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Abstract 10 

Ceramic  tiles,  used  in  body  armour  systems,    are  currently   inspected    visually    offline    using    an    X-ray    11 
technique    that    is  both   time    consuming    and    very    expensive.    The    aim    of    this    research    is    to    12 
develop    a    methodology    to    detect,    locate    and    classify    various   manufacturing   defects   in  Reaction 13 
Sintered  Silicon  Carbide  (RSSC)  ceramic  tiles,  using  an  ultrasonic  sensing  technique. Defects  such  as  free    14 
silicon,    un-sintered    silicon  carbide   material    and    conventional    porosity   are  often  difficult  to  detect  using 15 
conventional  x-radiography.  An   alternative   inspection    system    was    developed    to    detect    defects    in    16 
ceramic    components    using    an    Artificial    Neural    Network    (ANN)    based    signal    processing    technique.    17 
The    inspection    methodology    proposed    focuses    on    pre-processing    of    signals,    de-noising,    wavelet    18 
decomposition,    feature    extraction    and    post-processing    of    the    signals    for    classification    purposes.    19 
This    research    contributes    to    developing    an    on-line    inspection    system    that    would    be    far    more    20 
cost    effective   than   present   methods    and,    moreover,    assist    manufacturers    in    checking    the    location    21 
of    high    density    areas,    defects    and    enable    real    time    quality    control,    including    the    implementation    22 
of    accept/reject    criteria. 23 
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1.    Introduction         29 

The  quality  and integrity of engineering ceramics, especially  those  used  in  high - performance 30 

body armour  systems,  is  of  paramount  importance  because  a  number  of  material  31 

characteristics  affect  the  service  life  of  the finished  product.  Some  of  these  aspects  include  32 

microstructure  ,  mechanical  properties,  physical  properties  and  elemental  distribution[1].  The  33 

Reaction  Sintered  Silicon Carbide  (RSSC)  ceramic  tile  used  in  this  research  has  been  34 

manufactured  by  a  reaction  bonding   process  which  involves  the  infusion  of  liquid  silicon  35 

into  a  porous  ceramic  preform.  Net  shape  components,  with  complex  shapes,  can  be  36 

fabricated  by  this  reaction  forming  technique[2].  This  can  lead    to  a  number  of  37 

characteristic  defects  such  as  islands  of  free  silicon  metal, closed  areas  of  un-sintered  38 

material,  as  well  as  conventional  porosity.  Most  of  these   casting-like   defects  occur  during  39 

the  high  temperature  process  as  the  liquid  silicon  infiltrates  the  green  compact.  At  the  40 

current  time, the  ceramic  tiles  are  inspected  offline. This  involves  considerable time and  41 

expensive  equipment. Identification  of  defect  types  depends  exclusively  on  the  experience  42 

and  knowledge  of  the  operator. Along  with  this,  x-radiography is  not  able  to  distinguish 43 

microstructural  differences  in  areas  of  similar  bulk  density.  Therefore,   industry  would  44 

benefit from  a  new    on-line  system,  possibly  based  on  an  ultrasonic  approach,  that  would  45 

be  far  more  discerning  and  more  cost  effective  with  a built-in  set  of  accept / reject  criteria. 46 

           47 

            An  ultrasonic  inspection  method  has  been  developed  that  provides  useful  information  48 

about  the  integrity/possible  defects  in  ceramic  tiles.  The  ultrasonic  wave,  generated  by  a  49 

transducer  propagates  through  the  material  and  is  reflected  by  defects  and  the  back  surface  50 

of  the  sample.  The  signals  reflected  by  defects  possess  information  about  defect  size,  51 

location  and  orientation.  Automated  signal  classification  is  becoming  increasingly  important  52 

in  many  applications,  including  armour  ceramics.  The  main  aim  for  the  use  of  such  systems  53 

is  the  need  for  accurate  interpretation  of  large  volumes  of  inspection  data  with  minimum  54 

errors  thus  increasing  the  confidence  in  testing  and  safety  of  armour  ceramics  in  future  55 

applications[3-7].  This  research  proposes  an  automated  ultrasonic  sensor  based  technique  that  56 

processes  the  signals  acquired  from  ceramic  tiles  and  locates  and  classifies  any  defects  57 

present. 58 
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          Machine  learning  systems  perform  two  main  functions,  feature  extraction  and  59 

classification.  Over  the  last  decade,  extensive  research  has  taken  place  on  the  development  60 

of  efficient  and  reliable  methods  for  the  selection  of  features  in  the  design  of  machine  61 

learning  systems,  where  features  constitute  inputs  to  a  classifier.  The  significant  issue  in  62 

classification  is  the  choice  of  an  appropriate  classifier.  Some  classical  classifiers  are  Fisher's  63 

linear  discriminant  and  K-Nearest  Neighbours[8].  Recently,  classifiers  such  as  neural  64 

networks  (NN),  neuro-fuzzy  classifiers,  tree  classifiers  and  support  vector  machines  (SVM)  65 

have  found  wide  applications[8].  Limited  work  has  been  done  in  classifying  defects  in  66 

ceramic  components  especially  in  armour  ceramics[9].  Sambath[10]  in  his  research  presented  67 

a  signal  processing  technique  based  on  a  wavelet  transform,  which  enhanced  the  sensibility  68 

of  flaw  detection  to  characterize  defects.  An  artificial  neural  network  (ANN)  combined  with  69 

discrete  wavelet  transform  (DWT)  coefficients  as  input  to  NN,    have  been  applied  to  70 

interpret  ultrasonic  signals  during  weld  bead  inspection.    Martin[11]  had  developed  an  71 

artificial  neural  network  model  for  the  ultrasonic  pulse  echo  technique  to  classify  resistance  72 

spot  welds  into  four  classes.  He  used  a  back  propagation  multilayer  feed  forward  ANN  73 

training  algorithm  for  the  classification  of  spot  welds.  Feature  inputs  to  the  ANN  consisted  74 

of  ten  component  vectors  that  contained  information  on  relative  heights  of  the  echoes  and  75 

the  distance  between  consecutive  echoes.  A  success  rate  of  100%  was  achieved .  76 

Obaidat[12]  in  his  research  developed  a  methodology    to  detect  defects  using  ultrasonic-77 

based  NDT  using  multi-layer  perceptron’s.  The  author  found  that  results  obtained  by  using  78 

the  discrete  wavelet  transform  and  neural  networks  were  superior  to  those  obtained  using  79 

neural  networks  on  their  own.  Sungjoon[13]  in  ultrasonic  testing  of  materials  reported  that  80 

the  grain  scattering  echoes  are  randomly  distributed  across  the  entire  frequency  band  of  the  81 

measured  signal  ,  while  the  flaw  signal  is  more  visible  in  lower  frequency  bands.  The  82 

author  presented  a  study  comparing  neural  network  flaw  detection  techniques  with  83 

conventional  post-processing  methods  using  split  spectrum  processing  (SSP)  that  showed  84 

superior  results  for  neural  networks.  Lee[14]  has  addressed  important  issues  in  signal  feature  85 

extraction  approaches  and  provided  an  overview  on  superiority  of  the  discrete  wavelet  86 

transform  (DWT)  to  Fast  Fourier  Transform  (FFT)  as  a  feature  extraction  method.  In  the  87 

current  research,  a  signal  processing  technique  based  on  min-max  normalization  and  discrete  88 

wavelet  transform  (DWT)  along  with  feature  extraction  technique  has  been  used  to  classify  89 
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various  defects  (un-sintered  silicon,  black  spots,  porosity).Neural  network  is  compared  to  90 

Linear  Discriminant  Analysis  (LDA)  method  in  providing  classification  accuracy  results.     91 

2.  Experimental   Procedures   92 

2.1.  Ceramic  materials   93 

The  silicon  carbide   samples  used  in  the  current  study  were  supplied  by  Australian  Defence  94 

Apparel  (Melbourne,  Australia).  The  percentage  composition  of  SiC  is  88%,  as  there  is  95 

about  12%  of  residual  silicone  in  these  products.  The  pulse  echo  ultrasonic  technique  has  96 

been  used  to  inspect  three  double-curved,  ceramic  tiles  of  300mm  in  length  and  7.5±  97 

0.5mm  in  thickness.  A  contact  transducer  of  10  MHz  frequency,  12.7mm  element  diameter  98 

has  been  chosen  for  scanning  the  defective  ceramic  tiles  .The  air  gap  between  the  specimen  99 

and  probe  was  eliminated  by  applying  thick  lubricant  on  the  surface  of  the  specimen.  100 

Different  defects  such  as  porosity,  free  silicon  and  un-sintered  material were  generated  in  101 

the  ceramic  tiles  during  and  after  the  manufacturing  process.  The  location  of  these  defects  102 

was  recorded  using  the  X-ray  technique.   103 

 104 

The  experimental  procedure  followed  is  listed  below: 105 

• Collecting  and  acquiring  the  ultrasonic  A-scan  signals  from  different  types  of  defects. 106 

• Extracting  features  by  using  signal  pre-processing  techniques  (de-noise,  data  107 

compression  and  wavelet  transform). 108 

• Training  the  neural  network  to  classify  defects. 109 

• Testing  the  trained  network. 110 

2.2.  Acquisition  and  gating  of  signals   111 

The  acquired  analogue  signals  produced  while  scanning  the  tiles  were  converted  to  digital  112 

signals  by  using  an  A/D  converter  and  stored  on  a  computer  system.  Ultrasonic  signals  113 

were  acquired  at  sampling  frequency  of  100  MHz  and  each  of  the  A-scan  signals  consists  114 

of  2000  data  points.  As  existing  practice  in  the  industry  involves  classifying  each  captured  115 

A-scan  ultrasonic  signal,  gating  is  necessary  for  reducing  the  size  of  the  data.  Hence,  a  116 

gating  technique  has  been  applied  to  each  of  the  signals,  that  checks  and  positions  the  117 
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time-gating  on  digitally  captured  A-scan  image  as  shown  in  Fig.1.a.  A  signal  segment  of  118 

interest  that  contains  400  data  points  is  then  singled  out  as  shown  in  Fig.1.b  .This  is  a  119 

type  of  dimension  reduction  that  makes  it  feasible  to  classify  each  echo.   120 

 121 

                            (a)                                                                                                  (b) 122 

Fig.1.  (a)  An  example  of  a  ultrasonic  signal  gated  on  the  captured  A-scan  signal.  (b)  A  signal  singled  out. 123 

Three  ceramic  tiles  containing  various  defects  were  scanned  to  create  a    data  base  of    204  124 

ultrasonic  A-scans.  102  signals  were  used  for  training  the  network  and  the  remaining  102  125 

signals  used  for  testing  the  neural  network  after  the  network  had  been  trained.  The  training  126 

dataset    of  102  signals  consisted  of  30  (defect  free),  42  (free silicon)  and  30  (un-sintered 127 

material).  The  desired  outputs  dataset  (targets)  has  been  created  to  assist  in  training  the  128 

network  by  showing  the  network  what  the  desired  response  to  a  given  stimulus  should  be. 129 

 130 

3.  Signal   Processing   131 

Signals  are  a  popular  mean  of  representing  information  and  signal  processing  has  132 

significance  in  many  applications.  In  signal  classification  problem,  pre-processing  of  raw  133 

signals  is  an  initial  phase  and  extracting  informative  features  from  the  pre-processed  signals  134 

became  important  basis  to  solve  advance  signal  processing  problems[15].  In  this  research,  135 

various  ultrasonic  signal  features  related  to  the  time-domain  and  frequency  domain,  namely  136 
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discrete  wavelet  transform  (DWT)  were  investigated.  Unlike  previous  work  as  described  in  137 

the  literature  review,  where  only  DWT  coefficients  were  used  as  feature  vectors;  in  this  138 

research  wavelet  coefficients  and  raw  signal  features  were  used  as  feature  vectors. 139 

3.1.  Wavelet  transform   140 

Wavelet  analysis  of  signals  is  increasingly  becoming  a  popular  tool  in  signal  processing.  141 

Signal  processing  includes  noise  removal,  compression,  feature  extraction  and  142 

reconstruction[15].  In  this  work,  a  discrete  wavelet  transform  with  level  5  (L)  decomposition  143 

is  applied  to  the  ultrasonic  signal  data  base  with  400  samples.  The  mother  wavelet  function  144 

used  was  ‘Coiflet5’  as  the  shape  of  the  transient  ultrasonic  signal  is  similar  to  the  shape  of  145 

the  wavelet  function.  Each  signal  is  decomposed  at  5  levels  (L)  to  yield  detail  signals  d1  -146 

d5  and  approximation  signal  a5.  The  detail  coefficients  of  d1  belong  to  highest  frequency  147 

component  of  the  signal  and  d2  coefficients  are  half  the  frequency  component  of  d1.  In  148 

discrete  terms,  the  5  level  decomposition  of  the  signal  S(t)  can  be  written  as   149 

S(t)=a5(t)+                                                                                                                    (1) 150 

                                                                                                                                                                                                                                  151 

All  the  data  collection  was  done  by  using  a  transducer  with  a  central  frequency  (   of  152 

10MHz.  The  time  series  A-scan  signals  were  sampled  at  100  MHz  (fq).  The  decomposition  153 

level  (L)  of  the  wavelet  transform  is  determined  by  the  sampling  frequency  (fq)  and  154 

frequency  component  to  be  identified  in  the  signal,  is  expressed  as [16]                                                                                                           155 

≤ ≤                                                                                                             (2)                                                                                                                                                                                                                                                                                       156 

Hence  d1,  d2  have  frequency  components  of  25-50  MHz,  12.5-25  MHz  respectively.  The  157 

frequency  of  interest  for  this  work,  10  MHz,  lies  in  decomposition  level  d3  as  seen  from  158 

the  Fig.2  below.  The  choice  of  this  level  is  made  based  on  the  reasoning  that  most  of  the  159 

signal  energy  is  present  in  this  frequency  band  whereas  other  levels  will  mainly  consist  of  160 

noise.  All  other  frequencies  are  represented  by  very  low  amplitude  in  the  wavelet  transform  161 

domain  and  hence  can  be  discarded  without  loss  of  information.  Thus  DWT  also  provides  162 

effective  signal  compression  and  data  reduction[15].   163 
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 164 

Fig.2.  A-scan  defect  signal  decomposition  into  details  and  approximate  signals. 165 

3.2.  Feature  extraction 166 

In  this  research,  eight  (8)  features  were  extracted  from  each  signal  representing  three  defect  167 

classes.  The  extracted  features  from  the  raw  signals  as  well  as  from  the  detail  coefficients  168 

(d3)  of  level  3  (Fig.2)  are  listed  below: 169 

1. Front  wall  echo  amplitude  of  the  raw  signal 170 

2. First  back-wall  echo  amplitude  of  the  raw  signal 171 

3. Sum  of  energy  samples  of  the  raw  signal 172 

4. Skewness  of  the  raw  signal 173 

5. Sum  of  energy  samples  of  d3  coefficients   174 

6. Absolute  Mean  of  d3  coefficients 175 

7. Kurtosis  of  the  raw  signal 176 

8. Second  back-wall  echo  amplitude  of  the  raw  signal 177 

3.3.  Data  normalization 178 
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Data  normalization  is  a  common  tool  especially  useful  for  modelling  applications  where  the  179 

inputs  are  represented  in  widely  different  scales.  Within  the  neural  network,  the  same  range  180 

of  values  for  each  input  feature  can  be  achieved  through  the  normalization  of  the  data.  181 

Data  normalization  can  also  speed  up  training  time  by  starting  the  training  process  for  each  182 

feature  within  the  same  scale.  There  are  various  types  of  data  normalization  techniques  183 

available.    In  the  current  research,  min-max  normalization  is  applied  to  the  input  feature  184 

dataset.  When  the  normalization  is  applied,  each  feature  lie  within  the  new  range  of  values  185 

but  the  principal  distributions  of  the  corresponding  features  within  the  new  range  of  values  186 

will  remain  the  same.  This  normalization  has  the  advantage  over  other  normalization  187 

techniques  of  exactly  preserving  all  relationships  in  the  data,  and  does  not  introduce  any  188 

bias.  It  also  allows  more  flexibility  in  designing  the  network  and  determining  which  189 

features  are  more  important[17].   190 

4.  Artificial  Neural  Network 191 

Neural  networks  are  nonlinear  mapping  processes  that  allow  training  and  adaptability  for  192 

signal  classification  applications.  The  learning  process  enables  neural  networks  to  recognize  193 

the  target  patterns  without  mathematical  models  of  the  target  signals[13].  Back  propagation  194 

networks  are  multi-layer  networks  with  the  hidden  layers  of  sigmoid  transfer  function  and  a  195 

linear  output  layer.  The  transfer  function  in  the  hidden  layer  should  be  differentiable  and  196 

thus,  either  log-sigmoid  or  tan-sigmoid  functions  are  typically  used[17].  In  this  research,  the  197 

tan-sigmoid,  'tansig'  and  'purelin'  are  used  for  hidden  layers  and  the  output  layer.  They  198 

calculate  the  layer's  output  from  its  net  input.  Each  hidden  layer  and  output  layer  is  made  199 

of  artificial  neurons,  which  are  connected  through  adaptive  weights.  The  training  function  200 

selected  for  the  network  is  'trainlm'  (Levenberg-Marquardt). 201 

 202 

4.1.  Proposed  NN  structure 203 

In  this  research,  various  combinations  of  layers  and  neurons  were  investigated  (20,  18,  17,  204 

15,  10,  and  8).  Finally,  a  feed-forward  neural  network  was  selected  with  8  input  nodes,  14  205 

hidden  nodes  and  an  output  layer  with  1  node  for  classifying  3  classes  of  signals.  The  206 

block  diagram  of  the  supervised  network  architecture  is  shown  in  Fig.3.  The  developed  NN  207 
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was  trained  for  a  number  of  epochs  until  the  error  goal  of  e-8  was  reached  [18].  At  this  208 

stage  the  training  was  stopped  and  the  network  was  ready  for  testing.  The  error  goal  of  e-8  209 

was  set  to  improve  the  network  training  performance. 210 

  211 

Fig.3. Block  diagram  of  supervised  network  architecture 212 

 213 

4.2.  Training  and  Testing   214 

The  features  extracted  (  shown  in  section  3.2)  from  each  ultrasonic  signal  were  used  as  215 

input  to  the  neural  network  by  means  of  a  MATLAB  software  program.  For  a  neural  216 

network  to  reliably  classify  defects,  the  training  database  must  contain  sufficient  data  to  217 

represent  each  type  of  defect  for  the  training  operation  to  be  effective.  Therefore,  a  218 

database  was  created  containing  a  total  of  204  sets.  From  these  30,  34,  40  data  sets  were  219 

randomly  chosen  for  each  class  of  defect  to  create  a  separate  test  set  consisting  of  102  220 

signals  that  have  been  used  for  testing  the  trained  network.   221 

                  Before  training  the  network,  the  input  data  was  normalized  suitably  using  min-222 

max  normalization.  The  training  data  was  fed  into  the  network  and  after  several  iterations;  223 

the  network  delivered  required  result  as  shown  in  Fig.4.  Once  the  network  training  224 
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completed  the  test  data  was  fed  into  the  network.  Test  data  did  not  contain  any  data  used  225 

for  training  the  network.   226 

 227 

Fig.4.  The  relationship  between  error  value  and  number  of  epochs 228 

5.  Linear  Discriminant  Analysis   229 

There  are  many  possible  techniques  for  classification  of  data  and  Linear  Discriminant  230 

Analysis  (LDA)  is  very  commonly  used  technique  for  data  classification.  This  method  231 

maximizes  the  ratio  of  between  class  variance  to  the  within-class  variance  in  any  specific  232 

data  set  thus  ensuring  maximal  separability[19].  Generally,  LDA  is  applied  to  the  data  233 

classification  problem  in  speech  recognition.  This  method  provides  more  class  separability  234 

and  draws  a  decision  region  between  the  given  classes.  This  method  also  helps  to  better  235 

understand  the  distribution  of  the  feature  data.  Fig.5  shows  the  scatter  plot  of  the  training  236 

dataset  by  top  two  features  selected. 237 

 238 
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 239 

      (a). 240 

 241 

 242 

 243 
Fig.5.  (a)  and  (b)  LDA  based  classifier  decision  boundaries  for  three-class  problem 244 

 245 

 246 
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From  the  scatter  plots  in  Fig.5.a  and  b,  it  can  be  observed  that  the  defect  classes  were  247 

defined  properly  but  there  are  cases  where  an  overlap  between  defect  classes  was  observed.  248 

Hence  obtaining  a  decision  region  in  original  space  will  be  very  difficult  in  those  cases.  249 

Further,  to  classify  three  types  of  defect  classes  the  testing  data  was  fed  into  the  LDA  250 

classifier  and  the  classification  results  were  shown  in  Fig.6  for  102  testing  signals.  It  is  251 

seen  from  Fig.6  that,  using  LDA  classifier  the  testing  data  was  not  classified  well  and  252 

there  is  a  misclassification  of  defect  signals.  Also  based  on  the  desired  outputs  dataset,  the  253 

overall  accuracy  of  classification  was  calculated  as  82%. 254 

 255 

 256 

Fig.6.  Target  values  and  Linear  discriminant  analysis  output  values  for  102  testing  signals   257 

6.  Results  and  discussion 258 

The  aim  of  this  research  was  to  obtain  a  well-trained  neural  network  capable  of  performing  259 

the  expert  operator’s  function  of  inspecting  ceramic  tiles  and  classifying  various  defects  260 

from  the  ultrasonic  signals  generated.  For  that  reason,  the  neural  network  must  have  an  261 

appropriate  ability  to  generalize.  The  test  set  consisting  of  102  sets  was  used  for  assessing  262 

the  ability  of  neural  network  to  generalize.    A  post-possessing  technique  has  been  used  to  263 

convert  actual  outputs  from  the  output  layer  back  into  the  same  units  that  were  used  for  264 

the  desired  outputs  (original  targets).  The  network  output  and  the  corresponding  targets  were  265 

1- Defect free 

2- Free silicon 

3- Un-sintered material 
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passed  through  post  regression  analysis.  It  returned  three  parameters,  which  correspond  to  266 

the  slope  and  the  y-intercept  of  the  best  linear  regression  relating  targets  to  network  267 

outputs.  If   there  were  a  perfect  fit,  i.e.  outputs  exactly  equal  to  targets,  the  slope  would  be  268 

1,  and  the  y-intercept  would  be  0.  A  linear  regression  plot  in  Fig.7  shows  a  measure  of  269 

how  well  the  variation  in  the  actual  output  is  represented  by  the  desired  outputs  (targets).  270 

The  R-value  0.98  between  the  outputs  and  targets  represents  the  correlation  coefficient.   271 

 272 

Fig.7.      A  linear  regression  plot 273 

The  back  propagation  neural  network  architecture  has  been  selected  based  on  the  274 

performance.  Best  result  and  corresponding  parameter  values  are  shown  after  several  trials      275 

with  various  combinations  of  parameters  like  number  of  hidden  layer  neurons,  input  276 

features,  activation  function  and  training  algorithm.  The  input  feature  vectors  were  presented  277 

to  the  neural  network  that  compared  each  experimental  output  vector  with  its  respective  278 

desired  outputs  (target).  Target  values  and  neural  network  values  for  102  testing  vectors  are  279 

represented  in  a  graphical  form  shown  in  Fig.8.  The  results  show  that  the  neural  network  280 

combined  with  discrete  wavelet  transform  (DWT)  has  produced  a  classification  accuracy  of  281 

98%.  DWT  not  only  provides  excellent  feature  extraction,  but  also  provides  significant  data  282 

reduction  and  filters  the  noise  from  the  signals  thereby  reducing  the  computational  burden  283 

considerably.  The  results  indicate  that  feature  selection  for  input  to  neural  network  is  very  284 

important  for  good  performance. 285 
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 286 

Fig.8.  Target  values  and  neural  network  output  values  for  102  testing  signals   287 

6.  Conclusions   288 

In  this  paper,  a  new  method  for  identifying  defects  in  ceramic  components  using  ultrasonic  289 

sensing,    neural  networks  (NN)  and  discrete  wavelet  transforms  (DWT)  is  proposed.  It  has  290 

to  be  emphasized  that  the  success  rate  of  this  method  is  higher  compared  to  other  methods  291 

reported  in  the  literature.  From  the  classification  results  generated  by  LDA  and  neural  292 

networks  ,  it  can  be  concluded  that  the  neural  networks  approach  to  defect  classification  is  293 

very  effective.  It  is  a  suitable  approach  for  developing  an  online  quality  control  system  for  294 

non-destructive  evaluation  of  ceramic  tiles.  Finally,  the  artificial  neural  network  (ANN)  has  295 

been  chosen  over  other  classifiers  as  it  contributes  to  a  fast  and  user  friendly  system,  296 

which  assists  industrial  operators  and  technicians  by  reducing  their  effort  and  time  spent  in  297 

classifying  the  defect  signals  obtained  through  ultrasonic  testing.   298 
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