref. [184]). However, CMDS allows us to access several additional de-
tails that pump-probe does not: 1. We can unambiguously identify the energy of the
transitions which are coupled, where in pump-probe there are in principle multiple
combinations of transitions that can lead to oscillations with the same frequency.
2. We can access peak shape information which is not available in pump-probe
measurements, which as shown in this chapter and in Section 4.3.4 can provide a
variety of additional physical insights. 3. The ability of the CMDS to separate differ-
ent pathways along multiple frequency directions allows us to more easily separate
out the signals involving dark states from all of the other signals, which in many
cases are overlapped in pump-probe experiments.
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6.5.5 The role of the dark states in relaxation of excitons into QWs

Now that we have identified these states we can explore their dynamics and un-
derstand how significant a role they play in the relaxation of excitons from the
barrier into the QWs. These states could influence relaxation dynamics in a number
of ways: they could act as ‘sinks’ which trap carriers that would otherwise relax
into the QWs, and which instead eventually dissociate into free carriers or relax
non-radiatively. On the other hand, they might represent a step between the bar-
rier excitons (or more likely free carriers) and the QW excitons which allows more
efficient and faster relaxation into the wells. Quantitative experiments will be re-
quired to determine the exact role these states play, and how significant that role
is in the overall DQW dynamics. Identification and routine detection of these states
is an important step towards that ultimate goal, which we have achieved through
CMDS.

6.6 Summary

We have detected CS-CPs indicative of coherent coupling of a wide variety of types
of transitions. We have detected coherent coupling of the barrier excitons to the
direct QW excitons the details of which may be useful for understanding the specific
relaxation pathways from the GaAs 3D excitons into the 2D QW excitons. We have
also detected coherent coupling of type-II LH excitons (in which the hole is localized
in the barrier) to the type-I HH excitons. The charge oscillations due to the strong
coupling of the type-I HHs and type-II LHs could also be used as a terahertz source.
We have also detected symmetry/parity forbidden direct transitions in both QWs
through their coupling to the allowed QW excitons. Finally, we have observed a
set of transitions that involve an unconfined electron in the GaAs barriers bound
to holes confined in the InGaAs QWs. The nature of these excitons is not yet fully
understood, and may have a type-I or type-II character. While the exact details of
how to understand these states are as yet uncertain, what is clear is that these states
are coherently coupled to BarX and the QW excitons, so they will be involved in the
coherent dynamics of both.

All these results put together show that what appears on the surface to be a
simple electronic structure (NX, WX, BarX) is actually much more complex. CMDS
allows us to reveal this rich structure of dark states that is otherwise hidden and
opens the door to previously unexplored physics and a more precise understanding
of the exciton dynamics in shallow, strained InGaAs QWs.
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7.1 Introduction

The coherent dynamics of excitons in semiconductors is very sensitive to excitation
density, in part due to many-body contributions to the non-linear response [186].
For this reason, considerable effort has been put towards investigations of the in-
tensity dependence of non-linear signals in semiconductor QWs. Previous work
has mostly focused on the upper end of the accessible range (109-1012 carriers
cm−2) [89, 157, 175, 176, 280–283]. In the mid to high excitation range, the
response can be well explained using mean field theories where excitonic inter-
actions are introduced through phenomenological inclusion of excitation induced
shift (EIS) [79, 188, 189], excitation induced dephasing (EID) [176, 177] and lo-
cal field effects (LFE) [186]. The mean field approach, however cannot directly
account for some recent reports of higher order correlations, including triexcitons
(3 holes and 3 electrons) [190, 191], long range coherent interactions [73] and
liquid-like coherent droplets [193]. Although direct detection of these effects is only
possible through specialized techniques, they may still play a role in the standard
FWM response. Furthermore - and perhaps counter-intuitively - it has also been
suggested that many-body interactions are likely to play a larger role at low excita-
tion densities where the dephasing time is much shorter than the exciton scattering
time [186]. While some experiments have been performed at excitation densities
below 109 carriers cm−2, to our knowledge, the systematic studies of coherent dy-
namics as a function of excitation density have been limited to 109 carriers cm−2

and above [156–159].
In this chapter, we exploit the ability of the SLM based coherent multidimensional

spectroscopy (CMDS) setup to make measurements of the coherent response at
extremely low excitation densities. We also measure the excitation density depen-
dence of three separate double quantum well (DQW) samples. 1-quantum (1Q),
0-quantum (0Q), and/or 2-quantum (2Q) 2D spectra were collected across three
orders of magnitude of excitation densities. The range extends from the high end
where excitation induced line-broadening and χ(5) responses creep in, down three
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orders of magnitude to a regime not previously explored fully with CMDS or FWM
spectroscopy.

We don’t have precise measurements of the absolute absorption for these samples
at low temperature, so the signals are presented as a function of the photon density
rather than the excitation density. If we assume an absorption coefficient of ∼ 1%
per well for the exciton transitions [284], we can estimate the carrier densities to be
about two orders of magnitude lower than the given photon densities1. The ability
of 2D spectroscopy to easily separate different signals allows us to simultaneously
measure the excitation density dependence of inter-well and intra-well interactions
as well as signals involving only one transition.

In these low density and density dependent measurements we find three surpris-
ing results: First, the relative strengths of different signals change with the excita-
tion density. Some signals have a well defined E3 excitation dependence (where E
is the pulse electric field amplitude) expected for χ(3) signals, while others clearly
do not. In particular, it is evident that signals representing interactions between
excitons which are localized to different layers of the heterostructure (e.g. inter-
well coupling and coupling of QW excitons to barrier excitons) follow a decid-
edly sub-E3 density dependence. Second, we find that there are two exciton sub-
populations which contribute to a diagonal-peak (DP) in an AlGaAs/GaAs DQW.
One sub-population generates a tilted DP while the other generates a round DP.
The tilted peak dominates at intermediate densities, while the round peak domi-
nates at low densities (below ∼ 109cm−2). We propose that the tilted and round
signals are generated by excitons localized and delocalized (respectively) in the
plane of the QW. Based on comparisons of the excitation density dependence of
the delocalized exciton state and the inter-well cross-peaks (CPs), it appears that
the majority of the inter-well signal also involves the in-plane delocalized exciton
states. Finally, we demonstrate that down to ∼ 5× 108cm−2, the 2Q linewidths are
limited by exciton-exciton and/or exciton-free carrier scattering. We find that below
this density, dephasing is limited by the one-exciton linewidths.

While a complete understanding of these results will require further work in the
form of experiments, simulations and theory, what is clear is that the coherent re-
sponse of excitons in QWs changes in many ways when experiments are performed
with extremely low energy pulses (and subsequently low excitation density). The
stability of the CMDS apparatus has allowed us to make these new observations
even though the coherent dynamics of excitons in semiconductors have been stud-
ied for decades.

1 Unless otherwise noted, all experimental densities reported here are photons cm−2 per pulse, but for legibility’s
sake, they will be displayed simply as cm−2.



7.2 A L G A A S D Q W S 201

7.2 AlGaAs DQWs

In this section we will investigate the dependence on excitation density of two dif-
ferent Al0.35Ga0.65As/GaAs samples using 1Q 2D spectroscopy. In both samples we
observe that the inter-well CPs follow a sub-E3 power dependence, while intra-well
CPs and DPs follow a (predominantly) E3 dependence. In addition, in one of the Al-
GaAs DQWs we find evidence for the presence of a spatially extended, delocalized
exciton state which is generated by the coherent coupling of separately localized
excitons. This extended delocalized state dominates at low excitation density as
seen through changes to the DP shape. The DP for the delocalized state has a de-
pendence on excitation density nearly identical to that of the inter-well CPs. This
similar density dependence suggests that the extended delocalized state is involved
in the inter-well interactions.

7.2.1 Excitation density dependence of AlGaAs/GaAs DQWs

We will first present results for the 6 nm barrier AlGaAs/GaAs DQW sample, for
which the inter-well coherence signal was isolated in Ch. 4. This sample is given the
Al1 label for the purposes of this chapter. Full details of the sample structure can be
found in Section 4.3.1. 2D spectra were recorded using the approach outlined above
for excitation densities of 5× 1011cm−2, where χ(5) signals are involved, down to
5× 108cm−2 beyond which the signal to noise was no longer sufficient to record
satisfactory 2D spectra. Spectra were collected using collinear polarized beams.2

The transition labels are the same as those used in Ch. 4.
The amplitude of each signal was characterized by summing across the 2D peak.

The electric field of a four-wave mixing signal3 should scale with the product of the
pulse electric fields. If all the pulse intensities are shifted together, the FWM signal
should therefore scale according to SFWM ∝ E3 =

√
I3 where I is the intensity of the

pulse. All of the acquisition parameters were kept constant while these spectra were
acquired, so we can plot the absolute power dependence of the various signals4.

The measured dependence of selected spectral peaks on excitation density are
presented in Fig. 7.2. The absolute power dependence of the DPs are presented
in Fig. 7.2a. The dotted angled line indicates the E3 dependence we might expect
for third order process. The upper (lower) solid gray lines indicate E5 (E1) depen-
dence. Due to their lower oscillator strengths, the WWlh and WWhh DPs disappear
into the background noise earlier than the NWhh DP. They are only plotted for the

2 The pertinent experimental parameters for these measurements (and the rest of the measurements in this
chapter) can be found in Table A1.4 in Appendix A1

3 This experiment utilizes heterodyne detection, which directly measures the signal electric field and not intensity.
4 The CCD integration time and LO amplitude were changed to optimize the signal to noise at each power. These

changes are accounted for using two linear corrections in the data analysis. This approach was justified by
control experiments in which we attenuated the LO+FWM signal after the sample (or the LO alone before the
sample) with a wide range of neutral density filters, and integration times. The signals were then normalized
according to the acquisition parameters used and were found not to vary significantly.
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(a) (b)

Figure 7.1: (a) Excitation spectrum and Al1 FWM response. (b) A 2D spectrum for Al1 (1× 1010
cm−2).

Figure 7.2: Density dependence of AlGaAs sample Al1 for various 1Q BB (a) DPs and (b) inter-well
CPs. The symbols are plotted next to the associated peak in Fig. 7.1b.

powers where the peak can be clearly resolved. All three DPs demonstrate a clear
E3 dependence across the measured density range. The below diagonal inter-well
CPs (Fig. 7.2b) on the other hand have a clearly sub-E3 dependence. Interestingly,
these peaks can be resolved even down to the lowest excitation densities, long after
the WWhh and WWlh DPs have disappeared.

We repeated this measurement on a second MOCVD grown AlGaAs/GaAs DQW
sample (which we will label Al2). This sample was not spun for a portion of the
growth process to reduce the macroscopic uniformity of the width of the wide well.
By measuring the photoluminescence across the sample we found that the center of
the WWhh transition shifted systematically by ∼0.4 meV/mm at the most. The sys-
tematic variation of the transition energy across the focal spot (with has a diameter
or 0.15 mm) is therefore at most ∼0.06 meV. This value is negligible compared with
the width of the transition(∼4 meV), and we can therefore consider the sample to
have a distribution of well widths which is roughly uniform across the focal spot of
the laser. Interface morphology has been shown to be very dependent on growth
parameters [146, 285], so it would not be surprising if the different growth param-
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eters used to grow Al2 modified the the lateral size5 distribution of the well width
fluctuations. We are unable to directly measure the lateral size of the well width
fluctuations, so exactly how these differences have changed the interface morphol-
ogy is unknown. The coherent dynamics do change in several ways, which will be
detailed in the remainder of this section and in Section 7.2.2. This sample was also
grown with slightly larger nominal barrier (8 nm) and well widths of 8.5 nm (WW)
and 6 nm (NW) leading to a ∼25 meV red shift of all of the transitions with respect
to Al1 (which has a nominal barrier width of 6 nm, and well widths of 8 nm and
5.7 nm).

In addition to standard 2D 1Q spectra using broadband excitation pulses (labelled
BB), we also collect 1Q and 0Q pathway selective (PS) spectra for this sample.
The 1Q PS spectra are collected by using spectral amplitude shaping in the man-
ner demonstrated in Section 4.3.3. The 0Q spectra are collected using the same
pulse sequence with the same spectral shaping, but by scanning t2 instead of t1. As
demonstrated previously, both of these spectra can be used to isolate the portion
of the signal which is generated by coherent superpositions of excitons localized in
different QWs, while suppressing population pathways.

Fig. 7.3a shows the excitation spectrum, and FWM signal from Al2 at t1=t2=0.
Fig. 7.3b shows a 1Q 2D spectrum for Al2 when broadband excitation is used. Fig
7.3c and Fig 7.3d show 1Q and 0Q 2D spectra (respectively) when spectral shaping
has been used to isolate the inter-well coherent superposition CPs (CS-CPs). The
excitation densities for these 2D spectra are given in the caption.

The excitation density dependence for this sample is shown in Fig. 7.4. Unlike Al1,
the DPs do not show an E3 dependence across the entire measured range. Indeed,
it only appears to follow E3 from around 1 × 1010cm−2 to 1 × 1011cm−2. Above
1× 1011cm−2, the signal falls off - presumably due to EID (which results in faster
dephasing and hence less total signal) and/or χ(5) signal6. Below ∼ 1× 1010cm−2,
the DPs diverge significantly from the E3 line, following a clearly sub-E3 depen-
dence which is qualitatively very similar to the CPs. This change in dependence on
excitation density will be discussed in more detail in the following section.

Like Al1, this sample shows a clearly sub-E3 (in fact, closer to E1) dependence
for the inter-well CPs. The signals for two of the intra-well CPs has also been plot-
ted (green and blue triangles). Unlike the inter-well CPs, the intra-well CPs follow a
nearly E3 dependence, similar to the DPs. This suggests that the nearly linear depen-
dence of the inter-well CPs on excitation density is not a change in the prevalence
of exciton interactions generally, but instead is specifically related to excitons local-
ized in separate QWs. Furthermore, this striking difference between the intra-well

5 The size of the 2D interface roughness ‘islands’. The size of these islands has been shown to vary between 1 nm
and 1000 nm on average depending on the growth parameters [146, 149, 285, 286].

6 Although a pure χ(5) signal should have an E5 dependence, the interference between χ(5) and χ(3) signals can
lead to a sub-E3 dependence, which is likely part of the cause of the divergence at high excitation density.
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(a) (b)

(c) (d)

Figure 7.3: (a) Excitation spectrum for Al2 density dependence (Fig. 7.4) and an Al2 FWM spectrum
at t1=t2=0. (b-d) shows 2D spectra at a selected excitation density. (b) 1Q BB at 7×1010
cm−2, (c) 1Q pathway selective at 5× 1010 cm−2, (d) 0Q pathway selective at 5× 1010
cm−2. The excitation spectra in the pathway selective experiments are shaped to isolate
the inter-well CS-CPs. The symbols by the peaks are used to plot the power dependence
of the peaks in Fig. 7.4.

Figure 7.4: Excitation density dependence of AlGaAs/GaAs sample Al2 for various 1Q and 0Q peaks:
(a) DPs and (b) CPs. The inter-well (filled circles and crosses) and intra-well (triangles)
CPs in (b) show very different dependence on excitation density. The peaks associated
with the amplitudes plotted in (a) and (b) are indicated by the placement of symbols in
Fig. 7.3b-d
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and inter-well CPs also suggests that the inter-well and intra-well interactions are
mediated by different coupling mechanisms.

The results of the pathway selective 1Q and 0Q spectroscopy (black filled circles
and black crosses) show the same power dependence as the BB 1Q inter-well peaks.
Furthermore, the 1Q PS peak and 1Q BB inter-well peaks are nearly the same am-
plitude. This suggests that the bulk of the BB inter-well CP signal amplitude is a
result of the coherent superposition pathway.

To summarize this result, we have performed the same power dependence mea-
surements on two AlGaAs samples, which have both demonstrated inter-well CPs
that follow a clearly sub-E3 dependence on excitation density, while DPs and intra-
well CPs more closely follow an E3 dependence on excitation density. In Al2, we
have shown that the bulk of the inter-well signal is a result of coherent superposi-
tions of excitons localized in different QWs through a comparison of 1Q BB, 1Q PS
and 0Q PS measurements.

7.2.2 An extended delocalized exciton state in Al2

In addition to the anomalous power dependence, sample Al2 also demonstrates
changes in peak-shapes as a function of excitation density. Selected 2D spectra at
a range of different densities are shown in Fig. 7.5. The WWhh and the NWhh DPs
both are tilted along the diagonal due to inhomogeneous broadening at intermedi-
ate and high density, but the peaks become much rounder as the density is reduced.
It is typically reported that DP broaden along the cross-diagonal direction as excita-
tion density is increased due to exciton-exciton interactions which shorten the pure
dephasing time and broaden the homogeneous linewidth[46, 216]. As expected,
we do see broadening of the tilted peak at high density. At low excitation densities,
the homogeneous linewidth is commonly shown to continue narrowing as exciton-
exciton interactions play a smaller role in dephasing of the excitons. The broad,
round peaks we report here at low density are therefore the opposite of what is typ-
ically expected for the coherent response of dilute excitons. However, we also go to
lower excitation densities than previous experiments.

In this section, we will first demonstrate through frequency-domain and time-
domain analysis that the DP-shapes we see here are the result of two distinct signals
- one which leads to a round peak and one which leads to a tilted peak. Although
the WWhh and the NWhh both demonstrate similar peak-shape changes, we focus
in this section on the NWhh peak because it can be detected over a larger range of
densities. We show that the changes to the peak-shape that we observe are a result
of the relative amplitude of these two contributions changing. Combining results
from the fits to the peak-shape with the excitation density dependence data in Fig.
7.4a, we show that the tilted peak follows the expected E3 dependence while the
round shaped peak follows a sub-E3 (nearly linear) dependence. Furthermore, we
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Figure 7.5: 2D spectra for AlGaAs DQW sample Al2 at a range of different excitation densities.

show that the density dependence of the round peak is nearly the same as that of
the inter-well CPs, suggesting that the two signals are related.

Before continuing on the detailed analysis of these peak-shapes, we will describe
how round and tilted DP shapes are typically interpreted in QWs. The tilted peak-
shapes we see at intermediate densities here are typical of disordered QWs. They
are typically interpreted as ensemble averages of excitons (with narrow homoge-
neous linewidths) in different regions of the QW with different widths. The en-
semble average across the Gaussian distribution of QW widths results in inhomo-
geneous broadening of the otherwise spectrally narrow exciton line. In 2D spec-
troscopy, this results in peaks tilted along the diagonal with a width along the
diagonal equal to the inhomogeneous width and a cross-diagonal width equal to
the homogeneous linewidth. On the other hand, round peak-shapes are taken to
indicate that the inhomogeneous broadening is negligible compared with the ho-
mogeneous broadening. In the data presented here, the linewidths of the round
and tilted peak-shapes along the diagonal are comparable. This suggests that the
homogeneous linewidth of the round peak (which dominates at low excitation den-
sities) is roughly equal to the inhomogeneous linewidth of the tilted peak (which
dominates at intermediate and high excitation densities).

A zoomed in view of the NWhh peak is plotted in Fig. 7.6a-d. It is hard to tell just
by looking at the peak-shapes whether this change in shape is the result of a single
signal whose E1 linewidth is changing as a function of the excitation density or a
combination of two signals whose relative contributions to the peak change.
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To separate these two possibilities, the peaks were fit by two different 2D func-
tions. First, the peaks were fit to Eq. 7.1, which represents a single tilted peak:

S(E3,E1) = C1 + exp

[
−(E3 − µ3)

2

2σ23

]
·

[
Γ2T

(E1 − (−E3 − δ))
2 + Γ2T

+C2

]
(7.1)

The inhomogeneous broadening is represented by the first term which is a Gaus-
sian distribution centred at µ3 with a width σ3. This term is multiplied by a Lorentzian
function representing the homogeneous broadening centred along the diagonal
with a width equal to ΓT . δ allows for a slight shift of the peak away from the
diagonal. C1 is a constant offset to account for background signal. The constant C2
provides an additional offset which is Gaussian in E3 but independent of E1. The
physical origin of this signal is a very broad CP which overlaps the NWhh DP. This
signal corresponds to coupling of free carriers in the wide well to NWhh excitons.
This broad feature can be more clearly seen in Fig. 4.4, and only contributes very
weakly here.

The other possible explanation for the changing peak-shapes is that the broad-
ening at low density is due to a combination of two different peaks (one round,
one tilted) which have different excitation density dependences. In Eq. 7.2 an extra
term is added to account for this possibility.

S(E3,E1) = C1 +AT · exp

[
−(E3 − µ3)

2

2σ23

]
·

[
Γ2T

(E1 − (−E3 − δ))
2 + Γ2T

+C2

]

+AR ·
Γ2R

(E1 + µR) + Γ
2
R

·
Γ2R

(E3 − µR) + Γ
2
R

(7.2)

The additional term (which accounts for the round peak) is a 2D Lorentzian
distribution, centred at µR with a width equal to ΓR in E1 and E3. AT and AR are the
relative amplitudes of the tilted and round peaks, respectively.

The results of fits to Eq. 7.1 and Eq. 7.2 for different excitation densities can be
seen in Fig. 7.6e-h and Fig. 7.6i-l respectively. When fit to Eq. 7.1, the round-ness
of the peak at low intensities results in an increase of the cross diagonal width (ΓT).
As can be seen from the plots in Fig. 7.6e-h, this does not agree particularly well
with the experimental data.

The results of the two component fits (Fig. 7.6i-l) show better agreement with
the experimental data, and better capture the round peak-shapes at low density.
Beyond the visual comparison, the quality of the fits can be assessed based on their
root-mean-squared error (RMSE), which can be seen in Fig. 7.7a. Clearly Eq. 7.2
results in a better fit with reduced RMSE across all excitation densities. The increase
of the RMSE of both fits at low densities is likely a result of the decreased signal to
noise ratio of the data, rather than the quality of the fit.
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Figure 7.6: (a-d) A zoomed-in plot of the Al2 NWhh peak-shape at the same densities plotted in Fig.
7.5. (e-h) fits of the data in (a-d) to Eq. 7.1 which is a single tilted peak. (i-l) fits the data
in (a-d) to Eq. 7.2 which is the combination of a tilted (m-p) and a round (q-t) peak.

Figure 7.7: (a) Root mean squared error of the fits to Eq. 7.1 (tilted) and Eq. 7.2 (tilted + round).
(b) Coefficients for the amplitude of the tilted (AT ) and round (AR) peaks taken from
the fit to Eq. 7.2.

The resulting AR and AT amplitude coefficients across the full set of data are
plotted in Fig. 7.7b. It is clear that between 109cm−2 and 1010cm−2 there is a
significant change in the relative amplitude of the tilted and round signals: the
tilted peak diminishes and the round peak increases as the density is reduced.

Based on these frequency-domain fits we conclude that these peak-shape changes
are a result of contributions from two separate exciton sub-populations, whose rel-
ative amplitudes change with excitation density. To confirm this conclusion, we can
equivalently explore this effect in the time domain instead of the frequency domain.
Based on the different peak-shapes (round vs diagonal) we would expect the t3 dy-
namics of the two sub-populations to be quite different. The round peak should
have a free polarization decay (FPD) signal which has a rapid rise after the third
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Figure 7.8: Time domain representation of the Al2, NWhh DP 2D. A series of plots as a function
of t3 and the excitation density for different t1. All the peaks have an FPD shape at t1
= 0.2 ps (a) as no photon echo has formed. At t1 = 0.5 ps (b) and t1 = 0.8 ps (c), the
peaks at high density have a PE shape, while peaks at low density have an FPD shape.

Figure 7.9: Time domain representation of the Al2 NWhh DP for high excitation densities at t1 =
1.5 ps (a), t1 = 2 ps (b). Although PE dominates, there is also a re-emergence of the FPD
signal at the highest densities.

pulse followed by an exponential decay. The tilted peak-shape on the other hand
should have a photon echo (PE) like signal in the time domain, appearing as a peak
centred at t3=t1, which has a Gaussian shape in t3 (except at short t1, in which
the photon echo overlaps the third pulse in t3). We should, therefore, be able to
separate and identify the FPD and PE contributions by looking at the signal as a
function of t3 for different t1 and at different excitation densities.

To analyse the data in the time domain, we window out everything in the 2D
spectrum except for the NWhh DP and then apply a 2D inverse Fourier transform.
The time domain data is presented in Fig. 7.8 as plots of t3 for different t1 and
different excitation density. At t1=0.2 ps (Fig. 7.8a), all the signals have FPD like
shapes. At this short delay, the photon echo mostly overlaps the third pulse and has
not yet fully formed. When t1 is increased to 0.5 ps (Fig. 7.8b), and then 0.8 ps (Fig.
7.8c) more of the photon echo is visible. At the intermediate and higher powers, we
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see a partially formed photon echo. At lower densities, an FPD signal with an earlier
peak begins to appear. At ∼ 1× 1010cm−2 the two contributions are roughly equal,
and the signal has a flat topped shape which is a combination of the FPD and PE.
At the lowest recorded densities, the signal appears to be almost completely FPD.

At the intermediate densities (5 × 109 cm−2 to 5 × 1010 cm−2) it is difficult to
fully separate the FPD and PE contributions. As t1 increases and the photon echo is
more well separated from the final pulse, but the FPD is also nearly fully decayed.
This is unavoidable by definition: the width of the PE and the decay of the FPD
signal are both dictated by the inhomogeneous linewidth. However, in some cases
and at high powers, the FPD and PE contributions can be separated as has been
demonstrated previously by Weber et al [157]. They saw this effect only at high
excitation densities (5× 109cm−2 excitons per well) but not at low excitation den-
sities (5× 107cm−2 excitons per well). They were unable to explain the presence
of this signal, but suggested it may have to do with either a delocalized exciton
state or different regions of the samples which have different degrees of interface
roughness. This result is similar to what we have demonstrated here except that in
the results presented thus far the FPD appears at low power instead of high power.
As it turns out, in sample Al2 we also see the same effect at the highest powers. Fig-
ure 7.9 shows t3 plots at t1 = 1.5 ps (a) and t1 = 2 ps (b) at the highest excitation
densities. Both FPD and PE signals are clearly present. Assuming an absorption of
around 1% for the the exciton transition, the excitation density in which we see
the change from FPD to PE at high density would correspond to around the same
excitation density reported in [157].

Sample Al1 NWhh DP does not have a round shape at any excitation density,
so it should not have any FPD signal in the time domain. For comparison with
Al2, selected plots of the amplitude of the inverse Fourier transformed Al1 NWhh

DP are plotted as a function of t3 for various t1 values and excitation densities in
Fig. 7.10. Unlike Al2, the t3 signal here is predominately PE, even at the lowest and
highest densities. There are some indications of FPD below ∼ 3× 109cm−2, visible
just above the noise, but still much lower in amplitude than the PE signal. Thus,
the time domain and frequency domain analysis for Al1 are consistent, and both
indicate a photon echo signal across all excitation densities.

The results of the frequency and time domain analysis also both support the
assertion that there are two signals contributing to the coherent response of the
NWhh transition in Al2. The physical origin of these signals will be discussed later,
but they likely represent different exciton populations [157].

The transition from a predominately PE peak-shape to a predominately FPD peak-
shape and the deviation from an E3 excitation density dependence both occur at ∼
1× 1010cm−2. From this similarity, we infer that the FPD signal has a sub-E3 density
dependence while the PE signal has a roughly E3 density dependence. We can test
this inference by estimating the density dependence of each sub-population. This is
accomplished by scaling the measured NWhh DP density dependence according to
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Figure 7.10: Time domain representation of the Al1 NWhh DP across the full range of measured
excitation densities. We observe a PE dominated response across all densities. There is
some indication of FPD in the at the lowest density, but it is near the noise limit and
much weaker than the PE signal.

the fits from Fig. 7.7. The PE (FPD) fraction is calculated by multiplying the NWhh

signal by the ratio IFPD/[IPE+ IFPD] ( IFPD/[IPE+ IFPD] ) where IPE and IFPD are the
integrated photon echo peak Fig. 7.7m-p and FPD peak from 7.7q-t, respectively.
When we apply this scaling we get the dependencies shown in Fig. 7.11, which show
the as-measured data (black circles), the same data scaled for FPD (red circles)
and PE (green circles) sub-populations. The as-measured data for the inter-well
CP is also plotted (blue circles). The coloured solid lines are exponential fits of
the different datasets. From this plot, it is clear that the PE signal follows a nearly
E3 dependence, while the FPD signal follows a sub-E3 dependence, which closely
matches the dependence of the inter-well CPs.

We now take a moment to re-iterate some of the main results from Al1 and Al2.
Al1 (which shows nearly pure PE signal based on the DP shape) demonstrates an
excitation dependence which very closely follows E3. The PE fraction of Al2 also
closely follows E3. On the other hand, the FPD fraction of the Al2 DP matches the
same sub-E3 dependence of the CPs. Taken together, this suggests that the inter-
well CPs arise (at least in part) from the same sub-population of exciton states that
result in the round DP.

But what is the physical origin of this additional sub-population? At this point the
answer to this question is not entirely clear. Further experiments and theoretical
investigations are needed to narrow down several possibilities. In the following
paragraphs (with these caveats in mind) we propose the following explanation for
the FPD signal: that it is generated by the coupling of multiple localized exciton
states which can equivalently be viewed as a single extended, delocalized state
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Figure 7.11: Al2 NWhh density dependence of the as measured data (black circles) and the mea-
sured data scaled according the AR and AT fit coefficients (red and green circles, re-
spectively) in Fig. 7.7 to separate the FPD and PE signals, respecively. The inter-well
CPs (blue circles) are also plotted. The solid colored lines represent single exponential
fits to the data. The PE fraction goes roughly with E3, while the FPD fraction goes with
the same sub-E3 dependence of the inter-well CP.

(EDS). There is, however, further work that is needed before this conclusion can be
satisfactorily proven, and we recognize there may be alternative explanations.

The tilted/PE peak-shapes are typically taken to imply excitons with a homoge-
neous linewidth much smaller than the inhomogeneous linewidth. We therefore
take the high density signal to arise from homogeneously broadened excitons local-
ized in regions of the QW with well-defined widths, but which exhibit inhomoge-
neous broadening when a large ensemble is measured.

The round/FPD peak-shape can then be explained through the coupling of sep-
arately localized exciton states in parts of the well with different widths and with
correspondingly different central transition energies (e.g. EA and EB). The coupling
of an exciton with transition energy EA to an exciton with energy EB leads to CPs
at (E3, E1) = (EA,-EB) and (EB,-EA) with widths along E1 and E3 equal to the ho-
mogeneous linewidth. If EA and EB both represent excitons in different parts of a
QW, then they could each independently represent any energy within the inhomo-
geneous linewidth. If both EA and EB are integrated stochastically across the inho-
mogeneous linewidth, these CPs merge with the DP to form a single round peak
centred on the diagonal with a width equal to the inhomogeneous linewidth. The
signal resulting from these coupled excitons can then be viewed as the collective
interaction of an ensemble of exciton states with the light rather than an ensemble
of localized states interacting individually.

In a qualitative way, this collective interaction with light is similar to superradi-
ance, a concept in quantum optics (first proposed by Dickey in 1954 [287]), which
predicts an enhancement of the transition dipole moment of collective coherent
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states compared with the sum of the emission from the individual states. Super-
radiance was originally explored theoretically and demonstrated experimentally
in atoms [288]. It has since been extended to ions [289], Bose-Einstein conden-
sates [290] and more recently self-assembled quantum dots [291]. The enhanced
coupling of the collective state to the light field leads to much shorter photolumi-
nescence decay times and larger absorption and fluorescence yields. The results
presented in Fig. 7.11 at low excitation density show a significant enhancement of
the FPD signal with respect to the PE signal. This is consistent with our interpreta-
tion of the FPD representing signal from a superradiant-like collective state and the
PE representing signal from individual localized states.

In atomic systems, the individual emitters are all identical, so the superradiant
emission is not different from the emission line-shape of the individual atoms[288].
On the other hand, the emitters that make up the collective state in this QW have
a range of different emission energies. As a result, the collective state has some
different properties than the individual states; the most notable difference being
that the homogeneous linewidth broadens to match the inhomogeneous linewidth.
In Ref. [291] they report superradiant emission from inhomogeneously broadened
quantum dots. While they do not measure the homogeneous linewidth of the super-
radiant state or the individual emitters, they note that as long as the homogeneous
linewidth is broader than the energetic separation of the dots, the radiative cou-
pling required for superradiance can be achieved. That criteria is likely met for the
NWhh, as it has a homogeneous linewidth of ∼ 0.6meV.

As the density increases, the signal from the localized states increase with E3.
Since superradiant emission scales with the n2 (where n is the number of coupled
emitters) we might expect that the superradiant state would increase with E6. This
is very different from the excitation dependence we observe for the collective state
(∼ E1). This discrepancy can be understood qualitatively as follows. The dipole mo-
ment of the collective state depends on the number of exciton states that make up
the collective state (i.e. the number of emitters). The number of localized states
that can be involved in the collective state depends on the range over which the
coherent interactions extend. As the excitation density is increased, exciton screen-
ing prevents the interactions of distant excitons. The reduced interaction distance
leads to a fewer localized states in the cooperative state and consequently a reduced
dipole moment.

The criteria used for identifying Dickey superradiance is typically a signal that
increases with the square of the number of emitters (S ∝ n2). We cannot determine
whether this condition is met in the data presented here, as the suppression of the
collective state through carrier screening complicates the determination of the num-
ber of coupled emitters. Further experiments and theoretical studies are needed to
fully understand the interplay of these two competing factors affecting the number
of coupled excitons and the spectral variation.
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A complementary way to understand the power dependence of the FPD signal
is using the concept of coherence area [220, 292–294] - which has been explored
in the context of self assembled quantum dots [293], QWs [292, 294] and nano-
platelets [215, 220]. It has been shown that the dipole moment of excitons in self
assembled quantum dots is dependent on the lateral size the dot (d) relative to
the exciton Bohr radius (αB). The dipole moment is found to be large for d � αB

and d � αB [293]. Similarly, it has been shown in QWs that increasing extension
of the centre of mass motion of the wavefunction can lead to an enhancement of
the dipole moment [292, 294]. This enhancement in QWs with large coherence
area was explained by the effective lateral size of the exciton (which is called the
coherence area) increasing in the plane of the QW.

The coherence area concept can be qualitatively applied to explain the EDS in our
results in the following way. At low densities, the coherence area of the excitons is
large relative to the Bohr radius. Based on the argument given above, the round
peak-shape could be a result of coherent coupling of excitons which are spatially
separated in the plane of the QW. Since at low densities these coupled excitons
might be separated by µm distances, we can assume that the centre of mass wave-
function of the excitons (and therefore the coherence area) is much larger than the
standard exciton Bohr radius. Due to the Pauli exclusion principle, multiple exci-
tons cannot share the same state, so as the density of the excitons increases the size
of the exciton center of mass wavefunction (and the coherence area) necessarily de-
crease [295, 296]. This shrinking of the coherence area then reduces the transition
dipole moment, and the signal from this state therefore follows a sub-E3 depen-
dence on excitation density. As with superradiance, it is not yet clear whether the
results here quantitatively match the expected density dependence on coherence
area.

It is worth noting that this result - a large coherence area at low exciton density -
is apparently in contradiction with previous micro-photoluminescence experiments
which have observed emission dominated by localized states at low densities, and
only observe emission dominated by non-localized states at densities much higher
than we report here[297–300]. We contend that these results are not contradic-
tory, however, because the previous experiments at low excitation densities are
time integrated incoherent emission experiments, whereas the experiment here is
time resolved and involves coherent emission. An extended state would likely re-
lax into a single localized state before photoluminescence, and would therefore be
more difficult to detect in an emission experiment. An alternative way of looking
at this would suggest that the coherently coupled emitters would lose their phase
coherence rapidly and effectively become isolated, localized emitters once again.
We would therefore expect photoluminescence emission from our sample to come
from a localized state even if a delocalized state with large coherence area was
originally excited. In the current experimental setup we do not have enough spatial
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or spectral resolution to resolve the emission lines from individual localized states,
so we cannot make such a measurement.

Such EDS has been invoked by Kazprzak et al to explain long range (approaching
µm length scales) coupling between excitons localized to different monolayer is-
lands [73]. Their explanation relied on radiative coupling of excitons which inhabit
different parts of the same mesoscopic monolayer island in a sort of laterally lo-
calized polariton. This explanation relies on the radiative coupling renormalization
energy exceeding the residual disorder potential, which it clearly does for the nearly
atomically flat interfaces in the MBE grown QW used in that experiment. How these
values would compare for a far more disordered sample such as the MOCVD grown
Al2 is less clear, and a calculation would have to include the typical length scales
of the disorder which are unknown for this sample. Other papers have detected co-
herent coupling between excitons localized to different monolayer islands, which
could be mediated by a delocalized state as described by Kazprzak [44, 46, 181].
However, these experiments lacked the spatial resolution to determine the distances
between the excitons, and focused on weakly disordered MBE grown samples, so
they are not necessarily relevant to the current results.

We note again that the FPD exciton sub-population and the inter-well signals have
roughly the same sub-E3 excitation dependence, which suggests that the inter-well
coupling also involves an EDS in both QWs. Speculatively, one plausible explana-
tion of the involvement of EDS in the inter-well coupling is in the geometry of the
exciton states. Dipole-dipole coupling between two point dipoles separated by a dis-
tance r goes with 1/r6 [301, 302]. The localized excitons are spherical and relatively
small in size compared with the separation of the wells, suggesting that the point
dipole approximation is reasonable. The EDS, however is larger in the plane of the
QW than in the out of plane directions (i.e. like a disk). The large lateral extent,
which is much larger than the QW separation means that the point dipole approx-
imation is no longer reasonable. Coupling between two aligned planar dipoles (or
disk dipoles) should thus scale differently with separation than point dipoles, and
likely with a lower power (i.e. 1/r<6). A calculation of the exact expected depen-
dence of the coupling of disk dipoles will be conducted in future work, but this
could explain in part why the inter-well coupling appears to be related to the EDS.

In the other two samples discussed in this chapter we do observe evidence of a
sub-E3 dependence of the inter-well signals, but no evidence of a round component
of the DP7. The round DP itself, however, isn’t a requirement for there to be a
delocalized state, but rather an indicator that only occurs when the in-plane size
of the delocalized state is large compared with the in-plane size of the disorder
(i.e. the in plane size of the monolayer islands). In other words, the EDS state
might appear in the other samples as well, but we just cannot separate it from the
other PE pathways. Therefore the lack of a round DP does not in itself preclude the

7 We do see some indication of FPD in Al1 at low densities, but it is difficult to differentiate from the noise floor,
and is clearly much weaker relative to the PE than the FPD in Al2.
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inter-well and QW-barrier coupling in these other samples from being related to an
in-plane delocalized state. However, the lack of sub-E3 signal in the DPs of the other
two samples is unexplained and merits further investigation.

7.3 Excitation density dependence of the 10 nm barrier InGaAs/GaAs DQW

We have also measured the excitation dependence of 1Q, 0Q and 2Q spectra for the
10 nm barrier InGaAs DQW sample which we have studied extensively in previous
chapters in this thesis (Ch. 4, Ch. 6, Ch. 5). A number of 2D spectra (1Q, 0Q, 2Q)
representing the high, middle and low ends of the excitation range are shown in Fig.
7.13 (a,d,g) (b,e,h) and (c,f,i) respectively. Each spectrum is normalized according
to the highest signal in the spectrum and plotted over the same logarithmic color
range. The excitation spectrum and sample FWM spectrum is shown in Fig. 7.12.
The CMDS experiments were performed with collinear polarized beams.

The spectra change in several significant ways as a function of excitation density:

1. The WX and NX line-shapes broaden at higher density, most notably for 1Q
and 2Q, but also 0Q DPs.

2. Fringes appear across all the signals with emission in WX and NX at high den-
sity for all three types of 2D spectra. These fringes may be due to interference
between χ(3) and χ(5) signals.

3. Many of the interaction signals (particularly the above diagonal ones) are
much more evident at low powers. Of these signals, the clearest increase
comes in the 0Q inter-well coherent superposition signals. These peaks are
invisible at high powers, but grow in significantly at lower powers (at the low-
est power, the strength of the WX diagonal and (WX-NX) CP are comparable).

4. The DP and CP shapes in the 2Q spectra change from un-tilted and broad
along E2Q at high power to tilted and narrow along E2Q at low power.

5. The relative intensities of the WX and NX DPs flip at low power in all three
types of spectra.

Items 1 and 2 are not surprising, but tell us that at the highest intensities we are
moving into a regime where χ(5) and excitation induced broadening are important.
Item 3 is more surprising. It is telling us that the relative strength of the peaks that
represent WX-NX interactions and WX/NX-BarX interactions are increasing relative
to the DPs as the power is reduced. This indicates either a sub-E3 density depen-
dence for the inter-well signals (similar to what we observed in the AlGaAs DQWs
in Section 7.2.1) or a super-E3 dependence for all the other signals. The rest of this
section will differentiate between these two possibilities and look into this effect in
more detail. Item 4 will be discussed in detail in Section 7.3.1. Item 5 will not be
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Figure 7.12: The FWM emission spectrum at t1=t2=0 and the spectrum of the excitation beams
used for the 2D spectra in Fig. 7.13 and for measurements of the dependence on exci-
tation density in Fig. 7.14, 7.15 and 7.16.

Figure 7.13: 1Q (a-c), 0Q (d-f) and 2Q (g-i) 2D spectra for low (a, d, g), mid (b, e, h), and high (c,
f, i) excitation densities. Changes in the spectra are discussed in the text.
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discussed in detail in this thesis, but is an interesting effect as it suggests that the
relative dipole moments of the different transitions are excitation dependent. We
will attempt to address this effect with simulations in future work.

The increase of the 0Q CPs relative to the DPs is perhaps the most interesting
change we see at low densities. In previous experiments on this sample with higher
excitation density ourselves (Ch. 4) and Nardin et al [54] were not even able to
detect inter-well coherences when using broadband excitation.

For now, we are not interested in the 2D peak-shapes, so it is more convenient to
discuss the data as slices of the 0Q 2D spectra at different emission energies. Slices
along E2 at emission energies corresponding to WX, NX and BarX are plotted in Fig.
7.14a-c, respectively. At each emission energy, we observe three peaks marked by
vertical dotted lines. There is one main peak at E2=0 meV (population pathways)
as well as two peaks at E2 6=0 (where we expect to see coherence pathways), which
become more clear at lower powers8. At the highest powers, the WX-NX coherence
and NX-WX coherence CPs are small shoulders on the E2=0 population peak9. As
the power is reduced, these shoulders grow in to fully fledged peaks, even surpass-
ing the E2=0 peak for the E3=WX at the lowest powers. The tails of the Lorentzian
E2=0 peak can be seen all the way out to the E2 = ±40 meV where we see the
BarX-WX/NX coherences. These BarX-WX/NX coherences are completely missing at
the highest power, and only grow in as the excitation density drops into the 1010

photons×cm−2 per pulse range.
In all three types of 2D spectra, the increase of the CP amplitude relative to the

DP amplitude could indicate that the DPs follow a super-E3 excitation dependence,
that the CPs have a sub-E3 dependence, or both.

Figure 7.15a shows the measured density dependence of the WX DP in the 1Q
spectrum. The deviation from E3 dependence can be more clearly seen when signals
are divided by third power of the photon density, which has been done in Fig. 7.15b.
In this plot, E3 dependence is indicated by the horizontal line, linear and fifth order
signals are now indicated by the solid grey lines angling up and down, respectively.
This signal generally follows the expected E3 dependence, with some non-uniform
deviations which are be discussed further on.

Figure 7.16 shows the power dependence of the various signals divided by the
third power of the photon density (as in Fig. 7.15b). The three rows are signals from
the 1Q, 0Q and 2Q spectra, respectively. The first column shows the amplitude of
the DPs (located on the E1=-E3 line in the 1Q, on the E2=0 in the 0Q and on the

8 There are also peaks corresponding to interactions with the βX states discussed in Ch. 6. This chapter is focusing
on the inter-well and BarX-QW interactions, so we will ignore these for now.

9 It might seem surprising that we can detect inter-well CPs here, even at high density when we could not
detect them using broadband 2D spectroscopy in Ch. 4. These results can be reconciled in three ways: 1. the
0Q spectrum reported previously is actually a 3D spectrum projected onto the E2 vs E3 plane, which could
in certain circumstances introduce additional noise. 2. We made improvements to the environmental stability
of the lab between the two experiments (which were separated by about 6 months), which improved the
experimental signal to noise. 3. There is some variability from spot to spot on the sample. The results presented
in this chapter were recorded consecutively over the course of two days at the same position on the sample.
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Figure 7.14: Slices of the 0Q spectrum along E2 for emission at each of the strong excitonic tran-
sitions: WX (a) NX (b) and BarX (c). The signals are normalized to the highest signal
from the highest power scan. The y-axis scale is in absolute units, and the different
scans are not shifted. The gray lines at E2 6= 0 indicate coherent superpositions of
excitonic states, and the photon density is given in the legend (in units of cm−2).

E2Q=2E3 in the 2Q). The second column shows the amplitude of the inter-well CPs,
and the third column shows the amplitude of CPs between WX/NX and BarX.

We will start by considering the DPs. In the 1Q and 0Q scans (Fig. 7.16a and
Fig. 7.16d), the sum of the three peak amplitudes generally follows the E3 line, but
the individual signals vary up and down out of phase with each other. For example,
where the WX DP amplitude is large (e.g. at ∼ 1010cm−2) the amplitude of the NX
and BarX DPs are small. Conversely, at excitation densities where the amplitude of
the WX DP is low (e.g. at ∼ 108cm−2), the amplitude of the NX and BarX DPs are
comparatively large. The relative amplitudes of the three DPs in the 2Q scans also
change. However, the sum of the three peak amplitudes clearly follows a sub-E3

dependence in this case.
The 1Q inter-well CPs show a roughly E3 dependence on excitation density above

∼ 109cm−2, and a sub-E3 dependence below that point. The excitation density de-
pendences of the 0Q inter-well CPs are sub-E3 below ∼ 109cm−2, but cannot be
satisfactorily separated from the DPs above this point. However, based on a quali-
tative analysis of the plots in Fig. 7.14 the coupling peaks do appear to continue to
decrease as the excitation density increases, suggesting that the dependence contin-
ues to be sub-E3 even above ∼ 1010cm−2.

The large 1Q CPs and non-existent 0Q CP suggests that incoherent coupling mech-
anisms dominate at high density. Furthermore, the significant mismatch of the be-
low and above diagonal CPs is consistent with incoherent pathways such as pop-
ulation transfer. This is also consistent with the proposed mechanism in Ref. [54],
which found that the CP is a result of many-body effects. At low densities, both
1Q and 0Q CPs are simultaneously increasing, and both above and below diagonal
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Figure 7.15: (a) Power dependence of the 1Q WX DP. It roughly follows follows E3 density depen-
dence, which is indicated by the dashed gray line. The dotted black line is an estimate
of the background noise. (b) Deviations from E3 dependence can be seen more clearly
when the signal is divided by E3. The upper (lower) gray lines in both (a) and (b)
indicate E5 (E1) power dependence, which we expect for χ5 (linear) response.

CPs are of comparable amplitude. This suggests that coherent coupling mechanisms
dominate at low density, which is consistent with what we have measured in Al1
and Al2. The dependence above ∼ 109cm−2 is, however, complicated by the combi-
nation of coherent and incoherent signals which are not as strong in Al1 and Al2.

This interplay between coherent and incoherent coupling can also explain the
changes in the NX and WX DP amplitudes. At low density the amplitude of the NX
DP is much larger than that of the WX DP, which is expected because the dipole
moment should increase as the well width decreases10. The incoherent coupling of
the wells at high density reduces the signal from the NX DP, as efficient tunnelling
into WX occurs, thereby weakening the NX DP.

We also observe an increase in the coupling of BarX to WX and NX at low excita-
tion density (shown in Fig. 7.16c,f,i). Unlike the inter-well CPs, at high density the
1Q, 0Q and 2Q QW-Bar CPs (the CPs indicating interactions between the barrier
and the QWs) all follow similar well-defined sub-E3 dependence on excitation den-
sity. This suggests that there is no increase of incoherent coupling at high density.
This in-turn suggests that the Bar-QW coupling is predominately coherent across
the entire range of measured excitation densities. This result is consistent with the
results from Al1 and Al2, in that coherent coupling between the excitons localized
to different layers (in this case one exciton localized in a QW and the other in the
barrier) is much weaker relative to single-transition signals at high densities.

To summarize this section: although the interpretation is slightly more compli-
cated, the results in the GaAs/InGaAs DQW are consistent with the results from
Al1 and Al2. The amplitude of the CPs indicating coherent coupling of excitons pre-
dominately localized in different layers (both inter-well coupling and coupling of
QW excitons to barrier excitons) is comparable to the amplitude of the DPs at low

10 The dipole moment only increases up to a point. For very narrow wells the dipole moment decreases as there
is more leaking of the wavefunction into the barrier.
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Figure 7.16: Excitation dependence of various signals in 1Q, 0Q and 2Q signals. The left column is
the density dependence of DPs, the center column is the density dependence of inter-
well peaks and the right column is the density dependence of barrier-QW CPs. The
CPs are designated in the following way: emission axis - Fourier transform axis (E3-
E1/E2/E2Q). The colored dashed lines indicate an estimate of the background signal.

density, but increases with a distinctly sub-E3 dependence as the density increases,
while the DPs increase as E3.

7.3.1 2Q peak-shape changes in the GaAs/InGaAs DQW

In this section, we will take a closer look at the changes in the 2Q peak-shapes
of the 10 nm barrier GaAs/InGaAs DQW as a function of excitation density. At low
densities, we observe peaks which become much narrower along the E2Q axis and
exhibit a line-shape which is tilted along the diagonal. In the dataset presented
here, the excitation laser spectrum has been shaped to excite only the WX and NX
resonance while avoiding most of the free-carrier continua, the βX states and the
barrier states.11 The beams are co-circularly polarized to suppress biexciton signals.

11 The 2Q spectra from the dataset used in the previous section shows similar peak-shapes and amplitudes, even
though broader excitation spectra were used.
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Figure 7.17: Excitation spectrum for the 2Q 2D spectra in Fig. 7.18.

Figure 7.18: 2Q 2D spectra of the InGaAs DQW for a range of excitation densities. peak-shapes
change from round/broad along E2Q at high densities, to narrower peaks tilted along
the diagonal at low densites. The beams are circularly polarized to suppress biexciton
signals.
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Figure 7.19: An example of fits to slices of the 2Q peaks in Fig. 7.18 along the E2Q axis at each E3
using Eq. 7.3.

The excitation spectrum and some 2Q 2D spectra at different excitation densities
are plotted in Fig. 7.17 and Fig. 7.18 respectively. The plots go from a low density
of ∼ 1× 108 up to ∼ 5× 1010. Although the peak amplitudes change, each of the
spectra show four peaks corresponding to the two DPs and the two CPs possible
for this pair of transitions. A cursory look at the spectra show that the DPs broaden
at the highest pulse energies, both in the E3 and E2Q directions (as in Fig. 7.13,
which used broader excitation spectra). As the power decreases, the diagonal and
CPs become more well resolved, and a tilt along the diagonal becomes more visible.

To quantify the width of the DPs and CPs along the E2Q axis, a fit of slices along
E2Q was conducted for each detected E3. The DPs and CPs which share the same
emission energy are overlapped along the E2Q direction (especially at high powers),
so the E2Q line-shape was fit to a sum of two Lorentzian functions according to the
following two equations:

SWX(E2Q,E3) =

C+
AWX2Q (ΓWX2Q )2

(E2Q − µWX2Q )2 + (ΓWX2Q )2
+

A
CP1
2Q (ΓCP12Q )2

(E2Q − µCP12Q )2 + (ΓCP12Q )2
(7.3)
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Figure 7.20: Density dependent E2Q (circles) and E3 (triangles) linewidths of peaks emitting at
E3=WX (a) and NX (b).

SNX(E2Q,E3) =

C+
ANX2Q (ΓNX2Q )2

(E2Q − µNX2Q )2 + (ΓNX2Q )2
+

A
CP2
2Q (ΓCP22Q )2

(E2Q − µCP22Q )2 + (ΓCP22Q )2
(7.4)

Where A2Q, µ2Q and Γ2Q are the amplitude center and width along the E2Q axis
for the transition indicated in the superscript and a given E3. CP1 (CP2) indicates
the CP with emission from transition WX (NX). An example can be seen in Fig. 7.19,
where slices of the WX DP and CP1 are fit to Eq. 7.3 (Eq. 7.4).

The emission line-shape for each peak was characterized by projecting the peak
onto the E3 axis and then fitting to a Lorentzian peak12.

S
p
3(E3) = C

p +
A
p
3(Γ

p
3 )
2

(E3 − µ
p
3)
2 + (Γp3 )

2
(7.5)

Where Ap3 , µ
p
3 and Γp3 are the amplitude center and width along the E3 axis, for

peak ‘p’.
The linewidths extracted from the fits along E2Q13 and E3 are plotted as a function

of the excitation density in Fig. 7.20a-b. The linewidths demonstrate roughly linear
dependence on the log of the excitation density above a certain value, and are
roughly independent of it below this value. The transition between the two regimes
happens around 109cm−2 for E2Q and closer to around 1010cm−2 for E3. The solid

12 The line-shape is truly a Voigt shape, but the deviations are not significant as the sample is only weakly inho-
mogeneously broadened, so a Lorentzian fit is sufficient.

13 A single E2Q is calculated by taking the average of the E2Q widths across the emission linewidth.
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lines are a guide to the eye indicating the transition from one behaviour to the
other.

Kim et al reported 2Q spectra of Blue Nile laser dye which exhibited a tilt along
the diagonal [88], and a similar tilt was also observed in 2Q spectra of β-Carotene [234]
and Rhodamine 6G laser dye [303]. To our knowledge this is the first report of
tilted DPs or CPs in 2Q 2D spectra of semiconductor QWs. Most 2Q spectra previ-
ously reported have round peaks with some broadening along the 2Q axis [81, 86,
191, 304]. However, no other previously reported results have been conducted with
comparably low excitation densities.

We will now try to better understand these peak-shapes, starting with the sin-
gle transition signals (DPs). In a rephasing 1Q spectrum, a tilted DP peak-shape is
generated when the transition is inhomogeneously broadened and a photon echo
is generated. This same interpretation does not extend to the 2Q DPs. There is no
rephasing in the 2Q pulse ordering, so the tilted peak-shape cannot be the result of
a photon echo. The t2Q dephasing time is therefore limited by inhomogeneous de-
phasing (the systematic shifting of the phase of the different spectral components)

Instead, the tilted peak-shape can be understood as follows. Two interactions are
required to excite the system into the two exciton state, each involving a single
exciton transition. The range of available 2Q energies is therefore a convolution
of the distributions of the two one-exciton transitions (ignoring biexciton contribu-
tions). The spectral width of the two-exciton state will therefore be equal to twice
the single exciton linewidth. This can be seen graphically in the first part of Fig.
7.21a, which shows a cartoon illustrating the origin of the 2Q linewidth. The inho-
mogeneous dephasing of a DP as a function of t2Q will therefore be ∝ 1/(2× Γ (tot))
where Γ (tot) is the full linewidth of the single exciton transition (including both
homogeneous and inhomogeneous contributions).

For the signal pathway to obey energy conservation, the signal photon energy
(Es) for a given E2Q is Es = E2Q − Ek1 where Ek1 is the energy of the third pulse
interaction. Ek1 is limited to the width of the transition it is exciting, or from which
it is emitting. Both Es and Ek1 must also be within the one-exciton linewidth. The
combination of these two requirements causes the tilting of the 2Q DPs. For ex-
ample, if we consider energies near the top of the E2Q distribution (Fig. 7.21a),
the available distribution of single exciton transition energies would lead to the
range of signal energies shown by the blue bar. However, only the portion of these
which overlap the ground-excited state distribution can conserve energy. A similar
argument can be made for the low energy side of the E2Q distribution (Fig. 7.21b).
Extended smoothly across the entire E2Q this leads to a correlation of E2Q and E3
which manifests in the 2Q spectrum as a tilted DP.

By the same token, tilted CPs don’t tell us anything about the correlation of the
inhomogeneous broadening. The fact that the CPs have E2Q widths and tilt that
are roughly equal to the DPs is not surprising in this case. For the CPs, instead
of an auto-convolution, the E2Q distribution is the convolution of the WX and NX
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Figure 7.21: An graphical explanation of 2Q peakshapes tilted along the diagonal. (a) As described
in the text, the two-exciton state has a lineshape equal to the auto-convolution of the
single exciton lineshape. 2Q energies near the (top, middle, bottom) of the 2Q line are
forced to generate signal from a smaller subset of the available single exciton energies
given by the (blue, teal, red) bars. This leads to a correlation of the E2Q and Es, which
exists even when the inhomogeneous broadening is uncorrelated. More details given
in the text.

single exciton distributions, so the CP E2Q widths are ΓWX+ ΓNX. Since ΓWX ≈ ΓNX,
the CP widths are therefore expected to be similar to the DPs (in the absence of
additional interactions which increase the dephasing rate of the mixed two-exciton
state relative to the non-mixed two-exciton states).

The fit parameters in Fig. 7.20 do not change below ∼ 58cm−2. We interpret this
to mean that below this density these are the ‘natural’ peak-shapes and linewidths
for this sample, and that above this the broadening along E2Q and E3 is excitation
induced. This conclusion is supported by the fact that the Γ2Q approaches 2Γ3 at low
density, which is what we might expect for a t2Q dephasing time which is limited
by the 1-exciton transition linewidth. This interpretation suggests that steady in-
crease in E2Q linewidth above ∼ 58cm−2 is a result of dephasing which is limited by
exciton-exciton and/or exciton-free carrier scattering. This result suggests that most
previous experiments in the 2Q pulse ordering have been conducted in a regime in
which the excitation induced dephasing (EID) is the dominant broadening mech-
anism and the resulting peak-shapes and linewidths are therefore very excitation
dependent. In the low density range, the dephasing is limited by the single exciton
linewidths, so the resulting linewidths are less dependent on density.

The fact that exciton-exciton interactions cause dephasing the two-exciton state
at an order of magnitude lower intensity than the single exciton state is some-
what intuitive in that the two-exciton state likely involves interactions over much
larger lateral areas than single excitons. Due to their larger in-plane size, these
two-exciton state (which are four-particle correlations) therefore will have more
opportunity to scatter with other carriers. The CPs have the same widths as the
DPs, indicating that the mixed 2-exciton state is no more sensitive to carrier-carrier
scattering than the single-well 2-exciton states. Therefore, the larger out-of-plane
size of the mixed 2-exciton state does not appear to increase the carrier-carrier scat-
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tering rate. Simulations incorporating EID and EIS are being developed, which will
help us to understand the origins of the excitation induced dephasing in a more
detailed way.

7.4 Summary

In summary, the stability of this CMDS apparatus has allowed us to make mea-
surements of a variety of different types of coherent dynamics at extremely low
excitation densities At these low densities we have found a variety of interesting
changes to the coherent dynamics of excitons in DQWs. These measurements have
led to three main results:

First, in three separate DQW samples, we have observed sub-E3 dependence on
excitation density for coherent coupling of excitons localized predominately in dif-
ferent QWs. These samples are made up of different material systems with different
growth techniques and parameters, and have vastly different well depths. These
similar results in vastly different samples suggest that this effect may be more gen-
eral, and not just a peculiarity of any single sample. In the InGaAs DQW, we also
observe this same phenomenon in signals generated by coherent coupling of the
barrier excitons to the QW excitons. The intra-well signals by comparison (both
intra-well CPs and DPs), do not deviate significantly from an E3 dependence except
at high densities (where excitation induced broadening and χ(5) signals contribute
significantly). Regardless of the physical origin of this anomalous excitation depen-
dence, this result shows that inter-well coherent interactions can be better resolved
at lower excitation densities, and that excitation density should be carefully consid-
ered in investigations of coherent inter-well interactions.

Second, in AlGaAs DQW sample Al2 we have observed that two sub-populations
of excitons contribute to the NWhh DP. At intermediate densities, photon echo sig-
nal dominates, at the lowest densities a free polarization decay dominates, while at
the highest densities both signals contribute. Furthermore, the FPD signal follows
an excitation density dependence similar to that of the inter-well CPs suggesting
that the two effects are connected. We tentatively attribute the PE (FPD) signals to
localized (extended, delocalized) exciton states. We also note the qualitative simi-
larities of the extended, delocalized state to a superradiant state composed of many
coherently coupled emitters. We however also recognize that other explanations for
these changes in peak-shape and density dependence may exist.

Finally, in the InGaAs DQW studied at low density we have observed 2Q dephas-
ing which is limited by the single exciton linewidths, and shown that excitation
induced broadening of the 2Q line extends to much lower densities than the broad-
ening of the 1Q line. Put another way, this means that by using excitation densities
orders of magnitude lower than previous experiments, we are finally in a regime
in which the exciton dephasing induced by the single exciton linewidth is fast com-
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pared with the average exciton-exciton or exciton-free carrier scattering rate. This
should allow us to explore multi-particle correlations in a regime where they are
less affected by carrier scattering.

These results have one important factor in common: they all suggest the presence
(or even dominance) of signals resulting from the interaction of distant excitons
(separated at the lowest excitation densities by up to µm distances on average).
The density of these dilute exciton ensembles is well below the range where it is
typically assumed that the single-exciton response dominates. Although the coher-
ent response of excitons in QWs have been studied for decades now, CMDS has
enabled us to access this previously unexplored regime and gain new insight.
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S U M M A RY A N D O U T L O O K

In this thesis, we have presented several different investigations into coherent ef-
fects in semiconductor double quantum wells (DQWs), and developed a pathway
selective multidimensional spectroscopy approach. While they are in many ways
interrelated, the nature of these investigations do not conveniently lend themselves
to a single, tidy summary. For this reason, the major conclusions have been sum-
marized at the end of each chapter. In this section, we will reiterate some of the
conclusions and discuss the outlook, grouping interrelated results together.

8.1 Pathway-selective coherent multidimensional spectroscopy

As a part of this PhD project we implemented a coherent multidimensional spec-
troscopy (CMDS) experiment using spatial light modulators. The experiment was
setup in such a way that spectral shaping could be used to perform pathway-
selective CMDS. Using this experimental apparatus, we showed that it is possi-
ble to isolate signals involving a coherent superposition in 1-quantum (1Q) and
0-quantum (0Q) spectroscopy. We also showed that new details regarding the na-
ture of transition broadening can be extracted from projections of coherent super-
position cross-peaks (CS-CPs) onto the E3 vs. E2 and E1 vs. E2 planes.

We also showed that signals from mixed two-exciton states could be isolated by
using spectral shaping based pathway selection in 2-quantum (2Q) spectroscopy.
This approach can also be used to suppress rapidly dephasing free-carrier and de-
fect related signals. We also explained how this could be used to deterministically
generate mixed two-exciton states in a controlled order, which is important for the
extension of the technique to higher order correlations.

Now that we have demonstrated the capabilities of selection in CMDS, we can
use it to study other systems. Work is currently ongoing to use this technique to
study coherent effects in PC645 light harvesting complex (LHC). The techniques
developed here are very promising for studying light harvesting complexes for a
few reasons. The ability to selectively excite particular pathways will help to clean
up 2D spectra that are often congested by multiple overlapping signals, while still
providing the varied benefits of multidimensional spectroscopy. As selective FWM
experiments have shown, there is a lot to be gained by using narrowband excitation
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to study coherent interactions, and the addition of CMDS tools should allow those
interactions to be studied in more detail (e.g. by analyzing peak shapes). One exam-
ple of where peak shape analysis my provide additional insights is in the question of
whether correlated fluctuations in the electronic states of different chromophores
can account for the longer than expected excited state coherences that have been
experimentally measured in LHCs. The analysis of peak shapes in 0Q and 3D spec-
tra could potentially allow such correlated fluctuations to be directly measured.

As demonstrated in Ref. [67], the ability to isolate signals from excited state
coherent superpositions in a fast 2D scan will also be useful in exploring their
dependence on other parameters (e.g. excitation density, temperature, excitation
wavelength). Finally, the ability to perform measurements at extremely low pho-
ton densities is potentially very important as well, as recent work has shown that
the coherences measured in PC645 demonstrate a surprisingly pronounced depen-
dence on photon density and saturation behaviour at lower powers than previously
expected [305].

It should also be useful in studying coherence in other samples, such as nano-
platelets [215, 220] and heterostructures made of monolayer dichalcogenides [212,
235, 236]. The latter, in particular, is a rapidly evolving field where many of the
measurements of coherent effects either have not been performed while others
have produced conflicting results. The ability of selective CMDS to separate out
overlapping signals may be very useful in isolating interactions between different
monolayers in the TMD heterosctructures.

One of the main limitations of the pulse-shaper based CMDS experiment is the
delay range. We are currently in the process of implementing translation stage de-
lays (similar to those used in Refs. [57, 58]), which can be used along with the
pulse-shaper. This would overcome the delay limitations while still allowing us to
use the pulse-shaper for spectral amplitude shaping. Work is also ongoing on the
extension of the pathway-selective 2Q experiment into a 3Q, 5th order experiment.

8.2 Inter-well coherent superpositions in double quantum wells

In this thesis we have shown that coherent superpositions can be observed in Al-
GaAs/GaAs DQWs even when the wells are separated so that there is no hybridiza-
tion of the wavefunctions. This result suggests some sort of dynamic excited state
coupling of the excitonic states. This work does not point to a particular coupling
mechanism, but the routine detection of these signals is an important tool for future
investigations.

Nardin et al. [54] have proposed that coupling in an InGaAs/GaAs DQW is a
result of many-body effects. Using pathway-selective CMDS, we measured the am-
plitude of the 0Q CS-CP in this same sample, and found that it is much larger than
predicted by the simulations involving many-body interactions. We therefore spec-
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ulate that the inter-well coupling may be a result (at least in part) of some type
of two-body coupling. We showed in Ch. 7 that the relative amplitude of the 0Q
CS-CP depends on excitation density, and becomes much more prevalent at low
densities. As a result, to accurately represent the sample response a density depen-
dence must be considered in the simulations. The experiments and simulations in
Ref. [54] were only reported for a single excitation density.

Speculatively, the excitation density dependence measured in Ch. 7 may sug-
gest that inter-well coupling is related to an extended delocalized state in each
of the QWs. However, coupling due to many-body-effects may also lead to a sub-E3

density dependence. A way to separate these two effects would be by performing
pump-CMDS experiments [193]. In pump-CMDS, a pre-pulse (the pump) excites
populations of excitons before standard CMDS techniques are used with low power
excitation pulses. The pre-pulse arrives several ps before the first excitation pulse
so that the coherent polarization from the pump has dephased before the first pulse
in the CMDS experiment arrives at the sample. Thus, no coherent signals are gen-
erated involving the pump. CMDS is then performed as a function of the excitation
density generated by the prepulse. This reduces the complexity of the interpreta-
tion of the data, as the excitation density remains roughly the same throughout the
experiment if the pump power is larger than the CMDS power.

All of the inter-well coupling results would benefit from simulations involving
density-dependent incorporation of many-body effects. Efforts towards developing
these simulations at Swinburne are ongoing.

8.3 Spatially indirect ‘dark’ excitons

We observed a range of ‘dark’ states in two InGaAs DQWs: type-II LH excitons, par-
ity forbidden direct excitons and spatially indirect states involving an electron in
the barrier and a hole in one of the QWs. We were able to observe these states pri-
marily as CPs generated by absorption in a ‘bright’ QW or barrier state and emission
from the ‘dark’ state. We are therefore able to unambiguously detect these states pri-
marily due to CMDS’s sensitivity to coherent coupling. By fitting population peaks
in a 3D spectrum, we were able to put a lower bound on the exciton population
lifetimes, and found that the type-II LH ‘dark’ excitons and type-I HH ‘bright’ ex-
citons have nearly equal lifetimes within the parameters used in the experiment.
Given the spatially indirect states strongly couple to both QW excitons and barrier
excitons, they might play a role in relaxation of barrier excitons into the QWs. We
may be able to determine what that role is if we can capture the full coherence and
population decays. The addition of translation stage based delays should allow us
to make this measurement.

The demonstrated ability to identify and measure these dark states could impact
applications of DQW systems. For example, the strong coupling of the Type-I HHs
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and Type-II LHs could be used as a THz source, or a THz detector. Such could
have benefits compared with purely type-I systems in that spatial separation of
the charged carriers could induce larger electric fields. Second, if the dark type-
II states do play a key role in relaxation into the quantum wells, this knowledge
could be useful in designing more efficient quantum cascade lasers, where rapid
repopulation of the lasing state from the bulk is one of the key aspects of the device.

Finally, this electronic system also presents a good way to test the selective 3Q
experiments. We can test if the two wells are indirectly coupled through the barrier
or through spatially indirect exciton states by using pulse sequences that selectively
excite different sets of transitions: WX→BarX→NX, and WX→ βX →NX. Further-
more, we could use the BarX→ βX→WX to help us determine whether the βX me-
diate a coupling of the barrier and QW excitons. Finally, we could also use spectral
shaping and 5th order χ(5) 3D rephasing experiment to directly track the multi-step
relaxation pathways as was recently demonstrated (using broadband non-selective
excitation) in Ref. [68].

8.4 Low density experiments

We have observed two important additional changes to the coherent response at
low excitation densities: a narrowing of the 2Q linewidth in GaAs/InGaAs DQW
and an extended delocalized exciton state in an AlGaAs/GaAs DQW. The tilted 2Q
peaks which are narrow along E2Q are a result of an inherent correlation of E2Q
and E3, and not indicative of inhomogeneous broadening. We show that above 5×
108 photons cm−2, the E2Q linewidths continuously increase with excitation density,
which implies that the E2Q linewidths are limited by carrier-carrier interactions.

Although tilted 2Q peaks have been observed previously [88, 234, 303], this
is the first time they have been observed in QWs. This suggests that previous 2Q
experiments were performed in regimes where the excitation induced broadening is
the primary factor in determining the peak-shapes and linewidths. This result also
indicates that exciton-exciton interactions are still prevalent even when the average
inter-excitonic distance is nearly 1µm.

In an AlGaAs/GaAs DQW, we have observed that the shape of the diagonal-peaks
change from tilted at high power to un-tilted at low power, in apparent contradic-
tion to typical experiments. We posit that this changing peak-shape is evidence of
an extended delocalized exciton state, which dominates the coherent response at
low densities. Though the results are not shown, we also observe this same peak-
shape at low density in two additional samples. We discuss how this state can be
thought of as coupling of localized states spatially separated in the plane of the QW,
and as such this state is conceptually similar to a superradiant state. The apparently
much larger dipole moment of this delocalized state is also consistent with super-
radiance. We explain the diminishing of this state as power increases to screening
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of the interactions that mediate the coupling of the localized states. Going forward,
a detailed calculation of the screening as a function of excitation density should
be conducted. We also observe that the inter-well coherent interactions and the de-
localized state scale with excitation density almost identically, suggesting that the
inter-well interactions are related to the delocalized state. The fact that we only
observe the delocalized state in samples which were grown with particular growth
parameters suggests this effect may be related to the interface morphology. To ex-
plore this possibility in more detail, a systematic study of samples with different
degrees structural disorder should be conducted.

The unexpected behaviour of the excitons at low excitation densities implies some
of the physics is quite different from that which is typically expected for excitons
in QWs. It is typically considered that when an exciton is confined in one direction,
the separation of the electron and hole is reduced, but the aspect ratio stays the
same (i.e. the radius of the exciton in the unconfined direction remains the same
as the radius in the confined direction). The results here seem to suggest that the
effective size of the exciton in the plane of the QW (the unconfined direction) is
actually much larger, as it strongly interacts with excitons over distances hundreds
of times larger than the expected radius. This is an important physical insight, and
suggests that there is much to learn in this excitation regime which has remained
largely unexplored.
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A1
E X P E R I M E N TA L PA R A M E T E R S

Scan t1 t2 t2Q Density CF Temp Polarization Figure

type step, range step, range step, range (Photons·cm−2) (nm) (K)

AlGaAs BB 2D 1Q 10 fs, 2000 fs t2 = 0 fs 7× 1011 795 20 Co-linear 4.4

AlGaAs BB 3D 1Q 10 fs, 2000 fs 15 fs, 900 fs 7× 1011 795 20 Co-linear 4.5, 4.6, 4.7

AlGaAs CS 2D 1Q 10 fs, 2000 fs t2 = 0 fs 3× 1011 795 20 Co-linear 4.9

InGaAs BB 2D 1Q 50 fs, 5000 fs t2 = 0 fs 2.4× 1010 850 6 Co-circular 4.18

0Q t1 = 0 fs 50 fs, 5000 fs 2.4× 1010 850 6 Co-circular 4.18

2Q t1 = 0 fs 40 fs, 2000 fs 2.4× 1010 850 6 Co-circular 4.18

InGaAs CS-3D 1Q 50 fs, 2000 fs 50 fs, 2000 fs 1.5× 1010 850 6 Co-circular 4.19

Table A1.1: Experimental parameters in Ch. 4.
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Scan t1 t2 t2Q Density CF Temp Polarization Figure

type step, range step, range step, range (Photons·cm−2) (nm) (K)

InGaAs BB 2D 2Q t2 = 300 fs 10 fs, 2000 fs 3.4× 1010 810 6 Co-linear 5.9

InGaAs CS 2D 2Q t2 = 300 fs 10 fs, 2000 fs 2.2× 1010 810 6 Co-linear 5.9

Table A1.2: Experimental parameters in Ch. 5.

Scan t1 t2 t2Q Density CF Temp Polarization Figure

type step, range step, range step, range (Photons·cm−2) (nm) (K)

30nm Barrier BB 2D 1Q 20 fs, 5000 fs t2 = 0 fs 4.5× 1010 850 6 Co-linear 6.6

0Q t1 = 0 fs 30 fs, 5010 fs 4.5× 1010 850 6 Co-linear 6.7

2Q t1 = 0 fs 15 fs, 3000 fs 4.5× 1010 850 6 Co-linear 6.7

30nm Barrier BB 3D 1Q 20 fs, 5000 fs 30 fs, 5010 fs 4.5× 1010 850 6 Co-linear 6.8, 6.9

10nm Barrier BB 2D 1Q 30 fs, 5010 fs t2 = 0 fs 4.5× 1010 812 6 Co-linear 6.11

10nm Barrier CS 3D 1Q 20 fs, 2000 fs 50 fs, 2000 fs 1.6× 1011 850 6 Co-linear 6.8, 6.9

Table A1.3: Experimental parameters in Ch. 6.
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Scan t1 t2 t2Q Density CF Temp Polarization Figure

type step, range step, range step, range (Photons·cm−2) (nm) (K)

Al1 2D BB 1Q 25 fs, 4000 fs t2 = 0 fs Varied 800 6 Co-linear 7.2, 7.1

Al2 2D BB 1Q 15 fs, 2500 fs t2 = 0 fs Varied 805 6 Co-linear 7.4, 7.3

Al2 2D CS 1Q 15 fs, 2500 fs t2 = 0 fs Varied 805 6 Co-linear 7.4, 7.3

0Q t1 = 0 fs 15 fs, 2500 fs Varied 805 6 Co-linear 7.4, 7.3

InGaAs 2D BB 1Q 25 fs, 4000 fs t2 = 0 fs Varied 812 6 Co-linear 7.13, 7.16

InGaAs 2D BB 0Q t1 = 0 fs 25 fs, 5000 fs Varied 812 6 Co-linear 7.13, 7.16, 7.14

InGaAs 2D BB 2Q t1 = 0 fs 15 fs, 2000 fs Varied 812 6 Co-linear 7.13, 7.16
InGaAs 2D
DQW only

2Q t1 = 0 fs 10 fs, 2000 fs Varied 850 6 Co-circular 6.8 6.9

Table A1.4: Experimental parameters in Ch. 7.
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Figure A2.1: Full layout of the CMDS experiment
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To find the allowed solutions to the 1D TISE, we use the Numerov algorithm and
shooting method. A brief description of these methods are provided here, and full
details of this calculation can be found in Refs. [76, 77, 182]. To calculate the
wavefunction for a state S with an energy ES we use the Numerov algorithm [306].
The Numerov algorithm is a general a method for solving differential equations of
the form of the TISE. Specifically applied to the TISE, the Numerov algorithm can
be used to generate the wavefunction ψ(z) associated with a particular energy for
a chosen potential V(z) (in this case V(z) is the DQW). Given an initial value at
ψ(z0), the Numerov algorithm is used to propagate the wavefunction along z in a
stepwise fashion. Each subsequent step is calculated based on the previousψ(z) and
the parameters in the TISE and V(z). The Numerov method can be used to generate
a wavefunction for any E, regardless of whether the resulting wavefunction is an
allowed solution of the TISE.

To be an allowed solution of the TISE, ψ must be normalizable and therefore
ψ(∞) = ψ(−∞) = 0. The shooting method can be used to find valid solutions to the
TISE (which we will call ES). The shooting method is an iterative process in which
the Numerov algorithm is used many times. First, two wavefunctions (ψmin(z) and
ψmax(z)) are calculated for two energies (Emin and Emax), which are chosen such
that Emax>ES>Emin. The Numerov algorithm is used starting from z0 (which is
typically 20-50 nm into the barrier on one side of the DQW), with ψ(z0)=0 and
then propagated through to zf. If the chosen energies are not allowed solutions of
the TISE, then ψ(zf) 6= 0. Depending on the parity and value of Es, value of ψ(zf)
will be either positive or negative (assuming Emax>ES>Emin).

• If ψsz has even parity, then ψmax(zf) < 0 and ψmin(zf) > 0

• If ψsz has odd parity, then ψmax(zf) > 0 and ψmin(zf) < 0

As a result, ψmax(zf) · ψmin(zf) < 0, regardless of the parity of ψs(z). A third
wavefunction (ψmid(z)) is calculated using the Numerov algorithm for an energy
Emid=(Emax-Emid)/2. One of three possibilities now must be true:

1. Emax>ES>Emid

2. Emid>ES>Emin

3. Emid=ES
We can determine which of the three options is true by calculating ψmax(zf) ·

ψmid(zf) and ψmid(zf) ·ψmin(zf) and using the conditions above (i.e. which one is
<0) to determine in which range Es lies. If ψmax(zf) ·ψmid(zf) < 0 (and ψmid(zf) ·
ψmin(zf) > 0), then item 1 is true and Emid becomes the new Emin. If ψmid(zf) ·
ψmin(zf) < 0 (and ψmax(zf) ·ψmid(zf) > 0), then item 2 is true and Emid becomes
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the new Emax. If ψmax(zf) ·ψmid(zf) = ψmid(zf) ·ψmin(zf) = 0, then item 3 is true
and we have found the solution so we stop.

If Emid 6= Es, a new Emid is defined (Emid=(Emin + Emax)/2), and the Numerov
algorithm is used to calculate ψmid(z), ψmin(z), and ψmax(z). This process is re-
peated until ψ(zf)=0 (and therefore Emid=ES) within a given tolerance.
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To quantitatively compare the signals in CMDS spectra, the differing spectral inten-
sity of the excitation pulses must be taken into account. This section describes how
that is accomplished for the quantitative quantitative comparisons in this thesis.
From Eq. 2.22 (in Section 2.1.1), we know that the amplitude of the signal from a
particular pathway P in the response function (S(3)P ) is given by:

P(3)(~r, t) =
∫∞
0
dt3

∫∞
0
dt2

∫∞
0
dt1S

(3)
P (t3, t2, t1)·

E(−k1)(~r, t− t3)E(k2)(~r, t− t3 − t2)E(k3)(~r, t− t3 − t2 − t1)
(A4.1)

where the pulse electric fields can be separated into a time dependent part and a
time-independent amplitude (E(k1)0 )

E(−k1)(~r, τ) =E(−k1)0 · e
−(τ−τk1

)2

2T2 · e−ik1~r+iω(τ−τA) = E
(−k1)
0 · Ē(−k1)(~r, τ)

(A4.2.1)

E(k2)(~r, τ) =E(k2)0 · e
−(τ−τk2

)2

2T2 · eik1~r−iω(τ−τA) = E
(k2)
0 · Ē(k2)(~r, τ) (A4.2.2)

E(k3)(~r, τ) =E(k3)0 · e
−(τ−τk3

)2

2T2 · eik1~r−iω(τ−τA) = E
(k3)
0 · Ē(k3)(~r, τ) (A4.2.3)

The electric field amplitudes can therefore be pulled out front of the integral in Eq.
A4.1.

P(3)(~r, t) =E(−k1)0 E
(k2)
0 E

(k3)
0

∫∞
0
dt3

∫∞
0
dt2

∫∞
0
dt1S

(3)
P (t3, t2, t1)·

Ē(−k1)(~r, t− t3)Ē(k2)(~r, t− t3 − t2)Ē(k3)(~r, t− t3 − t2 − t1)
(A4.3)

The third order polarization is therefore proportional to the product of the three
electric field amplitudes:

P(3) ∝E(−k1)0 E
(k2)
0 E

(k3)
0

(A4.4)
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The polarization is therefore proportional to the electric field amplitude at the en-
ergy of the transition involved in each interaction (ε1, ε2 and ε3)1.

P(3)(~r, t) ∝E(−k1)0 (ε1)E
(k2)
0 (ε2)E

(k3)
0 (ε3) (A4.5)

The amplitude of the FWM signal from each of the different pathways is therefore
proportional to the product of the amplitudes of the three electric fields at the
transition energies of the three interactions. The electric field of the excitation pulse
is

E0(ε) =
√
I(ε) (A4.6)

where I(ε) is the measured spectrally dependent intensity of the pulses. Combining
Eq. A4.5 and Eq. A4.6 with the fact that the measured signal (Esig0 ) is proportional
to P(3), we get:

Ẽ
sig
0 ∝ E

sig
0 · E

LO
0 (εsig)

∝ E(−k1)0 (ε1) · E
(k2)
0 (ε2) · E

(k3)
0 (ε3) · ELO0 (εsig)

∝
√
I(−k1)(ε1) · I(k2)(ε2) · I(k3)(ε3) · I(LO)(εsig)

(A4.7)

We can then define a factor η(P) which is the electric field contribution to the signal
P:

η(P) =

√
I(−k1)(ε

(P)
1 ) · I(k2)(ε(P)2 ) · I(k3)(ε(P)3 ) · I(LO)(ε(P)sig) (A4.8)

If we define A(P) as the amplitude of the signal from pathway P (assuming a flat
uniform spectrum), then the measured signal amplitude (Ã(P)) is given by

Ã(P) = η(P) ·A(P) (A4.9)

The physics that we are after is embedded in A(P) (which contains all of the integrals
of S(3)P . To compare the strength of different signal pathways which for which η(P)

is not identical, we need to calculate A(P). We can do this by dividing the measured
signal amplitude by the contribution from electric amplitudes:

A(P) =
Ã(P)

η(P)
(A4.10)

Using Eq. A4.10 we can compare different amplitudes within the same 3D spec-
trum. We can also compare different 3D spectra as long as certain criteria are met:

1. The 3D spectra must be collected consecutively with no changes to the optical
setup

2. The acquisition parameters (eg. CCD integration time) and delay sampling
(both t1 and t2) must be the same for the different 3D spectra.

1 This method of incorporating the spectral dependence of the electric field amplitude is not rigorous because
the spectral dependence comes from the interaction of the dipole operator with the electric field. However, this
result could also be reached rigorously by considering the spectral dependence of the dipole operators as delta
functions in frequency. P(3) can then can then be Fourier transformed along t1, t2 and t3 using the Fourier
sifting property [307]. This would result in a spectrally dependent electric field amplitude which can be pulled
out of the integrals in Eq. A4.2.1, resulting in Eq. A4.4.
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3. The excitation spectra used in both 3D spectra must be measured in such a
way that they can be quantitatively compared (i.e. they must all be recorded
using the same acquisition parameters).

Using the pulse shaper based CMDS experiment, these requirements can all be
satisfied, so comparisons between 3D spectra can be made as long as they are made
consecutively and with no changes to the optical setup.



270 A P P E N D I X

Publications:

[1–3]

Conference Presentations:

[4–7]

References

[1] J. O. Tollerud, C. R. Hall, and J. A. Davis. Isolating quantum coherence using coherent multi-
dimensional spectroscopy with spectrally shaped pulses. Optics Express, 22(6): 6719–6733
(2014).

[2] C. R. Hall, J. O. Tollerud, H. M. Quiney, and J. A. Davis. Three-dimensional electronic spec-
troscopy of excitons in asymmetric double quantum wells. New Journal of Physics, 15(4):
045,028 (2013).

[3] J. Tollerud, C. Hall, and J. Davis. Isolating quantum coherence using coherent multi-
dimensional spectroscopy with spectrally shaped pulses. In K. Yamanouchi, S. Cundiff,
R. de Vivie-Riedle, M. Kuwata-Gonokami, and L. DiMauro (editors), Ultrafast Phenomena XIX,
volume 162 of Springer Proceedings in Physics, pp. 793–796. Springer International Publishing
(2015). ISBN 978-3-319-13241-9.

[4] J. O. Tollerud, C. R. Hall, and J. A. Davis. Isolating quantum coherence in semiconductor
quantum wells with pathway selective multidimensional spectroscopy. Australian Instutute of
Physics Congress, (10 December 2014).

[5] J. O. Tollerud, C. R. Hall, and J. A. Davis. Isolating coherent coupling with pathway selective
coherent multi-dimensional spectroscopy. Australian and New Zealand Conference on Optics
and Photonics, (9 December 2013).

[6] J. O. Tollerud, C. R. Hall, and J. A. Davis. Isolating quantum coherence in semiconductor
quantum wells with pathway selective multi-dimensional spectroscopy. Nonlinear Optics and
Excitation Kinetics in Semiconductors, (25 September 2014).

[7] J. O. Tollerud, C. R. Hall, and J. A. Davis. Isolating quantum coherence in semiconductor
quantum wells with pathway selective multi-dimensional spectroscopy. Photon14, (3 Septem-
ber 2014).

1



A5
P E R M I S S I O N T O U S E C O P Y R I G H T E D W O R K

271



272
A

P
P

E
N

D
IX



A
P

P
E

N
D

IX
273

From: Kathryn Shaw on behalf of Permissions
To: Jonathan Tollerud
Subject: Re: Perimission Request
Date: Tuesday, 29 September 2015 5:59:56 PM

Dear Jonathan Tollerud,

Thank you for your request to reproduce IOP Publishing material in your thesis. 

Regarding: 

Figure (Semicond. Sci. Technol. 20 (2005) 908–911) 

Figure 2 (J. Phys.: Condens. Matter 2 (1990) 1457-1474) 

We are happy to grant permission for the use you request on the terms set out below. 

Conditions

Non-exclusive, non-transferrable, revocable, worldwide, permission to use the material in print and
 electronic form will be granted subject to the following conditions:

·        Permission will be cancelled without notice if you fail to fulfil any of the conditions of this letter.

·        You will make reasonable efforts to contact the author(s) to seek consent for your intended use.
  Contacting one author acting expressly as authorised agent for their co-authors is acceptable.

·        You will reproduce the following prominently alongside the material:

o        the source of the material, including author, article title, title of journal, volume number,
 issue number (if relevant), page range (or first page if this is the only information available) and date
 of first publication.  This information can be contained in a footnote or reference note; or

o        a link back to the article (via DOI); and

o        if practical and IN ALL CASES for works published under any of the Creative Commons
 licences the words “© IOP Publishing.  Reproduced with permission.  All rights reserved””

·        The material will not, without the express permission of the author(s), be used in any way which,
 in the opinion of IOP Publishing, could distort or alter the author(s)’ original intention(s) and meaning,
 be prejudicial to the honour or reputation of the author(s) and/or imply endorsement by the author(s)
 and/or IOP Publishing.

·        Payment of £0 is received in full by IOP Publishing prior to use.

Special Conditions – For STM Signatories ONLY (as agreed as part of the STM Guidelines)

Any permissions granted for a particular edition will apply also to subsequent editions and for editions
 in other languages, provided such editions are for the work as a whole in situ and does not involve
 the separate exploitation of the permitted illustrations or excerpts.

If you have any questions, please feel free to contact our Permissions team at permissions@iop.org.

I should be grateful if you would acknowledge receipt of this email.

Kind regards,

Kathryn Shaw 

From: pubscopyright
To: Jonathan Tollerud
Subject: RE: Copyright Permissions request
Date: Tuesday, 29 September 2015 4:32:11 AM

Dear Dr. Tollerud,
 

Thank you for contacting The Optical Society.
                     
OSA considers your requested use of its copyrighted material to be Fair Use under United
 States Copyright Law.  It is requested that a complete citation of the original material be
 included in any publication. 
 
Let me know if you have any questions.
 
Kind Regards,
 
Susannah Lehman
 
 
Susannah Lehman
September 28, 2015
Authorized Agent, The Optical Society
 
 
 
From: Jonathan Tollerud [mailto:jtollerud@swin.edu.au] 
Sent: Sunday, September 27, 2015 8:22 PM
To: pubscopyright
Subject: Copyright Permissions request
 
Hello,
 
I would like to request permission to use a figure in my PhD Thesis:
 
“Understanding quantum processes in semiconductors through the use of selective
 multidimensional spectroscopy”
To be published in print and online, but not for a fee
 
I would like to use:
 
Figure 1
 
From:
J. Vaughan, T. Hornung, T. Feurer, and K. Nelson, "Diffraction-based femtosecond pulse shaping
 with a two-dimensional spatial light modulator," Opt. Lett.  30, 323-325 (2005).
 
https://www.osapublishing.org/ol/abstract.cfm?uri=ol-30-3-323
 
Best Regards,



274
A

P
P

E
N

D
IX

From: Joshua Vaughan
To: Jonathan Tollerud
Subject: Re: Perimission to Re-use a figure in my PhD Thesis
Date: Monday, 28 September 2015 10:56:42 AM

Dear Jonathan,

fine by me as long as you cite the source. I hope the chapter was helpful and I wish you
 good luck with your defense!

Best regards,
Josh

On Sun, Sep 27, 2015 at 5:42 PM, Jonathan Tollerud <jtollerud@swin.edu.au> wrote:

Dear Professor Vaughan,

 

I would like to request permission to use two figures from the chapter you wrote for Rick
 Trebino’s online ultrafast textbook in my PhD thesis:

“Understanding quantum processes in semiconductors through the use of selective
 multidimensional spectroscopy”

 

Specifically I would like to use Fig. 1 and Fig. 5.

 

Best Regards,

Jonathan Tollerud

Swinburne University of Technology

-- 
Joshua C. Vaughan
Assistant Professor
Department of Chemistry
Box 351700
University of Washington
Seattle, WA 98195
206-543-4644


	Abstract
	Dedication
	Acknowledgments
	Declaration
	Contents
	List of Figures
	List of Tables
	Acronyms

	1 Introduction
	2 Experimental Methods
	2.1 Four-wave mixing
	2.1.1 Formal description of FWM and Feynman-Liouville diagrams

	2.2 Coherent Multi-dimensional Spectroscopy
	2.2.1 Two-dimensional spectroscopy
	2.2.2 Three-dimensional spectroscopy

	2.3 Pathway selection
	2.3.1 Pathway selection using spectrally tuned pulses
	2.3.2 Pathway selection with temporal shaping
	2.3.3 Pathway selection with polarization control

	2.4 SLM based CMDS apparatus
	2.4.1 Oscillator
	2.4.2 Beam Shaping
	2.4.3 Pulse-shaping
	2.4.4 Delaying Pulses in a Rotating Frame 
	2.4.5 Pulse Compression
	2.4.6 Heterodyne Detection
	2.4.7 Phase-Cycling
	2.4.8 Experimental stability
	2.4.9 Vibration Isolated Cryostat
	2.4.10 Limitations of the SLM based CMDS experiment

	2.5 Experimental procedures
	2.5.1 Alignment and Calibration
	2.5.2 Typical Scan parameters
	2.5.3 Data Processing

	2.6 Photoluminescence Excitation Spectroscopy with a pulse-shaper
	2.7 Summary

	3 Coherent dynamics in semiconductor QWs: Background
	3.1 Fundamental concepts and linear optical response
	3.1.1 Electrons, holes and excitons
	3.1.2 Phonons
	3.1.3 Heterostructure
	3.1.4 Exciton Confinement
	3.1.5 Growth Techniques
	3.1.6 QW Linear optical and electronic properties
	3.1.7 Disorder and exciton localization
	3.1.8 Defects
	3.1.9 Lattice mismatch and strain

	3.2 Coherent response
	3.2.1 Decoherence induced by phonons
	3.2.2 Decoherence due to carrier-carrier interactions
	3.2.3 Quantum-beats
	3.2.4 Many-body Effects
	3.2.5 Multidimensional spectroscopy to study coherent effects in QWs


	4 Inter-well coherence and pathway-Selection in double quantum wells
	4.1 Motivation
	4.1.1 Motivation 1: Technique development
	4.1.2 Motivation 2: Mechanism of coherent inter-well interactions in wide barrier DQWs

	4.2 Pathway selection in 1Q and 0Q spectra
	4.3 Inter-well coherence in GaAs/AlGaAs DQWs
	4.3.1 GaAs/AlGaAs DQW Sample
	4.3.2 Broadband CMDS results
	4.3.3 Pathway-selective CMDS results
	4.3.4 Peak-Shape analysis
	4.3.5 Quantitative Analysis

	4.4 Inter-well coherence in InGaAs/GaAs DQW
	4.4.1 Previous studies on this sample
	4.4.2 Broadband and pathway selective CMDS Results

	4.5 Comparison of AlGaAs and InGaAs results and summary

	5 Pathway-Selective Two-Quantum Coherence
	5.1 Triple-resonance NMR
	5.2 Pathway selection in two-quantum coherence pulse ordering
	5.3 Results and discussion
	5.3.1 Suppression of free-carrier and defect interactions
	5.3.2 Quantitative comparison of cross-peak amplitudes

	5.4 Summary

	6 Dark state coherent dynamics and interactions between quantum well and barrier states
	6.1 Background: barrier-QW interactions and type-II LH excitons
	6.2 Sample and wavefunction calculations
	6.2.1 Exciton transitions in the InGaAs DQWs
	6.2.2 Variation of the calculated exciton transition energies
	6.2.3 Wavefunction overlap

	6.3 Results from DQW Sample A (30nm barrier)
	6.3.1 Photoluminescence excitation: Exciton relaxation pathways
	6.3.2 1Q/2D results
	6.3.3 0Q/2D and 2Q/2D results
	6.3.4 3D spectroscopy

	6.4 10nm barrier sample
	6.4.1 Relaxation pathways (PLE)
	6.4.2 1Q/2D spectrum of Sample B
	6.4.3 Coherence-specific, Pathway-selective 3D spectroscopy

	6.5 Discussion
	6.5.1 X and X peak assignments
	6.5.2 Population dynamics
	6.5.3 What are the X excitons?
	6.5.4 CMDS to detect dark states
	6.5.5 The role of the dark states in relaxation of excitons into QWs

	6.6 Summary

	7 Exciton dynamics in the very low excitation density regime
	7.1 Introduction
	7.2 AlGaAs DQWs
	7.2.1 Excitation density dependence of AlGaAs/GaAs DQWs
	7.2.2 An extended delocalized exciton state in Al2

	7.3 Excitation density dependence of the 10nm barrier InGaAs/GaAs DQW
	7.3.1 2Q peak-shape changes in the GaAs/InGaAs DQW

	7.4 Summary

	8 Summary and Outlook
	8.1 Pathway-selective coherent multidimensional spectroscopy
	8.2 Inter-well coherent superpositions in double quantum wells
	8.3 Spatially indirect `dark' excitons
	8.4 Low density experiments

	Bibliography
	A1 Experimental parameters
	A2 Experiment Layout
	A3 Wavefunction Calculations
	A4 Spectral correction
	A5 Permission to use copyrighted work

