

 Swinburne University of Technology | CRICOS Provider 00111D | swinburne.edu.au

Swinburne Research Bank
http://researchbank.swinburne.edu.au

Chhetri, M. B., Vo, Q. B. & Kowalczyk, R. (2012). Policy-based automation of SLA
establishment for cloud computing services.

Originally published in Proceedings of the 12th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGrid 2012), Ottawa,

Canada, 13-16 May 2012 (pp. 164-171). Piscataway, NJ: IEEE.

Available from: http://dx.doi.org/10.1109/CCGrid.2012.116.

Copyright © 2012 IEEE.

This is the author’s version of the work, posted here with the permission of the
publisher for your personal use. No further distribution is permitted. You may also be
able to access the published version from your library. The definitive version is
available at http://ieeexplore.ieee.org/.

Policy-Based Automation of SLA Establishment for Cloud Computing Services

Mohan Baruwal Chhetri
Center for Complex Software

Systems and Services
Swinburne University of Technology

Hawthorn, Australia
mchhetri@swin.edu.au

Quoc Bao Vo Ryszard Kowalczyk
Center for Complex Software

Systems and Services
Swinburne University of Technology

Hawthorn, Australia
bvo@swin.edu.au

Center for Complex Software
Systems and Services

Swinburne University of Technology
Hawthorn, Australia

rkowalczyk@swin.edu.au

Abstract-We propose a policy-based framework for the
automated establishment of SLAs for cloud computing services.
The proposed framework supports multiple interaction models
for SLA establishment giving consumers and providers the
flexibility to choose ooe that is most appropriate in a given
context, while simultaneously supporting multiple concurrent
SLA interactions using different interaction models. We de­
scribe the underlying policies, focussing on the key features
and contributions of the framework. We also validate our
framework through a real-world use-case scenario using the
Amazon Ee2 service.

Keywords-policy-based framework, decision-making strategy,
interaction protocol, SLA

I. INTRODUCTION

Cloud computing offers a realization of SOA in which IT
resources can be dynamically provisioned to consumers on­
demand and using a pay-as-you-go model. When consuming
or providing such services, entities establish business rela­
tionships with their counterparts which are formally captured
in Service Level Agreements (SLAs). These SLAs, include,
among other things, the usage temlS and conditions for the
provisioned service, which are a key differentiator in an
increasingly competitive cloud services market that is char­
acterised by its diversity and dynamism. Diversity results
from consumers and providers having varying requirements,
capabilities, constraints and preferences over the service
usage tenns and conditions. Dynamism arises from varying
supply and demand of the computing resources. Given the
diversity and dynamism of the cloud environment, using
a single interaction model for SLA establishment such as
auction, commodity market, or one-on-one negotiation in
all scenarios and contexts may not always be appropriate.
Service consumers and providers can benefit from support­
ing multiple models for SLA establishment, giving them the
flexibility to choose the most appropriate interaction model
in a given context while at the same time participating in
multiple concurrent SLA interactions using different models.

During the process of SLA establishment, all participants
have to interact with one another in order to reach an agree­
ment over the service usage terms and conditions. These
interactions are usually in the form of message exchanges

and are governed by an interaction protocol which defines
the "rules of procedure" for the conversation and enables
automation and rational decision-making. Service consumers
and providers usually have varying and potentially conflict­
ing preferences over the usage terms and conditions, and
the process of SLA negotiation and establishment can be
viewed as a distributed search through a space of potential
agreements [1]. Depending upon the type of SLA interac­
tion model used, the entities use different decision-making
strategies to try and reach an agreement. For example, if the
interaction model is an auction based on the sealed bid first­
price auction prolqcoi, then all the bidders submit a single
sealed bid and hence the strategy has to determine what the
bidding price should be. Alternatively, if the service provider
and consumer are involved in bilateral negotiation using
the alternating offers protocol, thcy have to make decisions
about what initial offer to make, what counter-offer to make,
whether to accept an offer and when to terminate negotiation.

In this paper. we propose a policy-based framework
to support multiple interaction models for the automated
establishment of SLAs in diverse and dynamic environments
such as the cloud. Policies can be used to capture domain
knowledge relating to the interaction protocols, and, the
decision-making strategies used during the SLA interactions
under different scenarios and contexts. An autonomous pol­
icy engine can evaluate incoming requests and the relevant
context against the pre-defined policies and initialise the
most appropriate SLA interaction model. This paper is
complementary to our work presented in [2], where we
focussed on policy based preference specification.

The main contributions of this paper are as follows:
• We propose a policy-based framework that enables

service consumers and providers to choose the most
appropriate SLA interaction model in a given context
while at the same time supporting multiple concurrent
SLA interactions using different interaction models.
By allowing the policy authors to refer to externally
defined decision-making strategies, we keep the policy
language light-weight while allowing reuse of existing
work in the area of automated SLA establishment, par­
ticularly the decision-making models [1)[5)[6)[7)[8).

• We introduce a policy-based model to support the auto­
mated establishment of SLAs. Our proposed model is
based on three types of assertions - context assertions,
interaction policy (IP) assertions and strategy asser­
tions. These assertions are used in two types of policies
- the interaction protocol (IP) policies, which specify
the interaction protocols supported for automated SLA
establishment, and the strategy policies, which specify
the decision making strategies to use under different
scenarios and contexts.

• We extend the WS-Policy framework to provide a
domain-independent policy language for specifying the
IP policies and strategy policies.

The rest of the paper is organized as follows. Section II
gives a brief overview of the main aspects of automated SLA
establishment. Section III discusses the Amazon EC2 service
which we use as a motivating scenario for our research.
We present our formal policy model in Section IV. We
present a brief description of the reference architecture and
prototype implementation in Section V . We demonstrate the
usefulness of our approach through the Amazon EC2 service
in Section VI. Section VII discusses related work in the area
of policy-based SLA establishment. Section VIII concludes
the paper.

II. OVERVIEW OF AUTOMATED SLA ESTABLISHMENT

In the process of SLA establishment, all participating
entities (service consumer, service provider, mediator etc.)
have to interact with one other in order to reach a common
agreement over the service usage terms and conditions. The
interactions are in the form of message exchanges with the
interaction models varying from auctions to commodity mar­
kets to bilateral and multi lateral negotiations. Irrespective of
the complexity of the interactions, the process of automated
SLA establishment is characterised by four key aspects -
the service usage terms and conditions and preferences
over them, the interaction protocols, the decision-making
strategies [11 and the interaction context.

Service attribute preferences: Every service is charac­
terised by a number of attributes that may be customiz­
able and can take on one or more possible values. A
service request or offer is essentially an assignment of
values to some or all of the service attributes. These
preferences and constraints are used to evaluate incom­
ing service requests, to generate offers and counter­
offers and to make bids.
Interaction Protocols: Interaction protocols are sets of
rules which regulate the different aspects of the inter­
actions including the permissible type of participants,
the different states of interaction, the valid actions in
the different states and the content of the messages
exchanged. All entities participating in the SLA estab­
lishment process have to conform to a common protocol
to enable automation and rational decision-making.

Decision-making strategies: Service consumers and
providers usually have varying and potentially con­
fiicting preferences over the service attribute values.
The process of SLA negotiation can be viewed as a
distributed search through a space of potential agree­
ments [1] and the specific strategy chosen determines
the traversal path towards the preferred agrcement. It
helps participants make several decisions such as - what
initial offer to make? what counter offer to generate?
when to abandon negotiation? when is a proposal
acceptable? and when is an agreement reached?
Interaction Context: The interaction context refers to
the states and conditions of an enterprise 's business
which influence the SLA interactions. It can include
information about the counterparts such as the size of
the company, credit rating of the company, history of
previous interactions etc. It can include the business ob­
jectives and goals that the enterprise wishes to achieve
through the interaction. It can also include the time and
resources available to carry out the business interactions
i.e. time available to negotiate with the counterparts,
deadline by which an agreement has to be reached
etc. The interaction context has a very strong influence
on the decision-making strategies used as explained in
Section III.

With respect to SLA interactions, the protocols are essen­
tially public documents that specify the rules of interaction
that all participating entities should follow. The preferences
and decision-making strategies on the other hand are private
and not disclosed to the other parties. Each participant
uses its own decision-making strategy which is compliant
with the selected interaction protocol. The interaction model
chosen for SLA establishment depends upon the interaction
context as explained in Section IV.

III. MOTIVATING SCENARIO

We consider the case of Amazon Elastic Cloud Compute
(EC2) as a motivating scenario for our research work. We
first describe the purchasing models (or using our termi­
nology, SLA interaction models) currently supported by
Amazon EC2.

A. Amazon Ee2 - Service Provider

One of the key features of the Amazon EC2 service is
the flexibility it offers to its customers. Customers have
the choice of multiple instance types, operating systems,
software packages and geographical locations. In addition
to this, Amazon EC2 also provides its customers flexibil­
ity in optimising running costs by offering three different
purchasing models.

On-Demand Instances - this model lets customers pay
for compute capacity by the hour with no long-term
commitments or upfront costs. Consumers can increase

,

Amazon Ee2

Figure I. Multiple Com;urrent SLA Interactions

or decrea!iie compute capacity on demand and have to
pay the fixed hourly rate for the instances used.
Reserved Instances - this model lets customers pay
a small one-time, upfront payment for an instance.
reserve it for a fixed period of time (one year or three
years), and then, pay a significantly lower fixed rate for
each hour that the instance is used.
Spot Instances - this model allows customers to bid for
unused Amazon EC2 capacity. Customers can specify
the maximum hourly price they are willing to pay for
a particular instance type. Amazon determines the Spot
Price based on the bids received and the quantity of un­
used/idle resources. Customers can access the requested
resource as long as their bid price is above the spot
price. However, if the bid price drops below the spot
price, Amazon shuts down the instance immediately.

In order to automate these three purchasing models,
Amazon uses !.hree interaction protocols. The first is the
fixed·price proTocol which is applicable to the on·demand
purchasing model, and the second is the discOUlTfed fixed·
price protocol which is applicable to the reserved instance
purchasing models. If using the on· demand and reserved
instance models, consumers have no flexibility in terms of
the price they pay for the resources. But they do have guar·
anteed and uninterrupted access to the computing resources.
The third interaction protocol is the spot instance protocol
that is used in the spot instance purchasing model, which is

based on a uniform price. sealed·bid, market·dril'en auction.
Uniform price implies that all bidders pay the same price
for the resource if they are successful in their bid. Sealed
bid means that the bids are unknown to other participants
and market·driven means that the spot price is set according
to the client's bids. Using this model, consumers bid the
maximum price they are willing to pay for the resource. If
they are successful, !.hey have access to the resource and are
able to use it until either they choose to tenninate it or the
new Spot Price becomes higher than their bid. As the service
provider, Amazon publicly advertises the SLA interaction
models and the associated interaction protocols. But it has
its own internal strategy to determine the Spot Price based
on all the bids and the available supply of unused resources
l16J, Similarly all consumers have their own strategies to
se lect and purchase the resources from Amazon.

E, Sel"ice Consumer

Let us consider the scenario where an entity executes
jobs on behalf of its customers on the Amazon Ee2 in·
frastructure. In order to to do so, it rents the computing
resources on Amazon Ee2 as and when required. Each
time the entity receives a request, it has to decide how
many instances to rent and whether to purchase an on­
demand instance or to go for a spot· instance. If purchasing
spot instances, it also has to dctennlne the best bid value
to use. For the sake of simplicity. we assume that the
type of instance required is already fixed as part of the
incoming request and the task runs only on a single instance.
Each job has to be completed within a certain time, which
we refer to as completion time. We refer to the actual
time taken to process the job on the specific instance as
processing time. Depending upon the current context, the
entity can use a number of different strategies to rent the
resources and fulfil the incoming request. Let us look at
a few of the possible interaction contexts or scenarios and
the corresponding strategies that could be used to purchase
computing resources from Amazon. The rules for strategy
selection based on context take the fonn if c then s and can
be described as follows - under a certain context specified by
condition c use strategy s. Strategies 2, 3 and 4 are currently
being used by Amazon Ee2 customers as explained in the
video Deciding on Your Spot Bidding Strategyl.

Scenario 1 - Client walliS immediate access to the
resource for a short duration.]f the customer \\ ants
immediate and uninterrupted access to the computing
resource, and the completion time is equal to the
processing time, then the best strategy is to purchase an
on·demand instance. In this case, the interaction model
chosen is the on· demand model and the price payable
is the on·demand price.

S} : P = P;d' where i denotes instance type (1)

lhup:llwww.YOlltube.com/cmbcdIWD9N73F3Fao

Scenario 2 - Client wants to minimize the computing
cost and job completion time is not a constraint. If the
customer submitting a request is interested in cost op­
timization and job completion time is not a constraint,
then the strategy is to try and pay the lowest price
possible for the resources i.e. bid around the reserved
instance usage price.

(2)

where K, is a constant. i denotes instance type, P;
denotes reserved instance price and P~d denotes on­
demand price.
Scenario 3 - Client wants to complete the job as
quickly as possible and minimize the cost. If the cus­
tomer wants to optimize both cost and completion time,
then the most appropriate strategy is to use the Price
History Momentum strategy since it takes into account
the previous trends in the pricing history.

S3 : Pm ax = K. . P~1)9n ' where K, .:s 1 (3)

where Ii is a constant and P~1)9n is the average spot
instance price for the last n hours.
Scenario 4 - Client wants uninterrupted access to the
resource jar a long duration. If the customer wants
unintenupted access to the resource to complete the
task and still wants to pay lower than the on~demand
price, then the strategy is to bid a maximum price which
is significantly higher than the on-demand price.

S4 : Pm ax = K,' P~d' where K, > 1 (4)

where K, is a constant and P~d is the on-demand price
for the instance type i .

If we consider more complex scenarios where the task
can be executed on multiple instances and the clients want to
make a tradeoff between computation cost and perfornumce,
then more complex strategies [20] can be defined for bidding
for resources on Amazon Ee2 as explained below.

Fixed Bid Strategy - Given a fixed bid value b and
a fixed on-demand rate a, the strategy is to assign
Cj instances for a job j as follows: request a * Cj

instances as on-demand requests at price p and (1 ~ a)
* Cj instances as spot instances at price b. If there is a
risk of not completing the job on time, the strategy is
to switch to on-demand instances only.

• Variable Bid Strategy - In this strategy, the bid price
for spot instances in each round is set as the weighted
average of past spot prices. It has two parameters -
a weight 'Y and a safety parameter f. The bid price
is given by b, = i f y p, (yhT-Ydy +, where b, is
the bid price in the current round, Ps (y) is the history
sequence for the past y hours and Z = 1

y
'Y"'- 1I dy is

the normalization constant

In the examples below we show how policies can be used
to specify which strategy to use in a given context.

Some example strategy poliCies
if (completion_time- processi ng_time

t hen use on_de mand_strategy ;
if (uninterrupte<;Laccess - true && immediate_acc ess -

true)
then use on_dema n<Lstrategy;

if (completion_time » processing_time)
then use cost_optimizat ion_strat e gy ;

if (mi nimi ze_cost && completion_time)
then use price_history_momcnt um_st r~t e gy;

if (uninterrupte~access - true && mi n imize_c o s t)
then usc minimize int e rruption s trategy ;

IV. SLA ESTABLISHMENT MODEL

In this section we introduce our fonnal policy framework
for automated SLA establishment. It comprises of two
models as explained below:

• Interaction model - which allows policy authors to
specify the interaction protocols that are supported for
automated SLA establishment, and
Strategy model - which allows policy authors to specify
which decision-making strategies to use with which
interaction protocols under specific interaction contexts.

A. Fornwl interaction model

In our framework we assume that any entity participating
in the service provisioning process can support at least
one interaction protocol for SLA establishment. It publicly
advertises its list of supported protocols so that other partic­
ipants can choose the protocol they want to use. By default,
the entity initiating the interaction has the right to choose the
interaction protocol and the other participant is bound to this
selection. Similarly, an entity can have one or more decision­
making strategies it can use during its interactions with
counterparts in different negotiation contexts. Each strategy
confonns to one or more interaction protocols.

Let us assume that an entity participating in the service
provisioning process supports a set of interaction protocols
P = {PI, P2, "' , Pn} for SLA establishment. Similarly,
let S = {Sl' S2, ... , sm} represent the set of available
decision-making strategies. Each strategy is a parametric
function given by s = f (p, VI, V2 .. . Vk) where parameter p
E P refers to the interaction protocol and VI, V 2 , • , . Vk are
the configurable parameters of the strategy. The remaining
parameters take their value from a finite domain such that
D = D2 X D2 ... X Dk represents the corresponding set
of strategy parameter domains where Di is the finite set of
values that parameter Pi can take.

B. Fonnal assertion model

• Context assertion: A context assertion is a triple A c d~
(x \ l.fJ , v) where x is a context attribute, I.{J E 4>, where

<I> = {<.:--. s.~ } and v E D(x) where D is the
domain for context attribute x .
}merae/ioll-protocol (lP) assertion: The Interaction
Protocol asscltion is defined as:

d(!/
A ip = A , -+ {Pl. P2 •. .. , p,,} (5)

where A;p is the interaction protocol assertion. A c is
the context assertion and Pi E P.
Strategy assertiun: The strategy assertion is defined as:

(6)
i€{O , .. ,q}

where As is the strategy assertion, A c is the context
assertion, T E S is the applicable strategy, pE P is the
protocol to use, and (Tj E D(Vi) is the concrete value
[or the strategy parameter Vi.

In OUf current model we assume that all the policies
are consistent and there are no conflicts. While conflict
detection and resolution is an necessary and important aspect
of policy-based management, it is out of the scope of this
paper.

C. Formal policy model

There are two types of policies - the interaction protocol
(IP) policies which specify which protocols are supp0l1ed,
and the private strategy policies which specify which strate­
gies to use under different contextual conditions.

1) Policy alternative: A policy alternative is a logical
conjunction of zero or more assertions. The interaction
protocol (IP) alternative consists of a single IP assertion
as shown below:

(7)

Similarly. the strategy alternative consists of zero or more
strategy assertions and zero or more conditional-strategy
assertions as shown below:

(8)

2) Policy: A policy is a collection of alternatives com­
bined using different policy operators. In its normal form,
the interaction protocol (IP) policy can be represented as an
enumeration of its alternatives as shown below:

: Any

: ExactlyOne
(9)

where PoIt.", is given by Equation (7) and q E N meaning
that a policy can have 0 or more alternatives.

Similarly. the strateg)' policy can be represented as an
enumeration of its alternatives as shown below:

Ps = iE{O, .. ,, } alt. ,
{
V P : Any

EB iE{O, .. . q}Palt~ ; : ExactlyOne
(10)

where P(llt ~, is given by Equation (8) and q E N meaning
that a policy can have 0 or more alternatives.

Ini tia te Interact ion I t
I Resporld t Outcome

Poin t (POP) t

Poli ty OeciSiDrl- Context Query.

t . C,,,,,,, --F Policy Information
Point (PIP)

Policies r----t-------,
Policy Access J t
Point (PAP) Market Othe;'party j -'oi;" -

conte)(\

Policies

, Administration
POint (PMP)

Current tO~dl
demandl

Availabil ity of
re~ou rces

(a) Main components of Policy Engine

Conte)(\
~

! Req ue-~t
Poltcv&
Conte~1

h~luator

rOlicies

. initialile~
~

1 tnter~ct with
, counterp.It'

tn\et.~>tlon Model

Di!clslon ·
milkln,
Stril l " lfI' :

! InteractIOn
' Protocol I
, .'

(b) Policy & Context Evaluation

Figure 2. Reference Architecture of Policy Processing Middlew<lre

V. REFERENCE ARCHITECTURE & PROTOTYPE

IMPLEMENTATION

In this section we present the reference architectu re (Fig­
ures 2(a) and 2(b)) and a proof-of-concept prototype (Figures
3(a) and 3(b)) for our policy-based SLA establishment
engine.

A. Reference Architecture

The main components that comprise the policy engine are
shown in Figure 2(a):

Policy Decision Point (PDP). This component receives
the incoming request and evaluates all the policies that
are applicable in the current context. The outcome
of the evaluation is sent back as the response to the
incoming request.
Policy Access Point (PAP). This component makes
available to the PDP all the policies and rules that are
applicable in the current context.
Policy Information Point (PIP). This component re­
trieves all infonnation about the current context.
Policy Administration Point (PAdP). This component
is the one through which the business experts. nego·
tiation experts and the domain experts specify their
policies.

As shown in Figure 2(a). when an entity initiates the
SLA interaction process or responds to a request. the PDP
retrieves all the current policies from the PAP and selects
the ones which are applicable in the cun-ent context by

evaluating the contextual infonnation retrieved from the
PIP. Based on the outcome of the policy evaluation, the
PDP instantiates the appropriate interaction model with
the conesponding decision making strategy and interaction
protocol as shown in Figure 2(b). Depending upon whether
it is a one-round interaction or multi-round interaction, the
interaction module then exchanges messages with the SLA
counterpart to try and obtain an outcome. If a common
agreement is reached during the interaction, then the policy
engine returns a decision to form a SLA. If an acceptable
outcome is not achieved, then the PDP returns a failure
decision.

B. Prototype impleme1l1atioll

In order to validate our policy-based approach, we have
implemented a proof-of-concept prototype of the policy
middleware for automated SLA establishment. It comprises
of three key components - a parser which parses WS-Policy
rules to the popular Drools2 format, an embeddable Drools
rule engine which evaluates these rules, and a library of ex­
ecutable strategies for purchasing instances from EC2. Each
time a request comes in, the policy middleware translates the
WS-Policy policies to Drools rules, and passes the incoming
request along with the parsed rules to the Drools rule en­
gine. The rule engine determines the most appropriate SLA
interaction model to use for the particular SLA interaction
and triggers the corresponding strategy. A more detailed
description of the overall architecture of the policy-based
middleware as well as the prototype implementation will be
presented in a future publication.

VI. USE CASE VALIDATION

We have used the Amazon EC2 scenario described in
Section III to validate our policy-based approach for au­
tomated SLA establishment. In this scenario end-consumers
submit their requests to the Smart Cloud Agent whenever
they have a job to process on EC2. They know which
instance type they want and how many instances of it. They
have preferences and constraints over the task completion
time and the total cost payable, which they specify when
they submit their request. The cloud agent (policy engine)
evaluates each incoming request against its policy base (Fig­
ure 3(a) shows the WS-Policy policy and Figure 3(b) shows
the corresponding Drools rule) and determines the most
appropriate purchasing model as well as the best bidding
strategy. It then initiates the interaction with Amazon EC2
and if purchasing on-demand instances, initiaates the process
and starts up the instance. If going for spot-instances, it starts
bidding for resources using the selected bidding strategy. If
the bid is successful, it starts up the specific instance.

For the input request shown in Figure 4(a), the policy
engine chooses the spot instance purchasing model and

2hup:l!www.jboss.orgldrools

.. <trltl: Pcltc.,- :I.::C:~. ~ : ::a:-_"http:/ ,: . ~ .• :ir.. edu. eu /wtl-tllampo1icr""
"' ~ :: ~.:r.e:-.~: -;:~o!.: ~=::_""http://'''''''''· ·3. orqlntl/...-tl-po11cy wtl-policr . x~d

.. <tllilll.:Rul~ ::,,:·.., ~"Mlnllld :z:e)ob COmpletlon tl.lfte erld co~t"> ... <':llalll:Rulc)
I>ol&r:Rule ::a::-~ ~" I\!Udiate Accell-' for Short Dur&. cion"> ... </lIIhl":F.ule>
T<tl hm:Rule :.e.::-.~ ~H)o!inullhe Co~~ li nd Job COll'q>letion Till\t not &. conllltt4int")

.. <~lel!l: I!>
.. <lIIh~ :Ccntext l.d!:~.t!!H:~."COntext" ct.]ect,)"";o;,""Contt;xt-)

.. < ~ h.m: Am:lCo1l3t~6l.nt:ormec~i ve>
.. <~l&.::: f"u~ld::o!lnI:o!.lrlt ~ .t:lc-:1e. ~ ''' -m.J.nCo-'t·')

<lIlalll: LlceralRe-,triccion ··el;:.· ,, '· yell" e;:el .. . ~or." •• " I)
<I-,lalr, : H e Ld:o!l-,ct4lnt>

.. < 1II L o!l:l' n e Id::c!ln: a inc ! ~t:11-~.a!:"~ " "duration H >

<I-,l al:".: fleld:oll!tralnt>
<, 1II1alr.: AtldCOlllll tr a lntCcnnect! ve >

<1-'L~I:I :Ccntext>

</ lIIlat".:If>
T(-,lam:Ther.>

<-,16"-: Sua t C'"y '.a~ ",: .. HCo:l tOptimi ta tiOnStratt:Q,'" I >
<I-, llllr.:lhen>

I> <lIh"" Rul e r. a:t~ " "ll"n1nterrupted Acct;tItI \<;i ch P.lni.!I'.IlII\ C03t">. .. < ' !la!:l: Rule>
I><:!lalr.:Rule M:te" "ll!:lediete Acce-'lII to intltence""> .•. </,lell'.:Rule)
</tn~ :~ll>

</co-, : Pclic,,>

(a} WS"Policy Example

packagt: au .t:du. swin. cb. cort:

in:port au. ed". swin. cb. context.Context;
:in:por t au .edu.swin. cb.ec2. st l"'ategies .OnOe~andStra.tegy;
ior.port au. edu. swin. cb. ec2. s t rategies .Pric('l-lonltntuIllStrategy ;
:in:port ~U. edu. swin . cb. ed. stl"'ategie s . Cos tOpti"'i zationStrategy ;
i".port au. edu. swin . cb. ee2. s tra tegies .Ninilrli zelrlterruptiorlStrategy;
in:po.-t BU. t:du. swin. cb.droob .DroolsRuleErlgirle;

r ule "Ior.tfK"diate Access for Short Duration"
when

then

00'

context Contexte (imlul:diateAceess -ytS-) && (duration .. . "short")

OnDt",andStr ategy odS .. new DnDeJ'landStrategyO;
DroolsRuleEngine .getIrlstance() .addStrategy(odS);

.·ule "j'lirlilllize job <orr.pletion time and cost­
when

context: Contexte «",inCost •• -yes") &Bo (l:IinCOII".pletionTilIle •• "yes-»)
then

00'

PriteMomentulnS tr&tegy pIllS • new Pricd-loInentumStrategy();
DroolsRulefngin~. getlnshnct() . addStrategy(p"'S);

,·ule "Minimi~e Cost and Job Complttion Ti~ not e cOrlstraint"
wherl

then

00'

contoext Context((.unCost •• "yes") S& (duration !. "short")

CostOptilllizatiorlStrategy coC • new CostOpti .. intionStr-ategy();
OroolsRuleErlgint . goeUnstance() . addStrattgy(coe);

rule "Uninterr ..,pted Access with l~i niIllLl'" Cost~

when

(b) Parsed Drools Rule

Figure 3. Example Policies

chooses the price momentum strategy. The policy engine
computes the maximum bidding price as $0.678 based on
the past 12 hours spOl pricing history which is obtained by
querying the Amazon EC2 web service. With the bid price
of $0.678, the user is able to start and use the resource when
the bid price is above the spot price as shown in the graph
in Figure 4(b).

The Smart Cloud Agent is able to make purchasing
decisions on behalf of the end-users based on the domain
knowledge captured in the form of strategy policies.

~------

~ S""" Ooud=_~''-'=
. Fik Hotp

IMUtIOtT~ : ,tL""'<>

A.~' :lJ5West~ CIoI"""")

0p0<.1ng ~Y'_ · \V~

~--
o.on
0,07

0.069
0,068

_ 0.066

! O.US

0.06'
,~,

0.062

0 .06 1

(a) Client VI

h ..

: ,(~COtr(.lle'oorlT-'

[... : Mntrr:e Colt

!
1 2 1 • S 6 1 8 9 1011H13ICISI61711 1910 lIZl 11 2' •

l'H<lur~~rIod I
L-__________ J

(b) Spot Price Hislo!),

Figure 4. Smart Cloud Agent - Automated Selection of Ee2 Purchasing
Model

VII. RELATED WORK

The three important aspects related to decision making for
automated SLA establishment are the service usage terms
and cOl1ditions and preferences over them, the interactioll
protocoLs that govern the interactions between the participat­
ing entities, and the decision making strategies that are used
to try and obtain an agreement [I] . Most research in the area
of policy-based automation of SLA establishment focusses
on these aspects individually. A lot of work has been done
on policy-based preference specification over the negotiation
objects [911101 11 311141. There are fewer works on the use
of policy-based approaches for strategy specification and
interaction protocol specificaton.

There are several research proposals on policy-based
specification of decision-making strategies for automated
negotiation. [11]112], [15], [17] and [18] propose the use
of declarative rules to capture the decision-making strate­
gies. 117] and [18] do not provide any formal models or

concrete examples to illustrate how this can be done. The
main limitation of defining strategies declaratively via rules
is that while it is sufficient for simple strategies, it is
not straightforward for complex strategies which could be
based on a number of different approaches such as game­
theoretic approaches [5][1], heuristic approaches [6][7] and
evolutionary approaches [8]. There has to be a tradeoff
between the expressive power of the policy language and
the ease of usage. In [19], the authors have proposed the
declarative specification of decision-making strategies using
an extension of the WS-Policy specification language where
the decision-making strategies are defined as parametric
functions where the parameter values are specified via the
strategy policy. To the best of our knowledge, our paper is
the first to support multiple interaction models through the
use of a policy-based approach. We allow the policy authors
to specify which strategy to use under different contexts,
so that the policy engine can autonomously make decisions
that conform to these policies at run-time. Our approach also
enables reuse of existing research results since we allow
externally defined strategies to be referred to within our
policies and separate the strategy reference from the actual
implementation.

VIII. CONCLUSION

1n this paper, we have presented a novel policy-based
framework for the automated establishment of SLAs in open,
diverse and dynamic environments such as the cloud. Using
our framework, entities have the flexibility to choose the
most appropriate SLA interaction model in a given context
while at the same time participating in multiple concurrent
interactions using different SLA interaction models. This is
possible through the use of three new policy assertions -
context assertion, interaction protocol as~ertion and strat­
egy asseltion. We have extended the WS-Policy framework
to provide a light-weight and simple yet expressive and
flexible policy language for policy specification. We have
implemented a proof-of-concept prototype and validated
our approach with the Amazon EC2 service where EC2
consumers can delegate the task of purchasing instances to
a smart cloud agent which makes use of the pre-defined
policies to choose the most appropriate purchasing model
and bidding strategy based on relevant context

The process of automated SLA establishment is charac­
terised by the preferences over the service usage terms and
conditions, and the decision-making strategies and protocols.
While we have developed policy models for capturing pref­
erences over the service usage terms and conditions. and
for supporting multiple SLA interaction models , the two
models are currently independent of each other. But if we
consider the decision-making strategies as parametric func­
tions, the configurable parameters of the strategy are usually
dependant upon, or can be derived from the preferences over
the usage terms and conditions. Hence, it makes sense to

integrate the two models into a common framework. Future
work will investigate into the different ways in which the
different types of policies i.e. preference policies, strategy
policies and interaction protocol policies can be combined
to provide a unified policy framework for automated SLA
establishment in dynamic and diverse SOA environments
such as the cloud.

ACKNOWLEDGMENT

This work was partially funded by the Service Aggre­
gation Project within the Smart Services CRC which is
proudly supported by the Australian Federal Government's
CRC Grant Program.

REFERENCES

[1] N. R. Jennings, P. Faratin, A. R. Lomuscio. S. Parsons,
C. Sierra, and M. Wooldridge, Automated Negotiation:
Prospects, Methods and Challenges, International Journal of
Group Decision and Negotiation, 10 (2). pp-199-215, (2001)

[2) M. Baruwal Chhetri, B. Q. Yo, R. Kowalczyk, A Flexible
Policy-based Frame.vork for the QoS Differentiated Provi­
sioning of Sendces, In The 11th International Symposium
on Cluster, Grid and Cloud Computing, NewPort, California,
USA, May 23-26, (2011)

[3) M. Baruwal Chhetri, B. Q. Vo, R. Kowalczyk, Policy­
based management of QoS in Service Aggregations, In The
10th International Symposium on Cluster, Grid and Cloud
Computing. Melbourne, Australia, May 17-20, (2010)

[4] J. O. Kephart and R Das: Achieving Self-Management via
Utility Functions, IEEE Internet COmputing, Vol. 11 , No.1.
pp-40-51 (2007)

[5] K. Binmore, and V. Nir, Applying game theory to automated
negotiation, NETNOMICS, VoU, No.1 (1999)

[6] P. Faratin, C. Sieera, and N. R. Jennings: Using similarity
criteria to make trade-offs in automated negotiations, Artificial
Intelligence, Vol. 142, No.2, pp-205-237 (2002)

[7) R. Kowalczyk, Fuzzy e-negotiatioll agents, Soft Computing,
Vol 6. No.5, pp-337-347 (2002)

r8] S. S. Fatima, M. Wooldridge, and N. R. Jennings, A com­
parative study of game theoretic and evolutionary models of
bargaining for software agents, Artificial Intelligence Review,
Vol. 23, No.2, pp-187-208 (2005)

[9] E. M. Maximilien, M. P. Singh, A Framework and
Ontology for Dynamic Web Services Selection in IEEE Internet
Computing, Sep.lOct. 2004, vol. 8, no. 5, pp. 84-93

[10] S. Chaari, Y. Badr and F. Biennier, Enhancing Web Service
Selection by QoS-Based Ontology and WS-Polic}', In Proceed­
ings of the 2008 ACM Symposium on Applied Computing. pp.
2426-2431,2008

111] H. Gimpel, H. Ludwig, A Dan and B. Kearney. PANDA:
Specifying Policies for Automated Negotiations of Service
Contracts, In Proceedings of ICSOC 2003, pp. 287-302 (2003)

[12] T. Skylogiannis, G. Antoniou and N. Bassiliades, DR­
NEGOTIATE - A System for Automated Negotiation With
Defeasible Logic-Based Strategies in Proceedings of IEEE
International Conference on e-Technology, e-Commerce and
e-Service, pp. 44-49 (2005)

[13] S. Lampartcr and D. Oberle, Approximating service utility
from policies and value function patterns, In the Proceedings
of 6th IEEE International Workshop on Policies for Distributed
Systems and Nenvorks, IEEE Computer Society, 2005, pp. 159-
168

[14] S. Lamparter, D. Oberlc and C. Weinhardt, A Policy
Framework for Trading Configurable Goods and Services in
Open Electronic Markets, In Proceedings of ICEC'06, August
2006, Frederiction, Canada, pp. 162·173

(15) H. Li, S. Y. W. Su, and H. Lam, On Automated e-Business
Negotiations: Goal, Policy, Strategy, and Plans of Decision and
Action, Journal of Organizational Computing and Electronic
Conunerce, Vol. 13, No.1. pp-I-29 (2006)

[16] O. A. Ben·Yehuda, M. Ben-Yehuda, A. Schuster and D.
Tsafrir, Deconstructing Amazon EC2 Spot Instance Pricing, In
Proceedings of 3rd IEEE International Conference on Cloud
Computing Technology and Science,

(17) F. Zulkernine, P. Martin. C. Craddock, et.al., A Policy­
Based Middleware for Web Services SLA Negotiation, In Pro­
ceedings of IEEE International Conference on Web Services
(ICWS2009), pp. 1043-1050, (2008)

[18] Z. Xiao, D. Cao, C. You and H. Mei, A Policy-based
Framework for Automated Service Level Agreement Negotia­
tion, In Proceedings of IEEE International Conference on Web
Services, pp. 682- 689 (2011)

[19) M. Comuzzi and B. Pernici, An Architecture for Flexible
Web Service QoS Negotiation, In Proceedings of Ninth IEEE
International EDOC Enterprise Computing Conferences, pp.
70-79 (2005)

[20J N. Jain , I. Menache, O. Shamir, On-demand or Spot?
Learning-based Resource Allocation for Delay-Tolerant Batch
Computing, available online at http://research.microsoft.coml
en- us/um/people/navendu/papersllbr_infocom.pdf, accessed on
25 November 2011

{21] M. Baruwal Chhetri, Q. B. Vo, R. Kowalczyk and C. L.
Do, Cloud Broker: Helping You Buy Better, In Proceedings
of Web Service System Engineering Conference (WISE2011),
pp. 341- 342 (2011)

