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Abstract

Based on the intuition that widely spread test cases
should have greater chance of hitting the non-point
failure-causing regions, several Adaptive Random
Testing (ART) methods have recently been proposed to
improve traditional Random Testing (RT). However,
most of the ART methods require additional distance
computations to ensure an even spread of test cases. In
this paper, we introduce the concept of localization that
can be integrated with some ART methods to reduce the
distance computation overheads. By localization, test
cases would be selected from part of the input domain
instead of the whole input domain, and distance
computation would be done for some instead of all
previous test cases. Our empirical results show that the
fault detecting capability of our method is comparable
to those of other ART methods.

Keywords: random testing, adaptive random testing,
localization

1. Introduction

It is widely recognized that exhaustive testing (testing
a program with all possible inputs) is not usually
feasible [1]. Hence, many test case selection strategies
have been investigated to improve the probability of
revealing program failures [8, 12, 13, 14, 15]. Random
Testing is simple in concept and easy to implement [7,
9]. It randomly chooses test cases from the input domain
until detecting a failure or exhausting test resource.
However, it may be ineffective because it does not use
any information of the specifications or the program
code in selecting the test cases [11].

* corresponding author

A simple but effective improvement of Random
Testing has been proposed [6, 10]. This enhanced
method makes use of the information of the location of
previous test cases and is based on the observation [6]
that errors in different faulty programs may form
different failure patterns. Failure patterns refer to the
patterns of inputs that reveal failure. For example, in a
2-dimension input domain, the patterns can be classified
into 3 major failure patterns: block, strip, and point as
illustrated in Figure 1. The square represents the border
of input domain and the shaded areas of the figure
represent the failure patterns. They suggest that for
non-point failure patterns, if test cases are more evenly
spread and far separated from each other, fewer test
cases would be required to detect the first failure.

Block Pattern Strip Pattern Point Pattern

Figure 1. Three types of Failure Patterns

Based on this intuition, several ART methods have
recently been proposed to improve Random Testing.
However, distance computation is required to ensure an
even spread of random test cases. We introduce the
concept of localization to minimize distance
computations. In this paper, we are going to illustrate
how the concept of localization can be integrated with
some ART methods

For the convenience of discussion, some notations
are first explained. In an input domain denoted as D, d,
m and n are used to denote the domain size, number of
failure-causing inputs and number of test cases,
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respectively. The failure rate,
�
, is defined as m/d. In

this study, F-measure is used as the metric of fault
detection effectiveness, which is defined as the number
of test cases required to detect the first failure.

In this paper, Section 2 analyses the advantages and
shortcomings of some ART methods. We then explain
the rationale and our algorithm of ART by localization
in Section 3. In Section 4, we present our simulation
results. Finally, discussion is presented in Section 5.

2. Existing ART methods

The intrinsic characteristic of ART is to have
randomly generated and widely spread test cases.
Several ART methods have recently been developed.

Distance-based ART (D-ART) [10] basically has two
steps applied alternatively: firstly, it randomly generates
a set of test case candidates from the whole input
domain, and secondly, it selects the next test case based
on the criterion of maximizing the minimum distances
between the test case candidates and all previous test
cases.

Restriction Random Testing (RRT) [3] is another
implementation of ART. It also has two steps. Firstly, it
sets exclusion zones around all previous test cases, and
secondly, it randomly generates test case candidates
from the whole input domain but select those outside all
exclusion zones as the test cases.

Effectively, both methods make use of the distance
between the test case candidates and all previous test
cases to determine the next test cases. The key
difference between these methods is their test case
selection strategies. For D-ART, the next test case is the
best among all test case candidates with regard to the
selection criterion of the farthest distance from all
executed test cases. For RRT, a qualification is set prior
to test case generation and the first qualified test case
candidate is deemed as the next test case. In other
words, D-ART is based on the notion of selecting the
best while R-ART is based on the notion of satisfying
the constraint/qualification. Though they are based on
different notions, both involve distance calculation
between test case candidates and all previously
executed test cases.

Mirror ART (MART) [5] has been proposed to
reduce distance computations. In MART, the whole
input domain is first partitioned into disjoint
subdomains, and the relevant ART method is only
applied in one subdomain, and simple mirror functions
are used to map the test cases into other subdomains.
With m mirror subdomains, distance computations will
be reduced approximately to 1/m2 of the corresponding
distance computations if ART method is applied alone.

However, the number of mirror subdomains should be
kept small to ensure the characteristic of randomness.

Two ART methods [4], which do not require distance
calculation, have recently been proposed, namely ART
by Random Partition and ART by Bisection. The main
difference between these methods and the other
methods is that these two methods specify where the test
cases should be selected, rather than identifying the
suitable ones amongst those randomly generated from
the whole input domain. More specifically, these two
methods divide the whole input domain into
subdomains according to a partitioning scheme, and
choose a subdomain from which the next test case is
randomly generated. The chosen subdomain is referred
as the test case generation region. The difference
between these two methods is their partitioning
schemes. ART by Random Partition divides the input
domain by the most recently executed test case, and
chooses the subdomain with the largest area as the next
test case generation region; while ART by Bisection
repeatedly divides the input domain into subdomain of
equal size, and chooses the subdomain which has not
contained any executed test case as the next test case
generation region.

3. Our methodology

Both D-ART and RRT use distance as a gauge to
measure whether the next test case is the farthest away
or sufficiently far away from all previous test cases,
respectively. Intuitively, the distance between the test
cases is a good metric towards the measurement of the
even spread of the test cases. Obviously, only those
executed test cases, which are near the test case
candidates, should be taken into consideration rather
than all executed test cases in deciding the next test
case. However, these two methods calculate the
distance between all previous test cases and the test cast
candidates. Furthermore, D-ART and RRT do not fully
use the information of executed test cases. The spatial
distribution of executed test cases actually provide hints
about from which part of the input domain test cases
should be selected.

ART by Random Partition divides the whole input
domain into subdomains and chooses a subdomain as a
test case generation region. It chooses the largest
“blank” area, which has no executed test cases, as the
test case generation region. Intuitively, a test case
generated from this region will have a higher chance to
be far away from previous test cases. Furthermore, the
test case generation region effectively divides all
previous test cases into two groups, namely the nearby
and distant executed test cases. Nearby executed test
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cases are those located in the vertices of the test case
generation regions, while the others are classified as the
distant executed test cases. Nevertheless, ART by
Random Partition does not make use of this useful
information at all. It totally ignores the nearby executed
test cases. The next test case may be very close to the
nearby executed test cases, as shown in Figure 2, where
the square represents the input domain, the points
represent the test cases and the rectangle with darker
edge represents the test case generation region. As
shown in the figure, the next test case can be very close
to the executed test cases.

Figure 2. Worst case of ART by Random
Partition

In this paper, we propose an innovative approach to
reduce distance computations. Our method is to
integrate the notion of localization with some ART
methods. By localization, there are two aspects: the first
one is to restrict the selection of test cases from a part of
the whole input domain, which is more likely to provide
a test case distant from executed test cases; the second
one is to confine distance calculation to those executed
test cases which are near the test case generation region.
Hence the implementation of our method has two
corresponding steps. Firstly, localize the test case
generation region and the previous test cases. Secondly,
generate next test case from the restricted test case
generation region and apply D-ART or RRT with the
confined previous test case.

We use the same partitioning scheme as ART by
Random Partition to divide the input domain and choose
the subdomain with largest area as the test case
generation region. The test case generation region not
only acts as the region which is more likely to provide
test case distant from previous test case, but also divides
the previous test cases into two sets: nearby executed
test cases and distant executed test cases. In our method,
distance calculations are done only for the nearby
executed test cases.

The algorithm described below is for testing a
program with two real inputs, i, j, where imin � i � imax,
jmin � j � jmax. Each vertex of a subdomain is denoted as
V(x, y, Flag). “Flag” indicates whether it is an executed
test case with “T” being yes and “F” being no. A

subdomain is denoted by its 4 vertices in a clockwise
order, say S (V1, V2, V3, V4). All subdomains are kept in
an ascending sorted linked list L with respect to the
sizes of their area.

Algorithm ART by Localization

1. Initiate the subdomain linked list L with the whole
input domain {(imin, jmin, F), (imin, jmax, F), (imax, jmax,
F), (imax, jmin, F)}, as its only element.

2. Remove the last element from L as the test case
generation region. Set the nearby executed test case
set E to be empty.

3. Check the “Flag” of each vertex of the test case
generation region. If “Flag” is “T”, add it to the
nearby executed test cases set E. Denote the
number of elements in E as l.

4. For the case of applying D-ART to the test case
generation region, randomly generate a test case
candidate set, C={C1, C2, …,Ck}. Calculate the
Cartesian distance between test case candidates and
nearby executed test cases and denote it by dist(Cj,
Ei). Choose a test case candidate Cq as the next test
case according to the following criterion.

)),(min),(min}(,...,2,1{
11

ij

l

i
iq

l

i
ECdistECdistkj

==
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For the case of applying RRT to the test case
generation region, set the exclusion region around
each element in E. Repeatedly generate random test
case candidate in the test case generation region,
until it is outside all exclusion regions, and denote it
as the next test case, Cq.

5. If Cq is a failure-causing input, report fault
detection and terminate. Otherwise, divide the test
case generation region into four test regions at Cq.
Sort them in ascending order according to the size
and insert them into the proper position of the
ascending sorted linked list L. Goto Step 2.

The operations of ART by localization are illustrated
in Figure 3. At first, since the whole input domain is the
only element in the subdomain linked list, it is
obviously the test case generation region. Since there
are no nearby executed test cases, test case candidate
generation and distance calculation are not necessary.
Within the test case generation region, a test case is
randomly generated. Suppose this is not a
failure-causing input (denoted as � ). Then, the test case
generation region is further divided by the test case into
four subdomains (Region 1, 2, 3 and 4). As shown in
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Figure 3(a), Region 4 is the largest region, therefore it
becomes the next test case generation region. Since �

is located in a vertex of the test case generation region, it
is regarded as a nearby executed test case.

If we apply D-ART in the test case generation region
(Figure 3(b)), randomly generate test case candidates
within Region 4. Suppose 4 test case candidates are
generated and denoted as � 1, � 2, � 3 and � 4. In this
case, test case candidate � 4 is the farthest from � , and
therefore is chosen as the next test case. Suppose that no
failure is detected. Region 4 is further divided into four
subdomains. The algorithm is continued until a failure is
detected.

If we apply RRT in the test case generation region
(Figure 3(c)), an exclusion zone is set around the nearby
executed test case � . Suppose the first test case
candidate (denote as � 1) is located within the exclusion
zone, then it is discarded. The second test case candidate
(denote as � 2) is outside the exclusion region and hence
designated as the next test case.

We would like to elaborate on the size of exclusion
zone. Intuitively speaking, the size of exclusion zone
should be determined by the size of the test case
generation region. If the test case generation region is
larger, then the radius of exclusion zone should be
larger. For convenience, we use Exclusion Radius Ratio
to describe the ratio of the radius of exclusion zone to
the diagonal of test case generation region. It is easy to
show that the maximum number of nearby executed test
cases is 2. If there are 2 nearby executed test case, they
must be diagonally linked. Therefore, the upper bound
of Exclusion Radius Ratio must be 50%, otherwise the
whole test case generation region may be covered
completely by the exclusion zone, and no test case
candidates can be generated. When the Exclusion
Radius Ratio approaches 50%, the area other than
exclusion zone becomes to disappear, and the number of
attempts to generate next test cases grows dramatically.
Hence in our simulation, we vary Exclusion Radius
Ratio between 10% and 40%.

� � � � � 	 �

� � � � � 	 �

� � � � � 	 �� � � � � 	 �

� � � � � 	 �� � � � � � � � � � � 	 � � � � � � 	 � � � � � 	 �

(a) 1St step for either applying D-ART or applying
RRT

�
�

�

�

� � � � � 	 �

� � � � � 	 �� � � � � � � � � � � 	 � � � � � � 	 � � � � � 	 �

� � � � � 	 �

� � � � � 	 �

(b) 2nd step for applying D-ART

(c) 2nd step for applying RRT

Figure 3. Operations of ART by Localization
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4. Simulations

We have conducted a series of simulation using a
2-dimension square input domain to measure the
fault-detection effectiveness of our method. In each test
run, a failure-causing region of the specified size and
pattern was randomly assigned within the input domain.
For block failure pattern, a square was used as the
failure-causing region. For strip failure pattern, we
randomly chose two points on the adjacent borders of
the input domain. These two points were connected to
form a strip with the specified size. For point failure
pattern, 10 circular regions were randomly located in
the input domain without overlapping each other. For
each simulation, 5000 test runs were executed with
failure rate of 0.001.
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Figure 4. Comparison of the F-Measures of RT
and ART by localization (with D-ART) with
different number of test case candidates (block
failure pattern, + =0.001, on average of 5000
trials)

The first part of our simulation investigated the
performance of ART by localization with D-ART under
different test case candidate set sizes ranging from 1 to
30. If the number of test case candidates is equal to 1,
then this algorithm is effectively the ART by Random
Partition. As shown in Figure 4, the lowest F-measure
occurs when the size of test case candidates is equal to
3. The lowest F-measure is less than that of RT by about
30%; while ART by Random Partition is less than RT
by about 20%. When the number of test case candidates
exceeds 3, F-measure will begin to increase and is
greater than that of RT at the size of 30. However, with
D-ART in the whole input domain, F-measure will
decrease with the increase of the number test case
candidates and become steady when the size is about 10.

This discrepancy can be explained as follows. When we
apply ART by localization with D-ART and when the
candidate set size is large, it is most likely that the next
test case will be closer to a corner of the test case
generation region. As a consequence, test cases will be
clustered in narrow strips rather than evenly spread, as
shown in Figure 5.

Figure 5. Test case generation patterns for
ART by localization with D-ART, with large
number of test case candidates (the number
represents the test case sequence)
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Figure 6. Comparison of the F-Measures of RT
and ART by localization (with RRT) with
different Exclusion Radius Ratio (block failure
pattern, + =0.001, on average of 5000 trials)

The performance of ART by localization with RRT
was investigated in the second part of the simulation.
Here, we varied the Exclusion Radius Ratio from 0% to
40%. Again, when the Exclusion Radius Ratio is 0%,
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our method is effectively the ART by Random Partition.
As can be seen from Figure 6, F-measure decreases
while Exclusion Radius Ratio increases. At 40% of
Exclusion Radius Ratio, the methods is less than that of
RT by about 30%, while F-measure of ART by Random
Partition is less than that of RT by about 20%.
In the third part of the simulation, we conducted our

simulation using different failure patterns. Table 1
shows the results against other ART methods. (The data
about D-ART, RRT and ART by Random Partition are
from [2], [2] and [4] respectively). For block and strip
failure patterns, our method performs better than ART
by Random Partition but worse than D-ART and RRT in
terms of F-measure. For point patterns the differences of
all methods are insignificant.

In the last part of our simulations, we investigated
whether the location of failure-causing input would
have any impact on the performance of our methods.
Following [2], the categories of locations of
failure-causing input were defined as follows: The
centre area (CENTRE) was defined as the central 80%
of the whole input domain and the other area were
defined as edge area (EDGE). In our simulations, the
failure region was randomly assigned in anywhere of
the input domain (ANYWHERE) or confined to
specified area (EDGE or CENTRE). A block failure
region with failure rate of 0.01 was used. The result
shows that ART by localization has no preference to the
types of locations (see Table 2). As a reminder, Chan et
all. [2] has demonstrated that RRT favours EDGE type
of failure patterns.

Table 1. F-Measures for ART by localization
and other ART methods ( � =0.001, on average
of 5000 trials)

Failure Pattern Type
ART Methods

Block Strip Point

D-ART 633 782 927

RRT 621 710 953
ART by Random

Partition
797 965 980

Applying
D-ART

695 884 955ART by
localiz
ation Applying

RRT
692 897 966

Table 2. F-Measure of differently located
failure-causing input for ART by localization.
(Block failure pattern, � =0.01)

ART by localizationLocation of
failure-causing

input
Applying
D-ART

Applying
RRT

EDGE 71 67
CENTRE 70 67
ANYWHERE 69 68

5. Discussion

This paper proposes an innovative approach to
integrate ART and localization. Using the integrated
approach, we only need to do distance computation
involving the nearby executed test cases instead of
involving all executed test cases. Another characteristic
of our approach is that test cases are generated from
certain part of the input domain rather than the whole
input domain. Compared with D-ART and RRT, the
overheads are considerably reduced while performance
is only moderately affected in terms of F-measure.
Compared with ART by Random Partition, the fault
detection effectiveness has obviously been improved.
Compared with D-ART and RRT, the amount of

distance computations in our method is reduced. In our
method, distance computations are associated only with
the nearby executed test cases, but in D-ART and RRT,
distance computations are associated with all executed
test cases. It should be noted that the maximum number
of executed test case is two. Hence, the amount of
distance computations for our method is just a linear
function of the number of executed test cases. While for
D-ART and RRT, the amount of distance computation
is of the order of the square of the number of executed
test cases.

Compared with ART by Random Partition, the
overheads of partitioning the input domain and
choosing the test case generation region in our method
are the same. The extra work in our method is the
application of D-ART or RRT in test case generation
region.

The key idea of our approach is localization that
makes use the information of the spatial patterns of
previous test cases. The integrated method presented in
this paper is just an implementation of the concept of
localization. This method repeatedly partitions the input
domain by most recently executed test case and selects
the subdomain with largest area as test case generation
region; and treats test cases located in the vertices of
that region as nearby executed test cases. The
shortcoming of this implementation is that it only
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identifies those previous test cases located on the
vertices of test case region as nearby executed test case.
However, some previous test cases may also be close to
the edges of the test case generation region. This
explains why the performance of our method is not as
good as the situations of applying D-ART or RRT to the
whole input domain.

We have started to investigate the performance of our
proposed method to real-life programs. Integration of
the concept of localization with other ART methods is
also under investigation.
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