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Quality-Aware Service Selection for Service-
based Systems Based on Iterative

Multi-Attribute Combinatorial Auction
Qiang He, Jun Yan, Hai Jin, Yun Yang

Abstract—The service-oriented paradigm offers support for engineering service-based systems (SBSs) based on service 
composition where existing services are composed to create new services. The selection of services with the aim to fulfil the 
quality constraints becomes critical and challenging to the success of SBSs, especially when the quality constraints are 
stringent. However, none of the existing approaches for quality-aware service composition has sufficiently considered the 
following two critical issues to increase the success rate of finding a solution: 1) the complementarities between services; and 2) 
the competition among service providers. This paper proposes a novel approach called Combinatorial Auction for Service 
Selection (CASS) to support effective and efficient service selection for SBSs based on combinatorial auction. In CASS, service 
providers can bid for combinations of services and apply discounts or premiums to their offers for the multi-dimensional quality 
of the services. Based on received bids, CASS attempts to find a solution that achieves the SBS owner’s optimisation goal while 
fulfilling all quality constraints for the SBS. When a solution cannot be found based on current bids, the auction iterates so that 
service providers can improve their bids to increase their chances of winning. This paper systematically describes the auction 
process and the supporting mechanisms. Experimental results show that by exploiting the complementarities between services 
and the competition among service providers, CASS significantly outperforms existing quality-aware service selection 
approaches in finding optimal solutions and guaranteeing system optimality. Meanwhile, the duration and coordination overhead 
of CASS are kept at satisfactory levels in scenarios on different scales.

Index Terms—Service-based system, combinatorial auction, quality of service, service composition, service selection, Web 
services, integer programming.

————————————————————

1 INTRODUCTION
OMPUTING is evolving from component-based to 
service-based with a rapid progress in services re-
search and practice. The service-oriented paradigm 

is emerging as a new way to engineer software systems 
that are composed of and exposed as services for use 
through standardised protocols, such as WSDL [16], UD-
DI [17] and SOAP [27]. Service-based systems (SBSs) are 
pushing traditional software engineering problems - such 
as requirements, specification, distribution, compo-
nentisation, composition, verification, and evolution - to 
their extremes. A great advantage of the service-oriented 

paradigm is its support for service composition. Through 
service composition, SBS designers can compose existing 
services in the form of business processes to construct 
new SBSs [4, 60]. BPEL [30, 43] is a de facto standard to 
specify the fashion in which Web services interact in a 
business process. Semantics [32, 33, 48] and artificial intel-
ligence (AI) techniques [28, 45] are also popular in the 
area of service composition.

Service composition of an SBS usually goes through 
four phases: 1) planning: the SBS designer determines 
what functionalities are needed to realise the SBS; 2) ser-
vice discovery: the SBS designer looks up candidate ser-
vices that can provide the required functionalities; 3) ser-
vice selection: the SBS designer selects a subset of the 
candidate services for the SBS. The selected services must 
achieve the SBS owner’s optimisation goal for the SBS 
while fulfilling all constraints for the quality of the SBS, 
e.g., response time, availability, etc.; 4) service delivery: 
the selected services are executed in a certain order to 
realise the SBS.

With the development and popularity of e-business, e-
commerce, especially the pay-as-you-go business model 
promoted by Cloud computing [26], there are more and 
more functionally-equivalent services available at differ-
ent quality levels. According to ProgrammableWeb, an 
online Web service directory, the number of published 
Web services has quadrupled since 2009. The statistics 
published by webservices.seekda.com, a Web service 

————————————————

• Qiang He is with the Services Computing Technology and System Lab, 
Cluster and Grid Computing Lab, School of Computer Science and Tech-
nology, Huazhong University of Science and Technology, Wuhan 430074, 
China and the School of Software and Electrical Engineering, Swinburne 
University of Technology, Melbourne, Australia 3122. E-mail: 
heqiang@gmail.com.

• Jun Yan is with the School of Information Systems and Technology, Uni-
versity of Wollongong, Wollongong, Australia 2522. E-mail: 
jyan@uow.edu.au.

• Hai Jin is with the Services Computing Technology and System Lab, Clus-
ter and Grid Computing Lab, School of Computer Science and Technology, 
Huazhong University of Science and Technology, Wuhan 430074, China. 
E-mail: hjin@hust.edu.cn.

• Yun Yang is with the School of Computer Science and Technology, Anhui 
University, Hefei, Anhui 230039, China and the School of Software and 
Electrical Engineering, Swinburne University of Technology, Melbourne, 
Australia 3122. E-mail: yyang@swin.edu.au.

Manuscript received (insert date of submission if desired). Please note that all 
acknowledgments should be placed at the end of the paper, before the bibliography.

C



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

search engine, also indicate an exponential growth in the 
number of published Web services in the past few years. 
Driven by the widespread of Cloud computing, the ser-
vice-oriented environment is moving rapidly toward a 
perfect competition environment in which service pro-
viders compete for service contracts [24], i.e., the contracts 
for provision of services. In such an environment, service 
selection for SBSs is a complex decision making process 
which involves a number of stakeholders. On one hand, 
as buyers in the market, SBS designers can benefit from 
exploiting the competition among service providers. The 
competition among service providers increases the suc-
cess rate of finding a solution in severe scenarios where 
severe quality constraints are imposed on the SBS. The 
fiercer the competition is for a service contract, the more 
likely the SBS designer would be able to obtain satisfacto-
ry offers for the price and quality of the service. Thus, the 
competition can increase the system optimality, i.e., the 
degree to which the SBS owner’s optimisation goal is 
achieved. Therefore, in the service selection phase, the 
SBS designer should negotiate service level agreements 
(SLAs) with multiple candidate service providers and 
then select the best offer for each service [22, 39, 56]. On 
the other hand, as sellers in the market, service providers’ 
profits often increase when the numbers of service con-
tracts that they win increase. This is a strong incentive for 
service providers that can provide multiple types of ser-
vices to propose competitive quality-of-service (QoS) of-
fers, i.e., offers that specify promised QoS, in order to win 
more service contracts. Furthermore, services often show 
complementarity [20] – they can be provided at better 
QoS levels together by a single provider than by multiple 
individual providers. Think of two different scenarios of a 
double-layer encryption SBS composed of two services 
that use different encryption schemes. When the two ser-
vices are provided by a single provider rather than two 
individual providers, shorter response time is expected 
from the SBS because both encryption operations are per-
formed by the service provider in-house without having 
to transmit the intermediate data across organisational 
boundaries. In addition, less cost of service usage for the 
SBS, i.e., the total cost of using the services that compose 
the SBS, is expectable because a discount for the two ser-
vices as a bundle offered by the service provider is poten-
tially available. Thus, service providers capable of provid-
ing complementary services will be able to gain ad-
vantages over other service providers during the SLA 
negotiation as they can offer better QoS at lower prices.

Due to the above characteristics, service selection for 
an SBS based on SLA negotiation can be very complicated 
– it is in fact a NP-complete problem [8] – because the 
selected services must achieve the SBS owner’s optimisa-
tion goal while fulfilling all quality constraints for the 
SBS. Thus, we need an effective and efficient approach 
that addresses the following key issues:

1. Some service providers have the ability to provide 
multiple types of services. They may wish to com-
pete for multiple service contracts in the SLA ne-
gotiation and their QoS offers (i.e., offers for the 
quality of the services) are dependent on how 

many of them that they won. Those service pro-
viders should be able to flexibly express their QoS 
offers for combinations of services.

2. When a solution cannot be found, e.g., the quality 
constraints for the SBS cannot be fulfilled by ser-
vice providers’ current QoS offers, an additional 
round of SLA negotiation is needed for service 
providers to improve their offers. Guidance on 
how to improve their offers must be provided to: 
1) exploit the competition between the service 
providers; and 2) coordinate the SLA negotiation.

3. The NP-complete service selection problem for 
SBS is subject to computational uncertainty in 
large-scale scenarios. The SLA negotiation must 
remain effective and efficient when the service 
composition scenario scales up.

It has been long proven that auction, a form of one-to-
many negotiation, is effective and efficient in a perfect 
competition environment [40, 55], especially when the 
items to be allocated exhibit complementarities [20]. In 
many e-commerce cases, such as Amazon.com, eBay.com 
and Overstock.com, auction has been proven to be able to 
well capture the preferences of both buyers and sellers, 
and to ensure their satisfaction. However, traditional sin-
gle-item auctions are unsuitable for service composition 
scenarios where multiple abstract services are involved. 
This paper presents a novel approach called Combinato-
rial Auction for Service Selection (CASS) to support effec-
tive and efficient quality-aware service selection based on 
combinatorial auction – a type of auction where bidders 
can bid for multiple items [20]. In CASS, the abstract ser-
vices of the SBS are auctioned as items. Service providers, 
as bidders1 in the auction, can place bids (i.e., QoS offers) 
for the services. If a solution is found based on the bids, 
the SBS designer, as auctioneer2 in the auction, awards the 
service contracts to the winning bidders who are respon-
sible for delivering concrete services in the service deliv-
ery phase according to negotiated SLAs. CASS can facili-
tate effective and efficient SLA negotiation by exploiting 
service providers’ QoS capacities, i.e., capacities for QoS 
provision, and eliciting competition among them. The key 
features of CASS are as follows:

1. CASS allows service providers to bid for combina-
tions of services in a structured manner. This fea-
ture allows service providers to utilise their QoS 
capacities for complementary services. They can 
apply discounts or premiums to their QoS offers 
when they are bidding for combinations of ser-
vices.

2. CASS allows SBS designers to negotiate with mul-
tiple candidate service providers for each constitu-
ent service of the SBSs. This creates competition 
among service providers.

3. When a solution cannot be found, e.g., the current 
QoS offers proposed by service providers cannot 
fulfil the quality constraints for the SBS, the auc-

1 In the context of this research, terms “bidder” and “service provider”
are interchangeable.

2 In the context of this research, terms “auctioneer” and “SBS designer”
are interchangeable.

http://en.wikipedia.org/wiki/Amazon.com
http://en.wikipedia.org/wiki/EBay
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tion iterates, allowing the service providers to im-
prove their bids until a solution is found or their 
QoS capacities are exhausted. A novel approach 
for the generation of multi-dimensional ask-QoS - 
the offer for QoS asked by the auctioneer – is de-
signed to help SBS designers coordinate the auc-
tion processes and exploit the competition among 
service providers. Ask-QoSs provide guidance to 
the bidders on analysing their positions in the 
competition and improving their bids.

4. CASS models the winner determination problem 
(WDP) in combinatorial auction as a Constraint 
Optimisation Problem (COP) and adopts Integer 
Programming (IP) techniques to solve the WDP. In 
the COP model, SBS designers can specify various 
optimisation goals and different constraints flexi-
bly, including the quality constraints for the SBSs 
and the auction constraints.

Based on the current state of the practice for QoS-
aware service selection, including negotiation and IP 
techniques, CASS takes a further step by exploiting the 
complementarities between services and the competition 
between service providers. As the service-oriented envi-
ronment becomes more complex and competitive, CASS 
offers a promising solution to finding services with satis-
factory QoS for constructing SBSs in the service-oriented 
environment.

The rest of the paper is organised as follows. The next 
section analyses the requirements with a motivating ex-
ample. Section 3 introduces some preliminaries. Section 4 
introduces the compositional quality model adopted in 
this research. Section 5 presents the procedure of CASS, 
followed by supporting mechanisms described in Section 
6. Section 7 presents experimental evaluation and validity 
analysis. Section 8 reviews related work. Finally, Section 9 
summarises the major contributions of this paper and 
outlines future work.

2 REQUIREMENTS ANALYSIS WITH MOTIVATING 
EXAMPLE

This section presents an example SBS to illustrate the mo-
tivation and requirements of this research. This example 
originates from [3] and is adapted to the characteristics of 
this research. As shown in Fig. 1, the business process of 
this SBS includes six abstract services: New Car Search, 
Used Car Search, Best Car Selection, Insurance Quote, Loan 
Quote and Result Merging. In order to realise the SBS, six 
concrete services are needed to implement the six abstract 
services.

The SBS serves for its clients by processing their re-
quests. The clients submit requests to the SBS, specifying 
their criteria for selecting cars, e.g., brand, type and mod-
el. In response to each request, the SBS returns a list of 
new or used cars with a loan offer and an insurance quote 
for each car on the list.

The service selection for this SBS must address the fol-
lowing issues properly.

The provider of the SBS often has quality constraints 
for the SBS. For example, the SBS must be able to process 

5000 requests per second – the throughput at peak times – 
and the response time of the SBS must not exceed 4 sec-
onds. To fulfil those quality constraints for the SBS, the 
SBS designer needs to negotiate with candidate service 
providers, and from the available QoS offers, select the 
“right” one for each abstract service. Similar to other re-
search efforts [2-4, 58, 60, 61], in this research, we assume 
that alternative functionally equivalent services are avail-
able and can be categorised into different service classes 
based on their functionalities.

Besides the quality constraints for the SBS, the SBS 
owner usually has an optimisation goal for the SBS. Dif-
ferent SBS owners may have different optimisation goals, 
depending on their business needs. Two examples of such 
goals are 1) to maximise the overall system performance 
regardless of the cost of service usage; and 2) to minimise 
the cost of service usage for the SBS. The selected concrete 
services must achieve the SBS owner’s optimisation goal 
for the SBS. In Fig. 1, suppose the SBS owner requires 
minimal cost of implementing the SBS, the SBS designer 
needs to make sure that the selected service providers 
offer the cheapest services while collectively meeting all 
the quality constraints for the SBS.

The available QoS offers for an abstract service often 
differ in their QoS values. For example, a Used Car Search 
service provided by a service provider, e.g., s1,1, returns 
the search results faster than another Used Car Search ser-
vice provided by a different service provider, e.g., s1,3, but 
requires a higher price.

Some service providers may be capable of providing 
multiple services, e.g., the New Cars Search, User Cars 
Search and Best Car Selection services. More importantly, 
they can offer better quality offers for these services be-
cause these services often exhibit complementarity – they 
can be provided at better QoS levels by a single provider 
than multiple individual providers. For example, the 
overall response time of the Best Cars Search, User Cars 
Search and Best Car Selection services can be reduced if 

Fig.1. An example SBS.
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they are provided by the same provider because the re-
sults from executing the car search services can be imme-
diately processed by the Best Car Selection service without 
cross-organisational data transmission. Since such “multi-
functional” providers are capable of providing more ser-
vices (and usually willing to for more profit), discounts 
on the prices or premiums for the quality of the services 
are negotiable between the SBS designer and the service 
provider. For example, a service provider may charge a 
lower price for the Insurance Quote service if the SBS de-
signer also uses its Loan Quote service. Thus, the service 
providers should be able to express such discounts and 
premiums in their QoS offers flexibly. Those potentially 
available discounts and premiums increase the possibility 
of finding appropriate services for the SBS, especially 
when the quality constraints for the SBS are severe.

Sometimes, a solution for the SBS cannot be found 
based on the current QoS offers. For example, using even 
the cheapest services still exceeds the SBS owner’s budget 
for the SBS. In such cases, the service providers should be 
allowed to improve their offers. Then, based on the im-
proved offers, the SBS designer can try to find a solution 
again. In addition, to make sure that the negotiation pro-
ceeds in a desirable direction towards a satisfactory solu-
tion, guidance should be provided to the service provid-
ers on how to improve their bids in order to be included 
as part of the final solution.

3 PRELIMINARIES
In this research, we adopt combinatorial auction to man-
age the complex negotiation between SBS designers and 
service providers over multi-dimensional quality of mul-
tiple services. In the auction, service providers use a spe-
cific bidding language to propose QoS offers as bids for 
the SBS designer’s selection. The winning bids will de-
termine which concrete services are selected for con-
structing the SBS. In this section, the concepts of combina-
torial auction and bidding language are presented.

3.1 Combinatorial Auction
Combinatorial auctions are auctions where bidders can 
bid for combinations of items [20]. It has been proven that 
combinatorial auctions can lead to very effective alloca-
tion of multiple items [50]. There are already numerous 
successful examples of combinatorial auctions in practice, 
e.g. railroad tracks [10], real estate [47], pollution rights 
[34], airport time slot [49], distributed scheduling of ma-
chine time [54] and advertising space [23]

In a combinatorial auction, a seller sells m items to n 
bidders. Let K={s1, s2, …, sm} be the set of items and B be 
the bids submitted by the bidders. The notation and acro-
nyms adopted in the paper are summarised in the Ap-
pendix. A bid is represented by a tuple (Si, pi), Si≠Ø and 

⊆iS K , where Si represents the set of items that the bid is 
placed on and pi is the price for Si. The key problem of the 
combinatorial auction is winner determination, i.e., to 
select a subset {(S1, p1), (S2, p2), …, (Sn, pn)} of B that fulfils 
the following two constraints: 

nS S S K1 2 ... =   (1)

∀ ≠ ⇒ ∅i j i jS S i j S S, , = (2)
and meanwhile, maximises the auction revenue:

=1
maximise ( )

n

i
i

profit S∑ (3)

where pi is the profit obtained from Si.
Constraint (1) ensures that all items are covered by the 

selected bids. Constraint (2) ensures that every item is 
included in only one selected bid.

The advantage of combinatorial auctions is that the 
bidders can fully express their preferences for different 
items. This is particularly important when the items are 
complementary.

In a service composition scenario, an SBS designer 
needs to select a set of services from the candidate ser-
vices for an SBS S that achieves the SBS owner’s optimi-
sation goal, while fulfilling all quality constraints for the 
SBS. The SBS designer can hold a reverse multi-attribute 
combinatorial auction where service providers propose 
bids to compete for the service contracts, i.e., the contracts 
for the provision of the services of S. At the end, the ser-
vice contracts are awarded to the final winning bidders. 
In such an auction, each bid is represented by a tuple (S, 
Q), S≠Ø and ⊆S S , where S represents the set of abstract 
services on which the bid is placed, e.g., {s1, s3, …}, and Q 
represents the service provider’s QoS offer for S, e.g., 
{Q(s1), Q(s3), …}. Besides constraints (1) and (2), the solu-
tion to the WDP needs to fulfil additional constraints – 
the concrete services selected based on the winning bids 
must fulfil all quality constraints for the SBS. Formally, 
given a set of quality constraints C={c1, …, ct}, the follow-
ing constraint needs to be fulfilled:

[ ]
( ) for positive quality parameter

1
( ) for negative quality parameter

p

p

c
t

c
p

p

q
p ,

q

≥∀ f v  ≤

S
S

(4)

where qp( S ) is the pth quality parameter of S. The defini-
tions of positive and negative quality parameters are giv-
en in Section 4.4. 

Furthermore, the winning bids need to achieve the SBS 
owner’s optimisation goal by maximising the auction rev-
enue, e.g., maximising the overall utility of the SBS:

maximise(u( S)) (5)
where u( S ) is the function for calculating the utility of S .

3.2 Bidding Language
In a combinatorial auction, a bidder can propose multiple 
bids using the bidding language which specifies the struc-
ture of bids. A bidding language should allow bidders to 
bid in a flexible and straightforward manner. However, it 
should not be overly expressive because that would un-
necessarily increase the complexity of the auction. For 
example, given a set S of n items, the total number of pos-
sible combinations of k items is C(n, k), i.e., the k-
combinations of S. If a bidding language requires a bidder 
to attach a value to each possible combination of items, a 
bidder has to submit a bid of size C(n, 1)+C(n, 2)+…+ C(n,
n)=2n-1, which is only practically feasible for very small m. 
In this research, the exclusive-or (XOR) bidding language 
is adopted because it is flexible and straightforward in 
expressing the complementarities between items and has 
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emerged as a popular choice in recent combinatorial auc-
tion designs [9, 20]. Using the XOR bidding language, a 
bidder can submit bids in the form of (S1, Q1) xor (S2, Q2) 
xor…xor (Sn, Qn) stating the semantics “I will buy at most 
one of these combinations.” In the context of this re-
search, the bidders sell services and compete for service 
contracts. Thus, the semantics is “I will offer at most one 
of these combinations of services.”

4 COMPOSITIONAL QUALITY MODEL
The quality evaluation of an SBS is the basis for quality-
aware service selection. In this section, we first present 
the compositional structures adopted in this research for 
representing the business processes and service composi-
tions of SBSs. Based on the adopted compositional struc-
tures, we present how the SBS designer can calculate the 
execution probabilities of different execution scenarios of 
a service composition. Then, we introduce the utility and 
quality evaluation methods for SBSs.

4.1 Compositional Structures
Compositional structures describe the order in which the 
(abstract and concrete) services are performed in the 
business process and the service composition of SBSs. 
Similar to other work [4, 53, 61], in this research, we con-
sider four types of basic compositional structures, i.e., 
sequence, conditional branch, loop and parallel, which are 
included in BPMN [44] and addressed by BPEL [43] – the 
de facto standards for specifying service-oriented busi-
ness processes. 
 Sequence. In a sequence structure, the services are 

executed one by one.
 Conditional Branch. In a conditional branch struc-

ture, only one branch is selected for execution. For 
every set of branches {cb1, …, cbn}, the execution 
probability distribution {prob(cb1), …, prob(cbn)} 
(0≤prop(cbi)≤1,  is
specified, where p(cbi) is the probability that 
branch i is selected for execution.

 Loop. In a loop structure, the loop is executed for n 
(n≥0) times. For every loop, the probability distri-
bution {prob0, …, probMNI}, (0≤probi≤1, 
=1) is specified, where probi is the probability that 
the loop iterates for i times and MNI is the ex-
pected maximum number of iterations for the 
loop.

 Parallel. In a parallel structure, all the branches are 
executed at the same time.

p(cbi), probi and MNI can be evaluated based on the 
SBS’s past executions or can be empirically specified by 
the SBS designer [4, 60]. Similar to [4], we require that for 
every loop, the MNI must be determined. Otherwise, if an 
upper bound for the number of iterations for a loop does 
not exist, the quality of the SBS cannot be calculated be-
cause the loop can iterate infinitely [60]. In addition, if 
p(cbi) and probi are unknown, an average value will be 
assigned to each of the branches in conditional branch 
and loop structures. For example, for a conditional branch 

that consists of five branches, there is 
prob(cb1)=prob(cb2)=prob(cb3)= prob(cb4)=prob(cb5)=0.2.

In this research, we represent the business processes 
and service compositions of SBSs using UML activity dia-
grams, where activity nodes represent services and edges 
represent data transmissions. We assume that the busi-
ness process of an SBS is characterised by only one entry 
point and one exit point (e.g., NS and NE in Fig. 1), and it 
only includes structured loops with only one entry point 
and one exit point. If an SBS includes loops, we peel the 
loops by representing loop iterations as a set of branches 
with certain execution probabilities as in [25]. Fig. 2 gives 
an example of peeling a loop structure (MNI=2) by trans-
forming it into a conditional branch structure that con-
tains three conditional branches cb1, cb2 and cb3, where p0, 

p1 and p2 are the probabilities that cb1, cb2 and cb3 are select-
ed for execution respectively.

4.2 Execution Scenarios
In a service composition where branches or loops are in-
volved, multiple possible execution scenarios of the service 
composition can be identified. As introduced in Section 
4.1, a loop structure can be peeled and then represented 
by a conditional branch structure. Thus, by detecting the 
conditional branch structures, possible execution scenari-
os can be identified from the service composition as any 
execution scenario contains only one branch from each of 
the conditional branch structures. These execution scenar-
ios do not contain branch or loop structures. As presented 
in Fig. 3, two possible execution scenarios can be identi-
fied from the service composition presented in Fig. 1. The 
quality and utility evaluation of an SBS must consider all 
the possible execution scenarios according to their execu-
tion probabilities, i.e., the appearance probabilities of the 
execution scenarios. Therefore, we need to calculate the 
execution probability of each possible execution scenario 
identified from the service composition. The execution 
probability of an execution scenario is determined by the 
execution probabilities of all its execution paths. Whether 
an execution path is selected for execution is dependent 

Fig. 2. The loop peeling process.
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on the decisions made at the conditional branches. Thus, 
the execution probability of an execution scenario is the prod-
uct of the execution probabilities of all the conditional 
branches in the execution scenario. For an execution sce-
nario ese, the execution probability of ese is calculated as:

ep(ese)= (6)

where cbi represents the conditional branches that ese in-
cludes. 

For example, in Fig. 3, there is ep(es1)=prob(cb1) and 
ep(es2)=prob(cb2).

4.3 Utility Evaluation
Functionally equivalent services usually differ in multiple 
QoS parameters. For example, in Fig. 1, the Insurance 
Quote service provided by a service provider may have 
shorter response time but require a higher price than the 
Insurance Quote service provided by another service pro-
vider. Which is better depends on the client’s preference 
and priority. Selection from these services by their QoS 
characteristics is a multi-attribute decision making prob-
lem. For the purpose of ranking and sorting the services 
in a same service class (i.e., the group of services that 
provide the same functionality), a method is needed to 
evaluate a given service based on its multiple QoS param-
eters. In this research, we use a utility function for service 
evaluation by applying the Simple Additive Weighting 
(SAW) technique [57], one of the most widely used tech-
niques to obtain an overall score from multiple dimen-
sions [2-4, 60].

First, the raw QoS values are normalised to remove the 
incomparability between the units of measurement for 
different QoS parameters:

(7)

where and  are the maximum and min-
imum values, respectively, for the pth QoS parameter in 

the ith service class, and qp(si,j)
 
is the value of the pth QoS 

parameter of the jth service in the ith service class.
To accommodate non-numerical QoS parameters, such 

as reputation that are expressed by a rating selected from 
{very high, high, medium, low, very low}, the approach 
proposed in [42] is adopted. Based on a pre-defined se-
mantics-based hierarchical structure of all possible values 
of a non-numerical QoS parameter, each level of the hier-
archy is associated with a numerical value. In this way, 
we can calculate the utility of the QoS parameter and 
term the QoS parameter negative or positive. If the levels 
that are more preferable to end-users are assigned with 
higher values, the QoS parameter is treated as a positive 
QoS parameter, and vice versa.

After the normalization, the utility of service s with t 
QoS parameters can be calculated by:

 (8)

where wp (wpϵ[0, 1] and ) is the weight that rep-
resents the SBS owner’s preference and priority for the pth 
QoS parameter of the SBS.

Now the utility of an execution scenario es composed 
by n (n≥1) services s1, …, sn, can be calculated by:

(9)

Since an SBS may contain multiple execution scenarios 
the utility calculation of an SBS  must consider all the 
execution scenarios es1, …, esn according to their execution 
probabilities.

(10)

where epe is the execution probability of ese. The more fre-
quent an execution scenario is, the more it contributes to 
the utility of the SBS.

4.4 Probabilistic Quality Evaluation
The quality of an SBS depends on the quality of its 

constituent services and the paths selected for execution. 
For example, the response time of an SBS at runtime de-
pends on the longest execution path in the execution – the 
execution path with the maximum execution time. An 
execution path is a set of services forming a sequential 
path from the initial service to the final service of a ser-
vice composition. Take Fig. 1 as an example, there are 
four execution paths: EP1=s2,1-s3,3-s5,4-s6,1, EP2=s2,1-s3,3-s4,1-s6,1, 
EP3=s1,3-s3,3-s5,4-s6,1 and EP4=s1,3-s3,3-s4,1-s6,1. Each execution 
path is selected with a probability. Different combinations 
of execution paths lead to different execution scenarios, 
and consequently, different QoS performance. Thus, the 
probabilistic quality evaluation of an SBS requires aggre-
gating the quality of its constituent services, considering 
all the execution scenarios of the service composition ac-
cording to their execution probabilities. For an SBS , let 
ese (e=1, 2, …) be the execution scenarios of the service 
composition of , EPi (i=1, 2, …) be the execution paths in 
the service composition, si,j (j=1, 2, …) be EPi’s constituent 
services, the overall quality of  can be evaluated using 
the aggregation functions presented in Table 1 – an ex-
tended version of the QoS aggregation functions intro-

 Fig. 3. Example execution scenarios.
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duced in [60]. For example, the cost of the SBS  can be 
calculated by qcost( )=qprice(s1,3)+qprice(s2,1)+ 
qprice(s3,3)+qprice(s4,1)+qprice(s5,4)+qprice(s6,1) and the response time 
of  can be calculated by qrt( )=ep(es1)×qrt(es1)+ep(es2)× 
qrt(es2).

Numerical QoS parameters can be divided into two 
categories: positive and negative QoS parameters, defined 
as follows:
Definition 1: Positive QoS parameter. A positive QoS 

parameter is a QoS parameter whose evaluation will 
increase as its value increases. Given the utility func-
tion u(q(s)) for evaluating a QoS parameter q of a ser-
vice s, q is a positive QoS parameter when:

Availability and throughput are two typical positive 
QoS parameters.
Definition 2: Negative QoS parameter. A negative QoS 

parameter is a QoS parameter whose evaluation will 
decrease as its value increases. Given the utility func-
tion u(q(s)) for evaluating a QoS parameter q of a ser-
vice s, q is a negative QoS parameter when:

Price (or cost) and response time are two typical nega-
tive QoS parameters.

In this paper, the discussion and examples are based 
on price (or cost) and response time, which have also 
been the basis for QoS consideration in other approaches 
[3, 4, 60]. The QoS parameters introduced in other litera-
tures can be generalised as added dimensions in our qual-
ity model.In the remainder of this paper, we use negative 
QoS parameters and omit mostly repetitive yet similar 
introduction for positive QoS parameters.

5 CASS PROCEDURE
CASS is an iterative auction, which allows bidders to im-
prove their bids round by round for auctioneer to find a 
satisfactory solution. This section presents the procedure 
of CASS.

Before the auction, the SBS designer needs to look up 

candidate services for the abstract services in the business 
process of the SBS. This can be achieved by querying pub-
lic UDDI registries, search engines and service portals. An 
alternative is to publish CASS as a service which service 
providers can subscribe to. The auction cannot start until 
at least one candidate service is found for each abstract 
service.

Not all the abstract services in the business process of 
the SBS must be included in the auction. For example, if 
there is only one candidate service for an abstract service 
or a specific service is preferred to the SBS designer, the 
service will be selected immediately as long as its QoS 
meets the corresponding quality constraints (if any).

The five steps of CASS are depicted in Fig. 4, as ex-
plained below.

Step 1: At the start of the auction, the auctioneer (i.e., 
the SBS designer) distributes a Request for Proposal (RFP) 
to the providers of the candidate services. The RFP speci-
fies the following preliminary information about the auc-
tion: 1) the abstract services that are to be auctioned; and 
2) the required QoS information that service providers 
must provide to participate in the auction, including the 
types of QoS parameters and the measurement units for 
the QoS. The information contained in the RFP is the basis 
for the service providers’ first bids.

Step 2: The service providers that are interested in par-
ticipating in the auction submit their bids. If the bids are 
valid, the service providers are officially acknowledged as 
bidders. A bid is considered invalid if it does not contain 
complete QoS information as required.

Step 3: The auctioneer solves the WDP and determines 
the current winning bids – the winning bids in the current 

Fig. 4. The process of CASS.

TABLE 1
QUALITY AGGREGATION FUNCTIONS

Quality 
Parameter 

Aggregation Function

Cost

Response 
Time

Availability

Throughput



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

round – based on received bids. The auctioneer then 
checks the stop criterion. If the stop criterion is met, the 
auction stops.

Step 4: If the criterion is not met, e.g., a solution cannot 
be found, the auction needs to continue. Ask-QoSs are 
generated and distributed to bidders, along with the cur-
rent winning bids. A deadline for the bidders to propose 
their next bids is also sent.

Step 5: According to the received ask-QoSs and the cur-
rent winning bids, the bidders can respond by 1) accept-
ing the ask-QoS or proposing even better bids; or 2) with-
draw some or all of its bids.

Steps 2 to 5 are repeated until the stop criterion is met. 
Sometimes a final deal-sealing round needs to be trig-
gered to determine the final winning bidders for certain 
services. The details are provided in Section 6.1.3.

There are service providers that offer their services at 
non-negotiable QoS levels, e.g., Amazon in the current 
cloud market. Such service providers can still be included 
in the auction. Their offers will be compared with other 
service providers’ offers. The only differences between 
those service providers and other service providers are 
twofold: 1) their offers stay unchanged in the auction un-
til beaten; 2) they do not receive ask-QoS.

6 CASS MECHANISMS
In this section, we present the mechanisms that support 
CASS, including bidding constraints, winner determina-
tion, stop criteria and ask-QoS generation.

6.1 Bidding Constraints
Bidding constraints are rules that bidders must follow 
when proposing bids in the auction. In this section, we 
introduce the bidding constraints imposed in CASS.

6.1.1 Non-Linear Bids
The QoS offers proposed by bidders can be non-linear. 
The definition of non-linear bids is as follows:
Definition 3: (Non-Linear Bids). Given bids ({sm}, 

{Qi(sm)}), ({sn}, {Qj(sn)}), ({sm, sn}, {Qk(sm), Qk(sn)}) that in-
volve two abstract services sm and sn (sm≠sn), non-linear 
bids allow:

qi,p(sm)+qj,p(sn)≠qk,p(sm)+qk,p(sn) (16)

where qi,p(sm), qj,p(sn), qk,p(sm) and qk,p(sn) represent the pth 
QoS parameter of sm and sn specified in Qi(sm), Qj(sn), 
Qk(sm) and Qk(sn).

For example, a bidder can propose $300.00 for service sm, 
$400.00 for service sn and $650.00 for the combination of sm 
and sn. This allows bidders to apply discounts to their 
offers for negative QoS parameters (and premiums to 
positive QoS parameters) according to the complementa-
rities between the services that they are bidding for.

6.1.2 Minimum Decrement
If a solution cannot be found, the auction iterates, allow-
ing the bidders to improve their bids. In order to guaran-
tee that the auction proceeds in the right direction to-
wards a satisfactory solution, the auctioneer generates 
and sends ask-QoSs to the bidders as guidance on their 

bidding. Ask-QoS is an extension of ask-price which in an 
auction is usually defined as the price a seller of a goods 
is willing to accept for that particular goods. The ask-QoS 
in CASS specifies the QoS offer asked by the auctioneer. 
Corresponding to a bid, each ask-QoS is specified by (S, 
AQ), where S represents the set of abstract services that 
the bid is placed on and AQ represents the base QoS offer 
asked by the auctioneer from the bidder for S. Based on 
received ask-QoSs, bidders improve their bids to increase 
their chances of winning, i.e., being part of the final solu-
tion. The QoS offers specified in the bids for the next 
round must not be worse than the ask-QoSs. Given one of 
the bids proposed by a bidder brk in the current round is 
({si}, {$110.00}). Suppose that the ask-QoS corresponding 
to that bid is ({si}, {$100.00}), the price that brk proposes for 
si in the next round must not exceed $100.00. Otherwise, 
that bid will be filtered out. That bidder’s other bids, if 
matching or exceeding corresponding ask-QoSs, can still 
remain in the auction.

To generate ask-QoSs, minimum decrements (measured 
by percentage) are imposed on bidders’ current bids, 
which represent the minimum concession that bidders 
have to make for their bids to remain in the auction. In a 
large-scale scenario where the number of bids is huge, 
large minimum decrements are usually preferable as they 
efficiently filter out uncompetitive bids. On the other 
hand, small minimum decrements are more reasonable in 
small-scale scenarios because overly large minimum dec-
rements may filter out too many (sometimes all) remain-
ing bids, decreasing the success rate of finding a solution 
to the WDP. In an auction that lasts through several 
rounds, the number of remaining bidders usually de-
creases as the auction proceeds. The minimum decrement 
should be reduced accordingly. CASS adopts a novel 
mechanism, called dynamic minimum decrement (DMD) to 
facilitate ask-QoS generation. At the early stage of the 
auction, higher minimum decrements are applied to gen-
erate ask-QoSs. By doing this, DMD efficiently filters out 
uncompetitive bids, decreasing the number of remaining 
bids and reducing the complexity of the WDP. As the auc-
tion proceeds, the minimum decrement decreases to effec-
tively exploit the QoS capacities of the remaining bidders. 
By doing so, DMD can improve the efficiency of the auc-
tion without sacrificing the effectiveness. The selection of 
DMD model (or formula) is domain-specific and is de-

  
Fig. 5. Example models for DMD generation.
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termined by the SBS designer. Fig. 5 illustrates three ex-
ample DMD models. Apparently, the minimum decre-
ments generated based on model #2 decreases faster over 
time than those based on models #1 and #3. 

6.1.3 Final Deal-Sealing Round
A final deal-sealing round is a round in which bidders 
have a last chance to propose their bids for certain ser-
vices. There are two situations where a final deal-sealing 
round can be held: 1) when a time limit constraint has 
been set for the auction and it is violated; 2) when all the 
bidders competing for certain services quit the auction in 
the same round because they cannot accept the ask-QoSs, 
leaving some service contracts unallocated. The result 
from a final deal-sealing round will determine the final 
winning bids for these services. If the bids proposed in 
the final deal-sealing round are still estimated equivalent, 
the final winning bids for those services will be selected 
randomly from the remaining bids. If the bidders still 
would not accept the ask-QoSs in the final deal-sealing 
round, the bid(s) from the last round with the highest 
utility would be selected as the final winning bids for 
those services.

6.2 Winner Determination
Based on received bids, the auctioneer needs to determine 
which bids are current winning bids, i.e., the winning 
bids in the current round. This is a multi-attribute deci-
sion making problem, which in the context of combinato-
rial auction is referred to as the WDP, a NP-complete 
problem [51].

Suppose the business process of an SBS  consists of r 
(r≥1) abstract services K={s1, …, sr}. Given m (m≥2) groups 
of bids (proposed by m bidders brk, k=1, …, m) in the auc-
tion, each contains n received bids. Each bid bk specifies a 
set of services Sk and a QoS offer Qk. The WDP is a con-
straint optimisation problem (COP) that aims at selecting 
zero or one bid from each bid group so that the selected 
bids achieve the SBS designer’s optimisation goal objec-
tive( ), while fulfilling all quality constraints for the SBS 

 C={c1, …, ct}.
To capture the quality constraints for , we first mod-

el the WDP as a constraint satisfaction problem (CSP), 
which consists of a finite set of variables X={X1, …, Xn}, 
with respective domains D={D1, …, Dn} listing the possible 
values for each variable, and a set of constraints C={c1, …, 
ct} over X. A solution to a CSP is an assignment of a value 
to each variable from its domain such that every con-
straint is satisfied. The CSP model of the WDP can be 
formally expressed as follows.

For m bidders, there are m×n 0-1 variables Xi,j (i=1, …, 
m, j=1, …, n, and D(Xi,j)={0, 1}), Xi,j being 1 if the jth bid in 
the ith bid group is selected as part of the current winning 
bids, 0 otherwise. The constraints for the CSP model are:

XOR constraints: (11)

Coverage constraints: (12)

Quality constraints:    qp( )<cp   (13) 

where Si,j is the set of abstract services specified in the jth 
bid in the ith bid group, qp( ) is the pth quality parameter 
of  and can be obtained by applying the quality aggre-
gation functions presented in Table 1.

Constraints family (11) guarantees that at most one bid 
is selected from each bid group, according to the XOR 
bidding language. Constraints family (12) guarantees full 
coverage of K, i.e., each abstract service is included in se-
lected bids exactly once. Constraints family (13) ensures 
that all quality constraints for the SBS are fulfilled. Note 
that not every SBS owner has constraints for all t quality 
parameters of the SBS. Sometimes, there can be non-linear 
quality constraints due to non-linear quality aggregation. 
They can be approximately linearised using certain tech-
niques [7]. However, such techniques often produce an 
inordinate number of variables and constraints, putting 
the problem beyond the practical reach of available IP 
tools. An overview of the tools for nonlinear IP can be 
found in [21]. It is still a positively active research field 
and the existing tools are still facing many theoretical and 
practical difficulties. Hence, in this research, we consider 
only linear quality constraints.

Solving the above CSP can generate a solution that ful-
fils all quality constraints for the SBS. Such a solution is 
called a feasible solution. Very often, there are many feasi-
ble solutions. Take the SBS presented in Fig. 1 for exam-
ple, there might exist multiple feasible solutions that yield 
different overall system utility at different overall costs, as 
presented in Fig. 6. Now we seek to achieve the SBS own-
er’s optimisation goal for the SBS. Given an objective 
function that represents the SBS owner’s optimisation 
goal, the CSP turns into a COP. In a COP, each solution 
generated by solving the CSP is associated with a ranking 
value for the objective function. The solution with the 
optimal ranking value is the solution to the COP, i.e., the 
solution to the WDP of the auction. 

Most existing approaches in the area of quality-aware 
service selection aims at maximising overall system quali-
ty (or utility) [2-4, 60]. However, SBS owners’ optimisa-
tion goals can be various (and often conflicting to each 
other), e.g., to minimise the overall cost of service usage 
for the system or the overall response time of the system. 
CASS allows SBS designers to specify optimisation goals 
flexibly according to SBS owners’ needs, which in the 

Fig. 6. Feasible and optimal solutions.
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COP model are represented using different objective 
functions. In this research, we use the objective functions 
for two typical optimisation goals as examples: 1) to max-
imise the overall system utility; and 2) to minimise the 
overall cost of service usage for the SBS. A maximised 
overall system utility usually results in high stakeholder 
satisfaction as the quality constraints are exceeded to the 
maximum based on the utilities of available candidate 
services. Minimising the overall cost of service usage is a 
common choice for SBS owners with limited budgets as it 
helps them keep the overall cost within budget.

1. Maximising the overall system utility. The solu-
tion to this optimisation goal is the set of services 
that fulfills all the quality constraints and mean-
while, maximises the overall utility of the SBS, e.g., 

MaxUtilityS  in Fig. 6. The objective function that cap-
tures this optimisation goal is as follows:

k i , j
|

u X
∈

×∑
i,jki j s S

objective s
,

( ) : maximise ( )S (14)

2. Minimising the overall cost of service usage. The 
solution to this optimisation goal is the set of ser-
vices that fulfills all quality constraints and mean-
while, minimises the total price of the selected ser-
vices, e.g., MinCostS  in Fig. 6. The objective function 
that captures this optimisation goal is as follows:

                
| ∈

×∑ price k i j

i jki j s S
objective q s X ,

,,
( ) : minimise ( )S (15)

This COP can be solved by applying IP techniques [60] 
(or mixed integer programming technique [3, 4] if deci-
mal variables are involved). Based on the results from 
solving the COP, the winning bids can be determined. If 
the stop criterion for the auction is met, the current win-
ning bids become final winning bids. According to the 
final winning bids, the SBS designer selects the concrete 
services for the SBS, awards the service contracts to the 
winning bidders and finalises the SLAs for the concrete 
services. However, sometimes no feasible solutions to the 
COP can be found, which indicates that the current bids 
are not good enough to fulfil all quality constraints for the 
SBS. If the stop criterion (see Section 6.3) for the auction is 
not met, the auction will iterate, allowing the bidders to 
improve their bids. In such cases, we remove constraint 
family (13) from the COP model and find the current best 
bids, which achieve the SBS owner’s optimisation goal 
while fulfilling constraints families (11) and (12). The auc-
tioneer then distributes the current best bids to the bid-
ders as the current winning bids, which help them ana-
lyse their positions in the competition - they can compare 
their current bids to the current winning bids and deter-
mine whether and how to improve their bids.

6.3 Stop Criteria
In Step 3 of CASS, as described in Section 5, the current 
winning bids are determined by solving the WDP which 
is the optimal solution based on the current bids. Howev-
er, whether the current winning bids are the final win-
ning bids depend on whether the auction stops. For ex-
ample, the current winning bids, being the optimal solu-

tion based on the current bids, might not meet the re-
quirements for the quality of the SBS. Thus, the auc-
tioneer needs to determine whether the auction stops by 
checking if the stop criterion is met. CASS provides three 
stop criteria:

• QoS fulfilment. This stop criterion is to meet the 
quality constraints for the SBS. If the current win-
ning bids fulfil or exceed the quality constraints 
for the SBS, the auction stops immediately and the 
current winning bids are considered as final win-
ning bids. This stop criterion is used when there 
are specific constraints for the quality of the SBS.

• Time limit constraint. This stop criterion is a pre-
specified time limit constraint for the auction. Sim-
ilar to eBay, a timer can be set, based on the scale 
of the auction, to determine when the combinato-
rial auction is forced to stop. The timer begins to 
count down as the auction starts. When time is up, 
bidding is no longer allowed and the current win-
ning bids or current best bids, if exist and fulfil the 
quality constraints for the SBS, are considered as 
the final winning bids. In order for the auctioneer 
to obtain better QoS offers for the SBS, a final deal-
sealing round (see Section 6.1.3) can be performed 
which gives the bidders a last chance to improve 
their bids. If no solution is found within the time 
limit, the auction is considered failed. If necessary, 
the auction can start over. This stop criterion can 
prevent the auction from hanging due to potential-
ly significant time consumption by NP-complete 
winner determination. It also prevents overly long 
auctions, especially if human intervention is in-
volved in any parties in the auction. Thus, the time 
limit constraint is used with a relatively small val-
ue when time is a major concern for the auction. 
Otherwise, a large value can be used, allowing the 
auction to go on for a relatively long time, possibly 
days as at ebay.com.

• Final-best-bids. When a solution is found, it is 
possible that the non-winning bidders are still 
willing to improve their bids. The auctioneer can 
adopt the third stop criterion, i.e. final-best-bids, to 
further exploit the competition between the bid-
ders in such situations, which is to let the auction 
continue until only one bidder remains for each 
abstract service. As the auction proceeds, bidders 
that cannot afford to accept the ask-QoS have to 
withdraw corresponding bids. Finally, only one 
bid remains for each abstract service and the re-
maining bids are considered the final winning 
bids. Apparently, this stop criterion is appropriate 
when the quality of the SBS is the major concern 
and the time taken by the auction process is not.

6.4 Ask-QoS Generation
In Step 3 of CASS, as described in Section 5, the auc-
tioneer also checks whether the stop criterion is met. If 
not, the auction needs to continue by starting a new 
round. In Step 4, CASS provides bidders with non-linear 
and non-anonymous ask-QoSs to guide their bidding and 
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filters out uncompetitive bids. Bidders that cannot afford 
the ask-QoSs have to withdraw corresponding bids. Uti-
lising ask-QoS, the auctioneer can make sure that the auc-
tion proceeds in the right direction towards a satisfactory 
solution by demanding better bids from the bidders until 
their QoS capacities are exhausted or the auction stops. In 
addition, by filtering out uncompetitive bids, the applica-
tion of ask-QoSs can reduce the complexity of solving the 
WDP because the size of the search space (i.e., number of 
bids) is reduced.

Non-linear and non-anonymous ask-QoSs are defined 
as follows:
Definition 4: (Non-Linear Ask-QoS). Given ask-QoSs 

({sm}, {AQi(sm)}), ({sn}, {AQj(sn)}), ({sm, sn}, {AQk(sm), 
AQk(sn)}) that involve two abstract services sm and sn 

(sm≠sn), non-linear ask-QoSs allow:

aqi,p(sm)+aqj,p(sn)≠aqk,p(sm)+aqk,p(sn) (16)

where aqi,p(sm), aqj,p(sn), aqk,p(sm) and aqk,p(sn) represent the 
asked offers for the pth QoS parameter of services sm 
and sn specified in AQi(sm), AQj(sn), AQk(sm) and AQk(sn) .
For example, a bidder can be asked for the price of 

$200.00 for service sm, $300.00 for service sn and $470.00 
for the combination of sm and sn.
Definition 5: (Non-anonymous Ask-QoS). Given two 

ask-QoSs ({sm}, {AQj(sm)}) and ({sm}, {AQk(sm)}), for two 
different bidders, non-anonymous ask-QoSs allow:

aqj,p(sm)≠aqk,p(sm) (17)

where aqj,p(sm) and aqk,p(sm) represent the pth QoS param-
eter of sm specified in the AQj(sm) and AQk(sm).
For example, the auctioneer can ask a bidder for the 

price of $200.00 for an abstract service while asking an-
other bidder for the price of $250.00 for the same abstract 
service.

Non-linear ask-QoS allows CASS to take into account 
the complementarities between services. Non-anonymous 
ask-QoS allows CASS to elicit bidders’ dissimilar QoS 
capacities. For instance, a bidder with potential capacity 
for providing a low price can be asked for a lower price 
while another bidder capable of completing the task fast 
is asked for a short response time.

We compute the ask-QoS by analysing service provid-
ers’ historical bids. Here, we introduce a novel concept 
called Surplus Bidding Space, which models the bidders’ 
potential capacity for improving their offers for a specific 
QoS parameter. Given the current offer for the pth QoS 
parameter of service si proposed by bidder brk in the cur-
rent round, denoted by , ( )k cur

p iq s , and a series of brk‘s his-
torical offers for qp(si), denoted by ,1( )k

iq sp , …, , ( )k n
p iq s , we 

first calculate the standard score of qp(si) to reflect how far
, ( )k

iq scur
p falls above or below the average value of ,1( )k

iq sp , 
…, , ( )k n

p iq s :
, , ,( ( )) ( ( ) - ( )) /p i i iz q s = q s q s σk cur k cur k ave

p p (18)

where , ( )iq sk ave
p  and σ are the average value and standard 

deviation of , ( )p iq sk cur , ,1( )k
iq sp , …, , ( )k n

p iq s .
Then, we calculate the surplus bidding space of brk for 

qp(si) by applying the Simple Additive Weighting (SAW) 
technique [57]:
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(19)
where ( )k

p iε s ∈ [0, 1], ,( ( ))iq sk max
pz and ,( ( ))iq sk min

pz  represent 
the standard scores of the maximum and minimum offer 
for the pth QoS parameter of service si that brk has ever 
provided.

Surplus bidding space indicates the potential capacity 
of a bidder for a better QoS offer compared to its current 
offer. The minimum decrement (or minimum increment 
in the case of positive QoS parameter) imposed by an ask-
QoS on a bidder is dependent on the surplus bidding 
space of the bidder. For example, a bidder with a high 

( )k
p iε s  can be pushed hard on qp(si) with an ask-QoS that 

imposes a large minimum decrement on the bidder’s cur-
rent QoS offer for qp(si). For an unknown bidder, whose 
historical bids are unavailable, formulas (18) and (19) 
cannot be applied to calculate the bidder’s surplus bid-
ding space. In such cases, the average value of the surplus 
bidding space of other bidders competing for the same 
abstract service will be used to generate the ask-QoS for 
the unknown bidder.

As described in Section 6.1.2, high minimum decre-
ments can speed up the auction process at the early stage 
of the auction by efficiently filtering out uncompetitive 
bids, while low minimum decrements can maximise sys-
tem optimality by effectively exhausting the surplus bid-
ding space of the remaining bidders at the late stage. Ask-
QoS generation in CASS is based on DMD, aiming at 
guaranteeing both the effectiveness and efficiency of the 
auction. In general, there are two factors that affect the 
determination of DMD: the surplus bidding space of the 
bidders and the adopted DMD model. According to Fig. 
7, the generation of the minimum decrement in the pth 
QoS parameter of service si for bidder brk proceeds as fol-
lows:

• Calculate the surplus bidding space ( )k
p iε s  of brk 

for the pth QoS parameter of service si;
• Draw a straight line from the origin with ( )k

p iε s  as 
the slope;

• Locate the point at which the straight line inter-
sects with the DMD model curve.

Fig. 7. Generation of dynamic minimum decrement (DMD).
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• Obtain the y axis value of the intersection point 
and that is the minimum decrement in the pth QoS 
parameter of service si for brk.

As the auction proceeds, the surplus bidding space of a 
bidder shrinks. Accordingly, the slope of the solid straight 
line in Fig. 7 becomes smaller. Then solid straight line 
intersects with the DMD model curve at a point with a 
lower y axis value. In this way, the minimum decrement 
applied to generate the ask-QoS for the bidder decreases 
over time according to its surplus bidding space and the 
adopted DMD model as the auction proceeds.

According to formulas (18) and (19), when , ( )iq scurk
p <

, ( )min
iq sk

p , ( )k
p iε s <0. According to Fig. 7, the solid straight 

line with ( )k
p iε s  as the slope does not intersect with the 

curve of the DMD model. In such cases, the value of 
( )k

p iε s  is invalid. It happens when the QoS offer specified 
in the current bid is out of the range of the service pro-
vider’s historical bids, which can be caused by the bidder 
drastically changing its bidding behaviour. Thus, using 
the bidder’s historical bids to estimate its surplus bidding 
space becomes infeasible. In such cases, if that bid is part 
of the current winning bids, it is allowed to remain in the 
auction until beaten by other bids. Otherwise, half of the 
DMD value in the previous round will be used as default 
value to generate the ask-QoS for the bidder in the cur-
rent round.

7 EXPERIMENTAL EVALUATION
This section presents the experimental evaluation of 
CASS, focusing on the comparison with existing optimi-
sation approaches in terms of effectiveness (measured by 
the success rate of finding an optimisation solution and 
the system optimality) and efficiency (measured by auc-
tion duration and the coordination overhead). It ends 
with a validity analysis.

7.1 Prototype Implementation
We have implemented a prototype of CASS in Java using 
JDK 1.6.0 and Eclipse Java IDE. It implements the mecha-
nisms introduced before. Given as input the functional 
specification of the business process of an SBS, a set of 
quality constraints for the SBS and an optimisation objec-
tive, an iterative combinatorial auction can be held to real-
ise SLA negotiation for the SBS. For solving the COP (i.e., 
the WDP) introduced in Section 6.2, the prototype uses 
IBM CPLEX v12.2, a linear programming solver.

7.2 Experimental Setup
To evaluate CASS, we have conducted a series of in-lab 
experiments. The evaluation process mimicked multiple 
SBSs. In the experiments, we used the prototype to hold 
combinatorial auctions with simulated bidders. A random 
proportion (between 40% and 60%) of those bidders were 
given the ability to bid for randomly generated combina-
tions of services as in reality not every bidder has the abil-
ity or is willing to bid for multiple services. Those bidders 
applied randomly generated discounts (5%-15%) to their 
QoS offers when bidding for combinations of services. 
Theoretically, the maximum number of different combi-
nations of services that a bidder can bid for in an auction

with m abstract services to be auctioned is 
=1

m i
mi

C∑ . To
model the bidders’ behaviours realistically, we restricted 
this number to be equivalent to the number of abstract 
services in the experiments. For example, if there are 100 
abstract services of the SBS, each bidder can bid for up to 
100 different combinations of services. In real world, it is 
the bidders’ own decisions to bid for how many and 
which services or combinations of services. CASS itself 
does not limit the way that bidders combine services.

Bidders’ bidding behaviors can be very different from 
each other. Even a same bidder can adopt different bid-
ding strategies when bidding for different items, present-
ing dissimilar bidding behaviours. Hence, we did not 
adopt specific probability distributions in generating ser-
vice providers’ historical bids in the experiments. Instead, 
the historical bids of the bidders were generated based on 
the QoS information provided in QWS – a publicly avail-
able Web service dataset that comprises measurements of 
nine QoS parameters of over 2500 real-world Web ser-
vices [1]. We randomly selected the quality of the services 
in QWS to represent bidders’ historical bids for specific 
abstract services. For each abstract service, a bidder had 
at least five historical bids. The QoS offers specified in a 
bidder’s first bid proposed in the first round were gener-
ated based on its historical bids. For example, if a bidder’s 
best historical offer for the price of a service is $2,000, the 
price proposed in its first bid was selected from a ran-
domly generated interval, e.g., [$1,500, $2,500]. This con-
figuration captured the nature of the bidders with various 
surplus bidding spaces. The optimisation goal in the ex-
periments is to maximise the overall system utility (see 
Section 6.2). When severe quality constraints are imposed 
on the SBS, e.g., limited budget and stringent response 
time, it is possible that no solution can be found that meet 
these quality constraints [4]. Allowing bidders to improve 
their QoS offers and exploiting competition between bid-
ders is a promising attempt to address this issue. To eval-
uate the success rate of CASS in different situations, we 
simulated three types of scenarios where different diffi-
culty levels of quality constraints were imposed on the 
SBS:

• Simple. This type of quality constraint set is rela-
tively easy to be satisfied on all quality parame-
ters.

• Medium. This type of quality constraint set is 
more difficult to be satisfied than the “simple” lev-
el as the constraints imposed on some quality pa-
rameters of the SBS are demanding.

• Severe. This type of quality constraint set is the 
most difficult to be satisfied as the constraints im-
posed on all quality parameters of the SBS are de-
manding.

Fig. 8 presents randomly generated quality constraint 
sets on different difficulty levels for an abstract service si. 
In Fig. 8, min

rt iq s( )  and max
rt iq s( )  are the minimum and max-

imum values of all bidders’ historical offers for the re-
sponse time of si. min

price iq s( )  and max
price iq s( )  are the minimum 

and maximum values of all bidders’ historical offers for 
the price of si.
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The quality constraints for the SBS were generated by 
aggregating randomly generated quality constraints for 
individual abstract services of the SBS. For example, for 
an SBS ={s1, …, sn}, given the set of randomly generated 
constraints for the price of si (i=1, …, n) denoted by cprice(si)
 (i=1, …, n), the constraint for the price of  is 

.
When a solution could not be found, ask-QoSs were 

generated based on bidders’ historical bids and the bid-
ders would improve their bids according to the ask-QoSs 
to start a new round. In the experiments, the bidders 
would continue to improve their bids until their surplus 
bidding space are exhausted. For ask-QoS computation, 
we adopted DMD model #3 presented in Fig. 5 unless 
particularly specified. For the stop criterion, we selected 
QoS fulfillment (see Section 6.3) as it is also the criterion 
adopted by other similar work [2-4, 60] to determine a 
solution.

There are five factors that influence the effectiveness 
and efficiency of CASS: 1) the number of quality con-
straints imposed on the SBS; 2) the number of abstract 
services included in the business process of the SBS; 3) the 
number of bidders participating in the auction; 4) the dif-
ficulty level of the quality constraints imposed on the SBS; 
and 5) the number of bids proposed by each bidder. We 
have conducted four sets of experiments. The configura-
tion of each set of experiment is presented in Table 2. In 
set #1, we increased the number of quality constraints 

from 1 to 10 in steps of 1 while fixing the number of ab-
stract services at 10 and the number of bidders at 100. In 
set #2, we increased the number of abstract services from 
10 to 100 while fixing the number of quality constraints at 
2 and the number of bidders at 100. In set #3, we in-
creased the number of bidders from 100 to 1000 while 
fixing the number of quality constraints at 2 and the 
number of abstract services at 10. In set #4, we increased 
the overall scale – the numbers of quality parameters, 
services and bidders combined. We then changed the dif-
ficulty level of quality constraints, creating three subsets 
of experiments in each set of experiments, i.e., simple, me-
dium and severe. In each subset of experiment, 100 in-
stances of experiments were run and the collected results 
were averaged. The maximum number of different com-
binations of services that a bidder can bid is equivalent to 
the number of abstract services. Increase in this number 
would increase the total number of bids and scale up the 
experiment. However, the maximum of the total number 
of bids, given the current experimental configuration, was 
already 60,000, which we believe was large enough for the 
purpose of the experiment. Hence, we did not change the 
maximum number of different combinations of services 
that a bidder can bid for in the experiment.

The experiments were conducted on a machine with 
AMD Athlon(tm) X4 640 3.00GHz CPU and 8 GB RAM, 
running Windows 7 x64 Ultimate.

7.3 Effectiveness Evaluation
To evaluate the effectiveness of CASS, we implemented 
the optimisation approach adopted in [2-4, 60] for com-
parison, which is also based on IP. We refer to this opti-
misation approach as Static Optimisation as it does not 
consider the complementarities between services and the 
competition among service providers. In the experiments 
for Static Optimisation, the bidders only bid for individu-
al services.

We first compare the effectiveness of CASS Optimisa-
tion (i.e., optimisation based on CASS) and Static Optimi-
sation by their success rates – the percentage of scenarios 
where a solution could be found that meets the quality 
constraints for the SBS, and meanwhile, achieves the op-
timisation goal.

Fig. 8. Quality constraints on different difficulty levels.

TABLE 2
EXPERIMENTAL CONFIGURATION

Factor Experiment
Set #1

Experiment
Set #2

Experiment
Set #3

Experiment
Set #4

Number of Quality 
Constraints

From 1 to 10
in step of 1 2 2 From 1 to 10

in steps of 1

Number of Abstract 
Services 10 From 10 to 100

in steps of 10 10 From 10 to 100
in steps of 10

Number of Bidders 100 100 From 100 to 1000
in steps of 100

From 100 to 1000
in steps of 100
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Fig. 9 - 12 present the results obtained from the exper-
iments. As illustrated, CASS Optimisation significantly 
outperforms Static Optimisation, 81.11% versus 38.15% 
on average across all experiments. As the scenario scales 
up, the success rate of Static Optimisation drops quickly 
in most cases while CASS Optimisation maintains signifi-
cantly higher success rate in those cases compared to Stat-

ic Optimisation. In particular, in the “severe” subsets of 
experiments, the success rate of Static Optimisation re-
mains zero despite the numbers of quality parameters, 
services and bidders while CASS Optimisation was still 
able to solve certain percentages of those “severe” cases. 
Specifically, the average success rates of CASS Optimisa-
tion are 28.82% 31.40%, 89.85% and 39.36% in the “se-

(a) Simple (b) Medium (c) Severe

Fig. 9. Set #1: success rate vs. number of quality constraints.

(a) Simple (b) Medium (c) Severe

Fig. 10. Set #2: success rate vs. number of abstract services.

(a) Simple (b) Medium (c) Severe

Fig. 11. Set #3: success rate vs. number of bidders.

(a) Simple (b) Medium (c) Severe

Fig. 12. Set #4: success rate vs. overall scale.
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vere” scenarios of experiment sets #1, #2, #3 and #4 re-
spectively, 47.36% on average.

As illustrated by Fig. 9 (a) and (b), when not all the 
quality constraints were demanding, CASS Optimisation 
always found a solution. As shown in Fig. 9 (c), the suc-
cess rate of CASS optimisation decreases from 76% to 5% 
as the number of quality constraints increases from 2 to 
10. The reason is that the increase in the number of quali-
ty constraints made it increasingly difficult to satisfy all 
“severe” quality constraints imposed on the SBS. On av-
erage, the success rate of CASS optimisation across all 
scenarios in this set of experiments is over twice that of 
Static Optimisation, i.e., 76.27% vs. 36.86%. Based on a 
total of 2,700 samples collected in this series of experi-
ments, we conducted chi-square test with the null hy-
pothesis that CASS has no difference to Static Optimisa-
tion in finding a solution as the number of quality con-
straints increases. Based on the samples, the test statistic 
value x2 is 853.26, higher than the critical value of the test 
statistic, which is 7.88 (confidence level=0.005), for p=1E-
187. Thus, we can reject the null hypothesis and conclude 
that CASS is much more effective than Static Optimisa-
tion in finding a solution as the number of quality con-
straints increases.

The results observed in Fig. 10 are similar to those in 
Fig. 9. In general, the success rate decreases as the num-
ber of abstract services increases. Compared to the num-
ber of quality constraints, the increase in the number of 
abstract services influences the success rate more signifi-
cantly. In the cases of 9 and 10 services, even CASS Opti-
misation failed to find a solution. However, CASS Opti-
misation still beats Static Optimisation by a considerably 
large margin in success rate in this set of experiments. On 
average, the success rate of CASS optimisation across all 
scenarios in this set of experiments is approximately 
71.76% and number for Static Optimisation is only 
28.62%. Based on the samples collected in this series of 
experiments, the test statistic value x2 by chi-square test is 
1003.64, higher than the critical value of the test statistic, 
which is 7.88 (confidence level=0.005), for p=3E-220. Thus, 
we conclude that CASS is much more effective than Static 
Optimisation in finding a solution as the number of ab-
stract services increases.

The results presented in Fig. 11 illustrate that the in-
crease in the number of bidders does not directly influ-
ence the success rate. In this set of experiments, the diffi-
culty level of the quality constraints is the only factor that 
affects the success rate. Again, CASS Optimisation shows 
a significant advantage over Static Optimisation with a 
success rate margin of 48.53% (96.62% vs. 48.09%). In par-
ticular, when the difficulty level of quality constraints is 
“severe”, CASS obtains much higher success rates 
(89.85%) in this set of experiments than in the previous 
two sets (28.82% for set #1 and 31.40% for set #2). The rea-
son is that compared to the previous two sets of experi-
ments, there were more bidders in the auction in set #3, 
which led to fiercer competition among bidders. By ex-
ploiting that competition, CASS manages to find a solu-
tion most of the times even when the quality constraints 
for the SBS are severe. Based on the samples collected in 

this series of experiments, the test statistic value x2 by chi-
square test is 1591.09, higher than the critical value of the 
test statistic, which is 7.88 (confidence level=0.005), for 
p=0. Thus, we conclude that CASS is much more effective 
than Static Optimisation in finding a solution as the num-
ber of bidders increases.

In set #4, the intensity of the competition among the 
bidders remained at the same level – the average number 
of bidders competing for each service was 10. However, 
the increase in the number of quality constraints made it 
more difficult to find a solution. As illustrated by Fig. 12, 
the average success rates obtained by both CASS optimi-
sation and Static Optimisation in the “medium” and “se-
vere” experiments decreased as the experiments scaled 
up. Compared to Static Optimisation, CASS Optimisation 
obtained significantly higher success rates. In particular, 
while Static Optimisation failed completely in all scenari-
os in the “severe” scenarios, CASS Optimisation obtained 
an average success rate of 39.36%. Based on the samples 
collected in this series of experiments, the test statistic 
value x2 by chi-square test is 929.19, higher than the criti-
cal value of the test statistic, which is 7.88 (confidence 
level=0.005), for p=4E-204. Thus, we conclude that CASS is 
much more effective than Static Optimisation in finding a 
solution as the overall scale increases.

In order to statistically compare our approach and 
Static Optimisation in finding a solution in general, we 
also performed a chi-square test based on all the samples 
collected in the abovementioned four series of experi-
ments. The test statistic value x2 is 4140.54, higher than the 
critical value of the test statistic, which is 7.88 (confidence 
level=0.005), for p=0. Based on the results of the chi-square 
test, we conclude that CASS is much more effective than 
Static Optimisation in finding a solution.

In order to find a satisfactory solution, the CASS 
Optimisation method and Static Optimisation method 
both seek to achieve the SBS owner’s system optimisation 
goal – to maximise the overall system utility. Hence, 
higher overall system utility indicates higher system op-
timality, and as a result, higher success rate of finding a 
solution. In order to compare the two optimisation 
methods in system optimality, we averaged the overall 
system utility obtained (when a solution was found) by 
CASS Optimisation and Static Optimisation in different 
experimental scenarios. The results are presented in Table 
3. Based on the results, we performed Wilcoxon test, 
where the null hypothesis H0 was that there is no 
difference between the system utility obtained by Static 
Optimisation and CASS. The test statistic value p by the 
Wilcoxon test is 0.002, much lower than 0.05. So we reject 
the null hypothesis. Thus, the results clearly demonstrate 
the advantage of CASS over Static Optimisation in 
obtaining system utility. Furthermore, for an intuitive 
comparision, we also calculated uCASS/uStatic. The results are 
presented in Table 4, where “N/A” represents that the 
comparison is not applicable in that case because Static 
Optimisation could not find a solution. As shown, CASS 
Optimisation outperforms Static Optimisation by margins 
of between 23% and 66%. Across all experiements in the 
“simple” and “medium” scenarios, the overall system 
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utility obtained by CASS Optimisation is approximately 
1.41 times the overall system utility obtained by Static 
Optimisation.

The experimental results indicate that compared to 
existing static optimisation approaches, CASS 
Optimisation significantly increases the possibility of 
finding solutions for SBSs and improves the system opti-
mality by exploiting the complementarities between ser-
vices and the competition among service providers.

7.4 Efficiency Evaluation
A CASS auction may last multiple rounds. In each round, 
the auctioneer needs to coordinate the auction by 1) de-
termining the winners for each round; and 2) generating 
ask-QoSs for bidders. Thus, there are two aspects to the 
efficiency of CASS: auction duration and coordination over-
head.

Auction duration, measured by the number of auction 
rounds, is a relevant efficiency concern of CASS because 

long auction duration implies low efficiency and high 
coordination overhead – the WDP needs to be solved and 
ask-QoSs be generated a number of times during the auc-
tion. In addition, increased auction duration may reduce 
auctioneer’s profit from the auction because a certain 
amount of administrative cost for maintaining the auction 
applies in each round of the auction. When the auction 
proceeds to later stages, the marginal benefit for the auc-
tioneer from the bidders’ competition may decrease dra-
matically and, in the worst-case scenario, is not even 
worth the additional administrative cost. However, a 
longer auction usually has more potentials to achieve the 
SBS owner’s optimisation goal because it gives the auc-
tioneer the necessary time to elicit high-value bidders’ 
surplus bidding space better. Apparently, there is a 
tradeoff between the effectiveness and the efficiency of 
the auction.

Fig. 13 presents the average number of rounds taken 
by the auction to complete in the experiments. The results 
include successful (where a solution is found) and failed 
auctions (where a solution cannot be found). Generally 
speaking, the auction duration increases with the difficul-
ty level of quality constraints. Across all “simple” subsets 
of experiments, CASS takes exactly one round to com-
plete. In the case of “medium”, the average auction dura-
tion is between one and two rounds. Specifically, the av-
erage auction duration is 1.53 rounds in experiment set 
#1, 1.19 rounds in set #2, 1.19 rounds in set #3 and 1.55 
rounds in set #4. In the “severe” scenarios, CASS takes 
between three and five rounds to complete, 4.00 rounds 
on average in set #1, 2.66 rounds in set #2, 3.88 rounds in 
set #3 and 4.00 rounds in set #4.

In set #2, as depicted in Fig. 13 (b), when the number 
of abstract services exceeded 80, CASS could not find a 
solution. CASS is very efficient in those scenarios – it al-
ways took only one round for CASS to find out that a so-
lution could not be found.

The success rate significantly influences the average 
auction duration. As presented in Section 7.3, as the ex-
perimental scenario scales up, the success rate decreases 
most of the time – it gets harder for CASS to find a solu-
tion. However, it gets easier for CASS to find out that a 
solution cannot be found. The influence of success rate on 
average auction duration is particularly significant in the 
“severe” scenarios where the success rate drops relatively 
quickly as the scenario scales up. As shown in Fig. 13, in 
the “severe” scenarios, when the scenario scale begins to 
increase, although requires increasingly more rounds to 
find a solution, CASS can still achieve relatively high suc-
cess rate. As the scenario scale continues to increase, the 
success rate begins to decrease and the average duration 
of successful auctions contributes less and less to the av-
erage overall auction duration. However, taking less 
rounds to complete, failed auctions become more domi-
nant in the determination of the average overall auction 
duration. As reflected in Fig. 13, the average auction dura-
tion (overall) shows an increasing and then a decreasing 
trend as the scenario scales up.

TABLE 3
SYSTEM UTILITY COMPARISON (UCASS/USTATIC)

Experiment 
Set

Difficulty Level 
of Quality 

Constraints

Static
Optimisation

CASS

Set #1
Easy 3.34 4.82

Medium 3.24 3.97
Severe 0 3.23

Set #2
Easy 0.95 1.58

Medium 0.97 1.48
Severe 0 0.99

Set #3
Easy 1.31 1.74

Medium 1.34 1.70
Severe 0 1.26

Set #4
Easy 2.97 4.347

Medium 2.7 3.44
Severe 0 2.79

TABLE 4
SYSTEM OPTIMALITY (UCASS/USTATIC)

Changing Factor
Difficulty Level of Quality 

Constraints
Simple Medium Severe

Number of 
Quality Con-

straints
1.44 1.23 N/A

Number of 
Abstract Services 1.66 1.53 N/A

Number of 
Bidders 1.32 1.27 N/A

Overall Scale 1.59 1.27 N/A
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The auction duration may vary in experiments con-
figured in a different way or in real-world scenarios. It 
largely depends on the difficulty level of the quality con-
straints imposed on the SBSs. For example, a set of “se-
vere” quality constraints usually requires that the bidders 
improve their bids many times so that a solution can be 
found. In both in-lab experiments and real-world scenari-
os, the auction duration is determined by how soon the 
surplus bidding spaces of the bidders (especially the 
high-value ones) are exhausted. In both successful and 
failed auctions, the efficiency of CASS in terms of auction 
duration is guaranteed by the application of DMD-based 
ask-QoS (see Section 6.4). As introduced in Section 6.4, 
DMD-based ask-QoS ensures that the auction proceeds 
fast in the right direction towards a solution. The experi-
mental results prove the effectiveness of ask-QoS in coor-
dinating bidders’ bidding behaviours.

Given that ask-QoS in CASS is generated based on 
DMD, the adopted DMD model is an important factor 
that impacts the duration of CASS. To demonstrate the 
impact of DMD models on auction duration, we conduct-
ed another set of experiments where DMD model #2 in 
Fig. 5 was adopted for ask-QoS generation. The results 
are presented in Table 5. As shown, across the “simple” 
subsets of experiments, it always took only one round for 
CASS to complete. In such cases, the ask-QoSs were not 
generated. Thus, it did not make a difference whether to 
adopt DMD model #2 or #3 for ask-QoS generation. In the 
“medium” experiments, CASS took no more than two 
rounds to complete. Accordingly, ask-QoS only needs to 
be generated only once at most. Thus, the difference be-
tween DMD models #2 and #3 in both success rate and 
auction duration is not significant. In the “severe” exper-
iments, the adoption of DMD model #2 led to lower 
DMDs compared to DMD model #3. Thus, the ask-QoSs 
filtered out the uncompetitive bids slower when DMD 

(a) Set #1

(b) Set #2

(c) Set #3

(d) Set #4 (number of quality constraints - number of abstract ser-
vices - number of bidders)
Fig. 13. Auction duration vs. increasing scale.

TABLE 5
DMD MODEL #2 VS. MODEL #3

(AVERAGE AUCTION DURATION/SUCCESS RATE)

Changing 
Factor

Difficulty Level of Quality Constraints
Simple Medium Severe

DMD 
Model 

#2

DMD 
Model 

#3

DMD 
Model 

#2

DMD 
Model 

#3

DMD 
Model 

#2

DMD 
Model 

#3

Number of 
Quality 

Constraints

1.00
/

1.00

1.00
/

1.00

1.53
/

1.00

1.53
/

1.00

5.85
/

0.38

4.00
/

0.29

Number of 
Abstract 
Services

1.00
/

1.00

1.00
/

1.00

1.16
/

0.81

1.19
/

0.85

3.74
/

0.37

2.66
/

0.31

Number of 
Bidders

1.00
/

1.00

1.00
/

1.00

1.21
/

1.00

1.19
/

1.00

5.48
/

0.97
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model #2 was adopted for ask-QoS generation. Thus, it 
took more rounds for CASS to complete when DMD 
model #2 was adopted. However, as said in Section 6.1.2, 
large DMDs may decrease the success rate of finding a 
solution because they sometimes filter out too many 
(sometimes all) remaining bids. This is confirmed by the 
results presented in Table 5 – in the “severe” experiments 
the average success rates obtained by CASS from longer 
auctions were higher than those obtained from shorter 
ones.Besides the number of auction rounds, the coordina-
tion overhead is another very important efficiency meas-
urement. When the scenario scale is large, solving the NP-
complete WDPs and generating ask-QoSs for bidders can 
take a significant amount of time. In order to evaluate the 
coordination overhead of CASS, we calculated the total 
CPU time (measured in milliseconds) taken per auction in 
winner determination and ask-QoS generation. The re-
sults are shown in Fig. 14 in comparison with Static Op-
timisation which only needs to solve the WDP once in 
each instance of experiment. From the results, we observe 
that the coordination overhead of CASS is significantly 
larger than that of Static Optimisation. The reasons are 
twofold. First, CASS sometimes needs more than one 
round to complete, requiring the WDP to be solved and 
ask-QoS to be generated for multiple times during an auc-
tion. Another major reason is that the search space of the 
WDP in CASS Optimisation is considerably larger than 
that in Static Optimisation. In the experiments for CASS 
Optimisation, 40% to 60% bidders were allowed to bid for 
combinations of services, creating remarkably more bids 
than Static Optimisation. For example, in an experiment 
with 1000 bidders and 100 services, the maximum num-
ber of bids created in CASS is 60,000 while the number for 
Static Optimisation is only 1,000. Thus, solving the WDP 
in CASS is much more complicated and time consuming 
than that in Static Optimisation. In Fig. 14, we also ob-
serve that the per-auction coordination overhead of CASS 
is insignificant when the scale of experimental scenario is 
relatively small. As the experimental scenario scales up, 
the per-auction coordination overhead, although increas-
es significantly, especially in experiment set #4, is not 
very large. In the worst-case scenario, i.e., the “severe” 
scenarios in experiment set #4, the per-auction coordina-
tion in the largest-scale scenarios, being the highest across 
all scenarios in the experiments, is only 16 seconds.

In general, we believe that the coordination overhead 
of CASS is not negligible but satisfactory. In experiment 
sets #1, #2 and #3, the average per-auction coordination 
overhead is no more than 1.5 seconds. In experiment set 
#4, the per-auction coordination overhead increases sig-
nificantly, approaching approximately 16 seconds as the 
scenario scales up to 1000 bidders, 100 services and 10 
quality constraints. As presented before, in such scenari-
os, the average auction duration is around four rounds. 
Thus, the average per-round coordination overhead is 
four seconds approximately.

According to the results presented before, CASS needs 
more rounds to complete as the difficulty level of quality 
constraints increases. However, as demonstrated by Fig. 
14, the corresponding increase in per-auction coordina-

(a) Set #1

(b) Set #2

(c) Set #3

(d) Set #4
Fig. 14. Per auction coordination overhead vs. increasing scale.

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7 8 9 10

Pe
r-

au
ct

io
n 

Co
od

in
at

io
n 

O
ve

rh
ea

d
(in

 M
ill

is
ec

on
ds

)

Number of Quality Constraints

Simple-CASS Simple-Static
Medium-CASS Medium-Static
Severe-CASS Severe-Static

0

50

100

150

200

250

300

350

400

450

500

10 20 30 40 50 60 70 80 90 100

Pe
r-

au
ct

io
n 

Co
od

in
at

io
n 

O
ve

rh
ea

d
(in

 M
ill

is
ec

on
ds

)

Number of Services

Simple - CASS
Simple - Static
Medium - CASS
Medium - Static
Severe - CASS
Severe-Static

0

200

400

600

800

1000

1200

1400

1600

100 200 300 400 500 600 700 800 900 1000

Pe
r-

au
ct

io
n 

Co
od

in
at

io
n 

O
ve

rh
ea

d
(in

 M
ill

is
ec

on
ds

)

Number of Bidders

Simple - CASS
Simple - Static
Medium - CASS
Medium - Static
Severe - CASS
Severe-Static

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Pe
r-

au
ct

io
n 

Co
od

in
at

io
n 

O
ve

rh
ea

d
(in

 M
ill

is
ec

on
ds

)

Overall Scale

Simple - CASS
Simple - Static
Medium - CASS
Medium - Static
Severe - CASS
Severe-Static



HE ET AL.: QUALITY-AWARE SERVICE SELECTION FOR SERVICE-BASED SYSTEMS BASED ON ITERATIVE MULTI-ATTRIBUTE COMBINATORIAL 
AUCTION

tion overhead is insignificant. In the early rounds across 
all the auctions, e.g., the first and second rounds, the total 
numbers of bids were large and solving the WDPs took a 
relatively large amount of time. As the auction proceeded, 
the total numbers of bids decreased significantly because 
the adoption of ask-QoS filtered out a lot of uncompeti-
tive bids each round. Solving the WDPs became much 
easier than in the earlier rounds. In addition, as uncom-
petitive bids were filtered out, the number of bidders re-
maining in the auction also decreased quickly. Generating 
ask-QoSs for the remaining bidders were also much less 
time consuming than in the earlier rounds. This demon-
strates that severe quality constraints, although increase 
the auction duration, do not significantly impact the per-
auction coordination overhead.

The experimental results demonstrate that CASS often 
requires more than one round to complete when the qual-
ity constraints for the SBS are not easy to satisfy. In addi-
tion, coordination overhead applies in CASS when the 
auction needs to iterate. However, given the significant 
increases in success rate and system optimality, we be-
lieve that the efficiency of CASS is satisfactory in most 
real-world applications in terms of both auction duration 
and coordination overhead.

7.5 Threats to Validity
Here we discuss the threats to the validity of the evalua-
tion on our approach.

Threats to construct validity. The main threat to the con-
struct validity of our evaluation is the comparison with 
Static Optimisation. Static Optimisation, based on IP, is 
one of the most popular approaches to QoS-aware service 
composition [3, 4, 60], and thus is used as a baseline for 
comparison in our evaluation. In our approach, the quali-
ty of the candidate services can be improved. However, in 
the Static Optimisation, the quality of the candidate ser-
vices is static. As a result, better results, i.e., higher suc-
cess rate and system utility, tend to be obtainable by our 
approach. Thus, the main threat to construct validity is 
that whether the comparison with Static Optimisation can 
properly demonstrate the effectiveness of our approach in 
finding a solution to SBS, especially in scenarios where 
the quality constraints for SBSs are stringent. To minimise 
this threat, we changed different configuration factors (as 
shown in Table 2) to simulate scenarios with different 
stringency of quality constraints for SBSs. By doing so, we 
could evaluate our approach by not only the comparison 
with Static Optimisation, by also the demonstration of 
how the change in the stringency of quality constraints 
impacts on the success rate obtained by our approach.

Threats to external validity. The main threat to the exter-
nal validity of our evaluation is the representativeness of 
the bids simulated in the experiments. There are two as-
pects. The first one is that we generated bidders’ historical 
bids based on quality information randomly selected 
from the QWS dataset [1], a dataset widely used in re-
search on QoS-aware service composition. In an auction, a 
bid represents the bidder’s offer. In a service composition 
scenario, it includes the QoS that the service provider is 
willing to offer. Once the offer is accepted and an SLA is 

contracted, the QoS specified in the offer becomes a bot-
tom line for the real service provision, i.e., the QoS per-
ceived by the users at runtime must not be worse than the 
QoS specified in the offer. For the service providers’ per-
spective, it is usually to their best interests to maintain the 
QoS at or just above the promised levels as it requires the 
minimal service resources to keep their promises. Thus, 
historical QoS data may not be the exact representative of 
the bids, but it is very similar to what service providers 
are willing to offer. In [18], Comuzzi et al. also utilise his-
torical QoS data for evaluating service providers’ QoS 
offers. The second threat to the external validity of our 
evaluation is the adoption of random distribution in the 
generation of bids. Bidders’ bidding strategies can be very 
diverse. Thus, we adopted random distribution when 
generating bids in the experiments to provide a general-
ised reference. In scenarios where some service providers’ 
bidding strategies follow other probability distributions 
rather than random distributions, or do not even follow 
any probability distributions, the results would be differ-
ent from our evaluation in terms of actual figures. How-
ever, as the stringency of quality constraints vary, the 
change in effectiveness and efficiency of our approach in 
those scenarios would still be similar to our evaluation in 
general.

Threats to internal validity. The main threat to the inter-
nal validity of our evaluation is the comprehensiveness of 
our experiments. Three factors have been explored to 
simulate different stringency of quality constraints, in-
cluding the number of quality constraints, the number of 
abstract services and the number of bidders. There is an-
other factor that could influence the results - the maxi-
mum number of combinations that a bidder can bid for. 
In the experiments, it is equivalent to the number of ab-
stract services. Changes in this factor will change the 
search space of the WDP, and as a result will influence 
the evaluation. However, the impact due to changes in 
this factor is the same as that due to changes in the num-
ber of bidders – they both increase the search space of the 
WDP. Given the fact that in the current experiments the 
maximum number of bids in the search space of the WDP 
is 60,000 which is quite large, we believe that we need not 
further change the maximum number of bids that a bid-
der can bid for in the experiments. In the experiments, we 
simulated scenarios where the abovementioned three fac-
tors changed individually. We also simulated scenarios 
where all three factors changed at the same time. Other 
scenarios that could have been simulated are those where 
the three factors change in pairs. In those scenarios, the 
results can be predicted in general based on the results 
that we have obtained. For example, if the numbers of 
quality constraints and bidders increase at the same time, 
the declining trend of the success rate would be similar to 
Fig. 9. The reason is that, based on Fig. 9 and Fig. 10, we 
can observe that the impact of the increase in the number 
of quality constraints on the success rate is much more 
significant than the number of bidders.

Threats to conclusion validity. The main threat to the 
conclusion validity of our evaluation is the statistical tests 
performed. We drew our conclusion from comparison by 
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chi-square tests when evaluating the effectiveness of 
CASS. In such tests, large samples tend to result in a small 
p-value, lowering the practical significance of the test re-
sults [37]. There were 2,700 samples in each of the chi-
square tests performed in our evaluation. This number is 
not even close to the numbers of samples that concern Lin 
et al. in [37]. The threat to the conclusion validity due to 
large samples in statistical tests, although potentially re-
mains, is not significant. Thus, our evaluation has high 
conclusion validity.

8 RELATED WORK
One major benefit of service-oriented paradigm is its 
support for building SBSs through composition of ser-
vices. In the composition process, SBS designers need to 
select services that fulfil quality constraints and achieve 
SBS owners’ optimisation goals for the SBSs. To address 
this issue, the research area of quality-aware service selec-
tion for SBSs has been attracting tremendous research 
attention in recent years.

The work in [8] proves that the service selection with 
multiple quality constraints for service composition is 
NP-complete. To address this issue, some suboptimal and 
optimal solutions have been proposed. We first summa-
rise major existing approaches in the two categories. Then 
we introduce the common limitations of existing ap-
proaches that we overcome with CASS.

Suboptimal Approaches: The work in [12] uses genetic 
algorithms to address the issue of quality-aware Web ser-
vice composition. Their work focuses on domain-specific 
QoS attributes and customised QoS aggregation formulas. 
WS-Binder Tool is implemented to support both cross-
domain and domain-specific QoS attributes and to de-
termine suboptimal solutions for Web service composi-
tions according to given fitness functions and QoS con-
straint sets. However, the approach aims at providing 
service consumers with tools for domain-specific QoS 
definition and (re)binding, and no experimental results 
are provided for the evaluation of the approach. The 
work in [29] models quality-aware Web service selection 
as a 0-1 knapsack problem or resource constraint project 
scheduling problem and identifies four possible ap-
proaches to find near-optimal solutions, including greedy 
selection, discarding subsets, bottom-up approximation 
and pattern-wise selection. The work in [58] also models 
quality-aware Web service selection as a 0-1 knapsack 
problem as well as a multi-constraint optimal path prob-
lem. Yu et al. present heuristic algorithms to find near-
optimal solutions in polynomial time. For different com-
position structures, e.g. sequence, parallel, conditional 
and loops of services, different algorithms are proposed. 
Berbner et al. [5] design an Web service-based workflow 
engine named WSQoSX, which aims at optimising quali-
ty-aware service composition in real-time and under 
heavy load. A heuristic algorithm is proposed. Firstly, 
linear programming is used to relax the Mixed Integer 
Programming (MIP) formulation of the service composi-
tion problem. Then a backtracking algorithm is used to 
construct a feasible solution based on the result of the 

relaxed IP problem. Liang et al. [36] propose to introduce 
a layer between QoS and service consumers’ require-
ments in order to provide service consumers the QoS con-
trol of service systems. They adopt a negotiation ap-
proach to help select heuristically best services for opti-
mising the overall system utility. Comuzzi and Pernici 
[19] propose a framework for automating Web service 
contract specification and establishment. Within the 
framework, functionally equivalent services are ranked 
according to their ability to fulfil the quality requirements 
within the target budget. Services are selected heuristical-
ly according to their ranks for target SBSs. A negotiation 
approach is also provided to maximise the overall system 
utility. Klein et al. [31] aim at optimising the quality of 
SBSs over long-term periods. At runtime, services are se-
lected probabilistically for different executions of a same 
service composition schema. Aiming at finding near-
optimal solutions in polynomial time, the authors relax 
the original SBS optimisation problem and then model the 
modified problem as IP problems. In [11, 13], with the 
aim to accommodate the aggregation of non-linear and 
domain-specific user-defined QoS parameters, Canfora et 
al. adopt genetic algorithms to find near-optimal solu-
tions to the problem of quality-aware service selection for 
SBSs.

Optimal Approaches: Zeng et al. [59, 60] present AgFlow, 
a middleware platform that enables quality-driven com-
position of Web services. The selection of component ser-
vice is performed to meet the users’ requirements for the 
composite service’s QoS modelled from multiple dimen-
sions. IP is used to compute the optimal plan for compo-
site service executions from several execution paths rep-
resented by Directed Acyclic Graph (DAG). Following the 
work in [59, 60], in [4], Ardagna and Pernici formulate the 
quality-aware service selection problem as MIP and adopt 
loops peeling for optimisation. When a feasible solution 
does not exist, a QoS negotiation algorithm is suggested 
to enlarge the solution space of the optimisation problem. 
Alrifai and Risse [2] adopt a heuristic distributed method 
to find the best Web services that meet local QoS con-
straints generated by decomposing global QoS constraints 
using, again, IP. They then propose in [3] an approach 
based on the notion of skyline to reduce the search space 
for the problem of quality-aware service composition. In 
[35], Li et al. use a different philosophy from works de-
scribed above to address the quality-aware service selec-
tion problem. They use Service Composition Graph (SCG) 
to represent the composite service. Then, they employ 
Dijkstra’s shortest-path algorithm to find the optimal so-
lution to the service composition problem. In [52], Wang 
et al. find that optimal solutions can be found in polyno-
mial time for some specially structured service composi-
tions that consist of three services. Algorithms are pro-
posed to detect if the optimal solution can be found for a 
given service composition in polynomial time. Attempt-
ing to maintain the optimality of SBSs at runtime, 
Cardellini et al. [14, 15] propose MOSES (Model-based 
Self-adaptation of SOA systems), a methodology and pro-
totype that model the problem of service selection for SBS 
adaptation also as IP problems.
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The abovementioned research does not fully consider 
the fact that complementary services can be provided at 
better QoS levels by a single provider than multiple pro-
viders. SBS designers can improve the system optimality 
of their SBSs by exploring the complementarity between 
the services. Exploring the complementarity between the 
services also enables attempts to increase the possibility 
of finding a solution for SBS optimisation problem, espe-
cially in scenarios where the quality constraints for SBSs 
are severe.

Exploiting the competition among service providers 
can also contribute to increasing the system optimality 
and the success rate of finding a solution for SBS optimi-
sation problem. Thus, for an SBS, an SBS designer should 
be able to negotiate with multiple candidate service pro-
viders for each abstract service and select the best offers 
based on the results of the negotiation. In addition, the 
QoS that service providers are willing to offer depend on 
the complementarities between the services and the num-
ber of services that they are competing for. Therefore, in 
the negotiation, the service providers should be able to 
express their QoS offers flexibly for services and combina-
tions of services. None of the existing negotiation ap-
proaches [4, 6, 19, 36] has properly addressed the above 
issues.

Combinatorial auction is widely recognised as a prom-
ising approach to provide the bidders (i.e. service provid-
ers) with flexible bidding options, hence allowing the 
bidders to compete in SLA negotiation for service compo-
sition [20]. The work in [41] presents a solution for QoS 
driven Web service composition using combinatorial auc-
tions, named QoS-Aware WEb Services Composer 
(QWESC). QWESC facilitates combinatorial auctions to 
capture the Web service providers’ willingness to provide 
a composite service at a lower price than the total price of 
stand-alone services that form the composite service, as 
well as other QoS attributes. IP formulation is provided to 
solve the problem of quality-aware Web service composi-
tion. However, several essential issues in designing a 
combinatorial auction for Web service composition are 
missing, e.g. bidding constraints and ask-QoS generation. 
The work presented in [46] also adopts combinatorial 
auction to model and solve the Web service composition 
problem. The proposed algorithms consider the volume 
discounts offered by service providers for multiple in-
stances of Web services. Nonetheless, the approach has a 
major limitation that the issue of QoS constraints has not 
been considered. CWSMBM (Combinatorial Web Service 
Market Based Mechanism) utilises combinatorial auctions 
in a different way [38]. In CWSMBM, service consumers 
bid for services and the allocation is based on the utilities 
of the bids. Given the feature that it aims at improving the 
global market benefit, CWSMBM is only suitable for 
building applications within organisational boundaries, 
as claimed so by the authors themselves in the paper. In 
[6], Blau et al. design a multidimensional procurement 
auction for service compositions based on combinatorial 
auction. In the auction, a service provider can either offer 
a service on its own or provide bundled services together 
with other services. The complementarity between ser-

vices is considered but roughly referred to as “synergy 
effect”. An in-depth investigation into the complementari-
ty between services, e.g., how to express and exploit the 
complementarity, is missing. In addition, the possibility 
that a service provider might be able to offer multiple 
services is not considered. Furthermore, since the focus of 
that research is the collaboration between service provid-
ers, the competition between them is not taken into ac-
count.

Combinatorial Auction for Service Selection (CASS) 
presented in this paper provides a novel approach that 
supports effective and efficient service selection for SBSs 
based on iterative multi-attribute combinatorial auction. 
CASS differs from the above works in two ways. First, 
CASS fully considers the complementarities between the 
services and allows service providers to express QoS of-
fers flexibly for combinations of services. Second, CASS 
provides SBS designers the ability to exploit the competi-
tion among service providers.

9 CONCLUSIONS AND FUTURE WORK
Quality-aware service selection for service-based systems 
(SBSs) is a critical issue in service-oriented environments. 
This paper has proposed Combinatorial Auction for Ser-
vice Selection (CASS), a novel approach that supports 
effective and efficient service selection for SBSs based on 
iterative multi-attribute combinatorial auction. CASS 
properly captures the complementarities between ser-
vices. CASS allows service providers to bid for combina-
tions of services and express their quality-of-service (QoS) 
offers flexibly, giving them the incentives to compete. 
When a solution cannot be found, CASS iterates, allowing 
service providers to improve their bids. CASS also allows 
SBS designers to specify optimisation goals flexibly and 
models the problem of service selection for SBSs as con-
straint optimisation problem, which can be solved effi-
ciently by adopting standard IP techniques. In CASS, auc-
tioneers can create and exploit competition among service 
providers. The experimental evaluation shows high effec-
tiveness of CASS. CASS beats existing IP based SBS opti-
misation approaches in success rate of finding a solution 
for SBS by an average of 42.96%. CASS also demonstrates 
high efficiency. On average, the overall system utility ob-
tained by CASS is 1.41 times the overall system utility 
obtained by existing IP based optimisation approaches. 
The experimental results also show that the auction dura-
tion and coordination overhead of CASS are satisfactory.

One of the limitations of CASS is its inability to handle 
non-linear quality constraints and non-linear QoS param-
eters. With non-linear quality constraints and QoS pa-
rameters, the WDP becomes a non-linear programing 
problem. We will investigate this in the future. We will 
also further consider the impact of different bidder be-
haviours on CASS in terms of effectiveness and efficiency.
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APPENDIX

Acronym Summary
See Table 6

Notion Summary
See Table 7

TABLE 6
ACRONYM SUMMARY

Symbol Description

CASS Combinatorial Auction for Service Selection 
CSP Constraint Satisfaction Problem
COP Constraint Optimisation Problem
DMD Dynamic Minimum Decrement
IP Integer Programming
MIP Mixed Integer Programming
RFP Request for Proposal
SBS Service-based System
SLA Service Level Agreement
QoS Quality of Service

UDDI
Universal Description Discovery and Inte-
gration 

WDP Winner Determination Problem

 

TABLE 7
NOTATION SUMMARY

Symbol Description
AQ Ask-QoS

aqi,p(sj) Asked offer for the pth QoS parameter 
of sj specified in the ith ask-QoS

B Universe of current bids
bi ith bid proposed by a bidder
brk kth bidder
BR Universe of bidders
cb Conditional branch
cp pth constraint
C Set of constraints

D(q(s)) Domain of the qth QoS parameter of 
service s

ep(ese)
Execution probability of execution 
scenario ese

e Execution scenario index
ese eth execution scenario
EP Eexecution path
k Bidder index
K Universe of items to be auctioned
s Service
SC Service Class
S Service-based system
Si Set of services
Q Set of QoS parameters
Qi Set of QoS parameters for Si

p Quality parameter index

probi
Probability that a loop iterates for i 
times

prob(cbi) Probability that cbi is selected for 
execution

qp pth QoS parameter

( )max
p iq SC Maximum value for the pth QoS pa-

rameter in the ith service class

( )min
p iq SC Minimum value for the pth QoS pa-

rameter in the ith service class
, ( )k cur

p iq s pth QoS parameter of si proposed by 
bidder brk in the current round

,1( )k
iq sp , …,

, ( )k n
p iq s

Series of brk’s historical offers for 
qp(si)

, ( )iq sk ave
p Average value of ,1( )k

iq sp , …, , ( )k n
p iq s

u Utility function
w Weight
X Set of variables
Xi ith variable in X
z Standard score

( )k
p iε s Surplus bidding space of brk for qp(si)
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