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ABSTRACT
The smooth spin-down of young pulsars is perturbed by two non-deterministic phenomenon,
glitches, and timing noise. Although the timing noise provides insights into nuclear and plasma
physics at extreme densities, it acts as a barrier to high-precision pulsar timing experiments.
An improved methodology based on the Bayesian inference is developed to simultaneously
model the stochastic and deterministic parameters for a sample of 85 high-Ė radio pulsars
observed for ∼10 yr with the 64-m Parkes radio telescope. Timing noise is known to be a red
process and we develop a parametrization based on the red-noise amplitude (Ared) and spectral
index (β). We measure the median Ared to be −10.4+1.8

−1.7 yr3/2 and β to be −5.2+3.0
−3.8 and show

that the strength of timing noise scales proportionally to ν1|ν̇|−0.6±0.1, where ν is the spin
frequency of the pulsar and ν̇ is its spin-down rate. Finally, we measure significant braking
indices for 19 pulsars and proper motions for 2 pulsars, and discuss the presence of periodic
modulation in the arrival times of 5 pulsars.

Key words: methods: data analysis – stars: neutron – pulsars: general.

1 IN T RO D U C T I O N

Young neutron stars provide unique insights into astrophysics,
which are not available from the bulk of the pulsar population.
They frequently exhibit two types of deviations from a steady spin-
down behaviour, ‘glitches’, and ‘timing noise’. Glitches are sudden
jumps in the pulsars’ spin frequency acting as probes of neutron
star interiors. Timing noise is a type of rotational irregularity that
causes the pulse arrival times to stochastically wander about a steady
spin-down state. Our sample is a representative of pulsars that
are spinning down rapidly and present the most promising avenue
for detailed studies of timing noise, glitches, and their spin-down
behaviour.

� E-mail: adityapartha3112@gmail.com (AP); rshannon@swin.edu.au
(RMS); simon.johnston@atnf.csiro.au (SJ)

The technique of pulsar timing enables the precise measurement
of their spin periods (P) and their spin-down rates (Ṗ ), allowing us to
study their evolution in the P –Ṗ diagram (Johnston & Karastergiou
2017; see fig. 1). Although young pulsar timing offers several
opportunities to explore a plethora of astrophysical phenomena,
it is a challenging prospect as most of these astrophysical signals
are dominated or biased by timing noise and glitches. A careful
methodology is thus needed in the analysis of young pulsar
timing data to disentangle the deterministic processes from the
stochastic components. For example, young pulsars are thought to
be associated with supernova remnants, and measuring their proper
motions (Hobbs et al. 2005) allows us to probe the connections
between the neutron star and its progenitor, which has implications
for birth rate statistics (Manchester 2004). Unbiased measurements
of proper motion through pulsar timing can be obtained only if
the timing noise in the pulse arrival times is modelled accurately.
While understanding the origin of the stochastic signals present
in the time of arrivals (ToAs) is important, it is also essential to
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characterize and mitigate the effects of these signals as part of the
general timing model because it reduces the bias in the estimation
of other deterministic pulsar parameters.

1.1 Timing noise

Timing noise manifests itself as a red-noise process in the ToAs,
implying an autocorrelated process on a time-scale of months
to years and is generally described by a wide-sense stationary
stochastic signal (Groth 1975). Boynton et al. (1972) attempted
to describe the timing noise in the Crab pulsar as random walks in
either the phase, frequency, or the spin-down parameter of the pulsar.
They showed that the power spectra expected from such random
walks will be proportional to −2, −4, and −6 for phase, frequency,
and spin-down, respectively. Following this, many attempts have
been made to study the timing noise in pulsars over increasing
data spans and for a larger sample of pulsars. Cordes & Helfand
(1980) studied the timing behaviour of 50 pulsars and found that the
timing activity was correlated with Ṗ but weakly correlated with P
and concluded that timing activity is consistent with a random walk
origin. As more pulsars with longer data sets were studied, it became
apparent that timing noise might be explained by a combination
of different random walks in pulsar spin frequency (ν) and spin-
frequency derivative (ν̇) and by discrete jumps in phase and spin
parameters. Timing noise is thought to arise due to changes in
the coupling between the neutron star crust and its superfluid core
(Jones 1990) or magnetospheric torque fluctuations (Cheng 1987b;
Lyne et al. 2010). It has also been attributed to microjumps, which
are similar to small glitches (Melatos, Peralta & Wyithe 2008) and
fluctuations in the spin-down torque (Cheng 1987a). It has often
been suggested that the superfluid interior of a neutron star can
have macroscopic Kolmogorov-like turbulence that can contribute
to stochasticity in the spin-down processes observed in radio pulsars
(Greenstein 1970; Link 2012; Melatos & Link 2014).

The observations of quasi-periodic state switching of pulsars
(Kramer et al. 2006; Lyne et al. 2010), each state with a distinct
spin-down rate, led to alternative descriptions of timing noise
being periodic or quasi-periodic processes. Unmodelled planetary
companions (Kerr et al. 2015), pulse-shape changes (Brook et al.
2016), accretion from the interstellar medium (Cordes & Greenstein
1981), or free precession (Stairs, Lyne & Shemar 2000; Kerr et al.
2016) have also been attributed as explanations for the observed
low-frequency structures in the ToAs. Hobbs et al. (2005) studied
a large sample of pulsars observed over ∼10 yr and concluded that
timing noise is widespread in pulsars and it cannot be explained as
a simple random walk in pulse phase, frequency, or spin-down
rate. The timing noise in millisecond pulsars (MSPs) has been
mainly studied to understand their sensitivity to nHz-frequency
gravitational waves (Caballero et al. 2016; Lentati et al. 2016; Lam
et al. 2017). However, unlike MSPs, the timing noise in young
pulsars is very strong, often contributing many cycles of pulse
phase on week to month time-scales. Shannon & Cordes (2010)
pointed out that the observed strength of timing noise varies by
more than eight orders of magnitude over magnetars, young, and
MSPs.

1.2 Pulsar spin-down and braking index

The long-term spin-down of a pulsar can be approximated as

ν̇ = −Kνn, (1)

where K is a constant and n is the braking index. The braking index
describes the relationship between the braking torque acting on a
pulsar and its spin-frequency parameters, and provides a probe into
the physics dictating pulsar temporal evolution. We solve for n by
taking the derivative of equation (1),

n = νν̈

ν̇2
, (2)

where ν̈ is the second derivative of the spin frequency. For
standard magnetic-dipole braking, the magnetic field strength and
the magnetic-dipole inclination angle are assumed to be constant
in time, with n = 3 (Espinoza, Lyne & Stappers 2017). While
measuring ν and ν̇ is trivial using standard timing methods,
measuring the long-term ν̈ is challenging, mainly because of the
fact that it is a very small quantity. In ‘old’ pulsars, with ν ∼
1 Hz and ν̇ ∼ 10−15 Hz s−1, the estimated ν̈ from equation (2) is
∼ 10−30 Hz s−2. However for the youngest pulsars we estimate ν̈ to
be < 10−20 Hz s−2, which makes these pulsars suitable for studying
pulsar braking mechanisms (Johnston & Galloway 2000). If both
K and n are constant in time, a pulsar will follow a track in the
P –Ṗ diagram with a slope of 2 − n. The P –Ṗ diagram can then
be used as an evolutionary tool in which pulsars are born in the
upper left region, and as they age and spin-down they drift towards
the cluster of ‘normal’ pulsars, with periods of ∼0.5 s (Johnston &
Karastergiou 2017).

Both timing noise and glitches introduce variations in ν̇ which
becomes problematical in the long-term measurement of ν̈. Glitches
are often modelled as permanent changes in spin frequency (ν) and
spin-frequency derivative (ν̇) or as exponential decays in ν over τ

days and are typically attributed to either the transfer of angular
momentum between the superfluid interior and the solid crust of the
neutron star (Anderson & Itoh 1975; Alpar, Nandkumar & Pines
1985) or as star quakes in the crystalline outer crust of the neutron
star (Ruderman 1969).

1.3 Quasi-periodic modulations

The reflex motion resulting from the orbital motion of a companion
to a pulsar, introduces modulations in the ToAs, which led to e.g. the
discovery of the double neutron star system B1913+16 (Hulse &
Taylor 1975) and the first exoplanets (Wolszczan & Frail 1992).
Precession induces a periodic change in the spin-down torque
which causes ToA modulation and since our line of sight cuts
across different parts of the neutron star polar cap, there can also
be an observed change in the shape of the pulse profile (Link &
Epstein 2001). Such events of ToA modulations were reported by
Lyne et al. (2010) in 17 pulsars, of which 6 showed correlations
with pulse profile variations. Recently, Stairs et al. (2019) reported
correlated shape and spin-down changes in PSR J1830–1059, which
they attributed to large-scale magnetospheric switching. Brook et al.
(2016) analysed 168 pulsars and searched for correlations between
profile shape changes and ν̇ and found that although this correlation
is clear in some pulsars, the intrinsic relationship between change in
ν̇ and profile variability may be much more complex than previously
postulated (see also Kerr et al. 2016).

1.4 Proper motions

Pulsars are created in supernovae, and the birth process is expected
to impart a high ‘kick velocity’. Various mechanisms have been
proposed for these kicks, including an asymmetric neutrino emis-
sion in the presence of superstrong magnetic fields (Lai & Qian

MNRAS 489, 3810–3826 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/489/3/3810/5556951 by Sw
inburne U

niversity of Technology user on 23 O
ctober 2019



3812 A. Parthasarathy et al.

1998), a post-natal electromagnetic rocket mechanism (Harrison &
Tademaru 1975), asymmetric explosion of γ -ray bursts (Cui et al.
2007), and hydrodynamical instabilities in the collapsed supernova
core (Lai & Goldreich 2000). While the evidence for such kicks
is unequivocal (Johnston et al. 2005), their physical origin remains
unclear. A pulsar’s proper motion causes sinusoidal variations in
ToAs with a periodicity of 1 yr and an amplitude which increases
with time.

1.5 The Bayesian pulsar timing framework

Lentati et al. (2013) pointed out that in order to obtain an unbiased
estimation of the pulsar parameters (proper motions, spin parame-
ters, braking index etc.) it is important to simultaneously model the
stochastic (timing noise) and the deterministic (pulsar) parameters.
Most of the frequentist approaches (Hobbs et al. 2004; Coles et al.
2011) do not consider the covariances between the timing model
and the stochastic processes, and the uncertainties in the parameter
estimates, motivating the development of TEMPONEST (Lentati et al.
2014), which performs a simultaneous analysis of the timing model
and additional stochastic parameters using the Bayesian inference
tool, MULTINEST (Feroz, Hobson & Bridges 2009; Feroz, Hobson &
Bridges 2011). It also allows for robust model selection between
different sets of timing parameters based on the Bayesian evidences.
We use TEMPONEST to simultaneously model the pulsar parameters
and the noise parameters and use the Bayesian evidence to select
the optimal model for each pulsar. Such an analysis allows us to
discuss the statistical properties of timing noise and also compare
the results with those obtained from other Bayesian tools.

In Section 2, we describe the observing program and the data
processing pipeline. In Section 3, we describe the Bayesian timing
analysis in detail and present the mathematical formulation of the
timing model. In Section 4, we present the basic observational
characteristics, the timing solutions, the timing noise models for
our sample of pulsars along with the new proper motions. Finally
in Section 5, we delve into the implications of our results.

2 O BSERVATIONS

In this paper, we study 85 pulsars observed at a monthly cadence
using the 64-m CSIRO Parkes radio telescope in support of the
Fermi mission that commenced in 2007 February (Smith et al.
2008; Weltevrede et al. 2010). We selected pulsars for which there
were no identified glitches.1 These pulsars have Ė > 1034 erg s−1,
surface magnetic fields typically ranging from 1012 to 1013 G with
characteristic ages of 105–106 yr as shown in Fig. 1. Two pulsars,
PSR J1513–5908 and J1632–4818 have known associations with
supernova remnants, five other pulsars, PSR J0543+2329, J1224–
6407, J1509–5850, J1809–1917, J1833–0827 are known XRS and
3 others, J1509–5850, J1513–5908, J1648–4611 are known GRS
(Abdo et al. 2013).

Most of these observations were carried out using the 20-cm
multibeam receiver (Staveley-Smith et al. 1996), with 256 MHz of
bandwidth divided into 1024 frequency channels and folded in real
time into 1024 phase bins. Some of these pulsars were also observed
at radio wavelengths of 10 and 40 cm. Each pulsar is observed for
a few minutes depending upon its flux density. The observations
were excised of radio frequency interference (RFI) and calibrated

1In subsequent analysis described below, two relatively small glitches were
detected and parametrized.

Figure 1. The P –Ṗ diagram showing our sample of 85 young pulsars
coloured according to their preferred timing model. The different timing
models are outlined in Section 3. A few pulsars are also highlighted to be
X-ray (XRS) or gamma-ray sources (GRS) and/or to have known supernova
associations (SNR). Our sample of pulsars mostly have Ė > 1034 erg s−1

and surface magnetic fields ranging from 1012 to 1013 G with characteristic
ages of 105–106 yr.

using standard PSRCHIVE (Hotan, van Straten & Manchester 2004)
tools and averaged in frequency, time, and polarization. The ToAs
of the pulses were computed by correlating a high signal-to-noise
ratio, smoothed template with the averaged observations. For this
analysis, we use only the 20-cm observations as the 10-cm data are
sparsely spaced in time and the 50-cm data are highly corrupted by
RFI.

3 TIMING A NA LY SIS

Establishing a phase coherent solution to the ToAs is an important
step in the process of pulsar timing. We know that most of the young
pulsars have a strong presence of timing noise and frequent glitches,
which makes it difficult to produce and maintain phase-connected
timing solutions. We use the pulsar-timing code, TEMPO2 (Hobbs,
Edwards & Manchester 2006) to attribute relative pulse numbers to
the ToAs and obtain phase connection in the timing residuals.

We split the timing analysis into two steps. The first step involves
phase connecting the timing residuals. The second step involves
using the phase connected timing solution in the Bayesian timing
package, TEMPONEST, to construct a complete timing model with
stochastic and additional deterministic parameters. TEMPONEST

allows us to simultaneously model stochastic and deterministic
parameters of interest and marginalize over nuisance parameters
that are of no interest to this analysis. For example, in one of the
timing models, we fitted the timing noise parameters (white noise
and red noise) while simultaneously searching over a wide range of
position and spin parameters, while keeping the dispersion measure
(DM) fixed. We compute a Bayesian log-evidence value associated
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Timing of young radio pulsars – I 3813

with the models for each pulsar to determine which timing model
is preferred.

The ToAs for each pulsar are considered to be a sum of both
deterministic and stochastic components:

ttot = tdet + tsto. (3)

Figure 2. Phase-connected timing residuals depicting different levels of timing noise. The timing residuals from the preferred model are shown here, but
without removing the contribution of the timing noise.
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3814 A. Parthasarathy et al.

Figure 2 – continued

The deterministic components in our timing models include various
permutations of the pulsar position, spin, proper motion, and the

spin-down parameters while the stochastic contribution is computed
by introducing additional parameters that describe the white and
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red noise processes. The white noise is modelled by adjusting the
uncertainty on individual ToAs to be,

σ 2 = Fσr
2 + σQ

2, (4)

where F, referred to as EFAC, is introduced as a free parameter
to account for instrumental distortions and σ r

2 is the formal
uncertainty obtained from ToA fitting. In our analysis we use a
global EFAC flag for our 20-cm observations. An additional white
noise component (σ Q

2), commonly referred to as EQUAD, is used
to model an additional source of time-independent noise measured
for each observing system.

In young pulsars, radio-frequency independent timing noise
is the dominant contributing factor towards the red-noise in the
ToAs. Many approaches have been taken to improve the parameter
estimates by removing some portion of this low-frequency timing
noise. Hobbs et al. (2004) developed a technique to ‘whiten’ the
timing residuals using harmonically related sinusoids that allowed
the measurements of proper motions for a large sample of young
pulsars using standard timing methods. Coles et al. (2011) argued
that the previously developed ‘pre-whitening’ methods assumed
that the measurements were uncorrelated which resulted in a bias in
the parameter estimates. They proposed a new method of improving
the timing model fit by using the Cholesky decomposition of the
covariance matrix, which described the stochastic processes in the
ToAs. They argued that the optimal approach to characterize timing
noise, especially those dominated by the presence of strong red
noise is to analyse the power spectral density of the pulsar timing
residuals. They modelled the timing noise in pulsars using a power-
law model to fit for an amplitude (A) and a spectral index estimate
(β). This technique has been used to determine the timing noise
parameters and proper motions of MSPs (Reardon et al. 2016).

van Haasteren & Levin (2013) later developed a joint analysis of
the deterministic timing model and the stochastic parameters using
a Markov Chain approach and argued that the stationarity of the
time-correlated residuals breaks down in the fitting process and that
failure to account for the covariances between the deterministic
and stochastic parameters leads to incorrect estimation of the
uncertainties in the spectral estimates, especially for quadratic spin-
down parameters. However, Lentati et al. (2013) pointed out that
because the parameter space changes with the linearization of the
timing model, it becomes difficult to perform model selection with
the approach in van Haasteren & Levin (2013).

In our analysis we do not search for DM variations and fix the
value for the DM in all the models. This is justified as Petroff et al.
(2013) found only upper limits to DM variations in the pulsars
under consideration here. We model the timing noise as a power-
law power spectrum characterized with a red-noise amplitude (Ared)
and a spectral index (β):

Pr(f ) = A2
red

12π2

(
f

fyr

)−β

, (5)

where fyr is a reference frequency of 1 cycle per year and Ared is in
units of yr3/2.

Motivated by the observations of quasi-periodic timing noise
observed in many pulsars, we also model the timing noise as a
cut-off power law as described by

Pr,CF(f ) = A(fc/fyr)−β

[1 + (f /fc)−β/2]2
, (6)

where fc is the corner frequency and A is (A2
red/12π2). We also

consider the fact that in young pulsars, the measured timing noise
spectral index tends to be steeper as compared to the rest of the pulsar

population, with measured values of β ∼ 9 (Shannon, Johnston &
Manchester 2014) and so we include low-frequency components
with frequencies f < 1/Tspan to model the lowest frequency timing
noise.

A systematic search for periodic modulations in the ToAs is
also conducted. We search for harmonic modulations by fitting
for a sinusoid with an arbitrary phase, frequency, and amplitude
and compare the Bayes factor of this model with the others.
We also simultaneously model the stochastic parameters with the
proper motion parameters to obtain a more robust estimation of the
transverse velocity of the pulsar.

Finally, we search for a braking index, which is caused due to the
deceleration of the spin-down rate due to the associated decrease in
the magnetic torque. For young pulsars, this braking introduces a
measurable second derivative of the spin frequency,

ν̈b = n
ν̇2

ν
, (7)

and potentially even a third frequency derivative,

...
ν b = n(2n − 1)

ν̇3

ν2
. (8)

Analysing the braking indices from a large sample of young
pulsars offers a window into the various processes that govern the
pulsar spin-down. Pulsar braking is a deterministic process and is
manifested as low-frequency structures in the ToAs.

3.1 The Bayesian inference method

At the heart of all Bayesian analysis is the Bayes’ theorem, which
for a given set of parameters 	 in a model H, given data D, can be
written as:

Pr(	 | D, H ) = Pr(D | 	, H )Pr(	 | H )

Pr(D | H )
, (9)

where

(i) Pr(	‖D, H) ≡ Pr(	) is the posterior probability distribution
of the parameters,

(ii) Pr(D‖	, H) ≡ L(	) is the likelihood of a particular model,
(iii) Pr(	‖H) ≡ π (	) is the prior probability distribution of the

parameters,
(iv) and Pr(D‖H) ≡ Z is the Bayesian evidence.

The way we discriminate one model over the other is by consid-
ering the evidence (Z) which is the factor required to normalize the
posterior over 	,

Z =
∫

L(	)π (	)dn	, (10)

where n is the dimensionality of the parameter space and the ‘odds
ratio’, R,

R = Z1

Z2

Pr(H1)

Pr(H0)
, (11)

where Pr(H1)
Pr(H0) is the a priori probability ratio for the two models.

Assuming the prior probability of the two models is unity, the
odds ratio R reduces to the Bayes factor which is then the probability
of one model compared to the other. Since in our analysis we
compute the log-evidence, the log Bayes factor is then simply the
difference of the log-evidences for the two models. A model is
preferred if the log Bayes factor is greater than 5. This states that
with equal prior odds, we can expect there to be a 1e−5 chance, (i.e.
1 in 150) that one hypothesis is true over the other. This is similar
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3816 A. Parthasarathy et al.

Table 1. Observational characteristics of the 85 pulsars described in this paper. The position and spin-down parameters are reported at the mentioned period
epoch (PEPOCH) along with the time span and the MJD range. The 95 per cent confidence limits for the position and spin parameters reported here are derived
from the preferred model for each pulsar. The confidence regions are individually stated, if the upper and lower confidence limits are asymmetric.

PSR RAJ Dec.J PEPOCH ν ν̇ NToA

Time
span MJD range

(h:m:s) (d:m:s) (s−1) (10−14 s−2) (yr)

J0543+2329 05:43:11.260.05
0.62 23:16:39.660.91

0.03 55580 4.065 310 293 96(8) −25.483 51(13) 111 9.6 54505–58011

J0745–5353 07:45:04.48(4) −53:53:09.56(3) 55129 4.654 659 072 22(10) −4.738 02(14) 173 10.5 53973–57824
J0820–3826 08:20:59.929(9) −38:26:42.9(13) 55583 8.010 466 568 02(3) −15.6734(5) 115 9.0 54548–57824
J0834–4159 08:34:17.807(2) −41:59:35.99(2) 55308 8.256 427 513 76(12) −29.182 13(2) 134 9.9 54220–57824
J0857–4424 08:57:55.832(2) −44:24:10.65(2) 55335 3.060 104 5423(4) −19.6145(10) 170 9.9 54220–57824
J0905–5127 09:05:51.96(2) −51:27:54.05(2) 55341 2.887 660 036 64(2) −20.7322(6) 136 10.5 53971–57824
J0954–5430 09:54:06.046(5) −54:30:52.82(4) 55323 2.114 833 070 64(18) −19.6358(5) 125 9.9 54220–57824
J1016–5819 10:16:12.071(2) −58:19:01.07(16) 55333 11.385 078 985 52(7) −9.057 63(13) 128 9.9 54220–57824
J1020–6026 10:20:11.41(19) −60:26:06.3(12) 55494 7.118 385 668 03(5) −34.1421(5) 81 6.4 54365–56708
J1043–6116 10:43:55.261(2) −61:16:50.76(2) 55358 3.464 939 984 47(4) −12.491 69(7) 131 9.9 54220–57824
J1115–6052 11:15:53.722(4) −60:52:18.61(3) 55366 3.849 420 365 20(10) −10.709 96(13) 130 10.4 54220–58011
J1123–6259 11:23:55.53(12) −62:59:10.94(8) 55393 3.684 105 494 79(18) −7.135 60(2) 131 10.4 54220–58011
J1156–5707 11:56:07.45(7) −57:07:02.1(6) 55354 3.467 204 7206(6) −31.9149(9) 134 10.4 54220–58011
J1216–6223 12:16:41.96(13) −62:23:57.00(9) 55391 2.673 417 841 032(14) −12.024 08(14) 90 6.8 54220–56708
J1224–6407 12:24:22.254(6) −64:07:53.87(4) 55191 4.619 368 688 62(6) −10.569 60(8) 274 10.4 54204–58011
J1305–6203 13:05:21.14(10) −62:03:21.07(8) 55390 2.337 684 822 03(6) −17.573 35(10) 127 10.4 54220–58011
J1349–6130 13:49:36.62(18) −61:30:17.12(15) 55429 3.855 573 841 97(19) −7.606 78(3) 171 10.4 54220–58012
J1412–6145 14:12:07.63(10) −61:45:28.48(8) 55363 3.172 000 7909(13) −99.643(4) 162 10.4 54220–58012
J1452–5851 14:52:52.60(10) −58:51:13.2(11) 55367 2.586 365 680 859(2) −33.916 06(17) 75 6.8 54220–56708
J1453–6413 14:53:32.665(6) −64:13:16.00(5) 55433 5.571 440 213 75(9) −8.518 12(15) 184 10.4 54220–58012
J1509–5850 15:09:27.156(7) −58:50:56.01(8) 55378 11.245 448 8757(7) −115.9175(16) 129 10.4 54220–58012
J1512–5759 15:12:43.04(10) −57:59:59.8(11) 55383 7.770 093 920 40(18) −41.372 72(2) 131 10.4 54220–58012
J1513–5908 15:13:55.810.11

0.1 −59:08:09.640.04
0.11 55336 6.597 091 827 78(19) −6653.105 58(27) 151 11.6 54220–58469

J1514–5925 15:14:59.10(3) −59:25:43.5(3) 55415 6.720 544 472 15(8) −13.0014(17) 85 6.8 54220–56708
J1515–5720 15:15:09.23(14) −57:20:50.15(17) 55380 3.488 596 141 04(17) −7.41624(2) 130 10.4 54220–58012
J1524–5706 15:24:21.42(12) −57:06:34.64(15) 55383 0.895 917 294 63(9) −28.603 66(2) 128 10.4 54220–58012
J1530–5327 15:30:26.892(2) −53:27:56.02(4) 55431 3.584 763 701 33(5) −6.01385(9) 158 10.4 54220–58012
J1531–5610 15:31:27.901(11) −56:10:55.33(13) 55304 11.875 629 2823(4) −194.5360(14) 140 10.4 54220–58012
J1538–5551 15:38:45.016(5) −55:51:36.95(8) 55421 9.553 297 189 30(4) −29.2693(6) 85 6.8 54220–56708
J1539–5626 15:39:14.06(18) −56:26:26.3(2) 55408 4.108 545 287 47(18) −8.183 23(2) 128 10.4 54220–58012
J1543–5459 15:43:56.43(6) −54:59:15.0(8) 55408 2.651 550 8603(4) −36.6285(7) 128 10.4 54220–58012
J1548–5607 15:48:44.015(8) −56:07:34.3(10) 55408 5.850 075 804 47(19) −36.731 72(3) 128 10.4 54220–58012
J1549–4848 15:49:21.08(17) −48:48:35.5(3) 55407 3.467 948 675 00(2) −16.966 93(3) 130 10.4 54220–58012
J1551–5310 15:51:41.0(10) −53:11:00.5(4) 55383 2.205 325 738 02(11) −94.7569(18) 84 6.8 54220–56708
J1600–5751 16:00:19.90(11) −57:51:15.3(13) 55377 5.142 554 333 75(2) −5.630 69(3) 129 10.4 54220–58012
J1601–5335 16:01:54.81(2) −53:35:44.1(4) 55391 3.466 452 814 46(7) −74.9184(10) 86 6.8 54220–56708
J1611–5209 16:11:03.37(01) −52:09:22.130.1

0.11 55390 5.479 608 123 33(12) −15.524 78(19) 128 10.4 54220–58012
J1632–4757 16:32:16.66(13) −47:57:34.5(3) 55419 4.375 052 744 87(4) −28.8454(7) 83 6.8 54220–56708
J1632–4818 16:32:39.70(3) −48:18:53.8(8) 55426 1.228 996 4712(14) −98.0730(3) 113 10.4 54220–58012
J1637–4553 16:37:58.692(4) −45:53:26.82(9) 55443 8.419 397 382 52(19) −22.6194(4) 159 11.1 53971–58012
J1637–4642 16:37:13.75(17) −46:42:14.2(4) 55398 6.491 542 203(4) −249.892(10) 128 10.4 54220–58012
J1638–4417 16:38:46.226(8) −44:17:03.2(2) 55410 8.488 819 7965(4) −11.5716(7) 128 10.4 54220–58012
J1638–4608 16:38:23.26(9) −46:08:13.4(3) 55408 3.595 120 8300(10) −66.5397(16) 129 10.4 54220–58012
J1640–4715 16:40:13.09(3) −47:15:38.1(8) 55392 1.932 628 4729(4) −15.7266(6) 128 10.4 54220–58012
J1643–4505 16:43:36.91(3) −45:05:45.8(7) 55580 4.212 470 392(4) −56.473(10) 116 9.6 54505–58012
J1648–4611 16:48:22.043(7) −46:11:15.750.19

0.2 55395 6.062 160 6076(2) −87.220(5) 125 10.4 54220–58012

J1649–4653 16:49:24.61(11) −46:53:09.3(2) 55360 1.795 215 472 56(18) −15.981 43(2) 125 10.4 54220–58012
J1650–4921 16:50:35.109(17) −49:21:03.76(3) 55599 6.393 872 581 394(2) −7.43411(5) 112 9.5 54548–58012
J1702–4306 17:02:27.36(2) −43:06:45.1(4) 55560 4.640 188 780 13(2) −21.057 20(2) 102 9.6 54505–58012
J1715–3903 17:15:14.08(4) −39:02:57.130.06

0.12 55370 3.590 742 3095(9) −48.2784(13) 128 10.4 54220–58012

J1722–3712 17:22:59.21(4) −37:12:04.510.06
0.09 55362 4.234 063 3683(7) −19.4742(11) 131 10.4 54220–58012

J1723–3659 17:23:07.58(17) −36:59:14.2(8) 55384 4.932 793 178 87(3) −19.5353(5) 128 10.4 54220–58012
J1733–3716 17:33:26.760(2) −37:16:55.19(10) 55359 2.962 130 037 17(4) −13.199 89(9) 129 11.1 53971–58012
J1735–3258 17:35:56.660.61

0.09 −32:58:21.780.46
0.38 55355 2.849 232 318 13(2) −21.1107(3) 89 6.7 54220–56672

J1738–2955 17:38:52.12(2) −29:55:57.390.22
0.15 55377 2.255 171 3364(2) −41.7146(12) 89 6.8 54220–56709

J1739–2903 17:39:34.292(2) −29:03:02.2(2) 55385 3.097 063 736 18(5) −7.553 45(7) 135 10.4 54220–58012
J1739–3023 17:39:39.79(4) −30:23:12.870.18

0.08 55351 8.743 419 4934(13) −87.1129(2) 133 10.4 54220–58012

J1745–3040 17:45:56.316(12) −30:40:22.9(11) 55276 2.721 579 246 363(8) −7.904 60(4) 219 13.6 53035–58012
J1801–2154 18:01:08.380.63

0.05 −21:54:07.510.09
0.81 55385 2.664 522 569 01(11) −11.3721(15) 84 6.8 54220–56708

J1806–2125 18:06:19.590.48
0.06 −21:27:55.330.98

0.48 55349 2.075 444 041(15) −50.821(2) 123 11.0 53968–57992
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Timing of young radio pulsars – I 3817

Table 1 – continued

PSR RAJ Dec.J PEPOCH ν ν̇ NToA

Time
span MJD range

(h:m:s) (d:m:s) (s−1) (10−14 s−2) (yr)

J1809–1917 18:09:43.136(2) −19:17:38.1(5) 55366 12.083 822 6201(8) −372.7882(19) 130 10.4 54220–58012
J1815–1738 18:15:14.67(19) −17:38:06.950.32

0.57 55364 5.038 875 458 88(10) −197.4552(11) 86 6.8 54220–56708

J1820–1529 18:20:41.110.47
0.07 −15:29:42.370.08

0.29 55373 3.000 716 562(16) −34.130(4) 81 7.4 53968–56671

J1824–1945 18:24:00.56(18) −19:46:03.470.21
0.43 55291 5.281 57 555 2287(3) −14.6048(5) 149 10.4 54220–58012

J1825–1446 18:25:02.96(17) −14:46:53.750.72
0.68 55314 3.581 683 5827(4) −29.0816(6) 132 10.4 54220–58012

J1828–1057 18:28:33.24(10) −10:57:26.9(7) 55334 4.059 541 174 19(6) −34.1114(4) 89 6.8 54220–56708
J1828–1101 18:28:18.8(13) −11:01:51.280.02

0.93 55356 13.877 993 641(13) −284.992(2) 131 11.1 53951–58012

J1830–1059 18:30:47.510.11
0.1 −10:59:26.450.88

0.74 55372 2.468 690 0068(5) −36.5201(10) 154 10.4 54220–58012

J1832–0827 18:32:37.013(2) −08:27:03.7(12) 55397 1.544 817 633 127(2) −15.248 58(4) 124 10.4 54220–58012
J1833–0827 18:33:40.268(3) −08:27:31.6(18) 55402 11.724 958 0817(4) −126.1600(8) 124 10.2 54268–58012
J1834–0731 18:34:15.97(2) −07:31:05.93(7) 55376 1.949 335 711 14(6) −22.1210(7) 85 6.7 54268–56708
J1835–0944 18:35:46.653(6) −09:44:27.2(4) 55130 6.880 068 960 72(4) −20.7560(11) 41 3.7 54478–55822
J1835–1106 18:35:18.41(5) −11:06:16.1(9) 55429 6.027 086 8794(10) −74.7918(16) 125 10.2 54268–58012
J1837–0559 18:37:23.652(6) −05:59:28.6(2) 55470 4.973 547 630 55(2) −8.1858(4) 115 10.2 54303–58012
J1838–0453 18:38:11.4(12) −04:53:25.570.32

0.83 55339 2.625 598 0205(5) −80.1949(3) 91 6.6 54306–56708

J1838–0549 18:38:38.065(6) −05:49:12.1(3) 55473 4.249 688 210 732(2) −60.3601(5) 81 6.6 54306–56708
J1839–0321 18:39:37.520(8) −03:21:10.8(3) 55522 4.187 917 144 798(2) −21.9566(7) 70 6.6 54306–56708
J1839–0905 18:39:53.46(3) −9:05:14.1(8) 54979 2.386 777 802 94(7) −14.8244(10) 55 4.3 54268–55822
J1842–0905 18:42:22.15(2) −09:05:30.0(3) 55392 2.901 527 844 74(2) −8.8183(4) 126 10.2 54268–58012
J1843–0355 18:43:06.663(8) −03:55:56.6(3) 55402 7.557 780 825 655(2) −5.940 13(9) 84 7.5 53968–56708
J1843–0702 18:43:22.439(2) −07:02:54.6(14) 55380 5.218 809 610 58(15) −5.818 12(2) 128 10.2 54268–58012
J1844–0538 18:44:05.12(2) −05:38:34.1(14) 55410 3.910 768 991 55(11) −14.843 90(17) 122 10.2 54268–58012
J1845–0743 18:45:57.1833(4) −07:43:38.57(2) 55336 9.551 586 249 996(12) −3.345 425(2) 130 10.3 54267–58012
J1853–0004 18:53:23.027(8) −00:04:33.4(3) 55446 9.858 325 73140(2) −54.1604(5) 118 10.1 54306–58012
J1853 + 0011 18:53:29.980(8) 00:11:30.6(3) 55163 2.513 260 850 307(15) −21.178 46(12) 37 3.4 54597–55822

Table 2. Prior ranges for the various stochastic and deterministic parameters
used in the timing models. 
param is the uncertainty on a parameter from
the initial TEMPO2 fitting.

Parameter Prior range Type

Red noise amplitude
(Ared)

(−20, −5) Log-uniform

Red noise slope (β) (0,20) Log-uniform
EFAC (−1,1.2) Log-uniform
EQUAD (−10, −3) Log-uniform
Corner frequency (fc) (0.01/Tspan,10/Tspan) Log-uniform
Low frequency cut-off
(LFC)

(−1,0) Log-uniform

Sinusoid amplitude (−10,0) Log-uniform
Sinusoid phase (0,2π ) Uniform
Log-sinusoid
frequency

(1/Tspan, 100/Tspan) Log-uniform

Proper motion ± 1000 mas yr−1 Uniform
RAJ, Dec.J, ν, ν̇, ν̈ ± 10000 × 
param Uniform

to Lentati & Shannon (2015), who state that a Bayes factor of >3 is
strong and >5 is very strong. If multiple models have a Bayes factor
greater than 5, we select model A, with a Bayes factor of X, if A is
the simpler model and other models have Bayes factors not greater
than X + n, where n = 5 is the threshold. All of these models are
computed using the ‘Bayesian young pulsar timing’ pipeline that
is cluster aware and simultaneously processes multiple models for
each pulsar. We use ∼25 different timing models for each pulsar,
leading to a total of 2125 models, which were processed in less
than 15 h. The pipeline and the relevant instructions can be found
in https://bitbucket.org/aparthas/youngpulsartiming.

The Bayesian pulsar timing approach is powerful because it al-
lows for the simultaneous modelling of stochastic and deterministic
parameters while also allowing for robust model selection based on
the principles of Bayesian inference. The unique timing models that
we use for each pulsar are:

(i) No stochastic parameters (NoSP),
(ii) Stochastic parameters using a power-law model (PL),
(iii) Stochastic parameters using a cut-off power-law model

(CPL),
(iv) Proper motion and stochastic parameters (PL + PM),
(v) ν̈ and stochastic parameters (PL + F2),
(vi) Model with low-frequency components and stochastic pa-

rameters (PL + LFC),
(vii) Model with a single sinusoidal fit and stochastic parameters

(PL + SIN).

We choose wide prior ranges for the red noise amplitude and
spectral index because timing noise in young pulsars is strong and
can have a relatively steep spectral index. To perform an unbiased
search for the proper motion, our prior distributions range from
−1000 to +1000 mas yr−1. Similarly, to ensure unbiased priors
for position, spin, and spin-down parameters, the uncertainties of
the initial least-squares fit values for each of these parameters are
multiplied by 104.

Using various reasonable permutations of these models, we build
more sophisticated timing models leading to a total of 25 different
models per pulsar. It must be noted that in all of the above models,
including the NoSP model, the position (RAJ and Dec.J) and the
spin parameters (ν and ν̇) are fitted simultaneously with the other
relevant model parameters.
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3818 A. Parthasarathy et al.

Table 3. A summary of the preferred timing model, its Bayes factor compared to the base model, and 95 per cent confidence limits on the timing noise
parameters (Ared and β) for each pulsar are reported. The first 19 pulsars listed have a significant detection of ν̈ and n while for the rest the lower 2.5 perc ent
and upper 97.5 perc ent confidence limits are reported from the PL + F2 model.

PSR Best model Bayes factor log10(Ared) β ν̈ n
(yr3/2) (10−23 s−3)

J0857–4424 PL + F2 171.61 −11.3+1.2
−0.6 −9.1+3.8

−1.6 3.63(16) 2890(30)

J0954–5430 PL + F2 5.96 −10.4+0.6
−0.3 −4.4+2.1

−0.8 0.032(8) 18(9)

J1412–6145 PL + F2 29.99 −10.7+1.1
−0.6 −7.9+3.6

−1.6 0.62(4) 20(3)

J1509–5850 PL + F2 6.54 −11.1+3.1
−2.1 −5.1+8.6

−2.9 0.12(16) 11(3)

J1513–5908 PL + F2 44.08 −9.7+0.4
−0.2 −5.7+1.3

−0.6 189.6(2) 2.82(6)

J1524–5706 PL + F2 13.99 −10.2+1.0
−0.7 −3.6+3.6

−1.3 0.038(2) 4.2(7)

J1531–5610 PL + F2 100.57 −11.8+1.3
−0.6 −8.5+3.4

−1.6 1.37(2) 43(1)

J1632–4818 PL + F2 18.69 −9.6+0.8
−0.5 −5.0+2.7

−1.1 0.48(4) 6(1)

J1637–4642 PL + F2 54.34 −9.7+0.6
−0.3 −4.9+2.2

−0.9 3.2(15) 34(3)

J1643–4505 PL + F2 + LFC 3.24 −10.1+0.5
−0.3 −2.3+1.0

−0.4 0.11(2) 15(6)

J1648–4611 PL + F2 13.13 −10.4+0.8
−0.5 −6.3+2.3

−0.9 0.44(8) 40(10)

J1715–3903 PL + F2 4.19 −9.2+0.2
−0.1 −3.8+1.3

−0.6 0.4(11) 70(40)

J1738–2955 PL + F2 5.37 −9.6+0.5
−0.2 −5.8+2.4

−1.0 −0.5(16) −70(40)

J1806–2125 PL + F2 5.56 −9.1+0.3
−0.1 −6.6+1.6

−0.7 1.1(4) 90(60)

J1809–1917 PL + PM + F2 94.14 −11.7+1.1
−0.6 −9.0+3.5

−1.4 2.70(3) 23.5(6)

J1815–1738 PL + F2 + LFC 3.18 −11.8+3.1
−1.5 −4.5+3.1

−1.4 0.73(8) 9(3)

J1824–1945 PL + F2 + LFC 32.02 −10.9+0.3
−0.1 −3.4+0.6

−0.3 0.05(2) 120(20)

J1830–1059 CPL + F2 19.55 −8.5+0.3
−0.1 −13.6+6.2

−2.8 0.16(19) 31(7)

J1833–0827 PL + F2 15.98 −10.2+0.2
−0.1 −2.8+1.2

−0.6 −0.19(13) −15(2)

J0543 + 2329 PL – −10.5+0.4
−0.2 −3.6+1.8

−0.7 (−0.07,0.01) (−2,10)

J0745–5353 PL + PM 20.13 −10.5+0.5
−0.3 −3.9+1.7

−0.6 (−0.01,0.02) (−140,680)

J0820–3826 PL + LFC 6.15 −11.1+1.8
−1.0 −3.0+1.9

−0.8 (−0.15,0.06) (−480,600)

J0834–4159 PL – −10.9+1.2
−0.8 −5.3+4.0

−1.5 (−0.02,0.02) (−20,40)

J0905–5127 PL – −9.6+0.2
−0.1 −5.0+0.8

−0.4 (−0.06,0.14) (−40,160)

J1016–5819 PL – −11.5+1.6
−1.0 −5.2+4.7

−1.8 (−0.04,0.01) (−70,260)

J1020–6026 PL – −11.9+4.2
−2.4 −7.7+10.7

−4.7 (0.01,0.04) (10,30)

J1043–6116 PL – −10.7+0.5
−0.3 −5.7+1.8

−0.7 (0.01,0.03) (10,90)

J1115–6052 PL – −10.5+0.7
−0.4 −5.2+2.3

−0.9 (0.02,0.03) (10,170)

J1123–6259 PL – −10.1+0.3
−0.2 −6.3+1.8

−0.8 (−0.05,0.1) (−340,1300)

J1156–5707 PL – −9.1+0.2
−0.1 −5.6+0.9

−0.4 (−0.73, −0.04) (−250,100)

J1216–6223 PL – −11.0+1.6
−0.9 −5.0+4.8

−2.3 (−0.01,0.01) (−30,40)

J1224–6407 PL + LFC 11.09 −11.6+0.5
−0.3 −2.9+0.8

−0.4 (−0.05, −0.02) (−200,100)

J1305–6203 PL – −11.0+2.0
−1.3 −6.1+5.9

−2.2 (0.01,0.02) (1,20)

J1349–6130 PL – −9.8+0.2
−0.1 −4.7+1.0

−0.5 (−0.03,0.09) (−200,1000)

J1452–5851 PL – −11.4+2.4
−1.4 −7.8+7.6

−2.9 (0.02,0.03) (5,10)

J1453–6413 PL – −10.3+0.2
−0.1 −3.7+1.0

−0.4 (−0.01,0.02) (−70,250)

J1512–5759 CPL 2.99 −10.0+0.2
−0.1 −7.0+2.5

−1.1 (−0.03,0.18) (−10,130)

J1514–5925 PL – −9.6+0.3
−0.1 −3.6+1.6

−0.8 (−0.07,0.26) (−300,1600)

J1515–5720 PL – −9.8+0.2
−0.1 −4.4+1.5

−0.6 (−0.02,0.08) (−140,760)

J1530–5327 PL – −10.8+0.7
−0.4 −4.8+2.7

−1.1 (−0.02, −0.01) (−200,70)

J1538–5551 PL – −10.8+1.5
−1.0 −5.1+4.8

−1.9 (−0.12,0.02) (−140,100)

J1539–5626 PL – −9.7+0.2
−0.1 −5.1+1.0

−0.5 (−0.09,0.1) (−570,1140)

J1543–5459 PL – −9.2+0.2
−0.1 −4.9+1.0

−0.5 (−0.2,0.21) (−40,80)

J1548–5607 PL – −10.1+0.3
−0.1 −5.2+1.5

−0.6 (−0.06,0.08) (−30,60)

J1549–4848 PL – −9.7+0.2
−0.1 −5.2+1.3

−0.6 (0.02,0.19) (30,330)

J1551–5310 PL – −9.1+0.4
−0.2 −7.3+2.3

−1.0 (0.42,1.43) (10,50)

J1600–5751 PL – −10.0+0.2
−0.1 −4.4+1.4

−0.6 (−0.06,0.04) (−1000,1600)

J1601–5335 PL – −9.6+0.5
−0.2 −6.0+2.8

−1.2 (−0.21,0.32) (−10,40)

J1611–5209 PL – −10.1+0.2
−0.1 −5.5+1.2

−0.5 (−0.09,0.03) (−200,200)
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Timing of young radio pulsars – I 3819

Table 3 – continued

PSR Best model Bayes factor log10(Ared) β ν̈ n
(yr3/2) (10−23 s−3)

J1632–4757 PL – −10.6+1.3
−0.8 −7.4+4.9

−1.9 (−0.04,0.17) (−20,150)

J1637–4553 PL – −10.3+0.3
−0.1 −5.2+1.1

−0.5 (0.03,0.13) (40,300)

J1638–4417 PL – −10.0+0.4
−0.3 −4.3+2.3

−0.9 (−0.07,0.08) (−430,1000)

J1638–4608 PL – −8.9+0.2
−0.1 −4.0+1.2

−0.5 (−0.36,0.23) (−30,40)

J1640–4715 PL – −9.3+0.3
−0.1 −5.3+1.6

−0.7 (0.06,0.31) (45,330)

J1649–4653 PL – −10.2+0.8
−0.4 −8.0+3.3

−1.5 (−0.1,0.02) (−75,60)

J1650–4921 PL – −12.5+3.0
−1.8 −7.4+7.8

−2.9 (0.01,0.02) (25,100)

J1702–4306 PL + SIN 7.1 −9.6+0.2
−0.1 −3.5+0.8

−0.3 (−0.05,0.24) (−50,360)

J1722–3712 PL – −9.2+0.2
−0.1 −4.2+0.8

−0.4 (−0.28,0.07) (−320,270)

J1723–3659 PL – −9.6+0.2
−0.1 −5.9+1.4

−0.6 (−0.27,0.13) (−340,420)

J1733–3716 PL – −10.8+0.8
−0.4 −5.6+2.5

−1.0 (−0.01,0.01) (−20,35)

J1735–3258 PL – −9.0+0.4
−0.2 −4.6+2.1

−0.9 (−0.85,0.22) (−540,510)

J1739–2903 PL – −10.5+0.3
−0.2 −4.1+1.6

−0.7 (0.01,0.02) (3,85)

J1739–3023 PL – −9.2+0.2
−0.1 −3.1+0.8

−0.4 (−0.13,0.18) (−15,40)

J1745–3040 PL – −11.0+1.0
−0.6 −5.3+2.3

−0.9 (−0.01,0.02) (−20,30)

J1801–2154 PL – −9.2+0.3
−0.1 −3.6+1.4

−0.6 (−0.15,0.16) (−305,720)

J1820–1529 PL + LFC 3.18 −12.5+4.6
−1.9 −6.9+3.8

−1.9 (−1.26,0.32) (−320,290)

J1825–1446 PL – −9.5+0.3
−0.2 −3.9+1.2

−0.4 (−0.09,0.07) (−40,70)

J1828–1057 PL – −10.8+2.5
−1.6 −5.6+6.6

−2.6 (0.01,0.03) (4,15)

J1828–1101 PL – −8.6+0.2
−0.1 −3.7+0.8

−0.4 (−0.02,2.52) (−1,60)

J1832–0827 PL – −10.4+0.3
−0.1 −5.1+1.4

−0.6 (−0.01,0.01) (−10,10)

J1834–0731 PL – −9.7+0.9
−0.6 −4.1+3.7

−1.4 (−0.07,0.05) (−30,50)

J1835–0944 PL – −10.3+1.0
−0.6 −5.2+6.9

−2.5 (−0.1,0.22) (−150,640)

J1835–1106 PL – −9.0+0.2
−0.1 −4.4+0.9

−0.4 (−0.48,0.6) (−50,120)

J1837–0559 PL – −10.2+0.8
−0.5 −4.9+3.0

−1.1 (−0.04,0.04) (−300,620)

J1838–0453 PL – −8.7+0.3
−0.1 −5.7+1.4

−0.6 (−2.57, −0.37) (−100,30)

J1838–0549 PL – −10.8+1.6
−1.0 −7.1+6.1

−2.2 (0.08,0.11) (10,15)

J1839–0321 PL – −10.1+2.1
−1.8 −5.2+5.7

−1.1 (0.02,0.17) (20,200)

J1839–0905 PL – −9.4+0.4
−0.2 −4.7+2.2

−0.9 (0.19,0.37) (210,510)

J1842–0905 PL – −9.4+0.2
−0.1 −4.3+1.4

−0.6 (−0.1,0.09) (−400,670)

J1843–0355 NoSP 2.64 NA NA NA NA

J1843–0702 PL – −10.4+0.5
−0.3 −5.3+2.0

−0.8 (0.02,0.06) (40,1350)

J1844–0538 PL – −10.4+0.5
−0.2 −5.7+2.2

−1.0 (−0.01,0.05) (−6,150)

J1845–0743 PL – −11.2+0.3
−0.2 −2.2+1.4

−0.7 (−0.01,0.03) (−60,85)

J1853–0004 PL – −9.8+0.2
−0.1 −6.3+1.3

−0.6 (−0.04,0.43) (−10,230)

Table 4. Proper motions for two pulsars reported with their pulsar distance
(as estimated from the DM in Yao et al. 2017) and the computed transverse
velocities using the proper motion in right ascension (VαT) and total (VT).
The error bars reported are 95 per cent confidence limits. The epoch for the
position is the same as the epoch of the period reported in Table 1.

PSR μα μδ μtot Distance VαT VT

(mas yr−1)(mas yr−1)(mas yr−1) (kpc) (km s−1) (km s−1)

J0745–
5353

−60(10) 50(10) 80(10) 0.57 – 220(30)

J1809–
1917

−19(6) 50(90) 60(90) 3.27
−300(100)

900(1300)

4 R ESULTS

In Table 1, we present the position and spin parameters for the
pulsars in our sample with their 95 per cent credible regions
as calculated from the posterior distributions along with their
observation timespan. Table 2 provides a list of unique parameters
used in our different timing models along with their prior ranges.
Fig. 2 shows the timing residuals from the preferred model, without
subtracting the modelled timing noise.

This is the first time that the timing noise has been consistently
modelled using Bayesian inference for a large sample of young
pulsars. In Table 3, we present the preferred timing model, the
Bayes factor of that model relative to the base model, which in
this case is the model in which the position, spin frequency, spin
frequency derivative, and a power-law timing noise are fitted for.
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3820 A. Parthasarathy et al.

Figure 3. Left: The distribution of red noise amplitude against spectral indices for our sample of pulsars for which a power-law timing model is preferred.
The error bars are 95 per cent confidence limits obtained from the preferred model. Right: Posterior distribution of the red noise amplitude and spectral indices
from the preferred model for each pulsar are normalized and added together to form an integrated posterior distribution as shown here.

Figure 4. The relationship between the correlation coefficient (r), which measures the strength of the timing noise for various values of σ P and b, for a fixed
value of a = 1.

The Bayes factor is zero if the preferred model is the base model
(PL). For the first 19 pulsars listed, we report significant detections
of ν̈ and the derived braking index values (n) from the preferred
model, while for the rest, we report their upper and lower limits as
derived from the PL + F2 model. The braking index is estimated by
using equation (2) on the entire posterior distribution of ν, ν̇, and ν̈.
The values for Ared and β are derived from the preferred model as
stated in the second column.

We find that for two pulsars, PSR J1843–0355 and PSR
J1853+0011, a model without the timing noise is preferred, while
for 58 other pulsars, a model with only the power-law timing noise
is strongly preferred. There is marginal to strong evidence for the
presence of low-frequency components which are much longer than
the data set for 5 pulsars. We find marginal evidence supporting a
cut-off frequency in the power-law timing noise model for PSR
J1512–5759.

A model with a ν̈ is preferred for 19 pulsars, out of which for
3 pulsars, the model with low-frequency components is preferred,
and for one other pulsar a model with a proper motion is preferred.
The braking indices for these pulsars, along with the implications
on glitch recovery models and pulsar spin-down are discussed
in a second paper (Parthasarathy et al., in preparation). A model
with only the proper motion is preferred for PSR J0745–5353.
Table 4 lists the values for the proper motion in right ascension and
declination in mas yr−1, i.e. μα = α̇ cos δ and μδ = δ̇ and contains
the computed transverse velocity using the distance derived from the
DM using the electron-density model of Yao, Manchester & Wang
(2017). PSR J1702–4306 shows indication for periodic modulation
in its ToAs, which is discussed further in Section 5.3. It was noted
that for PSR J1830–1059, an unpublished glitch was reported,2 on

2http://www.jb.man.ac.uk/pulsar/glitches/gTable.html
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Timing of young radio pulsars – I 3821

Figure 5. Relationship between the timing noise strength and the timing noise metric at the maximally correlated values of a and b for our sample of young
pulsars and MSPs from the International Pulsar Timing Array data release 1 (IPTA DR1) sample.

Figure 6. Posterior distribution of the corner frequency parameter along
with the timing noise parameters for PSR J1512–5759. This model is
positively preferred with a Bayes factor of 3.23.

2009 July 29 (MJD 55041). For this pulsar a model with a glitch, a
ν̈, and a cut-off power-law fit is preferred. It is interesting to note
here that we find an evidence for a cut-off frequency for only two
pulsars out of the 85 in our sample.

Fig. 3 shows the distribution of Ared and β extracted from the
preferred model for each pulsar in our sample except for the two
pulsars for which the cut-off power-law model is preferred. The
errors shown in the plot are the 2.5 per cent and 97.5 per cent
confidence limits on both the parameters. The median value for
log10(Ared) is −10.4+1.8

−1.7 yr3/2 and for β is −5.2+3.0
−3.8. Fig. 3 also shows

the integrated posterior distribution for the timing noise parameters.

Figure 7. Posterior distribution of the low-frequency component, a ν̈ along
with the timing noise parameters for PSR J1643–4505.

Contours are plotted for the 50 per cent and 95 per cent confidence
intervals with the accompanying histograms.

We test the robustness of the timing noise model by compar-
ing them to an independent Bayesian analysis tool, ENTERPRISE3

(Enhanced Numerical Toolbox Enabling a Robust Pulsar Inference
Suite), which is developed for timing noise and gravitational wave
analysis in pulsar timing data. With ENTERPRISE, we use a Parallel-
Tempering Ensemble Markov Chain Monte Carlo (PTMCMC)
sampler. The prior ranges for the noise models are identical and
in both the cases the red noise is modelled as a power law. Since
ENTERPRISE does not allow for full non-linear sampling of the timing

3https://github.com/nanograv/enterprise
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3822 A. Parthasarathy et al.

Figure 8. (a) Posterior distribution of the proper motion and the timing
noise parameters for PSR J0745–5353. (b) Posterior distribution of the
proper motion, ν̈ and the timing noise parameters for PSR J1809–1917.

model and only does implicit marginalization over the parameters in
the linear perturbation regime, we compare the noise models for the
pulsars that prefer the power-law model only. The distributions are
similar to that shown in Fig. 3 with median values of the log10(Ared)
and β being, −10.4+1.8

−1.7, −10.3+1.6
−1.8 and −5.2+3.0

−3.8, −5.2 ± 3.3 using
TEMPONEST and ENTERPRISE, respectively.

5 D ISCUSSION

5.1 Timing noise

Various attempts have been made to quantify timing noise in pulsars.
Cordes & Helfand (1980) proposed an ‘activity parameter’ (A) that

measured the timing noise relative to the Crab pulsar,

A = log10

[
σTN,2(T )

σTN,2(T )Crab

]
, (12)

where σTN,2 (T ) is the rms residual phase from a second-order least-
squares polynomial fit. They found that this parameter is strongly
correlated with the characteristic age of the pulsars. Arzoumanian
et al. (1994) measured the strength of the timing noise (
8) after a
cubic polynomial fit to the ToAs over a time period (T8), of 108 s
and found a strong correlation with the pulsar period derivative,


8 = log10

( |ν̈|
6ν

T 3
8

)
. (13)

Shannon & Cordes (2010) argued that statistics based on a cubic
fit (ν̈) underestimates the strength of the timing noise and proposed
that the rms timing noise after a second-order fit is a more accurate
diagnostic [i.e. they simply use σTN,2 (T ) without the Crab as
reference]. They also developed a metric (σ P),

σP = C2ν
α|ν̇|βT γ , (14)

which linked the timing noise with the measured pulsar parame-
ters. Using a maximum likelihood approach they determined the
coefficients α, β, γ , and the scaling factor (C2) given the pulsar
parameters and the time span (T).

We characterize the strength of the timing noise in our pulsars
using the equation,

log10(σTN
2) = 2 log10(Ared) + log10

(
T

1yr

)
(β − 1) , (15)

where T signifies the time span over which ν̈ is measured. Previous
metrics for timing noise relied upon modelling it as either a
second order or a cubic polynomial which directly affected the
measurements of higher order spin-down parameters. Since we
characterize the timing noise as a power law using the amplitude
and spectral index, it allows us to measure an unbiased value for the
pulsar spin-down parameters.

To determine the correlation between different pulsar parameters
and the strength of the timing noise (σ TN), we perform a linear
least-squares regression analysis between σ TN (with T = 10 yr) and
σ P,

σP = νa |ν̇|b. (16)

The correlation coefficient (r) is computed in a linear regression
analysis. We search over the parameter space spanned by arbitrary
scaling coefficients, a and b to find the maximally correlated scaling
relationship.

The various pulsar parameters can then be expressed in terms of
ν and ν̇ as

(i) Spin-period derivative: ν−2|ν̇|1
(ii) Spin-down age: ν1|ν̇|−1

(iii) Surface magnetic field strength: ν−3/2|ν̇|1/2

(iv) Magnetic field at the light cylinder: ν3/2|ν̇|1/2

(v) Rate of loss of rotational kinetic energy: ν1|ν̇|1

and are represented in Fig. 4.
Since the correlation coefficients maintain rotational symmetry

in the (a, b) plane and following the discussion in Jankowski et al.
(2018), any combination of (a, b) that has the same ratio will have the
same correlation coefficient. For example, the spin-down derivative
can be expressed as ν1|ν̇|−1/2 or ν−2|ν̇|1. In our analysis, we set
the a = 1, which results in the various pulsar parameters being
expressed as a function of b as shown in Fig. 4. We then find that
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the maximum absolute correlation coefficient for σ TN occurs at b =
−0.9 ± 0.2 for our sample of young pulsars.

This suggests that the timing noise is more closely correlated with
spin-period derivative and spin-down age of the pulsar as compared
to Ė. Analysing the relationship of the timing noise with observing
time span, we find no evidence for band-limited timing noise, which
would be expected to flatten over longer timing baselines. We
compare our results with those of Shannon & Cordes (2010), who
reported a scaling relation of ν−0.9±0.2|ν̇|1.0±0.05, which can also be
expressed as ν1|ν̇|−1.1±0.2. We find that our scaling relationships are
consistent with those reported by Shannon & Cordes (2010).

To test the robustness of this correlation, we also include the
timing noise parameters of 8 MSPs from a sample of 49 pulsars
from the International Pulsar Timing Array Data release 1 (Verbiest
et al. 2016) for which the preferred stochastic model is the spin-noise
process4 (Lentati et al. 2016). The MSPs have a typical observing
span of ∼10 yr and the timing noise is modelled as a power-law
process using TEMPONEST. We find that on adding the MSPs to our
sample, we obtain a stronger correlation and the maximum absolute
correlation occurs for b = −0.6 ± 0.1, (Fig. 4). van Haasteren &
Levin (2013) derive an expression (equation 22 in their paper) for
relating the power spectral density to the average rms in the post-fit
timing residuals, which can be used to relate Tγ in equation (14) to
β in equation (15) as γ = β−1

2 . From such a relation, we obtain a
value of γ to be 2 ± 0.1, consistent with Shannon & Cordes (2010).
The correlation coefficients obtained for pulsar age, Ė and magnetic
field strength are also shown in Fig. 4.

Fig. 5 shows the correlation between σ TN and the timing noise
metric (σ P) for a = 1 and b = −0.6 ± 0.1. For the young pulsar
sample, the error bars are 95 per cent confidence limits computed
from the measured posterior distributions, while for the MSPs, they
are adopted from the 1σ confidence limits from Lentati et al. (2016).
It is evident that the timing noise is stronger in young pulsars
as compared to older pulsars (MSPs) in which case, we measure
smaller values for the red-noise amplitude and shallower spectral
indices. Our parametrization of timing noise from measured values
of Ared and β can be used to predict the relative strength of timing
noise in new pulsars given their spin-down parameters.

We find marginal evidence for the presence of a corner frequency
(fc) in PSR J1512–5759. The posterior distribution of the corner
frequency and the timing noise parameters for this pulsar are shown
in Fig. 6. We find that for five pulsars, a model with a low-frequency
component (LFC) is preferred. This model implements extra sinu-
soidal fits at frequencies much longer than the data set. It is worth
noting here that the measurement of low-frequency components is
strongly correlated with the amplitude of the red noise (see Fig. 7)
in the timing residuals. The prospects of detecting signatures at
low frequencies are greater when the red-noise amplitude is larger.
This is clearly reflected in the Bayes factors obtained for both PSR
J0820–3826 (BF of 6.15) and PSR J1820–1529 (BF of 3.18), which
have measured red-noise amplitudes of −11.11.8

1.0 and −12.54.6
1.9 yr3/2,

respectively. For PSR J1643–4505, although the Bayes factor is just
3.24, the measured red-noise amplitude is relatively larger (−10.10.5

0.3

yr3/2), thus leading to a relatively well-constrained posterior for the
LFC parameter as shown in Fig. 7. The low Bayes factor can perhaps
be attributed to the additional detection of ν̈.

4Uncertainties in the Solar System Barycenter (SSB) have been identified
to introduce rednoise signatures in the ToAs of the highest precision MSPs;
however, those effects are sub-dominant in the MSP data sets studied here
(Arzoumanian et al. 2018)

5.2 Proper motions and pulsar velocities

For the two pulsars listed in Table 4, the posterior distributions of
the proper motions are shown in Fig. 8.

PSR J0745–5353 shows a clear detection of a proper motion
signature. Assuming a distance of 0.57 kpc, the derived transverse
velocity of 220 ± 30 km s−1 is typical of the population of pulsars
as a whole. For PSR J1809–1917, we measure a significant proper
motion in right ascension, while the proper motion in declination
is consistent with zero. The transverse velocity computed from μα

is ∼300 kms−1, which is reasonable in terms of the transverse
velocities for the general pulsar population.

PSR J1745–3040 has a previously reported proper motion from
both the frequentist method (Zou et al. 2005), with μα of 6 ± 3
mas yr−1, μδ of 4 ± 26 mas yr−1 and the Bayesian method (Li et al.
2016), with μα of 11.9 ± 16 mas yr−1, μδ of 50 ± 12 mas yr−1. In
our analysis the proper motion model is marginally better than the
power-law model (PL) with a Bayes factor of 2. From this model,
we obtain a μα of 9.9 ± 3.5 mas yr−1 and a μδ of 10.5 ± 27.6, which
are consistent with the previous measurements. PSR J1833–0827
has a previously reported timing proper motion (Hobbs et al. 2005),
but the preferred model in our analysis shows a strong detection of
ν̈.

There are two other pulsars, PSR J1453–6413 (Bailes et al. 1990)
and J1825–1446 (Dexter et al. 2017) that have a previously reported
interferometric proper motions with greater than 3σ significance.
In our analysis, the uncertainties associated with the proper motion
measurements are quite large for these pulsars with the preferred
models being a power-law model for PSR J1453–6413 and a
sinusoidal fitting model for PSR J1825–1446.

Unbiased measurements of proper motion and other such de-
terministic parameters in pulsars that are strongly contaminated
with timing noise strongly underscores the evidence-based model
selection that we have employed here. Increasing the timing
baselines will help to discover further significant proper motion
measurements.

5.3 Pulsars with planetary companions?

To search for periodic modulations in our pulsars, we fit for
a sinusoid with varied amplitudes, phases, and frequencies and
compare the evidences to choose the preferred model. Here we
comment on five pulsars present in our sample that have been
previously studied in the context of periodic signals in their timing
residuals.

PSR J1637–4642 was reported to show marginal evidence for
a single sinusoid in Kerr et al. (2016). We find that the preferred
model for this pulsar is PL + F2. In order to further test this, we
fitted for a sinusoid simultaneously with ν̈ but find that this model
(PL + F2 + SIN) only has a Bayes Factor of 2.9, which does not
pass a Bayes factor threshold of 5 over the much simpler model.

PSR J1825–1446 showed strong evidence for a single sinusoid
according to Kerr et al. (2016). We however find that, the PL + SIN
model does not meet the threshold to be preferred over the PL
model. The model with a sinusoidal fitting has a Bayes factor of
only 1.7.

For PSR J1830–1059, we find evidence for a glitch with param-
eters similar to those in the catalogue and find that the best model
is one which includes the glitch, ν̈ and a cut-off power-law model.
This pulsar is notable for correlated profile and ν̇ changes (Brook
et al. 2016; Kerr et al. 2016). Stairs et al. (2019) performed an
exhaustive analysis on multihour long observations of this pulsar
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and reported that the pulsar undergoes mode changing between two
stable, extreme profile states. They stated that the observed mode
transition rate can perhaps be explained by the chaotic behaviour
model as previously suggested by Seymour & Lorimer (2013). The
detection of a glitch in 2009, further complicates the theoretical
models invoking explanations based on pinned vortices inside
neutron stars. We conclude that the deviation from a simple power
law, the presence of a glitch and the identified mode changing makes
this pulsar more complex and demands further investigation.

PSR J1638–4608 was reported to show a strong evidence for
a single sinusoid fitting in Kerr et al. (2016). Close examination
however revealed the presence of two new glitches. The amplitudes
of these are glitches are very small, of the order of 10−8 and 10−9

Hz. We find that, after taking the glitches into account, the glitch
inclusive model (GL + SIN) has a Bayes factor of ∼60 as compared
to the model with only the stochastic parameters (PL).

It is useful to note here that although the pulsars presented in this
analysis were manually selected to not have any identified glitches
in the data set, we subsequently found that the two pulsars discussed
above had detected glitches. This was missed in the initial manual
search owing to the small glitch amplitudes. We decided to retain
them in the paper, because for one of the sources, the glitches
were unpublished, while for the other, it significantly changed the
favoured model.

For PSR J1702–4306, Kerr et al. (2016) saw strong evidence for a
single sinusoid with a projected semimajor axis (an) of 2.9 ± 0.7 ms
and an orbital period (Pb) of 391 ± 10 d. In our data, we find that
the sinusoidal model is strongly preferred over the PL model by a
Bayes factor of 7.1. We measure an to be 2.6 ± 0.2 ms and Pb to
be 316 d. It is unclear if these effects are caused due to neutron
star precession or due to the presence of a planetary companion, as
discussed in Kerr et al. (2016).

6 C O N C L U S I O N S

We have applied an improved methodology based on Bayesian
inference on a large sample of high Ė, young pulsars to measure
different stochastic and deterministic parameters of interest. We
have shown that evidence-based model selection is a powerful
technique to disentangle stochastic processes from deterministic
ones and to obtain unbiased measurements of pulsar parameters.
For each pulsar in our sample, a total of 25 different models were
compared and the best model was selected based on a Bayes factor
threshold of 5. The power-law model was preferred for 58 pulsars,
while we found no evidence of timing noise in two pulsars. The low-
frequency component (PL + LFC) model was preferred for 5 pulsars
and in two other pulsars we measure a proper motion signature.
Marginal evidence for the presence of a corner frequency in the
power law was detected in two pulsars. We report two new glitches
in PSR J1638–4608 and find evidence for periodic modulation in the
ToAs of both PSR J1638–4608 and PSR J1702–4306. We have also
compared our timing noise models with an independent Bayesian
package, ENTERPRISE, and obtained consistent results.

We characterize the timing noise as a power law based on the
red-noise amplitude (Ared) and spectral index (β) and report that
there is a strong correlation between the spin-period derivative of
the pulsar and the strength of the timing noise. We develop a metric
that can be used to determine the relative strength of the timing noise
in any pulsar given its spin-down parameters. On adding MSPs to
our sample, we notice that the correlation gets stronger, which is
consistent with what is expected.

Finally, we measure significant ν̈ measurements for 19 pulsars
and also report their braking indices. We discuss the significance of
the braking index measurements, their robustness and the effects of
glitch recovery models in a subsequent publication.
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APPENDI X A : POSTERI OR D I STRI BUTIO NS

The posterior distributions of the preferred model for six pulsars are
shown in Fig. A1 as a sample. Please visit the online repository http
s://bitbucket.org/aparthas/youngpulsartiming to view the posterior
distributions for all of the 85 pulsars discussed in this paper.
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Figure A1. Sample posterior distributions of six pulsars. (a) Posterior distribution for PSR J0543+2329. (b) Posterior distribution for PSR J0745−5353.
(c) Posterior distribution for PSR J0834−4159. (d) Posterior distribution for PSR J0857−4424. (e) Posterior distribution for PSR J0905−5127. (f) Posterior
distribution for PSR J0954−5430.
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