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ABSTRACT
The mass and spin distributions of compact binary gravitational-wave sources are cur-
rently uncertain due to complicated astrophysics involved in their formation. Multiple sub-
populations of compact binaries representing different evolutionary scenarios may be present
amongst sources detected by Advanced LIGO and Advanced Virgo. In addition to hierarchical
modelling, unmodelled methods can aid in determining the number of sub-populations and
their properties. In this paper, we apply Gaussian mixture model clustering to 1000 simulated
gravitational-wave compact binary sources from a mixture of five sub-populations. Using
both mass and spin as input parameters, we determine how many binary detections are
needed to accurately determine the number of sub-populations and their mass and spin
distributions. In the most difficult case that we consider, where two sub-populations have
identical mass distributions but differ in their spin, which is poorly constrained by gravitational-
wave detections, we find that ∼400 detections are needed before we can identify the correct
number of sub-populations.

Key words: gravitational waves.

1 IN T RO D U C T I O N

The Advanced LIGO (aLIGO; The LIGO Scientific Collaboration
et al. 2015) and Advanced Virgo (AdVirgo; Acernese et al. 2015)
gravitational-wave detectors observed 10 stellar-mass binary black
hole (BBH) mergers (Abbott et al. 2016; The LIGO Scientific
Collaboration et al. 2018) and a binary neutron star (BNS) merger
(Abbott et al. 2017) during the first two observing runs. The third
observing run is currently underway, and several gravitational-
wave detection candidates have been identified and circulated
to electromagnetic partners via Gamma-ray Coordinates Network
(GCN).1 These merging compact binaries may have formed through
several different formation mechanisms. Some of the possible
formation mechanisms are classical isolated binary evolution (e.g.
Belczynski et al. 2016), dynamical interactions in dense stel-
lar environments (e.g. Heggie 1975), chemically homogeneous
evolution (Mandel & de Mink 2016; Marchant et al. 2016),
triple system formation (e.g. Antonini, Toonen & Hamers 2017;
Rodriguez & Antonini 2018), or even a single event gravita-
tionally lensed into multiple events (Broadhurst, Diego & Smoot

� E-mail: dr.jade.powell@gmail.com
1https://gcn.gsfc.nasa.gov

2019). Multiple compact binary gravitational-wave detections en-
able the study of the properties of populations of sources, which
will constrain formation mechanisms (e.g. Stevenson, Ohme &
Fairhurst 2015; Farr et al. 2017; Gerosa & Berti 2017; Steven-
son, Berry & Mandel 2017; Vitale et al. 2017; Zevin et al.
2017; Talbot & Thrane 2018; Wysocki, Lange & O’Shaughnessy
2018a)

The rates, masses, and spins of BBHs can inform our understand-
ing of their formation. If reliable models are available for different
formation mechanisms, then hierarchical inference can be applied
to compact objects detected in gravitational waves. This approach is
optimal when models can be trusted, and allows the mixing ratios of
different sub-populations and the properties of each population (e.g.
the physics governing natal kicks received during core collapse or
common envelope phases during binary evolution) to be measured
(Farr et al. 2015).

Several studies have compared mass distributions to population
synthesis models (Stevenson et al. 2015; Zevin et al. 2017; Gerosa
et al. 2018; Taylor & Gerosa 2018; Wysocki et al. 2018b). For
example, Barrett et al. (2018) argued that the parameters describing
common envelope ejection efficiency, stellar wind strength, and
natal kicks can all be measured to an accuracy of a few per cent
with a thousand detections, provided the parametrized evolutionary
model is accurate.
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The spin magnitudes and the alignment between the black hole
spins and the orbital angular momentum carry information about the
black hole binary formation mechanism. However, spin is difficult
to constrain with gravitational-wave observations. Isotropic spin-
orbit misalignment angles are expected for dynamically formed
binaries (Heggie 1975; Bogdanović, Reynolds & Miller 2007;
Rodriguez et al. 2016), but isolated binaries are expected to be
preferentially aligned with the orbital angular momentum (e.g.
Belczynski et al. 2016; Kushnir et al. 2016; Qin et al. 2019). To
determine the distinguishability of these two formation mechanisms
with gravitational-wave observations, hierarchical models have
been applied to real and simulated gravitational-wave measurements
of spin-orbit misalignment angles (Farr et al. 2017; Stevenson
et al. 2017; Talbot & Thrane 2017; Vitale et al. 2017; Farr,
Holz & Farr 2018; The LIGO Scientific Collaboration & The Virgo
Collaboration 2018).

However, given the many modelling uncertainties, unmodelled or
weakly modelled inference is a necessary back-up tool for studying
source populations. Previous studies include fitting phenomenolog-
ical population hyper-parameters to mass distributions, assuming
the mass distribution is a power law inherited from the stellar
initial mass function (Kovetz et al. 2017; The LIGO Scientific
Collaboration & The Virgo Collaboration 2018; Wysocki et al.
2018a; Roulet & Zaldarriaga 2019), and including an upper mass
gap and an excess of black holes near 40 M� (Fishbach & Holz
2017; Talbot & Thrane 2018).

Unmodelled clustering techniques are particularly useful for
interpreting population data when there is limited confidence in
the available models. Mandel et al. (2015) argued that clustering
can distinguish mock sub-populations of BNSs, neutron star black
holes, and BBHs with tens of observations using only information
about the masses of the two compact objects. Mandel et al. (2017)
demonstrated that this is achievable for populations of compact
binary mergers whose true mass distributions do not overlap (but
whose measured properties do overlap because of measurement
uncertainty). The method used in Mandel et al. (2017) involves
reconstructing the observed mass distribution of merging compact
binaries with a Gaussian process prior over a pixellated two-
dimensional mass distribution with ∼102 bins. Clusters are found in
the reconstructed mass distribution with a ‘water filling’ algorithm
(Mandel et al. 2017).

The clustering method of Mandel et al. (2017) scales poorly to a
high-dimensional observable parameter space. The number of bins
is exponential in the number of dimensions; ∼104 bins will be
needed in four dimensions. The ‘water filling’ clustering algorithm
does not scale trivially to higher dimensions.

A Gaussian mixture model is an alternative clustering algorithm
that scales well with the number of dimensions. A Gaussian
mixture model fits a convex combination of multivariate Gaussian
distributions to the input data. Wysocki (2017) apply a Gaussian
mixture model to two simple examples. The first is a synthetic
population of 30 binaries containing two sub-populations widely
separated in the parameter space. One of the sub-populations has
high mass and low spin, and the other has low mass and high spin.
They predict the correct number of sub-populations but incorrectly
predict the features of each sub-population when there are only 30
detections. The second example is 1000 perfect measurements from
a single power-law distribution containing a mass gap.

Gaussian mixture models have also been applied to gravitational-
wave detector noise transients, as finding different populations
of noise transients can help identify their origin (Powell et al.
2015).

We expand on previous studies by applying clustering methods
to sources sampled from a mixture of five complex sub-populations
of simulated compact binaries. We model the imperfect inference
on individual source parameters from their gravitational-wave
signatures via realistic simulated posterior distributions. We apply a
Gaussian mixture model (Pedregosa et al. 2011), assuming that the
source population can be represented by a mixture of multivariate
Gaussians. We apply this method simultaneously to both the mass
and spin parameters for all of the binary systems considered. We
consider how well our method can predict the correct properties
of each sub-population. We show that the freedom in the choice
of parametrization, the choice of cluster shape, and the choice of a
distance metric can have a large effect on the results.

This paper is structured as follows. Section 2 describes the mock
astrophysical sub-populations considered in this study. Section 3
explains how the mock inferred posteriors on the gravitational-wave
parameters are produced. Section 4 presents the Gaussian mixture
model method applied to the simulated sub-populations. The results
are shown in Section 5, and a conclusion and discussion are given
in Section 6.

2 SUB-POPULATI ONS

In this study, we simulate five sub-populations of compact binaries.
There are a total of 1000 simulated binaries with 20 per cent from
each sub-population. The choice of 20 per cent is arbitrary, as we
do not know what the true mixture fraction of sub-populations will
be. This choice is not intended to be realistic; for examle, it does
not respect the currently observed ratios between different binary
types (The LIGO Scientific Collaboration et al. 2018). In Section 5,
we show that varying the mixing ratios does not significantly affect
our results.

We consider four parameters for each simulated binary. They are
the companion masses m1 and m2, and the aligned spins χ1 and χ2,
where

χ1,2 = a1,2 cos θ1,2. (1)

The spin-orbit misalignment angle is given by θ , and a is the spin
magnitude.

The true masses and spins of the compact objects in each sub-
population are shown in Fig. 1, and further details of their ranges
are given in Table 1. We consider our sub-populations as toy models
that demonstrate our method.

The first three sub-populations are BNSs, neutron star black hole
binaries (NSBHs), and BBHs (BBH1). The mass distributions are
taken from Dominik et al. (2015) as in the previous studies of
Mandel et al. (2015, 2017). The sub-populations were produced
by the population synthesis code StarTrack (Belczynski et al.
2008) and down-selected to only include binaries in the aLIGO and
AdVirgo detection range. Fig. 1 shows the clear gap in mass between
the three sub-populations. We further assume that all compact
objects in these three populations have zero spin.

The fourth sub-population (BBH2) has the same mass distribution
as BBH1 but allows for the secondary companion to have aligned
spin: a1 is zero, and the secondary black hole spin a2 is uniformly
distributed between 0.7 and 0.95. For BBHs formed through
common envelope evolution, the first born black hole is likely to
have negligible spin (Qin et al. 2018; Bavera et al. 2019). This is
because most of its angular momentum is stored in the envelope
during the giant stage, and is removed during mass transfer or
common envelope evolution. The spin of the second born black
hole is determined by the effects of wind mass-loss and tides on
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3812 J. Powell et al.

Figure 1. The true mass and spin values of 1000 simulated compact binaries. The different colours correspond to the different sub-populations. Left: The true
values of the individual masses. Populations BBH1 and BBH2 have identical mass distributions. Middle: The true values of the aligned spins of the black hole
sub-populations. The sub-populations containing neutron stars all have zero spin. Right: The true values converted to effective spin and log chirp mass.

Table 1. Details of the five sub-populations considered in this study. The first is non-spinning BNSs. The second is neutron star black hole binaries. The third
and fourth sub-populations are black holes with the same mass distribution but different spin distributions. The fifth population contains higher mass black
holes with larger spins.

Short name Source type Mass distribution m1 90% range m2 90% range Spin distribution

BNS Neutron star binaries Dominik et al. (2015) 1.3–1.32 M� 1.2–1.3 M� χ1 = χ2 = 0
NSBH NS–BH binaries Dominik et al. (2015) 7–15 M� 1.3–1.9 M� χ1 = χ2 = 0
BBH1 Black hole binaries Dominik et al. (2015) 7–28 M� 5–24 M� χ1 = χ2 = 0
BBH2 Black hole binaries Dominik et al. (2015) 7–26 M� 5–23 M� χ1 = 0, χ2 = U(0.7, 0.95)
BBH3 Black hole binaries Mandel & de Mink (2016) 29–56 M� 25–44 M� χ1 = χ2 = U(0.5, 1.0)

its progenitor, a helium star (Kushnir et al. 2016; Gerosa et al.
2018; Qin et al. 2018; Zaldarriaga, Kushnir & Kollmeier 2018;
Bavera et al. 2019). If the binary has a sufficiently short orbital
period, the helium star may be spun up through tides and form
a rapidly spinning black hole. Otherwise, in binaries with larger
orbital periods, the helium star is not spun up through tides, and loses
angular momentum through stellar winds. We use this to motivate
the spin values of BBH1 and BBH2. Distinguishing between BBH1
and BBH2 is expected to be the most difficult example considered
in this study due to the poor constraints on gravitational-wave spin
measurements.

BBHs formed through binary evolution are expected to have their
spins preferentially aligned with the orbital angular momentum.
The spins are perfectly aligned in both sub-populations that have
spins, i.e. θ = 0 for all our binary systems. Misalignments are
fairly uncertain, due to uncertainties both in the magnitude of black
hole kicks, and in realignment processes through binary evolution
(Gerosa et al. 2018; Wysocki et al. 2018b). We do not expect the
assumption of spin-orbit alignment to have a significant effect on our
results as the distributions would still be reasonably well separated if
a more moderate amount of misalignment was included, as expected
in more realistic models.

The fifth sub-population (BBH3) consists of black holes with
a higher mass distribution based on the results of Mandel & de
Mink (2016), where they consider merging BBHs formed through
chemically homogeneous evolution in short-period stellar binaries.
The individual masses are distributed between approximately 25
and 50 M�. The aligned spins of the individual black holes are
motivated by the results of Marchant et al. (2016) and are uniformly
distributed between χ = 0.5 and χ = 1.0.

3 PO S T E R I O R S

Bayesian parameter estimation is applied to data containing detected
gravitational-wave signals to produce posterior distributions for
the astrophysical parameters of the source (Veitch et al. 2015).

For compact binary signals, the parameters include the mass,
spin, eccentricity, distance, inclination, and sky position. Bayesian
inference is computationally expensive for a large number of
detections. Therefore, for this study, we produce realistic artificial
posteriors for mass parameters as in Mandel et al. (2017), and spin
parameters as in Stevenson et al. (2017).

For the mass posteriors, we first sample values for m1 and m2

from each of the five sub-populations described in Section 2. For
each binary system, we then draw a signal-to-noise ratio (SNR)
ρ value from a p(ρ) ∝ ρ−4 distribution (Schutz 2011), where a
network SNR ρ ≥ 12 is used as a threshold for detectability. The
mass parameters are converted into a chirp mass Mc given by

Mc = (m1m2)3/5

(m1 + m2)1/5
, (2)

and a symmetric mass ratio η given by

η = m1m2

(m1 + m2)2
. (3)

We then calculate the posteriors for the masses using the method in
Mandel et al. (2017). The posteriors are generated in the chirp mass
parameter space as

Mc = MT
c

[
1 + α

12

ρ
(r0 + r)

]
(4)

and the symmetric mass ratio as

η = ηT

[
1 + 0.03

12

ρ
(r0 + r)

]
. (5)

Here, MT
c and ηT are the true values, r0 is a random number drawn

from a standard normal distribution that represents the shift of the
mean of the posterior with respect to the true value, and r is an array
of random numbers from the standard normal distribution. As in
Mandel et al. (2017), the parameter α, which determines the width
of the posterior distribution, is motivated by the previous studies of
Littenberg et al. (2015) and Mandel et al. (2015), and has values of
0.01, 0.03, and 0.1 when ηT > 0.1, 0.1 > ηT > 0.05, and 0.05 > ηT,
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respectively. The posterior samples on Mc and η are then converted
to samples back in the m1 and m2 parameter space.

We then generate the spin posteriors using the method of
Stevenson et al. (2017). As for the mass posteriors, we sample
values for χ1 and χ2 from the relevant distributions from each of
the five sub-populations. Those values can then be used to determine
the effective spin χ eff (Damour 2001; Racine 2008; Ajith et al. 2011)
defined as

χeff = a1 cos θ1 + qa2 cos θ2

(1 + q)
, (6)

where the mass ratio q = m2/m1. The posteriors are generated in the
χ eff and χ1 parameter space as

χeff = χT
eff +

[
β

12

ρ
(r0 + r)

]
, (7)

χ1 = χT
1 +

[
γ

12

ρ
(r0 + r)

]
, (8)

where β = 0.1 and γ = 0.2, as in Stevenson et al. (2017), and limits
of −1 and 1 are applied to both parameters. A posterior for the χ2

parameter is then determined from the posteriors for χ eff, χ1, and
q. The same number of posterior samples, between 200 and 1000,
are used for the spin parameters of a given event.

The 90 per cent confidence interval contours for five represen-
tative posterior distributions from each of the three BBH sub-
populations are shown in Fig. 2. The mass posteriors show the
typically expected banana shape. Their size is related to the SNR
of the signal. The aligned spin posteriors are much wider than the
mass posteriors, as spin is poorly constrained by gravitational-wave
detections.

In a generic BBH, the black hole spins will not be perfectly
aligned with the orbital angular momentum. In these systems, the
black hole spins will precess (Apostolatos et al. 1994; Gerosa
et al. 2014). This causes the distribution of spin-orbit misalignment
angles cos θ1,2 to vary with orbital frequency (or equivalently,
gravitational-wave frequency). The distribution of χ eff is approxi-
mately constant at the second post-Newtonian order (Racine 2008).
An isotropic distribution of spins is expected to remain isotropic
through post-Newtonian evolution (Schnittman 2004; Bogdanović
et al. 2007). These considerations will be important in choos-
ing the parametrization for clustering on real gravitational-wave
observations.

4 C L U S T E R I N G ME T H O D

In this study, we consider a Gaussian mixture model as implemented
in Scikit learn (Pedregosa et al. 2011). A Gaussian mixture model
fits a linear combination of multivariate Gaussian distributions to
the input data. Our implementation of this method requires smooth
inputs for clustering, so it is not possible to use all of the posterior
samples as input. We therefore represent each observation by a set
of estimators: the median and 90 per cent confidence limit values
of each marginalized one-dimensional posterior. Thus, the input
data x for an observation with n inferred parameters is a vector of
length 3 × n. An n-dimensional Gaussian probability density is
given by

p(x|μ,
) = 1√
(2π )ndet


exp

[
−1

2
(x − μ)T 
−1(x − μ)

]
, (9)

where μ is the mean, and 
 is the covariance matrix. The likelihood
function for a single observation under a K-component Gaussian

mixture model is then given by

GMM(x|w, {μ, 
}) =
K∑

k=1

wkp(x|μk, 
k) , (10)

where wk are the mixture weights equal to marginal probabilities
of mixture components. The free parameters for each Gaussian are
its weight (up to an overall normalization), mean, and covariance
matrix. Therefore, we need to find the optimum parameters that
maximize the likelihood in order to fit the mixture of Gaussians to
the observed compact binary population. This likelihood for the full
set of N observations X = {X1...XN} is given by

p(X|w,μ, 
) =
N∏

j=1

GMM(Xj |w, μ, 
) . (11)

An expectation maximization technique (Dempster, Laird & Rubin
1977) is then used to find a maximum likelihood estimate that
determines the correct values of the means, weights, and covariance
matrices for a given number of Gaussians. In this method, the
weights, means, and covariances are first randomly initialized. Then
the expectation and maximization steps are iterated repeatedly so
that the likelihood of the data increases at the end of each step.

To determine the correct number of Gaussians, we minimize the
Bayesian Information Criterion (BIC) given by

BIC = −2 lnL + k ln N, (12)

where k is the number of free parameters to be estimated and L is
the maximized value of the likelihood of the best-fitting model. BIC
adds a penalty to models with larger numbers of parameters to avoid
over fitting. The maximum number of Gaussians we consider for
this method is 10. This method can produce results in a few seconds
for very large numbers of detected compact binaries. Other mixture
model methods that can be used for model selection include infinite
mixtures and bottom-up growing and top-down pruning techniques
(Rasmussen 2000; Figueiredo & Jain 2002; Del Pozzo et al. 2018).

5 R ESULTS

Here, we report on the results of applying a Gaussian mixture model
to our mock population. We are particularly interested in the number
of clusters re-constructed (does it equal the five modelled sub-
populations) and the weights assigned to each cluster (does it equal
20 per cent as in the model). We also track the fraction of events
from the same sub-population that are clustered together. These
results are given in Table 2.

We vary the choices of parameters used for clustering. Clustering
requires a choice of a metric on the parameter space in order
to define a distance between clusters and a choice for the shape
of each cluster. Neither can be determined from first principles.
Whilst the assumed Gaussian probability density with covariance
matrices define the cluster shape and a (Euclidean) distance metric,
changing the parametrization effectively changes the cluster shape
and distance; for example, transforming to logarithmic coordinates
is equivalent to assuming a lognormal cluster shape rather than a
normal one. We thus consider using log chirp mass and the effective
spin as clustering parameters, as these are better determined from
observations than individual masses and spins. We also include
results using only mass, spin, and the BBH sub-populations. The
results are given in Table 2.

Although optimality is difficult to define, we find that for our
particular population of events, using individual masses and spins
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3814 J. Powell et al.

Figure 2. Five representative 90 per cent confidence interval contours for the mass and spin posteriors of the three different BBH populations. The mass
posteriors show the typical banana shape and are better constrained than the spin. BBH1 and BBH2 have the same mass distributions but differ in their aligned
spins.

Table 2. Gaussian mixture model results for different combinations of parameters. The best results are obtained when parametrizing the full population with
m1, m2, χ1, and χ2.

Parameters No. predicted BNS NSBH BBH1 BBH2 BBH3
sub-populations

m1, m2 4 98% in the same
cluster

99% in the same
cluster

Mixed with BBH2 Mixed with BBH 1 79% in the same
cluster

χ1, χ2 4 Mixed with BBH1 95% in the same
cluster

Mixed with BNS 78% in the same
cluster

57% in the same
cluster

m1, m2, χ1, χ2 5 99% in the same
cluster

100% in the same
cluster

80% in the same
cluster

68% in the same
cluster

81% in the same
cluster

log Mc, χ eff 5 92% in the same
cluster

92% in the same
cluster

Mixed with BBH2 Mixed with BBH1 91% in the same
cluster

BBH only, m1, m2, χ1, χ2 3 74% in the same
cluster

47% in the same
cluster

68% in the same
cluster

BBH only, log Mc, χ eff 3 Mixed with BBH2 Mixed with BBH1 92% in the same
cluster

as clustering parameters yields robust results. The number of sub-
populations is generally correctly determined for all parameter
options. As expected, only four sub-populations are found when
using the mass parameters alone, since BBH1 and BBH2 have
identical mass distributions. When using spins alone, similar results
to the combined spin and mass case are found for sub-population
BBH2, however only around half of the BBH3 binaries are in the
same sub-population, with the other half mixed in with the other
sub-populations. Two of the sub-populations with zero spin, BNS
and BBH1, were mixed as expected. However, the NSBH sub-
population that also has zero spin was still distinguishable from the
other zero spin sub-populations. This is due to the mass ratio value
of the NSBH sub-population changing the shape of the posteriors in
the individual spin parameter space. Log chirp mass and effective
spin also lead to BBH1 and BBH2 being mixed into two classes
that are split into lower and higher masses, rather than by spins,
despite their different spin distributions. This may be partly related
to a partial artificial breaking of the spin-degeneracy in our spin
measurement uncertainty model.

When using only the binaries in the three BBH sub-populations,
the results show that there is a larger mixing between sub-

populations than when the BNS and NSBH sub-populations are
included. Using all possible compact binaries and the full set of
parameters m1, m2, χ1, and χ2 yields the most information, and the
Gaussian mixture model performs better with a larger set of input
data. Now that the best parametrization has been identified, the rest
of the results in this section use only χ1, χ2, m1, and m2 as input
parameters.

We investigate how many detections are needed before the correct
number of sub-populations can be identified. We detect the binary
signals in a random order starting with 30 detections, increased
in steps of five detections, and apply the Gaussian mixture model
after each step. The results are shown in Fig. 3. With only 30
detections, the smallest number we consider, we can distinguish
between the BNS, NSBH, and BBH sub-populations. The three
BBH sub-populations are then split into a large number of Gaussians
by the mass of the binaries. This is because the masses are
better constrained by gravitational-wave signatures than the spin;
therefore, a larger number of spin posteriors are required before the
spin has a significant influence on the results. Accidental apparent
clustering of a small number of observations in a multidimensional
space leads to an overestimate of the number of clusters for �100
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Gravitational wave populations 3815

Figure 3. Left: The number of sub-populations estimated by the Gaussian mixture model parametrized with χ1, χ2, m1, and m2 as the number of detections is
increased. Approximately 400 detections are needed to estimate the correct number of sub-populations. Right: The estimated weights of the five clusters after
the correct number of clusters is determined.

detections. After 105 detections, the binaries in the BBH3 sub-
population are correctly grouped together by the Gaussian mixture
model, but the BBH1 and BBH2 sub-populations are still mixed
either into the same sub-population or into two sub-populations
that are split by their mass. After 400 detections, we can start to
distinguish between the more difficult case of the BBH1 and BBH2
sub-populations.

In Fig. 3, we also show the weight values after the correct number
of sub-populations has been determined. The correct number for
all sub-populations should be 0.2 with a multinomial counting
uncertainty that is given by

uncertainty =
√

Npop − 1

N2
popNdet

= 0.4N−0.5
det , (13)

where Npop = 5 is the number of sub-populations, and Ndet is the
number of detections. The BNS and NSBH sub-populations have
the correct weight values. There is a larger error in the weights
of the three BBH sub-populations due to some mixing between the
different sub-populations. This occurs due to the poor gravitational-
wave spin measurements and two of the sub-populations only
differing in their spin values.

After finding the correct number of sub-populations, we want
to know the mass and spin distributions of each individual sub-
population, as this will aid investigations into differences in their
formation mechanisms. The individual mass and spin distribu-
tions determined by this method after 400 detections are shown
in Fig. 4.

In cluster 1, associated with the BNS sub-population, both masses
have distributions expected for neutron stars and both of the aligned
spin distributions are centred on zero. In cluster 2, associated
with the NSBH sub-population, mass distributions show that m1

is typically a low-mass black hole and that m2 is a neutron star. The
spin distributions of cluster 2 (NSBH) and cluster 3 (BBH1) are
centred on zero, as expected. Cluster 5, associated with the BBH3
sub-population, contains systems with high masses and high spins,
whilst cluster 4 (BBH2) exhibits a χ2 distribution favouring high
spin whilst the χ1 distribution is centred on zero.

We investigate the impact of different mixing ratios in the mock
population by considering two other population models consisting
of the same five sub-populations present with different relative
mixing ratios. In all cases, we evaluate the clustering results after
620 detections. The first new mixture, which we refer to as mixture
2, consists of a much smaller number of BNS and NSBH signals
as expected from current gravitational-wave detections. The total

population in this mixture consists of 6.5 per cent BNS, 6.5 per cent
NSBH, 29 per cent BBH1, 29 per cent BBH2, and 29 per cent BBH3
signals. The second new mixture, which we refer to as mixture 3, has
a smaller number of BNS, NSBH, and BBH in one of the BBH sub-
populations. This mixture consists of 16 per cent BNS, 16 per cent
NSBH, 16 per cent BBH3, 26 per cent BBH1, and 26 per cent BBH2
signals.

The results for the different mixtures are shown in Table 3.
Our clustering algorithm determines the correct number of sub-
populations for all of the mixing ratios considered. For mixture 2,
where there is now a much smaller number of BNS and NSBH
detections, the increase in the ratio of detections from all three
BBH sub-populations leads to an improved clustering result for
those three sub-populations. For mixture 3, where we also decrease
the BBH3 population, the accuracy of the results is similar to the
equal mixture case.

6 C O N C L U S I O N S

Measuring the number, properties, and shapes of the sub-
populations associated with different source types and formation
channels of merging compact binaries detected through their
gravitational-wave signatures will assist in the astrophysical inter-
pretation of these observations. We explore clustering on simulated
distributions for the masses and spins of binary systems from a
mixture of five sub-populations, using mock inference on their
individual parameters from gravitational-wave observations. We
demonstrate that Gaussian mixture model clustering on the full set
of observations in the four-dimensional space of source parameters
makes it possible to distinguish the multiple sub-populations present
after 400 detections and determine the mass and spin distributions
of each sub-population.

Gaussian mixture model clustering is robust and computationally
efficient. It scales well to higher-dimensional parameter spaces, but
it requires a partial loss of the posterior information, as only a
few estimators rather than the full event posteriors are used for
clustering. On the other hand, as with any clustering technique, it
relies on the choice of a distance metric in the parameter space. It
also assumes a specific parametrized shape for the clusters in the
mixture model. Although the method performs robustly on the mock
populations we simulate, which are not multivariate Gaussians, it
may be suboptimal for some non-Gaussian distribution shapes. This
method requires an upper limit on the number of sub-populations;
we use the BIC to determine the optimal number of sub-populations.
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Figure 4. The individual mass and spin distributions (binned posterior medians) of the sub-populations identified by the Gaussian mixture model after 400
detections. Top left: The five m1 distributions. Top right: The m2 distributions. Bottom left: The χ1 distributions. Four of the distributions are clearly centred on
zero, whilst one distribution has higher values. Bottom right: The χ2 distributions. Two of the distributions have higher χ2 values than the other three, which
are centred on zero.

Table 3. The results after 620 detections when analysing populations consisting of a mixture of the same five sub-populations with different mixing ratios.
Mixture 2 contains a much smaller number of BNS and NSBH. Mixture 3 has fewer detections in the BBH3 sub-population as well BNS and NSBH. The
Gaussian mixture model isolates five sub-populations for all mixtures considered.

Mixtures No. predicted BNS NSBH BBH1 BBH2 BBH3

Equal ratio 5 99% in the same
cluster

100% in the same
cluster

86% in the same
cluster

69% in the same
cluster

64% in the same
cluster

Mixture 2 5 100% in the same
cluster

100% in the same
cluster

81% in the same
cluster

79% in the same
cluster

91% in the same
cluster

Mixture 3 5 99% in the same
cluster

100% in the same
cluster

79% in the same
cluster

79% in the same
cluster

65% in the same
cluster

Finally, this method does not allow us to produce uncertainty
estimates on the number of sub-populations and their weights;
however, this is a general challenge for any clustering method that
relies on an arbitrary distance metric, and is not a specific flaw of
the current technique.

The difficulty in distinguishing sub-populations depends on the
similarity of the parameters of the binaries in the different sub-
populations, and the exact number of observations necessary for
this therefore depends on the population properties. The most
difficult case we consider here is two sub-populations of BBHs
that have identical mass distributions and differ only in one of
their spin components. We do not incorporate selection effects in
our analysis (Farr et al. 2015; Mandel, Farr & Gair 2019). We
also do not consider the effect of lower significance gravitational-
wave detections, which may be produced by transient noise that
could not be distinguished from gravitational-wave sources (Gaebel
et al. 2019).
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MNRAS, 465, 3254
Mandel I., Farr W. M., Gair J. R., 2019, MNRAS, 486, 1086

Marchant P., Langer N., Podsiadlowski P., Tauris T. M., Moriya T. J., 2016,
A&A, 588, A50

Pedregosa F. et al., 2011, J. Mach. Learn. Res., 12, 2825
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